ggml.c 738 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  281. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  289. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  290. return GGML_BF16_TO_FP32(x); // it just left shifts
  291. }
  292. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  293. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  294. return GGML_FP32_TO_BF16(x);
  295. }
  296. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  297. for (int64_t i = 0; i < n; i++) {
  298. y[i] = GGML_FP16_TO_FP32(x[i]);
  299. }
  300. }
  301. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  302. int64_t i = 0;
  303. #if defined(__F16C__)
  304. for (; i + 7 < n; i += 8) {
  305. __m256 x_vec = _mm256_loadu_ps(x + i);
  306. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  307. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  308. }
  309. for(; i + 3 < n; i += 4) {
  310. __m128 x_vec = _mm_loadu_ps(x + i);
  311. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  312. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  313. }
  314. #endif
  315. for (; i < n; i++) {
  316. y[i] = GGML_FP32_TO_FP16(x[i]);
  317. }
  318. }
  319. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  320. int64_t i = 0;
  321. #if defined(__AVX512F__)
  322. for (; i + 16 <= n; i += 16) {
  323. _mm512_storeu_ps(y + i,
  324. _mm512_castsi512_ps(
  325. _mm512_slli_epi32(
  326. _mm512_cvtepu16_epi32(
  327. _mm256_loadu_si256(
  328. (const __m256i *)(x + i))),
  329. 16)));
  330. }
  331. #elif defined(__AVX2__)
  332. for (; i + 8 <= n; i += 8) {
  333. _mm256_storeu_ps(y + i,
  334. _mm256_castsi256_ps(
  335. _mm256_slli_epi32(
  336. _mm256_cvtepu16_epi32(
  337. _mm_loadu_si128(
  338. (const __m128i *)(x + i))),
  339. 16)));
  340. }
  341. #endif
  342. for (; i < n; i++) {
  343. y[i] = GGML_BF16_TO_FP32(x[i]);
  344. }
  345. }
  346. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  347. int i = 0;
  348. #if defined(__AVX512BF16__)
  349. for (; i + 32 <= n; i += 32) {
  350. _mm512_storeu_ps(
  351. (__m512 *)(y + i),
  352. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  353. _mm512_loadu_ps(x + i)));
  354. }
  355. #endif
  356. for (; i < n; i++) {
  357. y[i] = GGML_FP32_TO_BF16(x[i]);
  358. }
  359. }
  360. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  361. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  362. }
  363. //
  364. // timing
  365. //
  366. #if defined(_MSC_VER) || defined(__MINGW32__)
  367. static int64_t timer_freq, timer_start;
  368. void ggml_time_init(void) {
  369. LARGE_INTEGER t;
  370. QueryPerformanceFrequency(&t);
  371. timer_freq = t.QuadPart;
  372. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  373. // and the uptime is high enough.
  374. // We subtract the program start time to reduce the likelihood of that happening.
  375. QueryPerformanceCounter(&t);
  376. timer_start = t.QuadPart;
  377. }
  378. int64_t ggml_time_ms(void) {
  379. LARGE_INTEGER t;
  380. QueryPerformanceCounter(&t);
  381. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  382. }
  383. int64_t ggml_time_us(void) {
  384. LARGE_INTEGER t;
  385. QueryPerformanceCounter(&t);
  386. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  387. }
  388. #else
  389. void ggml_time_init(void) {}
  390. int64_t ggml_time_ms(void) {
  391. struct timespec ts;
  392. clock_gettime(CLOCK_MONOTONIC, &ts);
  393. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  394. }
  395. int64_t ggml_time_us(void) {
  396. struct timespec ts;
  397. clock_gettime(CLOCK_MONOTONIC, &ts);
  398. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  399. }
  400. #endif
  401. int64_t ggml_cycles(void) {
  402. return clock();
  403. }
  404. int64_t ggml_cycles_per_ms(void) {
  405. return CLOCKS_PER_SEC/1000;
  406. }
  407. #ifdef GGML_PERF
  408. #define ggml_perf_time_ms() ggml_time_ms()
  409. #define ggml_perf_time_us() ggml_time_us()
  410. #define ggml_perf_cycles() ggml_cycles()
  411. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  412. #else
  413. #define ggml_perf_time_ms() 0
  414. #define ggml_perf_time_us() 0
  415. #define ggml_perf_cycles() 0
  416. #define ggml_perf_cycles_per_ms() 0
  417. #endif
  418. //
  419. // cross-platform UTF-8 file paths
  420. //
  421. #ifdef _WIN32
  422. static wchar_t * ggml_mbstowcs(const char * mbs) {
  423. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  424. if (!wlen) {
  425. errno = EINVAL;
  426. return NULL;
  427. }
  428. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  429. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  430. if (!wlen) {
  431. GGML_FREE(wbuf);
  432. errno = EINVAL;
  433. return NULL;
  434. }
  435. return wbuf;
  436. }
  437. #endif
  438. FILE * ggml_fopen(const char * fname, const char * mode) {
  439. #ifdef _WIN32
  440. FILE * file = NULL;
  441. // convert fname (UTF-8)
  442. wchar_t * wfname = ggml_mbstowcs(fname);
  443. if (wfname) {
  444. // convert mode (ANSI)
  445. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  446. wchar_t * wmode_p = wmode;
  447. do {
  448. *wmode_p++ = (wchar_t)*mode;
  449. } while (*mode++);
  450. // open file
  451. file = _wfopen(wfname, wmode);
  452. GGML_FREE(wfname);
  453. GGML_FREE(wmode);
  454. }
  455. return file;
  456. #else
  457. return fopen(fname, mode);
  458. #endif
  459. }
  460. //
  461. // cache line
  462. //
  463. #if defined(__cpp_lib_hardware_interference_size)
  464. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  465. #else
  466. #if defined(__POWER9_VECTOR__)
  467. #define CACHE_LINE_SIZE 128
  468. #else
  469. #define CACHE_LINE_SIZE 64
  470. #endif
  471. #endif
  472. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  473. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  474. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  475. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  476. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  477. [GGML_TYPE_I8] = {
  478. .type_name = "i8",
  479. .blck_size = 1,
  480. .type_size = sizeof(int8_t),
  481. .is_quantized = false,
  482. },
  483. [GGML_TYPE_I16] = {
  484. .type_name = "i16",
  485. .blck_size = 1,
  486. .type_size = sizeof(int16_t),
  487. .is_quantized = false,
  488. },
  489. [GGML_TYPE_I32] = {
  490. .type_name = "i32",
  491. .blck_size = 1,
  492. .type_size = sizeof(int32_t),
  493. .is_quantized = false,
  494. },
  495. [GGML_TYPE_I64] = {
  496. .type_name = "i64",
  497. .blck_size = 1,
  498. .type_size = sizeof(int64_t),
  499. .is_quantized = false,
  500. },
  501. [GGML_TYPE_F64] = {
  502. .type_name = "f64",
  503. .blck_size = 1,
  504. .type_size = sizeof(double),
  505. .is_quantized = false,
  506. .nrows = 1,
  507. },
  508. [GGML_TYPE_F32] = {
  509. .type_name = "f32",
  510. .blck_size = 1,
  511. .type_size = sizeof(float),
  512. .is_quantized = false,
  513. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  514. .vec_dot_type = GGML_TYPE_F32,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_F16] = {
  518. .type_name = "f16",
  519. .blck_size = 1,
  520. .type_size = sizeof(ggml_fp16_t),
  521. .is_quantized = false,
  522. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  523. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  524. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  525. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  526. .vec_dot_type = GGML_TYPE_F16,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q4_0] = {
  530. .type_name = "q4_0",
  531. .blck_size = QK4_0,
  532. .type_size = sizeof(block_q4_0),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  535. .from_float = quantize_row_q4_0,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  537. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  538. .vec_dot_type = GGML_TYPE_Q8_0,
  539. #if defined (__ARM_FEATURE_MATMUL_INT8)
  540. .nrows = 2,
  541. #else
  542. .nrows = 1,
  543. #endif
  544. },
  545. [GGML_TYPE_Q4_1] = {
  546. .type_name = "q4_1",
  547. .blck_size = QK4_1,
  548. .type_size = sizeof(block_q4_1),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  551. .from_float = quantize_row_q4_1,
  552. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  553. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  554. .vec_dot_type = GGML_TYPE_Q8_1,
  555. #if defined (__ARM_FEATURE_MATMUL_INT8)
  556. .nrows = 2,
  557. #else
  558. .nrows = 1,
  559. #endif
  560. },
  561. [4] = { // GGML_TYPE_Q4_2
  562. .type_name = "DEPRECATED",
  563. .blck_size = 0,
  564. .type_size = 0,
  565. .is_quantized = false,
  566. .to_float = NULL,
  567. .from_float = NULL,
  568. .from_float_reference = NULL,
  569. .vec_dot = NULL,
  570. .vec_dot_type = GGML_TYPE_COUNT,
  571. .nrows = 1,
  572. },
  573. [5] = { // GGML_TYPE_Q4_3
  574. .type_name = "DEPRECATED",
  575. .blck_size = 0,
  576. .type_size = 0,
  577. .is_quantized = false,
  578. .to_float = NULL,
  579. .from_float = NULL,
  580. .from_float_reference = NULL,
  581. .vec_dot = NULL,
  582. .vec_dot_type = GGML_TYPE_COUNT,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q5_0] = {
  586. .type_name = "q5_0",
  587. .blck_size = QK5_0,
  588. .type_size = sizeof(block_q5_0),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  591. .from_float = quantize_row_q5_0,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  593. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  594. .vec_dot_type = GGML_TYPE_Q8_0,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q5_1] = {
  598. .type_name = "q5_1",
  599. .blck_size = QK5_1,
  600. .type_size = sizeof(block_q5_1),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  603. .from_float = quantize_row_q5_1,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  605. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  606. .vec_dot_type = GGML_TYPE_Q8_1,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q8_0] = {
  610. .type_name = "q8_0",
  611. .blck_size = QK8_0,
  612. .type_size = sizeof(block_q8_0),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  615. .from_float = quantize_row_q8_0,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  617. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  618. .vec_dot_type = GGML_TYPE_Q8_0,
  619. #if defined (__ARM_FEATURE_MATMUL_INT8)
  620. .nrows = 2,
  621. #else
  622. .nrows = 1,
  623. #endif
  624. },
  625. [GGML_TYPE_Q8_1] = {
  626. .type_name = "q8_1",
  627. .blck_size = QK8_1,
  628. .type_size = sizeof(block_q8_1),
  629. .is_quantized = true,
  630. .from_float = quantize_row_q8_1,
  631. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  632. .vec_dot_type = GGML_TYPE_Q8_1,
  633. .nrows = 1,
  634. },
  635. [GGML_TYPE_Q2_K] = {
  636. .type_name = "q2_K",
  637. .blck_size = QK_K,
  638. .type_size = sizeof(block_q2_K),
  639. .is_quantized = true,
  640. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  641. .from_float = quantize_row_q2_K,
  642. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  643. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  644. .vec_dot_type = GGML_TYPE_Q8_K,
  645. .nrows = 1,
  646. },
  647. [GGML_TYPE_Q3_K] = {
  648. .type_name = "q3_K",
  649. .blck_size = QK_K,
  650. .type_size = sizeof(block_q3_K),
  651. .is_quantized = true,
  652. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  653. .from_float = quantize_row_q3_K,
  654. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  655. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  656. .vec_dot_type = GGML_TYPE_Q8_K,
  657. .nrows = 1,
  658. },
  659. [GGML_TYPE_Q4_K] = {
  660. .type_name = "q4_K",
  661. .blck_size = QK_K,
  662. .type_size = sizeof(block_q4_K),
  663. .is_quantized = true,
  664. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  665. .from_float = quantize_row_q4_K,
  666. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  667. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  668. .vec_dot_type = GGML_TYPE_Q8_K,
  669. .nrows = 1,
  670. },
  671. [GGML_TYPE_Q5_K] = {
  672. .type_name = "q5_K",
  673. .blck_size = QK_K,
  674. .type_size = sizeof(block_q5_K),
  675. .is_quantized = true,
  676. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  677. .from_float = quantize_row_q5_K,
  678. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  679. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. .nrows = 1,
  682. },
  683. [GGML_TYPE_Q6_K] = {
  684. .type_name = "q6_K",
  685. .blck_size = QK_K,
  686. .type_size = sizeof(block_q6_K),
  687. .is_quantized = true,
  688. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  689. .from_float = quantize_row_q6_K,
  690. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  691. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  692. .vec_dot_type = GGML_TYPE_Q8_K,
  693. .nrows = 1,
  694. },
  695. [GGML_TYPE_IQ2_XXS] = {
  696. .type_name = "iq2_xxs",
  697. .blck_size = QK_K,
  698. .type_size = sizeof(block_iq2_xxs),
  699. .is_quantized = true,
  700. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  701. .from_float = NULL,
  702. .from_float_reference = NULL,
  703. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  704. .vec_dot_type = GGML_TYPE_Q8_K,
  705. .nrows = 1,
  706. },
  707. [GGML_TYPE_IQ2_XS] = {
  708. .type_name = "iq2_xs",
  709. .blck_size = QK_K,
  710. .type_size = sizeof(block_iq2_xs),
  711. .is_quantized = true,
  712. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  713. .from_float = NULL,
  714. .from_float_reference = NULL,
  715. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  716. .vec_dot_type = GGML_TYPE_Q8_K,
  717. .nrows = 1,
  718. },
  719. [GGML_TYPE_IQ3_XXS] = {
  720. .type_name = "iq3_xxs",
  721. .blck_size = QK_K,
  722. .type_size = sizeof(block_iq3_xxs),
  723. .is_quantized = true,
  724. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  725. .from_float = quantize_row_iq3_xxs,
  726. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  727. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  728. .vec_dot_type = GGML_TYPE_Q8_K,
  729. .nrows = 1,
  730. },
  731. [GGML_TYPE_IQ3_S] = {
  732. .type_name = "iq3_s",
  733. .blck_size = QK_K,
  734. .type_size = sizeof(block_iq3_s),
  735. .is_quantized = true,
  736. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  737. .from_float = quantize_row_iq3_s,
  738. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  739. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  740. .vec_dot_type = GGML_TYPE_Q8_K,
  741. .nrows = 1,
  742. },
  743. [GGML_TYPE_IQ2_S] = {
  744. .type_name = "iq2_s",
  745. .blck_size = QK_K,
  746. .type_size = sizeof(block_iq2_s),
  747. .is_quantized = true,
  748. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  749. .from_float = quantize_row_iq2_s,
  750. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  751. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  752. .vec_dot_type = GGML_TYPE_Q8_K,
  753. .nrows = 1,
  754. },
  755. [GGML_TYPE_IQ1_S] = {
  756. .type_name = "iq1_s",
  757. .blck_size = QK_K,
  758. .type_size = sizeof(block_iq1_s),
  759. .is_quantized = true,
  760. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  761. .from_float = NULL,
  762. .from_float_reference = NULL,
  763. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  764. .vec_dot_type = GGML_TYPE_Q8_K,
  765. .nrows = 1,
  766. },
  767. [GGML_TYPE_IQ1_M] = {
  768. .type_name = "iq1_m",
  769. .blck_size = QK_K,
  770. .type_size = sizeof(block_iq1_m),
  771. .is_quantized = true,
  772. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  773. .from_float = NULL,
  774. .from_float_reference = NULL,
  775. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  776. .vec_dot_type = GGML_TYPE_Q8_K,
  777. .nrows = 1,
  778. },
  779. [GGML_TYPE_IQ4_NL] = {
  780. .type_name = "iq4_nl",
  781. .blck_size = QK4_NL,
  782. .type_size = sizeof(block_iq4_nl),
  783. .is_quantized = true,
  784. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  785. .from_float = quantize_row_iq4_nl,
  786. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  787. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  788. .vec_dot_type = GGML_TYPE_Q8_0,
  789. .nrows = 1,
  790. },
  791. [GGML_TYPE_IQ4_XS] = {
  792. .type_name = "iq4_xs",
  793. #if QK_K == 64
  794. .blck_size = QK4_NL,
  795. #else
  796. .blck_size = QK_K,
  797. #endif
  798. .type_size = sizeof(block_iq4_xs),
  799. .is_quantized = true,
  800. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  801. .from_float = quantize_row_iq4_xs,
  802. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  803. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  804. #if QK_K == 64
  805. .vec_dot_type = GGML_TYPE_Q8_0,
  806. #else
  807. .vec_dot_type = GGML_TYPE_Q8_K,
  808. #endif
  809. .nrows = 1,
  810. },
  811. [GGML_TYPE_Q8_K] = {
  812. .type_name = "q8_K",
  813. .blck_size = QK_K,
  814. .type_size = sizeof(block_q8_K),
  815. .is_quantized = true,
  816. .from_float = quantize_row_q8_K,
  817. },
  818. [GGML_TYPE_BF16] = {
  819. .type_name = "bf16",
  820. .blck_size = 1,
  821. .type_size = sizeof(ggml_bf16_t),
  822. .is_quantized = false,
  823. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  824. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  825. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  826. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  827. .vec_dot_type = GGML_TYPE_BF16,
  828. .nrows = 1,
  829. }
  830. };
  831. // For internal test use
  832. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  833. GGML_ASSERT(type < GGML_TYPE_COUNT);
  834. return type_traits[type];
  835. }
  836. //
  837. // simd mappings
  838. //
  839. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  840. // we then implement the fundamental computation operations below using only these macros
  841. // adding support for new architectures requires to define the corresponding SIMD macros
  842. //
  843. // GGML_F32_STEP / GGML_F16_STEP
  844. // number of elements to process in a single step
  845. //
  846. // GGML_F32_EPR / GGML_F16_EPR
  847. // number of elements to fit in a single register
  848. //
  849. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  850. #define GGML_SIMD
  851. // F32 NEON
  852. #define GGML_F32_STEP 16
  853. #define GGML_F32_EPR 4
  854. #define GGML_F32x4 float32x4_t
  855. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  856. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  857. #define GGML_F32x4_LOAD vld1q_f32
  858. #define GGML_F32x4_STORE vst1q_f32
  859. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  860. #define GGML_F32x4_ADD vaddq_f32
  861. #define GGML_F32x4_MUL vmulq_f32
  862. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  863. #define GGML_F32x4_REDUCE(res, x) \
  864. { \
  865. int offset = GGML_F32_ARR >> 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. offset >>= 1; \
  874. for (int i = 0; i < offset; ++i) { \
  875. x[i] = vaddq_f32(x[i], x[offset+i]); \
  876. } \
  877. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  878. }
  879. #define GGML_F32_VEC GGML_F32x4
  880. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  881. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  882. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  883. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  884. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  885. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  886. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  887. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  888. // F16 NEON
  889. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  890. #define GGML_F16_STEP 32
  891. #define GGML_F16_EPR 8
  892. #define GGML_F16x8 float16x8_t
  893. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  894. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  895. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  896. #define GGML_F16x8_STORE vst1q_f16
  897. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  898. #define GGML_F16x8_ADD vaddq_f16
  899. #define GGML_F16x8_MUL vmulq_f16
  900. #define GGML_F16x8_REDUCE(res, x) \
  901. do { \
  902. int offset = GGML_F16_ARR >> 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. offset >>= 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = vaddq_f16(x[i], x[offset+i]); \
  913. } \
  914. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  915. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  916. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  917. } while (0)
  918. #define GGML_F16_VEC GGML_F16x8
  919. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  920. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  921. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  923. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  924. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  925. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  926. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  927. #else
  928. // if FP16 vector arithmetic is not supported, we use FP32 instead
  929. // and take advantage of the vcvt_ functions to convert to/from FP16
  930. #define GGML_F16_STEP 16
  931. #define GGML_F16_EPR 4
  932. #define GGML_F32Cx4 float32x4_t
  933. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  934. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  935. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  936. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  937. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  938. #define GGML_F32Cx4_ADD vaddq_f32
  939. #define GGML_F32Cx4_MUL vmulq_f32
  940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  941. #define GGML_F16_VEC GGML_F32Cx4
  942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  950. #endif
  951. #elif defined(__AVX512F__)
  952. #define GGML_SIMD
  953. // F32 AVX512
  954. #define GGML_F32_STEP 64
  955. #define GGML_F32_EPR 16
  956. #define GGML_F32x16 __m512
  957. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  958. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  959. #define GGML_F32x16_LOAD _mm512_loadu_ps
  960. #define GGML_F32x16_STORE _mm512_storeu_ps
  961. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  962. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  963. #define GGML_F32x16_ADD _mm512_add_ps
  964. #define GGML_F32x16_MUL _mm512_mul_ps
  965. #define GGML_F32x16_REDUCE(res, x) \
  966. do { \
  967. int offset = GGML_F32_ARR >> 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. offset >>= 1; \
  976. for (int i = 0; i < offset; ++i) { \
  977. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  978. } \
  979. res = _mm512_reduce_add_ps(x[0]); \
  980. } while (0)
  981. // TODO: is this optimal ?
  982. #define GGML_F32_VEC GGML_F32x16
  983. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  984. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  985. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  986. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  987. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  988. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  989. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  990. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  991. // F16 AVX512
  992. // F16 AVX
  993. #define GGML_F16_STEP 64
  994. #define GGML_F16_EPR 16
  995. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  996. #define GGML_F32Cx16 __m512
  997. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  998. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  999. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1000. // so F16C guard isn't required
  1001. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1002. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1003. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1004. #define GGML_F32Cx16_ADD _mm512_add_ps
  1005. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1006. #define GGML_F32Cx16_REDUCE(res, x) \
  1007. do { \
  1008. int offset = GGML_F32_ARR >> 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. offset >>= 1; \
  1017. for (int i = 0; i < offset; ++i) { \
  1018. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1019. } \
  1020. res = _mm512_reduce_add_ps(x[0]); \
  1021. } while (0)
  1022. #define GGML_F16_VEC GGML_F32Cx16
  1023. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1024. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1025. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1026. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1027. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1028. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1029. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1030. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1031. #elif defined(__AVX__)
  1032. #define GGML_SIMD
  1033. // F32 AVX
  1034. #define GGML_F32_STEP 32
  1035. #define GGML_F32_EPR 8
  1036. #define GGML_F32x8 __m256
  1037. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1038. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1039. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1040. #define GGML_F32x8_STORE _mm256_storeu_ps
  1041. #if defined(__FMA__)
  1042. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1043. #else
  1044. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1045. #endif
  1046. #define GGML_F32x8_ADD _mm256_add_ps
  1047. #define GGML_F32x8_MUL _mm256_mul_ps
  1048. #define GGML_F32x8_REDUCE(res, x) \
  1049. do { \
  1050. int offset = GGML_F32_ARR >> 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. offset >>= 1; \
  1059. for (int i = 0; i < offset; ++i) { \
  1060. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1061. } \
  1062. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1063. _mm256_extractf128_ps(x[0], 1)); \
  1064. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1065. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1066. } while (0)
  1067. // TODO: is this optimal ?
  1068. #define GGML_F32_VEC GGML_F32x8
  1069. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1070. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1071. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1072. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1073. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1074. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1075. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1076. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1077. // F16 AVX
  1078. #define GGML_F16_STEP 32
  1079. #define GGML_F16_EPR 8
  1080. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1081. #define GGML_F32Cx8 __m256
  1082. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1083. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1084. #if defined(__F16C__)
  1085. // the _mm256_cvt intrinsics require F16C
  1086. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1087. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1088. #else
  1089. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1090. float tmp[8];
  1091. for (int i = 0; i < 8; i++) {
  1092. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1093. }
  1094. return _mm256_loadu_ps(tmp);
  1095. }
  1096. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1097. float arr[8];
  1098. _mm256_storeu_ps(arr, y);
  1099. for (int i = 0; i < 8; i++)
  1100. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1101. }
  1102. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1103. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1104. #endif
  1105. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1106. #define GGML_F32Cx8_ADD _mm256_add_ps
  1107. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1108. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1109. #define GGML_F16_VEC GGML_F32Cx8
  1110. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1111. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1112. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1113. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1114. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1115. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1116. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1117. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1118. #elif defined(__POWER9_VECTOR__)
  1119. #define GGML_SIMD
  1120. // F32 POWER9
  1121. #define GGML_F32_STEP 32
  1122. #define GGML_F32_EPR 4
  1123. #define GGML_F32x4 vector float
  1124. #define GGML_F32x4_ZERO 0.0f
  1125. #define GGML_F32x4_SET1 vec_splats
  1126. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1127. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1128. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1129. #define GGML_F32x4_ADD vec_add
  1130. #define GGML_F32x4_MUL vec_mul
  1131. #define GGML_F32x4_REDUCE(res, x) \
  1132. { \
  1133. int offset = GGML_F32_ARR >> 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. offset >>= 1; \
  1142. for (int i = 0; i < offset; ++i) { \
  1143. x[i] = vec_add(x[i], x[offset+i]); \
  1144. } \
  1145. res = vec_extract(x[0], 0) + \
  1146. vec_extract(x[0], 1) + \
  1147. vec_extract(x[0], 2) + \
  1148. vec_extract(x[0], 3); \
  1149. }
  1150. #define GGML_F32_VEC GGML_F32x4
  1151. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1154. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1155. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1156. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1157. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1158. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1159. // F16 POWER9
  1160. #define GGML_F16_STEP GGML_F32_STEP
  1161. #define GGML_F16_EPR GGML_F32_EPR
  1162. #define GGML_F16_VEC GGML_F32x4
  1163. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1164. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1165. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1166. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1167. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1168. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1169. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1170. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1171. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1172. #define GGML_F16_VEC_STORE(p, r, i) \
  1173. if (i & 0x1) \
  1174. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1175. r[i - GGML_ENDIAN_BYTE(0)]), \
  1176. 0, p - GGML_F16_EPR)
  1177. #elif defined(__wasm_simd128__)
  1178. #define GGML_SIMD
  1179. // F32 WASM
  1180. #define GGML_F32_STEP 16
  1181. #define GGML_F32_EPR 4
  1182. #define GGML_F32x4 v128_t
  1183. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1184. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1185. #define GGML_F32x4_LOAD wasm_v128_load
  1186. #define GGML_F32x4_STORE wasm_v128_store
  1187. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1188. #define GGML_F32x4_ADD wasm_f32x4_add
  1189. #define GGML_F32x4_MUL wasm_f32x4_mul
  1190. #define GGML_F32x4_REDUCE(res, x) \
  1191. { \
  1192. int offset = GGML_F32_ARR >> 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1195. } \
  1196. offset >>= 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. offset >>= 1; \
  1201. for (int i = 0; i < offset; ++i) { \
  1202. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1203. } \
  1204. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1205. wasm_f32x4_extract_lane(x[0], 1) + \
  1206. wasm_f32x4_extract_lane(x[0], 2) + \
  1207. wasm_f32x4_extract_lane(x[0], 3); \
  1208. }
  1209. #define GGML_F32_VEC GGML_F32x4
  1210. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1211. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1212. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1213. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1214. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1215. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1216. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1217. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1218. // F16 WASM
  1219. #define GGML_F16_STEP 16
  1220. #define GGML_F16_EPR 4
  1221. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1222. float tmp[4];
  1223. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1224. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1225. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1226. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1227. return wasm_v128_load(tmp);
  1228. }
  1229. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1230. float tmp[4];
  1231. wasm_v128_store(tmp, x);
  1232. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1233. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1234. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1235. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1236. }
  1237. #define GGML_F16x4 v128_t
  1238. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1239. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1240. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1241. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1242. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1243. #define GGML_F16x4_ADD wasm_f32x4_add
  1244. #define GGML_F16x4_MUL wasm_f32x4_mul
  1245. #define GGML_F16x4_REDUCE(res, x) \
  1246. { \
  1247. int offset = GGML_F16_ARR >> 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. offset >>= 1; \
  1256. for (int i = 0; i < offset; ++i) { \
  1257. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1258. } \
  1259. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1260. wasm_f32x4_extract_lane(x[0], 1) + \
  1261. wasm_f32x4_extract_lane(x[0], 2) + \
  1262. wasm_f32x4_extract_lane(x[0], 3); \
  1263. }
  1264. #define GGML_F16_VEC GGML_F16x4
  1265. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1266. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1267. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1268. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1269. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1270. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1271. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1272. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1273. #elif defined(__SSE3__)
  1274. #define GGML_SIMD
  1275. // F32 SSE
  1276. #define GGML_F32_STEP 32
  1277. #define GGML_F32_EPR 4
  1278. #define GGML_F32x4 __m128
  1279. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1280. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1281. #define GGML_F32x4_LOAD _mm_loadu_ps
  1282. #define GGML_F32x4_STORE _mm_storeu_ps
  1283. #if defined(__FMA__)
  1284. // TODO: Does this work?
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1286. #else
  1287. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1288. #endif
  1289. #define GGML_F32x4_ADD _mm_add_ps
  1290. #define GGML_F32x4_MUL _mm_mul_ps
  1291. #define GGML_F32x4_REDUCE(res, x) \
  1292. { \
  1293. int offset = GGML_F32_ARR >> 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1304. } \
  1305. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1306. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1307. }
  1308. // TODO: is this optimal ?
  1309. #define GGML_F32_VEC GGML_F32x4
  1310. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1311. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1312. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1313. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1314. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1315. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1316. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1317. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1318. // F16 SSE
  1319. #define GGML_F16_STEP 32
  1320. #define GGML_F16_EPR 4
  1321. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1322. float tmp[4];
  1323. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1324. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1325. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1326. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1327. return _mm_loadu_ps(tmp);
  1328. }
  1329. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1330. float arr[4];
  1331. _mm_storeu_ps(arr, y);
  1332. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1333. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1334. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1335. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1336. }
  1337. #define GGML_F32Cx4 __m128
  1338. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1339. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1340. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1341. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1342. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1343. #define GGML_F32Cx4_ADD _mm_add_ps
  1344. #define GGML_F32Cx4_MUL _mm_mul_ps
  1345. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1346. #define GGML_F16_VEC GGML_F32Cx4
  1347. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1348. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1349. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1350. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1351. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1352. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1353. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1354. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1355. #endif
  1356. // GGML_F32_ARR / GGML_F16_ARR
  1357. // number of registers to use per step
  1358. #ifdef GGML_SIMD
  1359. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1360. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1361. #endif
  1362. //
  1363. // fundamental operations
  1364. //
  1365. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1366. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1367. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1368. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1369. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1370. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1371. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1372. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1373. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1374. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1375. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1376. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1377. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1378. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1379. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1380. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1381. assert(nrc == 1);
  1382. UNUSED(nrc);
  1383. UNUSED(bx);
  1384. UNUSED(by);
  1385. UNUSED(bs);
  1386. #if defined(GGML_SIMD)
  1387. float sumf = 0.0f;
  1388. const int np = (n & ~(GGML_F32_STEP - 1));
  1389. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1390. GGML_F32_VEC ax[GGML_F32_ARR];
  1391. GGML_F32_VEC ay[GGML_F32_ARR];
  1392. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1393. for (int j = 0; j < GGML_F32_ARR; j++) {
  1394. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1395. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1396. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1397. }
  1398. }
  1399. // reduce sum0..sum3 to sum0
  1400. GGML_F32_VEC_REDUCE(sumf, sum);
  1401. // leftovers
  1402. for (int i = np; i < n; ++i) {
  1403. sumf += x[i]*y[i];
  1404. }
  1405. #else
  1406. // scalar
  1407. ggml_float sumf = 0.0;
  1408. for (int i = 0; i < n; ++i) {
  1409. sumf += (ggml_float)(x[i]*y[i]);
  1410. }
  1411. #endif
  1412. *s = sumf;
  1413. }
  1414. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1415. assert(nrc == 1);
  1416. UNUSED(nrc);
  1417. UNUSED(bx);
  1418. UNUSED(by);
  1419. UNUSED(bs);
  1420. int i = 0;
  1421. ggml_float sumf = 0;
  1422. #if defined(__AVX512BF16__)
  1423. __m512 c1 = _mm512_setzero_ps();
  1424. __m512 c2 = _mm512_setzero_ps();
  1425. for (; i + 64 <= n; i += 64) {
  1426. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1427. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1428. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1429. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1430. }
  1431. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1432. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1433. #elif defined(__AVX512F__)
  1434. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1435. __m512 c1 = _mm512_setzero_ps();
  1436. __m512 c2 = _mm512_setzero_ps();
  1437. for (; i + 32 <= n; i += 32) {
  1438. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1439. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1440. }
  1441. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1442. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1443. #undef LOAD
  1444. #elif defined(__AVX2__)
  1445. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1446. __m256 c1 = _mm256_setzero_ps();
  1447. __m256 c2 = _mm256_setzero_ps();
  1448. __m256 c3 = _mm256_setzero_ps();
  1449. __m256 c4 = _mm256_setzero_ps();
  1450. for (; i + 32 <= n; i += 32) {
  1451. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1452. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1453. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1454. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1455. }
  1456. __m128 g;
  1457. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1458. _mm256_add_ps(c2, c4));
  1459. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1460. _mm256_castps256_ps128(c1));
  1461. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1462. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1463. sumf += (ggml_float)_mm_cvtss_f32(g);
  1464. #undef LOAD
  1465. #endif
  1466. for (; i < n; ++i) {
  1467. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1468. GGML_BF16_TO_FP32(y[i]));
  1469. }
  1470. *s = sumf;
  1471. }
  1472. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1473. assert(nrc == 1);
  1474. UNUSED(nrc);
  1475. UNUSED(bx);
  1476. UNUSED(by);
  1477. UNUSED(bs);
  1478. ggml_float sumf = 0.0;
  1479. #if defined(GGML_SIMD)
  1480. const int np = (n & ~(GGML_F16_STEP - 1));
  1481. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1482. GGML_F16_VEC ax[GGML_F16_ARR];
  1483. GGML_F16_VEC ay[GGML_F16_ARR];
  1484. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1485. for (int j = 0; j < GGML_F16_ARR; j++) {
  1486. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1487. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1488. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1489. }
  1490. }
  1491. // reduce sum0..sum3 to sum0
  1492. GGML_F16_VEC_REDUCE(sumf, sum);
  1493. // leftovers
  1494. for (int i = np; i < n; ++i) {
  1495. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1496. }
  1497. #else
  1498. for (int i = 0; i < n; ++i) {
  1499. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1500. }
  1501. #endif
  1502. *s = sumf;
  1503. }
  1504. // compute GGML_VEC_DOT_UNROLL dot products at once
  1505. // xs - x row stride in bytes
  1506. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1507. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1508. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1509. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1510. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1511. }
  1512. #if defined(GGML_SIMD)
  1513. const int np = (n & ~(GGML_F16_STEP - 1));
  1514. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1515. GGML_F16_VEC ax[GGML_F16_ARR];
  1516. GGML_F16_VEC ay[GGML_F16_ARR];
  1517. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1518. for (int j = 0; j < GGML_F16_ARR; j++) {
  1519. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1520. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1521. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1522. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1523. }
  1524. }
  1525. }
  1526. // reduce sum0..sum3 to sum0
  1527. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1528. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1529. }
  1530. // leftovers
  1531. for (int i = np; i < n; ++i) {
  1532. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1533. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1534. }
  1535. }
  1536. #else
  1537. for (int i = 0; i < n; ++i) {
  1538. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1539. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1540. }
  1541. }
  1542. #endif
  1543. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1544. s[i] = sumf[i];
  1545. }
  1546. }
  1547. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1548. #if defined(GGML_SIMD)
  1549. const int np = (n & ~(GGML_F32_STEP - 1));
  1550. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1551. GGML_F32_VEC ax[GGML_F32_ARR];
  1552. GGML_F32_VEC ay[GGML_F32_ARR];
  1553. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1554. for (int j = 0; j < GGML_F32_ARR; j++) {
  1555. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1556. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1557. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1558. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1559. }
  1560. }
  1561. // leftovers
  1562. for (int i = np; i < n; ++i) {
  1563. y[i] += x[i]*v;
  1564. }
  1565. #else
  1566. // scalar
  1567. for (int i = 0; i < n; ++i) {
  1568. y[i] += x[i]*v;
  1569. }
  1570. #endif
  1571. }
  1572. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1573. #if defined(GGML_SIMD)
  1574. const int np = (n & ~(GGML_F16_STEP - 1));
  1575. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1576. GGML_F16_VEC ax[GGML_F16_ARR];
  1577. GGML_F16_VEC ay[GGML_F16_ARR];
  1578. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1579. for (int j = 0; j < GGML_F16_ARR; j++) {
  1580. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1581. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1582. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1583. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1584. }
  1585. }
  1586. // leftovers
  1587. for (int i = np; i < n; ++i) {
  1588. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1589. }
  1590. #else
  1591. // scalar
  1592. for (int i = 0; i < n; ++i) {
  1593. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1594. }
  1595. #endif
  1596. }
  1597. // xs and vs are byte strides of x and v
  1598. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1599. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1600. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1601. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1602. x[i] = (const float *) ((const char *) xv + i*xs);
  1603. v[i] = (const float *) ((const char *) vv + i*vs);
  1604. }
  1605. #if defined(GGML_SIMD)
  1606. const int np = (n & ~(GGML_F32_STEP - 1));
  1607. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1608. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1609. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1610. }
  1611. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1612. GGML_F32_VEC ay[GGML_F32_ARR];
  1613. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1614. for (int j = 0; j < GGML_F32_ARR; j++) {
  1615. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1616. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1617. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1618. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1619. }
  1620. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1621. }
  1622. }
  1623. // leftovers
  1624. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1625. for (int i = np; i < n; ++i) {
  1626. y[i] += x[k][i]*v[k][0];
  1627. }
  1628. }
  1629. #else
  1630. // scalar
  1631. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1632. for (int i = 0; i < n; ++i) {
  1633. y[i] += x[k][i]*v[k][0];
  1634. }
  1635. }
  1636. #endif
  1637. }
  1638. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1639. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1640. #if defined(GGML_USE_ACCELERATE)
  1641. vDSP_vsmul(y, 1, &v, y, 1, n);
  1642. #elif defined(GGML_SIMD)
  1643. const int np = (n & ~(GGML_F32_STEP - 1));
  1644. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1645. GGML_F32_VEC ay[GGML_F32_ARR];
  1646. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1647. for (int j = 0; j < GGML_F32_ARR; j++) {
  1648. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1649. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1650. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1651. }
  1652. }
  1653. // leftovers
  1654. for (int i = np; i < n; ++i) {
  1655. y[i] *= v;
  1656. }
  1657. #else
  1658. // scalar
  1659. for (int i = 0; i < n; ++i) {
  1660. y[i] *= v;
  1661. }
  1662. #endif
  1663. }
  1664. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1668. GGML_F16_VEC ay[GGML_F16_ARR];
  1669. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1670. for (int j = 0; j < GGML_F16_ARR; j++) {
  1671. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1672. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1673. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1674. }
  1675. }
  1676. // leftovers
  1677. for (int i = np; i < n; ++i) {
  1678. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1679. }
  1680. #else
  1681. // scalar
  1682. for (int i = 0; i < n; ++i) {
  1683. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1684. }
  1685. #endif
  1686. }
  1687. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1688. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1689. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1690. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1691. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1692. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1693. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1694. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1695. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1696. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1697. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1698. // TODO: optimize performance
  1699. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1700. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1701. static const float GELU_COEF_A = 0.044715f;
  1702. static const float GELU_QUICK_COEF = -1.702f;
  1703. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1704. inline static float ggml_gelu_f32(float x) {
  1705. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1706. }
  1707. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1708. const uint16_t * i16 = (const uint16_t *) x;
  1709. for (int i = 0; i < n; ++i) {
  1710. y[i] = ggml_table_gelu_f16[i16[i]];
  1711. }
  1712. }
  1713. #ifdef GGML_GELU_FP16
  1714. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1715. uint16_t t;
  1716. for (int i = 0; i < n; ++i) {
  1717. if (x[i] <= -10.0f) {
  1718. y[i] = 0.0f;
  1719. } else if (x[i] >= 10.0f) {
  1720. y[i] = x[i];
  1721. } else {
  1722. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1723. memcpy(&t, &fp16, sizeof(uint16_t));
  1724. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1725. }
  1726. }
  1727. }
  1728. #else
  1729. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1730. for (int i = 0; i < n; ++i) {
  1731. y[i] = ggml_gelu_f32(x[i]);
  1732. }
  1733. }
  1734. #endif
  1735. inline static float ggml_gelu_quick_f32(float x) {
  1736. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1737. }
  1738. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1739. // const uint16_t * i16 = (const uint16_t *) x;
  1740. // for (int i = 0; i < n; ++i) {
  1741. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1742. // }
  1743. //}
  1744. #ifdef GGML_GELU_QUICK_FP16
  1745. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1746. uint16_t t;
  1747. for (int i = 0; i < n; ++i) {
  1748. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1749. memcpy(&t, &fp16, sizeof(uint16_t));
  1750. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1751. }
  1752. }
  1753. #else
  1754. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1755. for (int i = 0; i < n; ++i) {
  1756. y[i] = ggml_gelu_quick_f32(x[i]);
  1757. }
  1758. }
  1759. #endif
  1760. // Sigmoid Linear Unit (SiLU) function
  1761. inline static float ggml_silu_f32(float x) {
  1762. return x/(1.0f + expf(-x));
  1763. }
  1764. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1765. // const uint16_t * i16 = (const uint16_t *) x;
  1766. // for (int i = 0; i < n; ++i) {
  1767. // y[i] = ggml_table_silu_f16[i16[i]];
  1768. // }
  1769. //}
  1770. #ifdef GGML_SILU_FP16
  1771. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1772. uint16_t t;
  1773. for (int i = 0; i < n; ++i) {
  1774. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1775. memcpy(&t, &fp16, sizeof(uint16_t));
  1776. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1777. }
  1778. }
  1779. #else
  1780. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1781. for (int i = 0; i < n; ++i) {
  1782. y[i] = ggml_silu_f32(x[i]);
  1783. }
  1784. }
  1785. #endif
  1786. inline static float ggml_silu_backward_f32(float x, float dy) {
  1787. const float s = 1.0f/(1.0f + expf(-x));
  1788. return dy*s*(1.0f + x*(1.0f - s));
  1789. }
  1790. #ifdef GGML_SILU_FP16
  1791. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1792. for (int i = 0; i < n; ++i) {
  1793. // we did not use x[i] to compute forward silu but its f16 equivalent
  1794. // take derivative at f16 of x[i]:
  1795. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1796. float usedx = GGML_FP16_TO_FP32(fp16);
  1797. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1798. }
  1799. }
  1800. #else
  1801. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1802. for (int i = 0; i < n; ++i) {
  1803. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1804. }
  1805. }
  1806. #endif
  1807. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1808. #ifndef GGML_USE_ACCELERATE
  1809. ggml_float sum = 0.0;
  1810. for (int i = 0; i < n; ++i) {
  1811. sum += (ggml_float)x[i];
  1812. }
  1813. *s = sum;
  1814. #else
  1815. vDSP_sve(x, 1, s, n);
  1816. #endif
  1817. }
  1818. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1819. ggml_float sum = 0.0;
  1820. for (int i = 0; i < n; ++i) {
  1821. sum += (ggml_float)x[i];
  1822. }
  1823. *s = sum;
  1824. }
  1825. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1826. float sum = 0.0f;
  1827. for (int i = 0; i < n; ++i) {
  1828. sum += GGML_FP16_TO_FP32(x[i]);
  1829. }
  1830. *s = sum;
  1831. }
  1832. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1833. float sum = 0.0f;
  1834. for (int i = 0; i < n; ++i) {
  1835. sum += GGML_BF16_TO_FP32(x[i]);
  1836. }
  1837. *s = sum;
  1838. }
  1839. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1840. #ifndef GGML_USE_ACCELERATE
  1841. float max = -INFINITY;
  1842. for (int i = 0; i < n; ++i) {
  1843. max = MAX(max, x[i]);
  1844. }
  1845. *s = max;
  1846. #else
  1847. vDSP_maxv(x, 1, s, n);
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1851. ggml_vec_norm_f32(n, s, x);
  1852. *s = 1.f/(*s);
  1853. }
  1854. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1855. float max = -INFINITY;
  1856. int idx = 0;
  1857. for (int i = 0; i < n; ++i) {
  1858. max = MAX(max, x[i]);
  1859. if (max == x[i]) { idx = i; }
  1860. }
  1861. *s = idx;
  1862. }
  1863. //
  1864. // data types
  1865. //
  1866. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1867. "NONE",
  1868. "DUP",
  1869. "ADD",
  1870. "ADD1",
  1871. "ACC",
  1872. "SUB",
  1873. "MUL",
  1874. "DIV",
  1875. "SQR",
  1876. "SQRT",
  1877. "LOG",
  1878. "SUM",
  1879. "SUM_ROWS",
  1880. "MEAN",
  1881. "ARGMAX",
  1882. "REPEAT",
  1883. "REPEAT_BACK",
  1884. "CONCAT",
  1885. "SILU_BACK",
  1886. "NORM",
  1887. "RMS_NORM",
  1888. "RMS_NORM_BACK",
  1889. "GROUP_NORM",
  1890. "MUL_MAT",
  1891. "MUL_MAT_ID",
  1892. "OUT_PROD",
  1893. "SCALE",
  1894. "SET",
  1895. "CPY",
  1896. "CONT",
  1897. "RESHAPE",
  1898. "VIEW",
  1899. "PERMUTE",
  1900. "TRANSPOSE",
  1901. "GET_ROWS",
  1902. "GET_ROWS_BACK",
  1903. "DIAG",
  1904. "DIAG_MASK_INF",
  1905. "DIAG_MASK_ZERO",
  1906. "SOFT_MAX",
  1907. "SOFT_MAX_BACK",
  1908. "ROPE",
  1909. "ROPE_BACK",
  1910. "CLAMP",
  1911. "CONV_TRANSPOSE_1D",
  1912. "IM2COL",
  1913. "CONV_TRANSPOSE_2D",
  1914. "POOL_1D",
  1915. "POOL_2D",
  1916. "UPSCALE",
  1917. "PAD",
  1918. "ARANGE",
  1919. "TIMESTEP_EMBEDDING",
  1920. "ARGSORT",
  1921. "LEAKY_RELU",
  1922. "FLASH_ATTN",
  1923. "FLASH_ATTN_EXT",
  1924. "FLASH_FF",
  1925. "FLASH_ATTN_BACK",
  1926. "SSM_CONV",
  1927. "SSM_SCAN",
  1928. "WIN_PART",
  1929. "WIN_UNPART",
  1930. "GET_REL_POS",
  1931. "ADD_REL_POS",
  1932. "UNARY",
  1933. "MAP_UNARY",
  1934. "MAP_BINARY",
  1935. "MAP_CUSTOM1_F32",
  1936. "MAP_CUSTOM2_F32",
  1937. "MAP_CUSTOM3_F32",
  1938. "MAP_CUSTOM1",
  1939. "MAP_CUSTOM2",
  1940. "MAP_CUSTOM3",
  1941. "CROSS_ENTROPY_LOSS",
  1942. "CROSS_ENTROPY_LOSS_BACK",
  1943. };
  1944. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1945. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1946. "none",
  1947. "x",
  1948. "x+y",
  1949. "x+y",
  1950. "view(x,nb,offset)+=y->x",
  1951. "x-y",
  1952. "x*y",
  1953. "x/y",
  1954. "x^2",
  1955. "√x",
  1956. "log(x)",
  1957. "Σx",
  1958. "Σx_k",
  1959. "Σx/n",
  1960. "argmax(x)",
  1961. "repeat(x)",
  1962. "repeat_back(x)",
  1963. "concat(x, y)",
  1964. "silu_back(x)",
  1965. "norm(x)",
  1966. "rms_norm(x)",
  1967. "rms_norm_back(x)",
  1968. "group_norm(x)",
  1969. "X*Y",
  1970. "X[i]*Y",
  1971. "X*Y",
  1972. "x*v",
  1973. "y-\\>view(x)",
  1974. "x-\\>y",
  1975. "cont(x)",
  1976. "reshape(x)",
  1977. "view(x)",
  1978. "permute(x)",
  1979. "transpose(x)",
  1980. "get_rows(x)",
  1981. "get_rows_back(x)",
  1982. "diag(x)",
  1983. "diag_mask_inf(x)",
  1984. "diag_mask_zero(x)",
  1985. "soft_max(x)",
  1986. "soft_max_back(x)",
  1987. "rope(x)",
  1988. "rope_back(x)",
  1989. "clamp(x)",
  1990. "conv_transpose_1d(x)",
  1991. "im2col(x)",
  1992. "conv_transpose_2d(x)",
  1993. "pool_1d(x)",
  1994. "pool_2d(x)",
  1995. "upscale(x)",
  1996. "pad(x)",
  1997. "arange(start, stop, step)",
  1998. "timestep_embedding(timesteps, dim, max_period)",
  1999. "argsort(x)",
  2000. "leaky_relu(x)",
  2001. "flash_attn(x)",
  2002. "flash_attn_ext(x)",
  2003. "flash_ff(x)",
  2004. "flash_attn_back(x)",
  2005. "ssm_conv(x)",
  2006. "ssm_scan(x)",
  2007. "win_part(x)",
  2008. "win_unpart(x)",
  2009. "get_rel_pos(x)",
  2010. "add_rel_pos(x)",
  2011. "unary(x)",
  2012. "f(x)",
  2013. "f(x,y)",
  2014. "custom_f32(x)",
  2015. "custom_f32(x,y)",
  2016. "custom_f32(x,y,z)",
  2017. "custom(x)",
  2018. "custom(x,y)",
  2019. "custom(x,y,z)",
  2020. "cross_entropy_loss(x,y)",
  2021. "cross_entropy_loss_back(x,y)",
  2022. };
  2023. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2024. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2025. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2026. "ABS",
  2027. "SGN",
  2028. "NEG",
  2029. "STEP",
  2030. "TANH",
  2031. "ELU",
  2032. "RELU",
  2033. "GELU",
  2034. "GELU_QUICK",
  2035. "SILU",
  2036. "HARDSWISH",
  2037. "HARDSIGMOID",
  2038. };
  2039. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  2040. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2041. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2042. // WARN:
  2043. // Mis-configuration can lead to problem that's hard to reason about:
  2044. // * At best it crash or talks nosense.
  2045. // * At worst it talks slightly difference but hard to perceive.
  2046. //
  2047. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2048. // Take care about compile options (e.g., GGML_USE_xxx).
  2049. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2050. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2051. static void ggml_setup_op_has_task_pass(void) {
  2052. { // INIT
  2053. bool * p = GGML_OP_HAS_INIT;
  2054. p[GGML_OP_ACC ] = true;
  2055. p[GGML_OP_MUL_MAT ] = true;
  2056. p[GGML_OP_MUL_MAT_ID ] = true;
  2057. p[GGML_OP_OUT_PROD ] = true;
  2058. p[GGML_OP_SET ] = true;
  2059. p[GGML_OP_GET_ROWS_BACK ] = true;
  2060. p[GGML_OP_DIAG_MASK_INF ] = true;
  2061. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2062. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2063. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2064. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2065. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2066. p[GGML_OP_ADD_REL_POS ] = true;
  2067. }
  2068. { // FINALIZE
  2069. bool * p = GGML_OP_HAS_FINALIZE;
  2070. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2071. }
  2072. }
  2073. //
  2074. // ggml context
  2075. //
  2076. struct ggml_context {
  2077. size_t mem_size;
  2078. void * mem_buffer;
  2079. bool mem_buffer_owned;
  2080. bool no_alloc;
  2081. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  2082. int n_objects;
  2083. struct ggml_object * objects_begin;
  2084. struct ggml_object * objects_end;
  2085. struct ggml_scratch scratch;
  2086. struct ggml_scratch scratch_save;
  2087. };
  2088. struct ggml_context_container {
  2089. bool used;
  2090. struct ggml_context context;
  2091. };
  2092. //
  2093. // NUMA support
  2094. //
  2095. #define GGML_NUMA_MAX_NODES 8
  2096. #define GGML_NUMA_MAX_CPUS 512
  2097. struct ggml_numa_node {
  2098. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2099. uint32_t n_cpus;
  2100. };
  2101. struct ggml_numa_nodes {
  2102. enum ggml_numa_strategy numa_strategy;
  2103. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2104. uint32_t n_nodes;
  2105. uint32_t total_cpus; // hardware threads on system
  2106. uint32_t current_node; // node on which main process is execting
  2107. #if defined(__gnu_linux__)
  2108. cpu_set_t cpuset; // cpuset from numactl
  2109. #else
  2110. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2111. #endif
  2112. };
  2113. //
  2114. // ggml state
  2115. //
  2116. struct ggml_state {
  2117. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2118. struct ggml_numa_nodes numa;
  2119. };
  2120. // global state
  2121. static struct ggml_state g_state;
  2122. static atomic_int g_state_barrier = 0;
  2123. // barrier via spin lock
  2124. inline static void ggml_critical_section_start(void) {
  2125. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2126. while (processing > 0) {
  2127. // wait for other threads to finish
  2128. atomic_fetch_sub(&g_state_barrier, 1);
  2129. sched_yield(); // TODO: reconsider this
  2130. processing = atomic_fetch_add(&g_state_barrier, 1);
  2131. }
  2132. }
  2133. // TODO: make this somehow automatically executed
  2134. // some sort of "sentry" mechanism
  2135. inline static void ggml_critical_section_end(void) {
  2136. atomic_fetch_sub(&g_state_barrier, 1);
  2137. }
  2138. #if defined(__gnu_linux__)
  2139. static cpu_set_t ggml_get_numa_affinity(void) {
  2140. cpu_set_t cpuset;
  2141. pthread_t thread;
  2142. thread = pthread_self();
  2143. CPU_ZERO(&cpuset);
  2144. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2145. return cpuset;
  2146. }
  2147. #else
  2148. static uint32_t ggml_get_numa_affinity(void) {
  2149. return 0; // no NUMA support
  2150. }
  2151. #endif
  2152. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2153. if (g_state.numa.n_nodes > 0) {
  2154. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2155. return;
  2156. }
  2157. #if defined(__gnu_linux__)
  2158. struct stat st;
  2159. char path[256];
  2160. int rv;
  2161. // set numa scheme
  2162. g_state.numa.numa_strategy = numa_flag;
  2163. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2164. g_state.numa.cpuset = ggml_get_numa_affinity();
  2165. // enumerate nodes
  2166. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2167. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2168. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2169. if (stat(path, &st) != 0) { break; }
  2170. ++g_state.numa.n_nodes;
  2171. }
  2172. // enumerate CPUs
  2173. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2174. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2175. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2176. if (stat(path, &st) != 0) { break; }
  2177. ++g_state.numa.total_cpus;
  2178. }
  2179. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2180. // figure out which node we're on
  2181. uint current_cpu;
  2182. int getcpu_ret = 0;
  2183. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2184. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2185. #else
  2186. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2187. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2188. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2189. # endif
  2190. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2191. #endif
  2192. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2193. g_state.numa.n_nodes = 0;
  2194. return;
  2195. }
  2196. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2197. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2198. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2199. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2200. node->n_cpus = 0;
  2201. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2202. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2203. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2204. if (stat(path, &st) == 0) {
  2205. node->cpus[node->n_cpus++] = c;
  2206. GGML_PRINT_DEBUG(" %u", c);
  2207. }
  2208. }
  2209. GGML_PRINT_DEBUG("\n");
  2210. }
  2211. if (ggml_is_numa()) {
  2212. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2213. if (fptr != NULL) {
  2214. char buf[42];
  2215. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2216. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2217. }
  2218. fclose(fptr);
  2219. }
  2220. }
  2221. #else
  2222. GGML_UNUSED(numa_flag);
  2223. // TODO
  2224. #endif
  2225. }
  2226. bool ggml_is_numa(void) {
  2227. return g_state.numa.n_nodes > 1;
  2228. }
  2229. ////////////////////////////////////////////////////////////////////////////////
  2230. void ggml_print_object(const struct ggml_object * obj) {
  2231. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2232. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2233. }
  2234. void ggml_print_objects(const struct ggml_context * ctx) {
  2235. struct ggml_object * obj = ctx->objects_begin;
  2236. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2237. while (obj != NULL) {
  2238. ggml_print_object(obj);
  2239. obj = obj->next;
  2240. }
  2241. GGML_PRINT("%s: --- end ---\n", __func__);
  2242. }
  2243. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2244. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2245. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2246. }
  2247. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2248. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2249. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2250. }
  2251. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2252. size_t nbytes;
  2253. size_t blck_size = ggml_blck_size(tensor->type);
  2254. if (blck_size == 1) {
  2255. nbytes = ggml_type_size(tensor->type);
  2256. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2257. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2258. }
  2259. }
  2260. else {
  2261. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2262. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2263. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2264. }
  2265. }
  2266. return nbytes;
  2267. }
  2268. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2269. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2270. }
  2271. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2272. return type_traits[type].blck_size;
  2273. }
  2274. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2275. return type_traits[type].type_size;
  2276. }
  2277. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2278. assert(ne % ggml_blck_size(type) == 0);
  2279. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2280. }
  2281. double ggml_type_sizef(enum ggml_type type) {
  2282. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2283. }
  2284. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2285. return type_traits[type].type_name;
  2286. }
  2287. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2288. return type_traits[type].is_quantized;
  2289. }
  2290. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2291. return GGML_OP_NAME[op];
  2292. }
  2293. const char * ggml_op_symbol(enum ggml_op op) {
  2294. return GGML_OP_SYMBOL[op];
  2295. }
  2296. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2297. return GGML_UNARY_OP_NAME[op];
  2298. }
  2299. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2300. if (t->op == GGML_OP_UNARY) {
  2301. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2302. return ggml_unary_op_name(uop);
  2303. }
  2304. else {
  2305. return ggml_op_name(t->op);
  2306. }
  2307. }
  2308. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2309. return ggml_type_size(tensor->type);
  2310. }
  2311. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2312. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2313. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2314. }
  2315. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2316. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2317. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2318. }
  2319. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2320. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2321. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2322. }
  2323. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2324. return tensor->ne[3] == 1;
  2325. }
  2326. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2327. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2328. if (tensor->ne[i] > 1) {
  2329. return i + 1;
  2330. }
  2331. }
  2332. return 1;
  2333. }
  2334. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2335. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2336. return (t0->ne[0] == t1->ne[0]) &&
  2337. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2338. (t1->ne[3]%t0->ne[3] == 0);
  2339. }
  2340. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2341. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2342. return (t0->ne[1] == t1->ne[1]) &&
  2343. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2344. (t1->ne[3]%t0->ne[3] == 0);
  2345. }
  2346. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2347. enum ggml_type wtype = GGML_TYPE_COUNT;
  2348. switch (ftype) {
  2349. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2350. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2351. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2352. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2353. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2354. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2355. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2356. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2357. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2358. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2359. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2360. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2361. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2362. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2363. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2364. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2365. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2366. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2367. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2368. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2369. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2370. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2371. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2372. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2373. }
  2374. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2375. return wtype;
  2376. }
  2377. size_t ggml_tensor_overhead(void) {
  2378. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2379. }
  2380. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2381. return tensor->nb[0] > tensor->nb[1];
  2382. }
  2383. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2384. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2385. return
  2386. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2387. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2388. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2389. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2390. }
  2391. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2392. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2393. return
  2394. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2395. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2396. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2397. }
  2398. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2399. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2400. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2401. }
  2402. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2403. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2404. return
  2405. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2406. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2407. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2408. }
  2409. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2410. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2411. if (tensor->ne[i] == 0) {
  2412. // empty if any dimension has no elements
  2413. return true;
  2414. }
  2415. }
  2416. return false;
  2417. }
  2418. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2420. return
  2421. (t0->ne[0] == t1->ne[0] ) &&
  2422. (t0->ne[1] == t1->ne[1] ) &&
  2423. (t0->ne[2] == t1->ne[2] ) &&
  2424. (t0->ne[3] == t1->ne[3] );
  2425. }
  2426. // check if t1 can be represented as a repeatition of t0
  2427. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2428. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2429. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2430. (t1->ne[0]%t0->ne[0] == 0) &&
  2431. (t1->ne[1]%t0->ne[1] == 0) &&
  2432. (t1->ne[2]%t0->ne[2] == 0) &&
  2433. (t1->ne[3]%t0->ne[3] == 0);
  2434. }
  2435. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2436. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2437. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2438. }
  2439. static inline int ggml_up32(int n) {
  2440. return (n + 31) & ~31;
  2441. }
  2442. //static inline int ggml_up64(int n) {
  2443. // return (n + 63) & ~63;
  2444. //}
  2445. static inline int ggml_up(int n, int m) {
  2446. // assert m is a power of 2
  2447. GGML_ASSERT((m & (m - 1)) == 0);
  2448. return (n + m - 1) & ~(m - 1);
  2449. }
  2450. // assert that pointer is aligned to GGML_MEM_ALIGN
  2451. #define ggml_assert_aligned(ptr) \
  2452. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2453. ////////////////////////////////////////////////////////////////////////////////
  2454. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2455. // make this function thread safe
  2456. ggml_critical_section_start();
  2457. static bool is_first_call = true;
  2458. if (is_first_call) {
  2459. // initialize time system (required on Windows)
  2460. ggml_time_init();
  2461. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2462. {
  2463. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2464. for (int i = 0; i < (1 << 16); ++i) {
  2465. union {
  2466. uint16_t u16;
  2467. ggml_fp16_t fp16;
  2468. } u = {i};
  2469. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2470. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2471. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2472. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2473. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2474. }
  2475. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2476. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2477. }
  2478. // initialize g_state
  2479. {
  2480. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2481. g_state = (struct ggml_state) {
  2482. /*.contexts =*/ { { 0 } },
  2483. /*.numa =*/ {
  2484. .n_nodes = 0,
  2485. .total_cpus = 0,
  2486. },
  2487. };
  2488. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2489. g_state.contexts[i].used = false;
  2490. }
  2491. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2492. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2493. }
  2494. #if defined(GGML_USE_CLBLAST)
  2495. ggml_cl_init();
  2496. #endif
  2497. ggml_setup_op_has_task_pass();
  2498. is_first_call = false;
  2499. }
  2500. // find non-used context in g_state
  2501. struct ggml_context * ctx = NULL;
  2502. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2503. if (!g_state.contexts[i].used) {
  2504. g_state.contexts[i].used = true;
  2505. ctx = &g_state.contexts[i].context;
  2506. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2507. break;
  2508. }
  2509. }
  2510. if (ctx == NULL) {
  2511. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2512. ggml_critical_section_end();
  2513. return NULL;
  2514. }
  2515. // allow to call ggml_init with 0 size
  2516. if (params.mem_size == 0) {
  2517. params.mem_size = GGML_MEM_ALIGN;
  2518. }
  2519. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2520. *ctx = (struct ggml_context) {
  2521. /*.mem_size =*/ mem_size,
  2522. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2523. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2524. /*.no_alloc =*/ params.no_alloc,
  2525. /*.no_alloc_save =*/ params.no_alloc,
  2526. /*.n_objects =*/ 0,
  2527. /*.objects_begin =*/ NULL,
  2528. /*.objects_end =*/ NULL,
  2529. /*.scratch =*/ { 0, 0, NULL, },
  2530. /*.scratch_save =*/ { 0, 0, NULL, },
  2531. };
  2532. GGML_ASSERT(ctx->mem_buffer != NULL);
  2533. ggml_assert_aligned(ctx->mem_buffer);
  2534. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2535. ggml_critical_section_end();
  2536. return ctx;
  2537. }
  2538. void ggml_free(struct ggml_context * ctx) {
  2539. if (ctx == NULL) {
  2540. return;
  2541. }
  2542. // make this function thread safe
  2543. ggml_critical_section_start();
  2544. bool found = false;
  2545. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2546. if (&g_state.contexts[i].context == ctx) {
  2547. g_state.contexts[i].used = false;
  2548. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2549. __func__, i, ggml_used_mem(ctx));
  2550. if (ctx->mem_buffer_owned) {
  2551. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2552. }
  2553. found = true;
  2554. break;
  2555. }
  2556. }
  2557. if (!found) {
  2558. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2559. }
  2560. ggml_critical_section_end();
  2561. }
  2562. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2563. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2564. }
  2565. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2566. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2567. ctx->scratch = scratch;
  2568. return result;
  2569. }
  2570. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2571. return ctx->no_alloc;
  2572. }
  2573. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2574. ctx->no_alloc = no_alloc;
  2575. }
  2576. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2577. return ctx->mem_buffer;
  2578. }
  2579. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2580. return ctx->mem_size;
  2581. }
  2582. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2583. size_t max_size = 0;
  2584. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2585. size_t bytes = ggml_nbytes(tensor);
  2586. max_size = MAX(max_size, bytes);
  2587. }
  2588. return max_size;
  2589. }
  2590. // IMPORTANT:
  2591. // when creating "opt" tensors, always save and load the scratch buffer
  2592. // this is an error prone process, but it is necessary to support inplace
  2593. // operators when using scratch buffers
  2594. // TODO: implement a better way
  2595. static void ggml_scratch_save(struct ggml_context * ctx) {
  2596. // this is needed to allow opt tensors to store their data
  2597. // TODO: again, need to find a better way
  2598. ctx->no_alloc_save = ctx->no_alloc;
  2599. ctx->no_alloc = false;
  2600. ctx->scratch_save = ctx->scratch;
  2601. ctx->scratch.data = NULL;
  2602. }
  2603. static void ggml_scratch_load(struct ggml_context * ctx) {
  2604. ctx->no_alloc = ctx->no_alloc_save;
  2605. ctx->scratch = ctx->scratch_save;
  2606. }
  2607. ////////////////////////////////////////////////////////////////////////////////
  2608. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2609. // always insert objects at the end of the context's memory pool
  2610. struct ggml_object * obj_cur = ctx->objects_end;
  2611. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2612. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2613. const size_t cur_end = cur_offs + cur_size;
  2614. // align to GGML_MEM_ALIGN
  2615. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2616. char * const mem_buffer = ctx->mem_buffer;
  2617. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2618. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2619. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2620. __func__, cur_end + size_needed, ctx->mem_size);
  2621. assert(false);
  2622. return NULL;
  2623. }
  2624. *obj_new = (struct ggml_object) {
  2625. .offs = cur_end + GGML_OBJECT_SIZE,
  2626. .size = size_needed,
  2627. .next = NULL,
  2628. .type = type,
  2629. };
  2630. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2631. if (obj_cur != NULL) {
  2632. obj_cur->next = obj_new;
  2633. } else {
  2634. // this is the first object in this context
  2635. ctx->objects_begin = obj_new;
  2636. }
  2637. ctx->objects_end = obj_new;
  2638. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2639. return obj_new;
  2640. }
  2641. static struct ggml_tensor * ggml_new_tensor_impl(
  2642. struct ggml_context * ctx,
  2643. enum ggml_type type,
  2644. int n_dims,
  2645. const int64_t * ne,
  2646. struct ggml_tensor * view_src,
  2647. size_t view_offs) {
  2648. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2649. // find the base tensor and absolute offset
  2650. if (view_src != NULL && view_src->view_src != NULL) {
  2651. view_offs += view_src->view_offs;
  2652. view_src = view_src->view_src;
  2653. }
  2654. size_t data_size = ggml_row_size(type, ne[0]);
  2655. for (int i = 1; i < n_dims; i++) {
  2656. data_size *= ne[i];
  2657. }
  2658. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2659. void * data = view_src != NULL ? view_src->data : NULL;
  2660. if (data != NULL) {
  2661. data = (char *) data + view_offs;
  2662. }
  2663. size_t obj_alloc_size = 0;
  2664. if (view_src == NULL && !ctx->no_alloc) {
  2665. if (ctx->scratch.data != NULL) {
  2666. // allocate tensor data in the scratch buffer
  2667. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2668. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2669. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2670. assert(false);
  2671. return NULL;
  2672. }
  2673. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2674. ctx->scratch.offs += data_size;
  2675. } else {
  2676. // allocate tensor data in the context's memory pool
  2677. obj_alloc_size = data_size;
  2678. }
  2679. }
  2680. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2681. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2682. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2683. *result = (struct ggml_tensor) {
  2684. /*.type =*/ type,
  2685. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2686. /*.buffer =*/ NULL,
  2687. /*.ne =*/ { 1, 1, 1, 1 },
  2688. /*.nb =*/ { 0, 0, 0, 0 },
  2689. /*.op =*/ GGML_OP_NONE,
  2690. /*.op_params =*/ { 0 },
  2691. /*.flags =*/ 0,
  2692. /*.grad =*/ NULL,
  2693. /*.src =*/ { NULL },
  2694. /*.perf_runs =*/ 0,
  2695. /*.perf_cycles =*/ 0,
  2696. /*.perf_time_us =*/ 0,
  2697. /*.view_src =*/ view_src,
  2698. /*.view_offs =*/ view_offs,
  2699. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2700. /*.name =*/ { 0 },
  2701. /*.extra =*/ NULL,
  2702. /*.padding =*/ { 0 },
  2703. };
  2704. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2705. //ggml_assert_aligned(result->data);
  2706. for (int i = 0; i < n_dims; i++) {
  2707. result->ne[i] = ne[i];
  2708. }
  2709. result->nb[0] = ggml_type_size(type);
  2710. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2711. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2712. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2713. }
  2714. ctx->n_objects++;
  2715. return result;
  2716. }
  2717. struct ggml_tensor * ggml_new_tensor(
  2718. struct ggml_context * ctx,
  2719. enum ggml_type type,
  2720. int n_dims,
  2721. const int64_t * ne) {
  2722. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2723. }
  2724. struct ggml_tensor * ggml_new_tensor_1d(
  2725. struct ggml_context * ctx,
  2726. enum ggml_type type,
  2727. int64_t ne0) {
  2728. return ggml_new_tensor(ctx, type, 1, &ne0);
  2729. }
  2730. struct ggml_tensor * ggml_new_tensor_2d(
  2731. struct ggml_context * ctx,
  2732. enum ggml_type type,
  2733. int64_t ne0,
  2734. int64_t ne1) {
  2735. const int64_t ne[2] = { ne0, ne1 };
  2736. return ggml_new_tensor(ctx, type, 2, ne);
  2737. }
  2738. struct ggml_tensor * ggml_new_tensor_3d(
  2739. struct ggml_context * ctx,
  2740. enum ggml_type type,
  2741. int64_t ne0,
  2742. int64_t ne1,
  2743. int64_t ne2) {
  2744. const int64_t ne[3] = { ne0, ne1, ne2 };
  2745. return ggml_new_tensor(ctx, type, 3, ne);
  2746. }
  2747. struct ggml_tensor * ggml_new_tensor_4d(
  2748. struct ggml_context * ctx,
  2749. enum ggml_type type,
  2750. int64_t ne0,
  2751. int64_t ne1,
  2752. int64_t ne2,
  2753. int64_t ne3) {
  2754. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2755. return ggml_new_tensor(ctx, type, 4, ne);
  2756. }
  2757. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2758. ggml_scratch_save(ctx);
  2759. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2760. ggml_scratch_load(ctx);
  2761. ggml_set_i32(result, value);
  2762. return result;
  2763. }
  2764. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2765. ggml_scratch_save(ctx);
  2766. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2767. ggml_scratch_load(ctx);
  2768. ggml_set_f32(result, value);
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2772. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2773. }
  2774. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2775. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2776. assert(params_size <= GGML_MAX_OP_PARAMS);
  2777. memcpy(tensor->op_params, params, params_size);
  2778. }
  2779. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2780. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2781. return ((const int32_t *)(tensor->op_params))[i];
  2782. }
  2783. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2784. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2785. return ((const float *)(tensor->op_params))[i];
  2786. }
  2787. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2788. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2789. ((int32_t *)(tensor->op_params))[i] = value;
  2790. }
  2791. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2792. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2793. ((float *)(tensor->op_params))[i] = value;
  2794. }
  2795. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2796. memset(tensor->data, 0, ggml_nbytes(tensor));
  2797. return tensor;
  2798. }
  2799. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2800. const int n = ggml_nrows(tensor);
  2801. const int nc = tensor->ne[0];
  2802. const size_t n1 = tensor->nb[1];
  2803. char * const data = tensor->data;
  2804. switch (tensor->type) {
  2805. case GGML_TYPE_I8:
  2806. {
  2807. assert(tensor->nb[0] == sizeof(int8_t));
  2808. for (int i = 0; i < n; i++) {
  2809. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2810. }
  2811. } break;
  2812. case GGML_TYPE_I16:
  2813. {
  2814. assert(tensor->nb[0] == sizeof(int16_t));
  2815. for (int i = 0; i < n; i++) {
  2816. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2817. }
  2818. } break;
  2819. case GGML_TYPE_I32:
  2820. {
  2821. assert(tensor->nb[0] == sizeof(int32_t));
  2822. for (int i = 0; i < n; i++) {
  2823. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2824. }
  2825. } break;
  2826. case GGML_TYPE_F16:
  2827. {
  2828. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2829. for (int i = 0; i < n; i++) {
  2830. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2831. }
  2832. } break;
  2833. case GGML_TYPE_BF16:
  2834. {
  2835. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2836. for (int i = 0; i < n; i++) {
  2837. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2838. }
  2839. } break;
  2840. case GGML_TYPE_F32:
  2841. {
  2842. assert(tensor->nb[0] == sizeof(float));
  2843. for (int i = 0; i < n; i++) {
  2844. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2845. }
  2846. } break;
  2847. default:
  2848. {
  2849. GGML_ASSERT(false);
  2850. } break;
  2851. }
  2852. return tensor;
  2853. }
  2854. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2855. const int n = ggml_nrows(tensor);
  2856. const int nc = tensor->ne[0];
  2857. const size_t n1 = tensor->nb[1];
  2858. char * const data = tensor->data;
  2859. switch (tensor->type) {
  2860. case GGML_TYPE_I8:
  2861. {
  2862. assert(tensor->nb[0] == sizeof(int8_t));
  2863. for (int i = 0; i < n; i++) {
  2864. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2865. }
  2866. } break;
  2867. case GGML_TYPE_I16:
  2868. {
  2869. assert(tensor->nb[0] == sizeof(int16_t));
  2870. for (int i = 0; i < n; i++) {
  2871. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2872. }
  2873. } break;
  2874. case GGML_TYPE_I32:
  2875. {
  2876. assert(tensor->nb[0] == sizeof(int32_t));
  2877. for (int i = 0; i < n; i++) {
  2878. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2879. }
  2880. } break;
  2881. case GGML_TYPE_F16:
  2882. {
  2883. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2884. for (int i = 0; i < n; i++) {
  2885. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2886. }
  2887. } break;
  2888. case GGML_TYPE_BF16:
  2889. {
  2890. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2891. for (int i = 0; i < n; i++) {
  2892. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2893. }
  2894. } break;
  2895. case GGML_TYPE_F32:
  2896. {
  2897. assert(tensor->nb[0] == sizeof(float));
  2898. for (int i = 0; i < n; i++) {
  2899. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2900. }
  2901. } break;
  2902. default:
  2903. {
  2904. GGML_ASSERT(false);
  2905. } break;
  2906. }
  2907. return tensor;
  2908. }
  2909. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2910. const int64_t ne2 = tensor->ne[2];
  2911. const int64_t ne1 = tensor->ne[1];
  2912. const int64_t ne0 = tensor->ne[0];
  2913. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2914. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2915. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2916. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2917. if (i0) {
  2918. * i0 = i0_;
  2919. }
  2920. if (i1) {
  2921. * i1 = i1_;
  2922. }
  2923. if (i2) {
  2924. * i2 = i2_;
  2925. }
  2926. if (i3) {
  2927. * i3 = i3_;
  2928. }
  2929. }
  2930. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2931. if (!ggml_is_contiguous(tensor)) {
  2932. int64_t id[4] = { 0, 0, 0, 0 };
  2933. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2934. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2935. }
  2936. switch (tensor->type) {
  2937. case GGML_TYPE_I8:
  2938. {
  2939. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2940. return ((int8_t *)(tensor->data))[i];
  2941. }
  2942. case GGML_TYPE_I16:
  2943. {
  2944. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2945. return ((int16_t *)(tensor->data))[i];
  2946. }
  2947. case GGML_TYPE_I32:
  2948. {
  2949. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2950. return ((int32_t *)(tensor->data))[i];
  2951. }
  2952. case GGML_TYPE_F16:
  2953. {
  2954. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2955. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2956. }
  2957. case GGML_TYPE_BF16:
  2958. {
  2959. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2960. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2961. }
  2962. case GGML_TYPE_F32:
  2963. {
  2964. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2965. return ((float *)(tensor->data))[i];
  2966. }
  2967. default:
  2968. {
  2969. GGML_ASSERT(false);
  2970. }
  2971. }
  2972. return 0.0f;
  2973. }
  2974. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2975. if (!ggml_is_contiguous(tensor)) {
  2976. int64_t id[4] = { 0, 0, 0, 0 };
  2977. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2978. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2979. return;
  2980. }
  2981. switch (tensor->type) {
  2982. case GGML_TYPE_I8:
  2983. {
  2984. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2985. ((int8_t *)(tensor->data))[i] = value;
  2986. } break;
  2987. case GGML_TYPE_I16:
  2988. {
  2989. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2990. ((int16_t *)(tensor->data))[i] = value;
  2991. } break;
  2992. case GGML_TYPE_I32:
  2993. {
  2994. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2995. ((int32_t *)(tensor->data))[i] = value;
  2996. } break;
  2997. case GGML_TYPE_F16:
  2998. {
  2999. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3000. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3001. } break;
  3002. case GGML_TYPE_BF16:
  3003. {
  3004. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3005. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3006. } break;
  3007. case GGML_TYPE_F32:
  3008. {
  3009. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3010. ((float *)(tensor->data))[i] = value;
  3011. } break;
  3012. default:
  3013. {
  3014. GGML_ASSERT(false);
  3015. } break;
  3016. }
  3017. }
  3018. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3019. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3020. switch (tensor->type) {
  3021. case GGML_TYPE_I8:
  3022. return ((int8_t *) data)[0];
  3023. case GGML_TYPE_I16:
  3024. return ((int16_t *) data)[0];
  3025. case GGML_TYPE_I32:
  3026. return ((int32_t *) data)[0];
  3027. case GGML_TYPE_F16:
  3028. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3029. case GGML_TYPE_BF16:
  3030. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3031. case GGML_TYPE_F32:
  3032. return ((float *) data)[0];
  3033. default:
  3034. GGML_ASSERT(false);
  3035. }
  3036. return 0.0f;
  3037. }
  3038. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3039. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3040. switch (tensor->type) {
  3041. case GGML_TYPE_I8:
  3042. {
  3043. ((int8_t *)(data))[0] = value;
  3044. } break;
  3045. case GGML_TYPE_I16:
  3046. {
  3047. ((int16_t *)(data))[0] = value;
  3048. } break;
  3049. case GGML_TYPE_I32:
  3050. {
  3051. ((int32_t *)(data))[0] = value;
  3052. } break;
  3053. case GGML_TYPE_F16:
  3054. {
  3055. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3056. } break;
  3057. case GGML_TYPE_BF16:
  3058. {
  3059. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3060. } break;
  3061. case GGML_TYPE_F32:
  3062. {
  3063. ((float *)(data))[0] = value;
  3064. } break;
  3065. default:
  3066. {
  3067. GGML_ASSERT(false);
  3068. } break;
  3069. }
  3070. }
  3071. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3072. if (!ggml_is_contiguous(tensor)) {
  3073. int64_t id[4] = { 0, 0, 0, 0 };
  3074. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3075. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3076. }
  3077. switch (tensor->type) {
  3078. case GGML_TYPE_I8:
  3079. {
  3080. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3081. return ((int8_t *)(tensor->data))[i];
  3082. }
  3083. case GGML_TYPE_I16:
  3084. {
  3085. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3086. return ((int16_t *)(tensor->data))[i];
  3087. }
  3088. case GGML_TYPE_I32:
  3089. {
  3090. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3091. return ((int32_t *)(tensor->data))[i];
  3092. }
  3093. case GGML_TYPE_F16:
  3094. {
  3095. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3096. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3097. }
  3098. case GGML_TYPE_BF16:
  3099. {
  3100. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3101. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3102. }
  3103. case GGML_TYPE_F32:
  3104. {
  3105. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3106. return ((float *)(tensor->data))[i];
  3107. }
  3108. default:
  3109. {
  3110. GGML_ASSERT(false);
  3111. }
  3112. }
  3113. return 0.0f;
  3114. }
  3115. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3116. if (!ggml_is_contiguous(tensor)) {
  3117. int64_t id[4] = { 0, 0, 0, 0 };
  3118. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3119. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3120. return;
  3121. }
  3122. switch (tensor->type) {
  3123. case GGML_TYPE_I8:
  3124. {
  3125. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3126. ((int8_t *)(tensor->data))[i] = value;
  3127. } break;
  3128. case GGML_TYPE_I16:
  3129. {
  3130. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3131. ((int16_t *)(tensor->data))[i] = value;
  3132. } break;
  3133. case GGML_TYPE_I32:
  3134. {
  3135. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3136. ((int32_t *)(tensor->data))[i] = value;
  3137. } break;
  3138. case GGML_TYPE_F16:
  3139. {
  3140. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3141. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3142. } break;
  3143. case GGML_TYPE_BF16:
  3144. {
  3145. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3146. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3147. } break;
  3148. case GGML_TYPE_F32:
  3149. {
  3150. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3151. ((float *)(tensor->data))[i] = value;
  3152. } break;
  3153. default:
  3154. {
  3155. GGML_ASSERT(false);
  3156. } break;
  3157. }
  3158. }
  3159. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3160. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3161. switch (tensor->type) {
  3162. case GGML_TYPE_I8:
  3163. return ((int8_t *) data)[0];
  3164. case GGML_TYPE_I16:
  3165. return ((int16_t *) data)[0];
  3166. case GGML_TYPE_I32:
  3167. return ((int32_t *) data)[0];
  3168. case GGML_TYPE_F16:
  3169. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3170. case GGML_TYPE_BF16:
  3171. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3172. case GGML_TYPE_F32:
  3173. return ((float *) data)[0];
  3174. default:
  3175. GGML_ASSERT(false);
  3176. }
  3177. return 0.0f;
  3178. }
  3179. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3180. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3181. switch (tensor->type) {
  3182. case GGML_TYPE_I8:
  3183. {
  3184. ((int8_t *)(data))[0] = value;
  3185. } break;
  3186. case GGML_TYPE_I16:
  3187. {
  3188. ((int16_t *)(data))[0] = value;
  3189. } break;
  3190. case GGML_TYPE_I32:
  3191. {
  3192. ((int32_t *)(data))[0] = value;
  3193. } break;
  3194. case GGML_TYPE_F16:
  3195. {
  3196. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3197. } break;
  3198. case GGML_TYPE_BF16:
  3199. {
  3200. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3201. } break;
  3202. case GGML_TYPE_F32:
  3203. {
  3204. ((float *)(data))[0] = value;
  3205. } break;
  3206. default:
  3207. {
  3208. GGML_ASSERT(false);
  3209. } break;
  3210. }
  3211. }
  3212. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3213. return tensor->data;
  3214. }
  3215. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3216. assert(tensor->type == GGML_TYPE_F32);
  3217. return (float *)(tensor->data);
  3218. }
  3219. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3220. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3221. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3222. }
  3223. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3224. return tensor->name;
  3225. }
  3226. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3227. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3228. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3229. return tensor;
  3230. }
  3231. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3232. va_list args;
  3233. va_start(args, fmt);
  3234. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3235. va_end(args);
  3236. return tensor;
  3237. }
  3238. struct ggml_tensor * ggml_view_tensor(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * src) {
  3241. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3242. ggml_format_name(result, "%s (view)", src->name);
  3243. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3244. result->nb[i] = src->nb[i];
  3245. }
  3246. return result;
  3247. }
  3248. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3249. struct ggml_object * obj = ctx->objects_begin;
  3250. char * const mem_buffer = ctx->mem_buffer;
  3251. while (obj != NULL) {
  3252. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3253. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3254. }
  3255. obj = obj->next;
  3256. }
  3257. return NULL;
  3258. }
  3259. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3260. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3261. obj = obj->next;
  3262. char * const mem_buffer = ctx->mem_buffer;
  3263. while (obj != NULL) {
  3264. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3265. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3266. }
  3267. obj = obj->next;
  3268. }
  3269. return NULL;
  3270. }
  3271. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3272. struct ggml_object * obj = ctx->objects_begin;
  3273. char * const mem_buffer = ctx->mem_buffer;
  3274. while (obj != NULL) {
  3275. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3276. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3277. if (strcmp(cur->name, name) == 0) {
  3278. return cur;
  3279. }
  3280. }
  3281. obj = obj->next;
  3282. }
  3283. return NULL;
  3284. }
  3285. ////////////////////////////////////////////////////////////////////////////////
  3286. // ggml_dup
  3287. static struct ggml_tensor * ggml_dup_impl(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. bool inplace) {
  3291. bool is_node = false;
  3292. if (!inplace && (a->grad)) {
  3293. is_node = true;
  3294. }
  3295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3296. result->op = GGML_OP_DUP;
  3297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3298. result->src[0] = a;
  3299. return result;
  3300. }
  3301. struct ggml_tensor * ggml_dup(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a) {
  3304. return ggml_dup_impl(ctx, a, false);
  3305. }
  3306. struct ggml_tensor * ggml_dup_inplace(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a) {
  3309. return ggml_dup_impl(ctx, a, true);
  3310. }
  3311. // ggml_add
  3312. static struct ggml_tensor * ggml_add_impl(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a,
  3315. struct ggml_tensor * b,
  3316. bool inplace) {
  3317. GGML_ASSERT(ggml_can_repeat(b, a));
  3318. bool is_node = false;
  3319. if (!inplace && (a->grad || b->grad)) {
  3320. // TODO: support backward pass for broadcasting
  3321. GGML_ASSERT(ggml_are_same_shape(a, b));
  3322. is_node = true;
  3323. }
  3324. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3325. result->op = GGML_OP_ADD;
  3326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3327. result->src[0] = a;
  3328. result->src[1] = b;
  3329. return result;
  3330. }
  3331. struct ggml_tensor * ggml_add(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. struct ggml_tensor * b) {
  3335. return ggml_add_impl(ctx, a, b, false);
  3336. }
  3337. struct ggml_tensor * ggml_add_inplace(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. struct ggml_tensor * b) {
  3341. return ggml_add_impl(ctx, a, b, true);
  3342. }
  3343. // ggml_add_cast
  3344. static struct ggml_tensor * ggml_add_cast_impl(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a,
  3347. struct ggml_tensor * b,
  3348. enum ggml_type type) {
  3349. // TODO: support less-strict constraint
  3350. // GGML_ASSERT(ggml_can_repeat(b, a));
  3351. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3352. // currently only supported for quantized input and f16
  3353. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3354. a->type == GGML_TYPE_F16 ||
  3355. a->type == GGML_TYPE_BF16);
  3356. bool is_node = false;
  3357. if (a->grad || b->grad) {
  3358. // TODO: support backward pass for broadcasting
  3359. GGML_ASSERT(ggml_are_same_shape(a, b));
  3360. is_node = true;
  3361. }
  3362. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3363. result->op = GGML_OP_ADD;
  3364. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3365. result->src[0] = a;
  3366. result->src[1] = b;
  3367. return result;
  3368. }
  3369. struct ggml_tensor * ggml_add_cast(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a,
  3372. struct ggml_tensor * b,
  3373. enum ggml_type type) {
  3374. return ggml_add_cast_impl(ctx, a, b, type);
  3375. }
  3376. // ggml_add1
  3377. static struct ggml_tensor * ggml_add1_impl(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a,
  3380. struct ggml_tensor * b,
  3381. bool inplace) {
  3382. GGML_ASSERT(ggml_is_scalar(b));
  3383. GGML_ASSERT(ggml_is_padded_1d(a));
  3384. bool is_node = false;
  3385. if (a->grad || b->grad) {
  3386. is_node = true;
  3387. }
  3388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3389. result->op = GGML_OP_ADD1;
  3390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3391. result->src[0] = a;
  3392. result->src[1] = b;
  3393. return result;
  3394. }
  3395. struct ggml_tensor * ggml_add1(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a,
  3398. struct ggml_tensor * b) {
  3399. return ggml_add1_impl(ctx, a, b, false);
  3400. }
  3401. struct ggml_tensor * ggml_add1_inplace(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b) {
  3405. return ggml_add1_impl(ctx, a, b, true);
  3406. }
  3407. // ggml_acc
  3408. static struct ggml_tensor * ggml_acc_impl(
  3409. struct ggml_context * ctx,
  3410. struct ggml_tensor * a,
  3411. struct ggml_tensor * b,
  3412. size_t nb1,
  3413. size_t nb2,
  3414. size_t nb3,
  3415. size_t offset,
  3416. bool inplace) {
  3417. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3418. GGML_ASSERT(ggml_is_contiguous(a));
  3419. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3420. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3421. bool is_node = false;
  3422. if (!inplace && (a->grad || b->grad)) {
  3423. is_node = true;
  3424. }
  3425. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3426. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3427. ggml_set_op_params(result, params, sizeof(params));
  3428. result->op = GGML_OP_ACC;
  3429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3430. result->src[0] = a;
  3431. result->src[1] = b;
  3432. return result;
  3433. }
  3434. struct ggml_tensor * ggml_acc(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a,
  3437. struct ggml_tensor * b,
  3438. size_t nb1,
  3439. size_t nb2,
  3440. size_t nb3,
  3441. size_t offset) {
  3442. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3443. }
  3444. struct ggml_tensor * ggml_acc_inplace(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. struct ggml_tensor * b,
  3448. size_t nb1,
  3449. size_t nb2,
  3450. size_t nb3,
  3451. size_t offset) {
  3452. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3453. }
  3454. // ggml_sub
  3455. static struct ggml_tensor * ggml_sub_impl(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a,
  3458. struct ggml_tensor * b,
  3459. bool inplace) {
  3460. GGML_ASSERT(ggml_are_same_shape(a, b));
  3461. bool is_node = false;
  3462. if (!inplace && (a->grad || b->grad)) {
  3463. is_node = true;
  3464. }
  3465. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3466. result->op = GGML_OP_SUB;
  3467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3468. result->src[0] = a;
  3469. result->src[1] = b;
  3470. return result;
  3471. }
  3472. struct ggml_tensor * ggml_sub(
  3473. struct ggml_context * ctx,
  3474. struct ggml_tensor * a,
  3475. struct ggml_tensor * b) {
  3476. return ggml_sub_impl(ctx, a, b, false);
  3477. }
  3478. struct ggml_tensor * ggml_sub_inplace(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. struct ggml_tensor * b) {
  3482. return ggml_sub_impl(ctx, a, b, true);
  3483. }
  3484. // ggml_mul
  3485. static struct ggml_tensor * ggml_mul_impl(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a,
  3488. struct ggml_tensor * b,
  3489. bool inplace) {
  3490. GGML_ASSERT(ggml_can_repeat(b, a));
  3491. bool is_node = false;
  3492. if (!inplace && (a->grad || b->grad)) {
  3493. // TODO: support backward pass for broadcasting
  3494. GGML_ASSERT(ggml_are_same_shape(a, b));
  3495. is_node = true;
  3496. }
  3497. if (inplace) {
  3498. GGML_ASSERT(!is_node);
  3499. }
  3500. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3501. result->op = GGML_OP_MUL;
  3502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3503. result->src[0] = a;
  3504. result->src[1] = b;
  3505. return result;
  3506. }
  3507. struct ggml_tensor * ggml_mul(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. struct ggml_tensor * b) {
  3511. return ggml_mul_impl(ctx, a, b, false);
  3512. }
  3513. struct ggml_tensor * ggml_mul_inplace(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. struct ggml_tensor * b) {
  3517. return ggml_mul_impl(ctx, a, b, true);
  3518. }
  3519. // ggml_div
  3520. static struct ggml_tensor * ggml_div_impl(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b,
  3524. bool inplace) {
  3525. GGML_ASSERT(ggml_can_repeat(b, a));
  3526. bool is_node = false;
  3527. if (!inplace && (a->grad || b->grad)) {
  3528. is_node = true;
  3529. }
  3530. if (inplace) {
  3531. GGML_ASSERT(!is_node);
  3532. }
  3533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3534. result->op = GGML_OP_DIV;
  3535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3536. result->src[0] = a;
  3537. result->src[1] = b;
  3538. return result;
  3539. }
  3540. struct ggml_tensor * ggml_div(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. struct ggml_tensor * b) {
  3544. return ggml_div_impl(ctx, a, b, false);
  3545. }
  3546. struct ggml_tensor * ggml_div_inplace(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b) {
  3550. return ggml_div_impl(ctx, a, b, true);
  3551. }
  3552. // ggml_sqr
  3553. static struct ggml_tensor * ggml_sqr_impl(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. bool inplace) {
  3557. bool is_node = false;
  3558. if (!inplace && (a->grad)) {
  3559. is_node = true;
  3560. }
  3561. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3562. result->op = GGML_OP_SQR;
  3563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3564. result->src[0] = a;
  3565. return result;
  3566. }
  3567. struct ggml_tensor * ggml_sqr(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a) {
  3570. return ggml_sqr_impl(ctx, a, false);
  3571. }
  3572. struct ggml_tensor * ggml_sqr_inplace(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a) {
  3575. return ggml_sqr_impl(ctx, a, true);
  3576. }
  3577. // ggml_sqrt
  3578. static struct ggml_tensor * ggml_sqrt_impl(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a,
  3581. bool inplace) {
  3582. bool is_node = false;
  3583. if (!inplace && (a->grad)) {
  3584. is_node = true;
  3585. }
  3586. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3587. result->op = GGML_OP_SQRT;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src[0] = a;
  3590. return result;
  3591. }
  3592. struct ggml_tensor * ggml_sqrt(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a) {
  3595. return ggml_sqrt_impl(ctx, a, false);
  3596. }
  3597. struct ggml_tensor * ggml_sqrt_inplace(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a) {
  3600. return ggml_sqrt_impl(ctx, a, true);
  3601. }
  3602. // ggml_log
  3603. static struct ggml_tensor * ggml_log_impl(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. bool inplace) {
  3607. bool is_node = false;
  3608. if (!inplace && (a->grad)) {
  3609. is_node = true;
  3610. }
  3611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3612. result->op = GGML_OP_LOG;
  3613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3614. result->src[0] = a;
  3615. return result;
  3616. }
  3617. struct ggml_tensor * ggml_log(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a) {
  3620. return ggml_log_impl(ctx, a, false);
  3621. }
  3622. struct ggml_tensor * ggml_log_inplace(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. return ggml_log_impl(ctx, a, true);
  3626. }
  3627. // ggml_sum
  3628. struct ggml_tensor * ggml_sum(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a) {
  3631. bool is_node = false;
  3632. if (a->grad) {
  3633. is_node = true;
  3634. }
  3635. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3636. result->op = GGML_OP_SUM;
  3637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3638. result->src[0] = a;
  3639. return result;
  3640. }
  3641. // ggml_sum_rows
  3642. struct ggml_tensor * ggml_sum_rows(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a) {
  3645. bool is_node = false;
  3646. if (a->grad) {
  3647. is_node = true;
  3648. }
  3649. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3650. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3651. ne[i] = a->ne[i];
  3652. }
  3653. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3654. result->op = GGML_OP_SUM_ROWS;
  3655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3656. result->src[0] = a;
  3657. return result;
  3658. }
  3659. // ggml_mean
  3660. struct ggml_tensor * ggml_mean(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a) {
  3663. bool is_node = false;
  3664. if (a->grad) {
  3665. GGML_ASSERT(false); // TODO: implement
  3666. is_node = true;
  3667. }
  3668. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3669. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3670. result->op = GGML_OP_MEAN;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src[0] = a;
  3673. return result;
  3674. }
  3675. // ggml_argmax
  3676. struct ggml_tensor * ggml_argmax(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a) {
  3679. GGML_ASSERT(ggml_is_matrix(a));
  3680. bool is_node = false;
  3681. if (a->grad) {
  3682. GGML_ASSERT(false);
  3683. is_node = true;
  3684. }
  3685. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3686. result->op = GGML_OP_ARGMAX;
  3687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3688. result->src[0] = a;
  3689. return result;
  3690. }
  3691. // ggml_repeat
  3692. struct ggml_tensor * ggml_repeat(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. struct ggml_tensor * b) {
  3696. GGML_ASSERT(ggml_can_repeat(a, b));
  3697. bool is_node = false;
  3698. if (a->grad) {
  3699. is_node = true;
  3700. }
  3701. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3702. result->op = GGML_OP_REPEAT;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src[0] = a;
  3705. return result;
  3706. }
  3707. // ggml_repeat_back
  3708. struct ggml_tensor * ggml_repeat_back(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. struct ggml_tensor * b) {
  3712. GGML_ASSERT(ggml_can_repeat(b, a));
  3713. bool is_node = false;
  3714. if (a->grad) {
  3715. is_node = true;
  3716. }
  3717. if (ggml_are_same_shape(a, b) && !is_node) {
  3718. return a;
  3719. }
  3720. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3721. result->op = GGML_OP_REPEAT_BACK;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. return result;
  3725. }
  3726. // ggml_concat
  3727. struct ggml_tensor * ggml_concat(
  3728. struct ggml_context* ctx,
  3729. struct ggml_tensor* a,
  3730. struct ggml_tensor* b) {
  3731. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3732. bool is_node = false;
  3733. if (a->grad || b->grad) {
  3734. is_node = true;
  3735. }
  3736. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3737. result->op = GGML_OP_CONCAT;
  3738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3739. result->src[0] = a;
  3740. result->src[1] = b;
  3741. return result;
  3742. }
  3743. // ggml_abs
  3744. struct ggml_tensor * ggml_abs(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a) {
  3747. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3748. }
  3749. struct ggml_tensor * ggml_abs_inplace(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a) {
  3752. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3753. }
  3754. // ggml_sgn
  3755. struct ggml_tensor * ggml_sgn(
  3756. struct ggml_context * ctx,
  3757. struct ggml_tensor * a) {
  3758. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3759. }
  3760. struct ggml_tensor * ggml_sgn_inplace(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a) {
  3763. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3764. }
  3765. // ggml_neg
  3766. struct ggml_tensor * ggml_neg(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a) {
  3769. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3770. }
  3771. struct ggml_tensor * ggml_neg_inplace(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a) {
  3774. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3775. }
  3776. // ggml_step
  3777. struct ggml_tensor * ggml_step(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a) {
  3780. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3781. }
  3782. struct ggml_tensor * ggml_step_inplace(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a) {
  3785. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3786. }
  3787. // ggml_tanh
  3788. struct ggml_tensor * ggml_tanh(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a) {
  3791. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3792. }
  3793. struct ggml_tensor * ggml_tanh_inplace(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a) {
  3796. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3797. }
  3798. // ggml_elu
  3799. struct ggml_tensor * ggml_elu(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3803. }
  3804. struct ggml_tensor * ggml_elu_inplace(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a) {
  3807. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3808. }
  3809. // ggml_relu
  3810. struct ggml_tensor * ggml_relu(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a) {
  3813. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3814. }
  3815. struct ggml_tensor * ggml_relu_inplace(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a) {
  3818. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3819. }
  3820. // ggml_leaky_relu
  3821. struct ggml_tensor * ggml_leaky_relu(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3824. bool is_node = false;
  3825. if (!inplace && (a->grad)) {
  3826. is_node = true;
  3827. }
  3828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3829. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3830. result->op = GGML_OP_LEAKY_RELU;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. return result;
  3834. }
  3835. // ggml_gelu
  3836. struct ggml_tensor * ggml_gelu(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a) {
  3839. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3840. }
  3841. struct ggml_tensor * ggml_gelu_inplace(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a) {
  3844. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3845. }
  3846. // ggml_gelu_quick
  3847. struct ggml_tensor * ggml_gelu_quick(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a) {
  3850. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3851. }
  3852. struct ggml_tensor * ggml_gelu_quick_inplace(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a) {
  3855. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3856. }
  3857. // ggml_silu
  3858. struct ggml_tensor * ggml_silu(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3862. }
  3863. struct ggml_tensor * ggml_silu_inplace(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3867. }
  3868. // ggml_silu_back
  3869. struct ggml_tensor * ggml_silu_back(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b) {
  3873. bool is_node = false;
  3874. if (a->grad || b->grad) {
  3875. // TODO: implement backward
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3879. result->op = GGML_OP_SILU_BACK;
  3880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3881. result->src[0] = a;
  3882. result->src[1] = b;
  3883. return result;
  3884. }
  3885. // ggml hardswish
  3886. struct ggml_tensor * ggml_hardswish(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a) {
  3889. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3890. }
  3891. // ggml hardsigmoid
  3892. struct ggml_tensor * ggml_hardsigmoid(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a) {
  3895. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3896. }
  3897. // ggml_norm
  3898. static struct ggml_tensor * ggml_norm_impl(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. float eps,
  3902. bool inplace) {
  3903. bool is_node = false;
  3904. if (!inplace && (a->grad)) {
  3905. GGML_ASSERT(false); // TODO: implement backward
  3906. is_node = true;
  3907. }
  3908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3909. ggml_set_op_params(result, &eps, sizeof(eps));
  3910. result->op = GGML_OP_NORM;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src[0] = a;
  3913. return result;
  3914. }
  3915. struct ggml_tensor * ggml_norm(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. float eps) {
  3919. return ggml_norm_impl(ctx, a, eps, false);
  3920. }
  3921. struct ggml_tensor * ggml_norm_inplace(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. float eps) {
  3925. return ggml_norm_impl(ctx, a, eps, true);
  3926. }
  3927. // ggml_rms_norm
  3928. static struct ggml_tensor * ggml_rms_norm_impl(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. float eps,
  3932. bool inplace) {
  3933. bool is_node = false;
  3934. if (!inplace && (a->grad)) {
  3935. is_node = true;
  3936. }
  3937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3938. ggml_set_op_params(result, &eps, sizeof(eps));
  3939. result->op = GGML_OP_RMS_NORM;
  3940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3941. result->src[0] = a;
  3942. return result;
  3943. }
  3944. struct ggml_tensor * ggml_rms_norm(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. float eps) {
  3948. return ggml_rms_norm_impl(ctx, a, eps, false);
  3949. }
  3950. struct ggml_tensor * ggml_rms_norm_inplace(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. float eps) {
  3954. return ggml_rms_norm_impl(ctx, a, eps, true);
  3955. }
  3956. // ggml_rms_norm_back
  3957. struct ggml_tensor * ggml_rms_norm_back(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b,
  3961. float eps) {
  3962. bool is_node = false;
  3963. if (a->grad) {
  3964. // TODO: implement backward
  3965. is_node = true;
  3966. }
  3967. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3968. ggml_set_op_params(result, &eps, sizeof(eps));
  3969. result->op = GGML_OP_RMS_NORM_BACK;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. result->src[1] = b;
  3973. return result;
  3974. }
  3975. // ggml_group_norm
  3976. static struct ggml_tensor * ggml_group_norm_impl(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. int n_groups,
  3980. bool inplace) {
  3981. bool is_node = false;
  3982. if (!inplace && (a->grad)) {
  3983. GGML_ASSERT(false); // TODO: implement backward
  3984. is_node = true;
  3985. }
  3986. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3987. result->op_params[0] = n_groups;
  3988. result->op = GGML_OP_GROUP_NORM;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src[0] = a;
  3991. return result;
  3992. }
  3993. struct ggml_tensor * ggml_group_norm(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int n_groups) {
  3997. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3998. }
  3999. struct ggml_tensor * ggml_group_norm_inplace(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. int n_groups) {
  4003. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4004. }
  4005. // ggml_mul_mat
  4006. struct ggml_tensor * ggml_mul_mat(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. struct ggml_tensor * b) {
  4010. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4011. GGML_ASSERT(!ggml_is_transposed(a));
  4012. bool is_node = false;
  4013. if (a->grad || b->grad) {
  4014. is_node = true;
  4015. }
  4016. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4017. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4018. result->op = GGML_OP_MUL_MAT;
  4019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4020. result->src[0] = a;
  4021. result->src[1] = b;
  4022. return result;
  4023. }
  4024. void ggml_mul_mat_set_prec(
  4025. struct ggml_tensor * a,
  4026. enum ggml_prec prec) {
  4027. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4028. const int32_t prec_i32 = (int32_t) prec;
  4029. ggml_set_op_params_i32(a, 0, prec_i32);
  4030. }
  4031. // ggml_mul_mat_id
  4032. /*
  4033. c = ggml_mul_mat_id(ctx, as, b, ids);
  4034. as -> [cols, rows, n_expert]
  4035. ids -> [n_experts_used, n_tokens] (i32)
  4036. b -> [cols, n_expert_used, n_tokens]
  4037. c -> [cols, n_expert_used, n_tokens]
  4038. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4039. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4040. */
  4041. struct ggml_tensor * ggml_mul_mat_id(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * as,
  4044. struct ggml_tensor * b,
  4045. struct ggml_tensor * ids) {
  4046. GGML_ASSERT(!ggml_is_transposed(as));
  4047. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4048. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4049. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4050. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4051. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4052. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4053. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4054. bool is_node = false;
  4055. if (as->grad || b->grad) {
  4056. is_node = true;
  4057. }
  4058. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4059. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4060. result->op = GGML_OP_MUL_MAT_ID;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src[0] = as;
  4063. result->src[1] = b;
  4064. result->src[2] = ids;
  4065. return result;
  4066. }
  4067. // ggml_out_prod
  4068. struct ggml_tensor * ggml_out_prod(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * b) {
  4072. GGML_ASSERT(ggml_can_out_prod(a, b));
  4073. GGML_ASSERT(!ggml_is_transposed(a));
  4074. bool is_node = false;
  4075. if (a->grad || b->grad) {
  4076. is_node = true;
  4077. }
  4078. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4079. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4080. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4081. result->op = GGML_OP_OUT_PROD;
  4082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4083. result->src[0] = a;
  4084. result->src[1] = b;
  4085. return result;
  4086. }
  4087. // ggml_scale
  4088. static struct ggml_tensor * ggml_scale_impl(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. float s,
  4092. bool inplace) {
  4093. GGML_ASSERT(ggml_is_padded_1d(a));
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. is_node = true;
  4097. }
  4098. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4099. ggml_set_op_params(result, &s, sizeof(s));
  4100. result->op = GGML_OP_SCALE;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src[0] = a;
  4103. return result;
  4104. }
  4105. struct ggml_tensor * ggml_scale(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. float s) {
  4109. return ggml_scale_impl(ctx, a, s, false);
  4110. }
  4111. struct ggml_tensor * ggml_scale_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. float s) {
  4115. return ggml_scale_impl(ctx, a, s, true);
  4116. }
  4117. // ggml_set
  4118. static struct ggml_tensor * ggml_set_impl(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. struct ggml_tensor * b,
  4122. size_t nb1,
  4123. size_t nb2,
  4124. size_t nb3,
  4125. size_t offset,
  4126. bool inplace) {
  4127. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4128. bool is_node = false;
  4129. if (a->grad || b->grad) {
  4130. is_node = true;
  4131. }
  4132. // make a view of the destination
  4133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4134. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4135. ggml_set_op_params(result, params, sizeof(params));
  4136. result->op = GGML_OP_SET;
  4137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4138. result->src[0] = a;
  4139. result->src[1] = b;
  4140. return result;
  4141. }
  4142. struct ggml_tensor * ggml_set(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. struct ggml_tensor * b,
  4146. size_t nb1,
  4147. size_t nb2,
  4148. size_t nb3,
  4149. size_t offset) {
  4150. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4151. }
  4152. struct ggml_tensor * ggml_set_inplace(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a,
  4155. struct ggml_tensor * b,
  4156. size_t nb1,
  4157. size_t nb2,
  4158. size_t nb3,
  4159. size_t offset) {
  4160. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4161. }
  4162. struct ggml_tensor * ggml_set_1d(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b,
  4166. size_t offset) {
  4167. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4168. }
  4169. struct ggml_tensor * ggml_set_1d_inplace(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. struct ggml_tensor * b,
  4173. size_t offset) {
  4174. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4175. }
  4176. struct ggml_tensor * ggml_set_2d(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. struct ggml_tensor * b,
  4180. size_t nb1,
  4181. size_t offset) {
  4182. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4183. }
  4184. struct ggml_tensor * ggml_set_2d_inplace(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b,
  4188. size_t nb1,
  4189. size_t offset) {
  4190. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4191. }
  4192. // ggml_cpy
  4193. static struct ggml_tensor * ggml_cpy_impl(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b) {
  4197. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4198. bool is_node = false;
  4199. if (a->grad || b->grad) {
  4200. // inplace is false and either one have a grad
  4201. is_node = true;
  4202. }
  4203. // make a view of the destination
  4204. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4205. if (strlen(b->name) > 0) {
  4206. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4207. } else {
  4208. ggml_format_name(result, "%s (copy)", a->name);
  4209. }
  4210. result->op = GGML_OP_CPY;
  4211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4212. result->src[0] = a;
  4213. result->src[1] = b;
  4214. return result;
  4215. }
  4216. struct ggml_tensor * ggml_cpy(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. struct ggml_tensor * b) {
  4220. return ggml_cpy_impl(ctx, a, b);
  4221. }
  4222. struct ggml_tensor * ggml_cast(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. enum ggml_type type) {
  4226. bool is_node = false;
  4227. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4228. ggml_format_name(result, "%s (copy)", a->name);
  4229. result->op = GGML_OP_CPY;
  4230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4231. result->src[0] = a;
  4232. result->src[1] = result;
  4233. return result;
  4234. }
  4235. // ggml_cont
  4236. static struct ggml_tensor * ggml_cont_impl(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. bool is_node = false;
  4240. if (a->grad) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4244. ggml_format_name(result, "%s (cont)", a->name);
  4245. result->op = GGML_OP_CONT;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src[0] = a;
  4248. return result;
  4249. }
  4250. struct ggml_tensor * ggml_cont(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a) {
  4253. return ggml_cont_impl(ctx, a);
  4254. }
  4255. // make contiguous, with new shape
  4256. GGML_API struct ggml_tensor * ggml_cont_1d(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. int64_t ne0) {
  4260. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4261. }
  4262. GGML_API struct ggml_tensor * ggml_cont_2d(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. int64_t ne0,
  4266. int64_t ne1) {
  4267. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4268. }
  4269. GGML_API struct ggml_tensor * ggml_cont_3d(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a,
  4272. int64_t ne0,
  4273. int64_t ne1,
  4274. int64_t ne2) {
  4275. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4276. }
  4277. struct ggml_tensor * ggml_cont_4d(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. int64_t ne0,
  4281. int64_t ne1,
  4282. int64_t ne2,
  4283. int64_t ne3) {
  4284. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4285. bool is_node = false;
  4286. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4287. ggml_format_name(result, "%s (cont)", a->name);
  4288. result->op = GGML_OP_CONT;
  4289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4290. result->src[0] = a;
  4291. return result;
  4292. }
  4293. // ggml_reshape
  4294. struct ggml_tensor * ggml_reshape(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. struct ggml_tensor * b) {
  4298. GGML_ASSERT(ggml_is_contiguous(a));
  4299. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4300. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4301. bool is_node = false;
  4302. if (a->grad) {
  4303. is_node = true;
  4304. }
  4305. if (b->grad) {
  4306. // gradient propagation is not supported
  4307. //GGML_ASSERT(false);
  4308. }
  4309. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4310. ggml_format_name(result, "%s (reshaped)", a->name);
  4311. result->op = GGML_OP_RESHAPE;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src[0] = a;
  4314. return result;
  4315. }
  4316. struct ggml_tensor * ggml_reshape_1d(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. int64_t ne0) {
  4320. GGML_ASSERT(ggml_is_contiguous(a));
  4321. GGML_ASSERT(ggml_nelements(a) == ne0);
  4322. bool is_node = false;
  4323. if (a->grad) {
  4324. is_node = true;
  4325. }
  4326. const int64_t ne[1] = { ne0 };
  4327. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4328. ggml_format_name(result, "%s (reshaped)", a->name);
  4329. result->op = GGML_OP_RESHAPE;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src[0] = a;
  4332. return result;
  4333. }
  4334. struct ggml_tensor * ggml_reshape_2d(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. int64_t ne0,
  4338. int64_t ne1) {
  4339. GGML_ASSERT(ggml_is_contiguous(a));
  4340. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4341. bool is_node = false;
  4342. if (a->grad) {
  4343. is_node = true;
  4344. }
  4345. const int64_t ne[2] = { ne0, ne1 };
  4346. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4347. ggml_format_name(result, "%s (reshaped)", a->name);
  4348. result->op = GGML_OP_RESHAPE;
  4349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4350. result->src[0] = a;
  4351. return result;
  4352. }
  4353. struct ggml_tensor * ggml_reshape_3d(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a,
  4356. int64_t ne0,
  4357. int64_t ne1,
  4358. int64_t ne2) {
  4359. GGML_ASSERT(ggml_is_contiguous(a));
  4360. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4361. bool is_node = false;
  4362. if (a->grad) {
  4363. is_node = true;
  4364. }
  4365. const int64_t ne[3] = { ne0, ne1, ne2 };
  4366. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4367. ggml_format_name(result, "%s (reshaped)", a->name);
  4368. result->op = GGML_OP_RESHAPE;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src[0] = a;
  4371. return result;
  4372. }
  4373. struct ggml_tensor * ggml_reshape_4d(
  4374. struct ggml_context * ctx,
  4375. struct ggml_tensor * a,
  4376. int64_t ne0,
  4377. int64_t ne1,
  4378. int64_t ne2,
  4379. int64_t ne3) {
  4380. GGML_ASSERT(ggml_is_contiguous(a));
  4381. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4382. bool is_node = false;
  4383. if (a->grad) {
  4384. is_node = true;
  4385. }
  4386. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4387. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4388. ggml_format_name(result, "%s (reshaped)", a->name);
  4389. result->op = GGML_OP_RESHAPE;
  4390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4391. result->src[0] = a;
  4392. return result;
  4393. }
  4394. static struct ggml_tensor * ggml_view_impl(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. int n_dims,
  4398. const int64_t * ne,
  4399. size_t offset) {
  4400. bool is_node = false;
  4401. if (a->grad) {
  4402. is_node = true;
  4403. }
  4404. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4405. ggml_format_name(result, "%s (view)", a->name);
  4406. ggml_set_op_params(result, &offset, sizeof(offset));
  4407. result->op = GGML_OP_VIEW;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. // ggml_view_1d
  4413. struct ggml_tensor * ggml_view_1d(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. int64_t ne0,
  4417. size_t offset) {
  4418. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4419. return result;
  4420. }
  4421. // ggml_view_2d
  4422. struct ggml_tensor * ggml_view_2d(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. int64_t ne0,
  4426. int64_t ne1,
  4427. size_t nb1,
  4428. size_t offset) {
  4429. const int64_t ne[2] = { ne0, ne1 };
  4430. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4431. result->nb[1] = nb1;
  4432. result->nb[2] = result->nb[1]*ne1;
  4433. result->nb[3] = result->nb[2];
  4434. return result;
  4435. }
  4436. // ggml_view_3d
  4437. struct ggml_tensor * ggml_view_3d(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. int64_t ne0,
  4441. int64_t ne1,
  4442. int64_t ne2,
  4443. size_t nb1,
  4444. size_t nb2,
  4445. size_t offset) {
  4446. const int64_t ne[3] = { ne0, ne1, ne2 };
  4447. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4448. result->nb[1] = nb1;
  4449. result->nb[2] = nb2;
  4450. result->nb[3] = result->nb[2]*ne2;
  4451. return result;
  4452. }
  4453. // ggml_view_4d
  4454. struct ggml_tensor * ggml_view_4d(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. int64_t ne0,
  4458. int64_t ne1,
  4459. int64_t ne2,
  4460. int64_t ne3,
  4461. size_t nb1,
  4462. size_t nb2,
  4463. size_t nb3,
  4464. size_t offset) {
  4465. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4466. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4467. result->nb[1] = nb1;
  4468. result->nb[2] = nb2;
  4469. result->nb[3] = nb3;
  4470. return result;
  4471. }
  4472. // ggml_permute
  4473. struct ggml_tensor * ggml_permute(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. int axis0,
  4477. int axis1,
  4478. int axis2,
  4479. int axis3) {
  4480. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4481. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4482. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4483. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4484. GGML_ASSERT(axis0 != axis1);
  4485. GGML_ASSERT(axis0 != axis2);
  4486. GGML_ASSERT(axis0 != axis3);
  4487. GGML_ASSERT(axis1 != axis2);
  4488. GGML_ASSERT(axis1 != axis3);
  4489. GGML_ASSERT(axis2 != axis3);
  4490. bool is_node = false;
  4491. if (a->grad) {
  4492. is_node = true;
  4493. }
  4494. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4495. ggml_format_name(result, "%s (permuted)", a->name);
  4496. int ne[GGML_MAX_DIMS];
  4497. int nb[GGML_MAX_DIMS];
  4498. ne[axis0] = a->ne[0];
  4499. ne[axis1] = a->ne[1];
  4500. ne[axis2] = a->ne[2];
  4501. ne[axis3] = a->ne[3];
  4502. nb[axis0] = a->nb[0];
  4503. nb[axis1] = a->nb[1];
  4504. nb[axis2] = a->nb[2];
  4505. nb[axis3] = a->nb[3];
  4506. result->ne[0] = ne[0];
  4507. result->ne[1] = ne[1];
  4508. result->ne[2] = ne[2];
  4509. result->ne[3] = ne[3];
  4510. result->nb[0] = nb[0];
  4511. result->nb[1] = nb[1];
  4512. result->nb[2] = nb[2];
  4513. result->nb[3] = nb[3];
  4514. result->op = GGML_OP_PERMUTE;
  4515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4516. result->src[0] = a;
  4517. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4518. ggml_set_op_params(result, params, sizeof(params));
  4519. return result;
  4520. }
  4521. // ggml_transpose
  4522. struct ggml_tensor * ggml_transpose(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a) {
  4525. bool is_node = false;
  4526. if (a->grad) {
  4527. is_node = true;
  4528. }
  4529. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4530. ggml_format_name(result, "%s (transposed)", a->name);
  4531. result->ne[0] = a->ne[1];
  4532. result->ne[1] = a->ne[0];
  4533. result->nb[0] = a->nb[1];
  4534. result->nb[1] = a->nb[0];
  4535. result->op = GGML_OP_TRANSPOSE;
  4536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4537. result->src[0] = a;
  4538. return result;
  4539. }
  4540. // ggml_get_rows
  4541. struct ggml_tensor * ggml_get_rows(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. struct ggml_tensor * b) {
  4545. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4546. GGML_ASSERT(b->ne[3] == 1);
  4547. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4548. bool is_node = false;
  4549. if (a->grad || b->grad) {
  4550. is_node = true;
  4551. }
  4552. // TODO: implement non F32 return
  4553. enum ggml_type type = GGML_TYPE_F32;
  4554. if (a->type == GGML_TYPE_I32) {
  4555. type = a->type;
  4556. }
  4557. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4558. result->op = GGML_OP_GET_ROWS;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. result->src[1] = b;
  4562. return result;
  4563. }
  4564. // ggml_get_rows_back
  4565. struct ggml_tensor * ggml_get_rows_back(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. struct ggml_tensor * b,
  4569. struct ggml_tensor * c) {
  4570. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4571. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4572. bool is_node = false;
  4573. if (a->grad || b->grad) {
  4574. is_node = true;
  4575. }
  4576. // TODO: implement non F32 return
  4577. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4578. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4579. result->op = GGML_OP_GET_ROWS_BACK;
  4580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4581. result->src[0] = a;
  4582. result->src[1] = b;
  4583. return result;
  4584. }
  4585. // ggml_diag
  4586. struct ggml_tensor * ggml_diag(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a) {
  4589. GGML_ASSERT(a->ne[1] == 1);
  4590. bool is_node = false;
  4591. if (a->grad) {
  4592. is_node = true;
  4593. }
  4594. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4595. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4596. result->op = GGML_OP_DIAG;
  4597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4598. result->src[0] = a;
  4599. return result;
  4600. }
  4601. // ggml_diag_mask_inf
  4602. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. int n_past,
  4606. bool inplace) {
  4607. bool is_node = false;
  4608. if (a->grad) {
  4609. is_node = true;
  4610. }
  4611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4612. int32_t params[] = { n_past };
  4613. ggml_set_op_params(result, params, sizeof(params));
  4614. result->op = GGML_OP_DIAG_MASK_INF;
  4615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4616. result->src[0] = a;
  4617. return result;
  4618. }
  4619. struct ggml_tensor * ggml_diag_mask_inf(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. int n_past) {
  4623. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4624. }
  4625. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a,
  4628. int n_past) {
  4629. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4630. }
  4631. // ggml_diag_mask_zero
  4632. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a,
  4635. int n_past,
  4636. bool inplace) {
  4637. bool is_node = false;
  4638. if (a->grad) {
  4639. is_node = true;
  4640. }
  4641. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4642. int32_t params[] = { n_past };
  4643. ggml_set_op_params(result, params, sizeof(params));
  4644. result->op = GGML_OP_DIAG_MASK_ZERO;
  4645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4646. result->src[0] = a;
  4647. return result;
  4648. }
  4649. struct ggml_tensor * ggml_diag_mask_zero(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. int n_past) {
  4653. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4654. }
  4655. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. int n_past) {
  4659. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4660. }
  4661. // ggml_soft_max
  4662. static struct ggml_tensor * ggml_soft_max_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. struct ggml_tensor * mask,
  4666. float scale,
  4667. float max_bias,
  4668. bool inplace) {
  4669. GGML_ASSERT(ggml_is_contiguous(a));
  4670. if (mask) {
  4671. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4672. GGML_ASSERT(ggml_is_contiguous(mask));
  4673. GGML_ASSERT(ggml_is_matrix(mask));
  4674. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4675. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4676. }
  4677. if (max_bias > 0.0f) {
  4678. GGML_ASSERT(mask);
  4679. }
  4680. bool is_node = false;
  4681. if (a->grad) {
  4682. is_node = true;
  4683. }
  4684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4685. float params[] = { scale, max_bias };
  4686. ggml_set_op_params(result, params, sizeof(params));
  4687. result->op = GGML_OP_SOFT_MAX;
  4688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4689. result->src[0] = a;
  4690. result->src[1] = mask;
  4691. return result;
  4692. }
  4693. struct ggml_tensor * ggml_soft_max(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a) {
  4696. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4697. }
  4698. struct ggml_tensor * ggml_soft_max_inplace(
  4699. struct ggml_context * ctx,
  4700. struct ggml_tensor * a) {
  4701. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4702. }
  4703. struct ggml_tensor * ggml_soft_max_ext(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. struct ggml_tensor * mask,
  4707. float scale,
  4708. float max_bias) {
  4709. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  4710. }
  4711. // ggml_soft_max_back
  4712. static struct ggml_tensor * ggml_soft_max_back_impl(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. struct ggml_tensor * b,
  4716. bool inplace) {
  4717. bool is_node = false;
  4718. if (a->grad || b->grad) {
  4719. is_node = true; // TODO : implement backward pass
  4720. }
  4721. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4722. result->op = GGML_OP_SOFT_MAX_BACK;
  4723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4724. result->src[0] = a;
  4725. result->src[1] = b;
  4726. return result;
  4727. }
  4728. struct ggml_tensor * ggml_soft_max_back(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. struct ggml_tensor * b) {
  4732. return ggml_soft_max_back_impl(ctx, a, b, false);
  4733. }
  4734. struct ggml_tensor * ggml_soft_max_back_inplace(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b) {
  4738. return ggml_soft_max_back_impl(ctx, a, b, true);
  4739. }
  4740. // ggml_rope
  4741. static struct ggml_tensor * ggml_rope_impl(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b,
  4745. int n_dims,
  4746. int mode,
  4747. int n_ctx,
  4748. int n_orig_ctx,
  4749. float freq_base,
  4750. float freq_scale,
  4751. float ext_factor,
  4752. float attn_factor,
  4753. float beta_fast,
  4754. float beta_slow,
  4755. float xpos_base,
  4756. bool xpos_down,
  4757. bool inplace) {
  4758. GGML_ASSERT(ggml_is_vector(b));
  4759. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4760. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4761. bool is_node = false;
  4762. if (a->grad) {
  4763. is_node = true;
  4764. }
  4765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4766. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4767. memcpy(params + 5, &freq_base, sizeof(float));
  4768. memcpy(params + 6, &freq_scale, sizeof(float));
  4769. memcpy(params + 7, &ext_factor, sizeof(float));
  4770. memcpy(params + 8, &attn_factor, sizeof(float));
  4771. memcpy(params + 9, &beta_fast, sizeof(float));
  4772. memcpy(params + 10, &beta_slow, sizeof(float));
  4773. memcpy(params + 11, &xpos_base, sizeof(float));
  4774. memcpy(params + 12, &xpos_down, sizeof(bool));
  4775. ggml_set_op_params(result, params, sizeof(params));
  4776. result->op = GGML_OP_ROPE;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. result->src[1] = b;
  4780. return result;
  4781. }
  4782. struct ggml_tensor * ggml_rope(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * b,
  4786. int n_dims,
  4787. int mode,
  4788. int n_ctx) {
  4789. return ggml_rope_impl(
  4790. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4791. );
  4792. }
  4793. struct ggml_tensor * ggml_rope_inplace(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. struct ggml_tensor * b,
  4797. int n_dims,
  4798. int mode,
  4799. int n_ctx) {
  4800. return ggml_rope_impl(
  4801. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4802. );
  4803. }
  4804. struct ggml_tensor * ggml_rope_custom(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a,
  4807. struct ggml_tensor * b,
  4808. int n_dims,
  4809. int mode,
  4810. int n_ctx,
  4811. int n_orig_ctx,
  4812. float freq_base,
  4813. float freq_scale,
  4814. float ext_factor,
  4815. float attn_factor,
  4816. float beta_fast,
  4817. float beta_slow) {
  4818. return ggml_rope_impl(
  4819. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4820. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4821. );
  4822. }
  4823. struct ggml_tensor * ggml_rope_custom_inplace(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. struct ggml_tensor * b,
  4827. int n_dims,
  4828. int mode,
  4829. int n_ctx,
  4830. int n_orig_ctx,
  4831. float freq_base,
  4832. float freq_scale,
  4833. float ext_factor,
  4834. float attn_factor,
  4835. float beta_fast,
  4836. float beta_slow) {
  4837. return ggml_rope_impl(
  4838. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4839. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4840. );
  4841. }
  4842. struct ggml_tensor * ggml_rope_xpos_inplace(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. struct ggml_tensor * b,
  4846. int n_dims,
  4847. float base,
  4848. bool down) {
  4849. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4850. }
  4851. // ggml_rope_back
  4852. struct ggml_tensor * ggml_rope_back(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * b,
  4856. int n_dims,
  4857. int mode,
  4858. int n_ctx,
  4859. int n_orig_ctx,
  4860. float freq_base,
  4861. float freq_scale,
  4862. float ext_factor,
  4863. float attn_factor,
  4864. float beta_fast,
  4865. float beta_slow,
  4866. float xpos_base,
  4867. bool xpos_down) {
  4868. GGML_ASSERT(ggml_is_vector(b));
  4869. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4870. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4871. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4872. bool is_node = false;
  4873. if (a->grad) {
  4874. is_node = false; // TODO: implement backward
  4875. }
  4876. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4877. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4878. memcpy(params + 5, &freq_base, sizeof(float));
  4879. memcpy(params + 6, &freq_scale, sizeof(float));
  4880. memcpy(params + 7, &ext_factor, sizeof(float));
  4881. memcpy(params + 8, &attn_factor, sizeof(float));
  4882. memcpy(params + 9, &beta_fast, sizeof(float));
  4883. memcpy(params + 10, &beta_slow, sizeof(float));
  4884. memcpy(params + 11, &xpos_base, sizeof(float));
  4885. memcpy(params + 12, &xpos_down, sizeof(bool));
  4886. ggml_set_op_params(result, params, sizeof(params));
  4887. result->op = GGML_OP_ROPE_BACK;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = b;
  4891. return result;
  4892. }
  4893. // ggml_clamp
  4894. struct ggml_tensor * ggml_clamp(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. float min,
  4898. float max) {
  4899. bool is_node = false;
  4900. if (a->grad) {
  4901. GGML_ASSERT(false); // TODO: implement backward
  4902. is_node = true;
  4903. }
  4904. // TODO: when implement backward, fix this:
  4905. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4906. float params[] = { min, max };
  4907. ggml_set_op_params(result, params, sizeof(params));
  4908. result->op = GGML_OP_CLAMP;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src[0] = a;
  4911. return result;
  4912. }
  4913. // ggml_conv_1d
  4914. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4915. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4916. }
  4917. GGML_API struct ggml_tensor * ggml_conv_1d(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b,
  4921. int s0,
  4922. int p0,
  4923. int d0) {
  4924. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4925. struct ggml_tensor * result =
  4926. ggml_mul_mat(ctx,
  4927. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4928. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4929. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4930. return result;
  4931. }
  4932. // ggml_conv_1d_ph
  4933. struct ggml_tensor* ggml_conv_1d_ph(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b,
  4937. int s,
  4938. int d) {
  4939. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4940. }
  4941. // ggml_conv_transpose_1d
  4942. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4943. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4944. }
  4945. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b,
  4949. int s0,
  4950. int p0,
  4951. int d0) {
  4952. GGML_ASSERT(ggml_is_matrix(b));
  4953. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4954. GGML_ASSERT(a->ne[3] == 1);
  4955. GGML_ASSERT(p0 == 0);
  4956. GGML_ASSERT(d0 == 1);
  4957. bool is_node = false;
  4958. if (a->grad || b->grad) {
  4959. GGML_ASSERT(false); // TODO: implement backward
  4960. is_node = true;
  4961. }
  4962. const int64_t ne[4] = {
  4963. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4964. a->ne[1], b->ne[2], 1,
  4965. };
  4966. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4967. int32_t params[] = { s0, p0, d0 };
  4968. ggml_set_op_params(result, params, sizeof(params));
  4969. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4971. result->src[0] = a;
  4972. result->src[1] = b;
  4973. return result;
  4974. }
  4975. // ggml_conv_depthwise
  4976. struct ggml_tensor * ggml_conv_depthwise_2d(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b,
  4980. int s0,
  4981. int s1,
  4982. int p0,
  4983. int p1,
  4984. int d0,
  4985. int d1) {
  4986. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4987. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4988. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4989. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4990. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4991. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4992. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4993. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4994. return result;
  4995. }
  4996. // ggml_conv_2d
  4997. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4998. // a: [OC,IC, KH, KW]
  4999. // b: [N, IC, IH, IW]
  5000. // result: [N, OH, OW, IC*KH*KW]
  5001. struct ggml_tensor * ggml_im2col(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b,
  5005. int s0,
  5006. int s1,
  5007. int p0,
  5008. int p1,
  5009. int d0,
  5010. int d1,
  5011. bool is_2D,
  5012. enum ggml_type dst_type) {
  5013. if(is_2D) {
  5014. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5015. } else {
  5016. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5017. }
  5018. bool is_node = false;
  5019. if (a->grad || b->grad) {
  5020. GGML_ASSERT(false); // TODO: implement backward
  5021. is_node = true;
  5022. }
  5023. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5024. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5025. const int64_t ne[4] = {
  5026. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5027. OW,
  5028. is_2D ? OH : b->ne[2],
  5029. is_2D ? b->ne[3] : 1,
  5030. };
  5031. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5032. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5033. ggml_set_op_params(result, params, sizeof(params));
  5034. result->op = GGML_OP_IM2COL;
  5035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5036. result->src[0] = a;
  5037. result->src[1] = b;
  5038. return result;
  5039. }
  5040. // a: [OC,IC, KH, KW]
  5041. // b: [N, IC, IH, IW]
  5042. // result: [N, OC, OH, OW]
  5043. struct ggml_tensor * ggml_conv_2d(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. struct ggml_tensor * b,
  5047. int s0,
  5048. int s1,
  5049. int p0,
  5050. int p1,
  5051. int d0,
  5052. int d1) {
  5053. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5054. struct ggml_tensor * result =
  5055. ggml_mul_mat(ctx,
  5056. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5057. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5058. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5059. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5060. return result;
  5061. }
  5062. // ggml_conv_2d_sk_p0
  5063. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. struct ggml_tensor * b) {
  5067. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5068. }
  5069. // ggml_conv_2d_s1_ph
  5070. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * b) {
  5074. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5075. }
  5076. // ggml_conv_transpose_2d_p0
  5077. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5078. return (ins - 1) * s - 2 * p + ks;
  5079. }
  5080. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. struct ggml_tensor * b,
  5084. int stride) {
  5085. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5086. bool is_node = false;
  5087. if (a->grad || b->grad) {
  5088. GGML_ASSERT(false); // TODO: implement backward
  5089. is_node = true;
  5090. }
  5091. const int64_t ne[4] = {
  5092. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5093. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5094. a->ne[2], b->ne[3],
  5095. };
  5096. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5097. ggml_set_op_params_i32(result, 0, stride);
  5098. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5100. result->src[0] = a;
  5101. result->src[1] = b;
  5102. return result;
  5103. }
  5104. // ggml_pool_*
  5105. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5106. return (ins + 2 * p - ks) / s + 1;
  5107. }
  5108. // ggml_pool_1d
  5109. struct ggml_tensor * ggml_pool_1d(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. enum ggml_op_pool op,
  5113. int k0,
  5114. int s0,
  5115. int p0) {
  5116. bool is_node = false;
  5117. if (a->grad) {
  5118. GGML_ASSERT(false); // TODO: implement backward
  5119. is_node = true;
  5120. }
  5121. const int64_t ne[4] = {
  5122. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5123. a->ne[1],
  5124. a->ne[2],
  5125. a->ne[3],
  5126. };
  5127. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5128. int32_t params[] = { op, k0, s0, p0 };
  5129. ggml_set_op_params(result, params, sizeof(params));
  5130. result->op = GGML_OP_POOL_1D;
  5131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5132. result->src[0] = a;
  5133. return result;
  5134. }
  5135. // ggml_pool_2d
  5136. struct ggml_tensor * ggml_pool_2d(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. enum ggml_op_pool op,
  5140. int k0,
  5141. int k1,
  5142. int s0,
  5143. int s1,
  5144. float p0,
  5145. float p1) {
  5146. bool is_node = false;
  5147. if (a->grad) {
  5148. GGML_ASSERT(false); // TODO: implement backward
  5149. is_node = true;
  5150. }
  5151. struct ggml_tensor * result;
  5152. const int64_t ne[3] = {
  5153. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5154. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5155. a->ne[2],
  5156. };
  5157. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5158. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5159. ggml_set_op_params(result, params, sizeof(params));
  5160. result->op = GGML_OP_POOL_2D;
  5161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5162. result->src[0] = a;
  5163. return result;
  5164. }
  5165. // ggml_upscale
  5166. static struct ggml_tensor * ggml_upscale_impl(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. int scale_factor) {
  5170. bool is_node = false;
  5171. if (a->grad) {
  5172. GGML_ASSERT(false); // TODO: implement backward
  5173. is_node = true;
  5174. }
  5175. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5176. a->ne[0] * scale_factor,
  5177. a->ne[1] * scale_factor,
  5178. a->ne[2], a->ne[3]);
  5179. result->op = GGML_OP_UPSCALE;
  5180. result->op_params[0] = scale_factor;
  5181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5182. result->src[0] = a;
  5183. return result;
  5184. }
  5185. struct ggml_tensor * ggml_pad(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. int p0, int p1, int p2, int p3) {
  5189. bool is_node = false;
  5190. if (a->grad) {
  5191. GGML_ASSERT(false); // TODO: implement backward
  5192. is_node = true;
  5193. }
  5194. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5195. a->ne[0] + p0,
  5196. a->ne[1] + p1,
  5197. a->ne[2] + p2,
  5198. a->ne[3] + p3);
  5199. result->op = GGML_OP_PAD;
  5200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5201. result->src[0] = a;
  5202. return result;
  5203. }
  5204. struct ggml_tensor * ggml_upscale(
  5205. struct ggml_context * ctx,
  5206. struct ggml_tensor * a,
  5207. int scale_factor) {
  5208. return ggml_upscale_impl(ctx, a, scale_factor);
  5209. }
  5210. struct ggml_tensor * ggml_arange(
  5211. struct ggml_context * ctx,
  5212. float start,
  5213. float stop,
  5214. float step) {
  5215. GGML_ASSERT(stop > start);
  5216. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5217. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5218. result->op = GGML_OP_ARANGE;
  5219. ggml_set_op_params_f32(result, 0, start);
  5220. ggml_set_op_params_f32(result, 1, stop);
  5221. ggml_set_op_params_f32(result, 2, step);
  5222. return result;
  5223. }
  5224. struct ggml_tensor * ggml_timestep_embedding(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * timesteps,
  5227. int dim,
  5228. int max_period) {
  5229. bool is_node = false;
  5230. if (timesteps->grad) {
  5231. GGML_ASSERT(false); // TODO: implement backward
  5232. is_node = true;
  5233. }
  5234. int actual_dim = dim;
  5235. if (dim % 2 != 0) {
  5236. actual_dim = dim + 1;
  5237. }
  5238. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5239. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5240. ggml_set_op_params_i32(result, 0, dim);
  5241. ggml_set_op_params_i32(result, 1, max_period);
  5242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5243. result->src[0] = timesteps;
  5244. return result;
  5245. }
  5246. // ggml_argsort
  5247. struct ggml_tensor * ggml_argsort(
  5248. struct ggml_context * ctx,
  5249. struct ggml_tensor * a,
  5250. enum ggml_sort_order order) {
  5251. bool is_node = false;
  5252. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5253. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5254. result->op = GGML_OP_ARGSORT;
  5255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5256. result->src[0] = a;
  5257. return result;
  5258. }
  5259. // ggml_top_k
  5260. struct ggml_tensor * ggml_top_k(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. int k) {
  5264. GGML_ASSERT(a->ne[0] >= k);
  5265. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5266. result = ggml_view_4d(ctx, result,
  5267. k, result->ne[1], result->ne[2], result->ne[3],
  5268. result->nb[1], result->nb[2], result->nb[3],
  5269. 0);
  5270. return result;
  5271. }
  5272. // ggml_flash_attn
  5273. struct ggml_tensor * ggml_flash_attn(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * q,
  5276. struct ggml_tensor * k,
  5277. struct ggml_tensor * v,
  5278. bool masked) {
  5279. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5280. // TODO: check if vT can be multiplied by (k*qT)
  5281. bool is_node = false;
  5282. if (q->grad || k->grad || v->grad) {
  5283. is_node = true;
  5284. }
  5285. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5286. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5287. int32_t t = masked ? 1 : 0;
  5288. ggml_set_op_params(result, &t, sizeof(t));
  5289. result->op = GGML_OP_FLASH_ATTN;
  5290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5291. result->src[0] = q;
  5292. result->src[1] = k;
  5293. result->src[2] = v;
  5294. return result;
  5295. }
  5296. // ggml_flash_attn_ext
  5297. struct ggml_tensor * ggml_flash_attn_ext(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * q,
  5300. struct ggml_tensor * k,
  5301. struct ggml_tensor * v,
  5302. struct ggml_tensor * mask,
  5303. float scale,
  5304. float max_bias) {
  5305. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5306. // TODO: check if vT can be multiplied by (k*qT)
  5307. if (mask) {
  5308. GGML_ASSERT(ggml_is_contiguous(mask));
  5309. GGML_ASSERT(mask->ne[2] == 1);
  5310. GGML_ASSERT(mask->ne[3] == 1);
  5311. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5312. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5313. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5314. }
  5315. if (max_bias > 0.0f) {
  5316. GGML_ASSERT(mask);
  5317. }
  5318. bool is_node = false;
  5319. if (q->grad || k->grad || v->grad) {
  5320. is_node = true;
  5321. }
  5322. // permute(0, 2, 1, 3)
  5323. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5324. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5325. float params[] = { scale, max_bias };
  5326. ggml_set_op_params(result, params, sizeof(params));
  5327. result->op = GGML_OP_FLASH_ATTN_EXT;
  5328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5329. result->src[0] = q;
  5330. result->src[1] = k;
  5331. result->src[2] = v;
  5332. result->src[3] = mask;
  5333. return result;
  5334. }
  5335. void ggml_flash_attn_ext_set_prec(
  5336. struct ggml_tensor * a,
  5337. enum ggml_prec prec) {
  5338. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5339. const int32_t prec_i32 = (int32_t) prec;
  5340. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5341. }
  5342. // ggml_flash_ff
  5343. struct ggml_tensor * ggml_flash_ff(
  5344. struct ggml_context * ctx,
  5345. struct ggml_tensor * a,
  5346. struct ggml_tensor * b0,
  5347. struct ggml_tensor * b1,
  5348. struct ggml_tensor * c0,
  5349. struct ggml_tensor * c1) {
  5350. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5351. // TODO: more checks
  5352. bool is_node = false;
  5353. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5354. is_node = true;
  5355. }
  5356. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5358. result->op = GGML_OP_FLASH_FF;
  5359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5360. result->src[0] = a;
  5361. result->src[1] = b0;
  5362. result->src[2] = b1;
  5363. result->src[3] = c0;
  5364. result->src[4] = c1;
  5365. return result;
  5366. }
  5367. // ggml_flash_attn_back
  5368. struct ggml_tensor * ggml_flash_attn_back(
  5369. struct ggml_context * ctx,
  5370. struct ggml_tensor * q,
  5371. struct ggml_tensor * k,
  5372. struct ggml_tensor * v,
  5373. struct ggml_tensor * d,
  5374. bool masked) {
  5375. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5376. // TODO: check if vT can be multiplied by (k*qT)
  5377. // d shape [D,N,ne2,ne3]
  5378. // q shape [D,N,ne2,ne3]
  5379. // k shape [D,M,kvne2,ne3]
  5380. // v shape [M,D,kvne2,ne3]
  5381. const int64_t D = q->ne[0];
  5382. const int64_t N = q->ne[1];
  5383. const int64_t M = k->ne[1];
  5384. const int64_t ne2 = q->ne[2];
  5385. const int64_t ne3 = q->ne[3];
  5386. const int64_t kvne2 = k->ne[2];
  5387. GGML_ASSERT(k->ne[0] == D);
  5388. GGML_ASSERT(v->ne[0] == M);
  5389. GGML_ASSERT(v->ne[1] == D);
  5390. GGML_ASSERT(d->ne[0] == D);
  5391. GGML_ASSERT(d->ne[1] == N);
  5392. GGML_ASSERT(k->ne[2] == kvne2);
  5393. GGML_ASSERT(k->ne[3] == ne3);
  5394. GGML_ASSERT(v->ne[2] == kvne2);
  5395. GGML_ASSERT(v->ne[3] == ne3);
  5396. GGML_ASSERT(d->ne[2] == ne2);
  5397. GGML_ASSERT(d->ne[3] == ne3);
  5398. GGML_ASSERT(ne2 % kvne2 == 0);
  5399. bool is_node = false;
  5400. if (q->grad || k->grad || v->grad) {
  5401. // when using this operation (in backwards pass) these grads are set.
  5402. // we don't want to create (big) grad of our result, so is_node is false.
  5403. is_node = false;
  5404. }
  5405. // store gradients of q, k and v as continuous tensors concatenated in result.
  5406. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5407. const int64_t elem_q = ggml_nelements(q);
  5408. const int64_t elem_k = ggml_nelements(k);
  5409. const int64_t elem_v = ggml_nelements(v);
  5410. enum ggml_type result_type = GGML_TYPE_F32;
  5411. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5412. const size_t tsize = ggml_type_size(result_type);
  5413. const size_t offs_q = 0;
  5414. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5415. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5416. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5417. const size_t nelements = (end + tsize - 1)/tsize;
  5418. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5419. int32_t masked_i = masked ? 1 : 0;
  5420. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5421. result->op = GGML_OP_FLASH_ATTN_BACK;
  5422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5423. result->src[0] = q;
  5424. result->src[1] = k;
  5425. result->src[2] = v;
  5426. result->src[3] = d;
  5427. return result;
  5428. }
  5429. // ggml_ssm_conv
  5430. struct ggml_tensor * ggml_ssm_conv(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * s,
  5433. struct ggml_tensor * x,
  5434. struct ggml_tensor * c,
  5435. struct ggml_tensor * sq) {
  5436. GGML_ASSERT(ggml_is_3d(s));
  5437. GGML_ASSERT(ggml_is_matrix(x));
  5438. GGML_ASSERT(ggml_is_matrix(c));
  5439. GGML_ASSERT(ggml_is_matrix(sq));
  5440. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5441. const int64_t d_conv = c->ne[0];
  5442. const int64_t d_inner = c->ne[1];
  5443. const int64_t n_tokens = x->ne[1];
  5444. const int64_t n_kv = s->ne[2];
  5445. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5446. GGML_ASSERT( s->ne[1] == d_inner);
  5447. GGML_ASSERT( x->ne[0] == d_inner);
  5448. GGML_ASSERT(sq->ne[0] == n_kv);
  5449. GGML_ASSERT(sq->ne[1] == n_tokens);
  5450. bool is_node = false;
  5451. if (s->grad || x->grad || c->grad || sq->grad) {
  5452. GGML_ASSERT(false); // TODO: implement
  5453. is_node = true;
  5454. }
  5455. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5456. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5457. result->op = GGML_OP_SSM_CONV;
  5458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5459. result->src[0] = s;
  5460. result->src[1] = x;
  5461. result->src[2] = c;
  5462. result->src[3] = sq;
  5463. return result;
  5464. }
  5465. // ggml_ssm_scan
  5466. struct ggml_tensor * ggml_ssm_scan(
  5467. struct ggml_context * ctx,
  5468. struct ggml_tensor * s,
  5469. struct ggml_tensor * x,
  5470. struct ggml_tensor * dt,
  5471. struct ggml_tensor * A,
  5472. struct ggml_tensor * B,
  5473. struct ggml_tensor * C,
  5474. struct ggml_tensor * sq) {
  5475. GGML_ASSERT(ggml_is_contiguous(s));
  5476. GGML_ASSERT(ggml_is_contiguous(x));
  5477. GGML_ASSERT(ggml_is_contiguous(dt));
  5478. GGML_ASSERT(ggml_is_contiguous(A));
  5479. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5480. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5481. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5482. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5483. {
  5484. const int64_t d_state = s->ne[0];
  5485. const int64_t d_inner = s->ne[1];
  5486. const int64_t n_tokens = x->ne[1];
  5487. GGML_ASSERT(x->ne[0] == d_inner);
  5488. GGML_ASSERT(A->ne[0] == d_state);
  5489. GGML_ASSERT(A->ne[1] == d_inner);
  5490. GGML_ASSERT(B->ne[0] == d_state);
  5491. GGML_ASSERT(B->ne[1] == n_tokens);
  5492. GGML_ASSERT(C->ne[0] == d_state);
  5493. GGML_ASSERT(C->ne[1] == n_tokens);
  5494. }
  5495. bool is_node = false;
  5496. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5497. GGML_ASSERT(false); // TODO: implement
  5498. is_node = true;
  5499. }
  5500. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5501. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5502. result->op = GGML_OP_SSM_SCAN;
  5503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5504. result->src[0] = s;
  5505. result->src[1] = x;
  5506. result->src[2] = dt;
  5507. result->src[3] = A;
  5508. result->src[4] = B;
  5509. result->src[5] = C;
  5510. result->src[6] = sq;
  5511. return result;
  5512. }
  5513. // ggml_win_part
  5514. struct ggml_tensor * ggml_win_part(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a,
  5517. int w) {
  5518. GGML_ASSERT(a->ne[3] == 1);
  5519. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5520. bool is_node = false;
  5521. if (a->grad) {
  5522. GGML_ASSERT(false); // TODO: implement backward
  5523. is_node = true;
  5524. }
  5525. // padding
  5526. const int px = (w - a->ne[1]%w)%w;
  5527. const int py = (w - a->ne[2]%w)%w;
  5528. const int npx = (px + a->ne[1])/w;
  5529. const int npy = (py + a->ne[2])/w;
  5530. const int np = npx*npy;
  5531. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5532. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5533. int32_t params[] = { npx, npy, w };
  5534. ggml_set_op_params(result, params, sizeof(params));
  5535. result->op = GGML_OP_WIN_PART;
  5536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5537. result->src[0] = a;
  5538. return result;
  5539. }
  5540. // ggml_win_unpart
  5541. struct ggml_tensor * ggml_win_unpart(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. int w0,
  5545. int h0,
  5546. int w) {
  5547. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5548. bool is_node = false;
  5549. if (a->grad) {
  5550. GGML_ASSERT(false); // TODO: implement backward
  5551. is_node = true;
  5552. }
  5553. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5554. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5555. int32_t params[] = { w };
  5556. ggml_set_op_params(result, params, sizeof(params));
  5557. result->op = GGML_OP_WIN_UNPART;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. return result;
  5561. }
  5562. // ggml_get_rel_pos
  5563. struct ggml_tensor * ggml_get_rel_pos(
  5564. struct ggml_context * ctx,
  5565. struct ggml_tensor * a,
  5566. int qh,
  5567. int kh) {
  5568. GGML_ASSERT(qh == kh);
  5569. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5570. bool is_node = false;
  5571. if (a->grad) {
  5572. GGML_ASSERT(false); // TODO: implement backward
  5573. is_node = true;
  5574. }
  5575. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5576. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5577. result->op = GGML_OP_GET_REL_POS;
  5578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5579. result->src[0] = a;
  5580. return result;
  5581. }
  5582. // ggml_add_rel_pos
  5583. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. struct ggml_tensor * pw,
  5587. struct ggml_tensor * ph,
  5588. bool inplace) {
  5589. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5590. GGML_ASSERT(ggml_is_contiguous(a));
  5591. GGML_ASSERT(ggml_is_contiguous(pw));
  5592. GGML_ASSERT(ggml_is_contiguous(ph));
  5593. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5594. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5595. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5596. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5597. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5598. bool is_node = false;
  5599. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5600. is_node = true;
  5601. }
  5602. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5603. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5604. result->op = GGML_OP_ADD_REL_POS;
  5605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5606. result->src[0] = a;
  5607. result->src[1] = pw;
  5608. result->src[2] = ph;
  5609. return result;
  5610. }
  5611. struct ggml_tensor * ggml_add_rel_pos(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. struct ggml_tensor * pw,
  5615. struct ggml_tensor * ph) {
  5616. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5617. }
  5618. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5619. struct ggml_context * ctx,
  5620. struct ggml_tensor * a,
  5621. struct ggml_tensor * pw,
  5622. struct ggml_tensor * ph) {
  5623. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5624. }
  5625. // gmml_unary
  5626. static struct ggml_tensor * ggml_unary_impl(
  5627. struct ggml_context * ctx,
  5628. struct ggml_tensor * a,
  5629. enum ggml_unary_op op,
  5630. bool inplace) {
  5631. bool is_node = false;
  5632. if (!inplace && (a->grad)) {
  5633. is_node = true;
  5634. }
  5635. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5636. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5637. result->op = GGML_OP_UNARY;
  5638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5639. result->src[0] = a;
  5640. return result;
  5641. }
  5642. struct ggml_tensor * ggml_unary(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * a,
  5645. enum ggml_unary_op op) {
  5646. return ggml_unary_impl(ctx, a, op, false);
  5647. }
  5648. struct ggml_tensor * ggml_unary_inplace(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. enum ggml_unary_op op) {
  5652. return ggml_unary_impl(ctx, a, op, true);
  5653. }
  5654. // ggml_map_unary
  5655. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * a,
  5658. const ggml_unary_op_f32_t fun,
  5659. bool inplace) {
  5660. bool is_node = false;
  5661. if (!inplace && a->grad) {
  5662. is_node = true;
  5663. }
  5664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5665. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5666. result->op = GGML_OP_MAP_UNARY;
  5667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5668. result->src[0] = a;
  5669. return result;
  5670. }
  5671. struct ggml_tensor * ggml_map_unary_f32(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. const ggml_unary_op_f32_t fun) {
  5675. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5676. }
  5677. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5678. struct ggml_context * ctx,
  5679. struct ggml_tensor * a,
  5680. const ggml_unary_op_f32_t fun) {
  5681. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5682. }
  5683. // ggml_map_binary
  5684. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. struct ggml_tensor * b,
  5688. const ggml_binary_op_f32_t fun,
  5689. bool inplace) {
  5690. GGML_ASSERT(ggml_are_same_shape(a, b));
  5691. bool is_node = false;
  5692. if (!inplace && (a->grad || b->grad)) {
  5693. is_node = true;
  5694. }
  5695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5696. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5697. result->op = GGML_OP_MAP_BINARY;
  5698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5699. result->src[0] = a;
  5700. result->src[1] = b;
  5701. return result;
  5702. }
  5703. struct ggml_tensor * ggml_map_binary_f32(
  5704. struct ggml_context * ctx,
  5705. struct ggml_tensor * a,
  5706. struct ggml_tensor * b,
  5707. const ggml_binary_op_f32_t fun) {
  5708. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5709. }
  5710. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. struct ggml_tensor * b,
  5714. const ggml_binary_op_f32_t fun) {
  5715. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5716. }
  5717. // ggml_map_custom1_f32
  5718. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5719. struct ggml_context * ctx,
  5720. struct ggml_tensor * a,
  5721. const ggml_custom1_op_f32_t fun,
  5722. bool inplace) {
  5723. bool is_node = false;
  5724. if (!inplace && a->grad) {
  5725. is_node = true;
  5726. }
  5727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5728. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5729. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5731. result->src[0] = a;
  5732. return result;
  5733. }
  5734. struct ggml_tensor * ggml_map_custom1_f32(
  5735. struct ggml_context * ctx,
  5736. struct ggml_tensor * a,
  5737. const ggml_custom1_op_f32_t fun) {
  5738. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5739. }
  5740. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. const ggml_custom1_op_f32_t fun) {
  5744. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5745. }
  5746. // ggml_map_custom2_f32
  5747. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * a,
  5750. struct ggml_tensor * b,
  5751. const ggml_custom2_op_f32_t fun,
  5752. bool inplace) {
  5753. bool is_node = false;
  5754. if (!inplace && (a->grad || b->grad)) {
  5755. is_node = true;
  5756. }
  5757. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5758. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5759. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5761. result->src[0] = a;
  5762. result->src[1] = b;
  5763. return result;
  5764. }
  5765. struct ggml_tensor * ggml_map_custom2_f32(
  5766. struct ggml_context * ctx,
  5767. struct ggml_tensor * a,
  5768. struct ggml_tensor * b,
  5769. const ggml_custom2_op_f32_t fun) {
  5770. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5771. }
  5772. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * a,
  5775. struct ggml_tensor * b,
  5776. const ggml_custom2_op_f32_t fun) {
  5777. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5778. }
  5779. // ggml_map_custom3_f32
  5780. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5781. struct ggml_context * ctx,
  5782. struct ggml_tensor * a,
  5783. struct ggml_tensor * b,
  5784. struct ggml_tensor * c,
  5785. const ggml_custom3_op_f32_t fun,
  5786. bool inplace) {
  5787. bool is_node = false;
  5788. if (!inplace && (a->grad || b->grad || c->grad)) {
  5789. is_node = true;
  5790. }
  5791. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5792. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5793. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5795. result->src[0] = a;
  5796. result->src[1] = b;
  5797. result->src[2] = c;
  5798. return result;
  5799. }
  5800. struct ggml_tensor * ggml_map_custom3_f32(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b,
  5804. struct ggml_tensor * c,
  5805. const ggml_custom3_op_f32_t fun) {
  5806. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5807. }
  5808. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. struct ggml_tensor * b,
  5812. struct ggml_tensor * c,
  5813. const ggml_custom3_op_f32_t fun) {
  5814. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5815. }
  5816. // ggml_map_custom1
  5817. struct ggml_map_custom1_op_params {
  5818. ggml_custom1_op_t fun;
  5819. int n_tasks;
  5820. void * userdata;
  5821. };
  5822. static struct ggml_tensor * ggml_map_custom1_impl(
  5823. struct ggml_context * ctx,
  5824. struct ggml_tensor * a,
  5825. const ggml_custom1_op_t fun,
  5826. int n_tasks,
  5827. void * userdata,
  5828. bool inplace) {
  5829. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5830. bool is_node = false;
  5831. if (!inplace && a->grad) {
  5832. is_node = true;
  5833. }
  5834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5835. struct ggml_map_custom1_op_params params = {
  5836. /*.fun =*/ fun,
  5837. /*.n_tasks =*/ n_tasks,
  5838. /*.userdata =*/ userdata
  5839. };
  5840. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5841. result->op = GGML_OP_MAP_CUSTOM1;
  5842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5843. result->src[0] = a;
  5844. return result;
  5845. }
  5846. struct ggml_tensor * ggml_map_custom1(
  5847. struct ggml_context * ctx,
  5848. struct ggml_tensor * a,
  5849. const ggml_custom1_op_t fun,
  5850. int n_tasks,
  5851. void * userdata) {
  5852. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5853. }
  5854. struct ggml_tensor * ggml_map_custom1_inplace(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. const ggml_custom1_op_t fun,
  5858. int n_tasks,
  5859. void * userdata) {
  5860. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5861. }
  5862. // ggml_map_custom2
  5863. struct ggml_map_custom2_op_params {
  5864. ggml_custom2_op_t fun;
  5865. int n_tasks;
  5866. void * userdata;
  5867. };
  5868. static struct ggml_tensor * ggml_map_custom2_impl(
  5869. struct ggml_context * ctx,
  5870. struct ggml_tensor * a,
  5871. struct ggml_tensor * b,
  5872. const ggml_custom2_op_t fun,
  5873. int n_tasks,
  5874. void * userdata,
  5875. bool inplace) {
  5876. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5877. bool is_node = false;
  5878. if (!inplace && (a->grad || b->grad)) {
  5879. is_node = true;
  5880. }
  5881. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5882. struct ggml_map_custom2_op_params params = {
  5883. /*.fun =*/ fun,
  5884. /*.n_tasks =*/ n_tasks,
  5885. /*.userdata =*/ userdata
  5886. };
  5887. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5888. result->op = GGML_OP_MAP_CUSTOM2;
  5889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5890. result->src[0] = a;
  5891. result->src[1] = b;
  5892. return result;
  5893. }
  5894. struct ggml_tensor * ggml_map_custom2(
  5895. struct ggml_context * ctx,
  5896. struct ggml_tensor * a,
  5897. struct ggml_tensor * b,
  5898. const ggml_custom2_op_t fun,
  5899. int n_tasks,
  5900. void * userdata) {
  5901. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5902. }
  5903. struct ggml_tensor * ggml_map_custom2_inplace(
  5904. struct ggml_context * ctx,
  5905. struct ggml_tensor * a,
  5906. struct ggml_tensor * b,
  5907. const ggml_custom2_op_t fun,
  5908. int n_tasks,
  5909. void * userdata) {
  5910. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5911. }
  5912. // ggml_map_custom3
  5913. struct ggml_map_custom3_op_params {
  5914. ggml_custom3_op_t fun;
  5915. int n_tasks;
  5916. void * userdata;
  5917. };
  5918. static struct ggml_tensor * ggml_map_custom3_impl(
  5919. struct ggml_context * ctx,
  5920. struct ggml_tensor * a,
  5921. struct ggml_tensor * b,
  5922. struct ggml_tensor * c,
  5923. const ggml_custom3_op_t fun,
  5924. int n_tasks,
  5925. void * userdata,
  5926. bool inplace) {
  5927. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5928. bool is_node = false;
  5929. if (!inplace && (a->grad || b->grad || c->grad)) {
  5930. is_node = true;
  5931. }
  5932. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5933. struct ggml_map_custom3_op_params params = {
  5934. /*.fun =*/ fun,
  5935. /*.n_tasks =*/ n_tasks,
  5936. /*.userdata =*/ userdata
  5937. };
  5938. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5939. result->op = GGML_OP_MAP_CUSTOM3;
  5940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5941. result->src[0] = a;
  5942. result->src[1] = b;
  5943. result->src[2] = c;
  5944. return result;
  5945. }
  5946. struct ggml_tensor * ggml_map_custom3(
  5947. struct ggml_context * ctx,
  5948. struct ggml_tensor * a,
  5949. struct ggml_tensor * b,
  5950. struct ggml_tensor * c,
  5951. const ggml_custom3_op_t fun,
  5952. int n_tasks,
  5953. void * userdata) {
  5954. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5955. }
  5956. struct ggml_tensor * ggml_map_custom3_inplace(
  5957. struct ggml_context * ctx,
  5958. struct ggml_tensor * a,
  5959. struct ggml_tensor * b,
  5960. struct ggml_tensor * c,
  5961. const ggml_custom3_op_t fun,
  5962. int n_tasks,
  5963. void * userdata) {
  5964. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5965. }
  5966. // ggml_cross_entropy_loss
  5967. struct ggml_tensor * ggml_cross_entropy_loss(
  5968. struct ggml_context * ctx,
  5969. struct ggml_tensor * a,
  5970. struct ggml_tensor * b) {
  5971. GGML_ASSERT(ggml_are_same_shape(a, b));
  5972. bool is_node = false;
  5973. if (a->grad || b->grad) {
  5974. is_node = true;
  5975. }
  5976. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5977. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5979. result->src[0] = a;
  5980. result->src[1] = b;
  5981. return result;
  5982. }
  5983. // ggml_cross_entropy_loss_back
  5984. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5985. struct ggml_context * ctx,
  5986. struct ggml_tensor * a,
  5987. struct ggml_tensor * b,
  5988. struct ggml_tensor * c) {
  5989. GGML_ASSERT(ggml_are_same_shape(a, b));
  5990. GGML_ASSERT(ggml_is_scalar(c));
  5991. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5992. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5993. result->grad = NULL;
  5994. result->src[0] = a;
  5995. result->src[1] = b;
  5996. result->src[2] = c;
  5997. return result;
  5998. }
  5999. ////////////////////////////////////////////////////////////////////////////////
  6000. void ggml_set_param(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * tensor) {
  6003. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6004. GGML_ASSERT(tensor->grad == NULL);
  6005. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6006. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6007. }
  6008. // ggml_compute_forward_dup
  6009. static void ggml_compute_forward_dup_same_cont(
  6010. const struct ggml_compute_params * params,
  6011. struct ggml_tensor * dst) {
  6012. const struct ggml_tensor * src0 = dst->src[0];
  6013. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6014. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6015. GGML_ASSERT(src0->type == dst->type);
  6016. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6017. return;
  6018. }
  6019. const size_t nb00 = src0->nb[0];
  6020. const size_t nb0 = dst->nb[0];
  6021. const int ith = params->ith; // thread index
  6022. const int nth = params->nth; // number of threads
  6023. // parallelize by elements
  6024. const int ne = ggml_nelements(dst);
  6025. const int dr = (ne + nth - 1) / nth;
  6026. const int ie0 = dr * ith;
  6027. const int ie1 = MIN(ie0 + dr, ne);
  6028. if (ie0 < ie1) {
  6029. memcpy(
  6030. ((char *) dst->data + ie0*nb0),
  6031. ((char *) src0->data + ie0*nb00),
  6032. (ie1 - ie0) * ggml_type_size(src0->type));
  6033. }
  6034. }
  6035. static void ggml_compute_forward_dup_f16(
  6036. const struct ggml_compute_params * params,
  6037. struct ggml_tensor * dst) {
  6038. const struct ggml_tensor * src0 = dst->src[0];
  6039. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6040. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6041. return;
  6042. }
  6043. GGML_TENSOR_UNARY_OP_LOCALS
  6044. const int ith = params->ith; // thread index
  6045. const int nth = params->nth; // number of threads
  6046. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6047. ggml_compute_forward_dup_same_cont(params, dst);
  6048. return;
  6049. }
  6050. // parallelize by rows
  6051. const int nr = ne01;
  6052. // number of rows per thread
  6053. const int dr = (nr + nth - 1) / nth;
  6054. // row range for this thread
  6055. const int ir0 = dr * ith;
  6056. const int ir1 = MIN(ir0 + dr, nr);
  6057. if (src0->type == dst->type &&
  6058. ne00 == ne0 &&
  6059. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6060. // copy by rows
  6061. const size_t rs = ne00*nb00;
  6062. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6063. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6064. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6065. memcpy(
  6066. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6067. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6068. rs);
  6069. }
  6070. }
  6071. }
  6072. return;
  6073. }
  6074. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6075. if (ggml_is_contiguous(dst)) {
  6076. if (nb00 == sizeof(ggml_fp16_t)) {
  6077. if (dst->type == GGML_TYPE_F16) {
  6078. size_t id = 0;
  6079. const size_t rs = ne00 * nb00;
  6080. char * dst_ptr = (char *) dst->data;
  6081. for (int i03 = 0; i03 < ne03; i03++) {
  6082. for (int i02 = 0; i02 < ne02; i02++) {
  6083. id += rs * ir0;
  6084. for (int i01 = ir0; i01 < ir1; i01++) {
  6085. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6086. memcpy(dst_ptr + id, src0_ptr, rs);
  6087. id += rs;
  6088. }
  6089. id += rs * (ne01 - ir1);
  6090. }
  6091. }
  6092. } else if (dst->type == GGML_TYPE_F32) {
  6093. size_t id = 0;
  6094. float * dst_ptr = (float *) dst->data;
  6095. for (int i03 = 0; i03 < ne03; i03++) {
  6096. for (int i02 = 0; i02 < ne02; i02++) {
  6097. id += ne00 * ir0;
  6098. for (int i01 = ir0; i01 < ir1; i01++) {
  6099. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6100. for (int i00 = 0; i00 < ne00; i00++) {
  6101. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6102. id++;
  6103. }
  6104. }
  6105. id += ne00 * (ne01 - ir1);
  6106. }
  6107. }
  6108. } else if (type_traits[dst->type].from_float) {
  6109. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6110. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6111. size_t id = 0;
  6112. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6113. char * dst_ptr = (char *) dst->data;
  6114. for (int i03 = 0; i03 < ne03; i03++) {
  6115. for (int i02 = 0; i02 < ne02; i02++) {
  6116. id += rs * ir0;
  6117. for (int i01 = ir0; i01 < ir1; i01++) {
  6118. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6119. for (int i00 = 0; i00 < ne00; i00++) {
  6120. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6121. }
  6122. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6123. id += rs;
  6124. }
  6125. id += rs * (ne01 - ir1);
  6126. }
  6127. }
  6128. } else {
  6129. GGML_ASSERT(false); // TODO: implement
  6130. }
  6131. } else {
  6132. //printf("%s: this is not optimal - fix me\n", __func__);
  6133. if (dst->type == GGML_TYPE_F32) {
  6134. size_t id = 0;
  6135. float * dst_ptr = (float *) dst->data;
  6136. for (int i03 = 0; i03 < ne03; i03++) {
  6137. for (int i02 = 0; i02 < ne02; i02++) {
  6138. id += ne00 * ir0;
  6139. for (int i01 = ir0; i01 < ir1; i01++) {
  6140. for (int i00 = 0; i00 < ne00; i00++) {
  6141. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6142. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6143. id++;
  6144. }
  6145. }
  6146. id += ne00 * (ne01 - ir1);
  6147. }
  6148. }
  6149. } else if (dst->type == GGML_TYPE_F16) {
  6150. size_t id = 0;
  6151. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6152. for (int i03 = 0; i03 < ne03; i03++) {
  6153. for (int i02 = 0; i02 < ne02; i02++) {
  6154. id += ne00 * ir0;
  6155. for (int i01 = ir0; i01 < ir1; i01++) {
  6156. for (int i00 = 0; i00 < ne00; i00++) {
  6157. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6158. dst_ptr[id] = *src0_ptr;
  6159. id++;
  6160. }
  6161. }
  6162. id += ne00 * (ne01 - ir1);
  6163. }
  6164. }
  6165. } else {
  6166. GGML_ASSERT(false); // TODO: implement
  6167. }
  6168. }
  6169. return;
  6170. }
  6171. // dst counters
  6172. int64_t i10 = 0;
  6173. int64_t i11 = 0;
  6174. int64_t i12 = 0;
  6175. int64_t i13 = 0;
  6176. if (dst->type == GGML_TYPE_F16) {
  6177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6179. i10 += ne00 * ir0;
  6180. while (i10 >= ne0) {
  6181. i10 -= ne0;
  6182. if (++i11 == ne1) {
  6183. i11 = 0;
  6184. if (++i12 == ne2) {
  6185. i12 = 0;
  6186. if (++i13 == ne3) {
  6187. i13 = 0;
  6188. }
  6189. }
  6190. }
  6191. }
  6192. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6193. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6194. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6195. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6196. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6197. if (++i10 == ne00) {
  6198. i10 = 0;
  6199. if (++i11 == ne01) {
  6200. i11 = 0;
  6201. if (++i12 == ne02) {
  6202. i12 = 0;
  6203. if (++i13 == ne03) {
  6204. i13 = 0;
  6205. }
  6206. }
  6207. }
  6208. }
  6209. }
  6210. }
  6211. i10 += ne00 * (ne01 - ir1);
  6212. while (i10 >= ne0) {
  6213. i10 -= ne0;
  6214. if (++i11 == ne1) {
  6215. i11 = 0;
  6216. if (++i12 == ne2) {
  6217. i12 = 0;
  6218. if (++i13 == ne3) {
  6219. i13 = 0;
  6220. }
  6221. }
  6222. }
  6223. }
  6224. }
  6225. }
  6226. } else if (dst->type == GGML_TYPE_F32) {
  6227. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6228. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6229. i10 += ne00 * ir0;
  6230. while (i10 >= ne0) {
  6231. i10 -= ne0;
  6232. if (++i11 == ne1) {
  6233. i11 = 0;
  6234. if (++i12 == ne2) {
  6235. i12 = 0;
  6236. if (++i13 == ne3) {
  6237. i13 = 0;
  6238. }
  6239. }
  6240. }
  6241. }
  6242. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6243. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6244. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6245. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6246. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6247. if (++i10 == ne0) {
  6248. i10 = 0;
  6249. if (++i11 == ne1) {
  6250. i11 = 0;
  6251. if (++i12 == ne2) {
  6252. i12 = 0;
  6253. if (++i13 == ne3) {
  6254. i13 = 0;
  6255. }
  6256. }
  6257. }
  6258. }
  6259. }
  6260. }
  6261. i10 += ne00 * (ne01 - ir1);
  6262. while (i10 >= ne0) {
  6263. i10 -= ne0;
  6264. if (++i11 == ne1) {
  6265. i11 = 0;
  6266. if (++i12 == ne2) {
  6267. i12 = 0;
  6268. if (++i13 == ne3) {
  6269. i13 = 0;
  6270. }
  6271. }
  6272. }
  6273. }
  6274. }
  6275. }
  6276. } else {
  6277. GGML_ASSERT(false); // TODO: implement
  6278. }
  6279. }
  6280. static void ggml_compute_forward_dup_bf16(
  6281. const struct ggml_compute_params * params,
  6282. struct ggml_tensor * dst) {
  6283. const struct ggml_tensor * src0 = dst->src[0];
  6284. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6285. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6286. return;
  6287. }
  6288. GGML_TENSOR_UNARY_OP_LOCALS
  6289. const int ith = params->ith; // thread index
  6290. const int nth = params->nth; // number of threads
  6291. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6292. ggml_compute_forward_dup_same_cont(params, dst);
  6293. return;
  6294. }
  6295. // parallelize by rows
  6296. const int nr = ne01;
  6297. // number of rows per thread
  6298. const int dr = (nr + nth - 1) / nth;
  6299. // row range for this thread
  6300. const int ir0 = dr * ith;
  6301. const int ir1 = MIN(ir0 + dr, nr);
  6302. if (src0->type == dst->type &&
  6303. ne00 == ne0 &&
  6304. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6305. // copy by rows
  6306. const size_t rs = ne00*nb00;
  6307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6308. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6309. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6310. memcpy(
  6311. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6312. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6313. rs);
  6314. }
  6315. }
  6316. }
  6317. return;
  6318. }
  6319. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6320. if (ggml_is_contiguous(dst)) {
  6321. if (nb00 == sizeof(ggml_bf16_t)) {
  6322. if (dst->type == GGML_TYPE_BF16) {
  6323. size_t id = 0;
  6324. const size_t rs = ne00 * nb00;
  6325. char * dst_ptr = (char *) dst->data;
  6326. for (int i03 = 0; i03 < ne03; i03++) {
  6327. for (int i02 = 0; i02 < ne02; i02++) {
  6328. id += rs * ir0;
  6329. for (int i01 = ir0; i01 < ir1; i01++) {
  6330. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6331. memcpy(dst_ptr + id, src0_ptr, rs);
  6332. id += rs;
  6333. }
  6334. id += rs * (ne01 - ir1);
  6335. }
  6336. }
  6337. } else if (dst->type == GGML_TYPE_F16) {
  6338. size_t id = 0;
  6339. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6340. for (int i03 = 0; i03 < ne03; i03++) {
  6341. for (int i02 = 0; i02 < ne02; i02++) {
  6342. id += ne00 * ir0;
  6343. for (int i01 = ir0; i01 < ir1; i01++) {
  6344. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6345. for (int i00 = 0; i00 < ne00; i00++) {
  6346. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6347. id++;
  6348. }
  6349. }
  6350. id += ne00 * (ne01 - ir1);
  6351. }
  6352. }
  6353. } else if (dst->type == GGML_TYPE_F32) {
  6354. size_t id = 0;
  6355. float * dst_ptr = (float *) dst->data;
  6356. for (int i03 = 0; i03 < ne03; i03++) {
  6357. for (int i02 = 0; i02 < ne02; i02++) {
  6358. id += ne00 * ir0;
  6359. for (int i01 = ir0; i01 < ir1; i01++) {
  6360. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6361. for (int i00 = 0; i00 < ne00; i00++) {
  6362. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6363. id++;
  6364. }
  6365. }
  6366. id += ne00 * (ne01 - ir1);
  6367. }
  6368. }
  6369. } else if (type_traits[dst->type].from_float) {
  6370. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6371. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6372. size_t id = 0;
  6373. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6374. char * dst_ptr = (char *) dst->data;
  6375. for (int i03 = 0; i03 < ne03; i03++) {
  6376. for (int i02 = 0; i02 < ne02; i02++) {
  6377. id += rs * ir0;
  6378. for (int i01 = ir0; i01 < ir1; i01++) {
  6379. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6380. for (int i00 = 0; i00 < ne00; i00++) {
  6381. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6382. }
  6383. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6384. id += rs;
  6385. }
  6386. id += rs * (ne01 - ir1);
  6387. }
  6388. }
  6389. } else {
  6390. GGML_ASSERT(false); // TODO: implement
  6391. }
  6392. } else {
  6393. //printf("%s: this is not optimal - fix me\n", __func__);
  6394. if (dst->type == GGML_TYPE_F32) {
  6395. size_t id = 0;
  6396. float * dst_ptr = (float *) dst->data;
  6397. for (int i03 = 0; i03 < ne03; i03++) {
  6398. for (int i02 = 0; i02 < ne02; i02++) {
  6399. id += ne00 * ir0;
  6400. for (int i01 = ir0; i01 < ir1; i01++) {
  6401. for (int i00 = 0; i00 < ne00; i00++) {
  6402. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6403. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6404. id++;
  6405. }
  6406. }
  6407. id += ne00 * (ne01 - ir1);
  6408. }
  6409. }
  6410. } else if (dst->type == GGML_TYPE_BF16) {
  6411. size_t id = 0;
  6412. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6413. for (int i03 = 0; i03 < ne03; i03++) {
  6414. for (int i02 = 0; i02 < ne02; i02++) {
  6415. id += ne00 * ir0;
  6416. for (int i01 = ir0; i01 < ir1; i01++) {
  6417. for (int i00 = 0; i00 < ne00; i00++) {
  6418. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6419. dst_ptr[id] = *src0_ptr;
  6420. id++;
  6421. }
  6422. }
  6423. id += ne00 * (ne01 - ir1);
  6424. }
  6425. }
  6426. } else if (dst->type == GGML_TYPE_F16) {
  6427. size_t id = 0;
  6428. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6429. for (int i03 = 0; i03 < ne03; i03++) {
  6430. for (int i02 = 0; i02 < ne02; i02++) {
  6431. id += ne00 * ir0;
  6432. for (int i01 = ir0; i01 < ir1; i01++) {
  6433. for (int i00 = 0; i00 < ne00; i00++) {
  6434. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6435. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6436. id++;
  6437. }
  6438. }
  6439. id += ne00 * (ne01 - ir1);
  6440. }
  6441. }
  6442. } else {
  6443. GGML_ASSERT(false); // TODO: implement
  6444. }
  6445. }
  6446. return;
  6447. }
  6448. // dst counters
  6449. int64_t i10 = 0;
  6450. int64_t i11 = 0;
  6451. int64_t i12 = 0;
  6452. int64_t i13 = 0;
  6453. if (dst->type == GGML_TYPE_BF16) {
  6454. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6455. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6456. i10 += ne00 * ir0;
  6457. while (i10 >= ne0) {
  6458. i10 -= ne0;
  6459. if (++i11 == ne1) {
  6460. i11 = 0;
  6461. if (++i12 == ne2) {
  6462. i12 = 0;
  6463. if (++i13 == ne3) {
  6464. i13 = 0;
  6465. }
  6466. }
  6467. }
  6468. }
  6469. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6470. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6471. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6472. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6473. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6474. if (++i10 == ne00) {
  6475. i10 = 0;
  6476. if (++i11 == ne01) {
  6477. i11 = 0;
  6478. if (++i12 == ne02) {
  6479. i12 = 0;
  6480. if (++i13 == ne03) {
  6481. i13 = 0;
  6482. }
  6483. }
  6484. }
  6485. }
  6486. }
  6487. }
  6488. i10 += ne00 * (ne01 - ir1);
  6489. while (i10 >= ne0) {
  6490. i10 -= ne0;
  6491. if (++i11 == ne1) {
  6492. i11 = 0;
  6493. if (++i12 == ne2) {
  6494. i12 = 0;
  6495. if (++i13 == ne3) {
  6496. i13 = 0;
  6497. }
  6498. }
  6499. }
  6500. }
  6501. }
  6502. }
  6503. } else if (dst->type == GGML_TYPE_F16) {
  6504. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6505. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6506. i10 += ne00 * ir0;
  6507. while (i10 >= ne0) {
  6508. i10 -= ne0;
  6509. if (++i11 == ne1) {
  6510. i11 = 0;
  6511. if (++i12 == ne2) {
  6512. i12 = 0;
  6513. if (++i13 == ne3) {
  6514. i13 = 0;
  6515. }
  6516. }
  6517. }
  6518. }
  6519. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6520. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6521. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6522. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6523. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6524. if (++i10 == ne0) {
  6525. i10 = 0;
  6526. if (++i11 == ne1) {
  6527. i11 = 0;
  6528. if (++i12 == ne2) {
  6529. i12 = 0;
  6530. if (++i13 == ne3) {
  6531. i13 = 0;
  6532. }
  6533. }
  6534. }
  6535. }
  6536. }
  6537. }
  6538. i10 += ne00 * (ne01 - ir1);
  6539. while (i10 >= ne0) {
  6540. i10 -= ne0;
  6541. if (++i11 == ne1) {
  6542. i11 = 0;
  6543. if (++i12 == ne2) {
  6544. i12 = 0;
  6545. if (++i13 == ne3) {
  6546. i13 = 0;
  6547. }
  6548. }
  6549. }
  6550. }
  6551. }
  6552. }
  6553. } else if (dst->type == GGML_TYPE_F32) {
  6554. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6555. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6556. i10 += ne00 * ir0;
  6557. while (i10 >= ne0) {
  6558. i10 -= ne0;
  6559. if (++i11 == ne1) {
  6560. i11 = 0;
  6561. if (++i12 == ne2) {
  6562. i12 = 0;
  6563. if (++i13 == ne3) {
  6564. i13 = 0;
  6565. }
  6566. }
  6567. }
  6568. }
  6569. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6570. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6571. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6572. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6573. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6574. if (++i10 == ne0) {
  6575. i10 = 0;
  6576. if (++i11 == ne1) {
  6577. i11 = 0;
  6578. if (++i12 == ne2) {
  6579. i12 = 0;
  6580. if (++i13 == ne3) {
  6581. i13 = 0;
  6582. }
  6583. }
  6584. }
  6585. }
  6586. }
  6587. }
  6588. i10 += ne00 * (ne01 - ir1);
  6589. while (i10 >= ne0) {
  6590. i10 -= ne0;
  6591. if (++i11 == ne1) {
  6592. i11 = 0;
  6593. if (++i12 == ne2) {
  6594. i12 = 0;
  6595. if (++i13 == ne3) {
  6596. i13 = 0;
  6597. }
  6598. }
  6599. }
  6600. }
  6601. }
  6602. }
  6603. } else {
  6604. GGML_ASSERT(false); // TODO: implement
  6605. }
  6606. }
  6607. static void ggml_compute_forward_dup_f32(
  6608. const struct ggml_compute_params * params,
  6609. struct ggml_tensor * dst) {
  6610. const struct ggml_tensor * src0 = dst->src[0];
  6611. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6612. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6613. return;
  6614. }
  6615. GGML_TENSOR_UNARY_OP_LOCALS
  6616. const int ith = params->ith; // thread index
  6617. const int nth = params->nth; // number of threads
  6618. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6619. ggml_compute_forward_dup_same_cont(params, dst);
  6620. return;
  6621. }
  6622. // parallelize by rows
  6623. const int nr = ne01;
  6624. // number of rows per thread
  6625. const int dr = (nr + nth - 1) / nth;
  6626. // row range for this thread
  6627. const int ir0 = dr * ith;
  6628. const int ir1 = MIN(ir0 + dr, nr);
  6629. if (src0->type == dst->type &&
  6630. ne00 == ne0 &&
  6631. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6632. // copy by rows
  6633. const size_t rs = ne00*nb00;
  6634. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6635. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6636. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6637. memcpy(
  6638. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6639. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6640. rs);
  6641. }
  6642. }
  6643. }
  6644. return;
  6645. }
  6646. if (ggml_is_contiguous(dst)) {
  6647. // TODO: simplify
  6648. if (nb00 == sizeof(float)) {
  6649. if (dst->type == GGML_TYPE_F32) {
  6650. size_t id = 0;
  6651. const size_t rs = ne00 * nb00;
  6652. char * dst_ptr = (char *) dst->data;
  6653. for (int i03 = 0; i03 < ne03; i03++) {
  6654. for (int i02 = 0; i02 < ne02; i02++) {
  6655. id += rs * ir0;
  6656. for (int i01 = ir0; i01 < ir1; i01++) {
  6657. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6658. memcpy(dst_ptr + id, src0_ptr, rs);
  6659. id += rs;
  6660. }
  6661. id += rs * (ne01 - ir1);
  6662. }
  6663. }
  6664. } else if (type_traits[dst->type].from_float) {
  6665. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6666. size_t id = 0;
  6667. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6668. char * dst_ptr = (char *) dst->data;
  6669. for (int i03 = 0; i03 < ne03; i03++) {
  6670. for (int i02 = 0; i02 < ne02; i02++) {
  6671. id += rs * ir0;
  6672. for (int i01 = ir0; i01 < ir1; i01++) {
  6673. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6674. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6675. id += rs;
  6676. }
  6677. id += rs * (ne01 - ir1);
  6678. }
  6679. }
  6680. } else {
  6681. GGML_ASSERT(false); // TODO: implement
  6682. }
  6683. } else {
  6684. //printf("%s: this is not optimal - fix me\n", __func__);
  6685. if (dst->type == GGML_TYPE_F32) {
  6686. size_t id = 0;
  6687. float * dst_ptr = (float *) dst->data;
  6688. for (int i03 = 0; i03 < ne03; i03++) {
  6689. for (int i02 = 0; i02 < ne02; i02++) {
  6690. id += ne00 * ir0;
  6691. for (int i01 = ir0; i01 < ir1; i01++) {
  6692. for (int i00 = 0; i00 < ne00; i00++) {
  6693. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6694. dst_ptr[id] = *src0_ptr;
  6695. id++;
  6696. }
  6697. }
  6698. id += ne00 * (ne01 - ir1);
  6699. }
  6700. }
  6701. } else if (dst->type == GGML_TYPE_F16) {
  6702. size_t id = 0;
  6703. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6704. for (int i03 = 0; i03 < ne03; i03++) {
  6705. for (int i02 = 0; i02 < ne02; i02++) {
  6706. id += ne00 * ir0;
  6707. for (int i01 = ir0; i01 < ir1; i01++) {
  6708. for (int i00 = 0; i00 < ne00; i00++) {
  6709. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6710. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6711. id++;
  6712. }
  6713. }
  6714. id += ne00 * (ne01 - ir1);
  6715. }
  6716. }
  6717. } else if (dst->type == GGML_TYPE_BF16) {
  6718. size_t id = 0;
  6719. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6720. for (int i03 = 0; i03 < ne03; i03++) {
  6721. for (int i02 = 0; i02 < ne02; i02++) {
  6722. id += ne00 * ir0;
  6723. for (int i01 = ir0; i01 < ir1; i01++) {
  6724. for (int i00 = 0; i00 < ne00; i00++) {
  6725. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6726. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  6727. id++;
  6728. }
  6729. }
  6730. id += ne00 * (ne01 - ir1);
  6731. }
  6732. }
  6733. } else {
  6734. GGML_ASSERT(false); // TODO: implement
  6735. }
  6736. }
  6737. return;
  6738. }
  6739. // dst counters
  6740. int64_t i10 = 0;
  6741. int64_t i11 = 0;
  6742. int64_t i12 = 0;
  6743. int64_t i13 = 0;
  6744. if (dst->type == GGML_TYPE_F32) {
  6745. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6747. i10 += ne00 * ir0;
  6748. while (i10 >= ne0) {
  6749. i10 -= ne0;
  6750. if (++i11 == ne1) {
  6751. i11 = 0;
  6752. if (++i12 == ne2) {
  6753. i12 = 0;
  6754. if (++i13 == ne3) {
  6755. i13 = 0;
  6756. }
  6757. }
  6758. }
  6759. }
  6760. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6761. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6762. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6763. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6764. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6765. if (++i10 == ne0) {
  6766. i10 = 0;
  6767. if (++i11 == ne1) {
  6768. i11 = 0;
  6769. if (++i12 == ne2) {
  6770. i12 = 0;
  6771. if (++i13 == ne3) {
  6772. i13 = 0;
  6773. }
  6774. }
  6775. }
  6776. }
  6777. }
  6778. }
  6779. i10 += ne00 * (ne01 - ir1);
  6780. while (i10 >= ne0) {
  6781. i10 -= ne0;
  6782. if (++i11 == ne1) {
  6783. i11 = 0;
  6784. if (++i12 == ne2) {
  6785. i12 = 0;
  6786. if (++i13 == ne3) {
  6787. i13 = 0;
  6788. }
  6789. }
  6790. }
  6791. }
  6792. }
  6793. }
  6794. } else if (dst->type == GGML_TYPE_F16) {
  6795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6797. i10 += ne00 * ir0;
  6798. while (i10 >= ne0) {
  6799. i10 -= ne0;
  6800. if (++i11 == ne1) {
  6801. i11 = 0;
  6802. if (++i12 == ne2) {
  6803. i12 = 0;
  6804. if (++i13 == ne3) {
  6805. i13 = 0;
  6806. }
  6807. }
  6808. }
  6809. }
  6810. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6811. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6812. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6813. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6814. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6815. if (++i10 == ne0) {
  6816. i10 = 0;
  6817. if (++i11 == ne1) {
  6818. i11 = 0;
  6819. if (++i12 == ne2) {
  6820. i12 = 0;
  6821. if (++i13 == ne3) {
  6822. i13 = 0;
  6823. }
  6824. }
  6825. }
  6826. }
  6827. }
  6828. }
  6829. i10 += ne00 * (ne01 - ir1);
  6830. while (i10 >= ne0) {
  6831. i10 -= ne0;
  6832. if (++i11 == ne1) {
  6833. i11 = 0;
  6834. if (++i12 == ne2) {
  6835. i12 = 0;
  6836. if (++i13 == ne3) {
  6837. i13 = 0;
  6838. }
  6839. }
  6840. }
  6841. }
  6842. }
  6843. }
  6844. } else if (dst->type == GGML_TYPE_BF16) {
  6845. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6846. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6847. i10 += ne00 * ir0;
  6848. while (i10 >= ne0) {
  6849. i10 -= ne0;
  6850. if (++i11 == ne1) {
  6851. i11 = 0;
  6852. if (++i12 == ne2) {
  6853. i12 = 0;
  6854. if (++i13 == ne3) {
  6855. i13 = 0;
  6856. }
  6857. }
  6858. }
  6859. }
  6860. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6861. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6862. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6863. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6864. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  6865. if (++i10 == ne0) {
  6866. i10 = 0;
  6867. if (++i11 == ne1) {
  6868. i11 = 0;
  6869. if (++i12 == ne2) {
  6870. i12 = 0;
  6871. if (++i13 == ne3) {
  6872. i13 = 0;
  6873. }
  6874. }
  6875. }
  6876. }
  6877. }
  6878. }
  6879. i10 += ne00 * (ne01 - ir1);
  6880. while (i10 >= ne0) {
  6881. i10 -= ne0;
  6882. if (++i11 == ne1) {
  6883. i11 = 0;
  6884. if (++i12 == ne2) {
  6885. i12 = 0;
  6886. if (++i13 == ne3) {
  6887. i13 = 0;
  6888. }
  6889. }
  6890. }
  6891. }
  6892. }
  6893. }
  6894. } else {
  6895. GGML_ASSERT(false); // TODO: implement
  6896. }
  6897. }
  6898. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6899. static void ggml_compute_forward_dup_bytes(
  6900. const struct ggml_compute_params * params,
  6901. struct ggml_tensor * dst) {
  6902. const struct ggml_tensor * src0 = dst->src[0];
  6903. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6904. GGML_ASSERT(src0->type == dst->type);
  6905. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6906. return;
  6907. }
  6908. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6909. ggml_compute_forward_dup_same_cont(params, dst);
  6910. return;
  6911. }
  6912. GGML_TENSOR_UNARY_OP_LOCALS;
  6913. const size_t type_size = ggml_type_size(src0->type);
  6914. const int ith = params->ith; // thread index
  6915. const int nth = params->nth; // number of threads
  6916. // parallelize by rows
  6917. const int nr = ne01;
  6918. // number of rows per thread
  6919. const int dr = (nr + nth - 1) / nth;
  6920. // row range for this thread
  6921. const int ir0 = dr * ith;
  6922. const int ir1 = MIN(ir0 + dr, nr);
  6923. if (src0->type == dst->type &&
  6924. ne00 == ne0 &&
  6925. nb00 == type_size && nb0 == type_size) {
  6926. // copy by rows
  6927. const size_t rs = ne00 * type_size;
  6928. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6929. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6930. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6931. memcpy(
  6932. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6933. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6934. rs);
  6935. }
  6936. }
  6937. }
  6938. return;
  6939. }
  6940. if (ggml_is_contiguous(dst)) {
  6941. size_t id = 0;
  6942. char * dst_ptr = (char *) dst->data;
  6943. const size_t rs = ne00 * type_size;
  6944. if (nb00 == type_size) {
  6945. // src0 is contigous on first dimension, copy by rows
  6946. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6947. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6948. id += rs * ir0;
  6949. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6950. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6951. memcpy(dst_ptr + id, src0_ptr, rs);
  6952. id += rs;
  6953. }
  6954. id += rs * (ne01 - ir1);
  6955. }
  6956. }
  6957. } else {
  6958. //printf("%s: this is not optimal - fix me\n", __func__);
  6959. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6960. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6961. id += rs * ir0;
  6962. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6963. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6964. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6965. memcpy(dst_ptr + id, src0_ptr, type_size);
  6966. id += type_size;
  6967. }
  6968. }
  6969. id += rs * (ne01 - ir1);
  6970. }
  6971. }
  6972. }
  6973. return;
  6974. }
  6975. // dst counters
  6976. int64_t i10 = 0;
  6977. int64_t i11 = 0;
  6978. int64_t i12 = 0;
  6979. int64_t i13 = 0;
  6980. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6981. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6982. i10 += ne00 * ir0;
  6983. while (i10 >= ne0) {
  6984. i10 -= ne0;
  6985. if (++i11 == ne1) {
  6986. i11 = 0;
  6987. if (++i12 == ne2) {
  6988. i12 = 0;
  6989. if (++i13 == ne3) {
  6990. i13 = 0;
  6991. }
  6992. }
  6993. }
  6994. }
  6995. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6996. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6997. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6998. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6999. memcpy(dst_ptr, src0_ptr, type_size);
  7000. if (++i10 == ne0) {
  7001. i10 = 0;
  7002. if (++i11 == ne1) {
  7003. i11 = 0;
  7004. if (++i12 == ne2) {
  7005. i12 = 0;
  7006. if (++i13 == ne3) {
  7007. i13 = 0;
  7008. }
  7009. }
  7010. }
  7011. }
  7012. }
  7013. }
  7014. i10 += ne00 * (ne01 - ir1);
  7015. while (i10 >= ne0) {
  7016. i10 -= ne0;
  7017. if (++i11 == ne1) {
  7018. i11 = 0;
  7019. if (++i12 == ne2) {
  7020. i12 = 0;
  7021. if (++i13 == ne3) {
  7022. i13 = 0;
  7023. }
  7024. }
  7025. }
  7026. }
  7027. }
  7028. }
  7029. }
  7030. static void ggml_compute_forward_dup(
  7031. const struct ggml_compute_params * params,
  7032. struct ggml_tensor * dst) {
  7033. const struct ggml_tensor * src0 = dst->src[0];
  7034. if (src0->type == dst->type) {
  7035. ggml_compute_forward_dup_bytes(params, dst);
  7036. return;
  7037. }
  7038. switch (src0->type) {
  7039. case GGML_TYPE_F16:
  7040. {
  7041. ggml_compute_forward_dup_f16(params, dst);
  7042. } break;
  7043. case GGML_TYPE_BF16:
  7044. {
  7045. ggml_compute_forward_dup_bf16(params, dst);
  7046. } break;
  7047. case GGML_TYPE_F32:
  7048. {
  7049. ggml_compute_forward_dup_f32(params, dst);
  7050. } break;
  7051. default:
  7052. {
  7053. GGML_ASSERT(false);
  7054. } break;
  7055. }
  7056. }
  7057. // ggml_compute_forward_add
  7058. static void ggml_compute_forward_add_f32(
  7059. const struct ggml_compute_params * params,
  7060. struct ggml_tensor * dst) {
  7061. const struct ggml_tensor * src0 = dst->src[0];
  7062. const struct ggml_tensor * src1 = dst->src[1];
  7063. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7064. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7065. return;
  7066. }
  7067. const int ith = params->ith;
  7068. const int nth = params->nth;
  7069. #ifdef GGML_USE_CLBLAST
  7070. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7071. // TODO: OpenCL kernel support full broadcast
  7072. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7073. if (ith == 0) {
  7074. ggml_cl_add(src0, src1, dst);
  7075. }
  7076. return;
  7077. }
  7078. #endif
  7079. const int nr = ggml_nrows(src0);
  7080. GGML_TENSOR_BINARY_OP_LOCALS
  7081. GGML_ASSERT( nb0 == sizeof(float));
  7082. GGML_ASSERT(nb00 == sizeof(float));
  7083. // rows per thread
  7084. const int dr = (nr + nth - 1)/nth;
  7085. // row range for this thread
  7086. const int ir0 = dr*ith;
  7087. const int ir1 = MIN(ir0 + dr, nr);
  7088. if (nb10 == sizeof(float)) {
  7089. for (int ir = ir0; ir < ir1; ++ir) {
  7090. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7091. const int64_t i03 = ir/(ne02*ne01);
  7092. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7093. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7094. const int64_t i13 = i03 % ne13;
  7095. const int64_t i12 = i02 % ne12;
  7096. const int64_t i11 = i01 % ne11;
  7097. const int64_t nr0 = ne00 / ne10;
  7098. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7099. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7100. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7101. for (int64_t r = 0; r < nr0; ++r) {
  7102. #ifdef GGML_USE_ACCELERATE
  7103. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7104. #else
  7105. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7106. #endif
  7107. }
  7108. }
  7109. } else {
  7110. // src1 is not contiguous
  7111. for (int ir = ir0; ir < ir1; ++ir) {
  7112. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7113. const int64_t i03 = ir/(ne02*ne01);
  7114. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7115. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7116. const int64_t i13 = i03 % ne13;
  7117. const int64_t i12 = i02 % ne12;
  7118. const int64_t i11 = i01 % ne11;
  7119. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7120. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7121. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7122. const int64_t i10 = i0 % ne10;
  7123. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7124. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7125. }
  7126. }
  7127. }
  7128. }
  7129. static void ggml_compute_forward_add_f16_f32(
  7130. const struct ggml_compute_params * params,
  7131. struct ggml_tensor * dst) {
  7132. const struct ggml_tensor * src0 = dst->src[0];
  7133. const struct ggml_tensor * src1 = dst->src[1];
  7134. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7135. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7136. return;
  7137. }
  7138. const int ith = params->ith;
  7139. const int nth = params->nth;
  7140. const int nr = ggml_nrows(src0);
  7141. GGML_TENSOR_BINARY_OP_LOCALS
  7142. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7143. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7144. if (dst->type == GGML_TYPE_F32) {
  7145. GGML_ASSERT( nb0 == sizeof(float));
  7146. }
  7147. else {
  7148. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7149. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7150. }
  7151. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7152. // rows per thread
  7153. const int dr = (nr + nth - 1)/nth;
  7154. // row range for this thread
  7155. const int ir0 = dr*ith;
  7156. const int ir1 = MIN(ir0 + dr, nr);
  7157. if (nb10 == sizeof(float)) {
  7158. if (dst->type == GGML_TYPE_F16) {
  7159. for (int ir = ir0; ir < ir1; ++ir) {
  7160. // src0, src1 and dst are same shape => same indices
  7161. const int i3 = ir/(ne2*ne1);
  7162. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7163. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7164. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7165. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7166. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7167. for (int i = 0; i < ne0; i++) {
  7168. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7169. }
  7170. }
  7171. } else {
  7172. for (int ir = ir0; ir < ir1; ++ir) {
  7173. // src0, src1 and dst are same shape => same indices
  7174. const int i3 = ir/(ne2*ne1);
  7175. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7176. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7177. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7178. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7179. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7180. for (int i = 0; i < ne0; i++) {
  7181. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7182. }
  7183. }
  7184. }
  7185. }
  7186. else {
  7187. // src1 is not contiguous
  7188. GGML_ASSERT(false);
  7189. }
  7190. }
  7191. static void ggml_compute_forward_add_bf16_f32(
  7192. const struct ggml_compute_params * params,
  7193. struct ggml_tensor * dst) {
  7194. const struct ggml_tensor * src0 = dst->src[0];
  7195. const struct ggml_tensor * src1 = dst->src[1];
  7196. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7197. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7198. return;
  7199. }
  7200. const int ith = params->ith;
  7201. const int nth = params->nth;
  7202. const int nr = ggml_nrows(src0);
  7203. GGML_TENSOR_BINARY_OP_LOCALS
  7204. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7205. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7206. if (dst->type == GGML_TYPE_F32) {
  7207. GGML_ASSERT( nb0 == sizeof(float));
  7208. }
  7209. else {
  7210. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7211. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7212. }
  7213. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7214. // rows per thread
  7215. const int dr = (nr + nth - 1)/nth;
  7216. // row range for this thread
  7217. const int ir0 = dr*ith;
  7218. const int ir1 = MIN(ir0 + dr, nr);
  7219. if (nb10 == sizeof(float)) {
  7220. if (dst->type == GGML_TYPE_BF16) {
  7221. for (int ir = ir0; ir < ir1; ++ir) {
  7222. // src0, src1 and dst are same shape => same indices
  7223. const int i3 = ir/(ne2*ne1);
  7224. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7225. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7226. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7227. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7228. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7229. for (int i = 0; i < ne0; i++) {
  7230. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7231. }
  7232. }
  7233. } else {
  7234. for (int ir = ir0; ir < ir1; ++ir) {
  7235. // src0, src1 and dst are same shape => same indices
  7236. const int i3 = ir/(ne2*ne1);
  7237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7239. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7240. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7241. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7242. for (int i = 0; i < ne0; i++) {
  7243. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7244. }
  7245. }
  7246. }
  7247. }
  7248. else {
  7249. // src1 is not contiguous
  7250. GGML_ASSERT(false);
  7251. }
  7252. }
  7253. static void ggml_compute_forward_add_f16_f16(
  7254. const struct ggml_compute_params * params,
  7255. struct ggml_tensor * dst) {
  7256. const struct ggml_tensor * src0 = dst->src[0];
  7257. const struct ggml_tensor * src1 = dst->src[1];
  7258. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7259. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7260. return;
  7261. }
  7262. const int ith = params->ith;
  7263. const int nth = params->nth;
  7264. const int nr = ggml_nrows(src0);
  7265. GGML_TENSOR_BINARY_OP_LOCALS
  7266. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7267. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7268. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7269. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7270. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7271. // rows per thread
  7272. const int dr = (nr + nth - 1)/nth;
  7273. // row range for this thread
  7274. const int ir0 = dr*ith;
  7275. const int ir1 = MIN(ir0 + dr, nr);
  7276. if (nb10 == sizeof(ggml_fp16_t)) {
  7277. for (int ir = ir0; ir < ir1; ++ir) {
  7278. // src0, src1 and dst are same shape => same indices
  7279. const int i3 = ir/(ne2*ne1);
  7280. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7281. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7282. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7283. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7284. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7285. for (int i = 0; i < ne0; i++) {
  7286. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7287. }
  7288. }
  7289. }
  7290. else {
  7291. // src1 is not contiguous
  7292. GGML_ASSERT(false);
  7293. }
  7294. }
  7295. static void ggml_compute_forward_add_bf16_bf16(
  7296. const struct ggml_compute_params * params,
  7297. struct ggml_tensor * dst) {
  7298. const struct ggml_tensor * src0 = dst->src[0];
  7299. const struct ggml_tensor * src1 = dst->src[1];
  7300. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7301. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7302. return;
  7303. }
  7304. const int ith = params->ith;
  7305. const int nth = params->nth;
  7306. const int nr = ggml_nrows(src0);
  7307. GGML_TENSOR_BINARY_OP_LOCALS
  7308. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7309. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7310. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7311. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7312. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7313. // rows per thread
  7314. const int dr = (nr + nth - 1)/nth;
  7315. // row range for this thread
  7316. const int ir0 = dr*ith;
  7317. const int ir1 = MIN(ir0 + dr, nr);
  7318. if (nb10 == sizeof(ggml_bf16_t)) {
  7319. for (int ir = ir0; ir < ir1; ++ir) {
  7320. // src0, src1 and dst are same shape => same indices
  7321. const int i3 = ir/(ne2*ne1);
  7322. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7323. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7324. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7325. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7326. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7327. for (int i = 0; i < ne0; i++) {
  7328. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7329. }
  7330. }
  7331. }
  7332. else {
  7333. // src1 is not contiguous
  7334. GGML_ASSERT(false);
  7335. }
  7336. }
  7337. static void ggml_compute_forward_add_q_f32(
  7338. const struct ggml_compute_params * params,
  7339. struct ggml_tensor * dst) {
  7340. const struct ggml_tensor * src0 = dst->src[0];
  7341. const struct ggml_tensor * src1 = dst->src[1];
  7342. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7343. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7344. return;
  7345. }
  7346. const int nr = ggml_nrows(src0);
  7347. GGML_TENSOR_BINARY_OP_LOCALS
  7348. const int ith = params->ith;
  7349. const int nth = params->nth;
  7350. const enum ggml_type type = src0->type;
  7351. const enum ggml_type dtype = dst->type;
  7352. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7353. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7354. // we don't support permuted src0 or src1
  7355. GGML_ASSERT(nb00 == ggml_type_size(type));
  7356. GGML_ASSERT(nb10 == sizeof(float));
  7357. // dst cannot be transposed or permuted
  7358. GGML_ASSERT(nb0 <= nb1);
  7359. GGML_ASSERT(nb1 <= nb2);
  7360. GGML_ASSERT(nb2 <= nb3);
  7361. GGML_ASSERT(ggml_is_quantized(src0->type));
  7362. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7363. // rows per thread
  7364. const int dr = (nr + nth - 1)/nth;
  7365. // row range for this thread
  7366. const int ir0 = dr*ith;
  7367. const int ir1 = MIN(ir0 + dr, nr);
  7368. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7369. for (int ir = ir0; ir < ir1; ++ir) {
  7370. // src0 indices
  7371. const int i03 = ir/(ne02*ne01);
  7372. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7373. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7374. // src1 and dst are same shape as src0 => same indices
  7375. const int i13 = i03;
  7376. const int i12 = i02;
  7377. const int i11 = i01;
  7378. const int i3 = i03;
  7379. const int i2 = i02;
  7380. const int i1 = i01;
  7381. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7382. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7383. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7384. assert(ne00 % 32 == 0);
  7385. // unquantize row from src0 to temp buffer
  7386. dequantize_row_q(src0_row, wdata, ne00);
  7387. // add src1
  7388. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7389. // quantize row to dst
  7390. if (quantize_row_q != NULL) {
  7391. quantize_row_q(wdata, dst_row, ne00);
  7392. } else {
  7393. memcpy(dst_row, wdata, ne0*nb0);
  7394. }
  7395. }
  7396. }
  7397. static void ggml_compute_forward_add(
  7398. const struct ggml_compute_params * params,
  7399. struct ggml_tensor * dst) {
  7400. const struct ggml_tensor * src0 = dst->src[0];
  7401. const struct ggml_tensor * src1 = dst->src[1];
  7402. switch (src0->type) {
  7403. case GGML_TYPE_F32:
  7404. {
  7405. if (src1->type == GGML_TYPE_F32) {
  7406. ggml_compute_forward_add_f32(params, dst);
  7407. }
  7408. else {
  7409. GGML_ASSERT(false);
  7410. }
  7411. } break;
  7412. case GGML_TYPE_F16:
  7413. {
  7414. if (src1->type == GGML_TYPE_F16) {
  7415. ggml_compute_forward_add_f16_f16(params, dst);
  7416. }
  7417. else if (src1->type == GGML_TYPE_F32) {
  7418. ggml_compute_forward_add_f16_f32(params, dst);
  7419. }
  7420. else {
  7421. GGML_ASSERT(false);
  7422. }
  7423. } break;
  7424. case GGML_TYPE_BF16:
  7425. {
  7426. if (src1->type == GGML_TYPE_BF16) {
  7427. ggml_compute_forward_add_bf16_bf16(params, dst);
  7428. }
  7429. else if (src1->type == GGML_TYPE_F32) {
  7430. ggml_compute_forward_add_bf16_f32(params, dst);
  7431. }
  7432. else {
  7433. GGML_ASSERT(false);
  7434. }
  7435. } break;
  7436. case GGML_TYPE_Q4_0:
  7437. case GGML_TYPE_Q4_1:
  7438. case GGML_TYPE_Q5_0:
  7439. case GGML_TYPE_Q5_1:
  7440. case GGML_TYPE_Q8_0:
  7441. case GGML_TYPE_Q2_K:
  7442. case GGML_TYPE_Q3_K:
  7443. case GGML_TYPE_Q4_K:
  7444. case GGML_TYPE_Q5_K:
  7445. case GGML_TYPE_Q6_K:
  7446. case GGML_TYPE_IQ2_XXS:
  7447. case GGML_TYPE_IQ2_XS:
  7448. case GGML_TYPE_IQ3_XXS:
  7449. case GGML_TYPE_IQ1_S:
  7450. case GGML_TYPE_IQ1_M:
  7451. case GGML_TYPE_IQ4_NL:
  7452. case GGML_TYPE_IQ4_XS:
  7453. case GGML_TYPE_IQ3_S:
  7454. case GGML_TYPE_IQ2_S:
  7455. {
  7456. ggml_compute_forward_add_q_f32(params, dst);
  7457. } break;
  7458. default:
  7459. {
  7460. GGML_ASSERT(false);
  7461. } break;
  7462. }
  7463. }
  7464. // ggml_compute_forward_add1
  7465. static void ggml_compute_forward_add1_f32(
  7466. const struct ggml_compute_params * params,
  7467. struct ggml_tensor * dst) {
  7468. const struct ggml_tensor * src0 = dst->src[0];
  7469. const struct ggml_tensor * src1 = dst->src[1];
  7470. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7471. GGML_ASSERT(ggml_is_scalar(src1));
  7472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7473. return;
  7474. }
  7475. const int ith = params->ith;
  7476. const int nth = params->nth;
  7477. const int nr = ggml_nrows(src0);
  7478. GGML_TENSOR_UNARY_OP_LOCALS
  7479. GGML_ASSERT( nb0 == sizeof(float));
  7480. GGML_ASSERT(nb00 == sizeof(float));
  7481. // rows per thread
  7482. const int dr = (nr + nth - 1)/nth;
  7483. // row range for this thread
  7484. const int ir0 = dr*ith;
  7485. const int ir1 = MIN(ir0 + dr, nr);
  7486. for (int ir = ir0; ir < ir1; ++ir) {
  7487. // src0 and dst are same shape => same indices
  7488. const int i3 = ir/(ne2*ne1);
  7489. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7490. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7491. #ifdef GGML_USE_ACCELERATE
  7492. UNUSED(ggml_vec_add1_f32);
  7493. vDSP_vadd(
  7494. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7495. (float *) ((char *) src1->data), 0,
  7496. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7497. ne0);
  7498. #else
  7499. ggml_vec_add1_f32(ne0,
  7500. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7501. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7502. *(float *) src1->data);
  7503. #endif
  7504. }
  7505. }
  7506. static void ggml_compute_forward_add1_f16_f32(
  7507. const struct ggml_compute_params * params,
  7508. struct ggml_tensor * dst) {
  7509. const struct ggml_tensor * src0 = dst->src[0];
  7510. const struct ggml_tensor * src1 = dst->src[1];
  7511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7512. GGML_ASSERT(ggml_is_scalar(src1));
  7513. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7514. return;
  7515. }
  7516. // scalar to add
  7517. const float v = *(float *) src1->data;
  7518. const int ith = params->ith;
  7519. const int nth = params->nth;
  7520. const int nr = ggml_nrows(src0);
  7521. GGML_TENSOR_UNARY_OP_LOCALS
  7522. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7523. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7524. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7525. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7526. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7527. // rows per thread
  7528. const int dr = (nr + nth - 1)/nth;
  7529. // row range for this thread
  7530. const int ir0 = dr*ith;
  7531. const int ir1 = MIN(ir0 + dr, nr);
  7532. for (int ir = ir0; ir < ir1; ++ir) {
  7533. // src0 and dst are same shape => same indices
  7534. const int i3 = ir/(ne2*ne1);
  7535. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7536. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7537. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7538. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7539. for (int i = 0; i < ne0; i++) {
  7540. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7541. }
  7542. }
  7543. }
  7544. static void ggml_compute_forward_add1_f16_f16(
  7545. const struct ggml_compute_params * params,
  7546. struct ggml_tensor * dst) {
  7547. const struct ggml_tensor * src0 = dst->src[0];
  7548. const struct ggml_tensor * src1 = dst->src[1];
  7549. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7550. GGML_ASSERT(ggml_is_scalar(src1));
  7551. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7552. return;
  7553. }
  7554. // scalar to add
  7555. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7556. const int ith = params->ith;
  7557. const int nth = params->nth;
  7558. const int nr = ggml_nrows(src0);
  7559. GGML_TENSOR_UNARY_OP_LOCALS
  7560. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7561. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7562. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7563. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7564. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7565. // rows per thread
  7566. const int dr = (nr + nth - 1)/nth;
  7567. // row range for this thread
  7568. const int ir0 = dr*ith;
  7569. const int ir1 = MIN(ir0 + dr, nr);
  7570. for (int ir = ir0; ir < ir1; ++ir) {
  7571. // src0 and dst are same shape => same indices
  7572. const int i3 = ir/(ne2*ne1);
  7573. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7574. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7575. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7576. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7577. for (int i = 0; i < ne0; i++) {
  7578. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7579. }
  7580. }
  7581. }
  7582. static void ggml_compute_forward_add1_q_f32(
  7583. const struct ggml_compute_params * params,
  7584. struct ggml_tensor * dst) {
  7585. const struct ggml_tensor * src0 = dst->src[0];
  7586. const struct ggml_tensor * src1 = dst->src[1];
  7587. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7588. GGML_ASSERT(ggml_is_scalar(src1));
  7589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7590. return;
  7591. }
  7592. // scalar to add
  7593. const float v = *(float *) src1->data;
  7594. const int ith = params->ith;
  7595. const int nth = params->nth;
  7596. const int nr = ggml_nrows(src0);
  7597. GGML_TENSOR_UNARY_OP_LOCALS
  7598. const enum ggml_type type = src0->type;
  7599. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7600. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7601. // we don't support permuted src0
  7602. GGML_ASSERT(nb00 == ggml_type_size(type));
  7603. // dst cannot be transposed or permuted
  7604. GGML_ASSERT(nb0 <= nb1);
  7605. GGML_ASSERT(nb1 <= nb2);
  7606. GGML_ASSERT(nb2 <= nb3);
  7607. GGML_ASSERT(ggml_is_quantized(src0->type));
  7608. GGML_ASSERT(dst->type == src0->type);
  7609. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7610. // rows per thread
  7611. const int dr = (nr + nth - 1)/nth;
  7612. // row range for this thread
  7613. const int ir0 = dr*ith;
  7614. const int ir1 = MIN(ir0 + dr, nr);
  7615. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7616. for (int ir = ir0; ir < ir1; ++ir) {
  7617. // src0 and dst are same shape => same indices
  7618. const int i3 = ir/(ne2*ne1);
  7619. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7620. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7621. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7622. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7623. assert(ne0 % 32 == 0);
  7624. // unquantize row from src0 to temp buffer
  7625. dequantize_row_q(src0_row, wdata, ne0);
  7626. // add src1
  7627. ggml_vec_acc1_f32(ne0, wdata, v);
  7628. // quantize row to dst
  7629. quantize_row_q(wdata, dst_row, ne0);
  7630. }
  7631. }
  7632. static void ggml_compute_forward_add1_bf16_f32(
  7633. const struct ggml_compute_params * params,
  7634. struct ggml_tensor * dst) {
  7635. const struct ggml_tensor * src0 = dst->src[0];
  7636. const struct ggml_tensor * src1 = dst->src[1];
  7637. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7638. GGML_ASSERT(ggml_is_scalar(src1));
  7639. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7640. return;
  7641. }
  7642. // scalar to add
  7643. const float v = *(float *) src1->data;
  7644. const int ith = params->ith;
  7645. const int nth = params->nth;
  7646. const int nr = ggml_nrows(src0);
  7647. GGML_TENSOR_UNARY_OP_LOCALS
  7648. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7649. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7650. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7651. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7652. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7653. // rows per thread
  7654. const int dr = (nr + nth - 1)/nth;
  7655. // row range for this thread
  7656. const int ir0 = dr*ith;
  7657. const int ir1 = MIN(ir0 + dr, nr);
  7658. for (int ir = ir0; ir < ir1; ++ir) {
  7659. // src0 and dst are same shape => same indices
  7660. const int i3 = ir/(ne2*ne1);
  7661. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7662. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7663. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7664. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7665. for (int i = 0; i < ne0; i++) {
  7666. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7667. }
  7668. }
  7669. }
  7670. static void ggml_compute_forward_add1_bf16_bf16(
  7671. const struct ggml_compute_params * params,
  7672. struct ggml_tensor * dst) {
  7673. const struct ggml_tensor * src0 = dst->src[0];
  7674. const struct ggml_tensor * src1 = dst->src[1];
  7675. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7676. GGML_ASSERT(ggml_is_scalar(src1));
  7677. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7678. return;
  7679. }
  7680. // scalar to add
  7681. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7682. const int ith = params->ith;
  7683. const int nth = params->nth;
  7684. const int nr = ggml_nrows(src0);
  7685. GGML_TENSOR_UNARY_OP_LOCALS
  7686. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7687. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7688. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7689. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7690. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7691. // rows per thread
  7692. const int dr = (nr + nth - 1)/nth;
  7693. // row range for this thread
  7694. const int ir0 = dr*ith;
  7695. const int ir1 = MIN(ir0 + dr, nr);
  7696. for (int ir = ir0; ir < ir1; ++ir) {
  7697. // src0 and dst are same shape => same indices
  7698. const int i3 = ir/(ne2*ne1);
  7699. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7700. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7701. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7702. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7703. for (int i = 0; i < ne0; i++) {
  7704. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7705. }
  7706. }
  7707. }
  7708. static void ggml_compute_forward_add1(
  7709. const struct ggml_compute_params * params,
  7710. struct ggml_tensor * dst) {
  7711. const struct ggml_tensor * src0 = dst->src[0];
  7712. const struct ggml_tensor * src1 = dst->src[1];
  7713. switch (src0->type) {
  7714. case GGML_TYPE_F32:
  7715. {
  7716. ggml_compute_forward_add1_f32(params, dst);
  7717. } break;
  7718. case GGML_TYPE_F16:
  7719. {
  7720. if (src1->type == GGML_TYPE_F16) {
  7721. ggml_compute_forward_add1_f16_f16(params, dst);
  7722. }
  7723. else if (src1->type == GGML_TYPE_F32) {
  7724. ggml_compute_forward_add1_f16_f32(params, dst);
  7725. }
  7726. else {
  7727. GGML_ASSERT(false);
  7728. }
  7729. } break;
  7730. case GGML_TYPE_BF16:
  7731. {
  7732. if (src1->type == GGML_TYPE_BF16) {
  7733. ggml_compute_forward_add1_bf16_bf16(params, dst);
  7734. }
  7735. else if (src1->type == GGML_TYPE_F32) {
  7736. ggml_compute_forward_add1_bf16_f32(params, dst);
  7737. }
  7738. else {
  7739. GGML_ASSERT(false);
  7740. }
  7741. } break;
  7742. case GGML_TYPE_Q4_0:
  7743. case GGML_TYPE_Q4_1:
  7744. case GGML_TYPE_Q5_0:
  7745. case GGML_TYPE_Q5_1:
  7746. case GGML_TYPE_Q8_0:
  7747. case GGML_TYPE_Q8_1:
  7748. case GGML_TYPE_Q2_K:
  7749. case GGML_TYPE_Q3_K:
  7750. case GGML_TYPE_Q4_K:
  7751. case GGML_TYPE_Q5_K:
  7752. case GGML_TYPE_Q6_K:
  7753. case GGML_TYPE_IQ2_XXS:
  7754. case GGML_TYPE_IQ2_XS:
  7755. case GGML_TYPE_IQ3_XXS:
  7756. case GGML_TYPE_IQ1_S:
  7757. case GGML_TYPE_IQ1_M:
  7758. case GGML_TYPE_IQ4_NL:
  7759. case GGML_TYPE_IQ4_XS:
  7760. case GGML_TYPE_IQ3_S:
  7761. case GGML_TYPE_IQ2_S:
  7762. {
  7763. ggml_compute_forward_add1_q_f32(params, dst);
  7764. } break;
  7765. default:
  7766. {
  7767. GGML_ASSERT(false);
  7768. } break;
  7769. }
  7770. }
  7771. // ggml_compute_forward_acc
  7772. static void ggml_compute_forward_acc_f32(
  7773. const struct ggml_compute_params * params,
  7774. struct ggml_tensor * dst) {
  7775. const struct ggml_tensor * src0 = dst->src[0];
  7776. const struct ggml_tensor * src1 = dst->src[1];
  7777. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7778. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7779. // view src0 and dst with these strides and data offset inbytes during acc
  7780. // nb0 is implicitly element_size because src0 and dst are contiguous
  7781. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7782. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7783. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7784. size_t offset = ((int32_t *) dst->op_params)[3];
  7785. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7786. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7787. if (params->ith != 0) {
  7788. return;
  7789. }
  7790. // memcpy needs to be synchronized across threads to avoid race conditions.
  7791. // => do it in INIT phase
  7792. memcpy(
  7793. ((char *) dst->data),
  7794. ((char *) src0->data),
  7795. ggml_nbytes(dst));
  7796. }
  7797. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7798. return;
  7799. }
  7800. const int ith = params->ith;
  7801. const int nth = params->nth;
  7802. const int nr = ggml_nrows(src1);
  7803. const int nc = src1->ne[0];
  7804. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7805. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7806. // src0 and dst as viewed during acc
  7807. const size_t nb0 = ggml_element_size(src0);
  7808. const size_t nb00 = nb0;
  7809. const size_t nb01 = nb1;
  7810. const size_t nb02 = nb2;
  7811. const size_t nb03 = nb3;
  7812. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7813. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7814. GGML_ASSERT(nb10 == sizeof(float));
  7815. // rows per thread
  7816. const int dr = (nr + nth - 1)/nth;
  7817. // row range for this thread
  7818. const int ir0 = dr*ith;
  7819. const int ir1 = MIN(ir0 + dr, nr);
  7820. for (int ir = ir0; ir < ir1; ++ir) {
  7821. // src0 and dst are viewed with shape of src1 and offset
  7822. // => same indices
  7823. const int i3 = ir/(ne12*ne11);
  7824. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7825. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7826. #ifdef GGML_USE_ACCELERATE
  7827. vDSP_vadd(
  7828. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7829. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7830. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7831. #else
  7832. ggml_vec_add_f32(nc,
  7833. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7834. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7835. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7836. #endif
  7837. }
  7838. }
  7839. static void ggml_compute_forward_acc(
  7840. const struct ggml_compute_params * params,
  7841. struct ggml_tensor * dst) {
  7842. const struct ggml_tensor * src0 = dst->src[0];
  7843. switch (src0->type) {
  7844. case GGML_TYPE_F32:
  7845. {
  7846. ggml_compute_forward_acc_f32(params, dst);
  7847. } break;
  7848. case GGML_TYPE_F16:
  7849. case GGML_TYPE_BF16:
  7850. case GGML_TYPE_Q4_0:
  7851. case GGML_TYPE_Q4_1:
  7852. case GGML_TYPE_Q5_0:
  7853. case GGML_TYPE_Q5_1:
  7854. case GGML_TYPE_Q8_0:
  7855. case GGML_TYPE_Q8_1:
  7856. case GGML_TYPE_Q2_K:
  7857. case GGML_TYPE_Q3_K:
  7858. case GGML_TYPE_Q4_K:
  7859. case GGML_TYPE_Q5_K:
  7860. case GGML_TYPE_Q6_K:
  7861. case GGML_TYPE_IQ2_XXS:
  7862. case GGML_TYPE_IQ2_XS:
  7863. case GGML_TYPE_IQ3_XXS:
  7864. case GGML_TYPE_IQ1_S:
  7865. case GGML_TYPE_IQ1_M:
  7866. case GGML_TYPE_IQ4_NL:
  7867. case GGML_TYPE_IQ4_XS:
  7868. case GGML_TYPE_IQ3_S:
  7869. case GGML_TYPE_IQ2_S:
  7870. default:
  7871. {
  7872. GGML_ASSERT(false);
  7873. } break;
  7874. }
  7875. }
  7876. // ggml_compute_forward_sub
  7877. static void ggml_compute_forward_sub_f32(
  7878. const struct ggml_compute_params * params,
  7879. struct ggml_tensor * dst) {
  7880. const struct ggml_tensor * src0 = dst->src[0];
  7881. const struct ggml_tensor * src1 = dst->src[1];
  7882. assert(params->ith == 0);
  7883. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7884. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7885. return;
  7886. }
  7887. const int nr = ggml_nrows(src0);
  7888. GGML_TENSOR_BINARY_OP_LOCALS
  7889. GGML_ASSERT( nb0 == sizeof(float));
  7890. GGML_ASSERT(nb00 == sizeof(float));
  7891. if (nb10 == sizeof(float)) {
  7892. for (int ir = 0; ir < nr; ++ir) {
  7893. // src0, src1 and dst are same shape => same indices
  7894. const int i3 = ir/(ne2*ne1);
  7895. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7896. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7897. #ifdef GGML_USE_ACCELERATE
  7898. vDSP_vsub(
  7899. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7900. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7901. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7902. ne0);
  7903. #else
  7904. ggml_vec_sub_f32(ne0,
  7905. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7906. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7907. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7908. #endif
  7909. // }
  7910. // }
  7911. }
  7912. } else {
  7913. // src1 is not contiguous
  7914. for (int ir = 0; ir < nr; ++ir) {
  7915. // src0, src1 and dst are same shape => same indices
  7916. const int i3 = ir/(ne2*ne1);
  7917. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7918. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7919. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7920. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7921. for (int i0 = 0; i0 < ne0; i0++) {
  7922. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7923. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7924. }
  7925. }
  7926. }
  7927. }
  7928. static void ggml_compute_forward_sub(
  7929. const struct ggml_compute_params * params,
  7930. struct ggml_tensor * dst) {
  7931. const struct ggml_tensor * src0 = dst->src[0];
  7932. switch (src0->type) {
  7933. case GGML_TYPE_F32:
  7934. {
  7935. ggml_compute_forward_sub_f32(params, dst);
  7936. } break;
  7937. default:
  7938. {
  7939. GGML_ASSERT(false);
  7940. } break;
  7941. }
  7942. }
  7943. // ggml_compute_forward_mul
  7944. static void ggml_compute_forward_mul_f32(
  7945. const struct ggml_compute_params * params,
  7946. struct ggml_tensor * dst) {
  7947. const struct ggml_tensor * src0 = dst->src[0];
  7948. const struct ggml_tensor * src1 = dst->src[1];
  7949. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7950. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7951. return;
  7952. }
  7953. const int ith = params->ith;
  7954. const int nth = params->nth;
  7955. #if defined(GGML_USE_CLBLAST)
  7956. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7957. // TODO: OpenCL kernel support full broadcast
  7958. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7959. if (ith == 0) {
  7960. ggml_cl_mul(src0, src1, dst);
  7961. }
  7962. return;
  7963. }
  7964. #endif
  7965. const int64_t nr = ggml_nrows(src0);
  7966. GGML_TENSOR_BINARY_OP_LOCALS
  7967. GGML_ASSERT( nb0 == sizeof(float));
  7968. GGML_ASSERT(nb00 == sizeof(float));
  7969. if (nb10 == sizeof(float)) {
  7970. for (int64_t ir = ith; ir < nr; ir += nth) {
  7971. // src0 and dst are same shape => same indices
  7972. const int64_t i03 = ir/(ne02*ne01);
  7973. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7974. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7975. const int64_t i13 = i03 % ne13;
  7976. const int64_t i12 = i02 % ne12;
  7977. const int64_t i11 = i01 % ne11;
  7978. const int64_t nr0 = ne00 / ne10;
  7979. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7980. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7981. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7982. for (int64_t r = 0 ; r < nr0; ++r) {
  7983. #ifdef GGML_USE_ACCELERATE
  7984. UNUSED(ggml_vec_mul_f32);
  7985. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7986. #else
  7987. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7988. #endif
  7989. }
  7990. }
  7991. } else {
  7992. // src1 is not contiguous
  7993. for (int64_t ir = ith; ir < nr; ir += nth) {
  7994. // src0 and dst are same shape => same indices
  7995. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7996. const int64_t i03 = ir/(ne02*ne01);
  7997. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7998. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7999. const int64_t i13 = i03 % ne13;
  8000. const int64_t i12 = i02 % ne12;
  8001. const int64_t i11 = i01 % ne11;
  8002. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8003. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8004. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8005. const int64_t i10 = i0 % ne10;
  8006. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8007. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8008. }
  8009. }
  8010. }
  8011. }
  8012. static void ggml_compute_forward_mul(
  8013. const struct ggml_compute_params * params,
  8014. struct ggml_tensor * dst) {
  8015. const struct ggml_tensor * src0 = dst->src[0];
  8016. const struct ggml_tensor * src1 = dst->src[1];
  8017. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8018. switch (src0->type) {
  8019. case GGML_TYPE_F32:
  8020. {
  8021. ggml_compute_forward_mul_f32(params, dst);
  8022. } break;
  8023. default:
  8024. {
  8025. GGML_ASSERT(false);
  8026. } break;
  8027. }
  8028. }
  8029. // ggml_compute_forward_div
  8030. static void ggml_compute_forward_div_f32(
  8031. const struct ggml_compute_params * params,
  8032. struct ggml_tensor * dst) {
  8033. const struct ggml_tensor * src0 = dst->src[0];
  8034. const struct ggml_tensor * src1 = dst->src[1];
  8035. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8036. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8037. return;
  8038. }
  8039. const int ith = params->ith;
  8040. const int nth = params->nth;
  8041. const int64_t nr = ggml_nrows(src0);
  8042. GGML_TENSOR_BINARY_OP_LOCALS
  8043. GGML_ASSERT( nb0 == sizeof(float));
  8044. GGML_ASSERT(nb00 == sizeof(float));
  8045. if (nb10 == sizeof(float)) {
  8046. for (int64_t ir = ith; ir < nr; ir += nth) {
  8047. // src0 and dst are same shape => same indices
  8048. const int64_t i03 = ir/(ne02*ne01);
  8049. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8050. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8051. const int64_t i13 = i03 % ne13;
  8052. const int64_t i12 = i02 % ne12;
  8053. const int64_t i11 = i01 % ne11;
  8054. const int64_t nr0 = ne00 / ne10;
  8055. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8056. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8057. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8058. for (int64_t r = 0; r < nr0; ++r) {
  8059. #ifdef GGML_USE_ACCELERATE
  8060. UNUSED(ggml_vec_div_f32);
  8061. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8062. #else
  8063. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8064. #endif
  8065. }
  8066. }
  8067. } else {
  8068. // src1 is not contiguous
  8069. for (int64_t ir = ith; ir < nr; ir += nth) {
  8070. // src0 and dst are same shape => same indices
  8071. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8072. const int64_t i03 = ir/(ne02*ne01);
  8073. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8074. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8075. const int64_t i13 = i03 % ne13;
  8076. const int64_t i12 = i02 % ne12;
  8077. const int64_t i11 = i01 % ne11;
  8078. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8079. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8080. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8081. const int64_t i10 = i0 % ne10;
  8082. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8083. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8084. }
  8085. }
  8086. }
  8087. }
  8088. static void ggml_compute_forward_div(
  8089. const struct ggml_compute_params * params,
  8090. struct ggml_tensor * dst) {
  8091. const struct ggml_tensor * src0 = dst->src[0];
  8092. switch (src0->type) {
  8093. case GGML_TYPE_F32:
  8094. {
  8095. ggml_compute_forward_div_f32(params, dst);
  8096. } break;
  8097. default:
  8098. {
  8099. GGML_ASSERT(false);
  8100. } break;
  8101. }
  8102. }
  8103. // ggml_compute_forward_sqr
  8104. static void ggml_compute_forward_sqr_f32(
  8105. const struct ggml_compute_params * params,
  8106. struct ggml_tensor * dst) {
  8107. const struct ggml_tensor * src0 = dst->src[0];
  8108. assert(params->ith == 0);
  8109. assert(ggml_are_same_shape(src0, dst));
  8110. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8111. return;
  8112. }
  8113. const int n = ggml_nrows(src0);
  8114. const int nc = src0->ne[0];
  8115. assert( dst->nb[0] == sizeof(float));
  8116. assert(src0->nb[0] == sizeof(float));
  8117. for (int i = 0; i < n; i++) {
  8118. ggml_vec_sqr_f32(nc,
  8119. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8120. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8121. }
  8122. }
  8123. static void ggml_compute_forward_sqr(
  8124. const struct ggml_compute_params * params,
  8125. struct ggml_tensor * dst) {
  8126. const struct ggml_tensor * src0 = dst->src[0];
  8127. switch (src0->type) {
  8128. case GGML_TYPE_F32:
  8129. {
  8130. ggml_compute_forward_sqr_f32(params, dst);
  8131. } break;
  8132. default:
  8133. {
  8134. GGML_ASSERT(false);
  8135. } break;
  8136. }
  8137. }
  8138. // ggml_compute_forward_sqrt
  8139. static void ggml_compute_forward_sqrt_f32(
  8140. const struct ggml_compute_params * params,
  8141. struct ggml_tensor * dst) {
  8142. const struct ggml_tensor * src0 = dst->src[0];
  8143. assert(params->ith == 0);
  8144. assert(ggml_are_same_shape(src0, dst));
  8145. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8146. return;
  8147. }
  8148. const int n = ggml_nrows(src0);
  8149. const int nc = src0->ne[0];
  8150. assert( dst->nb[0] == sizeof(float));
  8151. assert(src0->nb[0] == sizeof(float));
  8152. for (int i = 0; i < n; i++) {
  8153. ggml_vec_sqrt_f32(nc,
  8154. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8155. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8156. }
  8157. }
  8158. static void ggml_compute_forward_sqrt(
  8159. const struct ggml_compute_params * params,
  8160. struct ggml_tensor * dst) {
  8161. const struct ggml_tensor * src0 = dst->src[0];
  8162. switch (src0->type) {
  8163. case GGML_TYPE_F32:
  8164. {
  8165. ggml_compute_forward_sqrt_f32(params, dst);
  8166. } break;
  8167. default:
  8168. {
  8169. GGML_ASSERT(false);
  8170. } break;
  8171. }
  8172. }
  8173. // ggml_compute_forward_log
  8174. static void ggml_compute_forward_log_f32(
  8175. const struct ggml_compute_params * params,
  8176. struct ggml_tensor * dst) {
  8177. const struct ggml_tensor * src0 = dst->src[0];
  8178. GGML_ASSERT(params->ith == 0);
  8179. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8180. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8181. return;
  8182. }
  8183. const int n = ggml_nrows(src0);
  8184. const int nc = src0->ne[0];
  8185. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8186. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8187. for (int i = 0; i < n; i++) {
  8188. ggml_vec_log_f32(nc,
  8189. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8190. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8191. }
  8192. }
  8193. static void ggml_compute_forward_log(
  8194. const struct ggml_compute_params * params,
  8195. struct ggml_tensor * dst) {
  8196. const struct ggml_tensor * src0 = dst->src[0];
  8197. switch (src0->type) {
  8198. case GGML_TYPE_F32:
  8199. {
  8200. ggml_compute_forward_log_f32(params, dst);
  8201. } break;
  8202. default:
  8203. {
  8204. GGML_ASSERT(false);
  8205. } break;
  8206. }
  8207. }
  8208. // ggml_compute_forward_sum
  8209. static void ggml_compute_forward_sum_f32(
  8210. const struct ggml_compute_params * params,
  8211. struct ggml_tensor * dst) {
  8212. const struct ggml_tensor * src0 = dst->src[0];
  8213. assert(params->ith == 0);
  8214. assert(ggml_is_scalar(dst));
  8215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8216. return;
  8217. }
  8218. assert(ggml_is_scalar(dst));
  8219. assert(src0->nb[0] == sizeof(float));
  8220. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8221. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8222. ggml_float sum = 0;
  8223. ggml_float row_sum = 0;
  8224. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8225. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8226. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8227. ggml_vec_sum_f32_ggf(ne00,
  8228. &row_sum,
  8229. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8230. sum += row_sum;
  8231. }
  8232. }
  8233. }
  8234. ((float *) dst->data)[0] = sum;
  8235. }
  8236. static void ggml_compute_forward_sum_f16(
  8237. const struct ggml_compute_params * params,
  8238. struct ggml_tensor * dst) {
  8239. const struct ggml_tensor * src0 = dst->src[0];
  8240. assert(params->ith == 0);
  8241. assert(ggml_is_scalar(dst));
  8242. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8243. return;
  8244. }
  8245. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8246. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8247. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8248. float sum = 0;
  8249. float row_sum = 0;
  8250. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8251. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8252. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8253. ggml_vec_sum_f16_ggf(ne00,
  8254. &row_sum,
  8255. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8256. sum += row_sum;
  8257. }
  8258. }
  8259. }
  8260. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8261. }
  8262. static void ggml_compute_forward_sum_bf16(
  8263. const struct ggml_compute_params * params,
  8264. struct ggml_tensor * dst) {
  8265. const struct ggml_tensor * src0 = dst->src[0];
  8266. assert(params->ith == 0);
  8267. assert(ggml_is_scalar(dst));
  8268. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8269. return;
  8270. }
  8271. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8272. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8273. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8274. float sum = 0;
  8275. float row_sum = 0;
  8276. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8277. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8278. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8279. ggml_vec_sum_bf16_ggf(ne00,
  8280. &row_sum,
  8281. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8282. sum += row_sum;
  8283. }
  8284. }
  8285. }
  8286. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8287. }
  8288. static void ggml_compute_forward_sum(
  8289. const struct ggml_compute_params * params,
  8290. struct ggml_tensor * dst) {
  8291. const struct ggml_tensor * src0 = dst->src[0];
  8292. switch (src0->type) {
  8293. case GGML_TYPE_F32:
  8294. {
  8295. ggml_compute_forward_sum_f32(params, dst);
  8296. } break;
  8297. case GGML_TYPE_F16:
  8298. {
  8299. ggml_compute_forward_sum_f16(params, dst);
  8300. } break;
  8301. case GGML_TYPE_BF16:
  8302. {
  8303. ggml_compute_forward_sum_bf16(params, dst);
  8304. } break;
  8305. default:
  8306. {
  8307. GGML_ASSERT(false);
  8308. } break;
  8309. }
  8310. }
  8311. // ggml_compute_forward_sum_rows
  8312. static void ggml_compute_forward_sum_rows_f32(
  8313. const struct ggml_compute_params * params,
  8314. struct ggml_tensor * dst) {
  8315. const struct ggml_tensor * src0 = dst->src[0];
  8316. GGML_ASSERT(params->ith == 0);
  8317. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8318. return;
  8319. }
  8320. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8321. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8322. GGML_TENSOR_UNARY_OP_LOCALS
  8323. GGML_ASSERT(ne0 == 1);
  8324. GGML_ASSERT(ne1 == ne01);
  8325. GGML_ASSERT(ne2 == ne02);
  8326. GGML_ASSERT(ne3 == ne03);
  8327. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8328. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8329. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8330. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8331. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8332. float row_sum = 0;
  8333. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8334. dst_row[0] = row_sum;
  8335. }
  8336. }
  8337. }
  8338. }
  8339. static void ggml_compute_forward_sum_rows(
  8340. const struct ggml_compute_params * params,
  8341. struct ggml_tensor * dst) {
  8342. const struct ggml_tensor * src0 = dst->src[0];
  8343. switch (src0->type) {
  8344. case GGML_TYPE_F32:
  8345. {
  8346. ggml_compute_forward_sum_rows_f32(params, dst);
  8347. } break;
  8348. default:
  8349. {
  8350. GGML_ASSERT(false);
  8351. } break;
  8352. }
  8353. }
  8354. // ggml_compute_forward_mean
  8355. static void ggml_compute_forward_mean_f32(
  8356. const struct ggml_compute_params * params,
  8357. struct ggml_tensor * dst) {
  8358. const struct ggml_tensor * src0 = dst->src[0];
  8359. assert(params->ith == 0);
  8360. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8361. return;
  8362. }
  8363. assert(src0->nb[0] == sizeof(float));
  8364. GGML_TENSOR_UNARY_OP_LOCALS
  8365. assert(ne0 == 1);
  8366. assert(ne1 == ne01);
  8367. assert(ne2 == ne02);
  8368. assert(ne3 == ne03);
  8369. UNUSED(ne0);
  8370. UNUSED(ne1);
  8371. UNUSED(ne2);
  8372. UNUSED(ne3);
  8373. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8374. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8375. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8376. ggml_vec_sum_f32(ne00,
  8377. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8378. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8379. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8380. }
  8381. }
  8382. }
  8383. }
  8384. static void ggml_compute_forward_mean(
  8385. const struct ggml_compute_params * params,
  8386. struct ggml_tensor * dst) {
  8387. const struct ggml_tensor * src0 = dst->src[0];
  8388. switch (src0->type) {
  8389. case GGML_TYPE_F32:
  8390. {
  8391. ggml_compute_forward_mean_f32(params, dst);
  8392. } break;
  8393. default:
  8394. {
  8395. GGML_ASSERT(false);
  8396. } break;
  8397. }
  8398. }
  8399. // ggml_compute_forward_argmax
  8400. static void ggml_compute_forward_argmax_f32(
  8401. const struct ggml_compute_params * params,
  8402. struct ggml_tensor * dst) {
  8403. const struct ggml_tensor * src0 = dst->src[0];
  8404. assert(params->ith == 0);
  8405. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8406. return;
  8407. }
  8408. assert(src0->nb[0] == sizeof(float));
  8409. assert(dst->nb[0] == sizeof(float));
  8410. const int64_t ne00 = src0->ne[0];
  8411. const int64_t ne01 = src0->ne[1];
  8412. const size_t nb01 = src0->nb[1];
  8413. const size_t nb0 = dst->nb[0];
  8414. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8415. float * src = (float *) ((char *) src0->data + i1*nb01);
  8416. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8417. int v = 0;
  8418. ggml_vec_argmax_f32(ne00, &v, src);
  8419. dst_[0] = v;
  8420. }
  8421. }
  8422. static void ggml_compute_forward_argmax(
  8423. const struct ggml_compute_params * params,
  8424. struct ggml_tensor * dst) {
  8425. const struct ggml_tensor * src0 = dst->src[0];
  8426. switch (src0->type) {
  8427. case GGML_TYPE_F32:
  8428. {
  8429. ggml_compute_forward_argmax_f32(params, dst);
  8430. } break;
  8431. default:
  8432. {
  8433. GGML_ASSERT(false);
  8434. } break;
  8435. }
  8436. }
  8437. // ggml_compute_forward_repeat
  8438. static void ggml_compute_forward_repeat_f32(
  8439. const struct ggml_compute_params * params,
  8440. struct ggml_tensor * dst) {
  8441. const struct ggml_tensor * src0 = dst->src[0];
  8442. GGML_ASSERT(params->ith == 0);
  8443. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8444. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8445. return;
  8446. }
  8447. GGML_TENSOR_UNARY_OP_LOCALS
  8448. // guaranteed to be an integer due to the check in ggml_can_repeat
  8449. const int nr0 = (int)(ne0/ne00);
  8450. const int nr1 = (int)(ne1/ne01);
  8451. const int nr2 = (int)(ne2/ne02);
  8452. const int nr3 = (int)(ne3/ne03);
  8453. // TODO: support for transposed / permuted tensors
  8454. GGML_ASSERT(nb0 == sizeof(float));
  8455. GGML_ASSERT(nb00 == sizeof(float));
  8456. // TODO: maybe this is not optimal?
  8457. for (int i3 = 0; i3 < nr3; i3++) {
  8458. for (int k3 = 0; k3 < ne03; k3++) {
  8459. for (int i2 = 0; i2 < nr2; i2++) {
  8460. for (int k2 = 0; k2 < ne02; k2++) {
  8461. for (int i1 = 0; i1 < nr1; i1++) {
  8462. for (int k1 = 0; k1 < ne01; k1++) {
  8463. for (int i0 = 0; i0 < nr0; i0++) {
  8464. ggml_vec_cpy_f32(ne00,
  8465. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8466. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8467. }
  8468. }
  8469. }
  8470. }
  8471. }
  8472. }
  8473. }
  8474. }
  8475. static void ggml_compute_forward_repeat_f16(
  8476. const struct ggml_compute_params * params,
  8477. struct ggml_tensor * dst) {
  8478. const struct ggml_tensor * src0 = dst->src[0];
  8479. GGML_ASSERT(params->ith == 0);
  8480. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8481. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8482. return;
  8483. }
  8484. GGML_TENSOR_UNARY_OP_LOCALS
  8485. // guaranteed to be an integer due to the check in ggml_can_repeat
  8486. const int nr0 = (int)(ne0/ne00);
  8487. const int nr1 = (int)(ne1/ne01);
  8488. const int nr2 = (int)(ne2/ne02);
  8489. const int nr3 = (int)(ne3/ne03);
  8490. // TODO: support for transposed / permuted tensors
  8491. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8492. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8493. // TODO: maybe this is not optimal?
  8494. for (int i3 = 0; i3 < nr3; i3++) {
  8495. for (int k3 = 0; k3 < ne03; k3++) {
  8496. for (int i2 = 0; i2 < nr2; i2++) {
  8497. for (int k2 = 0; k2 < ne02; k2++) {
  8498. for (int i1 = 0; i1 < nr1; i1++) {
  8499. for (int k1 = 0; k1 < ne01; k1++) {
  8500. for (int i0 = 0; i0 < nr0; i0++) {
  8501. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8502. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8503. // ggml_vec_cpy_f16(ne00, y, x)
  8504. for (int i = 0; i < ne00; ++i) {
  8505. y[i] = x[i];
  8506. }
  8507. }
  8508. }
  8509. }
  8510. }
  8511. }
  8512. }
  8513. }
  8514. }
  8515. static void ggml_compute_forward_repeat(
  8516. const struct ggml_compute_params * params,
  8517. struct ggml_tensor * dst) {
  8518. const struct ggml_tensor * src0 = dst->src[0];
  8519. switch (src0->type) {
  8520. case GGML_TYPE_F16:
  8521. case GGML_TYPE_BF16:
  8522. case GGML_TYPE_I16:
  8523. {
  8524. ggml_compute_forward_repeat_f16(params, dst);
  8525. } break;
  8526. case GGML_TYPE_F32:
  8527. case GGML_TYPE_I32:
  8528. {
  8529. ggml_compute_forward_repeat_f32(params, dst);
  8530. } break;
  8531. default:
  8532. {
  8533. GGML_ASSERT(false);
  8534. } break;
  8535. }
  8536. }
  8537. // ggml_compute_forward_repeat_back
  8538. static void ggml_compute_forward_repeat_back_f32(
  8539. const struct ggml_compute_params * params,
  8540. struct ggml_tensor * dst) {
  8541. const struct ggml_tensor * src0 = dst->src[0];
  8542. GGML_ASSERT(params->ith == 0);
  8543. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8545. return;
  8546. }
  8547. GGML_TENSOR_UNARY_OP_LOCALS
  8548. // guaranteed to be an integer due to the check in ggml_can_repeat
  8549. const int nr0 = (int)(ne00/ne0);
  8550. const int nr1 = (int)(ne01/ne1);
  8551. const int nr2 = (int)(ne02/ne2);
  8552. const int nr3 = (int)(ne03/ne3);
  8553. // TODO: support for transposed / permuted tensors
  8554. GGML_ASSERT(nb0 == sizeof(float));
  8555. GGML_ASSERT(nb00 == sizeof(float));
  8556. if (ggml_is_contiguous(dst)) {
  8557. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8558. } else {
  8559. for (int k3 = 0; k3 < ne3; k3++) {
  8560. for (int k2 = 0; k2 < ne2; k2++) {
  8561. for (int k1 = 0; k1 < ne1; k1++) {
  8562. ggml_vec_set_f32(ne0,
  8563. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8564. 0);
  8565. }
  8566. }
  8567. }
  8568. }
  8569. // TODO: maybe this is not optimal?
  8570. for (int i3 = 0; i3 < nr3; i3++) {
  8571. for (int k3 = 0; k3 < ne3; k3++) {
  8572. for (int i2 = 0; i2 < nr2; i2++) {
  8573. for (int k2 = 0; k2 < ne2; k2++) {
  8574. for (int i1 = 0; i1 < nr1; i1++) {
  8575. for (int k1 = 0; k1 < ne1; k1++) {
  8576. for (int i0 = 0; i0 < nr0; i0++) {
  8577. ggml_vec_acc_f32(ne0,
  8578. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8579. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8580. }
  8581. }
  8582. }
  8583. }
  8584. }
  8585. }
  8586. }
  8587. }
  8588. static void ggml_compute_forward_repeat_back(
  8589. const struct ggml_compute_params * params,
  8590. struct ggml_tensor * dst) {
  8591. const struct ggml_tensor * src0 = dst->src[0];
  8592. switch (src0->type) {
  8593. case GGML_TYPE_F32:
  8594. {
  8595. ggml_compute_forward_repeat_back_f32(params, dst);
  8596. } break;
  8597. default:
  8598. {
  8599. GGML_ASSERT(false);
  8600. } break;
  8601. }
  8602. }
  8603. // ggml_compute_forward_concat
  8604. static void ggml_compute_forward_concat_f32(
  8605. const struct ggml_compute_params * params,
  8606. struct ggml_tensor * dst) {
  8607. const struct ggml_tensor * src0 = dst->src[0];
  8608. const struct ggml_tensor * src1 = dst->src[1];
  8609. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8610. return;
  8611. }
  8612. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8613. const int ith = params->ith;
  8614. const int nth = params->nth;
  8615. GGML_TENSOR_BINARY_OP_LOCALS
  8616. // TODO: support for transposed / permuted tensors
  8617. GGML_ASSERT(nb0 == sizeof(float));
  8618. GGML_ASSERT(nb00 == sizeof(float));
  8619. GGML_ASSERT(nb10 == sizeof(float));
  8620. for (int i3 = 0; i3 < ne3; i3++) {
  8621. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8622. if (i2 < ne02) { // src0
  8623. for (int i1 = 0; i1 < ne1; i1++) {
  8624. for (int i0 = 0; i0 < ne0; i0++) {
  8625. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8626. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8627. *y = *x;
  8628. }
  8629. }
  8630. } // src1
  8631. else {
  8632. for (int i1 = 0; i1 < ne1; i1++) {
  8633. for (int i0 = 0; i0 < ne0; i0++) {
  8634. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8635. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8636. *y = *x;
  8637. }
  8638. }
  8639. }
  8640. }
  8641. }
  8642. }
  8643. static void ggml_compute_forward_concat(
  8644. const struct ggml_compute_params* params,
  8645. struct ggml_tensor* dst) {
  8646. const struct ggml_tensor * src0 = dst->src[0];
  8647. switch (src0->type) {
  8648. case GGML_TYPE_F32:
  8649. case GGML_TYPE_I32:
  8650. {
  8651. ggml_compute_forward_concat_f32(params, dst);
  8652. } break;
  8653. default:
  8654. {
  8655. GGML_ASSERT(false);
  8656. } break;
  8657. }
  8658. }
  8659. // ggml_compute_forward_abs
  8660. static void ggml_compute_forward_abs_f32(
  8661. const struct ggml_compute_params * params,
  8662. struct ggml_tensor * dst) {
  8663. const struct ggml_tensor * src0 = dst->src[0];
  8664. assert(params->ith == 0);
  8665. assert(ggml_are_same_shape(src0, dst));
  8666. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8667. return;
  8668. }
  8669. const int n = ggml_nrows(src0);
  8670. const int nc = src0->ne[0];
  8671. assert(dst->nb[0] == sizeof(float));
  8672. assert(src0->nb[0] == sizeof(float));
  8673. for (int i = 0; i < n; i++) {
  8674. ggml_vec_abs_f32(nc,
  8675. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8676. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8677. }
  8678. }
  8679. static void ggml_compute_forward_abs(
  8680. const struct ggml_compute_params * params,
  8681. struct ggml_tensor * dst) {
  8682. const struct ggml_tensor * src0 = dst->src[0];
  8683. switch (src0->type) {
  8684. case GGML_TYPE_F32:
  8685. {
  8686. ggml_compute_forward_abs_f32(params, dst);
  8687. } break;
  8688. default:
  8689. {
  8690. GGML_ASSERT(false);
  8691. } break;
  8692. }
  8693. }
  8694. // ggml_compute_forward_sgn
  8695. static void ggml_compute_forward_sgn_f32(
  8696. const struct ggml_compute_params * params,
  8697. struct ggml_tensor * dst) {
  8698. const struct ggml_tensor * src0 = dst->src[0];
  8699. assert(params->ith == 0);
  8700. assert(ggml_are_same_shape(src0, dst));
  8701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8702. return;
  8703. }
  8704. const int n = ggml_nrows(src0);
  8705. const int nc = src0->ne[0];
  8706. assert(dst->nb[0] == sizeof(float));
  8707. assert(src0->nb[0] == sizeof(float));
  8708. for (int i = 0; i < n; i++) {
  8709. ggml_vec_sgn_f32(nc,
  8710. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8711. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8712. }
  8713. }
  8714. static void ggml_compute_forward_sgn(
  8715. const struct ggml_compute_params * params,
  8716. struct ggml_tensor * dst) {
  8717. const struct ggml_tensor * src0 = dst->src[0];
  8718. switch (src0->type) {
  8719. case GGML_TYPE_F32:
  8720. {
  8721. ggml_compute_forward_sgn_f32(params, dst);
  8722. } break;
  8723. default:
  8724. {
  8725. GGML_ASSERT(false);
  8726. } break;
  8727. }
  8728. }
  8729. // ggml_compute_forward_neg
  8730. static void ggml_compute_forward_neg_f32(
  8731. const struct ggml_compute_params * params,
  8732. struct ggml_tensor * dst) {
  8733. const struct ggml_tensor * src0 = dst->src[0];
  8734. assert(params->ith == 0);
  8735. assert(ggml_are_same_shape(src0, dst));
  8736. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8737. return;
  8738. }
  8739. const int n = ggml_nrows(src0);
  8740. const int nc = src0->ne[0];
  8741. assert(dst->nb[0] == sizeof(float));
  8742. assert(src0->nb[0] == sizeof(float));
  8743. for (int i = 0; i < n; i++) {
  8744. ggml_vec_neg_f32(nc,
  8745. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8746. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8747. }
  8748. }
  8749. static void ggml_compute_forward_neg(
  8750. const struct ggml_compute_params * params,
  8751. struct ggml_tensor * dst) {
  8752. const struct ggml_tensor * src0 = dst->src[0];
  8753. switch (src0->type) {
  8754. case GGML_TYPE_F32:
  8755. {
  8756. ggml_compute_forward_neg_f32(params, dst);
  8757. } break;
  8758. default:
  8759. {
  8760. GGML_ASSERT(false);
  8761. } break;
  8762. }
  8763. }
  8764. // ggml_compute_forward_step
  8765. static void ggml_compute_forward_step_f32(
  8766. const struct ggml_compute_params * params,
  8767. struct ggml_tensor * dst) {
  8768. const struct ggml_tensor * src0 = dst->src[0];
  8769. assert(params->ith == 0);
  8770. assert(ggml_are_same_shape(src0, dst));
  8771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8772. return;
  8773. }
  8774. const int n = ggml_nrows(src0);
  8775. const int nc = src0->ne[0];
  8776. assert(dst->nb[0] == sizeof(float));
  8777. assert(src0->nb[0] == sizeof(float));
  8778. for (int i = 0; i < n; i++) {
  8779. ggml_vec_step_f32(nc,
  8780. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8781. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8782. }
  8783. }
  8784. static void ggml_compute_forward_step(
  8785. const struct ggml_compute_params * params,
  8786. struct ggml_tensor * dst) {
  8787. const struct ggml_tensor * src0 = dst->src[0];
  8788. switch (src0->type) {
  8789. case GGML_TYPE_F32:
  8790. {
  8791. ggml_compute_forward_step_f32(params, dst);
  8792. } break;
  8793. default:
  8794. {
  8795. GGML_ASSERT(false);
  8796. } break;
  8797. }
  8798. }
  8799. // ggml_compute_forward_tanh
  8800. static void ggml_compute_forward_tanh_f32(
  8801. const struct ggml_compute_params * params,
  8802. struct ggml_tensor * dst) {
  8803. const struct ggml_tensor * src0 = dst->src[0];
  8804. assert(params->ith == 0);
  8805. assert(ggml_are_same_shape(src0, dst));
  8806. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8807. return;
  8808. }
  8809. const int n = ggml_nrows(src0);
  8810. const int nc = src0->ne[0];
  8811. assert(dst->nb[0] == sizeof(float));
  8812. assert(src0->nb[0] == sizeof(float));
  8813. for (int i = 0; i < n; i++) {
  8814. ggml_vec_tanh_f32(nc,
  8815. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8816. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8817. }
  8818. }
  8819. static void ggml_compute_forward_tanh(
  8820. const struct ggml_compute_params * params,
  8821. struct ggml_tensor * dst) {
  8822. const struct ggml_tensor * src0 = dst->src[0];
  8823. switch (src0->type) {
  8824. case GGML_TYPE_F32:
  8825. {
  8826. ggml_compute_forward_tanh_f32(params, dst);
  8827. } break;
  8828. default:
  8829. {
  8830. GGML_ASSERT(false);
  8831. } break;
  8832. }
  8833. }
  8834. // ggml_compute_forward_elu
  8835. static void ggml_compute_forward_elu_f32(
  8836. const struct ggml_compute_params * params,
  8837. struct ggml_tensor * dst) {
  8838. const struct ggml_tensor * src0 = dst->src[0];
  8839. assert(params->ith == 0);
  8840. assert(ggml_are_same_shape(src0, dst));
  8841. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8842. return;
  8843. }
  8844. const int n = ggml_nrows(src0);
  8845. const int nc = src0->ne[0];
  8846. assert(dst->nb[0] == sizeof(float));
  8847. assert(src0->nb[0] == sizeof(float));
  8848. for (int i = 0; i < n; i++) {
  8849. ggml_vec_elu_f32(nc,
  8850. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8851. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8852. }
  8853. }
  8854. static void ggml_compute_forward_elu(
  8855. const struct ggml_compute_params * params,
  8856. struct ggml_tensor * dst) {
  8857. const struct ggml_tensor * src0 = dst->src[0];
  8858. switch (src0->type) {
  8859. case GGML_TYPE_F32:
  8860. {
  8861. ggml_compute_forward_elu_f32(params, dst);
  8862. } break;
  8863. default:
  8864. {
  8865. GGML_ASSERT(false);
  8866. } break;
  8867. }
  8868. }
  8869. // ggml_compute_forward_relu
  8870. static void ggml_compute_forward_relu_f32(
  8871. const struct ggml_compute_params * params,
  8872. struct ggml_tensor * dst) {
  8873. const struct ggml_tensor * src0 = dst->src[0];
  8874. assert(params->ith == 0);
  8875. assert(ggml_are_same_shape(src0, dst));
  8876. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8877. return;
  8878. }
  8879. const int n = ggml_nrows(src0);
  8880. const int nc = src0->ne[0];
  8881. assert(dst->nb[0] == sizeof(float));
  8882. assert(src0->nb[0] == sizeof(float));
  8883. for (int i = 0; i < n; i++) {
  8884. ggml_vec_relu_f32(nc,
  8885. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8886. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8887. }
  8888. }
  8889. static void ggml_compute_forward_relu(
  8890. const struct ggml_compute_params * params,
  8891. struct ggml_tensor * dst) {
  8892. const struct ggml_tensor * src0 = dst->src[0];
  8893. switch (src0->type) {
  8894. case GGML_TYPE_F32:
  8895. {
  8896. ggml_compute_forward_relu_f32(params, dst);
  8897. } break;
  8898. default:
  8899. {
  8900. GGML_ASSERT(false);
  8901. } break;
  8902. }
  8903. }
  8904. // ggml_compute_forward_gelu
  8905. static void ggml_compute_forward_gelu_f32(
  8906. const struct ggml_compute_params * params,
  8907. struct ggml_tensor * dst) {
  8908. const struct ggml_tensor * src0 = dst->src[0];
  8909. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8910. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8911. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8912. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8913. return;
  8914. }
  8915. const int ith = params->ith;
  8916. const int nth = params->nth;
  8917. const int nc = src0->ne[0];
  8918. const int nr = ggml_nrows(src0);
  8919. // rows per thread
  8920. const int dr = (nr + nth - 1)/nth;
  8921. // row range for this thread
  8922. const int ir0 = dr*ith;
  8923. const int ir1 = MIN(ir0 + dr, nr);
  8924. for (int i1 = ir0; i1 < ir1; i1++) {
  8925. ggml_vec_gelu_f32(nc,
  8926. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8927. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8928. #ifndef NDEBUG
  8929. for (int k = 0; k < nc; k++) {
  8930. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8931. UNUSED(x);
  8932. assert(!isnan(x));
  8933. assert(!isinf(x));
  8934. }
  8935. #endif
  8936. }
  8937. }
  8938. static void ggml_compute_forward_gelu(
  8939. const struct ggml_compute_params * params,
  8940. struct ggml_tensor * dst) {
  8941. const struct ggml_tensor * src0 = dst->src[0];
  8942. switch (src0->type) {
  8943. case GGML_TYPE_F32:
  8944. {
  8945. ggml_compute_forward_gelu_f32(params, dst);
  8946. } break;
  8947. default:
  8948. {
  8949. GGML_ASSERT(false);
  8950. } break;
  8951. }
  8952. }
  8953. // ggml_compute_forward_gelu_quick
  8954. static void ggml_compute_forward_gelu_quick_f32(
  8955. const struct ggml_compute_params * params,
  8956. struct ggml_tensor * dst) {
  8957. const struct ggml_tensor * src0 = dst->src[0];
  8958. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8959. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8960. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8961. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8962. return;
  8963. }
  8964. const int ith = params->ith;
  8965. const int nth = params->nth;
  8966. const int nc = src0->ne[0];
  8967. const int nr = ggml_nrows(src0);
  8968. // rows per thread
  8969. const int dr = (nr + nth - 1)/nth;
  8970. // row range for this thread
  8971. const int ir0 = dr*ith;
  8972. const int ir1 = MIN(ir0 + dr, nr);
  8973. for (int i1 = ir0; i1 < ir1; i1++) {
  8974. ggml_vec_gelu_quick_f32(nc,
  8975. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8976. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8977. #ifndef NDEBUG
  8978. for (int k = 0; k < nc; k++) {
  8979. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8980. UNUSED(x);
  8981. assert(!isnan(x));
  8982. assert(!isinf(x));
  8983. }
  8984. #endif
  8985. }
  8986. }
  8987. static void ggml_compute_forward_gelu_quick(
  8988. const struct ggml_compute_params * params,
  8989. struct ggml_tensor * dst) {
  8990. const struct ggml_tensor * src0 = dst->src[0];
  8991. switch (src0->type) {
  8992. case GGML_TYPE_F32:
  8993. {
  8994. ggml_compute_forward_gelu_quick_f32(params, dst);
  8995. } break;
  8996. default:
  8997. {
  8998. GGML_ASSERT(false);
  8999. } break;
  9000. }
  9001. }
  9002. // ggml_compute_forward_silu
  9003. static void ggml_compute_forward_silu_f32(
  9004. const struct ggml_compute_params * params,
  9005. struct ggml_tensor * dst) {
  9006. const struct ggml_tensor * src0 = dst->src[0];
  9007. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9008. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9009. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9010. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9011. return;
  9012. }
  9013. const int ith = params->ith;
  9014. const int nth = params->nth;
  9015. const int nc = src0->ne[0];
  9016. const int nr = ggml_nrows(src0);
  9017. // rows per thread
  9018. const int dr = (nr + nth - 1)/nth;
  9019. // row range for this thread
  9020. const int ir0 = dr*ith;
  9021. const int ir1 = MIN(ir0 + dr, nr);
  9022. for (int i1 = ir0; i1 < ir1; i1++) {
  9023. ggml_vec_silu_f32(nc,
  9024. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9025. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9026. #ifndef NDEBUG
  9027. for (int k = 0; k < nc; k++) {
  9028. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9029. UNUSED(x);
  9030. assert(!isnan(x));
  9031. assert(!isinf(x));
  9032. }
  9033. #endif
  9034. }
  9035. }
  9036. static void ggml_compute_forward_silu(
  9037. const struct ggml_compute_params * params,
  9038. struct ggml_tensor * dst) {
  9039. const struct ggml_tensor * src0 = dst->src[0];
  9040. switch (src0->type) {
  9041. case GGML_TYPE_F32:
  9042. {
  9043. ggml_compute_forward_silu_f32(params, dst);
  9044. } break;
  9045. default:
  9046. {
  9047. GGML_ASSERT(false);
  9048. } break;
  9049. }
  9050. }
  9051. // ggml_compute_forward_leaky_relu
  9052. static void ggml_compute_forward_leaky_relu_f32(
  9053. const struct ggml_compute_params * params,
  9054. struct ggml_tensor * dst) {
  9055. const struct ggml_tensor * src0 = dst->src[0];
  9056. assert(params->ith == 0);
  9057. assert(ggml_are_same_shape(src0, dst));
  9058. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9059. return;
  9060. }
  9061. const int n = ggml_nrows(src0);
  9062. const int nc = src0->ne[0];
  9063. float negative_slope;
  9064. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9065. assert(dst->nb[0] == sizeof(float));
  9066. assert(src0->nb[0] == sizeof(float));
  9067. for (int i = 0; i < n; i++) {
  9068. ggml_vec_leaky_relu_f32(nc,
  9069. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9070. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9071. }
  9072. }
  9073. static void ggml_compute_forward_leaky_relu(
  9074. const struct ggml_compute_params * params,
  9075. struct ggml_tensor * dst) {
  9076. const struct ggml_tensor * src0 = dst->src[0];
  9077. switch (src0->type) {
  9078. case GGML_TYPE_F32:
  9079. {
  9080. ggml_compute_forward_leaky_relu_f32(params, dst);
  9081. } break;
  9082. default:
  9083. {
  9084. GGML_ASSERT(false);
  9085. } break;
  9086. }
  9087. }
  9088. // ggml_compute_forward_silu_back
  9089. static void ggml_compute_forward_silu_back_f32(
  9090. const struct ggml_compute_params * params,
  9091. struct ggml_tensor * dst) {
  9092. const struct ggml_tensor * src0 = dst->src[0];
  9093. const struct ggml_tensor * grad = dst->src[1];
  9094. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9095. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9096. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9097. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9098. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9099. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9100. return;
  9101. }
  9102. const int ith = params->ith;
  9103. const int nth = params->nth;
  9104. const int nc = src0->ne[0];
  9105. const int nr = ggml_nrows(src0);
  9106. // rows per thread
  9107. const int dr = (nr + nth - 1)/nth;
  9108. // row range for this thread
  9109. const int ir0 = dr*ith;
  9110. const int ir1 = MIN(ir0 + dr, nr);
  9111. for (int i1 = ir0; i1 < ir1; i1++) {
  9112. ggml_vec_silu_backward_f32(nc,
  9113. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9114. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9115. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9116. #ifndef NDEBUG
  9117. for (int k = 0; k < nc; k++) {
  9118. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9119. UNUSED(x);
  9120. assert(!isnan(x));
  9121. assert(!isinf(x));
  9122. }
  9123. #endif
  9124. }
  9125. }
  9126. static void ggml_compute_forward_silu_back(
  9127. const struct ggml_compute_params * params,
  9128. struct ggml_tensor * dst) {
  9129. const struct ggml_tensor * src0 = dst->src[0];
  9130. switch (src0->type) {
  9131. case GGML_TYPE_F32:
  9132. {
  9133. ggml_compute_forward_silu_back_f32(params, dst);
  9134. } break;
  9135. default:
  9136. {
  9137. GGML_ASSERT(false);
  9138. } break;
  9139. }
  9140. }
  9141. static void ggml_compute_forward_hardswish_f32(
  9142. const struct ggml_compute_params * params,
  9143. struct ggml_tensor * dst) {
  9144. const struct ggml_tensor * src0 = dst->src[0];
  9145. assert(params->ith == 0);
  9146. assert(ggml_are_same_shape(src0, dst));
  9147. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9148. return;
  9149. }
  9150. const int n = ggml_nrows(src0);
  9151. const int nc = src0->ne[0];
  9152. assert(dst->nb[0] == sizeof(float));
  9153. assert(src0->nb[0] == sizeof(float));
  9154. for (int i = 0; i < n; i++) {
  9155. ggml_vec_hardswish_f32(nc,
  9156. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9157. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9158. }
  9159. }
  9160. static void ggml_compute_forward_hardswish(
  9161. const struct ggml_compute_params * params,
  9162. struct ggml_tensor * dst) {
  9163. const struct ggml_tensor * src0 = dst->src[0];
  9164. switch (src0->type) {
  9165. case GGML_TYPE_F32:
  9166. {
  9167. ggml_compute_forward_hardswish_f32(params, dst);
  9168. } break;
  9169. default:
  9170. {
  9171. GGML_ASSERT(false);
  9172. } break;
  9173. }
  9174. }
  9175. static void ggml_compute_forward_hardsigmoid_f32(
  9176. const struct ggml_compute_params * params,
  9177. struct ggml_tensor * dst) {
  9178. const struct ggml_tensor * src0 = dst->src[0];
  9179. assert(params->ith == 0);
  9180. assert(ggml_are_same_shape(src0, dst));
  9181. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9182. return;
  9183. }
  9184. const int n = ggml_nrows(src0);
  9185. const int nc = src0->ne[0];
  9186. assert(dst->nb[0] == sizeof(float));
  9187. assert(src0->nb[0] == sizeof(float));
  9188. for (int i = 0; i < n; i++) {
  9189. ggml_vec_hardsigmoid_f32(nc,
  9190. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9191. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9192. }
  9193. }
  9194. static void ggml_compute_forward_hardsigmoid(
  9195. const struct ggml_compute_params * params,
  9196. struct ggml_tensor * dst) {
  9197. const struct ggml_tensor * src0 = dst->src[0];
  9198. switch (src0->type) {
  9199. case GGML_TYPE_F32:
  9200. {
  9201. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9202. } break;
  9203. default:
  9204. {
  9205. GGML_ASSERT(false);
  9206. } break;
  9207. }
  9208. }
  9209. // ggml_compute_forward_norm
  9210. static void ggml_compute_forward_norm_f32(
  9211. const struct ggml_compute_params * params,
  9212. struct ggml_tensor * dst) {
  9213. const struct ggml_tensor * src0 = dst->src[0];
  9214. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9216. return;
  9217. }
  9218. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9219. const int ith = params->ith;
  9220. const int nth = params->nth;
  9221. GGML_TENSOR_UNARY_OP_LOCALS
  9222. float eps;
  9223. memcpy(&eps, dst->op_params, sizeof(float));
  9224. GGML_ASSERT(eps > 0.0f);
  9225. // TODO: optimize
  9226. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9227. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9228. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9229. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9230. ggml_float sum = 0.0;
  9231. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9232. sum += (ggml_float)x[i00];
  9233. }
  9234. float mean = sum/ne00;
  9235. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9236. ggml_float sum2 = 0.0;
  9237. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9238. float v = x[i00] - mean;
  9239. y[i00] = v;
  9240. sum2 += (ggml_float)(v*v);
  9241. }
  9242. float variance = sum2/ne00;
  9243. const float scale = 1.0f/sqrtf(variance + eps);
  9244. ggml_vec_scale_f32(ne00, y, scale);
  9245. }
  9246. }
  9247. }
  9248. }
  9249. static void ggml_compute_forward_norm(
  9250. const struct ggml_compute_params * params,
  9251. struct ggml_tensor * dst) {
  9252. const struct ggml_tensor * src0 = dst->src[0];
  9253. switch (src0->type) {
  9254. case GGML_TYPE_F32:
  9255. {
  9256. ggml_compute_forward_norm_f32(params, dst);
  9257. } break;
  9258. default:
  9259. {
  9260. GGML_ASSERT(false);
  9261. } break;
  9262. }
  9263. }
  9264. // ggml_compute_forward_group_rms_norm
  9265. static void ggml_compute_forward_rms_norm_f32(
  9266. const struct ggml_compute_params * params,
  9267. struct ggml_tensor * dst) {
  9268. const struct ggml_tensor * src0 = dst->src[0];
  9269. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9270. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9271. return;
  9272. }
  9273. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9274. const int ith = params->ith;
  9275. const int nth = params->nth;
  9276. GGML_TENSOR_UNARY_OP_LOCALS
  9277. float eps;
  9278. memcpy(&eps, dst->op_params, sizeof(float));
  9279. GGML_ASSERT(eps > 0.0f);
  9280. // TODO: optimize
  9281. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9282. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9283. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9284. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9285. ggml_float sum = 0.0;
  9286. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9287. sum += (ggml_float)(x[i00] * x[i00]);
  9288. }
  9289. const float mean = sum/ne00;
  9290. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9291. memcpy(y, x, ne00 * sizeof(float));
  9292. // for (int i00 = 0; i00 < ne00; i00++) {
  9293. // y[i00] = x[i00];
  9294. // }
  9295. const float scale = 1.0f/sqrtf(mean + eps);
  9296. ggml_vec_scale_f32(ne00, y, scale);
  9297. }
  9298. }
  9299. }
  9300. }
  9301. static void ggml_compute_forward_rms_norm(
  9302. const struct ggml_compute_params * params,
  9303. struct ggml_tensor * dst) {
  9304. const struct ggml_tensor * src0 = dst->src[0];
  9305. switch (src0->type) {
  9306. case GGML_TYPE_F32:
  9307. {
  9308. ggml_compute_forward_rms_norm_f32(params, dst);
  9309. } break;
  9310. default:
  9311. {
  9312. GGML_ASSERT(false);
  9313. } break;
  9314. }
  9315. }
  9316. static void ggml_compute_forward_rms_norm_back_f32(
  9317. const struct ggml_compute_params * params,
  9318. struct ggml_tensor * dst) {
  9319. const struct ggml_tensor * src0 = dst->src[0];
  9320. const struct ggml_tensor * src1 = dst->src[1];
  9321. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9323. return;
  9324. }
  9325. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9326. const int ith = params->ith;
  9327. const int nth = params->nth;
  9328. GGML_TENSOR_BINARY_OP_LOCALS
  9329. float eps;
  9330. memcpy(&eps, dst->op_params, sizeof(float));
  9331. // TODO: optimize
  9332. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9333. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9334. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9335. // src1 is same shape as src0 => same indices
  9336. const int64_t i11 = i01;
  9337. const int64_t i12 = i02;
  9338. const int64_t i13 = i03;
  9339. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9340. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9341. ggml_float sum_xx = 0.0;
  9342. ggml_float sum_xdz = 0.0;
  9343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9344. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9345. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9346. }
  9347. //const float mean = (float)(sum_xx)/ne00;
  9348. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9349. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9350. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9351. // we could cache rms from forward pass to improve performance.
  9352. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9353. //const float rms = sqrtf(mean_eps);
  9354. const float rrms = 1.0f / sqrtf(mean_eps);
  9355. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9356. {
  9357. // z = rms_norm(x)
  9358. //
  9359. // rms_norm(src0) =
  9360. // scale(
  9361. // src0,
  9362. // div(
  9363. // 1,
  9364. // sqrt(
  9365. // add(
  9366. // scale(
  9367. // sum(
  9368. // sqr(
  9369. // src0)),
  9370. // (1.0/N)),
  9371. // eps))));
  9372. // postorder:
  9373. // ## op args grad
  9374. // 00 param src0 grad[#00]
  9375. // 01 const 1
  9376. // 02 sqr (#00) grad[#02]
  9377. // 03 sum (#02) grad[#03]
  9378. // 04 const 1/N
  9379. // 05 scale (#03, #04) grad[#05]
  9380. // 06 const eps
  9381. // 07 add (#05, #06) grad[#07]
  9382. // 08 sqrt (#07) grad[#08]
  9383. // 09 div (#01,#08) grad[#09]
  9384. // 10 scale (#00,#09) grad[#10]
  9385. //
  9386. // backward pass, given grad[#10]
  9387. // #10: scale
  9388. // grad[#00] += scale(grad[#10],#09)
  9389. // grad[#09] += sum(mul(grad[#10],#00))
  9390. // #09: div
  9391. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9392. // #08: sqrt
  9393. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9394. // #07: add
  9395. // grad[#05] += grad[#07]
  9396. // #05: scale
  9397. // grad[#03] += scale(grad[#05],#04)
  9398. // #03: sum
  9399. // grad[#02] += repeat(grad[#03], #02)
  9400. // #02:
  9401. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9402. //
  9403. // substitute and simplify:
  9404. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9405. // grad[#02] = repeat(grad[#03], #02)
  9406. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9407. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9408. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9409. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9410. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9411. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9412. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9413. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9414. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9415. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9416. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9417. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9418. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9419. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9420. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9421. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9422. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9423. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9424. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9425. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9426. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9427. // a = b*c + d*e
  9428. // a = b*c*f/f + d*e*f/f
  9429. // a = (b*c*f + d*e*f)*(1/f)
  9430. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9431. // a = (b + d*e/c)*c
  9432. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9433. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9434. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9435. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9436. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9437. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9438. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9439. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9440. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9441. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9442. }
  9443. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9444. // post-order:
  9445. // dx := x
  9446. // dx := scale(dx,-mean_xdz/mean_eps)
  9447. // dx := add(dx, dz)
  9448. // dx := scale(dx, rrms)
  9449. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9450. ggml_vec_cpy_f32 (ne00, dx, x);
  9451. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9452. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9453. ggml_vec_acc_f32 (ne00, dx, dz);
  9454. ggml_vec_scale_f32(ne00, dx, rrms);
  9455. }
  9456. }
  9457. }
  9458. }
  9459. static void ggml_compute_forward_rms_norm_back(
  9460. const struct ggml_compute_params * params,
  9461. struct ggml_tensor * dst) {
  9462. const struct ggml_tensor * src0 = dst->src[0];
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9467. } break;
  9468. default:
  9469. {
  9470. GGML_ASSERT(false);
  9471. } break;
  9472. }
  9473. }
  9474. // ggml_compute_forward_group_norm
  9475. static void ggml_compute_forward_group_norm_f32(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9480. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9481. return;
  9482. }
  9483. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9484. const int ith = params->ith;
  9485. const int nth = params->nth;
  9486. GGML_TENSOR_UNARY_OP_LOCALS
  9487. const float eps = 1e-6f; // TODO: make this a parameter
  9488. // TODO: optimize
  9489. int n_channels = src0->ne[2];
  9490. int n_groups = dst->op_params[0];
  9491. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9492. for (int i = ith; i < n_groups; i += nth) {
  9493. int start = i * n_channels_per_group;
  9494. int end = start + n_channels_per_group;
  9495. if (end > n_channels) {
  9496. end = n_channels;
  9497. }
  9498. int step = end - start;
  9499. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9500. ggml_float sum = 0.0;
  9501. for (int64_t i02 = start; i02 < end; i02++) {
  9502. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9503. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9504. ggml_float sumr = 0.0;
  9505. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9506. sumr += (ggml_float)x[i00];
  9507. }
  9508. sum += sumr;
  9509. }
  9510. }
  9511. const float mean = sum / (ne00 * ne01 * step);
  9512. ggml_float sum2 = 0.0;
  9513. for (int64_t i02 = start; i02 < end; i02++) {
  9514. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9515. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9516. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9517. ggml_float sumr = 0.0;
  9518. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9519. float v = x[i00] - mean;
  9520. y[i00] = v;
  9521. sumr += (ggml_float)(v * v);
  9522. }
  9523. sum2 += sumr;
  9524. }
  9525. }
  9526. const float variance = sum2 / (ne00 * ne01 * step);
  9527. const float scale = 1.0f / sqrtf(variance + eps);
  9528. for (int64_t i02 = start; i02 < end; i02++) {
  9529. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9530. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9531. ggml_vec_scale_f32(ne00, y, scale);
  9532. }
  9533. }
  9534. }
  9535. }
  9536. }
  9537. static void ggml_compute_forward_group_norm(
  9538. const struct ggml_compute_params * params,
  9539. struct ggml_tensor * dst) {
  9540. const struct ggml_tensor * src0 = dst->src[0];
  9541. switch (src0->type) {
  9542. case GGML_TYPE_F32:
  9543. {
  9544. ggml_compute_forward_group_norm_f32(params, dst);
  9545. } break;
  9546. default:
  9547. {
  9548. GGML_ASSERT(false);
  9549. } break;
  9550. }
  9551. }
  9552. // ggml_compute_forward_mul_mat
  9553. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9554. // helper function to determine if it is better to use BLAS or not
  9555. // for large matrices, BLAS is faster
  9556. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9557. const struct ggml_tensor * src0 = dst->src[0];
  9558. const struct ggml_tensor * src1 = dst->src[1];
  9559. //const int64_t ne00 = src0->ne[0];
  9560. //const int64_t ne01 = src0->ne[1];
  9561. const int64_t ne10 = src1->ne[0];
  9562. const int64_t ne0 = dst->ne[0];
  9563. const int64_t ne1 = dst->ne[1];
  9564. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9565. // all the experts for each batch element and the processing would become incredibly slow
  9566. // TODO: find the optimal values for these
  9567. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9568. ggml_is_contiguous(src0) &&
  9569. ggml_is_contiguous(src1) &&
  9570. //src0->type == GGML_TYPE_F32 &&
  9571. src1->type == GGML_TYPE_F32 &&
  9572. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9573. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9574. return true;
  9575. }
  9576. return false;
  9577. }
  9578. #endif
  9579. static void ggml_compute_forward_mul_mat(
  9580. const struct ggml_compute_params * params,
  9581. struct ggml_tensor * dst) {
  9582. const struct ggml_tensor * src0 = dst->src[0];
  9583. const struct ggml_tensor * src1 = dst->src[1];
  9584. int64_t t0 = ggml_perf_time_us();
  9585. UNUSED(t0);
  9586. GGML_TENSOR_BINARY_OP_LOCALS
  9587. const int ith = params->ith;
  9588. const int nth = params->nth;
  9589. const enum ggml_type type = src0->type;
  9590. const bool src1_cont = ggml_is_contiguous(src1);
  9591. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9592. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9593. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9594. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9595. GGML_ASSERT(ne0 == ne01);
  9596. GGML_ASSERT(ne1 == ne11);
  9597. GGML_ASSERT(ne2 == ne12);
  9598. GGML_ASSERT(ne3 == ne13);
  9599. // we don't support permuted src0 or src1
  9600. GGML_ASSERT(nb00 == ggml_type_size(type));
  9601. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9602. // dst cannot be transposed or permuted
  9603. GGML_ASSERT(nb0 == sizeof(float));
  9604. GGML_ASSERT(nb0 <= nb1);
  9605. GGML_ASSERT(nb1 <= nb2);
  9606. GGML_ASSERT(nb2 <= nb3);
  9607. // broadcast factors
  9608. const int64_t r2 = ne12/ne02;
  9609. const int64_t r3 = ne13/ne03;
  9610. // nb01 >= nb00 - src0 is not transposed
  9611. // compute by src0 rows
  9612. #if defined(GGML_USE_CLBLAST)
  9613. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9614. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  9615. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9616. }
  9617. return;
  9618. }
  9619. #endif
  9620. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9621. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  9622. const int64_t ne_plane = ne01*ne00;
  9623. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  9624. UNUSED(desired_wsize);
  9625. if (params->type == GGML_TASK_TYPE_INIT) {
  9626. if (type != GGML_TYPE_F32) {
  9627. assert(params->wsize >= desired_wsize);
  9628. // parallelize by src0 rows
  9629. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9630. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9631. // broadcast src0 into src1 across 2nd,3rd dimension
  9632. const int64_t i03 = i13/r3;
  9633. const int64_t i02 = i12/r2;
  9634. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9635. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9636. ggml_to_float_t const to_float = type_traits[type].to_float;
  9637. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9638. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  9639. }
  9640. }
  9641. }
  9642. }
  9643. return;
  9644. }
  9645. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9646. return;
  9647. }
  9648. // perform sgemm, parallelization controlled by blas lib
  9649. if (ith != 0) {
  9650. return;
  9651. }
  9652. //const int64_t tgemm0 = ggml_perf_time_us();
  9653. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9654. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9655. const int64_t i03 = i13/r3;
  9656. const int64_t i02 = i12/r2;
  9657. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9658. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9659. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9660. if (type != GGML_TYPE_F32) {
  9661. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9662. }
  9663. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9664. ne1, ne01, ne10,
  9665. 1.0f, y, ne10,
  9666. x, ne00,
  9667. 0.0f, d, ne01);
  9668. }
  9669. }
  9670. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  9671. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9672. return;
  9673. }
  9674. #endif
  9675. #if GGML_USE_LLAMAFILE
  9676. if (src1_cont) {
  9677. for (int64_t i13 = 0; i13 < ne13; i13++)
  9678. for (int64_t i12 = 0; i12 < ne12; i12++)
  9679. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9680. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9681. nb01/ggml_type_size(src0->type),
  9682. (const char *)src1->data + i12*nb12 + i13*nb13,
  9683. nb11/ggml_type_size(src1->type),
  9684. (char *)dst->data + i12*nb2 + i13*nb3,
  9685. nb1/ggml_type_size(dst->type),
  9686. ith, nth,
  9687. params->type,
  9688. src0->type,
  9689. src1->type,
  9690. dst->type))
  9691. goto UseGgmlGemm1;
  9692. return;
  9693. }
  9694. UseGgmlGemm1:;
  9695. #endif
  9696. if (params->type == GGML_TASK_TYPE_INIT) {
  9697. if (ith != 0) {
  9698. return;
  9699. }
  9700. if (src1->type != vec_dot_type) {
  9701. char * wdata = params->wdata;
  9702. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9703. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9704. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9705. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9706. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9707. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9708. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9709. wdata += row_size;
  9710. }
  9711. }
  9712. }
  9713. }
  9714. return;
  9715. }
  9716. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9717. return;
  9718. }
  9719. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9720. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9721. #if GGML_USE_LLAMAFILE
  9722. if (src1->type != vec_dot_type) {
  9723. for (int64_t i13 = 0; i13 < ne13; i13++)
  9724. for (int64_t i12 = 0; i12 < ne12; i12++)
  9725. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9726. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9727. nb01/ggml_type_size(src0->type),
  9728. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  9729. row_size/ggml_type_size(vec_dot_type),
  9730. (char *)dst->data + i12*nb2 + i13*nb3,
  9731. nb1/ggml_type_size(dst->type),
  9732. ith, nth,
  9733. params->type,
  9734. src0->type,
  9735. vec_dot_type,
  9736. dst->type))
  9737. goto UseGgmlGemm2;
  9738. return;
  9739. }
  9740. UseGgmlGemm2:;
  9741. #endif
  9742. const int64_t nr0 = ne01; // src0 rows
  9743. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  9744. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9745. // distribute the thread work across the inner or outer loop based on which one is larger
  9746. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9747. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9748. const int64_t ith0 = ith % nth0;
  9749. const int64_t ith1 = ith / nth0;
  9750. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9751. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9752. const int64_t ir010 = dr0*ith0;
  9753. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9754. const int64_t ir110 = dr1*ith1;
  9755. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9756. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9757. // threads with no work simply yield (not sure if it helps)
  9758. if (ir010 >= ir011 || ir110 >= ir111) {
  9759. sched_yield();
  9760. return;
  9761. }
  9762. assert(ne12 % ne02 == 0);
  9763. assert(ne13 % ne03 == 0);
  9764. // block-tiling attempt
  9765. const int64_t blck_0 = 16;
  9766. const int64_t blck_1 = 16;
  9767. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  9768. int64_t nrc = vec_dot_num_rows;
  9769. // TODO: currently the mmla kernels support only even numbered rows/cols.
  9770. // this check can be removed once they are extended to support odd numbered rows/cols too
  9771. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  9772. nrc = 1;
  9773. }
  9774. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9775. // attempt to reduce false-sharing (does not seem to make a difference)
  9776. // 16 * 2, accounting for mmla kernels
  9777. float tmp[32];
  9778. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9779. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9780. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  9781. const int64_t i13 = (ir1/(ne12*ne1));
  9782. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  9783. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  9784. // broadcast src0 into src1
  9785. const int64_t i03 = i13/r3;
  9786. const int64_t i02 = i12/r2;
  9787. const int64_t i1 = i11;
  9788. const int64_t i2 = i12;
  9789. const int64_t i3 = i13;
  9790. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9791. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9792. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9793. // the original src1 data pointer, so we should index using the indices directly
  9794. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9795. const char * src1_col = (const char *) wdata +
  9796. (src1_cont || src1->type != vec_dot_type
  9797. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9798. : (i11*nb11 + i12*nb12 + i13*nb13));
  9799. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9800. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9801. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9802. //}
  9803. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  9804. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  9805. }
  9806. for (int cn = 0; cn < nrc; ++cn) {
  9807. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9808. }
  9809. }
  9810. }
  9811. }
  9812. }
  9813. // ggml_compute_forward_mul_mat_id
  9814. static void ggml_compute_forward_mul_mat_id(
  9815. const struct ggml_compute_params * params,
  9816. struct ggml_tensor * dst) {
  9817. const struct ggml_tensor * src0 = dst->src[0];
  9818. const struct ggml_tensor * src1 = dst->src[1];
  9819. const struct ggml_tensor * ids = dst->src[2];
  9820. GGML_TENSOR_BINARY_OP_LOCALS
  9821. const int ith = params->ith;
  9822. const int nth = params->nth;
  9823. const enum ggml_type type = src0->type;
  9824. const bool src1_cont = ggml_is_contiguous(src1);
  9825. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9826. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9827. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9828. // we don't support permuted src0 or src1
  9829. GGML_ASSERT(nb00 == ggml_type_size(type));
  9830. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9831. // dst cannot be transposed or permuted
  9832. GGML_ASSERT(nb0 == sizeof(float));
  9833. GGML_ASSERT(nb0 <= nb1);
  9834. GGML_ASSERT(nb1 <= nb2);
  9835. GGML_ASSERT(nb2 <= nb3);
  9836. // row groups
  9837. const int n_ids = ids->ne[0]; // n_expert_used
  9838. const int n_as = ne02; // n_expert
  9839. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  9840. (char *) params->wdata :
  9841. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  9842. struct mmid_row_mapping {
  9843. int32_t i1;
  9844. int32_t i2;
  9845. };
  9846. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  9847. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  9848. if (params->type == GGML_TASK_TYPE_INIT) {
  9849. if (ith != 0) {
  9850. return;
  9851. }
  9852. char * wdata = params->wdata;
  9853. if (src1->type != vec_dot_type) {
  9854. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9855. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9856. assert(src1->type == GGML_TYPE_F32);
  9857. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9858. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9859. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9860. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9861. wdata += row_size;
  9862. }
  9863. }
  9864. }
  9865. }
  9866. // initialize matrix_row_counts
  9867. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9868. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9869. // group rows by src0 matrix
  9870. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9871. for (int id = 0; id < n_ids; ++id) {
  9872. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9873. assert(i02 >= 0 && i02 < n_as);
  9874. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9875. matrix_row_counts[i02] += 1;
  9876. }
  9877. }
  9878. return;
  9879. }
  9880. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9881. return;
  9882. }
  9883. // compute each matrix multiplication in sequence
  9884. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9885. const int64_t cne1 = matrix_row_counts[cur_a];
  9886. if (cne1 == 0) {
  9887. continue;
  9888. }
  9889. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9890. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9891. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9892. const int64_t nr0 = ne01; // src0 rows
  9893. const int64_t nr1 = cne1; // src1 rows
  9894. // distribute the thread work across the inner or outer loop based on which one is larger
  9895. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9896. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9897. const int64_t ith0 = ith % nth0;
  9898. const int64_t ith1 = ith / nth0;
  9899. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9900. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9901. const int64_t ir010 = dr0*ith0;
  9902. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9903. const int64_t ir110 = dr1*ith1;
  9904. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9905. // threads with no work simply yield (not sure if it helps)
  9906. //if (ir010 >= ir011 || ir110 >= ir111) {
  9907. // sched_yield();
  9908. // continue;
  9909. //}
  9910. // block-tiling attempt
  9911. const int64_t blck_0 = 16;
  9912. const int64_t blck_1 = 16;
  9913. // attempt to reduce false-sharing (does not seem to make a difference)
  9914. float tmp[16];
  9915. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9916. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9917. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9918. const int64_t _i12 = ir1; // logical row index for this expert
  9919. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9920. const int id = row_mapping.i1; // selected expert index
  9921. const int64_t i11 = id % ne11;
  9922. const int64_t i12 = row_mapping.i2; // row index in src1
  9923. const int64_t i1 = id; // selected expert index
  9924. const int64_t i2 = i12; // row
  9925. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9926. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9927. // the original src1 data pointer, so we should index using the indices directly
  9928. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9929. const char * src1_col = (const char *) wdata +
  9930. (src1_cont || src1->type != vec_dot_type
  9931. ? (i11 + i12*ne11)*row_size
  9932. : (i11*nb11 + i12*nb12));
  9933. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9934. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9935. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9936. //}
  9937. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9938. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9939. }
  9940. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9941. }
  9942. }
  9943. }
  9944. }
  9945. #undef MMID_MATRIX_ROW
  9946. }
  9947. // ggml_compute_forward_out_prod
  9948. static void ggml_compute_forward_out_prod_f32(
  9949. const struct ggml_compute_params * params,
  9950. struct ggml_tensor * dst) {
  9951. const struct ggml_tensor * src0 = dst->src[0];
  9952. const struct ggml_tensor * src1 = dst->src[1];
  9953. // int64_t t0 = ggml_perf_time_us();
  9954. // UNUSED(t0);
  9955. GGML_TENSOR_BINARY_OP_LOCALS
  9956. const int ith = params->ith;
  9957. const int nth = params->nth;
  9958. GGML_ASSERT(ne0 == ne00);
  9959. GGML_ASSERT(ne1 == ne10);
  9960. GGML_ASSERT(ne2 == ne02);
  9961. GGML_ASSERT(ne02 == ne12);
  9962. GGML_ASSERT(ne3 == ne13);
  9963. GGML_ASSERT(ne03 == ne13);
  9964. // we don't support permuted src0 or src1
  9965. GGML_ASSERT(nb00 == sizeof(float));
  9966. // dst cannot be transposed or permuted
  9967. GGML_ASSERT(nb0 == sizeof(float));
  9968. // GGML_ASSERT(nb0 <= nb1);
  9969. // GGML_ASSERT(nb1 <= nb2);
  9970. // GGML_ASSERT(nb2 <= nb3);
  9971. // nb01 >= nb00 - src0 is not transposed
  9972. // compute by src0 rows
  9973. // TODO: #if defined(GGML_USE_CLBLAST)
  9974. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9975. bool use_blas = ggml_is_matrix(src0) &&
  9976. ggml_is_matrix(src1) &&
  9977. ggml_is_contiguous(src0) &&
  9978. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9979. #endif
  9980. if (params->type == GGML_TASK_TYPE_INIT) {
  9981. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9982. if (use_blas) {
  9983. return;
  9984. }
  9985. #endif
  9986. if (ith != 0) {
  9987. return;
  9988. }
  9989. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9990. return;
  9991. }
  9992. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9993. return;
  9994. }
  9995. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9996. if (use_blas) {
  9997. if (params->ith != 0) { // All threads other than the first do no work.
  9998. return;
  9999. }
  10000. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10001. // src0: (k,n)
  10002. // src1: (k,m)
  10003. // dst: (m,n)
  10004. //
  10005. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10006. // Also expressed as (major,minor)
  10007. // a: (m,k): so src1 transposed
  10008. // b: (k,n): so src0
  10009. // c: (m,n)
  10010. //
  10011. // However, if ggml_is_transposed(src1) is true, then
  10012. // src1->data already contains a transposed version, so sgemm mustn't
  10013. // transpose it further.
  10014. int n = src0->ne[0];
  10015. int k = src0->ne[1];
  10016. int m = src1->ne[0];
  10017. int transposeA, lda;
  10018. if (!ggml_is_transposed(src1)) {
  10019. transposeA = CblasTrans;
  10020. lda = m;
  10021. } else {
  10022. transposeA = CblasNoTrans;
  10023. lda = k;
  10024. }
  10025. float * a = (float *) ((char *) src1->data);
  10026. float * b = (float *) ((char *) src0->data);
  10027. float * c = (float *) ((char *) dst->data);
  10028. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10029. return;
  10030. }
  10031. #endif
  10032. // dst[:,:,:,:] = 0
  10033. // for i2,i3:
  10034. // for i1:
  10035. // for i01:
  10036. // for i0:
  10037. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10038. // parallelize by last three dimensions
  10039. // total rows in dst
  10040. const int64_t nr = ne1*ne2*ne3;
  10041. // rows per thread
  10042. const int64_t dr = (nr + nth - 1)/nth;
  10043. // row range for this thread
  10044. const int64_t ir0 = dr*ith;
  10045. const int64_t ir1 = MIN(ir0 + dr, nr);
  10046. // block-tiling attempt
  10047. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10048. const int64_t blck_1 = 16;
  10049. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10050. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10051. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10052. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10053. for (int64_t ir = bir; ir < bir1; ++ir) {
  10054. // dst indices
  10055. const int64_t i3 = ir/(ne2*ne1);
  10056. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10057. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10058. const int64_t i02 = i2;
  10059. const int64_t i03 = i3;
  10060. //const int64_t i10 = i1;
  10061. const int64_t i12 = i2;
  10062. const int64_t i13 = i3;
  10063. #if GGML_VEC_MAD_UNROLL > 2
  10064. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10065. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10066. const int64_t i11 = i01;
  10067. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10068. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10069. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10070. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10071. }
  10072. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10073. const int64_t i11 = i01;
  10074. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10075. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10076. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10077. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10078. }
  10079. #else
  10080. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10081. const int64_t i11 = i01;
  10082. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10083. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10084. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10085. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10086. }
  10087. #endif
  10088. }
  10089. }
  10090. }
  10091. //int64_t t1 = ggml_perf_time_us();
  10092. //static int64_t acc = 0;
  10093. //acc += t1 - t0;
  10094. //if (t1 - t0 > 10) {
  10095. // printf("\n");
  10096. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10097. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10098. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10099. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10100. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10101. //}
  10102. }
  10103. static void ggml_compute_forward_out_prod_q_f32(
  10104. const struct ggml_compute_params * params,
  10105. struct ggml_tensor * dst) {
  10106. const struct ggml_tensor * src0 = dst->src[0];
  10107. const struct ggml_tensor * src1 = dst->src[1];
  10108. // int64_t t0 = ggml_perf_time_us();
  10109. // UNUSED(t0);
  10110. GGML_TENSOR_BINARY_OP_LOCALS;
  10111. const int ith = params->ith;
  10112. const int nth = params->nth;
  10113. const enum ggml_type type = src0->type;
  10114. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10115. GGML_ASSERT(ne02 == ne12);
  10116. GGML_ASSERT(ne03 == ne13);
  10117. GGML_ASSERT(ne2 == ne12);
  10118. GGML_ASSERT(ne3 == ne13);
  10119. // we don't support permuted src0 dim0
  10120. GGML_ASSERT(nb00 == ggml_type_size(type));
  10121. // dst dim0 cannot be transposed or permuted
  10122. GGML_ASSERT(nb0 == sizeof(float));
  10123. // GGML_ASSERT(nb0 <= nb1);
  10124. // GGML_ASSERT(nb1 <= nb2);
  10125. // GGML_ASSERT(nb2 <= nb3);
  10126. GGML_ASSERT(ne0 == ne00);
  10127. GGML_ASSERT(ne1 == ne10);
  10128. GGML_ASSERT(ne2 == ne02);
  10129. GGML_ASSERT(ne3 == ne03);
  10130. // nb01 >= nb00 - src0 is not transposed
  10131. // compute by src0 rows
  10132. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10133. if (params->type == GGML_TASK_TYPE_INIT) {
  10134. if (ith != 0) {
  10135. return;
  10136. }
  10137. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10138. return;
  10139. }
  10140. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10141. return;
  10142. }
  10143. // parallelize by last three dimensions
  10144. // total rows in dst
  10145. const int64_t nr = ne1*ne2*ne3;
  10146. // rows per thread
  10147. const int64_t dr = (nr + nth - 1)/nth;
  10148. // row range for this thread
  10149. const int64_t ir0 = dr*ith;
  10150. const int64_t ir1 = MIN(ir0 + dr, nr);
  10151. // dst[:,:,:,:] = 0
  10152. // for i2,i3:
  10153. // for i1:
  10154. // for i01:
  10155. // for i0:
  10156. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10157. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10158. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10159. // dst indices
  10160. const int64_t i3 = ir/(ne2*ne1);
  10161. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10162. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10163. const int64_t i02 = i2;
  10164. const int64_t i03 = i3;
  10165. //const int64_t i10 = i1;
  10166. const int64_t i12 = i2;
  10167. const int64_t i13 = i3;
  10168. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10169. const int64_t i11 = i01;
  10170. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10171. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10172. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10173. dequantize_row_q(s0, wdata, ne0);
  10174. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10175. }
  10176. }
  10177. //int64_t t1 = ggml_perf_time_us();
  10178. //static int64_t acc = 0;
  10179. //acc += t1 - t0;
  10180. //if (t1 - t0 > 10) {
  10181. // printf("\n");
  10182. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10183. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10184. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10185. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10186. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10187. //}
  10188. }
  10189. static void ggml_compute_forward_out_prod(
  10190. const struct ggml_compute_params * params,
  10191. struct ggml_tensor * dst) {
  10192. const struct ggml_tensor * src0 = dst->src[0];
  10193. switch (src0->type) {
  10194. case GGML_TYPE_Q4_0:
  10195. case GGML_TYPE_Q4_1:
  10196. case GGML_TYPE_Q5_0:
  10197. case GGML_TYPE_Q5_1:
  10198. case GGML_TYPE_Q8_0:
  10199. case GGML_TYPE_Q2_K:
  10200. case GGML_TYPE_Q3_K:
  10201. case GGML_TYPE_Q4_K:
  10202. case GGML_TYPE_Q5_K:
  10203. case GGML_TYPE_Q6_K:
  10204. case GGML_TYPE_IQ2_XXS:
  10205. case GGML_TYPE_IQ2_XS:
  10206. case GGML_TYPE_IQ3_XXS:
  10207. case GGML_TYPE_IQ1_S:
  10208. case GGML_TYPE_IQ1_M:
  10209. case GGML_TYPE_IQ4_NL:
  10210. case GGML_TYPE_IQ4_XS:
  10211. case GGML_TYPE_IQ3_S:
  10212. case GGML_TYPE_IQ2_S:
  10213. {
  10214. ggml_compute_forward_out_prod_q_f32(params, dst);
  10215. } break;
  10216. case GGML_TYPE_F16:
  10217. {
  10218. GGML_ASSERT(false); // todo
  10219. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10220. } break;
  10221. case GGML_TYPE_F32:
  10222. {
  10223. ggml_compute_forward_out_prod_f32(params, dst);
  10224. } break;
  10225. default:
  10226. {
  10227. GGML_ASSERT(false);
  10228. } break;
  10229. }
  10230. }
  10231. // ggml_compute_forward_scale
  10232. static void ggml_compute_forward_scale_f32(
  10233. const struct ggml_compute_params * params,
  10234. struct ggml_tensor * dst) {
  10235. const struct ggml_tensor * src0 = dst->src[0];
  10236. GGML_ASSERT(ggml_is_contiguous(src0));
  10237. GGML_ASSERT(ggml_is_contiguous(dst));
  10238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10239. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10240. return;
  10241. }
  10242. // scale factor
  10243. float v;
  10244. memcpy(&v, dst->op_params, sizeof(float));
  10245. const int ith = params->ith;
  10246. const int nth = params->nth;
  10247. const int nc = src0->ne[0];
  10248. const int nr = ggml_nrows(src0);
  10249. // rows per thread
  10250. const int dr = (nr + nth - 1)/nth;
  10251. // row range for this thread
  10252. const int ir0 = dr*ith;
  10253. const int ir1 = MIN(ir0 + dr, nr);
  10254. const size_t nb01 = src0->nb[1];
  10255. const size_t nb1 = dst->nb[1];
  10256. for (int i1 = ir0; i1 < ir1; i1++) {
  10257. if (dst->data != src0->data) {
  10258. // src0 is same shape as dst => same indices
  10259. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10260. }
  10261. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10262. }
  10263. }
  10264. static void ggml_compute_forward_scale(
  10265. const struct ggml_compute_params * params,
  10266. struct ggml_tensor * dst) {
  10267. const struct ggml_tensor * src0 = dst->src[0];
  10268. switch (src0->type) {
  10269. case GGML_TYPE_F32:
  10270. {
  10271. ggml_compute_forward_scale_f32(params, dst);
  10272. } break;
  10273. default:
  10274. {
  10275. GGML_ASSERT(false);
  10276. } break;
  10277. }
  10278. }
  10279. // ggml_compute_forward_set
  10280. static void ggml_compute_forward_set_f32(
  10281. const struct ggml_compute_params * params,
  10282. struct ggml_tensor * dst) {
  10283. const struct ggml_tensor * src0 = dst->src[0];
  10284. const struct ggml_tensor * src1 = dst->src[1];
  10285. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10286. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10287. // view src0 and dst with these strides and data offset inbytes during set
  10288. // nb0 is implicitly element_size because src0 and dst are contiguous
  10289. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10290. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10291. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10292. size_t offset = ((int32_t *) dst->op_params)[3];
  10293. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10294. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10295. if (params->ith != 0) {
  10296. return;
  10297. }
  10298. // memcpy needs to be synchronized across threads to avoid race conditions.
  10299. // => do it in INIT phase
  10300. memcpy(
  10301. ((char *) dst->data),
  10302. ((char *) src0->data),
  10303. ggml_nbytes(dst));
  10304. }
  10305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10306. return;
  10307. }
  10308. const int ith = params->ith;
  10309. const int nth = params->nth;
  10310. const int nr = ggml_nrows(src1);
  10311. const int nc = src1->ne[0];
  10312. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10313. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10314. // src0 and dst as viewed during set
  10315. const size_t nb0 = ggml_element_size(src0);
  10316. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10317. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10318. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10319. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10320. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10321. GGML_ASSERT(nb10 == sizeof(float));
  10322. // rows per thread
  10323. const int dr = (nr + nth - 1)/nth;
  10324. // row range for this thread
  10325. const int ir0 = dr*ith;
  10326. const int ir1 = MIN(ir0 + dr, nr);
  10327. for (int ir = ir0; ir < ir1; ++ir) {
  10328. // src0 and dst are viewed with shape of src1 and offset
  10329. // => same indices
  10330. const int i3 = ir/(ne12*ne11);
  10331. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10332. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10333. ggml_vec_cpy_f32(nc,
  10334. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10335. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10336. }
  10337. }
  10338. static void ggml_compute_forward_set(
  10339. const struct ggml_compute_params * params,
  10340. struct ggml_tensor * dst) {
  10341. const struct ggml_tensor * src0 = dst->src[0];
  10342. switch (src0->type) {
  10343. case GGML_TYPE_F32:
  10344. {
  10345. ggml_compute_forward_set_f32(params, dst);
  10346. } break;
  10347. case GGML_TYPE_F16:
  10348. case GGML_TYPE_BF16:
  10349. case GGML_TYPE_Q4_0:
  10350. case GGML_TYPE_Q4_1:
  10351. case GGML_TYPE_Q5_0:
  10352. case GGML_TYPE_Q5_1:
  10353. case GGML_TYPE_Q8_0:
  10354. case GGML_TYPE_Q8_1:
  10355. case GGML_TYPE_Q2_K:
  10356. case GGML_TYPE_Q3_K:
  10357. case GGML_TYPE_Q4_K:
  10358. case GGML_TYPE_Q5_K:
  10359. case GGML_TYPE_Q6_K:
  10360. case GGML_TYPE_IQ2_XXS:
  10361. case GGML_TYPE_IQ2_XS:
  10362. case GGML_TYPE_IQ3_XXS:
  10363. case GGML_TYPE_IQ1_S:
  10364. case GGML_TYPE_IQ1_M:
  10365. case GGML_TYPE_IQ4_NL:
  10366. case GGML_TYPE_IQ4_XS:
  10367. case GGML_TYPE_IQ3_S:
  10368. case GGML_TYPE_IQ2_S:
  10369. default:
  10370. {
  10371. GGML_ASSERT(false);
  10372. } break;
  10373. }
  10374. }
  10375. // ggml_compute_forward_cpy
  10376. static void ggml_compute_forward_cpy(
  10377. const struct ggml_compute_params * params,
  10378. struct ggml_tensor * dst) {
  10379. ggml_compute_forward_dup(params, dst);
  10380. }
  10381. // ggml_compute_forward_cont
  10382. static void ggml_compute_forward_cont(
  10383. const struct ggml_compute_params * params,
  10384. struct ggml_tensor * dst) {
  10385. ggml_compute_forward_dup(params, dst);
  10386. }
  10387. // ggml_compute_forward_reshape
  10388. static void ggml_compute_forward_reshape(
  10389. const struct ggml_compute_params * params,
  10390. struct ggml_tensor * dst) {
  10391. // NOP
  10392. UNUSED(params);
  10393. UNUSED(dst);
  10394. }
  10395. // ggml_compute_forward_view
  10396. static void ggml_compute_forward_view(
  10397. const struct ggml_compute_params * params,
  10398. const struct ggml_tensor * dst) {
  10399. // NOP
  10400. UNUSED(params);
  10401. UNUSED(dst);
  10402. }
  10403. // ggml_compute_forward_permute
  10404. static void ggml_compute_forward_permute(
  10405. const struct ggml_compute_params * params,
  10406. const struct ggml_tensor * dst) {
  10407. // NOP
  10408. UNUSED(params);
  10409. UNUSED(dst);
  10410. }
  10411. // ggml_compute_forward_transpose
  10412. static void ggml_compute_forward_transpose(
  10413. const struct ggml_compute_params * params,
  10414. const struct ggml_tensor * dst) {
  10415. // NOP
  10416. UNUSED(params);
  10417. UNUSED(dst);
  10418. }
  10419. // ggml_compute_forward_get_rows
  10420. static void ggml_compute_forward_get_rows_q(
  10421. const struct ggml_compute_params * params,
  10422. struct ggml_tensor * dst) {
  10423. const struct ggml_tensor * src0 = dst->src[0];
  10424. const struct ggml_tensor * src1 = dst->src[1];
  10425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10426. return;
  10427. }
  10428. GGML_TENSOR_BINARY_OP_LOCALS
  10429. const int64_t nc = ne00;
  10430. const int64_t nr = ggml_nelements(src1);
  10431. const enum ggml_type type = src0->type;
  10432. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10433. assert(ne0 == nc);
  10434. assert(ne02 == ne11);
  10435. assert(nb00 == ggml_type_size(type));
  10436. assert(ggml_nrows(dst) == nr);
  10437. const int ith = params->ith;
  10438. const int nth = params->nth;
  10439. // rows per thread
  10440. const int dr = (nr + nth - 1)/nth;
  10441. // row range for this thread
  10442. const int ir0 = dr*ith;
  10443. const int ir1 = MIN(ir0 + dr, nr);
  10444. for (int64_t i = ir0; i < ir1; ++i) {
  10445. const int64_t i12 = i/(ne11*ne10);
  10446. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10447. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10448. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10449. dequantize_row_q(
  10450. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10451. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10452. }
  10453. }
  10454. static void ggml_compute_forward_get_rows_f16(
  10455. const struct ggml_compute_params * params,
  10456. struct ggml_tensor * dst) {
  10457. const struct ggml_tensor * src0 = dst->src[0];
  10458. const struct ggml_tensor * src1 = dst->src[1];
  10459. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10460. return;
  10461. }
  10462. GGML_TENSOR_BINARY_OP_LOCALS
  10463. const int64_t nc = ne00;
  10464. const int64_t nr = ggml_nelements(src1);
  10465. assert(ne0 == nc);
  10466. assert(ne02 == ne11);
  10467. assert(nb00 == sizeof(ggml_fp16_t));
  10468. assert(ggml_nrows(dst) == nr);
  10469. const int ith = params->ith;
  10470. const int nth = params->nth;
  10471. // rows per thread
  10472. const int dr = (nr + nth - 1)/nth;
  10473. // row range for this thread
  10474. const int ir0 = dr*ith;
  10475. const int ir1 = MIN(ir0 + dr, nr);
  10476. for (int64_t i = ir0; i < ir1; ++i) {
  10477. const int64_t i12 = i/(ne11*ne10);
  10478. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10479. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10480. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10481. ggml_fp16_to_fp32_row(
  10482. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10483. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10484. }
  10485. }
  10486. static void ggml_compute_forward_get_rows_bf16(
  10487. const struct ggml_compute_params * params,
  10488. struct ggml_tensor * dst) {
  10489. const struct ggml_tensor * src0 = dst->src[0];
  10490. const struct ggml_tensor * src1 = dst->src[1];
  10491. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10492. return;
  10493. }
  10494. GGML_TENSOR_BINARY_OP_LOCALS
  10495. const int64_t nc = ne00;
  10496. const int64_t nr = ggml_nelements(src1);
  10497. assert(ne0 == nc);
  10498. assert(ne02 == ne11);
  10499. assert(nb00 == sizeof(ggml_bf16_t));
  10500. assert(ggml_nrows(dst) == nr);
  10501. const int ith = params->ith;
  10502. const int nth = params->nth;
  10503. // rows per thread
  10504. const int dr = (nr + nth - 1)/nth;
  10505. // row range for this thread
  10506. const int ir0 = dr*ith;
  10507. const int ir1 = MIN(ir0 + dr, nr);
  10508. for (int64_t i = ir0; i < ir1; ++i) {
  10509. const int64_t i12 = i/(ne11*ne10);
  10510. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10511. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10512. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10513. ggml_bf16_to_fp32_row(
  10514. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10515. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10516. }
  10517. }
  10518. static void ggml_compute_forward_get_rows_f32(
  10519. const struct ggml_compute_params * params,
  10520. struct ggml_tensor * dst) {
  10521. const struct ggml_tensor * src0 = dst->src[0];
  10522. const struct ggml_tensor * src1 = dst->src[1];
  10523. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10524. return;
  10525. }
  10526. GGML_TENSOR_BINARY_OP_LOCALS
  10527. const int64_t nc = ne00;
  10528. const int64_t nr = ggml_nelements(src1);
  10529. assert(ne0 == nc);
  10530. assert(ne02 == ne11);
  10531. assert(nb00 == sizeof(float));
  10532. assert(ggml_nrows(dst) == nr);
  10533. const int ith = params->ith;
  10534. const int nth = params->nth;
  10535. // rows per thread
  10536. const int dr = (nr + nth - 1)/nth;
  10537. // row range for this thread
  10538. const int ir0 = dr*ith;
  10539. const int ir1 = MIN(ir0 + dr, nr);
  10540. for (int64_t i = ir0; i < ir1; ++i) {
  10541. const int64_t i12 = i/(ne11*ne10);
  10542. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10543. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10544. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10545. ggml_vec_cpy_f32(nc,
  10546. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10547. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10548. }
  10549. }
  10550. static void ggml_compute_forward_get_rows(
  10551. const struct ggml_compute_params * params,
  10552. struct ggml_tensor * dst) {
  10553. const struct ggml_tensor * src0 = dst->src[0];
  10554. switch (src0->type) {
  10555. case GGML_TYPE_Q4_0:
  10556. case GGML_TYPE_Q4_1:
  10557. case GGML_TYPE_Q5_0:
  10558. case GGML_TYPE_Q5_1:
  10559. case GGML_TYPE_Q8_0:
  10560. case GGML_TYPE_Q8_1:
  10561. case GGML_TYPE_Q2_K:
  10562. case GGML_TYPE_Q3_K:
  10563. case GGML_TYPE_Q4_K:
  10564. case GGML_TYPE_Q5_K:
  10565. case GGML_TYPE_Q6_K:
  10566. case GGML_TYPE_IQ2_XXS:
  10567. case GGML_TYPE_IQ2_XS:
  10568. case GGML_TYPE_IQ3_XXS:
  10569. case GGML_TYPE_IQ1_S:
  10570. case GGML_TYPE_IQ1_M:
  10571. case GGML_TYPE_IQ4_NL:
  10572. case GGML_TYPE_IQ4_XS:
  10573. case GGML_TYPE_IQ3_S:
  10574. case GGML_TYPE_IQ2_S:
  10575. {
  10576. ggml_compute_forward_get_rows_q(params, dst);
  10577. } break;
  10578. case GGML_TYPE_F16:
  10579. {
  10580. ggml_compute_forward_get_rows_f16(params, dst);
  10581. } break;
  10582. case GGML_TYPE_BF16:
  10583. {
  10584. ggml_compute_forward_get_rows_bf16(params, dst);
  10585. } break;
  10586. case GGML_TYPE_F32:
  10587. case GGML_TYPE_I32:
  10588. {
  10589. ggml_compute_forward_get_rows_f32(params, dst);
  10590. } break;
  10591. default:
  10592. {
  10593. GGML_ASSERT(false);
  10594. } break;
  10595. }
  10596. //static bool first = true;
  10597. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10598. //if (first) {
  10599. // first = false;
  10600. //} else {
  10601. // for (int k = 0; k < dst->ne[1]; ++k) {
  10602. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10603. // for (int i = 0; i < 16; ++i) {
  10604. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10605. // }
  10606. // printf("\n");
  10607. // }
  10608. // printf("\n");
  10609. // }
  10610. // printf("\n");
  10611. // exit(0);
  10612. //}
  10613. }
  10614. // ggml_compute_forward_get_rows_back
  10615. static void ggml_compute_forward_get_rows_back_f32_f16(
  10616. const struct ggml_compute_params * params,
  10617. struct ggml_tensor * dst) {
  10618. const struct ggml_tensor * src0 = dst->src[0];
  10619. const struct ggml_tensor * src1 = dst->src[1];
  10620. GGML_ASSERT(params->ith == 0);
  10621. GGML_ASSERT(ggml_is_contiguous(dst));
  10622. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10623. if (params->type == GGML_TASK_TYPE_INIT) {
  10624. if (params->ith != 0) {
  10625. return;
  10626. }
  10627. memset(dst->data, 0, ggml_nbytes(dst));
  10628. }
  10629. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10630. return;
  10631. }
  10632. const int nc = src0->ne[0];
  10633. const int nr = ggml_nelements(src1);
  10634. GGML_ASSERT( dst->ne[0] == nc);
  10635. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10636. for (int i = 0; i < nr; ++i) {
  10637. const int r = ((int32_t *) src1->data)[i];
  10638. for (int j = 0; j < nc; ++j) {
  10639. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10640. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10641. }
  10642. }
  10643. }
  10644. static void ggml_compute_forward_get_rows_back_f32(
  10645. const struct ggml_compute_params * params,
  10646. struct ggml_tensor * dst) {
  10647. const struct ggml_tensor * src0 = dst->src[0];
  10648. const struct ggml_tensor * src1 = dst->src[1];
  10649. GGML_ASSERT(params->ith == 0);
  10650. GGML_ASSERT(ggml_is_contiguous(dst));
  10651. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10652. if (params->type == GGML_TASK_TYPE_INIT) {
  10653. if (params->ith != 0) {
  10654. return;
  10655. }
  10656. memset(dst->data, 0, ggml_nbytes(dst));
  10657. }
  10658. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10659. return;
  10660. }
  10661. const int nc = src0->ne[0];
  10662. const int nr = ggml_nelements(src1);
  10663. GGML_ASSERT( dst->ne[0] == nc);
  10664. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10665. for (int i = 0; i < nr; ++i) {
  10666. const int r = ((int32_t *) src1->data)[i];
  10667. ggml_vec_add_f32(nc,
  10668. (float *) ((char *) dst->data + r*dst->nb[1]),
  10669. (float *) ((char *) dst->data + r*dst->nb[1]),
  10670. (float *) ((char *) src0->data + i*src0->nb[1]));
  10671. }
  10672. }
  10673. static void ggml_compute_forward_get_rows_back(
  10674. const struct ggml_compute_params * params,
  10675. struct ggml_tensor * dst) {
  10676. const struct ggml_tensor * src0 = dst->src[0];
  10677. switch (src0->type) {
  10678. case GGML_TYPE_F16:
  10679. {
  10680. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10681. } break;
  10682. case GGML_TYPE_F32:
  10683. {
  10684. ggml_compute_forward_get_rows_back_f32(params, dst);
  10685. } break;
  10686. default:
  10687. {
  10688. GGML_ASSERT(false);
  10689. } break;
  10690. }
  10691. //static bool first = true;
  10692. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10693. //if (first) {
  10694. // first = false;
  10695. //} else {
  10696. // for (int k = 0; k < dst->ne[1]; ++k) {
  10697. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10698. // for (int i = 0; i < 16; ++i) {
  10699. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10700. // }
  10701. // printf("\n");
  10702. // }
  10703. // printf("\n");
  10704. // }
  10705. // printf("\n");
  10706. // exit(0);
  10707. //}
  10708. }
  10709. // ggml_compute_forward_diag
  10710. static void ggml_compute_forward_diag_f32(
  10711. const struct ggml_compute_params * params,
  10712. struct ggml_tensor * dst) {
  10713. const struct ggml_tensor * src0 = dst->src[0];
  10714. GGML_ASSERT(params->ith == 0);
  10715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10716. return;
  10717. }
  10718. // TODO: handle transposed/permuted matrices
  10719. GGML_TENSOR_UNARY_OP_LOCALS
  10720. GGML_ASSERT(ne00 == ne0);
  10721. GGML_ASSERT(ne00 == ne1);
  10722. GGML_ASSERT(ne01 == 1);
  10723. GGML_ASSERT(ne02 == ne2);
  10724. GGML_ASSERT(ne03 == ne3);
  10725. GGML_ASSERT(nb00 == sizeof(float));
  10726. GGML_ASSERT(nb0 == sizeof(float));
  10727. for (int i3 = 0; i3 < ne3; i3++) {
  10728. for (int i2 = 0; i2 < ne2; i2++) {
  10729. for (int i1 = 0; i1 < ne1; i1++) {
  10730. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10731. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10732. for (int i0 = 0; i0 < i1; i0++) {
  10733. d[i0] = 0;
  10734. }
  10735. d[i1] = s[i1];
  10736. for (int i0 = i1+1; i0 < ne0; i0++) {
  10737. d[i0] = 0;
  10738. }
  10739. }
  10740. }
  10741. }
  10742. }
  10743. static void ggml_compute_forward_diag(
  10744. const struct ggml_compute_params * params,
  10745. struct ggml_tensor * dst) {
  10746. const struct ggml_tensor * src0 = dst->src[0];
  10747. switch (src0->type) {
  10748. case GGML_TYPE_F32:
  10749. {
  10750. ggml_compute_forward_diag_f32(params, dst);
  10751. } break;
  10752. default:
  10753. {
  10754. GGML_ASSERT(false);
  10755. } break;
  10756. }
  10757. }
  10758. // ggml_compute_forward_diag_mask_inf
  10759. static void ggml_compute_forward_diag_mask_f32(
  10760. const struct ggml_compute_params * params,
  10761. struct ggml_tensor * dst,
  10762. const float value) {
  10763. const struct ggml_tensor * src0 = dst->src[0];
  10764. const int ith = params->ith;
  10765. const int nth = params->nth;
  10766. const int n_past = ((int32_t *) dst->op_params)[0];
  10767. const bool inplace = src0->data == dst->data;
  10768. GGML_ASSERT(n_past >= 0);
  10769. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10770. if (ith != 0) {
  10771. return;
  10772. }
  10773. // memcpy needs to be synchronized across threads to avoid race conditions.
  10774. // => do it in INIT phase
  10775. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10776. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10777. memcpy(
  10778. ((char *) dst->data),
  10779. ((char *) src0->data),
  10780. ggml_nbytes(dst));
  10781. }
  10782. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10783. return;
  10784. }
  10785. // TODO: handle transposed/permuted matrices
  10786. const int n = ggml_nrows(src0);
  10787. const int nc = src0->ne[0];
  10788. const int nr = src0->ne[1];
  10789. const int nz = n/nr;
  10790. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10791. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10792. for (int k = 0; k < nz; k++) {
  10793. for (int j = ith; j < nr; j += nth) {
  10794. for (int i = n_past; i < nc; i++) {
  10795. if (i > n_past + j) {
  10796. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10797. }
  10798. }
  10799. }
  10800. }
  10801. }
  10802. static void ggml_compute_forward_diag_mask_inf(
  10803. const struct ggml_compute_params * params,
  10804. struct ggml_tensor * dst) {
  10805. const struct ggml_tensor * src0 = dst->src[0];
  10806. switch (src0->type) {
  10807. case GGML_TYPE_F32:
  10808. {
  10809. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10810. } break;
  10811. default:
  10812. {
  10813. GGML_ASSERT(false);
  10814. } break;
  10815. }
  10816. }
  10817. static void ggml_compute_forward_diag_mask_zero(
  10818. const struct ggml_compute_params * params,
  10819. struct ggml_tensor * dst) {
  10820. const struct ggml_tensor * src0 = dst->src[0];
  10821. switch (src0->type) {
  10822. case GGML_TYPE_F32:
  10823. {
  10824. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10825. } break;
  10826. default:
  10827. {
  10828. GGML_ASSERT(false);
  10829. } break;
  10830. }
  10831. }
  10832. // ggml_compute_forward_soft_max
  10833. static void ggml_compute_forward_soft_max_f32(
  10834. const struct ggml_compute_params * params,
  10835. struct ggml_tensor * dst) {
  10836. const struct ggml_tensor * src0 = dst->src[0];
  10837. const struct ggml_tensor * src1 = dst->src[1];
  10838. assert(ggml_is_contiguous(dst));
  10839. assert(ggml_are_same_shape(src0, dst));
  10840. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10841. return;
  10842. }
  10843. float scale = 1.0f;
  10844. float max_bias = 0.0f;
  10845. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10846. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10847. // TODO: handle transposed/permuted matrices
  10848. const int ith = params->ith;
  10849. const int nth = params->nth;
  10850. GGML_TENSOR_UNARY_OP_LOCALS
  10851. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  10852. // TODO: is this supposed to be ceil instead of floor?
  10853. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  10854. const uint32_t n_head = ne02;
  10855. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  10856. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  10857. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  10858. const int nc = src0->ne[0];
  10859. const int nr = ggml_nrows(src0);
  10860. // rows per thread
  10861. const int dr = (nr + nth - 1)/nth;
  10862. // row range for this thread
  10863. const int ir0 = dr*ith;
  10864. const int ir1 = MIN(ir0 + dr, nr);
  10865. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  10866. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  10867. for (int i1 = ir0; i1 < ir1; i1++) {
  10868. // ALiBi
  10869. const uint32_t h = (i1/ne01)%ne02; // head
  10870. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  10871. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10872. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10873. // broadcast the mask across rows
  10874. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10875. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10876. ggml_vec_cpy_f32 (nc, wp, sp);
  10877. ggml_vec_scale_f32(nc, wp, scale);
  10878. if (mp_f32) {
  10879. if (use_f16) {
  10880. for (int i = 0; i < nc; ++i) {
  10881. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  10882. }
  10883. } else {
  10884. for (int i = 0; i < nc; ++i) {
  10885. wp[i] += slope*mp_f32[i];
  10886. }
  10887. }
  10888. }
  10889. #ifndef NDEBUG
  10890. for (int i = 0; i < nc; ++i) {
  10891. //printf("p[%d] = %f\n", i, p[i]);
  10892. assert(!isnan(wp[i]));
  10893. }
  10894. #endif
  10895. float max = -INFINITY;
  10896. ggml_vec_max_f32(nc, &max, wp);
  10897. ggml_float sum = 0.0;
  10898. uint16_t scvt;
  10899. for (int i = 0; i < nc; i++) {
  10900. if (wp[i] == -INFINITY) {
  10901. dp[i] = 0.0f;
  10902. } else {
  10903. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10904. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10905. memcpy(&scvt, &s, sizeof(scvt));
  10906. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10907. sum += (ggml_float)val;
  10908. dp[i] = val;
  10909. }
  10910. }
  10911. assert(sum > 0.0);
  10912. sum = 1.0/sum;
  10913. ggml_vec_scale_f32(nc, dp, sum);
  10914. #ifndef NDEBUG
  10915. for (int i = 0; i < nc; ++i) {
  10916. assert(!isnan(dp[i]));
  10917. assert(!isinf(dp[i]));
  10918. }
  10919. #endif
  10920. }
  10921. }
  10922. static void ggml_compute_forward_soft_max(
  10923. const struct ggml_compute_params * params,
  10924. struct ggml_tensor * dst) {
  10925. const struct ggml_tensor * src0 = dst->src[0];
  10926. switch (src0->type) {
  10927. case GGML_TYPE_F32:
  10928. {
  10929. ggml_compute_forward_soft_max_f32(params, dst);
  10930. } break;
  10931. default:
  10932. {
  10933. GGML_ASSERT(false);
  10934. } break;
  10935. }
  10936. }
  10937. // ggml_compute_forward_soft_max_back
  10938. static void ggml_compute_forward_soft_max_back_f32(
  10939. const struct ggml_compute_params * params,
  10940. struct ggml_tensor * dst) {
  10941. const struct ggml_tensor * src0 = dst->src[0];
  10942. const struct ggml_tensor * src1 = dst->src[1];
  10943. GGML_ASSERT(ggml_is_contiguous(src0));
  10944. GGML_ASSERT(ggml_is_contiguous(src1));
  10945. GGML_ASSERT(ggml_is_contiguous(dst));
  10946. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10947. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10948. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10949. return;
  10950. }
  10951. // TODO: handle transposed/permuted matrices
  10952. const int ith = params->ith;
  10953. const int nth = params->nth;
  10954. const int nc = src0->ne[0];
  10955. const int nr = ggml_nrows(src0);
  10956. // rows per thread
  10957. const int dr = (nr + nth - 1)/nth;
  10958. // row range for this thread
  10959. const int ir0 = dr*ith;
  10960. const int ir1 = MIN(ir0 + dr, nr);
  10961. for (int i1 = ir0; i1 < ir1; i1++) {
  10962. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10963. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10964. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10965. #ifndef NDEBUG
  10966. for (int i = 0; i < nc; ++i) {
  10967. //printf("p[%d] = %f\n", i, p[i]);
  10968. assert(!isnan(dy[i]));
  10969. assert(!isnan(y[i]));
  10970. }
  10971. #endif
  10972. // Jii = yi - yi*yi
  10973. // Jij = -yi*yj
  10974. // J = diag(y)-y.T*y
  10975. // dx = J * dy
  10976. // dxk = sum_i(Jki * dyi)
  10977. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10978. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10979. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10980. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10981. // dxk = -yk * dot(y, dy) + yk*dyk
  10982. // dxk = yk * (- dot(y, dy) + dyk)
  10983. // dxk = yk * (dyk - dot(y, dy))
  10984. //
  10985. // post-order:
  10986. // dot_y_dy := dot(y, dy)
  10987. // dx := dy
  10988. // dx := dx - dot_y_dy
  10989. // dx := dx * y
  10990. // linear runtime, no additional memory
  10991. float dot_y_dy = 0;
  10992. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10993. ggml_vec_cpy_f32 (nc, dx, dy);
  10994. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10995. ggml_vec_mul_f32 (nc, dx, dx, y);
  10996. #ifndef NDEBUG
  10997. for (int i = 0; i < nc; ++i) {
  10998. assert(!isnan(dx[i]));
  10999. assert(!isinf(dx[i]));
  11000. }
  11001. #endif
  11002. }
  11003. }
  11004. static void ggml_compute_forward_soft_max_back(
  11005. const struct ggml_compute_params * params,
  11006. struct ggml_tensor * dst) {
  11007. const struct ggml_tensor * src0 = dst->src[0];
  11008. switch (src0->type) {
  11009. case GGML_TYPE_F32:
  11010. {
  11011. ggml_compute_forward_soft_max_back_f32(params, dst);
  11012. } break;
  11013. default:
  11014. {
  11015. GGML_ASSERT(false);
  11016. } break;
  11017. }
  11018. }
  11019. // ggml_compute_forward_clamp
  11020. static void ggml_compute_forward_clamp_f32(
  11021. const struct ggml_compute_params * params,
  11022. struct ggml_tensor * dst) {
  11023. const struct ggml_tensor * src0 = dst->src[0];
  11024. assert(params->ith == 0);
  11025. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11026. return;
  11027. }
  11028. float min;
  11029. float max;
  11030. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11031. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11032. const int ith = params->ith;
  11033. const int nth = params->nth;
  11034. const int n = ggml_nrows(src0);
  11035. const int nc = src0->ne[0];
  11036. const size_t nb00 = src0->nb[0];
  11037. const size_t nb01 = src0->nb[1];
  11038. const size_t nb0 = dst->nb[0];
  11039. const size_t nb1 = dst->nb[1];
  11040. GGML_ASSERT( nb0 == sizeof(float));
  11041. GGML_ASSERT(nb00 == sizeof(float));
  11042. for (int j = ith; j < n; j += nth) {
  11043. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11044. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11045. for (int i = 0; i < nc; i++) {
  11046. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11047. }
  11048. }
  11049. }
  11050. static void ggml_compute_forward_clamp(
  11051. const struct ggml_compute_params * params,
  11052. struct ggml_tensor * dst) {
  11053. const struct ggml_tensor * src0 = dst->src[0];
  11054. switch (src0->type) {
  11055. case GGML_TYPE_F32:
  11056. {
  11057. ggml_compute_forward_clamp_f32(params, dst);
  11058. } break;
  11059. case GGML_TYPE_F16:
  11060. case GGML_TYPE_BF16:
  11061. case GGML_TYPE_Q4_0:
  11062. case GGML_TYPE_Q4_1:
  11063. case GGML_TYPE_Q5_0:
  11064. case GGML_TYPE_Q5_1:
  11065. case GGML_TYPE_Q8_0:
  11066. case GGML_TYPE_Q8_1:
  11067. case GGML_TYPE_Q2_K:
  11068. case GGML_TYPE_Q3_K:
  11069. case GGML_TYPE_Q4_K:
  11070. case GGML_TYPE_Q5_K:
  11071. case GGML_TYPE_Q6_K:
  11072. case GGML_TYPE_IQ2_XXS:
  11073. case GGML_TYPE_IQ2_XS:
  11074. case GGML_TYPE_IQ3_XXS:
  11075. case GGML_TYPE_IQ1_S:
  11076. case GGML_TYPE_IQ1_M:
  11077. case GGML_TYPE_IQ4_NL:
  11078. case GGML_TYPE_IQ4_XS:
  11079. case GGML_TYPE_IQ3_S:
  11080. case GGML_TYPE_IQ2_S:
  11081. case GGML_TYPE_Q8_K:
  11082. case GGML_TYPE_I8:
  11083. case GGML_TYPE_I16:
  11084. case GGML_TYPE_I32:
  11085. case GGML_TYPE_I64:
  11086. case GGML_TYPE_F64:
  11087. case GGML_TYPE_COUNT:
  11088. {
  11089. GGML_ASSERT(false);
  11090. } break;
  11091. }
  11092. }
  11093. // ggml_compute_forward_rope
  11094. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11095. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11096. return 1 - MIN(1, MAX(0, y));
  11097. }
  11098. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11099. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11100. static void rope_yarn(
  11101. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11102. float * cos_theta, float * sin_theta
  11103. ) {
  11104. // Get n-d rotational scaling corrected for extrapolation
  11105. float theta_interp = freq_scale * theta_extrap;
  11106. float theta = theta_interp;
  11107. if (ext_factor != 0.0f) {
  11108. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11109. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11110. // Get n-d magnitude scaling corrected for interpolation
  11111. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11112. }
  11113. *cos_theta = cosf(theta) * mscale;
  11114. *sin_theta = sinf(theta) * mscale;
  11115. }
  11116. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11117. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11118. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11119. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11120. }
  11121. static void ggml_rope_cache_init(
  11122. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11123. float * cache, float sin_sign, float theta_scale
  11124. ) {
  11125. float theta = theta_base;
  11126. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11127. rope_yarn(
  11128. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11129. );
  11130. cache[i0 + 1] *= sin_sign;
  11131. theta *= theta_scale;
  11132. }
  11133. }
  11134. GGML_CALL void ggml_rope_yarn_corr_dims(
  11135. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11136. ) {
  11137. // start and end correction dims
  11138. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11139. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11140. dims[0] = MAX(0, start);
  11141. dims[1] = MIN(n_dims - 1, end);
  11142. }
  11143. static void ggml_compute_forward_rope_f32(
  11144. const struct ggml_compute_params * params,
  11145. struct ggml_tensor * dst,
  11146. const bool forward) {
  11147. const struct ggml_tensor * src0 = dst->src[0];
  11148. const struct ggml_tensor * src1 = dst->src[1];
  11149. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11150. return;
  11151. }
  11152. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11153. // these two only relevant for xPos RoPE:
  11154. float xpos_base;
  11155. bool xpos_down;
  11156. //const int n_past = ((int32_t *) dst->op_params)[0];
  11157. const int n_dims = ((int32_t *) dst->op_params)[1];
  11158. const int mode = ((int32_t *) dst->op_params)[2];
  11159. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11160. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11161. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11162. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11163. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11164. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11165. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11166. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11167. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11168. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11169. GGML_TENSOR_UNARY_OP_LOCALS
  11170. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11171. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11172. GGML_ASSERT(nb00 == sizeof(float));
  11173. const int ith = params->ith;
  11174. const int nth = params->nth;
  11175. const int nr = ggml_nrows(dst);
  11176. GGML_ASSERT(n_dims <= ne0);
  11177. GGML_ASSERT(n_dims % 2 == 0);
  11178. // rows per thread
  11179. const int dr = (nr + nth - 1)/nth;
  11180. // row range for this thread
  11181. const int ir0 = dr*ith;
  11182. const int ir1 = MIN(ir0 + dr, nr);
  11183. // row index used to determine which thread to use
  11184. int ir = 0;
  11185. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11186. const float inv_ndims = -1.f/n_dims;
  11187. float corr_dims[2];
  11188. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11189. const bool is_neox = mode & 2;
  11190. const bool is_glm = mode & 4;
  11191. // backward process uses inverse rotation by cos and sin.
  11192. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11193. // this essentially just switches the sign of sin.
  11194. const float sin_sign = forward ? 1.0f : -1.0f;
  11195. const int32_t * pos = (const int32_t *) src1->data;
  11196. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11197. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11198. const int64_t p = pos[i2];
  11199. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11200. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11201. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11202. }
  11203. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11204. if (ir++ < ir0) continue;
  11205. if (ir > ir1) break;
  11206. float theta_base = (float)p;
  11207. if (is_glm) {
  11208. theta_base = MIN(p, n_ctx - 2);
  11209. float block_theta = MAX(p - (n_ctx - 2), 0);
  11210. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11211. const float cos_theta = cosf(theta_base);
  11212. const float sin_theta = sinf(theta_base) * sin_sign;
  11213. const float cos_block_theta = cosf(block_theta);
  11214. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11215. theta_base *= theta_scale;
  11216. block_theta *= theta_scale;
  11217. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11218. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11219. const float x0 = src[0];
  11220. const float x1 = src[n_dims/2];
  11221. const float x2 = src[n_dims];
  11222. const float x3 = src[n_dims/2*3];
  11223. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11224. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11225. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11226. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11227. }
  11228. } else if (!is_neox) {
  11229. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11230. const float cos_theta = cache[i0 + 0];
  11231. const float sin_theta = cache[i0 + 1];
  11232. // zeta scaling for xPos only:
  11233. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11234. if (xpos_down) zeta = 1.0f / zeta;
  11235. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11236. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11237. const float x0 = src[0];
  11238. const float x1 = src[1];
  11239. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11240. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11241. }
  11242. } else {
  11243. // TODO: this might be wrong for ne0 != n_dims - need double check
  11244. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11245. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11246. theta_base *= freq_scale;
  11247. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11248. if (ic < n_dims) {
  11249. const int64_t ib = 0;
  11250. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11251. float cur_rot = inv_ndims * ic - ib;
  11252. float cos_theta, sin_theta;
  11253. rope_yarn(
  11254. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11255. &cos_theta, &sin_theta
  11256. );
  11257. sin_theta *= sin_sign;
  11258. theta_base *= theta_scale;
  11259. const int64_t i0 = ib*n_dims + ic/2;
  11260. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11261. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11262. const float x0 = src[0];
  11263. const float x1 = src[n_dims/2];
  11264. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11265. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11266. } else {
  11267. const int64_t i0 = ic;
  11268. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11269. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11270. dst_data[0] = src[0];
  11271. dst_data[1] = src[1];
  11272. }
  11273. }
  11274. }
  11275. }
  11276. }
  11277. }
  11278. }
  11279. static void ggml_compute_forward_rope_f16(
  11280. const struct ggml_compute_params * params,
  11281. struct ggml_tensor * dst,
  11282. const bool forward) {
  11283. const struct ggml_tensor * src0 = dst->src[0];
  11284. const struct ggml_tensor * src1 = dst->src[1];
  11285. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11286. return;
  11287. }
  11288. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11289. //const int n_past = ((int32_t *) dst->op_params)[0];
  11290. const int n_dims = ((int32_t *) dst->op_params)[1];
  11291. const int mode = ((int32_t *) dst->op_params)[2];
  11292. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11293. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11294. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11295. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11296. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11297. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11298. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11299. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11300. GGML_TENSOR_UNARY_OP_LOCALS
  11301. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11302. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11303. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11304. const int ith = params->ith;
  11305. const int nth = params->nth;
  11306. const int nr = ggml_nrows(dst);
  11307. GGML_ASSERT(n_dims <= ne0);
  11308. GGML_ASSERT(n_dims % 2 == 0);
  11309. // rows per thread
  11310. const int dr = (nr + nth - 1)/nth;
  11311. // row range for this thread
  11312. const int ir0 = dr*ith;
  11313. const int ir1 = MIN(ir0 + dr, nr);
  11314. // row index used to determine which thread to use
  11315. int ir = 0;
  11316. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11317. const float inv_ndims = -1.f/n_dims;
  11318. float corr_dims[2];
  11319. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11320. const bool is_neox = mode & 2;
  11321. const bool is_glm = mode & 4;
  11322. // backward process uses inverse rotation by cos and sin.
  11323. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11324. // this essentially just switches the sign of sin.
  11325. const float sin_sign = forward ? 1.0f : -1.0f;
  11326. const int32_t * pos = (const int32_t *) src1->data;
  11327. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11328. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11329. const int64_t p = pos[i2];
  11330. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11331. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11332. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11333. }
  11334. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11335. if (ir++ < ir0) continue;
  11336. if (ir > ir1) break;
  11337. float theta_base = (float)p;
  11338. if (is_glm) {
  11339. theta_base = MIN(p, n_ctx - 2);
  11340. float block_theta = MAX(p - (n_ctx - 2), 0);
  11341. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11342. const float cos_theta = cosf(theta_base);
  11343. const float sin_theta = sinf(theta_base) * sin_sign;
  11344. const float cos_block_theta = cosf(block_theta);
  11345. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11346. theta_base *= theta_scale;
  11347. block_theta *= theta_scale;
  11348. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11349. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11350. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11351. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11352. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11353. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11354. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11355. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11356. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11357. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11358. }
  11359. } else if (!is_neox) {
  11360. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11361. const float cos_theta = cache[i0 + 0];
  11362. const float sin_theta = cache[i0 + 1];
  11363. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11364. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11365. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11366. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11367. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11368. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11369. }
  11370. } else {
  11371. // TODO: this might be wrong for ne0 != n_dims - need double check
  11372. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11373. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11374. theta_base *= freq_scale;
  11375. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11376. if (ic < n_dims) {
  11377. const int64_t ib = 0;
  11378. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11379. float cur_rot = inv_ndims * ic - ib;
  11380. float cos_theta, sin_theta;
  11381. rope_yarn(
  11382. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11383. &cos_theta, &sin_theta
  11384. );
  11385. sin_theta *= sin_sign;
  11386. theta_base *= theta_scale;
  11387. const int64_t i0 = ib*n_dims + ic/2;
  11388. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11389. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11390. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11391. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11392. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11393. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11394. } else {
  11395. const int64_t i0 = ic;
  11396. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11397. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11398. dst_data[0] = src[0];
  11399. dst_data[1] = src[1];
  11400. }
  11401. }
  11402. }
  11403. }
  11404. }
  11405. }
  11406. }
  11407. static void ggml_compute_forward_rope(
  11408. const struct ggml_compute_params * params,
  11409. struct ggml_tensor * dst) {
  11410. const struct ggml_tensor * src0 = dst->src[0];
  11411. switch (src0->type) {
  11412. case GGML_TYPE_F16:
  11413. {
  11414. ggml_compute_forward_rope_f16(params, dst, true);
  11415. } break;
  11416. case GGML_TYPE_F32:
  11417. {
  11418. ggml_compute_forward_rope_f32(params, dst, true);
  11419. } break;
  11420. default:
  11421. {
  11422. GGML_ASSERT(false);
  11423. } break;
  11424. }
  11425. }
  11426. // ggml_compute_forward_rope_back
  11427. static void ggml_compute_forward_rope_back(
  11428. const struct ggml_compute_params * params,
  11429. struct ggml_tensor * dst) {
  11430. const struct ggml_tensor * src0 = dst->src[0];
  11431. switch (src0->type) {
  11432. case GGML_TYPE_F16:
  11433. {
  11434. ggml_compute_forward_rope_f16(params, dst, false);
  11435. } break;
  11436. case GGML_TYPE_F32:
  11437. {
  11438. ggml_compute_forward_rope_f32(params, dst, false);
  11439. } break;
  11440. default:
  11441. {
  11442. GGML_ASSERT(false);
  11443. } break;
  11444. }
  11445. }
  11446. // ggml_compute_forward_conv_transpose_1d
  11447. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11448. const struct ggml_compute_params * params,
  11449. struct ggml_tensor * dst) {
  11450. const struct ggml_tensor * src0 = dst->src[0];
  11451. const struct ggml_tensor * src1 = dst->src[1];
  11452. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11453. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11454. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11455. int64_t t0 = ggml_perf_time_us();
  11456. UNUSED(t0);
  11457. GGML_TENSOR_BINARY_OP_LOCALS
  11458. const int ith = params->ith;
  11459. const int nth = params->nth;
  11460. const int nk = ne00*ne01*ne02;
  11461. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11462. GGML_ASSERT(nb10 == sizeof(float));
  11463. if (params->type == GGML_TASK_TYPE_INIT) {
  11464. if (ith != 0) {
  11465. return;
  11466. }
  11467. memset(params->wdata, 0, params->wsize);
  11468. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11469. {
  11470. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11471. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11472. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11473. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11474. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11475. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11476. dst_data[i00*ne02 + i02] = src[i00];
  11477. }
  11478. }
  11479. }
  11480. }
  11481. // permute source data (src1) from (L x Cin) to (Cin x L)
  11482. {
  11483. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11484. ggml_fp16_t * dst_data = wdata;
  11485. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11486. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11487. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11488. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11489. }
  11490. }
  11491. }
  11492. // need to zero dst since we are accumulating into it
  11493. memset(dst->data, 0, ggml_nbytes(dst));
  11494. return;
  11495. }
  11496. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11497. return;
  11498. }
  11499. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11500. // total rows in dst
  11501. const int nr = ne1;
  11502. // rows per thread
  11503. const int dr = (nr + nth - 1)/nth;
  11504. // row range for this thread
  11505. const int ir0 = dr*ith;
  11506. const int ir1 = MIN(ir0 + dr, nr);
  11507. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11508. ggml_fp16_t * const wdata_src = wdata + nk;
  11509. for (int i1 = ir0; i1 < ir1; i1++) {
  11510. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11511. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11512. for (int i10 = 0; i10 < ne10; i10++) {
  11513. const int i1n = i10*ne11;
  11514. for (int i00 = 0; i00 < ne00; i00++) {
  11515. float v = 0;
  11516. ggml_vec_dot_f16(ne02, &v, 0,
  11517. (ggml_fp16_t *) wdata_src + i1n, 0,
  11518. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11519. dst_data[i10*s0 + i00] += v;
  11520. }
  11521. }
  11522. }
  11523. }
  11524. static void ggml_compute_forward_conv_transpose_1d_f32(
  11525. const struct ggml_compute_params * params,
  11526. struct ggml_tensor * dst) {
  11527. const struct ggml_tensor * src0 = dst->src[0];
  11528. const struct ggml_tensor * src1 = dst->src[1];
  11529. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11530. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11531. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11532. int64_t t0 = ggml_perf_time_us();
  11533. UNUSED(t0);
  11534. GGML_TENSOR_BINARY_OP_LOCALS
  11535. const int ith = params->ith;
  11536. const int nth = params->nth;
  11537. const int nk = ne00*ne01*ne02;
  11538. GGML_ASSERT(nb00 == sizeof(float));
  11539. GGML_ASSERT(nb10 == sizeof(float));
  11540. if (params->type == GGML_TASK_TYPE_INIT) {
  11541. if (ith != 0) {
  11542. return;
  11543. }
  11544. memset(params->wdata, 0, params->wsize);
  11545. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11546. {
  11547. float * const wdata = (float *) params->wdata + 0;
  11548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11549. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11550. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11551. float * dst_data = wdata + i01*ne00*ne02;
  11552. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11553. dst_data[i00*ne02 + i02] = src[i00];
  11554. }
  11555. }
  11556. }
  11557. }
  11558. // prepare source data (src1)
  11559. {
  11560. float * const wdata = (float *) params->wdata + nk;
  11561. float * dst_data = wdata;
  11562. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11563. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11564. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11565. dst_data[i10*ne11 + i11] = src[i10];
  11566. }
  11567. }
  11568. }
  11569. // need to zero dst since we are accumulating into it
  11570. memset(dst->data, 0, ggml_nbytes(dst));
  11571. return;
  11572. }
  11573. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11574. return;
  11575. }
  11576. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11577. // total rows in dst
  11578. const int nr = ne1;
  11579. // rows per thread
  11580. const int dr = (nr + nth - 1)/nth;
  11581. // row range for this thread
  11582. const int ir0 = dr*ith;
  11583. const int ir1 = MIN(ir0 + dr, nr);
  11584. float * const wdata = (float *) params->wdata + 0;
  11585. float * const wdata_src = wdata + nk;
  11586. for (int i1 = ir0; i1 < ir1; i1++) {
  11587. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11588. float * wdata_kernel = wdata + i1*ne02*ne00;
  11589. for (int i10 = 0; i10 < ne10; i10++) {
  11590. const int i1n = i10*ne11;
  11591. for (int i00 = 0; i00 < ne00; i00++) {
  11592. float v = 0;
  11593. ggml_vec_dot_f32(ne02, &v, 0,
  11594. wdata_src + i1n, 0,
  11595. wdata_kernel + i00*ne02, 0, 1);
  11596. dst_data[i10*s0 + i00] += v;
  11597. }
  11598. }
  11599. }
  11600. }
  11601. static void ggml_compute_forward_conv_transpose_1d(
  11602. const struct ggml_compute_params * params,
  11603. struct ggml_tensor * dst) {
  11604. const struct ggml_tensor * src0 = dst->src[0];
  11605. switch (src0->type) {
  11606. case GGML_TYPE_F16:
  11607. {
  11608. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11609. } break;
  11610. case GGML_TYPE_F32:
  11611. {
  11612. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11613. } break;
  11614. default:
  11615. {
  11616. GGML_ASSERT(false);
  11617. } break;
  11618. }
  11619. }
  11620. // src0: kernel [OC, IC, KH, KW]
  11621. // src1: image [N, IC, IH, IW]
  11622. // dst: result [N, OH, OW, IC*KH*KW]
  11623. static void ggml_compute_forward_im2col_f32(
  11624. const struct ggml_compute_params * params,
  11625. struct ggml_tensor * dst) {
  11626. const struct ggml_tensor * src0 = dst->src[0];
  11627. const struct ggml_tensor * src1 = dst->src[1];
  11628. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11629. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11630. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11631. int64_t t0 = ggml_perf_time_us();
  11632. UNUSED(t0);
  11633. GGML_TENSOR_BINARY_OP_LOCALS;
  11634. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11635. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11636. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11637. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11638. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11639. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11640. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11641. const int ith = params->ith;
  11642. const int nth = params->nth;
  11643. const int64_t N = is_2D ? ne13 : ne12;
  11644. const int64_t IC = is_2D ? ne12 : ne11;
  11645. const int64_t IH = is_2D ? ne11 : 1;
  11646. const int64_t IW = ne10;
  11647. const int64_t KH = is_2D ? ne01 : 1;
  11648. const int64_t KW = ne00;
  11649. const int64_t OH = is_2D ? ne2 : 1;
  11650. const int64_t OW = ne1;
  11651. int ofs0 = is_2D ? nb13 : nb12;
  11652. int ofs1 = is_2D ? nb12 : nb11;
  11653. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11654. GGML_ASSERT(nb10 == sizeof(float));
  11655. if (params->type == GGML_TASK_TYPE_INIT) {
  11656. return;
  11657. }
  11658. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11659. return;
  11660. }
  11661. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11662. {
  11663. float * const wdata = (float *) dst->data;
  11664. for (int64_t in = 0; in < N; in++) {
  11665. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11666. for (int64_t iow = 0; iow < OW; iow++) {
  11667. for (int64_t iic = ith; iic < IC; iic += nth) {
  11668. // micro kernel
  11669. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11670. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11671. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11672. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11673. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11674. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11675. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11676. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11677. } else {
  11678. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11679. }
  11680. }
  11681. }
  11682. }
  11683. }
  11684. }
  11685. }
  11686. }
  11687. }
  11688. // src0: kernel [OC, IC, KH, KW]
  11689. // src1: image [N, IC, IH, IW]
  11690. // dst: result [N, OH, OW, IC*KH*KW]
  11691. static void ggml_compute_forward_im2col_f16(
  11692. const struct ggml_compute_params * params,
  11693. struct ggml_tensor * dst) {
  11694. const struct ggml_tensor * src0 = dst->src[0];
  11695. const struct ggml_tensor * src1 = dst->src[1];
  11696. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11697. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11698. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11699. int64_t t0 = ggml_perf_time_us();
  11700. UNUSED(t0);
  11701. GGML_TENSOR_BINARY_OP_LOCALS;
  11702. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11703. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11704. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11705. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11706. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11707. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11708. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11709. const int ith = params->ith;
  11710. const int nth = params->nth;
  11711. const int64_t N = is_2D ? ne13 : ne12;
  11712. const int64_t IC = is_2D ? ne12 : ne11;
  11713. const int64_t IH = is_2D ? ne11 : 1;
  11714. const int64_t IW = ne10;
  11715. const int64_t KH = is_2D ? ne01 : 1;
  11716. const int64_t KW = ne00;
  11717. const int64_t OH = is_2D ? ne2 : 1;
  11718. const int64_t OW = ne1;
  11719. int ofs0 = is_2D ? nb13 : nb12;
  11720. int ofs1 = is_2D ? nb12 : nb11;
  11721. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11722. GGML_ASSERT(nb10 == sizeof(float));
  11723. if (params->type == GGML_TASK_TYPE_INIT) {
  11724. return;
  11725. }
  11726. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11727. return;
  11728. }
  11729. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11730. {
  11731. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11732. for (int64_t in = 0; in < N; in++) {
  11733. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11734. for (int64_t iow = 0; iow < OW; iow++) {
  11735. for (int64_t iic = ith; iic < IC; iic += nth) {
  11736. // micro kernel
  11737. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11738. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11739. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11740. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11741. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11742. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11743. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11744. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11745. } else {
  11746. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11747. }
  11748. }
  11749. }
  11750. }
  11751. }
  11752. }
  11753. }
  11754. }
  11755. }
  11756. static void ggml_compute_forward_im2col(
  11757. const struct ggml_compute_params * params,
  11758. struct ggml_tensor * dst) {
  11759. switch (dst->type) {
  11760. case GGML_TYPE_F16:
  11761. {
  11762. ggml_compute_forward_im2col_f16(params, dst);
  11763. } break;
  11764. case GGML_TYPE_F32:
  11765. {
  11766. ggml_compute_forward_im2col_f32(params, dst);
  11767. } break;
  11768. default:
  11769. {
  11770. GGML_ASSERT(false);
  11771. } break;
  11772. }
  11773. }
  11774. // ggml_compute_forward_conv_transpose_2d
  11775. static void ggml_compute_forward_conv_transpose_2d(
  11776. const struct ggml_compute_params * params,
  11777. struct ggml_tensor * dst) {
  11778. const struct ggml_tensor * src0 = dst->src[0];
  11779. const struct ggml_tensor * src1 = dst->src[1];
  11780. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11781. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11782. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11783. int64_t t0 = ggml_perf_time_us();
  11784. UNUSED(t0);
  11785. GGML_TENSOR_BINARY_OP_LOCALS
  11786. const int ith = params->ith;
  11787. const int nth = params->nth;
  11788. const int nk = ne00*ne01*ne02*ne03;
  11789. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11790. GGML_ASSERT(nb10 == sizeof(float));
  11791. if (params->type == GGML_TASK_TYPE_INIT) {
  11792. if (ith != 0) {
  11793. return;
  11794. }
  11795. memset(params->wdata, 0, params->wsize);
  11796. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11797. {
  11798. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11799. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11800. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11801. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11802. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11803. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11804. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11805. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11806. }
  11807. }
  11808. }
  11809. }
  11810. }
  11811. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11812. {
  11813. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11814. for (int i12 = 0; i12 < ne12; i12++) {
  11815. for (int i11 = 0; i11 < ne11; i11++) {
  11816. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11817. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11818. for (int i10 = 0; i10 < ne10; i10++) {
  11819. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11820. }
  11821. }
  11822. }
  11823. }
  11824. memset(dst->data, 0, ggml_nbytes(dst));
  11825. return;
  11826. }
  11827. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11828. return;
  11829. }
  11830. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11831. // total patches in dst
  11832. const int np = ne2;
  11833. // patches per thread
  11834. const int dp = (np + nth - 1)/nth;
  11835. // patch range for this thread
  11836. const int ip0 = dp*ith;
  11837. const int ip1 = MIN(ip0 + dp, np);
  11838. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11839. ggml_fp16_t * const wdata_src = wdata + nk;
  11840. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11841. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11842. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11843. for (int i11 = 0; i11 < ne11; i11++) {
  11844. for (int i10 = 0; i10 < ne10; i10++) {
  11845. const int i1n = i11*ne10*ne12 + i10*ne12;
  11846. for (int i01 = 0; i01 < ne01; i01++) {
  11847. for (int i00 = 0; i00 < ne00; i00++) {
  11848. float v = 0;
  11849. ggml_vec_dot_f16(ne03, &v, 0,
  11850. wdata_src + i1n, 0,
  11851. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11852. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11853. }
  11854. }
  11855. }
  11856. }
  11857. }
  11858. }
  11859. // ggml_compute_forward_pool_1d_sk_p0
  11860. static void ggml_compute_forward_pool_1d_sk_p0(
  11861. const struct ggml_compute_params * params,
  11862. const enum ggml_op_pool op,
  11863. const int k,
  11864. struct ggml_tensor * dst) {
  11865. const struct ggml_tensor * src = dst->src[0];
  11866. assert(src->type == GGML_TYPE_F32);
  11867. assert(params->ith == 0);
  11868. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11869. return;
  11870. }
  11871. const char * cdata = (const char *)src->data;
  11872. const char * const data_end = cdata + ggml_nbytes(src);
  11873. float * drow = (float *)dst->data;
  11874. const int64_t rs = dst->ne[0];
  11875. while (cdata < data_end) {
  11876. const float * const srow = (const float *)cdata;
  11877. int j = 0;
  11878. for (int64_t i = 0; i < rs; ++i) {
  11879. switch (op) {
  11880. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11881. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11882. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11883. }
  11884. for (int ki = 0; ki < k; ++ki) {
  11885. switch (op) {
  11886. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11887. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11888. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11889. }
  11890. ++j;
  11891. }
  11892. switch (op) {
  11893. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11894. case GGML_OP_POOL_MAX: break;
  11895. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11896. }
  11897. }
  11898. cdata += src->nb[1];
  11899. drow += rs;
  11900. }
  11901. }
  11902. // ggml_compute_forward_pool_1d
  11903. static void ggml_compute_forward_pool_1d(
  11904. const struct ggml_compute_params * params,
  11905. struct ggml_tensor * dst) {
  11906. const int32_t * opts = (const int32_t *)dst->op_params;
  11907. enum ggml_op_pool op = opts[0];
  11908. const int k0 = opts[1];
  11909. const int s0 = opts[2];
  11910. const int p0 = opts[3];
  11911. GGML_ASSERT(p0 == 0); // padding not supported
  11912. GGML_ASSERT(k0 == s0); // only s = k supported
  11913. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11914. }
  11915. // ggml_compute_forward_pool_2d
  11916. static void ggml_compute_forward_pool_2d(
  11917. const struct ggml_compute_params * params,
  11918. struct ggml_tensor * dst) {
  11919. const struct ggml_tensor * src = dst->src[0];
  11920. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11921. GGML_ASSERT(params->ith == 0);
  11922. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11923. return;
  11924. }
  11925. const int32_t * opts = (const int32_t *)dst->op_params;
  11926. enum ggml_op_pool op = opts[0];
  11927. const int k0 = opts[1];
  11928. const int k1 = opts[2];
  11929. const int s0 = opts[3];
  11930. const int s1 = opts[4];
  11931. const int p0 = opts[5];
  11932. const int p1 = opts[6];
  11933. const char * cdata = (const char*)src->data;
  11934. const char * const data_end = cdata + ggml_nbytes(src);
  11935. const int64_t px = dst->ne[0];
  11936. const int64_t py = dst->ne[1];
  11937. const int64_t pa = px * py;
  11938. float * dplane = (float *)dst->data;
  11939. const int ka = k0 * k1;
  11940. const int offset0 = -p0;
  11941. const int offset1 = -p1;
  11942. while (cdata < data_end) {
  11943. for (int oy = 0; oy < py; ++oy) {
  11944. float * const drow = dplane + oy * px;
  11945. for (int ox = 0; ox < px; ++ox) {
  11946. float * const out = drow + ox;
  11947. switch (op) {
  11948. case GGML_OP_POOL_AVG: *out = 0; break;
  11949. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11950. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11951. }
  11952. const int ix = offset0 + ox * s0;
  11953. const int iy = offset1 + oy * s1;
  11954. for (int ky = 0; ky < k1; ++ky) {
  11955. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11956. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11957. for (int kx = 0; kx < k0; ++kx) {
  11958. int j = ix + kx;
  11959. if (j < 0 || j >= src->ne[0]) continue;
  11960. switch (op) {
  11961. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11962. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11963. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11964. }
  11965. }
  11966. }
  11967. switch (op) {
  11968. case GGML_OP_POOL_AVG: *out /= ka; break;
  11969. case GGML_OP_POOL_MAX: break;
  11970. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11971. }
  11972. }
  11973. }
  11974. cdata += src->nb[2];
  11975. dplane += pa;
  11976. }
  11977. }
  11978. // ggml_compute_forward_upscale
  11979. static void ggml_compute_forward_upscale_f32(
  11980. const struct ggml_compute_params * params,
  11981. struct ggml_tensor * dst) {
  11982. const struct ggml_tensor * src0 = dst->src[0];
  11983. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11984. return;
  11985. }
  11986. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11987. const int ith = params->ith;
  11988. const int nth = params->nth;
  11989. GGML_TENSOR_UNARY_OP_LOCALS
  11990. const int scale_factor = dst->op_params[0];
  11991. // TODO: optimize
  11992. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11993. const int64_t i03 = i3;
  11994. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11995. const int64_t i02 = i2;
  11996. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11997. const int64_t i01 = i1 / scale_factor;
  11998. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11999. const int64_t i00 = i0 / scale_factor;
  12000. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12001. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12002. *y = *x;
  12003. }
  12004. }
  12005. }
  12006. }
  12007. }
  12008. static void ggml_compute_forward_upscale(
  12009. const struct ggml_compute_params * params,
  12010. struct ggml_tensor * dst) {
  12011. const struct ggml_tensor * src0 = dst->src[0];
  12012. switch (src0->type) {
  12013. case GGML_TYPE_F32:
  12014. {
  12015. ggml_compute_forward_upscale_f32(params, dst);
  12016. } break;
  12017. default:
  12018. {
  12019. GGML_ASSERT(false);
  12020. } break;
  12021. }
  12022. }
  12023. // ggml_compute_forward_pad
  12024. static void ggml_compute_forward_pad_f32(
  12025. const struct ggml_compute_params * params,
  12026. struct ggml_tensor * dst) {
  12027. const struct ggml_tensor * src0 = dst->src[0];
  12028. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12029. return;
  12030. }
  12031. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12032. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12033. const int ith = params->ith;
  12034. const int nth = params->nth;
  12035. GGML_TENSOR_UNARY_OP_LOCALS
  12036. float * dst_ptr = (float *) dst->data;
  12037. // TODO: optimize
  12038. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12039. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12040. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12041. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12042. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12043. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12044. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12045. dst_ptr[dst_idx] = *src_ptr;
  12046. } else {
  12047. dst_ptr[dst_idx] = 0;
  12048. }
  12049. }
  12050. }
  12051. }
  12052. }
  12053. }
  12054. static void ggml_compute_forward_pad(
  12055. const struct ggml_compute_params * params,
  12056. struct ggml_tensor * dst) {
  12057. const struct ggml_tensor * src0 = dst->src[0];
  12058. switch (src0->type) {
  12059. case GGML_TYPE_F32:
  12060. {
  12061. ggml_compute_forward_pad_f32(params, dst);
  12062. } break;
  12063. default:
  12064. {
  12065. GGML_ASSERT(false);
  12066. } break;
  12067. }
  12068. }
  12069. // ggml_compute_forward_arange
  12070. static void ggml_compute_forward_arange_f32(
  12071. const struct ggml_compute_params * params,
  12072. struct ggml_tensor * dst) {
  12073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12074. return;
  12075. }
  12076. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12077. const int ith = params->ith;
  12078. const int nth = params->nth;
  12079. const float start = ggml_get_op_params_f32(dst, 0);
  12080. const float stop = ggml_get_op_params_f32(dst, 1);
  12081. const float step = ggml_get_op_params_f32(dst, 2);
  12082. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12083. GGML_ASSERT(ggml_nelements(dst) == steps);
  12084. for (int64_t i = ith; i < steps; i+= nth) {
  12085. float value = start + step * i;
  12086. ((float *)dst->data)[i] = value;
  12087. }
  12088. }
  12089. static void ggml_compute_forward_arange(
  12090. const struct ggml_compute_params * params,
  12091. struct ggml_tensor * dst) {
  12092. switch (dst->type) {
  12093. case GGML_TYPE_F32:
  12094. {
  12095. ggml_compute_forward_arange_f32(params, dst);
  12096. } break;
  12097. default:
  12098. {
  12099. GGML_ASSERT(false);
  12100. } break;
  12101. }
  12102. }
  12103. static void ggml_compute_forward_timestep_embedding_f32(
  12104. const struct ggml_compute_params * params,
  12105. struct ggml_tensor * dst) {
  12106. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12107. return;
  12108. }
  12109. const struct ggml_tensor * src0 = dst->src[0];
  12110. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12111. const int ith = params->ith;
  12112. const int nth = params->nth;
  12113. GGML_TENSOR_UNARY_OP_LOCALS
  12114. const int dim = ggml_get_op_params_i32(dst, 0);
  12115. const int max_period = ggml_get_op_params_i32(dst, 1);
  12116. int half = dim / 2;
  12117. for (int64_t i = 0; i < ne00; i++) {
  12118. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12119. for (int64_t j = ith; j < half; j += nth) {
  12120. float timestep = ((float *)src0->data)[i];
  12121. float freq = (float)expf(-logf(max_period) * j / half);
  12122. float arg = timestep * freq;
  12123. embed_data[j] = cosf(arg);
  12124. embed_data[j + half] = sinf(arg);
  12125. }
  12126. if (dim % 2 != 0 && ith == 0) {
  12127. embed_data[dim] = 0.f;
  12128. }
  12129. }
  12130. }
  12131. static void ggml_compute_forward_timestep_embedding(
  12132. const struct ggml_compute_params * params,
  12133. struct ggml_tensor * dst) {
  12134. const struct ggml_tensor * src0 = dst->src[0];
  12135. switch (src0->type) {
  12136. case GGML_TYPE_F32:
  12137. {
  12138. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12139. } break;
  12140. default:
  12141. {
  12142. GGML_ASSERT(false);
  12143. } break;
  12144. }
  12145. }
  12146. // ggml_compute_forward_argsort
  12147. static void ggml_compute_forward_argsort_f32(
  12148. const struct ggml_compute_params * params,
  12149. struct ggml_tensor * dst) {
  12150. const struct ggml_tensor * src0 = dst->src[0];
  12151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12152. return;
  12153. }
  12154. GGML_TENSOR_UNARY_OP_LOCALS
  12155. GGML_ASSERT(nb0 == sizeof(float));
  12156. const int ith = params->ith;
  12157. const int nth = params->nth;
  12158. const int64_t nr = ggml_nrows(src0);
  12159. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12160. for (int64_t i = ith; i < nr; i += nth) {
  12161. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12162. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12163. for (int64_t j = 0; j < ne0; j++) {
  12164. dst_data[j] = j;
  12165. }
  12166. // C doesn't have a functional sort, so we do a bubble sort instead
  12167. for (int64_t j = 0; j < ne0; j++) {
  12168. for (int64_t k = j + 1; k < ne0; k++) {
  12169. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12170. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12171. int32_t tmp = dst_data[j];
  12172. dst_data[j] = dst_data[k];
  12173. dst_data[k] = tmp;
  12174. }
  12175. }
  12176. }
  12177. }
  12178. }
  12179. static void ggml_compute_forward_argsort(
  12180. const struct ggml_compute_params * params,
  12181. struct ggml_tensor * dst) {
  12182. const struct ggml_tensor * src0 = dst->src[0];
  12183. switch (src0->type) {
  12184. case GGML_TYPE_F32:
  12185. {
  12186. ggml_compute_forward_argsort_f32(params, dst);
  12187. } break;
  12188. default:
  12189. {
  12190. GGML_ASSERT(false);
  12191. } break;
  12192. }
  12193. }
  12194. // ggml_compute_forward_flash_attn
  12195. static void ggml_compute_forward_flash_attn_f32(
  12196. const struct ggml_compute_params * params,
  12197. const bool masked,
  12198. struct ggml_tensor * dst) {
  12199. const struct ggml_tensor * q = dst->src[0];
  12200. const struct ggml_tensor * k = dst->src[1];
  12201. const struct ggml_tensor * v = dst->src[2];
  12202. int64_t t0 = ggml_perf_time_us();
  12203. UNUSED(t0);
  12204. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12205. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12206. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12207. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12208. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12209. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12210. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12211. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12212. const int ith = params->ith;
  12213. const int nth = params->nth;
  12214. const int64_t D = neq0;
  12215. const int64_t N = neq1;
  12216. const int64_t P = nek1 - N;
  12217. const int64_t M = P + N;
  12218. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12219. GGML_ASSERT(ne0 == D);
  12220. GGML_ASSERT(ne1 == N);
  12221. GGML_ASSERT(P >= 0);
  12222. GGML_ASSERT(nbq0 == sizeof(float));
  12223. GGML_ASSERT(nbk0 == sizeof(float));
  12224. GGML_ASSERT(nbv0 == sizeof(float));
  12225. GGML_ASSERT(neq0 == D);
  12226. GGML_ASSERT(nek0 == D);
  12227. GGML_ASSERT(nev1 == D);
  12228. GGML_ASSERT(neq1 == N);
  12229. GGML_ASSERT(nek1 == N + P);
  12230. GGML_ASSERT(nev1 == D);
  12231. // dst cannot be transposed or permuted
  12232. GGML_ASSERT(nb0 == sizeof(float));
  12233. GGML_ASSERT(nb0 <= nb1);
  12234. GGML_ASSERT(nb1 <= nb2);
  12235. GGML_ASSERT(nb2 <= nb3);
  12236. if (params->type == GGML_TASK_TYPE_INIT) {
  12237. return;
  12238. }
  12239. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12240. return;
  12241. }
  12242. // parallelize by q rows using ggml_vec_dot_f32
  12243. // total rows in q
  12244. const int nr = neq1*neq2*neq3;
  12245. // rows per thread
  12246. const int dr = (nr + nth - 1)/nth;
  12247. // row range for this thread
  12248. const int ir0 = dr*ith;
  12249. const int ir1 = MIN(ir0 + dr, nr);
  12250. const float scale = 1.0f/sqrtf(D);
  12251. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12252. for (int ir = ir0; ir < ir1; ++ir) {
  12253. // q indices
  12254. const int iq3 = ir/(neq2*neq1);
  12255. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12256. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12257. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12258. for (int i = M; i < Mup; ++i) {
  12259. S[i] = -INFINITY;
  12260. }
  12261. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12262. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12263. // k indices
  12264. const int ik3 = iq3;
  12265. const int ik2 = iq2 % nek2;
  12266. const int ik1 = ic;
  12267. // S indices
  12268. const int i1 = ik1;
  12269. ggml_vec_dot_f32(neq0,
  12270. S + i1, 0,
  12271. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12272. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12273. }
  12274. // scale
  12275. ggml_vec_scale_f32(masked_begin, S, scale);
  12276. for (int64_t i = masked_begin; i < M; i++) {
  12277. S[i] = -INFINITY;
  12278. }
  12279. // softmax
  12280. // exclude known -INF S[..] values from max and loop
  12281. // dont forget to set their SW values to zero
  12282. {
  12283. float max = -INFINITY;
  12284. ggml_vec_max_f32(masked_begin, &max, S);
  12285. ggml_float sum = 0.0;
  12286. {
  12287. #ifdef GGML_SOFT_MAX_ACCELERATE
  12288. max = -max;
  12289. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12290. vvexpf(S, S, &Mup);
  12291. ggml_vec_sum_f32(Mup, &sum, S);
  12292. #else
  12293. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12294. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12295. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12296. if (i >= masked_begin) {
  12297. break;
  12298. }
  12299. float * SS = S + i;
  12300. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12301. if (i + j >= masked_begin) {
  12302. break;
  12303. } else if (SS[j] == -INFINITY) {
  12304. SS[j] = 0.0f;
  12305. } else {
  12306. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12307. const float val = expf(SS[j] - max);
  12308. #else
  12309. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12310. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12311. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12312. #endif
  12313. sump[j] += (ggml_float)val;
  12314. SS[j] = val;
  12315. }
  12316. }
  12317. }
  12318. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12319. sum += sump[i];
  12320. }
  12321. #endif
  12322. }
  12323. assert(sum > 0.0);
  12324. sum = 1.0/sum;
  12325. ggml_vec_scale_f32(masked_begin, S, sum);
  12326. #ifndef NDEBUG
  12327. for (int i = 0; i < masked_begin; ++i) {
  12328. assert(!isnan(S[i]));
  12329. assert(!isinf(S[i]));
  12330. }
  12331. #endif
  12332. }
  12333. for (int64_t ic = 0; ic < nev1; ++ic) {
  12334. // dst indices
  12335. const int i1 = iq1;
  12336. const int i2 = iq2;
  12337. const int i3 = iq3;
  12338. // v indices
  12339. const int iv2 = iq2 % nev2;
  12340. const int iv3 = iq3;
  12341. ggml_vec_dot_f32(masked_begin,
  12342. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12343. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12344. S, 0, 1);
  12345. }
  12346. }
  12347. }
  12348. static void ggml_compute_forward_flash_attn_f16(
  12349. const struct ggml_compute_params * params,
  12350. const bool masked,
  12351. struct ggml_tensor * dst) {
  12352. const struct ggml_tensor * q = dst->src[0];
  12353. const struct ggml_tensor * k = dst->src[1];
  12354. const struct ggml_tensor * v = dst->src[2];
  12355. int64_t t0 = ggml_perf_time_us();
  12356. UNUSED(t0);
  12357. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12358. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12359. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12360. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12361. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12362. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12363. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12364. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12365. const int ith = params->ith;
  12366. const int nth = params->nth;
  12367. const int64_t D = neq0;
  12368. const int64_t N = neq1;
  12369. const int64_t P = nek1 - N;
  12370. const int64_t M = P + N;
  12371. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12372. GGML_ASSERT(ne0 == D);
  12373. GGML_ASSERT(ne1 == N);
  12374. GGML_ASSERT(P >= 0);
  12375. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12376. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12377. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12378. GGML_ASSERT(neq0 == D);
  12379. GGML_ASSERT(nek0 == D);
  12380. GGML_ASSERT(nev1 == D);
  12381. GGML_ASSERT(neq1 == N);
  12382. GGML_ASSERT(nek1 == N + P);
  12383. GGML_ASSERT(nev1 == D);
  12384. // dst cannot be transposed or permuted
  12385. GGML_ASSERT(nb0 == sizeof(float));
  12386. GGML_ASSERT(nb0 <= nb1);
  12387. GGML_ASSERT(nb1 <= nb2);
  12388. GGML_ASSERT(nb2 <= nb3);
  12389. if (params->type == GGML_TASK_TYPE_INIT) {
  12390. return;
  12391. }
  12392. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12393. return;
  12394. }
  12395. // parallelize by q rows using ggml_vec_dot_f32
  12396. // total rows in q
  12397. const int nr = neq1*neq2*neq3;
  12398. // rows per thread
  12399. const int dr = (nr + nth - 1)/nth;
  12400. // row range for this thread
  12401. const int ir0 = dr*ith;
  12402. const int ir1 = MIN(ir0 + dr, nr);
  12403. const float scale = 1.0f/sqrtf(D);
  12404. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12405. for (int ir = ir0; ir < ir1; ++ir) {
  12406. // q indices
  12407. const int iq3 = ir/(neq2*neq1);
  12408. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12409. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12410. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12411. for (int i = M; i < Mup; ++i) {
  12412. S[i] = -INFINITY;
  12413. }
  12414. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12415. for (int64_t ic = 0; ic < nek1; ++ic) {
  12416. // k indices
  12417. const int ik3 = iq3;
  12418. const int ik2 = iq2 % nek2;
  12419. const int ik1 = ic;
  12420. // S indices
  12421. const int i1 = ik1;
  12422. ggml_vec_dot_f16(neq0,
  12423. S + i1, 0,
  12424. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12425. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12426. }
  12427. } else {
  12428. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12429. // k indices
  12430. const int ik3 = iq3;
  12431. const int ik2 = iq2 % nek2;
  12432. const int ik1 = ic;
  12433. // S indices
  12434. const int i1 = ik1;
  12435. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12436. S + i1,
  12437. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12438. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12439. }
  12440. }
  12441. // scale
  12442. ggml_vec_scale_f32(nek1, S, scale);
  12443. if (masked) {
  12444. for (int64_t i = P; i < M; i++) {
  12445. if (i > P + iq1) {
  12446. S[i] = -INFINITY;
  12447. }
  12448. }
  12449. }
  12450. // softmax
  12451. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12452. // dont forget to set their S values to zero
  12453. {
  12454. float max = -INFINITY;
  12455. ggml_vec_max_f32(M, &max, S);
  12456. ggml_float sum = 0.0;
  12457. {
  12458. #ifdef GGML_SOFT_MAX_ACCELERATE
  12459. max = -max;
  12460. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12461. vvexpf(S, S, &Mup);
  12462. ggml_vec_sum_f32(Mup, &sum, S);
  12463. #else
  12464. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12465. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12466. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12467. float * SS = S + i;
  12468. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12469. if (SS[j] == -INFINITY) {
  12470. SS[j] = 0.0f;
  12471. } else {
  12472. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12473. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12474. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12475. sump[j] += (ggml_float)val;
  12476. SS[j] = val;
  12477. }
  12478. }
  12479. }
  12480. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12481. sum += sump[i];
  12482. }
  12483. #endif
  12484. }
  12485. assert(sum > 0.0);
  12486. sum = 1.0/sum;
  12487. ggml_vec_scale_f32(M, S, sum);
  12488. #ifndef NDEBUG
  12489. for (int i = 0; i < M; ++i) {
  12490. assert(!isnan(S[i]));
  12491. assert(!isinf(S[i]));
  12492. }
  12493. #endif
  12494. }
  12495. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12496. for (int64_t i = 0; i < M; i++) {
  12497. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12498. }
  12499. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12500. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12501. for (int64_t ic = 0; ic < nev1; ++ic) {
  12502. // dst indices
  12503. const int i1 = iq1;
  12504. const int i2 = iq2;
  12505. const int i3 = iq3;
  12506. // v indices
  12507. const int iv2 = iq2 % nev2;
  12508. const int iv3 = iq3;
  12509. ggml_vec_dot_f16(nev0,
  12510. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12511. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12512. S16, 0, 1);
  12513. }
  12514. } else {
  12515. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12516. // dst indices
  12517. const int i1 = iq1;
  12518. const int i2 = iq2;
  12519. const int i3 = iq3;
  12520. // v indices
  12521. const int iv2 = iq2 % nev2;
  12522. const int iv3 = iq3;
  12523. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12524. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12525. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12526. S16);
  12527. }
  12528. }
  12529. }
  12530. }
  12531. static void ggml_compute_forward_flash_attn(
  12532. const struct ggml_compute_params * params,
  12533. const bool masked,
  12534. struct ggml_tensor * dst) {
  12535. const struct ggml_tensor * q = dst->src[0];
  12536. switch (q->type) {
  12537. case GGML_TYPE_F16:
  12538. {
  12539. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12540. } break;
  12541. case GGML_TYPE_F32:
  12542. {
  12543. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12544. } break;
  12545. default:
  12546. {
  12547. GGML_ASSERT(false);
  12548. } break;
  12549. }
  12550. }
  12551. // ggml_compute_forward_flash_attn_ext
  12552. static void ggml_compute_forward_flash_attn_ext_f16(
  12553. const struct ggml_compute_params * params,
  12554. const struct ggml_tensor * q,
  12555. const struct ggml_tensor * k,
  12556. const struct ggml_tensor * v,
  12557. const struct ggml_tensor * mask,
  12558. struct ggml_tensor * dst) {
  12559. int64_t t0 = ggml_perf_time_us();
  12560. UNUSED(t0);
  12561. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12562. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12563. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12564. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12565. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12566. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12567. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12568. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12569. const int ith = params->ith;
  12570. const int nth = params->nth;
  12571. const int64_t D = neq0;
  12572. const int64_t N = neq1;
  12573. GGML_ASSERT(ne0 == D);
  12574. GGML_ASSERT(ne2 == N);
  12575. GGML_ASSERT(nbq0 == sizeof(float));
  12576. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12577. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12578. GGML_ASSERT(neq0 == D);
  12579. GGML_ASSERT(nek0 == D);
  12580. GGML_ASSERT(nev0 == D);
  12581. GGML_ASSERT(neq1 == N);
  12582. GGML_ASSERT(nev0 == D);
  12583. // dst cannot be transposed or permuted
  12584. GGML_ASSERT(nb0 == sizeof(float));
  12585. GGML_ASSERT(nb0 <= nb1);
  12586. GGML_ASSERT(nb1 <= nb2);
  12587. GGML_ASSERT(nb2 <= nb3);
  12588. // broadcast factors
  12589. const int64_t rk2 = neq2/nek2;
  12590. const int64_t rk3 = neq3/nek3;
  12591. const int64_t rv2 = neq2/nev2;
  12592. const int64_t rv3 = neq3/nev3;
  12593. if (params->type == GGML_TASK_TYPE_INIT) {
  12594. return;
  12595. }
  12596. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12597. return;
  12598. }
  12599. // parallelize by q rows using ggml_vec_dot_f32
  12600. // total rows in q
  12601. const int nr = neq1*neq2*neq3;
  12602. // rows per thread
  12603. const int dr = (nr + nth - 1)/nth;
  12604. // row range for this thread
  12605. const int ir0 = dr*ith;
  12606. const int ir1 = MIN(ir0 + dr, nr);
  12607. float scale = 1.0f;
  12608. float max_bias = 0.0f;
  12609. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12610. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12611. const uint32_t n_head = neq2;
  12612. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12613. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12614. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12615. // loop over n_batch and n_head
  12616. for (int ir = ir0; ir < ir1; ++ir) {
  12617. // q indices
  12618. const int iq3 = ir/(neq2*neq1);
  12619. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12620. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12621. const uint32_t h = iq2; // head
  12622. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12623. float S = 0.0f;
  12624. float M = -INFINITY;
  12625. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12626. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12627. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12628. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12629. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12630. // k indices
  12631. const int ik3 = iq3 / rk3;
  12632. const int ik2 = iq2 / rk2;
  12633. // v indices
  12634. const int iv3 = iq3 / rv3;
  12635. const int iv2 = iq2 / rv2;
  12636. // online softmax / attention
  12637. // loop over n_kv and n_head_kv
  12638. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12639. for (int64_t ic = 0; ic < nek1; ++ic) {
  12640. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12641. if (mv == -INFINITY) {
  12642. continue;
  12643. }
  12644. float s;
  12645. // convert Q to F16 in V32
  12646. {
  12647. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12648. for (int64_t d = 0; d < D; ++d) {
  12649. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  12650. }
  12651. }
  12652. ggml_vec_dot_f16(D,
  12653. &s, 0,
  12654. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12655. Q16, 0, 1);
  12656. s = s*scale + mv;
  12657. const float Mold = M;
  12658. float ms = 1.0f;
  12659. float vs = 1.0f;
  12660. if (s > M) {
  12661. M = s;
  12662. ms = expf(Mold - M);
  12663. // V = V*expf(Mold - M)
  12664. ggml_vec_scale_f16(D, V16, ms);
  12665. } else {
  12666. vs = expf(s - M);
  12667. }
  12668. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12669. // V += v*expf(s - M)
  12670. ggml_vec_mad_f16(D, V16, v16, vs);
  12671. S = S*ms + vs;
  12672. }
  12673. // V /= S
  12674. for (int64_t d = 0; d < D; ++d) {
  12675. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12676. }
  12677. // dst indices
  12678. const int i1 = iq1;
  12679. const int i2 = iq2;
  12680. const int i3 = iq3;
  12681. // original
  12682. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12683. // permute(0, 2, 1, 3)
  12684. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12685. }
  12686. }
  12687. static void ggml_compute_forward_flash_attn_ext(
  12688. const struct ggml_compute_params * params,
  12689. const struct ggml_tensor * q,
  12690. const struct ggml_tensor * k,
  12691. const struct ggml_tensor * v,
  12692. const struct ggml_tensor * mask,
  12693. struct ggml_tensor * dst) {
  12694. switch (dst->op_params[2]) {
  12695. case GGML_PREC_DEFAULT:
  12696. case GGML_PREC_F32:
  12697. {
  12698. // uses F32 accumulators
  12699. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12700. } break;
  12701. default:
  12702. {
  12703. GGML_ASSERT(false);
  12704. } break;
  12705. }
  12706. }
  12707. // ggml_compute_forward_flash_ff
  12708. static void ggml_compute_forward_flash_ff_f16(
  12709. const struct ggml_compute_params * params,
  12710. struct ggml_tensor * dst) {
  12711. const struct ggml_tensor * a = dst->src[0]; // F16
  12712. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12713. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12714. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12715. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12716. int64_t t0 = ggml_perf_time_us();
  12717. UNUSED(t0);
  12718. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12719. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12720. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12721. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12722. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12723. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12724. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12725. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12726. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12727. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12728. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12729. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12730. const int ith = params->ith;
  12731. const int nth = params->nth;
  12732. const int64_t D = nea0;
  12733. //const int64_t N = nea1;
  12734. const int64_t M = neb01;
  12735. GGML_ASSERT(ne0 == nea0);
  12736. GGML_ASSERT(ne1 == nea1);
  12737. GGML_ASSERT(ne2 == nea2);
  12738. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12739. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12740. GGML_ASSERT(nbb10 == sizeof(float));
  12741. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12742. GGML_ASSERT(nbc10 == sizeof(float));
  12743. GGML_ASSERT(neb00 == D);
  12744. GGML_ASSERT(neb01 == M);
  12745. GGML_ASSERT(neb10 == M);
  12746. GGML_ASSERT(neb11 == 1);
  12747. GGML_ASSERT(nec00 == M);
  12748. GGML_ASSERT(nec01 == D);
  12749. GGML_ASSERT(nec10 == D);
  12750. GGML_ASSERT(nec11 == 1);
  12751. // dst cannot be transposed or permuted
  12752. GGML_ASSERT(nb0 == sizeof(float));
  12753. GGML_ASSERT(nb0 <= nb1);
  12754. GGML_ASSERT(nb1 <= nb2);
  12755. GGML_ASSERT(nb2 <= nb3);
  12756. if (params->type == GGML_TASK_TYPE_INIT) {
  12757. return;
  12758. }
  12759. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12760. return;
  12761. }
  12762. // parallelize by a rows using ggml_vec_dot_f32
  12763. // total rows in a
  12764. const int nr = nea1*nea2*nea3;
  12765. // rows per thread
  12766. const int dr = (nr + nth - 1)/nth;
  12767. // row range for this thread
  12768. const int ir0 = dr*ith;
  12769. const int ir1 = MIN(ir0 + dr, nr);
  12770. for (int ir = ir0; ir < ir1; ++ir) {
  12771. // a indices
  12772. const int ia3 = ir/(nea2*nea1);
  12773. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12774. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12775. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12776. for (int64_t ic = 0; ic < neb01; ++ic) {
  12777. // b0 indices
  12778. const int ib03 = ia3;
  12779. const int ib02 = ia2;
  12780. const int ib01 = ic;
  12781. // S indices
  12782. const int i1 = ib01;
  12783. ggml_vec_dot_f16(nea0,
  12784. S + i1, 0,
  12785. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12786. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12787. }
  12788. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12789. //ggml_vec_gelu_f32(neb01, S, S);
  12790. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12791. for (int64_t i = 0; i < M; i++) {
  12792. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12793. }
  12794. ggml_vec_gelu_f16(neb01, S16, S16);
  12795. {
  12796. // dst indices
  12797. const int i1 = ia1;
  12798. const int i2 = ia2;
  12799. const int i3 = ia3;
  12800. for (int64_t ic = 0; ic < nec01; ++ic) {
  12801. ggml_vec_dot_f16(neb01,
  12802. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12803. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12804. S16, 0, 1);
  12805. }
  12806. ggml_vec_add_f32(nec01,
  12807. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12808. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12809. (float *) c1->data);
  12810. }
  12811. }
  12812. }
  12813. static void ggml_compute_forward_flash_ff(
  12814. const struct ggml_compute_params * params,
  12815. struct ggml_tensor * dst) {
  12816. const struct ggml_tensor * b0 = dst->src[1];
  12817. switch (b0->type) {
  12818. case GGML_TYPE_F16:
  12819. {
  12820. ggml_compute_forward_flash_ff_f16(params, dst);
  12821. } break;
  12822. case GGML_TYPE_F32:
  12823. {
  12824. GGML_ASSERT(false); // TODO
  12825. } break;
  12826. default:
  12827. {
  12828. GGML_ASSERT(false);
  12829. } break;
  12830. }
  12831. }
  12832. // ggml_compute_forward_flash_attn_back
  12833. static void ggml_compute_forward_flash_attn_back_f32(
  12834. const struct ggml_compute_params * params,
  12835. const bool masked,
  12836. struct ggml_tensor * dst) {
  12837. const struct ggml_tensor * q = dst->src[0];
  12838. const struct ggml_tensor * k = dst->src[1];
  12839. const struct ggml_tensor * v = dst->src[2];
  12840. const struct ggml_tensor * d = dst->src[3];
  12841. int64_t t0 = ggml_perf_time_us();
  12842. UNUSED(t0);
  12843. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12844. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12845. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12846. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12847. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12848. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12849. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12850. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12851. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12852. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12853. const int ith = params->ith;
  12854. const int nth = params->nth;
  12855. const int64_t D = neq0;
  12856. const int64_t N = neq1;
  12857. const int64_t P = nek1 - N;
  12858. const int64_t M = P + N;
  12859. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12860. const int mxDM = MAX(D, Mup);
  12861. // GGML_ASSERT(ne0 == D);
  12862. // GGML_ASSERT(ne1 == N);
  12863. GGML_ASSERT(P >= 0);
  12864. GGML_ASSERT(nbq0 == sizeof(float));
  12865. GGML_ASSERT(nbk0 == sizeof(float));
  12866. GGML_ASSERT(nbv0 == sizeof(float));
  12867. GGML_ASSERT(neq0 == D);
  12868. GGML_ASSERT(nek0 == D);
  12869. GGML_ASSERT(nev1 == D);
  12870. GGML_ASSERT(ned0 == D);
  12871. GGML_ASSERT(neq1 == N);
  12872. GGML_ASSERT(nek1 == N + P);
  12873. GGML_ASSERT(nev1 == D);
  12874. GGML_ASSERT(ned1 == N);
  12875. // dst cannot be transposed or permuted
  12876. GGML_ASSERT(nb0 == sizeof(float));
  12877. GGML_ASSERT(nb0 <= nb1);
  12878. GGML_ASSERT(nb1 <= nb2);
  12879. GGML_ASSERT(nb2 <= nb3);
  12880. if (params->type == GGML_TASK_TYPE_INIT) {
  12881. if (ith == 0) {
  12882. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12883. }
  12884. return;
  12885. }
  12886. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12887. return;
  12888. }
  12889. const int64_t elem_q = ggml_nelements(q);
  12890. const int64_t elem_k = ggml_nelements(k);
  12891. enum ggml_type result_type = dst->type;
  12892. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12893. const size_t tsize = ggml_type_size(result_type);
  12894. const size_t offs_q = 0;
  12895. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12896. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12897. void * grad_q = (char *) dst->data;
  12898. void * grad_k = (char *) dst->data + offs_k;
  12899. void * grad_v = (char *) dst->data + offs_v;
  12900. const size_t nbgq1 = nb0*neq0;
  12901. const size_t nbgq2 = nb0*neq0*neq1;
  12902. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12903. const size_t nbgk1 = nb0*nek0;
  12904. const size_t nbgk2 = nb0*nek0*nek1;
  12905. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12906. const size_t nbgv1 = nb0*nev0;
  12907. const size_t nbgv2 = nb0*nev0*nev1;
  12908. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12909. // parallelize by k rows using ggml_vec_dot_f32
  12910. // total rows in k
  12911. const int nr = nek2*nek3;
  12912. // rows per thread
  12913. const int dr = (nr + nth - 1)/nth;
  12914. // row range for this thread
  12915. const int ir0 = dr*ith;
  12916. const int ir1 = MIN(ir0 + dr, nr);
  12917. const float scale = 1.0f/sqrtf(D);
  12918. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12919. // how often k2 (and v2) is repeated in q2
  12920. int nrep = neq2/nek2;
  12921. for (int ir = ir0; ir < ir1; ++ir) {
  12922. // q indices
  12923. const int ik3 = ir/(nek2);
  12924. const int ik2 = ir - ik3*nek2;
  12925. const int iq3 = ik3;
  12926. const int id3 = ik3;
  12927. const int iv3 = ik3;
  12928. const int iv2 = ik2;
  12929. for (int irep = 0; irep < nrep; ++irep) {
  12930. const int iq2 = ik2 + irep*nek2;
  12931. const int id2 = iq2;
  12932. // (ik2 + irep*nek2) % nek2 == ik2
  12933. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12934. const int id1 = iq1;
  12935. // not sure about CACHE_LINE_SIZE_F32..
  12936. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12937. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12938. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12939. for (int i = M; i < Mup; ++i) {
  12940. S[i] = -INFINITY;
  12941. }
  12942. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12943. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12944. // k indices
  12945. const int ik1 = ic;
  12946. // S indices
  12947. const int i1 = ik1;
  12948. ggml_vec_dot_f32(neq0,
  12949. S + i1, 0,
  12950. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12951. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12952. }
  12953. // scale
  12954. ggml_vec_scale_f32(masked_begin, S, scale);
  12955. for (int64_t i = masked_begin; i < M; i++) {
  12956. S[i] = -INFINITY;
  12957. }
  12958. // softmax
  12959. // exclude known -INF S[..] values from max and loop
  12960. // dont forget to set their SM values to zero
  12961. {
  12962. float max = -INFINITY;
  12963. ggml_vec_max_f32(masked_begin, &max, S);
  12964. ggml_float sum = 0.0;
  12965. {
  12966. #ifdef GGML_SOFT_MAX_ACCELERATE
  12967. max = -max;
  12968. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12969. vvexpf(SM, SM, &Mup);
  12970. ggml_vec_sum_f32(Mup, &sum, SM);
  12971. #else
  12972. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12973. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12974. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12975. if (i >= masked_begin) {
  12976. break;
  12977. }
  12978. float * SR = S + i;
  12979. float * SW = SM + i;
  12980. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12981. if (i + j >= masked_begin) {
  12982. break;
  12983. } else if (SR[j] == -INFINITY) {
  12984. SW[j] = 0.0f;
  12985. } else {
  12986. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12987. const float val = expf(SR[j] - max);
  12988. #else
  12989. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12990. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12991. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12992. #endif
  12993. sump[j] += (ggml_float)val;
  12994. SW[j] = val;
  12995. }
  12996. }
  12997. }
  12998. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12999. sum += sump[i];
  13000. }
  13001. #endif
  13002. }
  13003. assert(sum > 0.0);
  13004. sum = 1.0/sum;
  13005. ggml_vec_scale_f32(masked_begin, SM, sum);
  13006. }
  13007. // step-by-step explanation
  13008. {
  13009. // forward-process shape grads from backward process
  13010. // parallel_for ik2,ik3:
  13011. // for irep:
  13012. // iq2 = ik2 + irep*nek2
  13013. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13014. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13015. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13016. // for iq1:
  13017. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13018. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13019. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13020. // S0 = -Inf [D,1,1,1]
  13021. // ~S1[i] = dot(kcur[:D,i], qcur)
  13022. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13023. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13024. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13025. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13026. // ~S5[i] = dot(vcur[:,i], S4)
  13027. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13028. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13029. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13030. // dst backward-/ grad[dst] = d
  13031. //
  13032. // output gradients with their dependencies:
  13033. //
  13034. // grad[kcur] = grad[S1].T @ qcur
  13035. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13036. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13037. // grad[S4] = grad[S5] @ vcur
  13038. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13039. // grad[qcur] = grad[S1] @ kcur
  13040. // grad[vcur] = grad[S5].T @ S4
  13041. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13042. //
  13043. // in post-order:
  13044. //
  13045. // S1 = qcur @ kcur.T
  13046. // S2 = S1 * scale
  13047. // S3 = diag_mask_inf(S2, P)
  13048. // S4 = softmax(S3)
  13049. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13050. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13051. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13052. // grad[qcur] = grad[S1] @ kcur
  13053. // grad[kcur] = grad[S1].T @ qcur
  13054. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13055. //
  13056. // using less variables (SM=S4):
  13057. //
  13058. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13059. // SM = softmax(S)
  13060. // S = d[:D,iq1,iq2,iq3] @ vcur
  13061. // dot_SM_gradSM = dot(SM, S)
  13062. // S = SM * (S - dot(SM, S))
  13063. // S = diag_mask_zero(S, P) * scale
  13064. //
  13065. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13066. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13067. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13068. }
  13069. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13070. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13071. // for ic:
  13072. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13073. // exclude known future zero S[..] values from operation
  13074. ggml_vec_set_f32(masked_begin, S, 0);
  13075. for (int64_t ic = 0; ic < D; ++ic) {
  13076. ggml_vec_mad_f32(masked_begin,
  13077. S,
  13078. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13079. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13080. }
  13081. // S = SM * (S - dot(SM, S))
  13082. float dot_SM_gradSM = 0;
  13083. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13084. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13085. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13086. // S = diag_mask_zero(S, P) * scale
  13087. // already done by above ggml_vec_set_f32
  13088. // exclude known zero S[..] values from operation
  13089. ggml_vec_scale_f32(masked_begin, S, scale);
  13090. // S shape [M,1]
  13091. // SM shape [M,1]
  13092. // kcur shape [D,M]
  13093. // qcur shape [D,1]
  13094. // vcur shape [M,D]
  13095. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13096. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13097. // for ic:
  13098. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13099. // exclude known zero S[..] values from loop
  13100. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13101. ggml_vec_mad_f32(D,
  13102. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13103. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13104. S[ic]);
  13105. }
  13106. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13107. // for ic:
  13108. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13109. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13110. // exclude known zero S[..] values from loop
  13111. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13112. ggml_vec_mad_f32(D,
  13113. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13114. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13115. S[ic]);
  13116. }
  13117. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13118. // for ic:
  13119. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13120. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13121. // exclude known zero SM[..] values from mad
  13122. for (int64_t ic = 0; ic < D; ++ic) {
  13123. ggml_vec_mad_f32(masked_begin,
  13124. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13125. SM,
  13126. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13127. }
  13128. }
  13129. }
  13130. }
  13131. }
  13132. static void ggml_compute_forward_flash_attn_back(
  13133. const struct ggml_compute_params * params,
  13134. const bool masked,
  13135. struct ggml_tensor * dst) {
  13136. const struct ggml_tensor * q = dst->src[0];
  13137. switch (q->type) {
  13138. case GGML_TYPE_F32:
  13139. {
  13140. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13141. } break;
  13142. default:
  13143. {
  13144. GGML_ASSERT(false);
  13145. } break;
  13146. }
  13147. }
  13148. // ggml_compute_forward_ssm_conv
  13149. static void ggml_compute_forward_ssm_conv_f32(
  13150. const struct ggml_compute_params * params,
  13151. struct ggml_tensor * dst) {
  13152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13153. return;
  13154. }
  13155. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13156. const struct ggml_tensor * src1 = dst->src[1]; // x
  13157. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13158. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13159. const int ith = params->ith;
  13160. const int nth = params->nth;
  13161. const int nc = src2->ne[0]; // d_conv
  13162. const int nr = src0->ne[1]; // d_inner
  13163. const int n_t = src1->ne[1]; // n_tokens
  13164. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13165. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13166. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13167. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13168. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13169. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13170. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13171. // for use with the destination state offset between sequences
  13172. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13173. // rows per thread
  13174. const int dr = (nr + nth - 1)/nth;
  13175. // row range for this thread
  13176. const int ir0 = dr*ith;
  13177. const int ir1 = MIN(ir0 + dr, nr);
  13178. const int ir = ir1 - ir0;
  13179. if (n_kv > 1) {
  13180. // multiple sequences means it's hard to know when it's the first time a state is read,
  13181. // so copy them all over to the destination, just to be sure.
  13182. for (int i3 = 0; i3 < n_kv; ++i3) {
  13183. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13184. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13185. // can't use memcpy because of d_conv vs d_conv - 1
  13186. for (int i1 = 0; i1 < ir; ++i1) {
  13187. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13188. // copy s0 to last (d_conv - 1) columns of s
  13189. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13190. }
  13191. }
  13192. }
  13193. }
  13194. for (int i2 = 0; i2 < n_t; ++i2) {
  13195. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13196. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13197. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13198. float * s0; // {d_conv - 1, d_inner, n_kv}
  13199. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13200. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13201. int ne0s0;
  13202. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13203. // avoid needing to copy the state for the first token
  13204. if (i2 == 0) {
  13205. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13206. ne0s0 = src0->ne[0];
  13207. } else {
  13208. // the source is the last (d_conv - 1) columns of the destination
  13209. s0 = s + 1;
  13210. ne0s0 = nc;
  13211. }
  13212. // d_inner
  13213. for (int i1 = 0; i1 < ir; ++i1) {
  13214. // shift state left
  13215. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13216. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13217. }
  13218. // insert x on the last column
  13219. s[(nc - 1) + i1*nc] = x0[i1];
  13220. }
  13221. // handle copies when there are multiple output states
  13222. for (int i3 = 1; i3 < n_kv; ++i3) {
  13223. int32_t seq = sq[i3];
  13224. if (0 <= seq && seq < n_kv) {
  13225. float * s1 = s + (seq - sq[0])*nc*nr;
  13226. memcpy(s1, s, nc*ir*sizeof(float));
  13227. } else {
  13228. // stop at negative or too big seq_ids
  13229. break;
  13230. }
  13231. }
  13232. // it seems a little faster when this is separate from the state shift
  13233. for (int i1 = 0; i1 < ir; ++i1) {
  13234. // rowwise dot product
  13235. float sumf = 0.0f;
  13236. for (int i0 = 0; i0 < nc; ++i0) {
  13237. int i = i0 + i1*nc;
  13238. sumf += s[i] * c[i];
  13239. }
  13240. x[i1] = sumf;
  13241. }
  13242. }
  13243. }
  13244. static void ggml_compute_forward_ssm_conv(
  13245. const struct ggml_compute_params * params,
  13246. struct ggml_tensor * dst) {
  13247. switch (dst->src[0]->type) {
  13248. case GGML_TYPE_F32:
  13249. {
  13250. ggml_compute_forward_ssm_conv_f32(params, dst);
  13251. } break;
  13252. default:
  13253. {
  13254. GGML_ASSERT(false);
  13255. } break;
  13256. }
  13257. }
  13258. // ggml_compute_forward_ssm_scan
  13259. static void ggml_compute_forward_ssm_scan_f32(
  13260. const struct ggml_compute_params * params,
  13261. struct ggml_tensor * dst) {
  13262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13263. return;
  13264. }
  13265. const struct ggml_tensor * src0 = dst->src[0]; // s
  13266. const struct ggml_tensor * src1 = dst->src[1]; // x
  13267. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13268. const struct ggml_tensor * src3 = dst->src[3]; // A
  13269. const struct ggml_tensor * src4 = dst->src[4]; // B
  13270. const struct ggml_tensor * src5 = dst->src[5]; // C
  13271. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13272. const int ith = params->ith;
  13273. const int nth = params->nth;
  13274. const int64_t nc = src0->ne[0]; // d_state
  13275. const int64_t nr = src0->ne[1]; // d_inner
  13276. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13277. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13278. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13279. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13280. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13281. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13282. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13283. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13284. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13285. // required for the dot product between s and C, and when copying the states
  13286. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13287. // required for per-sequence offsets for states
  13288. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13289. // required to get correct offset for state destination (i.e. src1->nb[2])
  13290. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13291. // rows per thread
  13292. const int dr = (nr + nth - 1)/nth;
  13293. // row range for this thread
  13294. const int ir0 = dr*ith;
  13295. const int ir1 = MIN(ir0 + dr, nr);
  13296. const int ir = ir1 - ir0;
  13297. if (n_kv > 1) {
  13298. // it's hard to know if the source states have already been copied
  13299. // when there are multiple, so copy them already.
  13300. for (int i3 = 0; i3 < n_kv; ++i3) {
  13301. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13302. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13303. memcpy(s, s0, nc*ir*sizeof(float));
  13304. }
  13305. }
  13306. for (int i2 = 0; i2 < n_t; ++i2) {
  13307. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13308. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13309. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13310. float * s0;
  13311. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13312. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13313. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13314. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13315. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13316. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13317. // avoid needing to copy the state for the first token
  13318. if (i2 == 0) {
  13319. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13320. } else {
  13321. // otherwise the source is the same as the destination
  13322. s0 = s;
  13323. }
  13324. // d_inner
  13325. for (int i1 = 0; i1 < ir; ++i1) {
  13326. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13327. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13328. float x_dt = x[i1] * dt_soft_plus;
  13329. float sumf = 0.0f;
  13330. // d_state
  13331. for (int i0 = 0; i0 < nc; ++i0) {
  13332. int i = i0 + i1*nc;
  13333. // state = prev_state * dA + dB * x
  13334. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13335. // y = rowwise_dotprod(state, C)
  13336. sumf += state * C[i0];
  13337. s[i] = state;
  13338. }
  13339. y[i1] = sumf;
  13340. }
  13341. // handle copies when there are multiple output states
  13342. for (int i3 = 1; i3 < n_kv; ++i3) {
  13343. int32_t seq = sq[i3];
  13344. if (0 <= seq && seq < n_kv) {
  13345. float * s1 = s + (seq - sq[0])*nc*nr;
  13346. memcpy(s1, s, nc*ir*sizeof(float));
  13347. } else {
  13348. // stop at negative or too big seq_ids
  13349. break;
  13350. }
  13351. }
  13352. }
  13353. }
  13354. static void ggml_compute_forward_ssm_scan(
  13355. const struct ggml_compute_params * params,
  13356. struct ggml_tensor * dst) {
  13357. switch (dst->src[0]->type) {
  13358. case GGML_TYPE_F32:
  13359. {
  13360. ggml_compute_forward_ssm_scan_f32(params, dst);
  13361. } break;
  13362. default:
  13363. {
  13364. GGML_ASSERT(false);
  13365. } break;
  13366. }
  13367. }
  13368. // ggml_compute_forward_win_part
  13369. static void ggml_compute_forward_win_part_f32(
  13370. const struct ggml_compute_params * params,
  13371. struct ggml_tensor * dst) {
  13372. const struct ggml_tensor * src0 = dst->src[0];
  13373. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13374. return;
  13375. }
  13376. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13377. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13378. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13379. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13380. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13381. assert(ne00 == ne0);
  13382. assert(ne3 == nep0*nep1);
  13383. // TODO: optimize / multi-thread
  13384. for (int py = 0; py < nep1; ++py) {
  13385. for (int px = 0; px < nep0; ++px) {
  13386. const int64_t i3 = py*nep0 + px;
  13387. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13388. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13389. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13390. const int64_t i02 = py*w + i2;
  13391. const int64_t i01 = px*w + i1;
  13392. const int64_t i00 = i0;
  13393. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13394. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13395. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13396. ((float *) dst->data)[i] = 0.0f;
  13397. } else {
  13398. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13399. }
  13400. }
  13401. }
  13402. }
  13403. }
  13404. }
  13405. }
  13406. static void ggml_compute_forward_win_part(
  13407. const struct ggml_compute_params * params,
  13408. struct ggml_tensor * dst) {
  13409. const struct ggml_tensor * src0 = dst->src[0];
  13410. switch (src0->type) {
  13411. case GGML_TYPE_F32:
  13412. {
  13413. ggml_compute_forward_win_part_f32(params, dst);
  13414. } break;
  13415. default:
  13416. {
  13417. GGML_ASSERT(false);
  13418. } break;
  13419. }
  13420. }
  13421. // ggml_compute_forward_win_unpart
  13422. static void ggml_compute_forward_win_unpart_f32(
  13423. const struct ggml_compute_params * params,
  13424. struct ggml_tensor * dst) {
  13425. const struct ggml_tensor * src0 = dst->src[0];
  13426. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13427. return;
  13428. }
  13429. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13430. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13431. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13432. // padding
  13433. const int px = (w - ne1%w)%w;
  13434. //const int py = (w - ne2%w)%w;
  13435. const int npx = (px + ne1)/w;
  13436. //const int npy = (py + ne2)/w;
  13437. assert(ne0 == ne00);
  13438. // TODO: optimize / multi-thread
  13439. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13440. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13441. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13442. const int ip2 = i2/w;
  13443. const int ip1 = i1/w;
  13444. const int64_t i02 = i2%w;
  13445. const int64_t i01 = i1%w;
  13446. const int64_t i00 = i0;
  13447. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13448. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13449. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13450. }
  13451. }
  13452. }
  13453. }
  13454. static void ggml_compute_forward_win_unpart(
  13455. const struct ggml_compute_params * params,
  13456. struct ggml_tensor * dst) {
  13457. const struct ggml_tensor * src0 = dst->src[0];
  13458. switch (src0->type) {
  13459. case GGML_TYPE_F32:
  13460. {
  13461. ggml_compute_forward_win_unpart_f32(params, dst);
  13462. } break;
  13463. default:
  13464. {
  13465. GGML_ASSERT(false);
  13466. } break;
  13467. }
  13468. }
  13469. //gmml_compute_forward_unary
  13470. static void ggml_compute_forward_unary(
  13471. const struct ggml_compute_params * params,
  13472. struct ggml_tensor * dst) {
  13473. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13474. switch (op) {
  13475. case GGML_UNARY_OP_ABS:
  13476. {
  13477. ggml_compute_forward_abs(params, dst);
  13478. } break;
  13479. case GGML_UNARY_OP_SGN:
  13480. {
  13481. ggml_compute_forward_sgn(params, dst);
  13482. } break;
  13483. case GGML_UNARY_OP_NEG:
  13484. {
  13485. ggml_compute_forward_neg(params, dst);
  13486. } break;
  13487. case GGML_UNARY_OP_STEP:
  13488. {
  13489. ggml_compute_forward_step(params, dst);
  13490. } break;
  13491. case GGML_UNARY_OP_TANH:
  13492. {
  13493. ggml_compute_forward_tanh(params, dst);
  13494. } break;
  13495. case GGML_UNARY_OP_ELU:
  13496. {
  13497. ggml_compute_forward_elu(params, dst);
  13498. } break;
  13499. case GGML_UNARY_OP_RELU:
  13500. {
  13501. ggml_compute_forward_relu(params, dst);
  13502. } break;
  13503. case GGML_UNARY_OP_GELU:
  13504. {
  13505. ggml_compute_forward_gelu(params, dst);
  13506. } break;
  13507. case GGML_UNARY_OP_GELU_QUICK:
  13508. {
  13509. ggml_compute_forward_gelu_quick(params, dst);
  13510. } break;
  13511. case GGML_UNARY_OP_SILU:
  13512. {
  13513. ggml_compute_forward_silu(params, dst);
  13514. } break;
  13515. case GGML_UNARY_OP_HARDSWISH:
  13516. {
  13517. ggml_compute_forward_hardswish(params, dst);
  13518. } break;
  13519. case GGML_UNARY_OP_HARDSIGMOID:
  13520. {
  13521. ggml_compute_forward_hardsigmoid(params, dst);
  13522. } break;
  13523. default:
  13524. {
  13525. GGML_ASSERT(false);
  13526. } break;
  13527. }
  13528. }
  13529. // ggml_compute_forward_get_rel_pos
  13530. static void ggml_compute_forward_get_rel_pos_f16(
  13531. const struct ggml_compute_params * params,
  13532. struct ggml_tensor * dst) {
  13533. const struct ggml_tensor * src0 = dst->src[0];
  13534. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13535. return;
  13536. }
  13537. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13538. GGML_TENSOR_UNARY_OP_LOCALS
  13539. const int64_t w = ne1;
  13540. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13541. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13542. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13543. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13544. const int64_t pos = (w - i1 - 1) + i2;
  13545. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13546. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13547. }
  13548. }
  13549. }
  13550. }
  13551. static void ggml_compute_forward_get_rel_pos(
  13552. const struct ggml_compute_params * params,
  13553. struct ggml_tensor * dst) {
  13554. const struct ggml_tensor * src0 = dst->src[0];
  13555. switch (src0->type) {
  13556. case GGML_TYPE_F16:
  13557. case GGML_TYPE_BF16:
  13558. {
  13559. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13560. } break;
  13561. default:
  13562. {
  13563. GGML_ASSERT(false);
  13564. } break;
  13565. }
  13566. }
  13567. // ggml_compute_forward_add_rel_pos
  13568. static void ggml_compute_forward_add_rel_pos_f32(
  13569. const struct ggml_compute_params * params,
  13570. struct ggml_tensor * dst) {
  13571. const struct ggml_tensor * src0 = dst->src[0];
  13572. const struct ggml_tensor * src1 = dst->src[1];
  13573. const struct ggml_tensor * src2 = dst->src[2];
  13574. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13575. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13576. if (params->ith != 0) {
  13577. return;
  13578. }
  13579. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13580. return;
  13581. }
  13582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13583. return;
  13584. }
  13585. int64_t t0 = ggml_perf_time_us();
  13586. UNUSED(t0);
  13587. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13588. float * src1_data = (float *) src1->data;
  13589. float * src2_data = (float *) src2->data;
  13590. float * dst_data = (float *) dst->data;
  13591. const int64_t ne10 = src1->ne[0];
  13592. const int64_t ne11 = src1->ne[1];
  13593. const int64_t ne12 = src1->ne[2];
  13594. const int64_t ne13 = src1->ne[3];
  13595. const int ith = params->ith;
  13596. const int nth = params->nth;
  13597. // total patches in dst
  13598. const int np = ne13;
  13599. // patches per thread
  13600. const int dp = (np + nth - 1)/nth;
  13601. // patch range for this thread
  13602. const int ip0 = dp*ith;
  13603. const int ip1 = MIN(ip0 + dp, np);
  13604. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13605. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13606. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13607. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13608. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13609. const int64_t jp0 = jp1 + i10;
  13610. const float src1_e = src1_data[jp0];
  13611. const float src2_e = src2_data[jp0];
  13612. const int64_t jdh = jp0 * ne10;
  13613. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13614. for (int64_t j = 0; j < ne10; ++j) {
  13615. dst_data[jdh + j ] += src2_e;
  13616. dst_data[jdw + j*ne10] += src1_e;
  13617. }
  13618. }
  13619. }
  13620. }
  13621. }
  13622. }
  13623. static void ggml_compute_forward_add_rel_pos(
  13624. const struct ggml_compute_params * params,
  13625. struct ggml_tensor * dst) {
  13626. const struct ggml_tensor * src0 = dst->src[0];
  13627. switch (src0->type) {
  13628. case GGML_TYPE_F32:
  13629. {
  13630. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13631. } break;
  13632. default:
  13633. {
  13634. GGML_ASSERT(false);
  13635. } break;
  13636. }
  13637. }
  13638. // ggml_compute_forward_map_unary
  13639. static void ggml_compute_forward_map_unary_f32(
  13640. const struct ggml_compute_params * params,
  13641. struct ggml_tensor * dst,
  13642. const ggml_unary_op_f32_t fun) {
  13643. const struct ggml_tensor * src0 = dst->src[0];
  13644. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13645. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13646. return;
  13647. }
  13648. const int n = ggml_nrows(src0);
  13649. const int nc = src0->ne[0];
  13650. assert( dst->nb[0] == sizeof(float));
  13651. assert(src0->nb[0] == sizeof(float));
  13652. for (int i = 0; i < n; i++) {
  13653. fun(nc,
  13654. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13655. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13656. }
  13657. }
  13658. static void ggml_compute_forward_map_unary(
  13659. const struct ggml_compute_params * params,
  13660. struct ggml_tensor * dst,
  13661. const ggml_unary_op_f32_t fun) {
  13662. const struct ggml_tensor * src0 = dst->src[0];
  13663. switch (src0->type) {
  13664. case GGML_TYPE_F32:
  13665. {
  13666. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13667. } break;
  13668. default:
  13669. {
  13670. GGML_ASSERT(false);
  13671. } break;
  13672. }
  13673. }
  13674. // ggml_compute_forward_map_binary
  13675. static void ggml_compute_forward_map_binary_f32(
  13676. const struct ggml_compute_params * params,
  13677. struct ggml_tensor * dst,
  13678. const ggml_binary_op_f32_t fun) {
  13679. const struct ggml_tensor * src0 = dst->src[0];
  13680. const struct ggml_tensor * src1 = dst->src[1];
  13681. assert(params->ith == 0);
  13682. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13683. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13684. return;
  13685. }
  13686. const int n = ggml_nrows(src0);
  13687. const int nc = src0->ne[0];
  13688. assert( dst->nb[0] == sizeof(float));
  13689. assert(src0->nb[0] == sizeof(float));
  13690. assert(src1->nb[0] == sizeof(float));
  13691. for (int i = 0; i < n; i++) {
  13692. fun(nc,
  13693. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13694. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13695. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13696. }
  13697. }
  13698. static void ggml_compute_forward_map_binary(
  13699. const struct ggml_compute_params * params,
  13700. struct ggml_tensor * dst,
  13701. const ggml_binary_op_f32_t fun) {
  13702. const struct ggml_tensor * src0 = dst->src[0];
  13703. switch (src0->type) {
  13704. case GGML_TYPE_F32:
  13705. {
  13706. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13707. } break;
  13708. default:
  13709. {
  13710. GGML_ASSERT(false);
  13711. } break;
  13712. }
  13713. }
  13714. // ggml_compute_forward_map_custom1
  13715. static void ggml_compute_forward_map_custom1_f32(
  13716. const struct ggml_compute_params * params,
  13717. struct ggml_tensor * dst,
  13718. const ggml_custom1_op_f32_t fun) {
  13719. const struct ggml_tensor * a = dst->src[0];
  13720. assert(params->ith == 0);
  13721. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13722. return;
  13723. }
  13724. fun(dst, a);
  13725. }
  13726. // ggml_compute_forward_map_custom2
  13727. static void ggml_compute_forward_map_custom2_f32(
  13728. const struct ggml_compute_params * params,
  13729. struct ggml_tensor * dst,
  13730. const ggml_custom2_op_f32_t fun) {
  13731. const struct ggml_tensor * a = dst->src[0];
  13732. const struct ggml_tensor * b = dst->src[1];
  13733. assert(params->ith == 0);
  13734. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13735. return;
  13736. }
  13737. fun(dst, a, b);
  13738. }
  13739. // ggml_compute_forward_map_custom3
  13740. static void ggml_compute_forward_map_custom3_f32(
  13741. const struct ggml_compute_params * params,
  13742. struct ggml_tensor * dst,
  13743. const ggml_custom3_op_f32_t fun) {
  13744. const struct ggml_tensor * a = dst->src[0];
  13745. const struct ggml_tensor * b = dst->src[1];
  13746. const struct ggml_tensor * c = dst->src[1];
  13747. assert(params->ith == 0);
  13748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13749. return;
  13750. }
  13751. fun(dst, a, b, c);
  13752. }
  13753. // ggml_compute_forward_map_custom1
  13754. static void ggml_compute_forward_map_custom1(
  13755. const struct ggml_compute_params * params,
  13756. struct ggml_tensor * dst) {
  13757. const struct ggml_tensor * a = dst->src[0];
  13758. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13759. return;
  13760. }
  13761. struct ggml_map_custom1_op_params p;
  13762. memcpy(&p, dst->op_params, sizeof(p));
  13763. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13764. }
  13765. // ggml_compute_forward_map_custom2
  13766. static void ggml_compute_forward_map_custom2(
  13767. const struct ggml_compute_params * params,
  13768. struct ggml_tensor * dst) {
  13769. const struct ggml_tensor * a = dst->src[0];
  13770. const struct ggml_tensor * b = dst->src[1];
  13771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13772. return;
  13773. }
  13774. struct ggml_map_custom2_op_params p;
  13775. memcpy(&p, dst->op_params, sizeof(p));
  13776. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13777. }
  13778. // ggml_compute_forward_map_custom3
  13779. static void ggml_compute_forward_map_custom3(
  13780. const struct ggml_compute_params * params,
  13781. struct ggml_tensor * dst) {
  13782. const struct ggml_tensor * a = dst->src[0];
  13783. const struct ggml_tensor * b = dst->src[1];
  13784. const struct ggml_tensor * c = dst->src[2];
  13785. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13786. return;
  13787. }
  13788. struct ggml_map_custom3_op_params p;
  13789. memcpy(&p, dst->op_params, sizeof(p));
  13790. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13791. }
  13792. // ggml_compute_forward_cross_entropy_loss
  13793. static void ggml_compute_forward_cross_entropy_loss_f32(
  13794. const struct ggml_compute_params * params,
  13795. struct ggml_tensor * dst) {
  13796. const struct ggml_tensor * src0 = dst->src[0];
  13797. const struct ggml_tensor * src1 = dst->src[1];
  13798. GGML_ASSERT(ggml_is_contiguous(src0));
  13799. GGML_ASSERT(ggml_is_contiguous(src1));
  13800. GGML_ASSERT(ggml_is_scalar(dst));
  13801. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13802. const int ith = params->ith;
  13803. const int nth = params->nth;
  13804. float * sums = (float *) params->wdata;
  13805. // TODO: handle transposed/permuted matrices
  13806. const int nc = src0->ne[0];
  13807. const int nr = ggml_nrows(src0);
  13808. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13809. if (params->type == GGML_TASK_TYPE_INIT) {
  13810. if (ith == 0) {
  13811. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13812. }
  13813. return;
  13814. }
  13815. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13816. if (ith == 0) {
  13817. float * dp = (float *) dst->data;
  13818. ggml_vec_sum_f32(nth, dp, sums);
  13819. dp[0] *= -1.0f / (float) nr;
  13820. }
  13821. return;
  13822. }
  13823. const double eps = 1e-9;
  13824. // rows per thread
  13825. const int dr = (nr + nth - 1)/nth;
  13826. // row range for this thread
  13827. const int ir0 = dr*ith;
  13828. const int ir1 = MIN(ir0 + dr, nr);
  13829. for (int i1 = ir0; i1 < ir1; i1++) {
  13830. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13831. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13832. float * st = ((float *) params->wdata) + nth + ith*nc;
  13833. #ifndef NDEBUG
  13834. for (int i = 0; i < nc; ++i) {
  13835. //printf("p[%d] = %f\n", i, p[i]);
  13836. assert(!isnan(s0[i]));
  13837. assert(!isnan(s1[i]));
  13838. }
  13839. #endif
  13840. // soft_max
  13841. ggml_float sum = 0.0;
  13842. {
  13843. float max = -INFINITY;
  13844. ggml_vec_max_f32(nc, &max, s0);
  13845. uint16_t scvt; UNUSED(scvt);
  13846. for (int i = 0; i < nc; i++) {
  13847. if (s0[i] == -INFINITY) {
  13848. st[i] = 0.0f;
  13849. } else {
  13850. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13851. const float s = s0[i] - max;
  13852. const float val = expf(s);
  13853. #else
  13854. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13855. memcpy(&scvt, &s, sizeof(scvt));
  13856. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13857. #endif
  13858. sum += (ggml_float)val;
  13859. st[i] = val;
  13860. }
  13861. }
  13862. assert(sum > 0.0);
  13863. // sum = 1.0/sum;
  13864. }
  13865. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13866. sum = (1.0 - eps) / sum;
  13867. ggml_vec_scale_f32(nc, st, sum);
  13868. ggml_vec_add1_f32(nc, st, st, eps);
  13869. ggml_vec_log_f32(nc, st, st);
  13870. ggml_vec_mul_f32(nc, st, st, s1);
  13871. float st_sum = 0;
  13872. ggml_vec_sum_f32(nc, &st_sum, st);
  13873. sums[ith] += st_sum;
  13874. #ifndef NDEBUG
  13875. for (int i = 0; i < nc; ++i) {
  13876. assert(!isnan(st[i]));
  13877. assert(!isinf(st[i]));
  13878. }
  13879. #endif
  13880. }
  13881. }
  13882. static void ggml_compute_forward_cross_entropy_loss(
  13883. const struct ggml_compute_params * params,
  13884. struct ggml_tensor * dst) {
  13885. const struct ggml_tensor * src0 = dst->src[0];
  13886. switch (src0->type) {
  13887. case GGML_TYPE_F32:
  13888. {
  13889. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13890. } break;
  13891. default:
  13892. {
  13893. GGML_ASSERT(false);
  13894. } break;
  13895. }
  13896. }
  13897. // ggml_compute_forward_cross_entropy_loss_back
  13898. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13899. const struct ggml_compute_params * params,
  13900. struct ggml_tensor * dst) {
  13901. const struct ggml_tensor * src0 = dst->src[0];
  13902. const struct ggml_tensor * src1 = dst->src[1];
  13903. const struct ggml_tensor * opt0 = dst->src[2];
  13904. GGML_ASSERT(ggml_is_contiguous(dst));
  13905. GGML_ASSERT(ggml_is_contiguous(src0));
  13906. GGML_ASSERT(ggml_is_contiguous(src1));
  13907. GGML_ASSERT(ggml_is_contiguous(opt0));
  13908. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13909. const int64_t ith = params->ith;
  13910. const int64_t nth = params->nth;
  13911. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13912. return;
  13913. }
  13914. const double eps = 1e-9;
  13915. // TODO: handle transposed/permuted matrices
  13916. const int64_t nc = src0->ne[0];
  13917. const int64_t nr = ggml_nrows(src0);
  13918. // rows per thread
  13919. const int64_t dr = (nr + nth - 1)/nth;
  13920. // row range for this thread
  13921. const int64_t ir0 = dr*ith;
  13922. const int64_t ir1 = MIN(ir0 + dr, nr);
  13923. float * d = (float *) opt0->data;
  13924. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13925. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13926. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13927. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13928. #ifndef NDEBUG
  13929. for (int i = 0; i < nc; ++i) {
  13930. //printf("p[%d] = %f\n", i, p[i]);
  13931. assert(!isnan(s0[i]));
  13932. assert(!isnan(s1[i]));
  13933. }
  13934. #endif
  13935. // soft_max
  13936. ggml_float sum = 0.0;
  13937. {
  13938. float max = -INFINITY;
  13939. ggml_vec_max_f32(nc, &max, s0);
  13940. uint16_t scvt; UNUSED(scvt);
  13941. for (int i = 0; i < nc; i++) {
  13942. if (s0[i] == -INFINITY) {
  13943. ds0[i] = 0.0f;
  13944. } else {
  13945. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13946. const float s = s0[i] - max;
  13947. const float val = expf(s);
  13948. #else
  13949. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13950. memcpy(&scvt, &s, sizeof(scvt));
  13951. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13952. #endif
  13953. sum += (ggml_float)val;
  13954. ds0[i] = val;
  13955. }
  13956. }
  13957. assert(sum > 0.0);
  13958. sum = (1.0 - eps)/sum;
  13959. }
  13960. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13961. ggml_vec_scale_f32(nc, ds0, sum);
  13962. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13963. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13964. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13965. #ifndef NDEBUG
  13966. for (int i = 0; i < nc; ++i) {
  13967. assert(!isnan(ds0[i]));
  13968. assert(!isinf(ds0[i]));
  13969. }
  13970. #endif
  13971. }
  13972. }
  13973. static void ggml_compute_forward_cross_entropy_loss_back(
  13974. const struct ggml_compute_params * params,
  13975. struct ggml_tensor * dst) {
  13976. const struct ggml_tensor * src0 = dst->src[0];
  13977. switch (src0->type) {
  13978. case GGML_TYPE_F32:
  13979. {
  13980. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13981. } break;
  13982. default:
  13983. {
  13984. GGML_ASSERT(false);
  13985. } break;
  13986. }
  13987. }
  13988. /////////////////////////////////
  13989. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13990. GGML_ASSERT(params);
  13991. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13992. return;
  13993. }
  13994. switch (tensor->op) {
  13995. case GGML_OP_DUP:
  13996. {
  13997. ggml_compute_forward_dup(params, tensor);
  13998. } break;
  13999. case GGML_OP_ADD:
  14000. {
  14001. ggml_compute_forward_add(params, tensor);
  14002. } break;
  14003. case GGML_OP_ADD1:
  14004. {
  14005. ggml_compute_forward_add1(params, tensor);
  14006. } break;
  14007. case GGML_OP_ACC:
  14008. {
  14009. ggml_compute_forward_acc(params, tensor);
  14010. } break;
  14011. case GGML_OP_SUB:
  14012. {
  14013. ggml_compute_forward_sub(params, tensor);
  14014. } break;
  14015. case GGML_OP_MUL:
  14016. {
  14017. ggml_compute_forward_mul(params, tensor);
  14018. } break;
  14019. case GGML_OP_DIV:
  14020. {
  14021. ggml_compute_forward_div(params, tensor);
  14022. } break;
  14023. case GGML_OP_SQR:
  14024. {
  14025. ggml_compute_forward_sqr(params, tensor);
  14026. } break;
  14027. case GGML_OP_SQRT:
  14028. {
  14029. ggml_compute_forward_sqrt(params, tensor);
  14030. } break;
  14031. case GGML_OP_LOG:
  14032. {
  14033. ggml_compute_forward_log(params, tensor);
  14034. } break;
  14035. case GGML_OP_SUM:
  14036. {
  14037. ggml_compute_forward_sum(params, tensor);
  14038. } break;
  14039. case GGML_OP_SUM_ROWS:
  14040. {
  14041. ggml_compute_forward_sum_rows(params, tensor);
  14042. } break;
  14043. case GGML_OP_MEAN:
  14044. {
  14045. ggml_compute_forward_mean(params, tensor);
  14046. } break;
  14047. case GGML_OP_ARGMAX:
  14048. {
  14049. ggml_compute_forward_argmax(params, tensor);
  14050. } break;
  14051. case GGML_OP_REPEAT:
  14052. {
  14053. ggml_compute_forward_repeat(params, tensor);
  14054. } break;
  14055. case GGML_OP_REPEAT_BACK:
  14056. {
  14057. ggml_compute_forward_repeat_back(params, tensor);
  14058. } break;
  14059. case GGML_OP_CONCAT:
  14060. {
  14061. ggml_compute_forward_concat(params, tensor);
  14062. } break;
  14063. case GGML_OP_SILU_BACK:
  14064. {
  14065. ggml_compute_forward_silu_back(params, tensor);
  14066. } break;
  14067. case GGML_OP_NORM:
  14068. {
  14069. ggml_compute_forward_norm(params, tensor);
  14070. } break;
  14071. case GGML_OP_RMS_NORM:
  14072. {
  14073. ggml_compute_forward_rms_norm(params, tensor);
  14074. } break;
  14075. case GGML_OP_RMS_NORM_BACK:
  14076. {
  14077. ggml_compute_forward_rms_norm_back(params, tensor);
  14078. } break;
  14079. case GGML_OP_GROUP_NORM:
  14080. {
  14081. ggml_compute_forward_group_norm(params, tensor);
  14082. } break;
  14083. case GGML_OP_MUL_MAT:
  14084. {
  14085. ggml_compute_forward_mul_mat(params, tensor);
  14086. } break;
  14087. case GGML_OP_MUL_MAT_ID:
  14088. {
  14089. ggml_compute_forward_mul_mat_id(params, tensor);
  14090. } break;
  14091. case GGML_OP_OUT_PROD:
  14092. {
  14093. ggml_compute_forward_out_prod(params, tensor);
  14094. } break;
  14095. case GGML_OP_SCALE:
  14096. {
  14097. ggml_compute_forward_scale(params, tensor);
  14098. } break;
  14099. case GGML_OP_SET:
  14100. {
  14101. ggml_compute_forward_set(params, tensor);
  14102. } break;
  14103. case GGML_OP_CPY:
  14104. {
  14105. ggml_compute_forward_cpy(params, tensor);
  14106. } break;
  14107. case GGML_OP_CONT:
  14108. {
  14109. ggml_compute_forward_cont(params, tensor);
  14110. } break;
  14111. case GGML_OP_RESHAPE:
  14112. {
  14113. ggml_compute_forward_reshape(params, tensor);
  14114. } break;
  14115. case GGML_OP_VIEW:
  14116. {
  14117. ggml_compute_forward_view(params, tensor);
  14118. } break;
  14119. case GGML_OP_PERMUTE:
  14120. {
  14121. ggml_compute_forward_permute(params, tensor);
  14122. } break;
  14123. case GGML_OP_TRANSPOSE:
  14124. {
  14125. ggml_compute_forward_transpose(params, tensor);
  14126. } break;
  14127. case GGML_OP_GET_ROWS:
  14128. {
  14129. ggml_compute_forward_get_rows(params, tensor);
  14130. } break;
  14131. case GGML_OP_GET_ROWS_BACK:
  14132. {
  14133. ggml_compute_forward_get_rows_back(params, tensor);
  14134. } break;
  14135. case GGML_OP_DIAG:
  14136. {
  14137. ggml_compute_forward_diag(params, tensor);
  14138. } break;
  14139. case GGML_OP_DIAG_MASK_INF:
  14140. {
  14141. ggml_compute_forward_diag_mask_inf(params, tensor);
  14142. } break;
  14143. case GGML_OP_DIAG_MASK_ZERO:
  14144. {
  14145. ggml_compute_forward_diag_mask_zero(params, tensor);
  14146. } break;
  14147. case GGML_OP_SOFT_MAX:
  14148. {
  14149. ggml_compute_forward_soft_max(params, tensor);
  14150. } break;
  14151. case GGML_OP_SOFT_MAX_BACK:
  14152. {
  14153. ggml_compute_forward_soft_max_back(params, tensor);
  14154. } break;
  14155. case GGML_OP_ROPE:
  14156. {
  14157. ggml_compute_forward_rope(params, tensor);
  14158. } break;
  14159. case GGML_OP_ROPE_BACK:
  14160. {
  14161. ggml_compute_forward_rope_back(params, tensor);
  14162. } break;
  14163. case GGML_OP_CLAMP:
  14164. {
  14165. ggml_compute_forward_clamp(params, tensor);
  14166. } break;
  14167. case GGML_OP_CONV_TRANSPOSE_1D:
  14168. {
  14169. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14170. } break;
  14171. case GGML_OP_IM2COL:
  14172. {
  14173. ggml_compute_forward_im2col(params, tensor);
  14174. } break;
  14175. case GGML_OP_CONV_TRANSPOSE_2D:
  14176. {
  14177. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14178. } break;
  14179. case GGML_OP_POOL_1D:
  14180. {
  14181. ggml_compute_forward_pool_1d(params, tensor);
  14182. } break;
  14183. case GGML_OP_POOL_2D:
  14184. {
  14185. ggml_compute_forward_pool_2d(params, tensor);
  14186. } break;
  14187. case GGML_OP_UPSCALE:
  14188. {
  14189. ggml_compute_forward_upscale(params, tensor);
  14190. } break;
  14191. case GGML_OP_PAD:
  14192. {
  14193. ggml_compute_forward_pad(params, tensor);
  14194. } break;
  14195. case GGML_OP_ARANGE:
  14196. {
  14197. ggml_compute_forward_arange(params, tensor);
  14198. } break;
  14199. case GGML_OP_TIMESTEP_EMBEDDING:
  14200. {
  14201. ggml_compute_forward_timestep_embedding(params, tensor);
  14202. } break;
  14203. case GGML_OP_ARGSORT:
  14204. {
  14205. ggml_compute_forward_argsort(params, tensor);
  14206. } break;
  14207. case GGML_OP_LEAKY_RELU:
  14208. {
  14209. ggml_compute_forward_leaky_relu(params, tensor);
  14210. } break;
  14211. case GGML_OP_FLASH_ATTN:
  14212. {
  14213. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14214. GGML_ASSERT(t == 0 || t == 1);
  14215. const bool masked = t != 0;
  14216. ggml_compute_forward_flash_attn(params, masked, tensor);
  14217. } break;
  14218. case GGML_OP_FLASH_ATTN_EXT:
  14219. {
  14220. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14221. } break;
  14222. case GGML_OP_FLASH_FF:
  14223. {
  14224. ggml_compute_forward_flash_ff(params, tensor);
  14225. } break;
  14226. case GGML_OP_FLASH_ATTN_BACK:
  14227. {
  14228. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14229. GGML_ASSERT(t == 0 || t == 1);
  14230. bool masked = t != 0;
  14231. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14232. } break;
  14233. case GGML_OP_SSM_CONV:
  14234. {
  14235. ggml_compute_forward_ssm_conv(params, tensor);
  14236. } break;
  14237. case GGML_OP_SSM_SCAN:
  14238. {
  14239. ggml_compute_forward_ssm_scan(params, tensor);
  14240. } break;
  14241. case GGML_OP_WIN_PART:
  14242. {
  14243. ggml_compute_forward_win_part(params, tensor);
  14244. } break;
  14245. case GGML_OP_WIN_UNPART:
  14246. {
  14247. ggml_compute_forward_win_unpart(params, tensor);
  14248. } break;
  14249. case GGML_OP_UNARY:
  14250. {
  14251. ggml_compute_forward_unary(params, tensor);
  14252. } break;
  14253. case GGML_OP_GET_REL_POS:
  14254. {
  14255. ggml_compute_forward_get_rel_pos(params, tensor);
  14256. } break;
  14257. case GGML_OP_ADD_REL_POS:
  14258. {
  14259. ggml_compute_forward_add_rel_pos(params, tensor);
  14260. } break;
  14261. case GGML_OP_MAP_UNARY:
  14262. {
  14263. ggml_unary_op_f32_t fun;
  14264. memcpy(&fun, tensor->op_params, sizeof(fun));
  14265. ggml_compute_forward_map_unary(params, tensor, fun);
  14266. }
  14267. break;
  14268. case GGML_OP_MAP_BINARY:
  14269. {
  14270. ggml_binary_op_f32_t fun;
  14271. memcpy(&fun, tensor->op_params, sizeof(fun));
  14272. ggml_compute_forward_map_binary(params, tensor, fun);
  14273. }
  14274. break;
  14275. case GGML_OP_MAP_CUSTOM1_F32:
  14276. {
  14277. ggml_custom1_op_f32_t fun;
  14278. memcpy(&fun, tensor->op_params, sizeof(fun));
  14279. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14280. }
  14281. break;
  14282. case GGML_OP_MAP_CUSTOM2_F32:
  14283. {
  14284. ggml_custom2_op_f32_t fun;
  14285. memcpy(&fun, tensor->op_params, sizeof(fun));
  14286. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14287. }
  14288. break;
  14289. case GGML_OP_MAP_CUSTOM3_F32:
  14290. {
  14291. ggml_custom3_op_f32_t fun;
  14292. memcpy(&fun, tensor->op_params, sizeof(fun));
  14293. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14294. }
  14295. break;
  14296. case GGML_OP_MAP_CUSTOM1:
  14297. {
  14298. ggml_compute_forward_map_custom1(params, tensor);
  14299. }
  14300. break;
  14301. case GGML_OP_MAP_CUSTOM2:
  14302. {
  14303. ggml_compute_forward_map_custom2(params, tensor);
  14304. }
  14305. break;
  14306. case GGML_OP_MAP_CUSTOM3:
  14307. {
  14308. ggml_compute_forward_map_custom3(params, tensor);
  14309. }
  14310. break;
  14311. case GGML_OP_CROSS_ENTROPY_LOSS:
  14312. {
  14313. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14314. }
  14315. break;
  14316. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14317. {
  14318. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14319. }
  14320. break;
  14321. case GGML_OP_NONE:
  14322. {
  14323. // nop
  14324. } break;
  14325. case GGML_OP_COUNT:
  14326. {
  14327. GGML_ASSERT(false);
  14328. } break;
  14329. }
  14330. }
  14331. ////////////////////////////////////////////////////////////////////////////////
  14332. static size_t ggml_hash_size(size_t min_sz) {
  14333. // next primes after powers of two
  14334. static const size_t primes[] = {
  14335. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14336. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14337. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14338. 16777259, 33554467, 67108879, 134217757, 268435459,
  14339. 536870923, 1073741827, 2147483659
  14340. };
  14341. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14342. // find the smallest prime that is larger or equal to min_sz
  14343. size_t l = 0;
  14344. size_t r = n_primes;
  14345. while (l < r) {
  14346. size_t m = (l + r)/2;
  14347. if (primes[m] < min_sz) {
  14348. l = m + 1;
  14349. } else {
  14350. r = m;
  14351. }
  14352. }
  14353. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14354. return sz;
  14355. }
  14356. static size_t ggml_hash(const void * p) {
  14357. return (size_t)p;
  14358. }
  14359. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14360. size_t h = ggml_hash(key) % hash_set.size;
  14361. // linear probing
  14362. size_t i = h;
  14363. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14364. i = (i + 1) % hash_set.size;
  14365. if (i == h) {
  14366. // visited all hash table entries -> not found
  14367. return GGML_HASHTABLE_FULL;
  14368. }
  14369. }
  14370. return i;
  14371. }
  14372. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14373. size_t i = ggml_hash_find(hash_set, key);
  14374. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14375. }
  14376. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14377. size_t i = ggml_hash_find(hash_set, key);
  14378. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14379. if (hash_set.keys[i] == key) {
  14380. return GGML_HASHTABLE_ALREADY_EXISTS;
  14381. }
  14382. // insert
  14383. GGML_ASSERT(hash_set.keys[i] == NULL);
  14384. hash_set.keys[i] = key;
  14385. return i;
  14386. }
  14387. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14388. size_t i = ggml_hash_find(hash_set, key);
  14389. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14390. hash_set.keys[i] = key;
  14391. return i;
  14392. }
  14393. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14394. size = ggml_hash_size(size);
  14395. struct ggml_hash_set result;
  14396. result.size = size;
  14397. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14398. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14399. return result;
  14400. }
  14401. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14402. GGML_FREE(hash_set.keys);
  14403. }
  14404. struct hash_map {
  14405. struct ggml_hash_set set;
  14406. struct ggml_tensor ** vals;
  14407. };
  14408. static struct hash_map * ggml_new_hash_map(size_t size) {
  14409. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14410. result->set = ggml_hash_set_new(size);
  14411. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14412. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14413. return result;
  14414. }
  14415. static void ggml_hash_map_free(struct hash_map * map) {
  14416. ggml_hash_set_free(map->set);
  14417. GGML_FREE(map->vals);
  14418. GGML_FREE(map);
  14419. }
  14420. // gradient checkpointing
  14421. static struct ggml_tensor * ggml_recompute_graph_node(
  14422. struct ggml_context * ctx,
  14423. struct ggml_cgraph * graph,
  14424. struct hash_map * replacements,
  14425. struct ggml_tensor * node) {
  14426. if (node == NULL) {
  14427. return NULL;
  14428. }
  14429. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14430. return node;
  14431. }
  14432. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14433. return node;
  14434. }
  14435. int count_children = 0;
  14436. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14437. if (node->src[k]) {
  14438. ++count_children;
  14439. }
  14440. }
  14441. if (count_children == 0) {
  14442. return node;
  14443. }
  14444. size_t i = ggml_hash_find(replacements->set, node);
  14445. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14446. if (replacements->set.keys[i] == node) {
  14447. return replacements->vals[i];
  14448. }
  14449. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14450. // insert clone into replacements
  14451. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14452. replacements->set.keys[i] = node;
  14453. replacements->vals[i] = clone;
  14454. clone->op = node->op;
  14455. clone->grad = node->grad;
  14456. clone->flags = node->flags;
  14457. clone->extra = node->extra;
  14458. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14459. clone->nb[k] = node->nb[k];
  14460. }
  14461. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14462. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14463. }
  14464. if (node->view_src != NULL) {
  14465. clone->data = (node->view_src->data == NULL)
  14466. ? NULL // view_src not yet allocated
  14467. : (char *) node->view_src->data // view_src already allocated
  14468. + node->view_offs;
  14469. clone->view_src = node->view_src;
  14470. clone->view_offs = node->view_offs;
  14471. }
  14472. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14473. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14474. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14475. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14476. return clone;
  14477. }
  14478. void ggml_build_backward_gradient_checkpointing(
  14479. struct ggml_context * ctx,
  14480. struct ggml_cgraph * gf,
  14481. struct ggml_cgraph * gb,
  14482. struct ggml_cgraph * gb_tmp,
  14483. struct ggml_tensor * * checkpoints,
  14484. int n_checkpoints) {
  14485. ggml_graph_cpy(gf, gb_tmp);
  14486. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14487. if (n_checkpoints <= 0) {
  14488. ggml_graph_cpy(gb_tmp, gb);
  14489. return;
  14490. }
  14491. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14492. // insert checkpoints in replacements
  14493. for (int i = 0; i < n_checkpoints; ++i) {
  14494. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14495. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14496. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14497. replacements->set.keys[k] = checkpoints[i];
  14498. replacements->vals[k] = checkpoints[i];
  14499. }
  14500. ggml_graph_cpy(gf, gb);
  14501. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14502. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14503. // by recomputing them from checkpoints
  14504. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14505. struct ggml_tensor * node = gb_tmp->nodes[i];
  14506. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14507. // insert new tensors recomputing src, reusing already made replacements,
  14508. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14509. // recurse for input tensors,
  14510. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14511. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14512. }
  14513. // insert rewritten backward node with replacements made into resulting backward graph gb
  14514. ggml_build_forward_expand(gb, node);
  14515. }
  14516. ggml_hash_map_free(replacements);
  14517. }
  14518. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14519. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14520. if (ggml_hash_contains(zero_table, a)) {
  14521. return b;
  14522. } else {
  14523. return ggml_add_impl(ctx, a, b, false);
  14524. }
  14525. }
  14526. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14527. if (ggml_hash_contains(zero_table, a)) {
  14528. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14529. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14530. } else {
  14531. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14532. }
  14533. }
  14534. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14535. if (ggml_hash_contains(zero_table, a)) {
  14536. return ggml_repeat(ctx, b, a);
  14537. } else {
  14538. return ggml_add1_impl(ctx, a, b, false);
  14539. }
  14540. }
  14541. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14542. if (ggml_hash_contains(zero_table, a)) {
  14543. return ggml_neg(ctx, b);
  14544. } else {
  14545. return ggml_sub_impl(ctx, a, b, false);
  14546. }
  14547. }
  14548. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14549. struct ggml_tensor * src0 = tensor->src[0];
  14550. struct ggml_tensor * src1 = tensor->src[1];
  14551. switch (tensor->op) {
  14552. case GGML_OP_DUP:
  14553. {
  14554. if (src0->grad) {
  14555. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14556. }
  14557. } break;
  14558. case GGML_OP_ADD:
  14559. {
  14560. if (src0->grad) {
  14561. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14562. }
  14563. if (src1->grad) {
  14564. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14565. }
  14566. } break;
  14567. case GGML_OP_ADD1:
  14568. {
  14569. if (src0->grad) {
  14570. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14571. }
  14572. if (src1->grad) {
  14573. src1->grad = ggml_add_or_set(ctx,
  14574. src1->grad,
  14575. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14576. zero_table);
  14577. }
  14578. } break;
  14579. case GGML_OP_ACC:
  14580. {
  14581. if (src0->grad) {
  14582. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14583. }
  14584. if (src1->grad) {
  14585. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14586. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14587. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14588. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14589. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14590. tensor->grad,
  14591. src1->grad->ne[0],
  14592. src1->grad->ne[1],
  14593. src1->grad->ne[2],
  14594. src1->grad->ne[3],
  14595. nb1, nb2, nb3, offset);
  14596. src1->grad =
  14597. ggml_add_or_set(ctx,
  14598. src1->grad,
  14599. ggml_reshape(ctx,
  14600. ggml_cont(ctx, tensor_grad_view),
  14601. src1->grad),
  14602. zero_table);
  14603. }
  14604. } break;
  14605. case GGML_OP_SUB:
  14606. {
  14607. if (src0->grad) {
  14608. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14609. }
  14610. if (src1->grad) {
  14611. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14612. }
  14613. } break;
  14614. case GGML_OP_MUL:
  14615. {
  14616. if (src0->grad) {
  14617. src0->grad =
  14618. ggml_add_or_set(ctx,
  14619. src0->grad,
  14620. ggml_mul(ctx, src1, tensor->grad),
  14621. zero_table);
  14622. }
  14623. if (src1->grad) {
  14624. src1->grad =
  14625. ggml_add_or_set(ctx,
  14626. src1->grad,
  14627. ggml_mul(ctx, src0, tensor->grad),
  14628. zero_table);
  14629. }
  14630. } break;
  14631. case GGML_OP_DIV:
  14632. {
  14633. if (src0->grad) {
  14634. src0->grad =
  14635. ggml_add_or_set(ctx,
  14636. src0->grad,
  14637. ggml_div(ctx, tensor->grad, src1),
  14638. zero_table);
  14639. }
  14640. if (src1->grad) {
  14641. src1->grad =
  14642. ggml_sub_or_set(ctx,
  14643. src1->grad,
  14644. ggml_mul(ctx,
  14645. tensor->grad,
  14646. ggml_div(ctx, tensor, src1)),
  14647. zero_table);
  14648. }
  14649. } break;
  14650. case GGML_OP_SQR:
  14651. {
  14652. if (src0->grad) {
  14653. src0->grad =
  14654. ggml_add_or_set(ctx,
  14655. src0->grad,
  14656. ggml_scale(ctx,
  14657. ggml_mul(ctx, src0, tensor->grad),
  14658. 2.0f),
  14659. zero_table);
  14660. }
  14661. } break;
  14662. case GGML_OP_SQRT:
  14663. {
  14664. if (src0->grad) {
  14665. src0->grad =
  14666. ggml_add_or_set(ctx,
  14667. src0->grad,
  14668. ggml_scale(ctx,
  14669. ggml_div(ctx,
  14670. tensor->grad,
  14671. tensor),
  14672. 0.5f),
  14673. zero_table);
  14674. }
  14675. } break;
  14676. case GGML_OP_LOG:
  14677. {
  14678. if (src0->grad) {
  14679. src0->grad =
  14680. ggml_add_or_set(ctx,
  14681. src0->grad,
  14682. ggml_div(ctx,
  14683. tensor->grad,
  14684. src0),
  14685. zero_table);
  14686. }
  14687. } break;
  14688. case GGML_OP_SUM:
  14689. {
  14690. if (src0->grad) {
  14691. src0->grad =
  14692. ggml_add1_or_set(ctx,
  14693. src0->grad,
  14694. tensor->grad,
  14695. zero_table);
  14696. }
  14697. } break;
  14698. case GGML_OP_SUM_ROWS:
  14699. {
  14700. if (src0->grad) {
  14701. src0->grad =
  14702. ggml_add_or_set(ctx,
  14703. src0->grad,
  14704. ggml_repeat(ctx,
  14705. tensor->grad,
  14706. src0->grad),
  14707. zero_table);
  14708. }
  14709. } break;
  14710. case GGML_OP_MEAN:
  14711. case GGML_OP_ARGMAX:
  14712. {
  14713. GGML_ASSERT(false); // TODO: implement
  14714. } break;
  14715. case GGML_OP_REPEAT:
  14716. {
  14717. // necessary for llama
  14718. if (src0->grad) {
  14719. src0->grad = ggml_add_or_set(ctx,
  14720. src0->grad,
  14721. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14722. zero_table);
  14723. }
  14724. } break;
  14725. case GGML_OP_REPEAT_BACK:
  14726. {
  14727. if (src0->grad) {
  14728. // TODO: test this
  14729. src0->grad = ggml_add_or_set(ctx,
  14730. src0->grad,
  14731. ggml_repeat(ctx, tensor->grad, src0->grad),
  14732. zero_table);
  14733. }
  14734. } break;
  14735. case GGML_OP_CONCAT:
  14736. {
  14737. GGML_ASSERT(false); // TODO: implement
  14738. } break;
  14739. case GGML_OP_SILU_BACK:
  14740. {
  14741. GGML_ASSERT(false); // TODO: not implemented
  14742. } break;
  14743. case GGML_OP_NORM:
  14744. {
  14745. GGML_ASSERT(false); // TODO: not implemented
  14746. } break;
  14747. case GGML_OP_RMS_NORM:
  14748. {
  14749. // necessary for llama
  14750. if (src0->grad) {
  14751. float eps;
  14752. memcpy(&eps, tensor->op_params, sizeof(float));
  14753. src0->grad = ggml_add_or_set(ctx,
  14754. src0->grad,
  14755. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14756. zero_table);
  14757. }
  14758. } break;
  14759. case GGML_OP_RMS_NORM_BACK:
  14760. {
  14761. GGML_ASSERT(false); // TODO: not implemented
  14762. } break;
  14763. case GGML_OP_GROUP_NORM:
  14764. {
  14765. GGML_ASSERT(false); // TODO: not implemented
  14766. } break;
  14767. case GGML_OP_MUL_MAT:
  14768. {
  14769. // https://cs231n.github.io/optimization-2/#staged
  14770. // # forward pass
  14771. // s0 = np.random.randn(5, 10)
  14772. // s1 = np.random.randn(10, 3)
  14773. // t = s0.dot(s1)
  14774. // # now suppose we had the gradient on t from above in the circuit
  14775. // dt = np.random.randn(*t.shape) # same shape as t
  14776. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14777. // ds1 = t.T.dot(dt)
  14778. // tensor.shape [m,p,qq,rr]
  14779. // src0.shape [n,m,q1,r1]
  14780. // src1.shape [n,p,qq,rr]
  14781. // necessary for llama
  14782. if (src0->grad) {
  14783. struct ggml_tensor * s1_tg =
  14784. ggml_out_prod(ctx, // [n,m,qq,rr]
  14785. src1, // [n,p,qq,rr]
  14786. tensor->grad); // [m,p,qq,rr]
  14787. const int64_t qq = s1_tg->ne[2];
  14788. const int64_t rr = s1_tg->ne[3];
  14789. const int64_t q1 = src0->ne[2];
  14790. const int64_t r1 = src0->ne[3];
  14791. const bool ne2_broadcasted = qq > q1;
  14792. const bool ne3_broadcasted = rr > r1;
  14793. if (ne2_broadcasted || ne3_broadcasted) {
  14794. // sum broadcast repetitions of s1_tg into shape of src0
  14795. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14796. }
  14797. src0->grad =
  14798. ggml_add_or_set(ctx,
  14799. src0->grad, // [n,m,q1,r1]
  14800. s1_tg, // [n,m,q1,r1]
  14801. zero_table);
  14802. }
  14803. if (src1->grad) {
  14804. src1->grad =
  14805. ggml_add_or_set(ctx,
  14806. src1->grad, // [n,p,qq,rr]
  14807. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14808. // ggml_cont(ctx, // [m,n,q1,r1]
  14809. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14810. // tensor->grad), // [m,p,qq,rr]
  14811. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14812. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14813. // // and then use ggml_out_prod
  14814. ggml_out_prod(ctx, // [n,p,qq,rr]
  14815. src0, // [n,m,q1,r1]
  14816. ggml_transpose(ctx, // [p,m,qq,rr]
  14817. tensor->grad)), // [m,p,qq,rr]
  14818. zero_table);
  14819. }
  14820. } break;
  14821. case GGML_OP_MUL_MAT_ID:
  14822. {
  14823. GGML_ASSERT(false); // TODO: not implemented
  14824. } break;
  14825. case GGML_OP_OUT_PROD:
  14826. {
  14827. GGML_ASSERT(false); // TODO: not implemented
  14828. } break;
  14829. case GGML_OP_SCALE:
  14830. {
  14831. // necessary for llama
  14832. if (src0->grad) {
  14833. float s;
  14834. memcpy(&s, tensor->op_params, sizeof(float));
  14835. src0->grad =
  14836. ggml_add_or_set(ctx,
  14837. src0->grad,
  14838. ggml_scale_impl(ctx, tensor->grad, s, false),
  14839. zero_table);
  14840. }
  14841. } break;
  14842. case GGML_OP_SET:
  14843. {
  14844. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14845. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14846. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14847. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14848. struct ggml_tensor * tensor_grad_view = NULL;
  14849. if (src0->grad || src1->grad) {
  14850. GGML_ASSERT(src0->type == tensor->type);
  14851. GGML_ASSERT(tensor->grad->type == tensor->type);
  14852. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14853. tensor_grad_view = ggml_view_4d(ctx,
  14854. tensor->grad,
  14855. src1->grad->ne[0],
  14856. src1->grad->ne[1],
  14857. src1->grad->ne[2],
  14858. src1->grad->ne[3],
  14859. nb1, nb2, nb3, offset);
  14860. }
  14861. if (src0->grad) {
  14862. src0->grad = ggml_add_or_set(ctx,
  14863. src0->grad,
  14864. ggml_acc_impl(ctx,
  14865. tensor->grad,
  14866. ggml_neg(ctx, tensor_grad_view),
  14867. nb1, nb2, nb3, offset, false),
  14868. zero_table);
  14869. }
  14870. if (src1->grad) {
  14871. src1->grad =
  14872. ggml_add_or_set(ctx,
  14873. src1->grad,
  14874. ggml_reshape(ctx,
  14875. ggml_cont(ctx, tensor_grad_view),
  14876. src1->grad),
  14877. zero_table);
  14878. }
  14879. } break;
  14880. case GGML_OP_CPY:
  14881. {
  14882. // necessary for llama
  14883. // cpy overwrites value of src1 by src0 and returns view(src1)
  14884. // the overwriting is mathematically equivalent to:
  14885. // tensor = src0 * 1 + src1 * 0
  14886. if (src0->grad) {
  14887. // dsrc0 = dtensor * 1
  14888. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14889. }
  14890. if (src1->grad) {
  14891. // dsrc1 = dtensor * 0 -> noop
  14892. }
  14893. } break;
  14894. case GGML_OP_CONT:
  14895. {
  14896. // same as cpy
  14897. if (src0->grad) {
  14898. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14899. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14900. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14901. }
  14902. } break;
  14903. case GGML_OP_RESHAPE:
  14904. {
  14905. // necessary for llama
  14906. if (src0->grad) {
  14907. src0->grad =
  14908. ggml_add_or_set(ctx, src0->grad,
  14909. ggml_reshape(ctx,
  14910. ggml_is_contiguous(tensor->grad)
  14911. ? tensor->grad
  14912. : ggml_cont(ctx, tensor->grad),
  14913. src0->grad),
  14914. zero_table);
  14915. }
  14916. } break;
  14917. case GGML_OP_VIEW:
  14918. {
  14919. // necessary for llama
  14920. if (src0->grad) {
  14921. size_t offset;
  14922. memcpy(&offset, tensor->op_params, sizeof(offset));
  14923. size_t nb1 = tensor->nb[1];
  14924. size_t nb2 = tensor->nb[2];
  14925. size_t nb3 = tensor->nb[3];
  14926. if (src0->type != src0->grad->type) {
  14927. // gradient is typically F32, but src0 could be other type
  14928. size_t ng = ggml_element_size(src0->grad);
  14929. size_t n0 = ggml_element_size(src0);
  14930. GGML_ASSERT(offset % n0 == 0);
  14931. GGML_ASSERT(nb1 % n0 == 0);
  14932. GGML_ASSERT(nb2 % n0 == 0);
  14933. GGML_ASSERT(nb3 % n0 == 0);
  14934. offset = (offset / n0) * ng;
  14935. nb1 = (nb1 / n0) * ng;
  14936. nb2 = (nb2 / n0) * ng;
  14937. nb3 = (nb3 / n0) * ng;
  14938. }
  14939. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14940. }
  14941. } break;
  14942. case GGML_OP_PERMUTE:
  14943. {
  14944. // necessary for llama
  14945. if (src0->grad) {
  14946. int32_t * axes = (int32_t *) tensor->op_params;
  14947. int axis0 = axes[0] & 0x3;
  14948. int axis1 = axes[1] & 0x3;
  14949. int axis2 = axes[2] & 0x3;
  14950. int axis3 = axes[3] & 0x3;
  14951. int axes_backward[4] = {0,0,0,0};
  14952. axes_backward[axis0] = 0;
  14953. axes_backward[axis1] = 1;
  14954. axes_backward[axis2] = 2;
  14955. axes_backward[axis3] = 3;
  14956. src0->grad =
  14957. ggml_add_or_set(ctx, src0->grad,
  14958. ggml_permute(ctx,
  14959. tensor->grad,
  14960. axes_backward[0],
  14961. axes_backward[1],
  14962. axes_backward[2],
  14963. axes_backward[3]),
  14964. zero_table);
  14965. }
  14966. } break;
  14967. case GGML_OP_TRANSPOSE:
  14968. {
  14969. // necessary for llama
  14970. if (src0->grad) {
  14971. src0->grad =
  14972. ggml_add_or_set(ctx, src0->grad,
  14973. ggml_transpose(ctx, tensor->grad),
  14974. zero_table);
  14975. }
  14976. } break;
  14977. case GGML_OP_GET_ROWS:
  14978. {
  14979. // necessary for llama (only for tokenizer)
  14980. if (src0->grad) {
  14981. src0->grad =
  14982. ggml_add_or_set(ctx, src0->grad,
  14983. // last ggml_get_rows_back argument src0->grad is only
  14984. // necessary to setup correct output shape
  14985. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14986. zero_table);
  14987. }
  14988. if (src1->grad) {
  14989. // noop
  14990. }
  14991. } break;
  14992. case GGML_OP_GET_ROWS_BACK:
  14993. {
  14994. GGML_ASSERT(false); // TODO: not implemented
  14995. } break;
  14996. case GGML_OP_DIAG:
  14997. {
  14998. GGML_ASSERT(false); // TODO: not implemented
  14999. } break;
  15000. case GGML_OP_DIAG_MASK_INF:
  15001. {
  15002. // necessary for llama
  15003. if (src0->grad) {
  15004. const int n_past = ((int32_t *) tensor->op_params)[0];
  15005. src0->grad =
  15006. ggml_add_or_set(ctx, src0->grad,
  15007. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15008. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15009. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15010. zero_table);
  15011. }
  15012. } break;
  15013. case GGML_OP_DIAG_MASK_ZERO:
  15014. {
  15015. // necessary for llama
  15016. if (src0->grad) {
  15017. const int n_past = ((int32_t *) tensor->op_params)[0];
  15018. src0->grad =
  15019. ggml_add_or_set(ctx, src0->grad,
  15020. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15021. zero_table);
  15022. }
  15023. } break;
  15024. case GGML_OP_SOFT_MAX:
  15025. {
  15026. // necessary for llama
  15027. if (src0->grad) {
  15028. src0->grad =
  15029. ggml_add_or_set(ctx, src0->grad,
  15030. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15031. zero_table);
  15032. }
  15033. } break;
  15034. case GGML_OP_SOFT_MAX_BACK:
  15035. {
  15036. GGML_ASSERT(false); // TODO: not implemented
  15037. } break;
  15038. case GGML_OP_ROPE:
  15039. {
  15040. // necessary for llama
  15041. if (src0->grad) {
  15042. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15043. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15044. const int mode = ((int32_t *) tensor->op_params)[2];
  15045. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15046. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15047. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15048. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15049. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15050. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15051. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15052. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15053. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15054. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15055. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15056. src0->grad = ggml_add_or_set(ctx,
  15057. src0->grad,
  15058. ggml_rope_back(ctx,
  15059. tensor->grad,
  15060. src1,
  15061. n_dims,
  15062. mode,
  15063. n_ctx,
  15064. n_orig_ctx,
  15065. freq_base,
  15066. freq_scale,
  15067. ext_factor,
  15068. attn_factor,
  15069. beta_fast,
  15070. beta_slow,
  15071. xpos_base,
  15072. xpos_down),
  15073. zero_table);
  15074. }
  15075. } break;
  15076. case GGML_OP_ROPE_BACK:
  15077. {
  15078. if (src0->grad) {
  15079. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15080. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15081. const int mode = ((int32_t *) tensor->op_params)[2];
  15082. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15083. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15084. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15085. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15086. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15087. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15088. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15089. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15090. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15091. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15092. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15093. src0->grad = ggml_add_or_set(ctx,
  15094. src0->grad,
  15095. ggml_rope_impl(ctx,
  15096. tensor->grad,
  15097. src1,
  15098. n_dims,
  15099. mode,
  15100. n_ctx,
  15101. n_orig_ctx,
  15102. freq_base,
  15103. freq_scale,
  15104. ext_factor,
  15105. attn_factor,
  15106. beta_fast,
  15107. beta_slow,
  15108. xpos_base,
  15109. xpos_down,
  15110. false),
  15111. zero_table);
  15112. }
  15113. } break;
  15114. case GGML_OP_CLAMP:
  15115. {
  15116. GGML_ASSERT(false); // TODO: not implemented
  15117. } break;
  15118. case GGML_OP_CONV_TRANSPOSE_1D:
  15119. {
  15120. GGML_ASSERT(false); // TODO: not implemented
  15121. } break;
  15122. case GGML_OP_IM2COL:
  15123. {
  15124. GGML_ASSERT(false); // TODO: not implemented
  15125. } break;
  15126. case GGML_OP_CONV_TRANSPOSE_2D:
  15127. {
  15128. GGML_ASSERT(false); // TODO: not implemented
  15129. } break;
  15130. case GGML_OP_POOL_1D:
  15131. {
  15132. GGML_ASSERT(false); // TODO: not implemented
  15133. } break;
  15134. case GGML_OP_POOL_2D:
  15135. {
  15136. GGML_ASSERT(false); // TODO: not implemented
  15137. } break;
  15138. case GGML_OP_UPSCALE:
  15139. {
  15140. GGML_ASSERT(false); // TODO: not implemented
  15141. } break;
  15142. case GGML_OP_PAD:
  15143. {
  15144. GGML_ASSERT(false); // TODO: not implemented
  15145. } break;
  15146. case GGML_OP_ARANGE:
  15147. {
  15148. GGML_ASSERT(false); // TODO: not implemented
  15149. } break;
  15150. case GGML_OP_TIMESTEP_EMBEDDING:
  15151. {
  15152. GGML_ASSERT(false); // TODO: not implemented
  15153. } break;
  15154. case GGML_OP_ARGSORT:
  15155. {
  15156. GGML_ASSERT(false); // TODO: not implemented
  15157. } break;
  15158. case GGML_OP_LEAKY_RELU:
  15159. {
  15160. GGML_ASSERT(false); // TODO: not implemented
  15161. } break;
  15162. case GGML_OP_FLASH_ATTN:
  15163. case GGML_OP_FLASH_ATTN_EXT:
  15164. {
  15165. struct ggml_tensor * flash_grad = NULL;
  15166. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15167. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15168. GGML_ASSERT(t == 0 || t == 1);
  15169. bool masked = t != 0;
  15170. flash_grad =
  15171. ggml_flash_attn_back(ctx,
  15172. src0,
  15173. src1,
  15174. tensor->src[2],
  15175. tensor->grad,
  15176. masked);
  15177. }
  15178. struct ggml_tensor * src2 = tensor->src[2];
  15179. const int64_t elem_q = ggml_nelements(src0);
  15180. const int64_t elem_k = ggml_nelements(src1);
  15181. const int64_t elem_v = ggml_nelements(src2);
  15182. enum ggml_type result_type = flash_grad->type;
  15183. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15184. const size_t tsize = ggml_type_size(result_type);
  15185. const size_t offs_q = 0;
  15186. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15187. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15188. if (src0->grad) {
  15189. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15190. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15191. src0->grad = ggml_add_or_set(ctx,
  15192. src0->grad,
  15193. grad_q,
  15194. zero_table);
  15195. }
  15196. if (src1->grad) {
  15197. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15198. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15199. src1->grad = ggml_add_or_set(ctx,
  15200. src1->grad,
  15201. grad_k,
  15202. zero_table);
  15203. }
  15204. if (src2->grad) {
  15205. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15206. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15207. src2->grad = ggml_add_or_set(ctx,
  15208. src2->grad,
  15209. grad_v,
  15210. zero_table);
  15211. }
  15212. } break;
  15213. case GGML_OP_FLASH_FF:
  15214. {
  15215. GGML_ASSERT(false); // not supported
  15216. } break;
  15217. case GGML_OP_FLASH_ATTN_BACK:
  15218. {
  15219. GGML_ASSERT(false); // not supported
  15220. } break;
  15221. case GGML_OP_SSM_CONV:
  15222. case GGML_OP_SSM_SCAN:
  15223. {
  15224. GGML_ASSERT(false); // TODO: not implemented
  15225. } break;
  15226. case GGML_OP_WIN_PART:
  15227. case GGML_OP_WIN_UNPART:
  15228. case GGML_OP_UNARY:
  15229. {
  15230. switch (ggml_get_unary_op(tensor)) {
  15231. case GGML_UNARY_OP_ABS:
  15232. {
  15233. if (src0->grad) {
  15234. src0->grad =
  15235. ggml_add_or_set(ctx,
  15236. src0->grad,
  15237. ggml_mul(ctx,
  15238. ggml_sgn(ctx, src0),
  15239. tensor->grad),
  15240. zero_table);
  15241. }
  15242. } break;
  15243. case GGML_UNARY_OP_SGN:
  15244. {
  15245. if (src0->grad) {
  15246. // noop
  15247. }
  15248. } break;
  15249. case GGML_UNARY_OP_NEG:
  15250. {
  15251. if (src0->grad) {
  15252. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15253. }
  15254. } break;
  15255. case GGML_UNARY_OP_STEP:
  15256. {
  15257. if (src0->grad) {
  15258. // noop
  15259. }
  15260. } break;
  15261. case GGML_UNARY_OP_TANH:
  15262. {
  15263. GGML_ASSERT(false); // TODO: not implemented
  15264. } break;
  15265. case GGML_UNARY_OP_ELU:
  15266. {
  15267. GGML_ASSERT(false); // TODO: not implemented
  15268. } break;
  15269. case GGML_UNARY_OP_RELU:
  15270. {
  15271. if (src0->grad) {
  15272. src0->grad = ggml_add_or_set(ctx,
  15273. src0->grad,
  15274. ggml_mul(ctx,
  15275. ggml_step(ctx, src0),
  15276. tensor->grad),
  15277. zero_table);
  15278. }
  15279. } break;
  15280. case GGML_UNARY_OP_GELU:
  15281. {
  15282. GGML_ASSERT(false); // TODO: not implemented
  15283. } break;
  15284. case GGML_UNARY_OP_GELU_QUICK:
  15285. {
  15286. GGML_ASSERT(false); // TODO: not implemented
  15287. } break;
  15288. case GGML_UNARY_OP_SILU:
  15289. {
  15290. // necessary for llama
  15291. if (src0->grad) {
  15292. src0->grad = ggml_add_or_set(ctx,
  15293. src0->grad,
  15294. ggml_silu_back(ctx, src0, tensor->grad),
  15295. zero_table);
  15296. }
  15297. } break;
  15298. default:
  15299. GGML_ASSERT(false);
  15300. }
  15301. } break;
  15302. case GGML_OP_GET_REL_POS:
  15303. case GGML_OP_ADD_REL_POS:
  15304. case GGML_OP_MAP_UNARY:
  15305. case GGML_OP_MAP_BINARY:
  15306. case GGML_OP_MAP_CUSTOM1_F32:
  15307. case GGML_OP_MAP_CUSTOM2_F32:
  15308. case GGML_OP_MAP_CUSTOM3_F32:
  15309. case GGML_OP_MAP_CUSTOM1:
  15310. case GGML_OP_MAP_CUSTOM2:
  15311. case GGML_OP_MAP_CUSTOM3:
  15312. {
  15313. GGML_ASSERT(false); // not supported
  15314. } break;
  15315. case GGML_OP_CROSS_ENTROPY_LOSS:
  15316. {
  15317. if (src0->grad) {
  15318. src0->grad = ggml_add_or_set(ctx,
  15319. src0->grad,
  15320. ggml_cross_entropy_loss_back(ctx,
  15321. src0,
  15322. src1,
  15323. tensor->grad),
  15324. zero_table);
  15325. }
  15326. } break;
  15327. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15328. {
  15329. GGML_ASSERT(false); // not supported
  15330. } break;
  15331. case GGML_OP_NONE:
  15332. {
  15333. // nop
  15334. } break;
  15335. case GGML_OP_COUNT:
  15336. {
  15337. GGML_ASSERT(false);
  15338. } break;
  15339. }
  15340. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15341. if (tensor->src[i] && tensor->src[i]->grad) {
  15342. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15343. }
  15344. }
  15345. }
  15346. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15347. if (node->grad == NULL) {
  15348. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15349. // it can also happen during forward pass, if the user performs computations with constants
  15350. if (node->op != GGML_OP_NONE) {
  15351. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15352. }
  15353. }
  15354. // check if already visited
  15355. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15356. return;
  15357. }
  15358. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15359. const int k =
  15360. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15361. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15362. /* unknown order, just fall back to using i*/ i;
  15363. if (node->src[k]) {
  15364. ggml_visit_parents(cgraph, node->src[k]);
  15365. }
  15366. }
  15367. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15368. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15369. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15370. if (strlen(node->name) == 0) {
  15371. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15372. }
  15373. cgraph->leafs[cgraph->n_leafs] = node;
  15374. cgraph->n_leafs++;
  15375. } else {
  15376. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15377. if (strlen(node->name) == 0) {
  15378. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15379. }
  15380. cgraph->nodes[cgraph->n_nodes] = node;
  15381. if (cgraph->grads) {
  15382. cgraph->grads[cgraph->n_nodes] = node->grad;
  15383. }
  15384. cgraph->n_nodes++;
  15385. }
  15386. }
  15387. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15388. if (!expand) {
  15389. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15390. ggml_graph_clear(cgraph);
  15391. }
  15392. const int n0 = cgraph->n_nodes;
  15393. UNUSED(n0);
  15394. ggml_visit_parents(cgraph, tensor);
  15395. const int n_new = cgraph->n_nodes - n0;
  15396. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15397. if (n_new > 0) {
  15398. // the last added node should always be starting point
  15399. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15400. }
  15401. }
  15402. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15403. ggml_build_forward_impl(cgraph, tensor, true);
  15404. }
  15405. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15406. GGML_ASSERT(gf->n_nodes > 0);
  15407. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15408. if (keep) {
  15409. for (int i = 0; i < gf->n_nodes; i++) {
  15410. struct ggml_tensor * node = gf->nodes[i];
  15411. if (node->grad) {
  15412. node->grad = ggml_dup_tensor(ctx, node);
  15413. gf->grads[i] = node->grad;
  15414. }
  15415. }
  15416. }
  15417. // remember original gradients which start with zero values
  15418. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15419. for (int i = 0; i < gf->n_nodes; i++) {
  15420. if (gf->grads[i]) {
  15421. ggml_hash_insert(zero_table, gf->grads[i]);
  15422. }
  15423. }
  15424. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15425. struct ggml_tensor * node = gf->nodes[i];
  15426. // inplace operations to add gradients are not created by ggml_compute_backward
  15427. // use allocator to automatically make inplace operations
  15428. if (node->grad) {
  15429. ggml_compute_backward(ctx, node, zero_table);
  15430. }
  15431. }
  15432. for (int i = 0; i < gf->n_nodes; i++) {
  15433. struct ggml_tensor * node = gf->nodes[i];
  15434. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15435. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15436. ggml_build_forward_expand(gb, node->grad);
  15437. }
  15438. }
  15439. ggml_hash_set_free(zero_table);
  15440. }
  15441. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15442. size_t nbytes = sizeof(struct ggml_cgraph);
  15443. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15444. if (grads) {
  15445. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15446. }
  15447. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15448. return nbytes;
  15449. }
  15450. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15451. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15452. }
  15453. size_t ggml_graph_overhead(void) {
  15454. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15455. }
  15456. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15457. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15458. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15459. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15460. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15461. size_t hash_size = ggml_hash_size(size * 2);
  15462. struct ggml_tensor ** nodes_ptr = data_start;
  15463. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15464. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15465. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15466. // check that we allocated the correct amount of memory
  15467. assert(obj_size == (size_t) (
  15468. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15469. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15470. *cgraph = (struct ggml_cgraph) {
  15471. /*.size =*/ size,
  15472. /*.n_nodes =*/ 0,
  15473. /*.n_leafs =*/ 0,
  15474. /*.nodes =*/ nodes_ptr,
  15475. /*.grads =*/ grads_ptr,
  15476. /*.leafs =*/ leafs_ptr,
  15477. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15478. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15479. /*.perf_runs =*/ 0,
  15480. /*.perf_cycles =*/ 0,
  15481. /*.perf_time_us =*/ 0,
  15482. };
  15483. return cgraph;
  15484. }
  15485. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15486. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15487. }
  15488. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15489. struct ggml_cgraph cgraph = {
  15490. /*.size =*/ 0,
  15491. /*.n_nodes =*/ i1 - i0,
  15492. /*.n_leafs =*/ 0,
  15493. /*.nodes =*/ cgraph0->nodes + i0,
  15494. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15495. /*.leafs =*/ NULL,
  15496. /*.hash_table =*/ { 0, NULL },
  15497. /*.order =*/ cgraph0->order,
  15498. /*.perf_runs =*/ 0,
  15499. /*.perf_cycles =*/ 0,
  15500. /*.perf_time_us =*/ 0,
  15501. };
  15502. return cgraph;
  15503. }
  15504. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15505. GGML_ASSERT(dst->size >= src->n_leafs);
  15506. GGML_ASSERT(dst->size >= src->n_nodes);
  15507. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15508. dst->n_leafs = src->n_leafs;
  15509. dst->n_nodes = src->n_nodes;
  15510. dst->order = src->order;
  15511. for (int i = 0; i < src->n_leafs; ++i) {
  15512. dst->leafs[i] = src->leafs[i];
  15513. }
  15514. for (int i = 0; i < src->n_nodes; ++i) {
  15515. dst->nodes[i] = src->nodes[i];
  15516. }
  15517. if (src->grads) {
  15518. GGML_ASSERT(dst->grads != NULL);
  15519. for (int i = 0; i < src->n_nodes; ++i) {
  15520. dst->grads[i] = src->grads[i];
  15521. }
  15522. }
  15523. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15524. if (src->visited_hash_table.keys[i]) {
  15525. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15526. }
  15527. }
  15528. }
  15529. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15530. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15531. ggml_graph_cpy(cgraph, result);
  15532. return result;
  15533. }
  15534. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15535. GGML_ASSERT(cgraph->grads != NULL);
  15536. for (int i = 0; i < cgraph->n_nodes; i++) {
  15537. struct ggml_tensor * grad = cgraph->grads[i];
  15538. if (grad) {
  15539. ggml_set_zero(grad);
  15540. }
  15541. }
  15542. }
  15543. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15544. cgraph->n_leafs = 0;
  15545. cgraph->n_nodes = 0;
  15546. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15547. }
  15548. //
  15549. // thread data
  15550. //
  15551. // synchronization is done via busy loops
  15552. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15553. //
  15554. #ifdef __APPLE__
  15555. //#include <os/lock.h>
  15556. //
  15557. //typedef os_unfair_lock ggml_lock_t;
  15558. //
  15559. //#define ggml_lock_init(x) UNUSED(x)
  15560. //#define ggml_lock_destroy(x) UNUSED(x)
  15561. //#define ggml_lock_lock os_unfair_lock_lock
  15562. //#define ggml_lock_unlock os_unfair_lock_unlock
  15563. //
  15564. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15565. typedef int ggml_lock_t;
  15566. #define ggml_lock_init(x) UNUSED(x)
  15567. #define ggml_lock_destroy(x) UNUSED(x)
  15568. #define ggml_lock_lock(x) UNUSED(x)
  15569. #define ggml_lock_unlock(x) UNUSED(x)
  15570. #define GGML_LOCK_INITIALIZER 0
  15571. typedef pthread_t ggml_thread_t;
  15572. #define ggml_thread_create pthread_create
  15573. #define ggml_thread_join pthread_join
  15574. #else
  15575. //typedef pthread_spinlock_t ggml_lock_t;
  15576. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15577. //#define ggml_lock_destroy pthread_spin_destroy
  15578. //#define ggml_lock_lock pthread_spin_lock
  15579. //#define ggml_lock_unlock pthread_spin_unlock
  15580. typedef int ggml_lock_t;
  15581. #define ggml_lock_init(x) UNUSED(x)
  15582. #define ggml_lock_destroy(x) UNUSED(x)
  15583. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15584. #define ggml_lock_lock(x) _mm_pause()
  15585. #else
  15586. #define ggml_lock_lock(x) UNUSED(x)
  15587. #endif
  15588. #define ggml_lock_unlock(x) UNUSED(x)
  15589. #define GGML_LOCK_INITIALIZER 0
  15590. typedef pthread_t ggml_thread_t;
  15591. #define ggml_thread_create pthread_create
  15592. #define ggml_thread_join pthread_join
  15593. #endif
  15594. // Android's libc implementation "bionic" does not support setting affinity
  15595. #if defined(__gnu_linux__)
  15596. static void set_numa_thread_affinity(int thread_n) {
  15597. if (!ggml_is_numa()) {
  15598. return;
  15599. }
  15600. int node_num;
  15601. int rv;
  15602. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15603. switch(g_state.numa.numa_strategy) {
  15604. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15605. // run thread on node_num thread_n / (threads per node)
  15606. node_num = thread_n % g_state.numa.n_nodes;
  15607. break;
  15608. case GGML_NUMA_STRATEGY_ISOLATE:
  15609. // run thread on current_node
  15610. node_num = g_state.numa.current_node;
  15611. break;
  15612. case GGML_NUMA_STRATEGY_NUMACTL:
  15613. // use the cpuset that numactl gave us
  15614. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15615. if (rv) {
  15616. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15617. }
  15618. return;
  15619. default:
  15620. return;
  15621. }
  15622. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15623. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15624. CPU_ZERO_S(setsize, cpus);
  15625. for (size_t i = 0; i < node->n_cpus; ++i) {
  15626. CPU_SET_S(node->cpus[i], setsize, cpus);
  15627. }
  15628. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15629. if (rv) {
  15630. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15631. }
  15632. CPU_FREE(cpus);
  15633. }
  15634. static void clear_numa_thread_affinity(void) {
  15635. if (!ggml_is_numa()) {
  15636. return;
  15637. }
  15638. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15639. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15640. CPU_ZERO_S(setsize, cpus);
  15641. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15642. CPU_SET_S(i, setsize, cpus);
  15643. }
  15644. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15645. if (rv) {
  15646. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15647. }
  15648. CPU_FREE(cpus);
  15649. }
  15650. #else
  15651. // TODO: Windows etc.
  15652. // (the linux implementation may also work on BSD, someone should test)
  15653. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15654. static void clear_numa_thread_affinity(void) {}
  15655. #endif
  15656. struct ggml_compute_state_shared {
  15657. const struct ggml_cgraph * cgraph;
  15658. const struct ggml_cplan * cplan;
  15659. int64_t perf_node_start_cycles;
  15660. int64_t perf_node_start_time_us;
  15661. const int n_threads;
  15662. // synchronization primitives
  15663. atomic_int n_active; // num active threads
  15664. atomic_int node_n; // active graph node
  15665. atomic_int node_task; // active graph node task phase
  15666. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  15667. void * abort_callback_data;
  15668. };
  15669. struct ggml_compute_state {
  15670. ggml_thread_t thrd;
  15671. int ith;
  15672. struct ggml_compute_state_shared * shared;
  15673. enum ggml_status ec;
  15674. };
  15675. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15676. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15677. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15678. node->perf_runs++;
  15679. node->perf_cycles += cycles_cur;
  15680. node->perf_time_us += time_us_cur;
  15681. }
  15682. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15683. int n_tasks = 0;
  15684. if (ggml_is_empty(node)) {
  15685. // no need to multi-thread a no-op
  15686. n_tasks = 1;
  15687. return n_tasks;
  15688. }
  15689. switch (node->op) {
  15690. case GGML_OP_CPY:
  15691. case GGML_OP_DUP:
  15692. case GGML_OP_ADD:
  15693. case GGML_OP_ADD1:
  15694. case GGML_OP_ACC:
  15695. {
  15696. n_tasks = n_threads;
  15697. } break;
  15698. case GGML_OP_SUB:
  15699. case GGML_OP_SQR:
  15700. case GGML_OP_SQRT:
  15701. case GGML_OP_LOG:
  15702. case GGML_OP_SUM:
  15703. case GGML_OP_SUM_ROWS:
  15704. case GGML_OP_MEAN:
  15705. case GGML_OP_ARGMAX:
  15706. case GGML_OP_REPEAT:
  15707. case GGML_OP_REPEAT_BACK:
  15708. case GGML_OP_LEAKY_RELU:
  15709. {
  15710. n_tasks = 1;
  15711. } break;
  15712. case GGML_OP_UNARY:
  15713. switch (ggml_get_unary_op(node)) {
  15714. case GGML_UNARY_OP_ABS:
  15715. case GGML_UNARY_OP_SGN:
  15716. case GGML_UNARY_OP_NEG:
  15717. case GGML_UNARY_OP_STEP:
  15718. case GGML_UNARY_OP_TANH:
  15719. case GGML_UNARY_OP_ELU:
  15720. case GGML_UNARY_OP_RELU:
  15721. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15722. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15723. {
  15724. n_tasks = 1;
  15725. } break;
  15726. case GGML_UNARY_OP_GELU:
  15727. case GGML_UNARY_OP_GELU_QUICK:
  15728. case GGML_UNARY_OP_SILU:
  15729. {
  15730. n_tasks = n_threads;
  15731. } break;
  15732. default:
  15733. GGML_ASSERT(false);
  15734. }
  15735. break;
  15736. case GGML_OP_SILU_BACK:
  15737. case GGML_OP_MUL:
  15738. case GGML_OP_DIV:
  15739. case GGML_OP_NORM:
  15740. case GGML_OP_RMS_NORM:
  15741. case GGML_OP_RMS_NORM_BACK:
  15742. case GGML_OP_GROUP_NORM:
  15743. case GGML_OP_CONCAT:
  15744. {
  15745. n_tasks = n_threads;
  15746. } break;
  15747. case GGML_OP_MUL_MAT:
  15748. {
  15749. n_tasks = n_threads;
  15750. // TODO: use different scheduling for different matrix sizes
  15751. //const int nr0 = ggml_nrows(node->src[0]);
  15752. //const int nr1 = ggml_nrows(node->src[1]);
  15753. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15754. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15755. } break;
  15756. case GGML_OP_MUL_MAT_ID:
  15757. {
  15758. n_tasks = n_threads;
  15759. } break;
  15760. case GGML_OP_OUT_PROD:
  15761. {
  15762. n_tasks = n_threads;
  15763. } break;
  15764. case GGML_OP_GET_ROWS:
  15765. {
  15766. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15767. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15768. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15769. } break;
  15770. case GGML_OP_SCALE:
  15771. case GGML_OP_SET:
  15772. case GGML_OP_CONT:
  15773. case GGML_OP_RESHAPE:
  15774. case GGML_OP_VIEW:
  15775. case GGML_OP_PERMUTE:
  15776. case GGML_OP_TRANSPOSE:
  15777. case GGML_OP_GET_ROWS_BACK:
  15778. case GGML_OP_DIAG:
  15779. {
  15780. n_tasks = 1;
  15781. } break;
  15782. case GGML_OP_DIAG_MASK_ZERO:
  15783. case GGML_OP_DIAG_MASK_INF:
  15784. case GGML_OP_SOFT_MAX_BACK:
  15785. case GGML_OP_ROPE:
  15786. case GGML_OP_ROPE_BACK:
  15787. case GGML_OP_ADD_REL_POS:
  15788. {
  15789. n_tasks = n_threads;
  15790. } break;
  15791. case GGML_OP_CLAMP:
  15792. {
  15793. n_tasks = 1; //TODO
  15794. } break;
  15795. case GGML_OP_SOFT_MAX:
  15796. {
  15797. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15798. } break;
  15799. case GGML_OP_CONV_TRANSPOSE_1D:
  15800. {
  15801. n_tasks = n_threads;
  15802. } break;
  15803. case GGML_OP_IM2COL:
  15804. {
  15805. n_tasks = n_threads;
  15806. } break;
  15807. case GGML_OP_CONV_TRANSPOSE_2D:
  15808. {
  15809. n_tasks = n_threads;
  15810. } break;
  15811. case GGML_OP_POOL_1D:
  15812. case GGML_OP_POOL_2D:
  15813. {
  15814. n_tasks = 1;
  15815. } break;
  15816. case GGML_OP_UPSCALE:
  15817. {
  15818. n_tasks = n_threads;
  15819. } break;
  15820. case GGML_OP_PAD:
  15821. {
  15822. n_tasks = n_threads;
  15823. } break;
  15824. case GGML_OP_ARANGE:
  15825. {
  15826. n_tasks = n_threads;
  15827. } break;
  15828. case GGML_OP_TIMESTEP_EMBEDDING:
  15829. {
  15830. n_tasks = n_threads;
  15831. } break;
  15832. case GGML_OP_ARGSORT:
  15833. {
  15834. n_tasks = n_threads;
  15835. } break;
  15836. case GGML_OP_FLASH_ATTN:
  15837. case GGML_OP_FLASH_ATTN_EXT:
  15838. {
  15839. n_tasks = n_threads;
  15840. } break;
  15841. case GGML_OP_FLASH_FF:
  15842. {
  15843. n_tasks = n_threads;
  15844. } break;
  15845. case GGML_OP_FLASH_ATTN_BACK:
  15846. {
  15847. n_tasks = n_threads;
  15848. } break;
  15849. case GGML_OP_SSM_CONV:
  15850. case GGML_OP_SSM_SCAN:
  15851. {
  15852. n_tasks = n_threads;
  15853. } break;
  15854. case GGML_OP_WIN_PART:
  15855. case GGML_OP_WIN_UNPART:
  15856. case GGML_OP_GET_REL_POS:
  15857. case GGML_OP_MAP_UNARY:
  15858. case GGML_OP_MAP_BINARY:
  15859. case GGML_OP_MAP_CUSTOM1_F32:
  15860. case GGML_OP_MAP_CUSTOM2_F32:
  15861. case GGML_OP_MAP_CUSTOM3_F32:
  15862. {
  15863. n_tasks = 1;
  15864. } break;
  15865. case GGML_OP_MAP_CUSTOM1:
  15866. {
  15867. struct ggml_map_custom1_op_params p;
  15868. memcpy(&p, node->op_params, sizeof(p));
  15869. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15870. n_tasks = n_threads;
  15871. } else {
  15872. n_tasks = MIN(p.n_tasks, n_threads);
  15873. }
  15874. } break;
  15875. case GGML_OP_MAP_CUSTOM2:
  15876. {
  15877. struct ggml_map_custom2_op_params p;
  15878. memcpy(&p, node->op_params, sizeof(p));
  15879. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15880. n_tasks = n_threads;
  15881. } else {
  15882. n_tasks = MIN(p.n_tasks, n_threads);
  15883. }
  15884. } break;
  15885. case GGML_OP_MAP_CUSTOM3:
  15886. {
  15887. struct ggml_map_custom3_op_params p;
  15888. memcpy(&p, node->op_params, sizeof(p));
  15889. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15890. n_tasks = n_threads;
  15891. } else {
  15892. n_tasks = MIN(p.n_tasks, n_threads);
  15893. }
  15894. } break;
  15895. case GGML_OP_CROSS_ENTROPY_LOSS:
  15896. {
  15897. n_tasks = n_threads;
  15898. } break;
  15899. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15900. {
  15901. n_tasks = n_threads;
  15902. } break;
  15903. case GGML_OP_NONE:
  15904. {
  15905. n_tasks = 1;
  15906. } break;
  15907. case GGML_OP_COUNT:
  15908. {
  15909. GGML_ASSERT(false);
  15910. } break;
  15911. default:
  15912. {
  15913. fprintf(stderr, "%s: op not implemented: ", __func__);
  15914. if (node->op < GGML_OP_COUNT) {
  15915. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15916. } else {
  15917. fprintf(stderr, "%d\n", node->op);
  15918. }
  15919. GGML_ASSERT(false);
  15920. } break;
  15921. }
  15922. assert(n_tasks > 0);
  15923. return n_tasks;
  15924. }
  15925. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15926. // wait for other threads to finish
  15927. const int last_node_n = * node_n;
  15928. while (true) {
  15929. if (do_yield) {
  15930. sched_yield();
  15931. }
  15932. * node_n = atomic_load(&state->shared->node_n);
  15933. if (* node_n != last_node_n) break;
  15934. }
  15935. }
  15936. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15937. // wait for other threads to finish
  15938. const int last_task_phase = * task_phase;
  15939. while (true) {
  15940. if (do_yield) {
  15941. sched_yield();
  15942. }
  15943. * task_phase = atomic_load(&state->shared->node_task);
  15944. if (* task_phase != last_task_phase) break;
  15945. }
  15946. }
  15947. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15948. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15949. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15950. const struct ggml_cplan * cplan = state->shared->cplan;
  15951. const int n_threads = state->shared->n_threads;
  15952. set_numa_thread_affinity(state->ith);
  15953. int node_n = -1;
  15954. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15955. while (true) {
  15956. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15957. state->shared->node_n += 1;
  15958. state->ec = GGML_STATUS_ABORTED;
  15959. return 0;
  15960. }
  15961. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15962. // all other threads are finished and spinning
  15963. // do finalize and init here so we don't have synchronize again
  15964. struct ggml_compute_params params = {
  15965. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15966. /*.ith =*/ 0,
  15967. /*.nth =*/ 0,
  15968. /*.wsize =*/ cplan->work_size,
  15969. /*.wdata =*/ cplan->work_data,
  15970. };
  15971. if (node_n != -1) {
  15972. /* FINALIZE */
  15973. struct ggml_tensor * node = cgraph->nodes[node_n];
  15974. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15975. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15976. ggml_compute_forward(&params, node);
  15977. }
  15978. ggml_graph_compute_perf_stats_node(node, state->shared);
  15979. }
  15980. // distribute new work or execute it direct if 1T
  15981. while (++node_n < cgraph->n_nodes) {
  15982. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15983. struct ggml_tensor * node = cgraph->nodes[node_n];
  15984. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15985. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15986. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15987. params.nth = n_tasks;
  15988. if (n_tasks == 1) {
  15989. /* INIT */
  15990. if (GGML_OP_HAS_INIT[node->op]) {
  15991. params.type = GGML_TASK_TYPE_INIT;
  15992. ggml_compute_forward(&params, node);
  15993. }
  15994. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15995. // they do something more efficient than spinning (?)
  15996. params.type = GGML_TASK_TYPE_COMPUTE;
  15997. ggml_compute_forward(&params, node);
  15998. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15999. params.type = GGML_TASK_TYPE_FINALIZE;
  16000. ggml_compute_forward(&params, node);
  16001. }
  16002. ggml_graph_compute_perf_stats_node(node, state->shared);
  16003. } else {
  16004. break;
  16005. }
  16006. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16007. break;
  16008. }
  16009. }
  16010. task_phase = GGML_TASK_TYPE_INIT;
  16011. atomic_store(&state->shared->n_active, n_threads);
  16012. atomic_store(&state->shared->node_n, node_n);
  16013. atomic_store(&state->shared->node_task, task_phase);
  16014. } else {
  16015. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16016. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16017. }
  16018. // check if we should stop
  16019. if (node_n >= cgraph->n_nodes) break;
  16020. /* INIT & COMPUTE */
  16021. struct ggml_tensor * node = cgraph->nodes[node_n];
  16022. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16023. struct ggml_compute_params params = {
  16024. /*.type =*/ GGML_TASK_TYPE_INIT,
  16025. /*.ith =*/ state->ith,
  16026. /*.nth =*/ n_tasks,
  16027. /*.wsize =*/ cplan->work_size,
  16028. /*.wdata =*/ cplan->work_data,
  16029. };
  16030. if (state->ith < n_tasks) {
  16031. if (GGML_OP_HAS_INIT[node->op]) {
  16032. ggml_compute_forward(&params, node);
  16033. }
  16034. }
  16035. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16036. task_phase = GGML_TASK_TYPE_COMPUTE;
  16037. atomic_store(&state->shared->n_active, n_threads);
  16038. atomic_store(&state->shared->node_task, task_phase);
  16039. }
  16040. else {
  16041. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16042. // depending on the workload and the operating system.
  16043. // since it is not clear what is the best approach, it should potentially become user-configurable
  16044. // ref: https://github.com/ggerganov/ggml/issues/291
  16045. // UPD: adding the do_yield flag seems to resolve the issue universally
  16046. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16047. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16048. }
  16049. if (state->ith < n_tasks) {
  16050. params.type = GGML_TASK_TYPE_COMPUTE;
  16051. ggml_compute_forward(&params, node);
  16052. }
  16053. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16054. task_phase = GGML_TASK_TYPE_FINALIZE;
  16055. atomic_store(&state->shared->n_active, n_threads);
  16056. atomic_store(&state->shared->node_task, task_phase);
  16057. }
  16058. else {
  16059. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16060. }
  16061. }
  16062. return 0;
  16063. }
  16064. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16065. if (n_threads <= 0) {
  16066. n_threads = GGML_DEFAULT_N_THREADS;
  16067. }
  16068. size_t work_size = 0;
  16069. struct ggml_cplan cplan;
  16070. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16071. int max_tasks = 1;
  16072. // thread scheduling for the different operations + work buffer size estimation
  16073. for (int i = 0; i < cgraph->n_nodes; i++) {
  16074. struct ggml_tensor * node = cgraph->nodes[i];
  16075. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16076. max_tasks = MAX(max_tasks, n_tasks);
  16077. size_t cur = 0;
  16078. switch (node->op) {
  16079. case GGML_OP_CPY:
  16080. case GGML_OP_DUP:
  16081. {
  16082. if (ggml_is_quantized(node->type) ||
  16083. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16084. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16085. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16086. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16087. }
  16088. } break;
  16089. case GGML_OP_ADD:
  16090. case GGML_OP_ADD1:
  16091. {
  16092. if (ggml_is_quantized(node->src[0]->type)) {
  16093. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16094. }
  16095. } break;
  16096. case GGML_OP_ACC:
  16097. {
  16098. if (ggml_is_quantized(node->src[0]->type)) {
  16099. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16100. }
  16101. } break;
  16102. case GGML_OP_MUL_MAT:
  16103. {
  16104. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16105. #if defined(GGML_USE_CLBLAST)
  16106. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16107. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16108. } else
  16109. #endif
  16110. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16111. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16112. if (node->src[0]->type != GGML_TYPE_F32) {
  16113. // here we need memory for fully dequantized matrix from src0
  16114. // take into account that src0 can be broadcasted into src1[2,3]
  16115. cur = ggml_type_size(GGML_TYPE_F32)
  16116. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16117. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16118. }
  16119. } else
  16120. #endif
  16121. if (node->src[1]->type != vec_dot_type) {
  16122. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16123. }
  16124. } break;
  16125. case GGML_OP_MUL_MAT_ID:
  16126. {
  16127. cur = 0;
  16128. const struct ggml_tensor * src0 = node->src[0];
  16129. const struct ggml_tensor * src1 = node->src[1];
  16130. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16131. if (src1->type != vec_dot_type) {
  16132. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16133. }
  16134. const int n_as = src0->ne[2];
  16135. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16136. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16137. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16138. } break;
  16139. case GGML_OP_OUT_PROD:
  16140. {
  16141. if (ggml_is_quantized(node->src[0]->type)) {
  16142. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16143. }
  16144. } break;
  16145. case GGML_OP_SOFT_MAX:
  16146. case GGML_OP_ROPE:
  16147. {
  16148. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16149. } break;
  16150. case GGML_OP_CONV_TRANSPOSE_1D:
  16151. {
  16152. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16153. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16154. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16155. const int64_t ne00 = node->src[0]->ne[0]; // K
  16156. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16157. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16158. const int64_t ne10 = node->src[1]->ne[0]; // L
  16159. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16160. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16161. node->src[0]->type == GGML_TYPE_BF16) &&
  16162. node->src[1]->type == GGML_TYPE_F32) {
  16163. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16164. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16165. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16166. node->src[1]->type == GGML_TYPE_F32) {
  16167. cur += sizeof(float)*ne00*ne01*ne02;
  16168. cur += sizeof(float)*ne10*ne11;
  16169. } else {
  16170. GGML_ASSERT(false);
  16171. }
  16172. } break;
  16173. case GGML_OP_CONV_TRANSPOSE_2D:
  16174. {
  16175. const int64_t ne00 = node->src[0]->ne[0]; // W
  16176. const int64_t ne01 = node->src[0]->ne[1]; // H
  16177. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16178. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16179. const int64_t ne10 = node->src[1]->ne[0]; // W
  16180. const int64_t ne11 = node->src[1]->ne[1]; // H
  16181. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16182. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16183. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16184. } break;
  16185. case GGML_OP_FLASH_ATTN:
  16186. {
  16187. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16188. if (node->src[1]->type == GGML_TYPE_F32) {
  16189. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16190. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16191. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16192. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16193. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16194. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16195. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16196. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16197. }
  16198. } break;
  16199. case GGML_OP_FLASH_ATTN_EXT:
  16200. {
  16201. const int64_t ne00 = node->src[0]->ne[0]; // D
  16202. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16203. } break;
  16204. case GGML_OP_FLASH_FF:
  16205. {
  16206. if (node->src[1]->type == GGML_TYPE_F32) {
  16207. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16208. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16209. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16210. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16211. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16212. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16213. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16214. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16215. }
  16216. } break;
  16217. case GGML_OP_FLASH_ATTN_BACK:
  16218. {
  16219. const int64_t D = node->src[0]->ne[0];
  16220. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16221. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16222. if (node->src[1]->type == GGML_TYPE_F32) {
  16223. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16224. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16225. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16226. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16227. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16228. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16229. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16230. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16231. }
  16232. } break;
  16233. case GGML_OP_CROSS_ENTROPY_LOSS:
  16234. {
  16235. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16236. } break;
  16237. case GGML_OP_COUNT:
  16238. {
  16239. GGML_ASSERT(false);
  16240. } break;
  16241. default:
  16242. break;
  16243. }
  16244. work_size = MAX(work_size, cur);
  16245. }
  16246. if (work_size > 0) {
  16247. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16248. }
  16249. cplan.n_threads = MIN(max_tasks, n_threads);
  16250. cplan.work_size = work_size;
  16251. cplan.work_data = NULL;
  16252. return cplan;
  16253. }
  16254. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16255. {
  16256. GGML_ASSERT(cplan);
  16257. GGML_ASSERT(cplan->n_threads > 0);
  16258. if (cplan->work_size > 0) {
  16259. GGML_ASSERT(cplan->work_data);
  16260. }
  16261. }
  16262. const int n_threads = cplan->n_threads;
  16263. struct ggml_compute_state_shared state_shared = {
  16264. /*.cgraph =*/ cgraph,
  16265. /*.cgraph_plan =*/ cplan,
  16266. /*.perf_node_start_cycles =*/ 0,
  16267. /*.perf_node_start_time_us =*/ 0,
  16268. /*.n_threads =*/ n_threads,
  16269. /*.n_active =*/ n_threads,
  16270. /*.node_n =*/ -1,
  16271. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16272. /*.abort_callback =*/ NULL,
  16273. /*.abort_callback_data =*/ NULL,
  16274. };
  16275. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16276. // create thread pool
  16277. if (n_threads > 1) {
  16278. for (int j = 1; j < n_threads; ++j) {
  16279. workers[j] = (struct ggml_compute_state) {
  16280. .thrd = 0,
  16281. .ith = j,
  16282. .shared = &state_shared,
  16283. .ec = GGML_STATUS_SUCCESS,
  16284. };
  16285. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16286. GGML_ASSERT(rc == 0);
  16287. UNUSED(rc);
  16288. }
  16289. }
  16290. workers[0].ith = 0;
  16291. workers[0].shared = &state_shared;
  16292. workers[0].ec = GGML_STATUS_SUCCESS;
  16293. const int64_t perf_start_cycles = ggml_perf_cycles();
  16294. const int64_t perf_start_time_us = ggml_perf_time_us();
  16295. // this is a work thread too
  16296. ggml_graph_compute_thread(&workers[0]);
  16297. enum ggml_status compute_status = workers[0].ec;
  16298. // don't leave affinity set on the main thread
  16299. clear_numa_thread_affinity();
  16300. // join or kill thread pool
  16301. if (n_threads > 1) {
  16302. for (int j = 1; j < n_threads; j++) {
  16303. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16304. GGML_ASSERT(rc == 0);
  16305. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16306. compute_status = workers[j].ec;
  16307. }
  16308. }
  16309. // performance stats (graph)
  16310. {
  16311. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16312. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16313. cgraph->perf_runs++;
  16314. cgraph->perf_cycles += perf_cycles_cur;
  16315. cgraph->perf_time_us += perf_time_us_cur;
  16316. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16317. __func__, cgraph->perf_runs,
  16318. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16319. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16320. (double) perf_time_us_cur / 1000.0,
  16321. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16322. }
  16323. return compute_status;
  16324. }
  16325. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16326. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16327. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16328. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16329. return ggml_graph_compute(cgraph, &cplan);
  16330. }
  16331. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16332. for (int i = 0; i < cgraph->n_leafs; i++) {
  16333. struct ggml_tensor * leaf = cgraph->leafs[i];
  16334. if (strcmp(leaf->name, name) == 0) {
  16335. return leaf;
  16336. }
  16337. }
  16338. for (int i = 0; i < cgraph->n_nodes; i++) {
  16339. struct ggml_tensor * node = cgraph->nodes[i];
  16340. if (strcmp(node->name, name) == 0) {
  16341. return node;
  16342. }
  16343. }
  16344. return NULL;
  16345. }
  16346. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16347. const int64_t * ne = tensor->ne;
  16348. const size_t * nb = tensor->nb;
  16349. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16350. ggml_type_name(tensor->type),
  16351. ggml_op_name (tensor->op),
  16352. ggml_n_dims(tensor),
  16353. ne[0], ne[1], ne[2], ne[3],
  16354. nb[0], nb[1], nb[2], nb[3],
  16355. tensor->data,
  16356. tensor->name);
  16357. }
  16358. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16359. const int64_t * ne = tensor->ne;
  16360. const size_t * nb = tensor->nb;
  16361. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16362. arg,
  16363. ggml_type_name(tensor->type),
  16364. ggml_op_name (tensor->op),
  16365. ggml_n_dims(tensor),
  16366. ne[0], ne[1], ne[2], ne[3],
  16367. nb[0], nb[1], nb[2], nb[3],
  16368. tensor->data,
  16369. tensor->name);
  16370. }
  16371. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16372. uint64_t size_eval = 0;
  16373. // compute size of intermediate results
  16374. // TODO: does not take into account scratch buffers !!!!
  16375. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16376. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16377. }
  16378. // print
  16379. {
  16380. FILE * fout = stdout;
  16381. fprintf(fout, "\n");
  16382. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16383. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16384. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16385. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16386. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16387. // header
  16388. fprintf(fout, "\n");
  16389. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16390. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16391. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16392. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16393. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16394. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16395. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16396. }
  16397. // header
  16398. fprintf(fout, "\n");
  16399. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16400. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16401. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16402. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16403. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16404. if (cgraph->nodes[i]->src[j]) {
  16405. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16406. }
  16407. }
  16408. fprintf(fout, "\n");
  16409. }
  16410. fprintf(fout, "\n");
  16411. }
  16412. // write binary data
  16413. {
  16414. FILE * fout = ggml_fopen(fname, "wb");
  16415. if (!fout) {
  16416. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16417. return;
  16418. }
  16419. // header
  16420. {
  16421. const uint32_t magic = GGML_FILE_MAGIC;
  16422. const uint32_t version = GGML_FILE_VERSION;
  16423. const uint32_t n_leafs = cgraph->n_leafs;
  16424. const uint32_t n_nodes = cgraph->n_nodes;
  16425. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16426. fwrite(&version, sizeof(uint32_t), 1, fout);
  16427. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16428. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16429. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16430. }
  16431. // leafs
  16432. {
  16433. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16434. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16435. const uint32_t type = tensor->type;
  16436. const uint32_t op = tensor->op;
  16437. fwrite(&type, sizeof(uint32_t), 1, fout);
  16438. fwrite(&op, sizeof(uint32_t), 1, fout);
  16439. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16440. const uint64_t ne = tensor->ne[j];
  16441. const uint64_t nb = tensor->nb[j];
  16442. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16443. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16444. }
  16445. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16446. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16447. // dump the data
  16448. // TODO: pad this to 32 byte boundary
  16449. {
  16450. const size_t size = ggml_nbytes(tensor);
  16451. fwrite(tensor->data, sizeof(char), size, fout);
  16452. }
  16453. }
  16454. }
  16455. // nodes
  16456. {
  16457. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16458. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16459. const uint32_t type = tensor->type;
  16460. const uint32_t op = tensor->op;
  16461. fwrite(&type, sizeof(uint32_t), 1, fout);
  16462. fwrite(&op, sizeof(uint32_t), 1, fout);
  16463. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16464. const uint64_t ne = tensor->ne[j];
  16465. const uint64_t nb = tensor->nb[j];
  16466. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16467. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16468. }
  16469. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16470. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16471. // output the op arguments
  16472. {
  16473. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16474. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16475. args[j] = tensor->src[j];
  16476. }
  16477. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16478. if (args[j]) {
  16479. int32_t idx = -1;
  16480. // check if leaf
  16481. {
  16482. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16483. if (args[j] == cgraph->leafs[k]) {
  16484. idx = k;
  16485. break;
  16486. }
  16487. }
  16488. }
  16489. // check if node
  16490. if (idx == -1) {
  16491. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16492. if (args[j] == cgraph->nodes[k]) {
  16493. idx = cgraph->n_leafs + k;
  16494. break;
  16495. }
  16496. }
  16497. }
  16498. if (idx == -1) {
  16499. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16500. fclose(fout);
  16501. return;
  16502. }
  16503. fwrite(&idx, sizeof(int32_t), 1, fout);
  16504. } else {
  16505. const int32_t nul = -1;
  16506. fwrite(&nul, sizeof(int32_t), 1, fout);
  16507. }
  16508. }
  16509. }
  16510. }
  16511. }
  16512. fclose(fout);
  16513. }
  16514. }
  16515. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16516. assert(*ctx_data == NULL);
  16517. assert(*ctx_eval == NULL);
  16518. struct ggml_cgraph * result = NULL;
  16519. struct ggml_tensor * data = NULL;
  16520. // read file into data
  16521. {
  16522. FILE * fin = ggml_fopen(fname, "rb");
  16523. if (!fin) {
  16524. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16525. return result;
  16526. }
  16527. size_t fsize = 0;
  16528. fseek(fin, 0, SEEK_END);
  16529. fsize = ftell(fin);
  16530. fseek(fin, 0, SEEK_SET);
  16531. // create the data context
  16532. {
  16533. const size_t overhead = 1*ggml_tensor_overhead();
  16534. struct ggml_init_params params = {
  16535. .mem_size = fsize + overhead,
  16536. .mem_buffer = NULL,
  16537. .no_alloc = false,
  16538. };
  16539. *ctx_data = ggml_init(params);
  16540. if (!*ctx_data) {
  16541. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16542. fclose(fin);
  16543. return result;
  16544. }
  16545. }
  16546. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16547. {
  16548. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16549. if (ret != fsize) {
  16550. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16551. fclose(fin);
  16552. return result;
  16553. }
  16554. }
  16555. fclose(fin);
  16556. }
  16557. // populate result
  16558. {
  16559. char * ptr = (char *) data->data;
  16560. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16561. if (magic != GGML_FILE_MAGIC) {
  16562. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16563. return result;
  16564. }
  16565. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16566. if (version != GGML_FILE_VERSION) {
  16567. fprintf(stderr, "%s: invalid version number\n", __func__);
  16568. return result;
  16569. }
  16570. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16571. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16572. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16573. const int graph_size = MAX(n_leafs, n_nodes);
  16574. // create the data context
  16575. {
  16576. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16577. struct ggml_init_params params = {
  16578. .mem_size = size_eval + overhead,
  16579. .mem_buffer = NULL,
  16580. .no_alloc = true,
  16581. };
  16582. *ctx_eval = ggml_init(params);
  16583. if (!*ctx_eval) {
  16584. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16585. return result;
  16586. }
  16587. }
  16588. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16589. result->n_leafs = n_leafs;
  16590. result->n_nodes = n_nodes;
  16591. // leafs
  16592. {
  16593. uint32_t type;
  16594. uint32_t op;
  16595. for (uint32_t i = 0; i < n_leafs; ++i) {
  16596. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16597. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16598. int64_t ne[GGML_MAX_DIMS];
  16599. size_t nb[GGML_MAX_DIMS];
  16600. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16601. uint64_t ne_cur;
  16602. uint64_t nb_cur;
  16603. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16604. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16605. ne[j] = ne_cur;
  16606. nb[j] = nb_cur;
  16607. }
  16608. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16609. tensor->op = (enum ggml_op) op;
  16610. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16611. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16612. tensor->data = (void *) ptr;
  16613. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16614. tensor->nb[j] = nb[j];
  16615. }
  16616. result->leafs[i] = tensor;
  16617. ptr += ggml_nbytes(tensor);
  16618. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16619. }
  16620. }
  16621. ggml_set_no_alloc(*ctx_eval, false);
  16622. // nodes
  16623. {
  16624. uint32_t type;
  16625. uint32_t op;
  16626. for (uint32_t i = 0; i < n_nodes; ++i) {
  16627. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16628. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16629. enum ggml_op eop = (enum ggml_op) op;
  16630. int64_t ne[GGML_MAX_DIMS];
  16631. size_t nb[GGML_MAX_DIMS];
  16632. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16633. uint64_t ne_cur;
  16634. uint64_t nb_cur;
  16635. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16636. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16637. ne[j] = ne_cur;
  16638. nb[j] = nb_cur;
  16639. }
  16640. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16641. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16642. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16643. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16644. // parse args
  16645. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16646. const int32_t arg_idx = ptr_arg_idx[j];
  16647. if (arg_idx == -1) {
  16648. continue;
  16649. }
  16650. if (arg_idx < result->n_leafs) {
  16651. args[j] = result->leafs[arg_idx];
  16652. } else {
  16653. args[j] = result->nodes[arg_idx - result->n_leafs];
  16654. }
  16655. }
  16656. // create the tensor
  16657. // "view" operations are handled differently
  16658. // TODO: handle inplace ops - currently a copy is always made
  16659. struct ggml_tensor * tensor = NULL;
  16660. switch (eop) {
  16661. // TODO: implement other view ops
  16662. case GGML_OP_RESHAPE:
  16663. {
  16664. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16665. } break;
  16666. case GGML_OP_VIEW:
  16667. {
  16668. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16669. size_t offs;
  16670. memcpy(&offs, ptr_op_params, sizeof(offs));
  16671. tensor->data = ((char *) tensor->data) + offs;
  16672. } break;
  16673. case GGML_OP_TRANSPOSE:
  16674. {
  16675. tensor = ggml_transpose(*ctx_eval, args[0]);
  16676. } break;
  16677. case GGML_OP_PERMUTE:
  16678. {
  16679. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16680. } break;
  16681. default:
  16682. {
  16683. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16684. tensor->op = eop;
  16685. } break;
  16686. }
  16687. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16688. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16689. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16690. tensor->nb[j] = nb[j];
  16691. }
  16692. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16693. tensor->src[j] = args[j];
  16694. }
  16695. result->nodes[i] = tensor;
  16696. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16697. }
  16698. }
  16699. }
  16700. return result;
  16701. }
  16702. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16703. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16704. GGML_PRINT("=== GRAPH ===\n");
  16705. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16706. for (int i = 0; i < cgraph->n_nodes; i++) {
  16707. struct ggml_tensor * node = cgraph->nodes[i];
  16708. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16709. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16710. i,
  16711. node->ne[0], node->ne[1], node->ne[2],
  16712. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16713. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16714. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16715. (double) node->perf_time_us / 1000.0,
  16716. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16717. }
  16718. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16719. for (int i = 0; i < cgraph->n_leafs; i++) {
  16720. struct ggml_tensor * node = cgraph->leafs[i];
  16721. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16722. i,
  16723. node->ne[0], node->ne[1],
  16724. ggml_op_name(node->op),
  16725. ggml_get_name(node));
  16726. }
  16727. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16728. if (perf_total_per_op_us[i] == 0) {
  16729. continue;
  16730. }
  16731. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16732. }
  16733. GGML_PRINT("========================================\n");
  16734. }
  16735. // check if node is part of the graph
  16736. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16737. if (cgraph == NULL) {
  16738. return true;
  16739. }
  16740. for (int i = 0; i < cgraph->n_nodes; i++) {
  16741. if (cgraph->nodes[i] == node) {
  16742. return true;
  16743. }
  16744. }
  16745. return false;
  16746. }
  16747. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16748. for (int i = 0; i < cgraph->n_nodes; i++) {
  16749. struct ggml_tensor * parent = cgraph->nodes[i];
  16750. if (parent->grad == node) {
  16751. return parent;
  16752. }
  16753. }
  16754. return NULL;
  16755. }
  16756. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16757. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16758. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16759. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16760. gparent0 ? (void *) gparent0 : (void *) parent,
  16761. gparent0 ? "g" : "x",
  16762. gparent ? (void *) gparent : (void *) node,
  16763. gparent ? "g" : "x",
  16764. gparent ? "empty" : "vee",
  16765. gparent ? "dashed" : "solid",
  16766. label);
  16767. }
  16768. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16769. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16770. (void *) parent, "x",
  16771. (void *) node, "x",
  16772. label);
  16773. }
  16774. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16775. char color[16];
  16776. FILE * fp = ggml_fopen(filename, "w");
  16777. GGML_ASSERT(fp);
  16778. fprintf(fp, "digraph G {\n");
  16779. fprintf(fp, " newrank = true;\n");
  16780. fprintf(fp, " rankdir = LR;\n");
  16781. for (int i = 0; i < gb->n_nodes; i++) {
  16782. struct ggml_tensor * node = gb->nodes[i];
  16783. if (ggml_graph_get_parent(gb, node) != NULL) {
  16784. continue;
  16785. }
  16786. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16787. snprintf(color, sizeof(color), "yellow");
  16788. } else if (node->grad) {
  16789. if (ggml_graph_find(gf, node)) {
  16790. snprintf(color, sizeof(color), "green");
  16791. } else {
  16792. snprintf(color, sizeof(color), "lightblue");
  16793. }
  16794. } else {
  16795. snprintf(color, sizeof(color), "white");
  16796. }
  16797. fprintf(fp, " \"%p\" [ "
  16798. "style = filled; fillcolor = %s; shape = record; "
  16799. "label=\"",
  16800. (void *) node, color);
  16801. if (strlen(node->name) > 0) {
  16802. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16803. } else {
  16804. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16805. }
  16806. if (ggml_is_matrix(node)) {
  16807. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16808. } else {
  16809. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16810. }
  16811. if (node->grad) {
  16812. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16813. } else {
  16814. fprintf(fp, "\"; ]\n");
  16815. }
  16816. }
  16817. for (int i = 0; i < gb->n_leafs; i++) {
  16818. struct ggml_tensor * node = gb->leafs[i];
  16819. snprintf(color, sizeof(color), "pink");
  16820. fprintf(fp, " \"%p\" [ "
  16821. "style = filled; fillcolor = %s; shape = record; "
  16822. "label=\"<x>",
  16823. (void *) node, color);
  16824. if (strlen(node->name) > 0) {
  16825. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16826. } else {
  16827. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16828. }
  16829. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16830. if (ggml_nelements(node) < 5) {
  16831. fprintf(fp, " | (");
  16832. for (int j = 0; j < ggml_nelements(node); j++) {
  16833. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16834. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16835. }
  16836. else if (node->type == GGML_TYPE_F32 ||
  16837. node->type == GGML_TYPE_F16 ||
  16838. node->type == GGML_TYPE_BF16) {
  16839. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16840. }
  16841. else {
  16842. fprintf(fp, "#");
  16843. }
  16844. if (j < ggml_nelements(node) - 1) {
  16845. fprintf(fp, ", ");
  16846. }
  16847. }
  16848. fprintf(fp, ")");
  16849. }
  16850. fprintf(fp, "\"; ]\n");
  16851. }
  16852. for (int i = 0; i < gb->n_nodes; i++) {
  16853. struct ggml_tensor * node = gb->nodes[i];
  16854. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16855. if (node->src[j]) {
  16856. char label[16];
  16857. snprintf(label, sizeof(label), "src %d", j);
  16858. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16859. }
  16860. }
  16861. }
  16862. for (int i = 0; i < gb->n_leafs; i++) {
  16863. struct ggml_tensor * node = gb->leafs[i];
  16864. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16865. if (node->src[j]) {
  16866. char label[16];
  16867. snprintf(label, sizeof(label), "src %d", j);
  16868. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16869. }
  16870. }
  16871. }
  16872. fprintf(fp, "}\n");
  16873. fclose(fp);
  16874. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16875. }
  16876. ////////////////////////////////////////////////////////////////////////////////
  16877. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16878. int i = 0;
  16879. for (int p = 0; p < np; ++p) {
  16880. const int64_t ne = ggml_nelements(ps[p]) ;
  16881. // TODO: add function to set tensor from array
  16882. for (int64_t j = 0; j < ne; ++j) {
  16883. ggml_set_f32_1d(ps[p], j, x[i++]);
  16884. }
  16885. }
  16886. }
  16887. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16888. int i = 0;
  16889. for (int p = 0; p < np; ++p) {
  16890. const int64_t ne = ggml_nelements(ps[p]) ;
  16891. // TODO: add function to get all elements at once
  16892. for (int64_t j = 0; j < ne; ++j) {
  16893. x[i++] = ggml_get_f32_1d(ps[p], j);
  16894. }
  16895. }
  16896. }
  16897. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16898. int64_t i = 0;
  16899. for (int p = 0; p < np; ++p) {
  16900. const int64_t ne = ggml_nelements(ps[p]) ;
  16901. // TODO: add function to get all elements at once
  16902. for (int64_t j = 0; j < ne; ++j) {
  16903. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16904. }
  16905. }
  16906. }
  16907. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16908. int64_t i = 0;
  16909. for (int p = 0; p < np; ++p) {
  16910. const int64_t ne = ggml_nelements(ps[p]) ;
  16911. // TODO: add function to get all elements at once
  16912. for (int64_t j = 0; j < ne; ++j) {
  16913. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16914. }
  16915. }
  16916. }
  16917. //
  16918. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16919. //
  16920. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16921. //
  16922. static enum ggml_opt_result ggml_opt_adam(
  16923. struct ggml_context * ctx,
  16924. struct ggml_opt_context * opt,
  16925. struct ggml_opt_params params,
  16926. struct ggml_tensor * f,
  16927. struct ggml_cgraph * gf,
  16928. struct ggml_cgraph * gb,
  16929. ggml_opt_callback callback,
  16930. void * callback_data) {
  16931. GGML_ASSERT(ggml_is_scalar(f));
  16932. // these will store the parameters we want to optimize
  16933. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16934. int np = 0;
  16935. int64_t nx = 0;
  16936. for (int i = 0; i < gf->n_nodes; ++i) {
  16937. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16938. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16939. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16940. ps[np++] = gf->nodes[i];
  16941. nx += ggml_nelements(gf->nodes[i]);
  16942. }
  16943. }
  16944. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16945. int iter = opt->iter;
  16946. ggml_opt_init(opt->ctx, opt, params, nx);
  16947. opt->iter = iter;
  16948. }
  16949. // constants
  16950. float sched = params.adam.sched;
  16951. const float alpha = params.adam.alpha;
  16952. const float decay = params.adam.decay * alpha;
  16953. const float beta1 = params.adam.beta1;
  16954. const float beta2 = params.adam.beta2;
  16955. const float eps = params.adam.eps;
  16956. const float gclip = params.adam.gclip;
  16957. const int decay_min_ndim = params.adam.decay_min_ndim;
  16958. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16959. const float accum_norm = 1.0f / (float) n_accum;
  16960. float * g = opt->adam.g->data; // gradients
  16961. float * m = opt->adam.m->data; // first moment
  16962. float * v = opt->adam.v->data; // second moment
  16963. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16964. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16965. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16966. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16967. bool cancel = false;
  16968. // compute the function value
  16969. float fx = 0;
  16970. ggml_set_zero(opt->adam.g);
  16971. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16972. if (callback) {
  16973. callback(callback_data, accum_step, &sched, &cancel);
  16974. if (cancel) {
  16975. return GGML_OPT_RESULT_CANCEL;
  16976. }
  16977. }
  16978. // ggml_graph_reset (gf);
  16979. ggml_set_f32 (f->grad, 1.0f);
  16980. ggml_graph_compute(gb, &cplan);
  16981. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16982. fx += ggml_get_f32_1d(f, 0);
  16983. }
  16984. fx *= accum_norm;
  16985. opt->adam.fx_prev = fx;
  16986. opt->adam.fx_best = opt->adam.fx_prev;
  16987. if (pf) {
  16988. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16989. }
  16990. opt->loss_before = opt->adam.fx_prev;
  16991. opt->loss_after = opt->adam.fx_prev;
  16992. // initialize
  16993. if (opt->just_initialized) {
  16994. opt->adam.n_no_improvement = 0;
  16995. opt->just_initialized = false;
  16996. }
  16997. float * fx_best = &opt->adam.fx_best;
  16998. float * fx_prev = &opt->adam.fx_prev;
  16999. int * n_no_improvement = &opt->adam.n_no_improvement;
  17000. int iter0 = opt->iter;
  17001. // run the optimizer
  17002. for (int t = 0; t < params.adam.n_iter; ++t) {
  17003. opt->iter = iter0 + t + 1;
  17004. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17005. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17006. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17007. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17008. for (int i = 0; i < np; ++i) {
  17009. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17010. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17011. }
  17012. const int64_t t_start_wall = ggml_time_us();
  17013. const int64_t t_start_cpu = ggml_cycles();
  17014. UNUSED(t_start_wall);
  17015. UNUSED(t_start_cpu);
  17016. {
  17017. float gnorm = 1.0f;
  17018. if (gclip > 0.0f) {
  17019. // gradient clipping
  17020. ggml_float sum = 0.0;
  17021. for (int64_t i = 0; i < nx; ++i) {
  17022. sum += (ggml_float)(g[i]*g[i]);
  17023. }
  17024. ggml_float norm = sqrt(sum);
  17025. if (norm > (ggml_float) gclip) {
  17026. gnorm = (float) ((ggml_float) gclip / norm);
  17027. }
  17028. }
  17029. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17030. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17031. int64_t i = 0;
  17032. for (int p = 0; p < np; ++p) {
  17033. const int64_t ne = ggml_nelements(ps[p]);
  17034. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17035. for (int64_t j = 0; j < ne; ++j) {
  17036. float x = ggml_get_f32_1d(ps[p], j);
  17037. float g_ = g[i]*gnorm;
  17038. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17039. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17040. float mh = m[i]*beta1h;
  17041. float vh = v[i]*beta2h;
  17042. vh = sqrtf(vh) + eps;
  17043. x = x*(1.0f - p_decay) - mh/vh;
  17044. ggml_set_f32_1d(ps[p], j, x);
  17045. ++i;
  17046. }
  17047. }
  17048. }
  17049. fx = 0;
  17050. ggml_set_zero(opt->adam.g);
  17051. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17052. if (callback) {
  17053. callback(callback_data, accum_step, &sched, &cancel);
  17054. if (cancel) {
  17055. return GGML_OPT_RESULT_CANCEL;;
  17056. }
  17057. }
  17058. // ggml_graph_reset (gf);
  17059. ggml_set_f32 (f->grad, 1.0f);
  17060. ggml_graph_compute(gb, &cplan);
  17061. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17062. fx += ggml_get_f32_1d(f, 0);
  17063. }
  17064. fx *= accum_norm;
  17065. opt->loss_after = fx;
  17066. // check convergence
  17067. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17068. GGML_PRINT_DEBUG("converged\n");
  17069. return GGML_OPT_RESULT_OK;
  17070. }
  17071. // delta-based convergence test
  17072. if (pf != NULL) {
  17073. // need at least params.past iterations to start checking for convergence
  17074. if (params.past <= iter0 + t) {
  17075. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17076. if (fabsf(rate) < params.delta) {
  17077. return GGML_OPT_RESULT_OK;
  17078. }
  17079. }
  17080. pf[(iter0 + t)%params.past] = fx;
  17081. }
  17082. // check for improvement
  17083. if (params.max_no_improvement > 0) {
  17084. if (fx_best[0] > fx) {
  17085. fx_best[0] = fx;
  17086. n_no_improvement[0] = 0;
  17087. } else {
  17088. ++n_no_improvement[0];
  17089. if (n_no_improvement[0] >= params.max_no_improvement) {
  17090. return GGML_OPT_RESULT_OK;
  17091. }
  17092. }
  17093. }
  17094. fx_prev[0] = fx;
  17095. {
  17096. const int64_t t_end_cpu = ggml_cycles();
  17097. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17098. UNUSED(t_end_cpu);
  17099. const int64_t t_end_wall = ggml_time_us();
  17100. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17101. UNUSED(t_end_wall);
  17102. }
  17103. }
  17104. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17105. }
  17106. //
  17107. // L-BFGS
  17108. //
  17109. // the L-BFGS implementation below is based on the following implementation:
  17110. //
  17111. // https://github.com/chokkan/liblbfgs
  17112. //
  17113. struct ggml_lbfgs_iteration_data {
  17114. float alpha;
  17115. float ys;
  17116. float * s;
  17117. float * y;
  17118. };
  17119. static enum ggml_opt_result linesearch_backtracking(
  17120. const struct ggml_opt_params * params,
  17121. int nx,
  17122. float * x,
  17123. float * fx,
  17124. float * g,
  17125. float * d,
  17126. float * step,
  17127. const float * xp,
  17128. struct ggml_tensor * f,
  17129. struct ggml_cgraph * gb,
  17130. struct ggml_cplan * cplan,
  17131. const int np,
  17132. struct ggml_tensor * ps[],
  17133. bool * cancel,
  17134. ggml_opt_callback callback,
  17135. void * callback_data) {
  17136. int count = 0;
  17137. float width = 0.0f;
  17138. float dg = 0.0f;
  17139. float finit = 0.0f;
  17140. float dginit = 0.0f;
  17141. float dgtest = 0.0f;
  17142. const float dec = 0.5f;
  17143. const float inc = 2.1f;
  17144. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17145. const float accum_norm = 1.0f / (float) n_accum;
  17146. if (*step <= 0.f) {
  17147. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17148. }
  17149. // compute the initial gradient in the search direction
  17150. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17151. // make sure that d points to a descent direction
  17152. if (0 < dginit) {
  17153. return GGML_LINESEARCH_FAIL;
  17154. }
  17155. // initialize local variables
  17156. finit = *fx;
  17157. dgtest = params->lbfgs.ftol*dginit;
  17158. while (true) {
  17159. ggml_vec_cpy_f32(nx, x, xp);
  17160. ggml_vec_mad_f32(nx, x, d, *step);
  17161. // evaluate the function and gradient values
  17162. {
  17163. ggml_opt_set_params(np, ps, x);
  17164. *fx = 0;
  17165. memset(g, 0, sizeof(float)*nx);
  17166. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17167. if (callback) {
  17168. // LBFG-S does not support learning rate -> ignore learning schedule
  17169. float sched = 0;
  17170. callback(callback_data, accum_step, &sched, cancel);
  17171. if (*cancel) {
  17172. return GGML_OPT_RESULT_CANCEL;
  17173. }
  17174. }
  17175. // ggml_graph_reset (gf);
  17176. ggml_set_f32 (f->grad, 1.0f);
  17177. ggml_graph_compute(gb, cplan);
  17178. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17179. *fx += ggml_get_f32_1d(f, 0);
  17180. }
  17181. *fx *= accum_norm;
  17182. }
  17183. ++count;
  17184. if (*fx > finit + (*step)*dgtest) {
  17185. width = dec;
  17186. } else {
  17187. // Armijo condition is satisfied
  17188. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17189. return count;
  17190. }
  17191. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17192. // check the Wolfe condition
  17193. if (dg < params->lbfgs.wolfe * dginit) {
  17194. width = inc;
  17195. } else {
  17196. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17197. // regular Wolfe conditions
  17198. return count;
  17199. }
  17200. if(dg > -params->lbfgs.wolfe*dginit) {
  17201. width = dec;
  17202. } else {
  17203. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17204. return count;
  17205. }
  17206. }
  17207. }
  17208. if (*step < params->lbfgs.min_step) {
  17209. return GGML_LINESEARCH_MINIMUM_STEP;
  17210. }
  17211. if (*step > params->lbfgs.max_step) {
  17212. return GGML_LINESEARCH_MAXIMUM_STEP;
  17213. }
  17214. if (params->lbfgs.max_linesearch <= count) {
  17215. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17216. }
  17217. (*step) *= width;
  17218. }
  17219. GGML_ASSERT(false && "line search failed");
  17220. return GGML_LINESEARCH_FAIL;
  17221. }
  17222. static enum ggml_opt_result ggml_opt_lbfgs(
  17223. struct ggml_context * ctx,
  17224. struct ggml_opt_context * opt,
  17225. struct ggml_opt_params params,
  17226. struct ggml_tensor * f,
  17227. struct ggml_cgraph * gf,
  17228. struct ggml_cgraph * gb,
  17229. ggml_opt_callback callback,
  17230. void * callback_data) {
  17231. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17232. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17233. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17234. return GGML_OPT_RESULT_INVALID_WOLFE;
  17235. }
  17236. }
  17237. const int m = params.lbfgs.m;
  17238. // these will store the parameters we want to optimize
  17239. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17240. int np = 0;
  17241. int nx = 0;
  17242. for (int i = 0; i < gf->n_nodes; ++i) {
  17243. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17244. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17245. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17246. ps[np++] = gf->nodes[i];
  17247. nx += ggml_nelements(gf->nodes[i]);
  17248. }
  17249. }
  17250. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17251. int iter = opt->iter;
  17252. ggml_opt_init(ctx, opt, params, nx);
  17253. opt->iter = iter;
  17254. }
  17255. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17256. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17257. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17258. float * x = opt->lbfgs.x->data; // current parameters
  17259. float * xp = opt->lbfgs.xp->data; // previous parameters
  17260. float * g = opt->lbfgs.g->data; // current gradient
  17261. float * gp = opt->lbfgs.gp->data; // previous gradient
  17262. float * d = opt->lbfgs.d->data; // search direction
  17263. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17264. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17265. const float accum_norm = 1.0f / (float) n_accum;
  17266. float fx = 0.0f; // cost function value
  17267. float xnorm = 0.0f; // ||x||
  17268. float gnorm = 0.0f; // ||g||
  17269. // initialize x from the graph nodes
  17270. ggml_opt_get_params(np, ps, x);
  17271. // the L-BFGS memory
  17272. float * lm_alpha = opt->lbfgs.lmal->data;
  17273. float * lm_ys = opt->lbfgs.lmys->data;
  17274. float * lm_s = opt->lbfgs.lms->data;
  17275. float * lm_y = opt->lbfgs.lmy->data;
  17276. bool cancel = false;
  17277. // evaluate the function value and its gradient
  17278. {
  17279. ggml_opt_set_params(np, ps, x);
  17280. fx = 0;
  17281. memset(g, 0, sizeof(float)*nx);
  17282. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17283. if (callback) {
  17284. // LBFG-S does not support learning rate -> ignore learning schedule
  17285. float sched = 0;
  17286. callback(callback_data, accum_step, &sched, &cancel);
  17287. if (cancel) {
  17288. return GGML_OPT_RESULT_CANCEL;
  17289. }
  17290. }
  17291. // ggml_graph_reset (gf);
  17292. ggml_set_f32 (f->grad, 1.0f);
  17293. ggml_graph_compute(gb, &cplan);
  17294. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17295. fx += ggml_get_f32_1d(f, 0);
  17296. }
  17297. fx *= accum_norm;
  17298. opt->loss_before = fx;
  17299. opt->loss_after = fx;
  17300. }
  17301. // search direction = -gradient
  17302. ggml_vec_neg_f32(nx, d, g);
  17303. // ||x||, ||g||
  17304. ggml_vec_norm_f32(nx, &xnorm, x);
  17305. ggml_vec_norm_f32(nx, &gnorm, g);
  17306. if (xnorm < 1.0f) {
  17307. xnorm = 1.0f;
  17308. }
  17309. // already optimized
  17310. if (gnorm/xnorm <= params.lbfgs.eps) {
  17311. return GGML_OPT_RESULT_OK;
  17312. }
  17313. if (opt->just_initialized) {
  17314. if (pf) {
  17315. pf[0] = fx;
  17316. }
  17317. opt->lbfgs.fx_best = fx;
  17318. // initial step
  17319. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17320. opt->lbfgs.j = 0;
  17321. opt->lbfgs.k = 1;
  17322. opt->lbfgs.end = 0;
  17323. opt->lbfgs.n_no_improvement = 0;
  17324. opt->just_initialized = false;
  17325. }
  17326. float * fx_best = &opt->lbfgs.fx_best;
  17327. float * step = &opt->lbfgs.step;
  17328. int * j = &opt->lbfgs.j;
  17329. int * k = &opt->lbfgs.k;
  17330. int * end = &opt->lbfgs.end;
  17331. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17332. int ls = 0;
  17333. int bound = 0;
  17334. float ys = 0.0f;
  17335. float yy = 0.0f;
  17336. float beta = 0.0f;
  17337. int it = 0;
  17338. while (true) {
  17339. // store the current position and gradient vectors
  17340. ggml_vec_cpy_f32(nx, xp, x);
  17341. ggml_vec_cpy_f32(nx, gp, g);
  17342. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17343. // to determine if the optimization should be cancelled
  17344. // this is a simple change, but not doing this atm, since I don't have a nice
  17345. // way to test and don't want to break something with so many changes lined up
  17346. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17347. if (cancel) {
  17348. return GGML_OPT_RESULT_CANCEL;
  17349. }
  17350. if (ls < 0) {
  17351. // linesearch failed - go back to the previous point and return
  17352. ggml_vec_cpy_f32(nx, x, xp);
  17353. ggml_vec_cpy_f32(nx, g, gp);
  17354. return ls;
  17355. }
  17356. opt->loss_after = fx;
  17357. ggml_vec_norm_f32(nx, &xnorm, x);
  17358. ggml_vec_norm_f32(nx, &gnorm, g);
  17359. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17360. if (xnorm < 1.0f) {
  17361. xnorm = 1.0f;
  17362. }
  17363. if (gnorm/xnorm <= params.lbfgs.eps) {
  17364. // converged
  17365. return GGML_OPT_RESULT_OK;
  17366. }
  17367. // delta-based convergence test
  17368. if (pf != NULL) {
  17369. // need at least params.past iterations to start checking for convergence
  17370. if (params.past <= k[0]) {
  17371. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17372. if (fabsf(rate) < params.delta) {
  17373. return GGML_OPT_RESULT_OK;
  17374. }
  17375. }
  17376. pf[k[0]%params.past] = fx;
  17377. }
  17378. // check for improvement
  17379. if (params.max_no_improvement > 0) {
  17380. if (fx < fx_best[0]) {
  17381. fx_best[0] = fx;
  17382. n_no_improvement[0] = 0;
  17383. } else {
  17384. n_no_improvement[0]++;
  17385. if (n_no_improvement[0] >= params.max_no_improvement) {
  17386. return GGML_OPT_RESULT_OK;
  17387. }
  17388. }
  17389. }
  17390. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17391. // reached the maximum number of iterations
  17392. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17393. }
  17394. // update vectors s and y:
  17395. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17396. // y_{k+1} = g_{k+1} - g_{k}.
  17397. //
  17398. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17399. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17400. // compute scalars ys and yy:
  17401. // ys = y^t \cdot s -> 1 / \rho.
  17402. // yy = y^t \cdot y.
  17403. //
  17404. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17405. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17406. lm_ys[end[0]] = ys;
  17407. // find new search direction
  17408. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17409. bound = (m <= k[0]) ? m : k[0];
  17410. k[0]++;
  17411. it++;
  17412. end[0] = (end[0] + 1)%m;
  17413. // initialize search direction with -g
  17414. ggml_vec_neg_f32(nx, d, g);
  17415. j[0] = end[0];
  17416. for (int i = 0; i < bound; ++i) {
  17417. j[0] = (j[0] + m - 1) % m;
  17418. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17419. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17420. lm_alpha[j[0]] /= lm_ys[j[0]];
  17421. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17422. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17423. }
  17424. ggml_vec_scale_f32(nx, d, ys/yy);
  17425. for (int i = 0; i < bound; ++i) {
  17426. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17427. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17428. beta /= lm_ys[j[0]];
  17429. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17430. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17431. j[0] = (j[0] + 1)%m;
  17432. }
  17433. step[0] = 1.0;
  17434. }
  17435. GGML_ASSERT(false && "lbfgs failed");
  17436. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17437. }
  17438. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17439. struct ggml_opt_params result;
  17440. switch (type) {
  17441. case GGML_OPT_TYPE_ADAM:
  17442. {
  17443. result = (struct ggml_opt_params) {
  17444. .type = GGML_OPT_TYPE_ADAM,
  17445. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17446. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17447. .past = 0,
  17448. .delta = 1e-5f,
  17449. .max_no_improvement = 100,
  17450. .print_forward_graph = true,
  17451. .print_backward_graph = true,
  17452. .n_gradient_accumulation = 1,
  17453. .adam = {
  17454. .n_iter = 10000,
  17455. .sched = 1.000f,
  17456. .decay = 0.0f,
  17457. .decay_min_ndim = 2,
  17458. .alpha = 0.001f,
  17459. .beta1 = 0.9f,
  17460. .beta2 = 0.999f,
  17461. .eps = 1e-8f,
  17462. .eps_f = 1e-5f,
  17463. .eps_g = 1e-3f,
  17464. .gclip = 0.0f,
  17465. },
  17466. };
  17467. } break;
  17468. case GGML_OPT_TYPE_LBFGS:
  17469. {
  17470. result = (struct ggml_opt_params) {
  17471. .type = GGML_OPT_TYPE_LBFGS,
  17472. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17473. .n_threads = 1,
  17474. .past = 0,
  17475. .delta = 1e-5f,
  17476. .max_no_improvement = 0,
  17477. .print_forward_graph = true,
  17478. .print_backward_graph = true,
  17479. .n_gradient_accumulation = 1,
  17480. .lbfgs = {
  17481. .m = 6,
  17482. .n_iter = 100,
  17483. .max_linesearch = 20,
  17484. .eps = 1e-5f,
  17485. .ftol = 1e-4f,
  17486. .wolfe = 0.9f,
  17487. .min_step = 1e-20f,
  17488. .max_step = 1e+20f,
  17489. .linesearch = GGML_LINESEARCH_DEFAULT,
  17490. },
  17491. };
  17492. } break;
  17493. }
  17494. return result;
  17495. }
  17496. GGML_API void ggml_opt_init(
  17497. struct ggml_context * ctx,
  17498. struct ggml_opt_context * opt,
  17499. struct ggml_opt_params params,
  17500. int64_t nx) {
  17501. opt->ctx = ctx;
  17502. opt->params = params;
  17503. opt->iter = 0;
  17504. opt->nx = nx;
  17505. opt->just_initialized = true;
  17506. if (opt->ctx == NULL) {
  17507. struct ggml_init_params ctx_opt_params;
  17508. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17509. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17510. if (opt->params.past > 0) {
  17511. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17512. }
  17513. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17514. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17515. if (opt->params.past > 0) {
  17516. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17517. }
  17518. }
  17519. ctx_opt_params.mem_buffer = NULL;
  17520. ctx_opt_params.no_alloc = false;
  17521. opt->ctx = ggml_init(ctx_opt_params);
  17522. }
  17523. switch (opt->params.type) {
  17524. case GGML_OPT_TYPE_ADAM:
  17525. {
  17526. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17527. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17528. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17529. opt->adam.pf = params.past > 0
  17530. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17531. : NULL;
  17532. ggml_set_zero(opt->adam.m);
  17533. ggml_set_zero(opt->adam.v);
  17534. if (opt->adam.pf) {
  17535. ggml_set_zero(opt->adam.pf);
  17536. }
  17537. } break;
  17538. case GGML_OPT_TYPE_LBFGS:
  17539. {
  17540. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17541. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17542. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17543. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17544. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17545. opt->lbfgs.pf = params.past > 0
  17546. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17547. : NULL;
  17548. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17549. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17550. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17551. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17552. ggml_set_zero(opt->lbfgs.x);
  17553. ggml_set_zero(opt->lbfgs.xp);
  17554. ggml_set_zero(opt->lbfgs.g);
  17555. ggml_set_zero(opt->lbfgs.gp);
  17556. ggml_set_zero(opt->lbfgs.d);
  17557. if (opt->lbfgs.pf) {
  17558. ggml_set_zero(opt->lbfgs.pf);
  17559. }
  17560. ggml_set_zero(opt->lbfgs.lmal);
  17561. ggml_set_zero(opt->lbfgs.lmys);
  17562. ggml_set_zero(opt->lbfgs.lms);
  17563. ggml_set_zero(opt->lbfgs.lmy);
  17564. } break;
  17565. }
  17566. }
  17567. enum ggml_opt_result ggml_opt(
  17568. struct ggml_context * ctx,
  17569. struct ggml_opt_params params,
  17570. struct ggml_tensor * f) {
  17571. bool free_ctx = false;
  17572. if (ctx == NULL) {
  17573. struct ggml_init_params params_ctx = {
  17574. .mem_size = 16*1024*1024,
  17575. .mem_buffer = NULL,
  17576. .no_alloc = false,
  17577. };
  17578. ctx = ggml_init(params_ctx);
  17579. if (ctx == NULL) {
  17580. return GGML_OPT_RESULT_NO_CONTEXT;
  17581. }
  17582. free_ctx = true;
  17583. }
  17584. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17585. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17586. ggml_opt_init(ctx, opt, params, 0);
  17587. result = ggml_opt_resume(ctx, opt, f);
  17588. if (free_ctx) {
  17589. ggml_free(ctx);
  17590. }
  17591. return result;
  17592. }
  17593. enum ggml_opt_result ggml_opt_resume(
  17594. struct ggml_context * ctx,
  17595. struct ggml_opt_context * opt,
  17596. struct ggml_tensor * f) {
  17597. // build forward + backward compute graphs
  17598. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17599. ggml_build_forward_expand(gf, f);
  17600. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17601. ggml_build_backward_expand(ctx, gf, gb, true);
  17602. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17603. }
  17604. enum ggml_opt_result ggml_opt_resume_g(
  17605. struct ggml_context * ctx,
  17606. struct ggml_opt_context * opt,
  17607. struct ggml_tensor * f,
  17608. struct ggml_cgraph * gf,
  17609. struct ggml_cgraph * gb,
  17610. ggml_opt_callback callback,
  17611. void * callback_data) {
  17612. // build forward + backward compute graphs
  17613. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17614. switch (opt->params.type) {
  17615. case GGML_OPT_TYPE_ADAM:
  17616. {
  17617. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17618. } break;
  17619. case GGML_OPT_TYPE_LBFGS:
  17620. {
  17621. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17622. } break;
  17623. }
  17624. if (opt->params.print_forward_graph) {
  17625. ggml_graph_print (gf);
  17626. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17627. }
  17628. if (opt->params.print_backward_graph) {
  17629. ggml_graph_print (gb);
  17630. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17631. }
  17632. return result;
  17633. }
  17634. ////////////////////////////////////////////////////////////////////////////////
  17635. void ggml_set_input(struct ggml_tensor * tensor) {
  17636. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17637. }
  17638. void ggml_set_output(struct ggml_tensor * tensor) {
  17639. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17640. }
  17641. ////////////////////////////////////////////////////////////////////////////////
  17642. void ggml_quantize_init(enum ggml_type type) {
  17643. ggml_critical_section_start();
  17644. switch (type) {
  17645. case GGML_TYPE_IQ2_XXS:
  17646. case GGML_TYPE_IQ2_XS:
  17647. case GGML_TYPE_IQ2_S:
  17648. case GGML_TYPE_IQ1_S:
  17649. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17650. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17651. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17652. default: // nothing
  17653. break;
  17654. }
  17655. ggml_critical_section_end();
  17656. }
  17657. void ggml_quantize_free(void) {
  17658. ggml_critical_section_start();
  17659. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17660. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17661. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17662. iq3xs_free_impl(256);
  17663. ggml_critical_section_end();
  17664. }
  17665. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17666. return
  17667. type == GGML_TYPE_IQ2_XXS ||
  17668. type == GGML_TYPE_IQ2_XS ||
  17669. type == GGML_TYPE_IQ1_S;// ||
  17670. //type == GGML_TYPE_IQ1_M;
  17671. }
  17672. size_t ggml_quantize_chunk(
  17673. enum ggml_type type,
  17674. const float * src,
  17675. void * dst,
  17676. int64_t start,
  17677. int64_t nrows,
  17678. int64_t n_per_row,
  17679. const float * imatrix) {
  17680. const int64_t n = (int64_t) nrows * n_per_row;
  17681. if (ggml_quantize_requires_imatrix(type)) {
  17682. GGML_ASSERT(imatrix != NULL);
  17683. }
  17684. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17685. GGML_ASSERT(start % n_per_row == 0);
  17686. ggml_quantize_init(type); // this is noop if already initialized
  17687. const size_t start_row = start / n_per_row;
  17688. const size_t row_size = ggml_row_size(type, n_per_row);
  17689. size_t result = 0;
  17690. switch (type) {
  17691. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17692. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17693. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17694. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17695. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17696. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17697. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17698. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17699. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17700. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17701. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17702. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17703. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17704. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17705. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17706. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17707. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17708. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17709. #if QK_K == 64
  17710. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17711. #else
  17712. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17713. #endif
  17714. case GGML_TYPE_F16:
  17715. {
  17716. size_t elemsize = sizeof(ggml_fp16_t);
  17717. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17718. result = n * elemsize;
  17719. } break;
  17720. case GGML_TYPE_BF16:
  17721. {
  17722. size_t elemsize = sizeof(ggml_bf16_t);
  17723. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17724. result = n * elemsize;
  17725. } break;
  17726. case GGML_TYPE_F32:
  17727. {
  17728. size_t elemsize = sizeof(float);
  17729. result = n * elemsize;
  17730. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17731. } break;
  17732. default:
  17733. assert(false);
  17734. }
  17735. GGML_ASSERT(result == nrows * row_size);
  17736. return result;
  17737. }
  17738. ////////////////////////////////////////////////////////////////////////////////
  17739. struct gguf_str {
  17740. uint64_t n; // GGUFv2
  17741. char * data;
  17742. };
  17743. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17744. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17745. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17746. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17747. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17748. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17749. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17750. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17751. [GGUF_TYPE_BOOL] = sizeof(bool),
  17752. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17753. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17754. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17755. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17756. [GGUF_TYPE_ARRAY] = 0, // undefined
  17757. };
  17758. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17759. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17760. [GGUF_TYPE_UINT8] = "u8",
  17761. [GGUF_TYPE_INT8] = "i8",
  17762. [GGUF_TYPE_UINT16] = "u16",
  17763. [GGUF_TYPE_INT16] = "i16",
  17764. [GGUF_TYPE_UINT32] = "u32",
  17765. [GGUF_TYPE_INT32] = "i32",
  17766. [GGUF_TYPE_FLOAT32] = "f32",
  17767. [GGUF_TYPE_BOOL] = "bool",
  17768. [GGUF_TYPE_STRING] = "str",
  17769. [GGUF_TYPE_ARRAY] = "arr",
  17770. [GGUF_TYPE_UINT64] = "u64",
  17771. [GGUF_TYPE_INT64] = "i64",
  17772. [GGUF_TYPE_FLOAT64] = "f64",
  17773. };
  17774. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17775. union gguf_value {
  17776. uint8_t uint8;
  17777. int8_t int8;
  17778. uint16_t uint16;
  17779. int16_t int16;
  17780. uint32_t uint32;
  17781. int32_t int32;
  17782. float float32;
  17783. uint64_t uint64;
  17784. int64_t int64;
  17785. double float64;
  17786. bool bool_;
  17787. struct gguf_str str;
  17788. struct {
  17789. enum gguf_type type;
  17790. uint64_t n; // GGUFv2
  17791. void * data;
  17792. } arr;
  17793. };
  17794. struct gguf_kv {
  17795. struct gguf_str key;
  17796. enum gguf_type type;
  17797. union gguf_value value;
  17798. };
  17799. struct gguf_header {
  17800. char magic[4];
  17801. uint32_t version;
  17802. uint64_t n_tensors; // GGUFv2
  17803. uint64_t n_kv; // GGUFv2
  17804. };
  17805. struct gguf_tensor_info {
  17806. struct gguf_str name;
  17807. uint32_t n_dims;
  17808. uint64_t ne[GGML_MAX_DIMS];
  17809. enum ggml_type type;
  17810. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17811. // for writing API
  17812. const void * data;
  17813. size_t size;
  17814. };
  17815. struct gguf_context {
  17816. struct gguf_header header;
  17817. struct gguf_kv * kv;
  17818. struct gguf_tensor_info * infos;
  17819. size_t alignment;
  17820. size_t offset; // offset of `data` from beginning of file
  17821. size_t size; // size of `data` in bytes
  17822. //uint8_t * padding;
  17823. void * data;
  17824. };
  17825. static size_t gguf_type_size(enum gguf_type type) {
  17826. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17827. return GGUF_TYPE_SIZE[type];
  17828. }
  17829. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17830. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17831. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17832. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17833. GGML_ASSERT(info->ne[i] > 0);
  17834. }
  17835. // prevent overflow for total number of elements
  17836. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17837. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17838. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17839. }
  17840. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17841. const size_t n = fread(dst, 1, size, file);
  17842. *offset += n;
  17843. return n == size;
  17844. }
  17845. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17846. p->n = 0;
  17847. p->data = NULL;
  17848. bool ok = true;
  17849. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17850. // early exit if string length is invalid, prevents from integer overflow
  17851. if (p->n == SIZE_MAX) {
  17852. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17853. return false;
  17854. }
  17855. p->data = GGML_CALLOC(p->n + 1, 1);
  17856. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17857. return ok;
  17858. }
  17859. static void gguf_free_kv(struct gguf_kv * kv) {
  17860. if (kv->key.data) {
  17861. GGML_FREE(kv->key.data);
  17862. }
  17863. if (kv->type == GGUF_TYPE_STRING) {
  17864. if (kv->value.str.data) {
  17865. GGML_FREE(kv->value.str.data);
  17866. }
  17867. }
  17868. if (kv->type == GGUF_TYPE_ARRAY) {
  17869. if (kv->value.arr.data) {
  17870. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17871. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17872. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17873. if (str->data) {
  17874. GGML_FREE(str->data);
  17875. }
  17876. }
  17877. }
  17878. GGML_FREE(kv->value.arr.data);
  17879. }
  17880. }
  17881. }
  17882. struct gguf_context * gguf_init_empty(void) {
  17883. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17884. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17885. ctx->header.version = GGUF_VERSION;
  17886. ctx->header.n_tensors = 0;
  17887. ctx->header.n_kv = 0;
  17888. ctx->kv = NULL;
  17889. ctx->infos = NULL;
  17890. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17891. ctx->offset = 0;
  17892. ctx->size = 0;
  17893. ctx->data = NULL;
  17894. return ctx;
  17895. }
  17896. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17897. FILE * file = ggml_fopen(fname, "rb");
  17898. if (!file) {
  17899. return NULL;
  17900. }
  17901. // offset from start of file
  17902. size_t offset = 0;
  17903. char magic[4];
  17904. // check the magic before making allocations
  17905. {
  17906. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17907. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17908. if (magic[i] != GGUF_MAGIC[i]) {
  17909. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17910. fclose(file);
  17911. return NULL;
  17912. }
  17913. }
  17914. }
  17915. bool ok = true;
  17916. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17917. // read the header
  17918. {
  17919. strncpy(ctx->header.magic, magic, 4);
  17920. ctx->kv = NULL;
  17921. ctx->infos = NULL;
  17922. ctx->data = NULL;
  17923. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17924. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17925. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17926. if (ctx->header.version == 1) {
  17927. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17928. fclose(file);
  17929. gguf_free(ctx);
  17930. return NULL;
  17931. }
  17932. // sanity-checks to prevent from integer/buffer overflows
  17933. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17934. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17935. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17936. if (!ok) {
  17937. fprintf(stderr, "%s: failed to read header\n", __func__);
  17938. fclose(file);
  17939. gguf_free(ctx);
  17940. return NULL;
  17941. }
  17942. }
  17943. // read the kv pairs
  17944. {
  17945. const uint64_t n_kv = ctx->header.n_kv;
  17946. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17947. ctx->header.n_kv = 0;
  17948. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17949. for (uint64_t i = 0; i < n_kv; ++i) {
  17950. struct gguf_kv * kv = &ctx->kv[i];
  17951. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17952. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17953. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17954. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17955. switch (kv->type) {
  17956. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17957. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17958. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17959. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17960. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17961. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17962. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17963. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17964. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17965. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17966. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17967. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17968. case GGUF_TYPE_ARRAY:
  17969. {
  17970. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17971. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17972. switch (kv->value.arr.type) {
  17973. case GGUF_TYPE_UINT8:
  17974. case GGUF_TYPE_INT8:
  17975. case GGUF_TYPE_UINT16:
  17976. case GGUF_TYPE_INT16:
  17977. case GGUF_TYPE_UINT32:
  17978. case GGUF_TYPE_INT32:
  17979. case GGUF_TYPE_FLOAT32:
  17980. case GGUF_TYPE_UINT64:
  17981. case GGUF_TYPE_INT64:
  17982. case GGUF_TYPE_FLOAT64:
  17983. case GGUF_TYPE_BOOL:
  17984. {
  17985. // prevent from integer overflow in the malloc below
  17986. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17987. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17988. fclose(file);
  17989. gguf_free(ctx);
  17990. return NULL;
  17991. }
  17992. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17993. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17994. } break;
  17995. case GGUF_TYPE_STRING:
  17996. {
  17997. // prevent from integer overflow in the malloc below
  17998. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17999. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18000. fclose(file);
  18001. gguf_free(ctx);
  18002. return NULL;
  18003. }
  18004. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18005. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18006. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18007. }
  18008. } break;
  18009. case GGUF_TYPE_ARRAY:
  18010. default: GGML_ASSERT(false && "invalid type"); break;
  18011. }
  18012. } break;
  18013. default: GGML_ASSERT(false && "invalid type");
  18014. }
  18015. if (!ok) {
  18016. break;
  18017. }
  18018. ctx->header.n_kv++;
  18019. }
  18020. if (!ok) {
  18021. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18022. fclose(file);
  18023. gguf_free(ctx);
  18024. return NULL;
  18025. }
  18026. }
  18027. // read the tensor infos
  18028. if (ctx->header.n_tensors > 0) {
  18029. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18030. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18031. struct gguf_tensor_info * info = &ctx->infos[i];
  18032. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18033. info->ne[j] = 1;
  18034. }
  18035. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18036. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18037. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18038. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18039. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18040. }
  18041. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18042. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18043. // TODO: return an error instead of crashing with GGML_ASSERT
  18044. gguf_tensor_info_sanitize(info);
  18045. // make sure there is no duplicated tensor names
  18046. for (uint64_t j = 0; j < i; ++j) {
  18047. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18048. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18049. ok = false;
  18050. }
  18051. }
  18052. if (!ok) {
  18053. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18054. fclose(file);
  18055. gguf_free(ctx);
  18056. return NULL;
  18057. }
  18058. }
  18059. }
  18060. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18061. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18062. if (alignment_idx != -1) {
  18063. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18064. }
  18065. // we require the data section to be aligned, so take into account any padding
  18066. {
  18067. const size_t offset_pad = offset % ctx->alignment;
  18068. if (offset_pad != 0) {
  18069. offset += ctx->alignment - offset_pad;
  18070. fseek(file, offset, SEEK_SET);
  18071. }
  18072. }
  18073. // store the current file offset - this is where the data section starts
  18074. ctx->offset = offset;
  18075. // compute the total size of the data section, taking into account the alignment
  18076. {
  18077. ctx->size = 0;
  18078. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18079. struct gguf_tensor_info * info = &ctx->infos[i];
  18080. const int64_t ne =
  18081. (int64_t) info->ne[0] *
  18082. (int64_t) info->ne[1] *
  18083. (int64_t) info->ne[2] *
  18084. (int64_t) info->ne[3];
  18085. if (ne % ggml_blck_size(info->type) != 0) {
  18086. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18087. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18088. fclose(file);
  18089. gguf_free(ctx);
  18090. return NULL;
  18091. }
  18092. const size_t size_cur = ggml_row_size(info->type, ne);
  18093. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18094. }
  18095. }
  18096. // load the tensor data only if requested
  18097. if (params.ctx != NULL) {
  18098. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18099. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18100. // the ggml_tensor structs to the appropriate locations in the binary blob
  18101. // compute the exact size needed for the new ggml_context
  18102. const size_t mem_size =
  18103. params.no_alloc ?
  18104. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18105. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18106. struct ggml_init_params pdata = {
  18107. .mem_size = mem_size,
  18108. .mem_buffer = NULL,
  18109. .no_alloc = params.no_alloc,
  18110. };
  18111. *params.ctx = ggml_init(pdata);
  18112. struct ggml_context * ctx_data = *params.ctx;
  18113. struct ggml_tensor * data = NULL;
  18114. if (!params.no_alloc) {
  18115. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18116. ok = ok && data != NULL;
  18117. // read the binary blob with the tensor data
  18118. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18119. if (!ok) {
  18120. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18121. fclose(file);
  18122. ggml_free(ctx_data);
  18123. gguf_free(ctx);
  18124. return NULL;
  18125. }
  18126. ctx->data = data->data;
  18127. }
  18128. ggml_set_no_alloc(ctx_data, true);
  18129. // create the tensors
  18130. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18131. const int64_t ne[GGML_MAX_DIMS] = {
  18132. ctx->infos[i].ne[0],
  18133. ctx->infos[i].ne[1],
  18134. ctx->infos[i].ne[2],
  18135. ctx->infos[i].ne[3],
  18136. };
  18137. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18138. ok = ok && cur != NULL;
  18139. if (!ok) {
  18140. break;
  18141. }
  18142. ggml_set_name(cur, ctx->infos[i].name.data);
  18143. // point the data member to the appropriate location in the binary blob using the tensor infos
  18144. if (!params.no_alloc) {
  18145. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18146. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18147. }
  18148. }
  18149. if (!ok) {
  18150. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18151. fclose(file);
  18152. ggml_free(ctx_data);
  18153. gguf_free(ctx);
  18154. return NULL;
  18155. }
  18156. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18157. }
  18158. fclose(file);
  18159. return ctx;
  18160. }
  18161. void gguf_free(struct gguf_context * ctx) {
  18162. if (ctx == NULL) {
  18163. return;
  18164. }
  18165. if (ctx->kv) {
  18166. // free string memory - not great..
  18167. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18168. gguf_free_kv(&ctx->kv[i]);
  18169. }
  18170. GGML_FREE(ctx->kv);
  18171. }
  18172. if (ctx->infos) {
  18173. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18174. struct gguf_tensor_info * info = &ctx->infos[i];
  18175. if (info->name.data) {
  18176. GGML_FREE(info->name.data);
  18177. }
  18178. }
  18179. GGML_FREE(ctx->infos);
  18180. }
  18181. GGML_FREE(ctx);
  18182. }
  18183. const char * gguf_type_name(enum gguf_type type) {
  18184. return GGUF_TYPE_NAME[type];
  18185. }
  18186. int gguf_get_version(const struct gguf_context * ctx) {
  18187. return ctx->header.version;
  18188. }
  18189. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18190. return ctx->alignment;
  18191. }
  18192. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18193. return ctx->offset;
  18194. }
  18195. void * gguf_get_data(const struct gguf_context * ctx) {
  18196. return ctx->data;
  18197. }
  18198. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18199. return ctx->header.n_kv;
  18200. }
  18201. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18202. // return -1 if key not found
  18203. int keyfound = -1;
  18204. const int n_kv = gguf_get_n_kv(ctx);
  18205. for (int i = 0; i < n_kv; ++i) {
  18206. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18207. keyfound = i;
  18208. break;
  18209. }
  18210. }
  18211. return keyfound;
  18212. }
  18213. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18214. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18215. return ctx->kv[key_id].key.data;
  18216. }
  18217. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18218. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18219. return ctx->kv[key_id].type;
  18220. }
  18221. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18222. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18223. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18224. return ctx->kv[key_id].value.arr.type;
  18225. }
  18226. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18227. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18228. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18229. return ctx->kv[key_id].value.arr.data;
  18230. }
  18231. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18232. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18233. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18234. struct gguf_kv * kv = &ctx->kv[key_id];
  18235. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18236. return str->data;
  18237. }
  18238. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18241. return ctx->kv[key_id].value.arr.n;
  18242. }
  18243. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18246. return ctx->kv[key_id].value.uint8;
  18247. }
  18248. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18251. return ctx->kv[key_id].value.int8;
  18252. }
  18253. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18256. return ctx->kv[key_id].value.uint16;
  18257. }
  18258. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18261. return ctx->kv[key_id].value.int16;
  18262. }
  18263. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18266. return ctx->kv[key_id].value.uint32;
  18267. }
  18268. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18271. return ctx->kv[key_id].value.int32;
  18272. }
  18273. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18276. return ctx->kv[key_id].value.float32;
  18277. }
  18278. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18281. return ctx->kv[key_id].value.uint64;
  18282. }
  18283. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18286. return ctx->kv[key_id].value.int64;
  18287. }
  18288. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18290. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18291. return ctx->kv[key_id].value.float64;
  18292. }
  18293. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18294. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18295. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18296. return ctx->kv[key_id].value.bool_;
  18297. }
  18298. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18299. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18300. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18301. return ctx->kv[key_id].value.str.data;
  18302. }
  18303. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18304. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18305. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18306. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18307. return &ctx->kv[key_id].value;
  18308. }
  18309. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18310. return ctx->header.n_tensors;
  18311. }
  18312. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18313. // return -1 if tensor not found
  18314. int tensorfound = -1;
  18315. const int n_tensors = gguf_get_n_tensors(ctx);
  18316. for (int i = 0; i < n_tensors; ++i) {
  18317. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18318. tensorfound = i;
  18319. break;
  18320. }
  18321. }
  18322. return tensorfound;
  18323. }
  18324. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18325. return ctx->infos[i].offset;
  18326. }
  18327. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18328. return ctx->infos[i].name.data;
  18329. }
  18330. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18331. return ctx->infos[i].type;
  18332. }
  18333. // returns the index
  18334. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18335. const int idx = gguf_find_key(ctx, key);
  18336. if (idx >= 0) {
  18337. return idx;
  18338. }
  18339. const int n_kv = gguf_get_n_kv(ctx);
  18340. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18341. ctx->kv[n_kv].key.n = strlen(key);
  18342. ctx->kv[n_kv].key.data = strdup(key);
  18343. ctx->header.n_kv++;
  18344. return n_kv;
  18345. }
  18346. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18347. const int idx = gguf_find_key(ctx, key);
  18348. if (idx >= 0) {
  18349. const int n_kv = gguf_get_n_kv(ctx);
  18350. gguf_free_kv(&ctx->kv[idx]);
  18351. for (int i = idx; i < n_kv-1; ++i) {
  18352. ctx->kv[i] = ctx->kv[i+1];
  18353. }
  18354. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18355. ctx->header.n_kv--;
  18356. }
  18357. }
  18358. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18359. const int idx = gguf_get_or_add_key(ctx, key);
  18360. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18361. ctx->kv[idx].value.uint8 = val;
  18362. }
  18363. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18364. const int idx = gguf_get_or_add_key(ctx, key);
  18365. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18366. ctx->kv[idx].value.int8 = val;
  18367. }
  18368. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18369. const int idx = gguf_get_or_add_key(ctx, key);
  18370. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18371. ctx->kv[idx].value.uint16 = val;
  18372. }
  18373. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18374. const int idx = gguf_get_or_add_key(ctx, key);
  18375. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18376. ctx->kv[idx].value.int16 = val;
  18377. }
  18378. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18379. const int idx = gguf_get_or_add_key(ctx, key);
  18380. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18381. ctx->kv[idx].value.uint32 = val;
  18382. }
  18383. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18384. const int idx = gguf_get_or_add_key(ctx, key);
  18385. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18386. ctx->kv[idx].value.int32 = val;
  18387. }
  18388. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18389. const int idx = gguf_get_or_add_key(ctx, key);
  18390. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18391. ctx->kv[idx].value.float32 = val;
  18392. }
  18393. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18394. const int idx = gguf_get_or_add_key(ctx, key);
  18395. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18396. ctx->kv[idx].value.uint64 = val;
  18397. }
  18398. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18399. const int idx = gguf_get_or_add_key(ctx, key);
  18400. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18401. ctx->kv[idx].value.int64 = val;
  18402. }
  18403. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18404. const int idx = gguf_get_or_add_key(ctx, key);
  18405. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18406. ctx->kv[idx].value.float64 = val;
  18407. }
  18408. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18409. const int idx = gguf_get_or_add_key(ctx, key);
  18410. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18411. ctx->kv[idx].value.bool_ = val;
  18412. }
  18413. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18414. const int idx = gguf_get_or_add_key(ctx, key);
  18415. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18416. ctx->kv[idx].value.str.n = strlen(val);
  18417. ctx->kv[idx].value.str.data = strdup(val);
  18418. }
  18419. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18420. const int idx = gguf_get_or_add_key(ctx, key);
  18421. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18422. ctx->kv[idx].value.arr.type = type;
  18423. ctx->kv[idx].value.arr.n = n;
  18424. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18425. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18426. }
  18427. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18428. const int idx = gguf_get_or_add_key(ctx, key);
  18429. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18430. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18431. ctx->kv[idx].value.arr.n = n;
  18432. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18433. for (int i = 0; i < n; i++) {
  18434. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18435. str->n = strlen(data[i]);
  18436. str->data = strdup(data[i]);
  18437. }
  18438. }
  18439. // set or add KV pairs from another context
  18440. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18441. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18442. switch (src->kv[i].type) {
  18443. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18444. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18445. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18446. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18447. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18448. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18449. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18450. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18451. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18452. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18453. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18454. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18455. case GGUF_TYPE_ARRAY:
  18456. {
  18457. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18458. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18459. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18460. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18461. }
  18462. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18463. GGML_FREE((void *)data);
  18464. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18465. GGML_ASSERT(false && "nested arrays not supported");
  18466. } else {
  18467. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18468. }
  18469. } break;
  18470. default: GGML_ASSERT(false && "invalid type"); break;
  18471. }
  18472. }
  18473. }
  18474. void gguf_add_tensor(
  18475. struct gguf_context * ctx,
  18476. const struct ggml_tensor * tensor) {
  18477. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18478. GGML_ASSERT(false && "duplicated tensor name");
  18479. }
  18480. const int idx = ctx->header.n_tensors;
  18481. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18482. ctx->infos[idx].name.n = strlen(tensor->name);
  18483. ctx->infos[idx].name.data = strdup(tensor->name);
  18484. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18485. ctx->infos[idx].ne[i] = 1;
  18486. }
  18487. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18488. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18489. ctx->infos[idx].ne[i] = tensor->ne[i];
  18490. }
  18491. ctx->infos[idx].type = tensor->type;
  18492. ctx->infos[idx].offset = 0;
  18493. ctx->infos[idx].data = tensor->data;
  18494. ctx->infos[idx].size = ggml_nbytes(tensor);
  18495. if (ctx->header.n_tensors > 0) {
  18496. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18497. }
  18498. ctx->header.n_tensors++;
  18499. }
  18500. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18501. const int idx = gguf_find_tensor(ctx, name);
  18502. if (idx < 0) {
  18503. GGML_ASSERT(false && "tensor not found");
  18504. }
  18505. ctx->infos[idx].type = type;
  18506. }
  18507. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18508. const int idx = gguf_find_tensor(ctx, name);
  18509. if (idx < 0) {
  18510. GGML_ASSERT(false && "tensor not found");
  18511. }
  18512. ctx->infos[idx].data = data;
  18513. ctx->infos[idx].size = size;
  18514. // update offsets
  18515. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18516. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18517. }
  18518. }
  18519. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18520. // fwrite(&val->n, sizeof(val->n), 1, file);
  18521. // fwrite(val->data, sizeof(char), val->n, file);
  18522. //}
  18523. //
  18524. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18525. // fwrite(val, sizeof(char), size, file);
  18526. //}
  18527. struct gguf_buf {
  18528. void * data;
  18529. size_t size;
  18530. size_t offset;
  18531. };
  18532. static struct gguf_buf gguf_buf_init(size_t size) {
  18533. struct gguf_buf buf = {
  18534. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18535. /*buf.size =*/ size,
  18536. /*buf.offset =*/ 0,
  18537. };
  18538. return buf;
  18539. }
  18540. static void gguf_buf_free(struct gguf_buf buf) {
  18541. if (buf.data) {
  18542. GGML_FREE(buf.data);
  18543. }
  18544. }
  18545. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18546. if (buf->offset + size > buf->size) {
  18547. buf->size = 1.5*(buf->offset + size);
  18548. if (buf->data) {
  18549. buf->data = realloc(buf->data, buf->size);
  18550. }
  18551. }
  18552. }
  18553. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18554. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18555. if (buf->data) {
  18556. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18557. }
  18558. buf->offset += sizeof(val->n);
  18559. if (buf->data) {
  18560. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18561. }
  18562. buf->offset += val->n;
  18563. }
  18564. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18565. gguf_buf_grow(buf, el_size);
  18566. if (buf->data) {
  18567. memcpy((char *) buf->data + buf->offset, val, el_size);
  18568. }
  18569. buf->offset += el_size;
  18570. }
  18571. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18572. // write header
  18573. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18574. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18575. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18576. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18577. // write key-value pairs
  18578. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18579. struct gguf_kv * kv = &ctx->kv[i];
  18580. gguf_bwrite_str(buf, &kv->key);
  18581. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18582. switch (kv->type) {
  18583. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18584. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18585. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18586. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18587. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18588. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18589. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18590. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18591. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18592. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18593. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18594. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18595. case GGUF_TYPE_ARRAY:
  18596. {
  18597. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18598. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18599. switch (kv->value.arr.type) {
  18600. case GGUF_TYPE_UINT8:
  18601. case GGUF_TYPE_INT8:
  18602. case GGUF_TYPE_UINT16:
  18603. case GGUF_TYPE_INT16:
  18604. case GGUF_TYPE_UINT32:
  18605. case GGUF_TYPE_INT32:
  18606. case GGUF_TYPE_FLOAT32:
  18607. case GGUF_TYPE_UINT64:
  18608. case GGUF_TYPE_INT64:
  18609. case GGUF_TYPE_FLOAT64:
  18610. case GGUF_TYPE_BOOL:
  18611. {
  18612. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18613. } break;
  18614. case GGUF_TYPE_STRING:
  18615. {
  18616. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18617. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18618. }
  18619. } break;
  18620. case GGUF_TYPE_ARRAY:
  18621. default: GGML_ASSERT(false && "invalid type"); break;
  18622. }
  18623. } break;
  18624. default: GGML_ASSERT(false && "invalid type");
  18625. }
  18626. }
  18627. // write tensor infos
  18628. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18629. struct gguf_tensor_info * info = &ctx->infos[i];
  18630. gguf_bwrite_str(buf, &info->name);
  18631. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18632. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18633. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18634. }
  18635. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18636. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18637. }
  18638. // we require the data section to be aligned, so take into account any padding
  18639. {
  18640. const size_t offset = buf->offset;
  18641. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18642. if (offset_pad != offset) {
  18643. uint8_t pad = 0;
  18644. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18645. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18646. }
  18647. }
  18648. }
  18649. if (only_meta) {
  18650. return;
  18651. }
  18652. size_t offset = 0;
  18653. // write tensor data
  18654. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18655. struct gguf_tensor_info * info = &ctx->infos[i];
  18656. const size_t size = info->size;
  18657. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18658. gguf_bwrite_el(buf, info->data, size);
  18659. if (size_pad != size) {
  18660. uint8_t pad = 0;
  18661. for (size_t j = 0; j < size_pad - size; ++j) {
  18662. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18663. }
  18664. }
  18665. GGML_ASSERT(offset == info->offset);
  18666. offset += size_pad;
  18667. }
  18668. }
  18669. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18670. FILE * file = ggml_fopen(fname, "wb");
  18671. if (!file) {
  18672. GGML_ASSERT(false && "failed to open file for writing");
  18673. }
  18674. struct gguf_buf buf = gguf_buf_init(16*1024);
  18675. gguf_write_to_buf(ctx, &buf, only_meta);
  18676. fwrite(buf.data, 1, buf.offset, file);
  18677. gguf_buf_free(buf);
  18678. fclose(file);
  18679. }
  18680. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18681. // no allocs - only compute size
  18682. struct gguf_buf buf = gguf_buf_init(0);
  18683. gguf_write_to_buf(ctx, &buf, true);
  18684. return buf.offset;
  18685. }
  18686. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18687. struct gguf_buf buf = gguf_buf_init(16*1024);
  18688. gguf_write_to_buf(ctx, &buf, true);
  18689. memcpy(data, buf.data, buf.offset);
  18690. gguf_buf_free(buf);
  18691. }
  18692. ////////////////////////////////////////////////////////////////////////////////
  18693. int ggml_cpu_has_avx(void) {
  18694. #if defined(__AVX__)
  18695. return 1;
  18696. #else
  18697. return 0;
  18698. #endif
  18699. }
  18700. int ggml_cpu_has_avx_vnni(void) {
  18701. #if defined(__AVXVNNI__)
  18702. return 1;
  18703. #else
  18704. return 0;
  18705. #endif
  18706. }
  18707. int ggml_cpu_has_avx2(void) {
  18708. #if defined(__AVX2__)
  18709. return 1;
  18710. #else
  18711. return 0;
  18712. #endif
  18713. }
  18714. int ggml_cpu_has_avx512(void) {
  18715. #if defined(__AVX512F__)
  18716. return 1;
  18717. #else
  18718. return 0;
  18719. #endif
  18720. }
  18721. int ggml_cpu_has_avx512_vbmi(void) {
  18722. #if defined(__AVX512VBMI__)
  18723. return 1;
  18724. #else
  18725. return 0;
  18726. #endif
  18727. }
  18728. int ggml_cpu_has_avx512_vnni(void) {
  18729. #if defined(__AVX512VNNI__)
  18730. return 1;
  18731. #else
  18732. return 0;
  18733. #endif
  18734. }
  18735. int ggml_cpu_has_fma(void) {
  18736. #if defined(__FMA__)
  18737. return 1;
  18738. #else
  18739. return 0;
  18740. #endif
  18741. }
  18742. int ggml_cpu_has_neon(void) {
  18743. #if defined(__ARM_NEON)
  18744. return 1;
  18745. #else
  18746. return 0;
  18747. #endif
  18748. }
  18749. int ggml_cpu_has_arm_fma(void) {
  18750. #if defined(__ARM_FEATURE_FMA)
  18751. return 1;
  18752. #else
  18753. return 0;
  18754. #endif
  18755. }
  18756. int ggml_cpu_has_metal(void) {
  18757. #if defined(GGML_USE_METAL)
  18758. return 1;
  18759. #else
  18760. return 0;
  18761. #endif
  18762. }
  18763. int ggml_cpu_has_f16c(void) {
  18764. #if defined(__F16C__)
  18765. return 1;
  18766. #else
  18767. return 0;
  18768. #endif
  18769. }
  18770. int ggml_cpu_has_fp16_va(void) {
  18771. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18772. return 1;
  18773. #else
  18774. return 0;
  18775. #endif
  18776. }
  18777. int ggml_cpu_has_wasm_simd(void) {
  18778. #if defined(__wasm_simd128__)
  18779. return 1;
  18780. #else
  18781. return 0;
  18782. #endif
  18783. }
  18784. int ggml_cpu_has_blas(void) {
  18785. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18786. return 1;
  18787. #else
  18788. return 0;
  18789. #endif
  18790. }
  18791. int ggml_cpu_has_cuda(void) {
  18792. #if defined(GGML_USE_CUDA)
  18793. return 1;
  18794. #else
  18795. return 0;
  18796. #endif
  18797. }
  18798. int ggml_cpu_has_clblast(void) {
  18799. #if defined(GGML_USE_CLBLAST)
  18800. return 1;
  18801. #else
  18802. return 0;
  18803. #endif
  18804. }
  18805. int ggml_cpu_has_vulkan(void) {
  18806. #if defined(GGML_USE_VULKAN)
  18807. return 1;
  18808. #else
  18809. return 0;
  18810. #endif
  18811. }
  18812. int ggml_cpu_has_kompute(void) {
  18813. #if defined(GGML_USE_KOMPUTE)
  18814. return 1;
  18815. #else
  18816. return 0;
  18817. #endif
  18818. }
  18819. int ggml_cpu_has_sycl(void) {
  18820. #if defined(GGML_USE_SYCL)
  18821. return 1;
  18822. #else
  18823. return 0;
  18824. #endif
  18825. }
  18826. int ggml_cpu_has_gpublas(void) {
  18827. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18828. ggml_cpu_has_sycl();
  18829. }
  18830. int ggml_cpu_has_sse3(void) {
  18831. #if defined(__SSE3__)
  18832. return 1;
  18833. #else
  18834. return 0;
  18835. #endif
  18836. }
  18837. int ggml_cpu_has_ssse3(void) {
  18838. #if defined(__SSSE3__)
  18839. return 1;
  18840. #else
  18841. return 0;
  18842. #endif
  18843. }
  18844. int ggml_cpu_has_vsx(void) {
  18845. #if defined(__POWER9_VECTOR__)
  18846. return 1;
  18847. #else
  18848. return 0;
  18849. #endif
  18850. }
  18851. int ggml_cpu_has_matmul_int8(void) {
  18852. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18853. return 1;
  18854. #else
  18855. return 0;
  18856. #endif
  18857. }
  18858. ////////////////////////////////////////////////////////////////////////////////