ggml.c 408 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  274. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  275. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  276. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  277. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  278. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  279. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  280. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  281. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  282. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  283. static const uint64_t table_b2b_i[1 << 8] = { B8(F0, 00) };
  284. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  285. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  286. // This is also true for POWER9.
  287. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  288. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  289. uint16_t s;
  290. memcpy(&s, &f, sizeof(uint16_t));
  291. return table_f32_f16[s];
  292. }
  293. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  294. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  295. #endif
  296. // note: do not use these inside ggml.c
  297. // these are meant to be used via the ggml.h API
  298. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  299. return (float) GGML_FP16_TO_FP32(x);
  300. }
  301. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  302. return GGML_FP32_TO_FP16(x);
  303. }
  304. //
  305. // timing
  306. //
  307. #if defined(_MSC_VER) || defined(__MINGW32__)
  308. static int64_t timer_freq;
  309. void ggml_time_init(void) {
  310. LARGE_INTEGER frequency;
  311. QueryPerformanceFrequency(&frequency);
  312. timer_freq = frequency.QuadPart;
  313. }
  314. int64_t ggml_time_ms(void) {
  315. LARGE_INTEGER t;
  316. QueryPerformanceCounter(&t);
  317. return (t.QuadPart * 1000) / timer_freq;
  318. }
  319. int64_t ggml_time_us(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceCounter(&t);
  322. return (t.QuadPart * 1000000) / timer_freq;
  323. }
  324. #else
  325. void ggml_time_init(void) {}
  326. int64_t ggml_time_ms(void) {
  327. struct timespec ts;
  328. clock_gettime(CLOCK_MONOTONIC, &ts);
  329. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  330. }
  331. int64_t ggml_time_us(void) {
  332. struct timespec ts;
  333. clock_gettime(CLOCK_MONOTONIC, &ts);
  334. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  335. }
  336. #endif
  337. int64_t ggml_cycles(void) {
  338. return clock();
  339. }
  340. int64_t ggml_cycles_per_ms(void) {
  341. return CLOCKS_PER_SEC/1000;
  342. }
  343. #ifdef GGML_PERF
  344. #define ggml_perf_time_ms() ggml_time_ms()
  345. #define ggml_perf_time_us() ggml_time_us()
  346. #define ggml_perf_cycles() ggml_cycles()
  347. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  348. #else
  349. #define ggml_perf_time_ms() 0
  350. #define ggml_perf_time_us() 0
  351. #define ggml_perf_cycles() 0
  352. #define ggml_perf_cycles_per_ms() 0
  353. #endif
  354. //
  355. // cache line
  356. //
  357. #if defined(__cpp_lib_hardware_interference_size)
  358. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  359. #else
  360. #if defined(__POWER9_VECTOR__)
  361. #define CACHE_LINE_SIZE 128
  362. #else
  363. #define CACHE_LINE_SIZE 64
  364. #endif
  365. #endif
  366. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  367. //
  368. // quantization
  369. //
  370. #if __AVX__ || __AVX2__ || __AVX512F__
  371. // Unpack 16 4-bit fields into 16 bytes
  372. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  373. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  374. {
  375. // Load 8 bytes from memory
  376. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  377. // Expand bytes into uint16_t values
  378. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  379. // Unpack values into individual bytes
  380. const __m128i lowMask = _mm_set1_epi8( 0xF );
  381. __m128i high = _mm_andnot_si128( lowMask, bytes );
  382. __m128i low = _mm_and_si128( lowMask, bytes );
  383. high = _mm_slli_epi16( high, 4 );
  384. bytes = _mm_or_si128( low, high );
  385. return bytes;
  386. }
  387. // horizontally add 8 floats
  388. static inline float hsum_float_8(const __m256 x) {
  389. __m128 res = _mm256_extractf128_ps(x, 1);
  390. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  391. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  392. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  393. return _mm_cvtss_f32(res);
  394. }
  395. // horizontally add 8 int32_t
  396. static inline int hsum_i32_8(const __m256i a) {
  397. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  398. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  399. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  400. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  401. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  402. }
  403. // horizontally add 4 int32_t
  404. static inline int hsum_i32_4(const __m128i a) {
  405. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  406. const __m128i sum64 = _mm_add_epi32(hi64, a);
  407. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  408. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  409. }
  410. #if __AVX2__ || __AVX512F__
  411. // Unpack 32 4-bit fields into 32 bytes
  412. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  413. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  414. {
  415. // Load 16 bytes from memory
  416. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  417. // Expand bytes into uint16_t values
  418. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  419. // Unpack values into individual bytes
  420. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  421. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  422. __m256i low = _mm256_and_si256( lowMask, bytes );
  423. high = _mm256_slli_epi16( high, 4 );
  424. bytes = _mm256_or_si256( low, high );
  425. return bytes;
  426. }
  427. // add int16_t pairwise and return as float vector
  428. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  429. const __m256i ones = _mm256_set1_epi16(1);
  430. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  431. return _mm256_cvtepi32_ps(summed_pairs);
  432. }
  433. // multiply int8_t, add results pairwise twice and return as float vector
  434. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  435. // Get absolute values of x vectors
  436. const __m256i ax = _mm256_sign_epi8(x, x);
  437. // Sign the values of the y vectors
  438. const __m256i sy = _mm256_sign_epi8(y, x);
  439. #if __AVXVNNI__
  440. const __m256i zero = _mm256_setzero_si256();
  441. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  442. return _mm256_cvtepi32_ps(summed_pairs);
  443. #else
  444. // Perform multiplication and create 16-bit values
  445. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  446. return sum_i16_pairs_float(dot);
  447. #endif
  448. }
  449. static inline __m128i packNibbles( __m256i bytes )
  450. {
  451. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  452. #if __AVX512F__
  453. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  454. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  455. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  456. #else
  457. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  458. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  459. __m256i low = _mm256_and_si256( lowByte, bytes );
  460. high = _mm256_srli_epi16( high, 4 );
  461. bytes = _mm256_or_si256( low, high );
  462. // Compress uint16_t lanes into bytes
  463. __m128i r0 = _mm256_castsi256_si128( bytes );
  464. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  465. return _mm_packus_epi16( r0, r1 );
  466. #endif
  467. }
  468. #else
  469. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  470. {
  471. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  472. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  473. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  474. __m128i low = _mm_and_si128( lowByte, bytes1 );
  475. high = _mm_srli_epi16( high, 4 );
  476. bytes1 = _mm_or_si128( low, high );
  477. high = _mm_andnot_si128( lowByte, bytes2 );
  478. low = _mm_and_si128( lowByte, bytes2 );
  479. high = _mm_srli_epi16( high, 4 );
  480. bytes2 = _mm_or_si128( low, high );
  481. return _mm_packus_epi16( bytes1, bytes2);
  482. }
  483. #endif
  484. #endif // __AVX__ || __AVX2__ || __AVX512F__
  485. #if __ARM_NEON
  486. #if !defined(__aarch64__)
  487. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  488. return
  489. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  490. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  491. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  492. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  493. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  494. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  495. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  496. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  497. }
  498. inline static int16_t vaddvq_s8(int8x16_t v) {
  499. return
  500. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  501. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  502. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  503. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  504. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  505. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  506. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  507. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  508. }
  509. inline static int32_t vaddvq_s16(int16x8_t v) {
  510. return
  511. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  512. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  513. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  514. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  515. }
  516. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  517. return
  518. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  519. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  520. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  521. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  522. }
  523. inline static int32_t vaddvq_s32(int32x4_t v) {
  524. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  525. }
  526. inline static float vaddvq_f32(float32x4_t v) {
  527. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  528. }
  529. float vminvq_f32(float32x4_t v) {
  530. return
  531. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  532. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  533. }
  534. float vmaxvq_f32(float32x4_t v) {
  535. return
  536. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  537. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  538. }
  539. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  540. return vget_low_s8(vcombine_s8(a, b));
  541. }
  542. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  543. return vget_high_s8(vcombine_s8(a, b));
  544. }
  545. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  546. return vget_low_u8(vcombine_u8(a, b));
  547. }
  548. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  549. return vget_high_u8(vcombine_u8(a, b));
  550. }
  551. #endif
  552. #endif
  553. #define QK4_0 32
  554. typedef struct {
  555. float d; // delta
  556. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  557. } block_q4_0;
  558. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  559. #define QK4_1 32
  560. typedef struct {
  561. float d; // delta
  562. float m; // min
  563. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  564. } block_q4_1;
  565. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  566. #define QK4_2 16
  567. typedef struct {
  568. ggml_fp16_t d; // delta
  569. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  570. } block_q4_2;
  571. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  572. #define QK4_3 16
  573. typedef struct {
  574. ggml_fp16_t d; // delta
  575. ggml_fp16_t m; // min
  576. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  577. } block_q4_3;
  578. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  579. #define QK5_0 32
  580. typedef struct {
  581. ggml_fp16_t d; // delta
  582. uint8_t qh[4]; // 5-th bit of quants
  583. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  584. } block_q5_0;
  585. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  586. #define QK5_1 32
  587. typedef struct {
  588. ggml_fp16_t d; // delta
  589. ggml_fp16_t m; // min
  590. uint8_t qh[4]; // 5-th bit of quants
  591. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  592. } block_q5_1;
  593. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  594. #define QK8_0 32
  595. typedef struct {
  596. float d; // delta
  597. int8_t qs[QK8_0]; // quants
  598. } block_q8_0;
  599. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  600. #define QK8_1 32
  601. typedef struct {
  602. float d; // delta
  603. float s0; // d * sum(qs[i]) low
  604. float s1; // d * sum(qs[i]) high
  605. int8_t qs[QK8_1]; // quants
  606. } block_q8_1;
  607. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  608. // reference implementation for deterministic creation of model files
  609. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  610. assert(k % QK4_0 == 0);
  611. const int nb = k / QK4_0;
  612. uint8_t pp[QK4_0/2];
  613. for (int i = 0; i < nb; i++) {
  614. float amax = 0.0f; // absolute max
  615. float max = 0.0f;
  616. for (int l = 0; l < QK4_0; l++) {
  617. const float v = x[i*QK4_0 + l];
  618. if (amax < fabsf(v)) {
  619. amax = fabsf(v);
  620. max = v;
  621. }
  622. }
  623. const float d = max / -8;
  624. const float id = d ? 1.0f/d : 0.0f;
  625. y[i].d = d;
  626. for (int l = 0; l < QK4_0; l += 2) {
  627. const float v0 = x[i*QK4_0 + l + 0]*id;
  628. const float v1 = x[i*QK4_0 + l + 1]*id;
  629. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  630. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  631. assert(vi0 < 16);
  632. assert(vi1 < 16);
  633. pp[l/2] = vi0 | (vi1 << 4);
  634. }
  635. memcpy(y[i].qs, pp, sizeof(pp));
  636. }
  637. }
  638. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  639. assert(k % QK4_0 == 0);
  640. const int nb = k / QK4_0;
  641. block_q4_0 * restrict y = vy;
  642. #if defined(__POWER9_VECTOR__)
  643. const vector float v85 = vec_splats(8.5f);
  644. const vector signed int v15 = vec_splats(15);
  645. for (int i = 0; i < nb; i++) {
  646. float max = 0.0f;
  647. float min = 0.0f;
  648. vector float srcv [8];
  649. vector float maxv[8];
  650. vector float minv[8];
  651. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  652. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  653. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  654. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  655. maxv[0] = vec_max(maxv[0], maxv[2]);
  656. maxv[4] = vec_max(maxv[4], maxv[6]);
  657. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  658. maxv[0] = vec_max(maxv[0], maxv[4]);
  659. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  660. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  661. minv[0] = vec_min(minv[0], minv[2]);
  662. minv[4] = vec_min(minv[4], minv[6]);
  663. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  664. minv[0] = vec_min(minv[0], minv[4]);
  665. max = MAX(
  666. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  667. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  668. min = MIN(
  669. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  670. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  671. const float magnitude = max >= fabsf(min) ? max : min;
  672. const float d = magnitude / -8;
  673. const float id = d ? 1.0/d : 0.0;
  674. y[i].d = d;
  675. const vector float vid = vec_splats(id);
  676. uint8_t * restrict pb = y[i].qs;
  677. for (int l = 0; l < 8; l++) {
  678. const vector float vf = vec_madd(srcv[l], vid, v85);
  679. const vector signed int vi = vec_signed(vf);
  680. const vector signed int vc = vec_min(vi, v15);
  681. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  682. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  683. }
  684. }
  685. #elif __ARM_NEON
  686. for (int i = 0; i < nb; i++) {
  687. float32x4_t srcv [8];
  688. float32x4_t maxv[8];
  689. float32x4_t minv[8];
  690. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  691. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  692. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  693. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  694. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  695. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  696. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  697. const float max = vmaxvq_f32(maxv[0]);
  698. const float min = vminvq_f32(minv[0]);
  699. const float magnitude = max >= fabsf(min) ? max : min;
  700. const float d = magnitude / -8;
  701. const float id = d ? 1.0f/d : 0.0f;
  702. y[i].d = d;
  703. for (int l = 0; l < 8; l++) {
  704. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  705. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  706. const int32x4_t vi = vcvtq_s32_f32(vf);
  707. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  708. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  709. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  710. }
  711. }
  712. #elif defined(__AVX2__)
  713. for (int i = 0; i < nb; i++) {
  714. // Load elements into 4 AVX vectors
  715. __m256 v0 = _mm256_loadu_ps( x );
  716. __m256 v1 = _mm256_loadu_ps( x + 8 );
  717. __m256 v2 = _mm256_loadu_ps( x + 16 );
  718. __m256 v3 = _mm256_loadu_ps( x + 24 );
  719. x += 32;
  720. // Compute max for the block
  721. __m256 max = _mm256_max_ps( v0, v1 );
  722. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  723. max = _mm256_max_ps( max, maxTmp );
  724. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  725. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  726. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  727. const float maxScalar = _mm_cvtss_f32( max4 );
  728. // Compute min for the block
  729. __m256 min = _mm256_min_ps( v0, v1 );
  730. __m256 minTmp = _mm256_min_ps( v2, v3 );
  731. min = _mm256_min_ps( min, minTmp );
  732. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  733. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  734. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  735. const float minScalar = _mm_cvtss_f32( min4 );
  736. // Quantize these floats
  737. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  738. const float d = magnitude / -8.0f;
  739. y[i].d = d;
  740. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  741. const __m256 mul = _mm256_set1_ps( id );
  742. // Apply the multiplier
  743. v0 = _mm256_mul_ps( v0, mul );
  744. v1 = _mm256_mul_ps( v1, mul );
  745. v2 = _mm256_mul_ps( v2, mul );
  746. v3 = _mm256_mul_ps( v3, mul );
  747. // Round to nearest integer
  748. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  749. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  750. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  751. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  752. // Convert floats to integers
  753. __m256i i0 = _mm256_cvtps_epi32( v0 );
  754. __m256i i1 = _mm256_cvtps_epi32( v1 );
  755. __m256i i2 = _mm256_cvtps_epi32( v2 );
  756. __m256i i3 = _mm256_cvtps_epi32( v3 );
  757. // Convert int32 to int16
  758. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  759. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  760. // Convert int16 to int8
  761. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  762. // We got our precious signed bytes, but the order is now wrong
  763. // These AVX2 pack instructions process 16-byte pieces independently
  764. // The following instruction is fixing the order
  765. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  766. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  767. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  768. const __m256i off = _mm256_set1_epi8( 8 );
  769. i0 = _mm256_add_epi8( i0, off );
  770. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  771. i0 = _mm256_min_epi8( i0, maxNibble );
  772. // Compress the vector into 4 bit/value, and store
  773. __m128i res = packNibbles( i0 );
  774. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  775. }
  776. #elif defined(__AVX__)
  777. for (int i = 0; i < nb; i++) {
  778. // Load elements into 4 AVX vectors
  779. __m256 v0 = _mm256_loadu_ps( x );
  780. __m256 v1 = _mm256_loadu_ps( x + 8 );
  781. __m256 v2 = _mm256_loadu_ps( x + 16 );
  782. __m256 v3 = _mm256_loadu_ps( x + 24 );
  783. x += 32;
  784. // Compute max for the block
  785. __m256 max = _mm256_max_ps( v0, v1 );
  786. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  787. max = _mm256_max_ps( max, maxTmp );
  788. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  789. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  790. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  791. const float maxScalar = _mm_cvtss_f32( max4 );
  792. // Compute min for the block
  793. __m256 min = _mm256_min_ps( v0, v1 );
  794. __m256 minTmp = _mm256_min_ps( v2, v3 );
  795. min = _mm256_min_ps( min, minTmp );
  796. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  797. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  798. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  799. const float minScalar = _mm_cvtss_f32( min4 );
  800. // Quantize these floats
  801. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  802. const float d = magnitude / -8.0f;
  803. y[i].d = d;
  804. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  805. const __m256 mul = _mm256_set1_ps( id );
  806. // Apply the multiplier
  807. v0 = _mm256_mul_ps( v0, mul );
  808. v1 = _mm256_mul_ps( v1, mul );
  809. v2 = _mm256_mul_ps( v2, mul );
  810. v3 = _mm256_mul_ps( v3, mul );
  811. // Round to nearest integer
  812. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  813. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  814. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  815. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  816. // Convert floats to integers
  817. __m256i i0 = _mm256_cvtps_epi32( v0 );
  818. __m256i i1 = _mm256_cvtps_epi32( v1 );
  819. __m256i i2 = _mm256_cvtps_epi32( v2 );
  820. __m256i i3 = _mm256_cvtps_epi32( v3 );
  821. // Since we don't have in AVX some necessary functions,
  822. // we split the registers in half and call AVX2 analogs from SSE
  823. __m128i ni0 = _mm256_castsi256_si128( i0 );
  824. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  825. __m128i ni2 = _mm256_castsi256_si128( i1 );
  826. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  827. __m128i ni4 = _mm256_castsi256_si128( i2 );
  828. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  829. __m128i ni6 = _mm256_castsi256_si128( i3 );
  830. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  831. // Convert int32 to int16
  832. ni0 = _mm_packs_epi32( ni0, ni1 );
  833. ni2 = _mm_packs_epi32( ni2, ni3 );
  834. ni4 = _mm_packs_epi32( ni4, ni5 );
  835. ni6 = _mm_packs_epi32( ni6, ni7 );
  836. // Convert int16 to int8
  837. ni0 = _mm_packs_epi16( ni0, ni2 );
  838. ni4 = _mm_packs_epi16( ni4, ni6 );
  839. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  840. const __m128i off = _mm_set1_epi8( 8 );
  841. ni0 = _mm_add_epi8( ni0, off );
  842. ni4 = _mm_add_epi8( ni4, off );
  843. const __m128i maxNibble = _mm_set1_epi8( 15 );
  844. ni0 = _mm_min_epi8( ni0, maxNibble );
  845. ni4 = _mm_min_epi8( ni4, maxNibble );
  846. // Compress the vector into 4 bit/value, and store
  847. __m128i res = packNibbles( ni0, ni4 );
  848. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  849. }
  850. #elif defined(__wasm_simd128__)
  851. for (int i = 0; i < nb; i++) {
  852. float max = 0.0f;
  853. float min = 0.0f;
  854. v128_t srcv [8];
  855. v128_t maxv[8];
  856. v128_t minv[8];
  857. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  858. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  859. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  860. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  861. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  862. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  863. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  864. max = MAX(
  865. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  866. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  867. min = MIN(
  868. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  869. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  870. const float magnitude = max >= fabsf(min) ? max : min;
  871. const float d = magnitude / -8;
  872. const float id = d ? 1.0/d : 0.0;
  873. y[i].d = d;
  874. for (int l = 0; l < 8; l++) {
  875. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  876. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  877. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  878. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  879. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  880. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  881. }
  882. }
  883. #else
  884. // scalar
  885. quantize_row_q4_0_reference(x, y, k);
  886. #endif
  887. }
  888. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  889. assert(k % QK4_1 == 0);
  890. const int nb = k / QK4_1;
  891. block_q4_1 * restrict y = vy;
  892. uint8_t pp[QK4_1/2];
  893. for (int i = 0; i < nb; i++) {
  894. float min = FLT_MAX;
  895. float max = -FLT_MAX;
  896. for (int l = 0; l < QK4_1; l++) {
  897. const float v = x[i*QK4_1 + l];
  898. if (v < min) min = v;
  899. if (v > max) max = v;
  900. }
  901. const float d = (max - min) / ((1 << 4) - 1);
  902. const float id = d ? 1.0f/d : 0.0f;
  903. y[i].d = d;
  904. y[i].m = min;
  905. for (int l = 0; l < QK4_1; l += 2) {
  906. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  907. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  908. const uint8_t vi0 = roundf(v0);
  909. const uint8_t vi1 = roundf(v1);
  910. assert(vi0 < 16);
  911. assert(vi1 < 16);
  912. pp[l/2] = vi0 | (vi1 << 4);
  913. }
  914. memcpy(y[i].qs, pp, sizeof(pp));
  915. }
  916. }
  917. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  918. assert(k % QK4_1 == 0);
  919. const int nb = k / QK4_1;
  920. block_q4_1 * restrict y = vy;
  921. #if defined(__AVX2__)
  922. for (int i = 0; i < nb; i++) {
  923. // Load elements into 4 AVX vectors
  924. __m256 v0 = _mm256_loadu_ps( x );
  925. __m256 v1 = _mm256_loadu_ps( x + 8 );
  926. __m256 v2 = _mm256_loadu_ps( x + 16 );
  927. __m256 v3 = _mm256_loadu_ps( x + 24 );
  928. x += 32;
  929. // Compute max for the block
  930. __m256 vmax;
  931. vmax = _mm256_max_ps( v0, v1 );
  932. vmax = _mm256_max_ps( vmax, v2 );
  933. vmax = _mm256_max_ps( vmax, v3 );
  934. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  935. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  936. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  937. const float maxScalar = _mm_cvtss_f32( max4 );
  938. // Compute min for the block
  939. __m256 vmin;
  940. vmin = _mm256_min_ps( v0, v1 );
  941. vmin = _mm256_min_ps( vmin, v2 );
  942. vmin = _mm256_min_ps( vmin, v3 );
  943. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  944. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  945. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  946. const float minScalar = _mm_cvtss_f32( min4 );
  947. // Quantize these floats
  948. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  949. const float id = d ? 1.0f/d : 0.0f;
  950. y[i].m = minScalar;
  951. y[i].d = d;
  952. // x = (x-min)*id
  953. const __m256 mul = _mm256_set1_ps( id );
  954. const __m256 off = _mm256_set1_ps( minScalar );
  955. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  956. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  957. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  958. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  959. // Round to nearest integer
  960. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  961. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  962. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  963. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  964. // Convert floats to integers
  965. __m256i i0 = _mm256_cvtps_epi32( v0 );
  966. __m256i i1 = _mm256_cvtps_epi32( v1 );
  967. __m256i i2 = _mm256_cvtps_epi32( v2 );
  968. __m256i i3 = _mm256_cvtps_epi32( v3 );
  969. // Convert int32 to int16
  970. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  971. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  972. // Convert int16 to int8
  973. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  974. // We got our precious signed bytes, but the order is now wrong
  975. // These AVX2 pack instructions process 16-byte pieces independently
  976. // The following instruction is fixing the order
  977. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  978. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  979. // Compress the vector into 4 bit/value, and store
  980. __m128i res = packNibbles( i0 );
  981. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  982. }
  983. #elif __ARM_NEON
  984. for (int i = 0; i < nb; i++) {
  985. float32x4_t srcv[8];
  986. float32x4_t minv[8];
  987. float32x4_t maxv[8];
  988. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  989. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  990. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  991. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  992. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  993. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  994. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  995. const float min = vminvq_f32(minv[0]);
  996. const float max = vmaxvq_f32(maxv[0]);
  997. const float d = (max - min) / ((1 << 4) - 1);
  998. const float id = d ? 1.0f/d : 0.0f;
  999. y[i].d = d;
  1000. y[i].m = min;
  1001. const float32x4_t minv0 = vdupq_n_f32(min);
  1002. for (int l = 0; l < 8; l++) {
  1003. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1004. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1005. const int32x4_t vi = vcvtq_s32_f32(vf);
  1006. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1007. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1008. }
  1009. }
  1010. #else
  1011. // scalar
  1012. quantize_row_q4_1_reference(x, vy, k);
  1013. #endif
  1014. }
  1015. // reference implementation for deterministic creation of model files
  1016. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1017. assert(k % QK4_2 == 0);
  1018. const int nb = k / QK4_2;
  1019. for (int i = 0; i < nb; i++) {
  1020. float amax = 0.0f; // absolute max
  1021. float max = 0.0f;
  1022. for (int l = 0; l < QK4_2; l++) {
  1023. const float v = x[i*QK4_2 + l];
  1024. if (amax < fabsf(v)) {
  1025. amax = fabsf(v);
  1026. max = v;
  1027. }
  1028. }
  1029. const float d = max / -8;
  1030. const float id = d ? 1.0f/d : 0.0f;
  1031. y[i].d = GGML_FP32_TO_FP16(d);
  1032. for (int l = 0; l < QK4_2; l += 2) {
  1033. const float v0 = x[i*QK4_2 + l + 0]*id;
  1034. const float v1 = x[i*QK4_2 + l + 1]*id;
  1035. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1036. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1037. assert(vi0 < 16);
  1038. assert(vi1 < 16);
  1039. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1040. }
  1041. }
  1042. }
  1043. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1044. assert(k % QK4_2 == 0);
  1045. block_q4_2 * restrict y = vy;
  1046. quantize_row_q4_2_reference(x, y, k);
  1047. }
  1048. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1049. assert(k % QK4_3 == 0);
  1050. const int nb = k / QK4_3;
  1051. for (int i = 0; i < nb; i++) {
  1052. float min = FLT_MAX;
  1053. float max = -FLT_MAX;
  1054. for (int l = 0; l < QK4_3; l++) {
  1055. const float v = x[i*QK4_3 + l];
  1056. if (v < min) min = v;
  1057. if (v > max) max = v;
  1058. }
  1059. const float d = (max - min) / ((1 << 4) - 1);
  1060. const float id = d ? 1.0f/d : 0.0f;
  1061. y[i].d = GGML_FP32_TO_FP16(d);
  1062. y[i].m = GGML_FP32_TO_FP16(min);
  1063. for (int l = 0; l < QK4_3; l += 2) {
  1064. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1065. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1066. const uint8_t vi0 = (int) (v0 + 0.5f);
  1067. const uint8_t vi1 = (int) (v1 + 0.5f);
  1068. assert(vi0 < 16);
  1069. assert(vi1 < 16);
  1070. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1071. }
  1072. }
  1073. }
  1074. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1075. assert(k % QK4_3 == 0);
  1076. block_q4_3 * restrict y = vy;
  1077. quantize_row_q4_3_reference(x, y, k);
  1078. }
  1079. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1080. assert(k % QK5_0 == 0);
  1081. const int nb = k / QK5_0;
  1082. for (int i = 0; i < nb; i++) {
  1083. float amax = 0.0f; // absolute max
  1084. float max = 0.0f;
  1085. for (int l = 0; l < QK5_0; l++) {
  1086. const float v = x[i*QK5_0 + l];
  1087. if (amax < fabsf(v)) {
  1088. amax = fabsf(v);
  1089. max = v;
  1090. }
  1091. }
  1092. const float d = max / -16;
  1093. const float id = d ? 1.0f/d : 0.0f;
  1094. y[i].d = GGML_FP32_TO_FP16(d);
  1095. uint32_t qh = 0;
  1096. for (int l = 0; l < QK5_0; l += 2) {
  1097. const float v0 = x[i*QK5_0 + l + 0]*id;
  1098. const float v1 = x[i*QK5_0 + l + 1]*id;
  1099. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1100. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1101. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1102. // get the 5-th bit and store it in qh at the right position
  1103. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1104. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1105. }
  1106. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1107. }
  1108. }
  1109. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK5_0 == 0);
  1111. block_q5_0 * restrict y = vy;
  1112. quantize_row_q5_0_reference(x, y, k);
  1113. }
  1114. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1115. assert(k % QK5_1 == 0);
  1116. const int nb = k / QK5_1;
  1117. for (int i = 0; i < nb; i++) {
  1118. float min = FLT_MAX;
  1119. float max = -FLT_MAX;
  1120. for (int l = 0; l < QK5_1; l++) {
  1121. const float v = x[i*QK5_1 + l];
  1122. if (v < min) min = v;
  1123. if (v > max) max = v;
  1124. }
  1125. const float d = (max - min) / ((1 << 5) - 1);
  1126. const float id = d ? 1.0f/d : 0.0f;
  1127. y[i].d = GGML_FP32_TO_FP16(d);
  1128. y[i].m = GGML_FP32_TO_FP16(min);
  1129. uint32_t qh = 0;
  1130. for (int l = 0; l < QK5_1; l += 2) {
  1131. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1132. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1133. const uint32_t vi0 = (int) (v0 + 0.5f);
  1134. const uint32_t vi1 = (int) (v1 + 0.5f);
  1135. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1136. // get the 5-th bit and store it in qh at the right position
  1137. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1138. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1139. }
  1140. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1141. }
  1142. }
  1143. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1144. assert(k % QK5_1 == 0);
  1145. block_q5_1 * restrict y = vy;
  1146. quantize_row_q5_1_reference(x, y, k);
  1147. }
  1148. // reference implementation for deterministic creation of model files
  1149. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1150. assert(k % QK8_0 == 0);
  1151. const int nb = k / QK8_0;
  1152. for (int i = 0; i < nb; i++) {
  1153. float amax = 0.0f; // absolute max
  1154. for (int l = 0; l < QK8_0; l++) {
  1155. const float v = x[i*QK8_0 + l];
  1156. amax = MAX(amax, fabsf(v));
  1157. }
  1158. const float d = amax / ((1 << 7) - 1);
  1159. const float id = d ? 1.0f/d : 0.0f;
  1160. y[i].d = d;
  1161. for (int l = 0; l < QK8_0; ++l) {
  1162. const float v0 = x[i*QK8_0 + l]*id;
  1163. y[i].qs[l] = roundf(v0);
  1164. }
  1165. }
  1166. }
  1167. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1168. assert(k % QK8_0 == 0);
  1169. block_q8_0 * restrict y = vy;
  1170. quantize_row_q8_0_reference(x, y, k);
  1171. }
  1172. // reference implementation for deterministic creation of model files
  1173. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1174. assert(k % QK8_1 == 0);
  1175. const int nb = k / QK8_1;
  1176. for (int i = 0; i < nb; i++) {
  1177. float amax = 0.0f; // absolute max
  1178. for (int l = 0; l < QK8_1; l++) {
  1179. const float v = x[i*QK8_1 + l];
  1180. amax = MAX(amax, fabsf(v));
  1181. }
  1182. const float d = amax / ((1 << 7) - 1);
  1183. const float id = d ? 1.0f/d : 0.0f;
  1184. y[i].d = d;
  1185. int sum0 = 0;
  1186. int sum1 = 0;
  1187. for (int l = 0; l < QK8_1/2; ++l) {
  1188. const float v0 = x[i*QK8_1 + l]*id;
  1189. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1190. y[i].qs[ l] = roundf(v0);
  1191. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1192. sum0 += y[i].qs[ l];
  1193. sum1 += y[i].qs[QK8_1/2 + l];
  1194. }
  1195. y[i].s0 = d * sum0;
  1196. y[i].s1 = d * sum1;
  1197. }
  1198. }
  1199. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1200. assert(k % QK8_1 == 0);
  1201. const int nb = k / QK8_1;
  1202. block_q8_1 * restrict y = vy;
  1203. #if defined(__ARM_NEON)
  1204. for (int i = 0; i < nb; i++) {
  1205. float32x4_t srcv [8];
  1206. float32x4_t asrcv[8];
  1207. float32x4_t amaxv[8];
  1208. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1209. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1210. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1211. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1212. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1213. const float amax = vmaxvq_f32(amaxv[0]);
  1214. const float d = amax / ((1 << 7) - 1);
  1215. const float id = d ? 1.0f/d : 0.0f;
  1216. y[i].d = d;
  1217. int32x4_t accv0 = vdupq_n_s32(0);
  1218. int32x4_t accv1 = vdupq_n_s32(0);
  1219. // low half
  1220. for (int l = 0; l < 4; l++) {
  1221. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1222. const int32x4_t vi = vcvtnq_s32_f32(v);
  1223. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1224. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1225. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1226. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1227. accv0 = vaddq_s32(accv0, vi);
  1228. }
  1229. // high half
  1230. for (int l = 4; l < 8; l++) {
  1231. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1232. const int32x4_t vi = vcvtnq_s32_f32(v);
  1233. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1234. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1235. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1236. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1237. accv1 = vaddq_s32(accv1, vi);
  1238. }
  1239. const int32_t sum0 = vaddvq_s32(accv0);
  1240. const int32_t sum1 = vaddvq_s32(accv1);
  1241. y[i].s0 = d * sum0;
  1242. y[i].s1 = d * sum1;
  1243. }
  1244. #elif defined(__AVX2__) || defined(__AVX__)
  1245. for (int i = 0; i < nb; i++) {
  1246. // Load elements into 4 AVX vectors
  1247. __m256 v0 = _mm256_loadu_ps( x );
  1248. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1249. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1250. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1251. x += 32;
  1252. // Compute max(abs(e)) for the block
  1253. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1254. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1255. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1256. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1257. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1258. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1259. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1260. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1261. const float maxScalar = _mm_cvtss_f32( max4 );
  1262. // Quantize these floats
  1263. const float d = maxScalar / 127.f;
  1264. y[i].d = d;
  1265. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1266. const __m256 mul = _mm256_set1_ps( id );
  1267. // Apply the multiplier
  1268. v0 = _mm256_mul_ps( v0, mul );
  1269. v1 = _mm256_mul_ps( v1, mul );
  1270. v2 = _mm256_mul_ps( v2, mul );
  1271. v3 = _mm256_mul_ps( v3, mul );
  1272. // Round to nearest integer
  1273. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1274. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1275. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1276. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1277. // Convert floats to integers
  1278. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1279. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1280. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1281. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1282. #if defined(__AVX2__)
  1283. // Compute the sum of the quants and set y[i].s
  1284. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1285. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1286. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1287. // Convert int32 to int16
  1288. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1289. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1290. // Convert int16 to int8
  1291. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1292. // We got our precious signed bytes, but the order is now wrong
  1293. // These AVX2 pack instructions process 16-byte pieces independently
  1294. // The following instruction is fixing the order
  1295. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1296. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1297. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1298. #else
  1299. // Since we don't have in AVX some necessary functions,
  1300. // we split the registers in half and call AVX2 analogs from SSE
  1301. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1302. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1303. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1304. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1305. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1306. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1307. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1308. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1309. // Compute the sum of the quants and set y[i].s
  1310. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1311. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1312. y[i].s0 = d * hsum_i32_4(s0);
  1313. y[i].s1 = d * hsum_i32_4(s1);
  1314. // Convert int32 to int16
  1315. ni0 = _mm_packs_epi32( ni0, ni1 );
  1316. ni2 = _mm_packs_epi32( ni2, ni3 );
  1317. ni4 = _mm_packs_epi32( ni4, ni5 );
  1318. ni6 = _mm_packs_epi32( ni6, ni7 );
  1319. // Convert int16 to int8
  1320. ni0 = _mm_packs_epi16( ni0, ni2 );
  1321. ni4 = _mm_packs_epi16( ni4, ni6 );
  1322. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1323. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1324. #endif
  1325. }
  1326. #else
  1327. // scalar
  1328. quantize_row_q8_1_reference(x, y, k);
  1329. #endif
  1330. }
  1331. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1332. assert(k % QK4_0 == 0);
  1333. const int nb = k / QK4_0;
  1334. const block_q4_0 * restrict x = vx;
  1335. #if defined(__AVX2__)
  1336. for (int i = 0; i < nb; i++) {
  1337. // scale factor
  1338. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1339. const uint8_t * restrict pp = x[i].qs;
  1340. for (int l = 0; l < QK4_0; l += 32) {
  1341. // Load 32x4-bit integers into 32x8-bit integers
  1342. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1343. // Subtract 8 from the integers
  1344. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1345. // Convert to 16-bit int
  1346. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1347. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1348. // Convert to 32-bit int -> float 32
  1349. const __m256 vf[4] = {
  1350. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1351. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1352. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1353. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1354. };
  1355. // Scale and store
  1356. for (int j = 0; j < 4; j++) {
  1357. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1358. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1359. }
  1360. }
  1361. }
  1362. #elif defined(__ARM_NEON)
  1363. for (int i = 0; i < nb; i++) {
  1364. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1365. const uint8_t * restrict pp = x[i].qs;
  1366. for (int l = 0; l < QK4_0; l += 16) {
  1367. // Load 16x4-bit integers into 8x8-bit integers
  1368. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1369. // Expand 4-bit qs to 8-bit bytes
  1370. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1371. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1372. // Convert to signed 8-bit integers
  1373. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1374. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1375. // Subtract 8 from each byte
  1376. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1377. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1378. // Interleave and combine
  1379. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1380. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1381. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1382. // convert to 2x int16x8_t
  1383. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1384. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1385. // convert to 4x float32x4_t
  1386. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1387. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1388. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1389. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1390. // Multiply by d
  1391. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1392. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1393. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1394. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1395. // Store
  1396. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1397. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1398. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1399. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1400. }
  1401. }
  1402. #else
  1403. // scalar
  1404. for (int i = 0; i < nb; i++) {
  1405. const float d = x[i].d;
  1406. const uint8_t * restrict pp = x[i].qs;
  1407. for (int l = 0; l < QK4_0; l += 2) {
  1408. const uint8_t vi = pp[l/2];
  1409. const int8_t vi0 = vi & 0x0F;
  1410. const int8_t vi1 = vi >> 4;
  1411. const float v0 = (vi0 - 8)*d;
  1412. const float v1 = (vi1 - 8)*d;
  1413. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1414. y[i*QK4_0 + l + 0] = v0;
  1415. y[i*QK4_0 + l + 1] = v1;
  1416. assert(!isnan(y[i*QK4_0 + l + 0]));
  1417. assert(!isnan(y[i*QK4_0 + l + 1]));
  1418. }
  1419. }
  1420. #endif
  1421. }
  1422. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1423. assert(k % QK4_1 == 0);
  1424. const int nb = k / QK4_1;
  1425. const block_q4_1 * restrict x = vx;
  1426. #if defined(__AVX2__)
  1427. for (int i = 0; i < nb; i++) {
  1428. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1429. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1430. const uint8_t * restrict pp = x[i].qs;
  1431. for (int l = 0; l < QK4_1; l += 32) {
  1432. // Load 32x4-bit integers into 32x8-bit integers
  1433. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1434. // Convert to 16-bit int
  1435. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1436. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1437. // Convert to 32-bit int -> float 32
  1438. const __m256 vf[4] = {
  1439. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1440. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1441. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1442. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1443. };
  1444. // Scale, add m and store
  1445. for (int j = 0; j < 4; j++) {
  1446. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1447. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1448. }
  1449. }
  1450. }
  1451. #elif defined(__ARM_NEON)
  1452. for (int i = 0; i < nb; i++) {
  1453. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1454. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1455. const uint8_t * restrict pp = x[i].qs;
  1456. for (int l = 0; l < QK4_1; l += 16) {
  1457. // Load 16x4-bit integers into 8x8-bit integers
  1458. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1459. // Expand 4-bit qs to 8-bit bytes
  1460. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1461. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1462. // Interleave and combine
  1463. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1464. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1465. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1466. // convert to 2x uint16x8_t
  1467. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1468. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1469. // convert to 4x float32x4_t
  1470. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1471. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1472. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1473. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1474. // multiply by d and add m
  1475. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1476. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1477. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1478. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1479. // Store
  1480. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1481. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1482. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1483. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1484. }
  1485. }
  1486. #else
  1487. for (int i = 0; i < nb; i++) {
  1488. const float d = x[i].d;
  1489. const float m = x[i].m;
  1490. const uint8_t * restrict pp = x[i].qs;
  1491. for (int l = 0; l < QK4_1; l += 2) {
  1492. const uint8_t vi = pp[l/2];
  1493. const int8_t vi0 = vi & 0x0F;
  1494. const int8_t vi1 = vi >> 4;
  1495. const float v0 = vi0*d + m;
  1496. const float v1 = vi1*d + m;
  1497. y[i*QK4_1 + l + 0] = v0;
  1498. y[i*QK4_1 + l + 1] = v1;
  1499. assert(!isnan(y[i*QK4_1 + l + 0]));
  1500. assert(!isnan(y[i*QK4_1 + l + 1]));
  1501. }
  1502. }
  1503. #endif
  1504. }
  1505. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1506. assert(k % QK4_2 == 0);
  1507. const int nb = k / QK4_2;
  1508. const block_q4_2 * restrict x = vx;
  1509. for (int i = 0; i < nb; i++) {
  1510. const float d = GGML_FP16_TO_FP32(x[i].d);
  1511. const uint8_t * restrict pp = x[i].qs;
  1512. for (int l = 0; l < QK4_2; l += 2) {
  1513. const uint8_t vi = pp[l/2];
  1514. const int8_t vi0 = vi & 0x0F;
  1515. const int8_t vi1 = vi >> 4;
  1516. const float v0 = (vi0 - 8)*d;
  1517. const float v1 = (vi1 - 8)*d;
  1518. y[i*QK4_2 + l + 0] = v0;
  1519. y[i*QK4_2 + l + 1] = v1;
  1520. assert(!isnan(y[i*QK4_2 + l + 0]));
  1521. assert(!isnan(y[i*QK4_2 + l + 1]));
  1522. }
  1523. }
  1524. }
  1525. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1526. assert(k % QK4_3 == 0);
  1527. const int nb = k / QK4_3;
  1528. const block_q4_3 * restrict x = vx;
  1529. for (int i = 0; i < nb; i++) {
  1530. const float d = GGML_FP16_TO_FP32(x[i].d);
  1531. const float m = GGML_FP16_TO_FP32(x[i].m);
  1532. const uint8_t * restrict pp = x[i].qs;
  1533. for (int l = 0; l < QK4_3; l += 2) {
  1534. const uint8_t vi = pp[l/2];
  1535. const int8_t vi0 = vi & 0x0F;
  1536. const int8_t vi1 = vi >> 4;
  1537. const float v0 = vi0*d + m;
  1538. const float v1 = vi1*d + m;
  1539. y[i*QK4_3 + l + 0] = v0;
  1540. y[i*QK4_3 + l + 1] = v1;
  1541. assert(!isnan(y[i*QK4_3 + l + 0]));
  1542. assert(!isnan(y[i*QK4_3 + l + 1]));
  1543. }
  1544. }
  1545. }
  1546. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1547. assert(k % QK5_0 == 0);
  1548. const int nb = k / QK5_0;
  1549. const block_q5_0 * restrict x = vx;
  1550. for (int i = 0; i < nb; i++) {
  1551. const float d = GGML_FP16_TO_FP32(x[i].d);
  1552. const uint8_t * restrict pp = x[i].qs;
  1553. uint32_t qh;
  1554. memcpy(&qh, x[i].qh, sizeof(qh));
  1555. for (int l = 0; l < QK5_0; l += 2) {
  1556. const uint8_t vi = pp[l/2];
  1557. // extract the 5-th bit from qh
  1558. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1559. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1560. const int8_t vi0 = (vi & 0x0F) | vh0;
  1561. const int8_t vi1 = (vi >> 4) | vh1;
  1562. const float v0 = (vi0 - 16)*d;
  1563. const float v1 = (vi1 - 16)*d;
  1564. y[i*QK5_0 + l + 0] = v0;
  1565. y[i*QK5_0 + l + 1] = v1;
  1566. assert(!isnan(y[i*QK5_0 + l + 0]));
  1567. assert(!isnan(y[i*QK5_0 + l + 1]));
  1568. }
  1569. }
  1570. }
  1571. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1572. assert(k % QK5_1 == 0);
  1573. const int nb = k / QK5_1;
  1574. const block_q5_1 * restrict x = vx;
  1575. for (int i = 0; i < nb; i++) {
  1576. const float d = GGML_FP16_TO_FP32(x[i].d);
  1577. const float m = GGML_FP16_TO_FP32(x[i].m);
  1578. const uint8_t * restrict pp = x[i].qs;
  1579. uint32_t qh;
  1580. memcpy(&qh, x[i].qh, sizeof(qh));
  1581. for (int l = 0; l < QK5_1; l += 2) {
  1582. const uint8_t vi = pp[l/2];
  1583. // extract the 5-th bit from qh
  1584. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1585. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1586. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1587. const uint8_t vi1 = (vi >> 4) | vh1;
  1588. const float v0 = vi0*d + m;
  1589. const float v1 = vi1*d + m;
  1590. y[i*QK5_1 + l + 0] = v0;
  1591. y[i*QK5_1 + l + 1] = v1;
  1592. assert(!isnan(y[i*QK5_1 + l + 0]));
  1593. assert(!isnan(y[i*QK5_1 + l + 1]));
  1594. }
  1595. }
  1596. }
  1597. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1598. assert(k % QK8_0 == 0);
  1599. const int nb = k / QK8_0;
  1600. const block_q8_0 * restrict x = vx;
  1601. for (int i = 0; i < nb; i++) {
  1602. const float d = x[i].d;
  1603. const int8_t * restrict pp = x[i].qs;
  1604. for (int l = 0; l < QK8_0; ++l) {
  1605. y[i*QK8_0 + l] = pp[l]*d;
  1606. }
  1607. }
  1608. }
  1609. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1610. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1611. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1612. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1613. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1614. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1615. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1616. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1617. [GGML_TYPE_Q4_0] = {
  1618. .dequantize_row_q = dequantize_row_q4_0,
  1619. .quantize_row_q = quantize_row_q4_0,
  1620. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1621. .quantize_row_q_dot = quantize_row_q8_0,
  1622. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1623. .vec_dot_type = GGML_TYPE_Q8_0,
  1624. },
  1625. [GGML_TYPE_Q4_1] = {
  1626. .dequantize_row_q = dequantize_row_q4_1,
  1627. .quantize_row_q = quantize_row_q4_1,
  1628. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1629. .quantize_row_q_dot = quantize_row_q8_1,
  1630. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1631. .vec_dot_type = GGML_TYPE_Q8_1,
  1632. },
  1633. [GGML_TYPE_Q4_2] = {
  1634. .dequantize_row_q = dequantize_row_q4_2,
  1635. .quantize_row_q = quantize_row_q4_2,
  1636. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1637. .quantize_row_q_dot = quantize_row_q8_0,
  1638. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1639. .vec_dot_type = GGML_TYPE_Q8_0,
  1640. },
  1641. [GGML_TYPE_Q4_3] = {
  1642. .dequantize_row_q = dequantize_row_q4_3,
  1643. .quantize_row_q = quantize_row_q4_3,
  1644. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
  1645. .quantize_row_q_dot = quantize_row_q8_1,
  1646. .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
  1647. .vec_dot_type = GGML_TYPE_Q8_1,
  1648. },
  1649. [GGML_TYPE_Q5_0] = {
  1650. .dequantize_row_q = dequantize_row_q5_0,
  1651. .quantize_row_q = quantize_row_q5_0,
  1652. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1653. .quantize_row_q_dot = quantize_row_q8_0,
  1654. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1655. .vec_dot_type = GGML_TYPE_Q8_0,
  1656. },
  1657. [GGML_TYPE_Q5_1] = {
  1658. .dequantize_row_q = dequantize_row_q5_1,
  1659. .quantize_row_q = quantize_row_q5_1,
  1660. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1661. .quantize_row_q_dot = quantize_row_q8_1,
  1662. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1663. .vec_dot_type = GGML_TYPE_Q8_1,
  1664. },
  1665. [GGML_TYPE_Q8_0] = {
  1666. .dequantize_row_q = dequantize_row_q8_0,
  1667. .quantize_row_q = quantize_row_q8_0,
  1668. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1669. .quantize_row_q_dot = quantize_row_q8_0,
  1670. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1671. .vec_dot_type = GGML_TYPE_Q8_0,
  1672. },
  1673. [GGML_TYPE_Q8_1] = {
  1674. .dequantize_row_q = NULL, // TODO
  1675. .quantize_row_q = quantize_row_q8_1,
  1676. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1677. .quantize_row_q_dot = quantize_row_q8_1,
  1678. .vec_dot_q = NULL, // TODO
  1679. .vec_dot_type = GGML_TYPE_Q8_1,
  1680. },
  1681. };
  1682. // For internal test use
  1683. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1684. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1685. return quantize_fns[i];
  1686. }
  1687. //
  1688. // simd mappings
  1689. //
  1690. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1691. // we then implement the fundamental computation operations below using only these macros
  1692. // adding support for new architectures requires to define the corresponding SIMD macros
  1693. //
  1694. // GGML_F32_STEP / GGML_F16_STEP
  1695. // number of elements to process in a single step
  1696. //
  1697. // GGML_F32_EPR / GGML_F16_EPR
  1698. // number of elements to fit in a single register
  1699. //
  1700. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1701. #define GGML_SIMD
  1702. // F32 NEON
  1703. #define GGML_F32_STEP 16
  1704. #define GGML_F32_EPR 4
  1705. #define GGML_F32x4 float32x4_t
  1706. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1707. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1708. #define GGML_F32x4_LOAD vld1q_f32
  1709. #define GGML_F32x4_STORE vst1q_f32
  1710. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1711. #define GGML_F32x4_ADD vaddq_f32
  1712. #define GGML_F32x4_MUL vmulq_f32
  1713. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1714. #define GGML_F32x4_REDUCE(res, x) \
  1715. { \
  1716. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1717. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1718. } \
  1719. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1720. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1721. } \
  1722. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1723. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1724. } \
  1725. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1726. }
  1727. #define GGML_F32_VEC GGML_F32x4
  1728. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1729. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1730. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1731. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1732. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1733. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1734. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1735. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1736. // F16 NEON
  1737. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1738. #define GGML_F16_STEP 32
  1739. #define GGML_F16_EPR 8
  1740. #define GGML_F16x8 float16x8_t
  1741. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1742. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1743. #define GGML_F16x8_LOAD vld1q_f16
  1744. #define GGML_F16x8_STORE vst1q_f16
  1745. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1746. #define GGML_F16x8_ADD vaddq_f16
  1747. #define GGML_F16x8_MUL vmulq_f16
  1748. #define GGML_F16x8_REDUCE(res, x) \
  1749. { \
  1750. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1751. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1752. } \
  1753. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1754. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1755. } \
  1756. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1757. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1758. } \
  1759. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1760. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1761. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1762. }
  1763. #define GGML_F16_VEC GGML_F16x8
  1764. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1765. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1766. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1767. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1768. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1769. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1770. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1771. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1772. #else
  1773. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1774. // and take advantage of the vcvt_ functions to convert to/from FP16
  1775. #define GGML_F16_STEP 16
  1776. #define GGML_F16_EPR 4
  1777. #define GGML_F32Cx4 float32x4_t
  1778. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1779. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1780. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1781. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1782. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1783. #define GGML_F32Cx4_ADD vaddq_f32
  1784. #define GGML_F32Cx4_MUL vmulq_f32
  1785. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1786. #define GGML_F16_VEC GGML_F32Cx4
  1787. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1795. #endif
  1796. #elif defined(__AVX__)
  1797. #define GGML_SIMD
  1798. // F32 AVX
  1799. #define GGML_F32_STEP 32
  1800. #define GGML_F32_EPR 8
  1801. #define GGML_F32x8 __m256
  1802. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1803. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1804. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1805. #define GGML_F32x8_STORE _mm256_storeu_ps
  1806. #if defined(__FMA__)
  1807. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1808. #else
  1809. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1810. #endif
  1811. #define GGML_F32x8_ADD _mm256_add_ps
  1812. #define GGML_F32x8_MUL _mm256_mul_ps
  1813. #define GGML_F32x8_REDUCE(res, x) \
  1814. { \
  1815. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1816. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1817. } \
  1818. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1819. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1820. } \
  1821. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1822. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1823. } \
  1824. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1825. _mm256_extractf128_ps(x[0], 1)); \
  1826. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1827. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1828. }
  1829. // TODO: is this optimal ?
  1830. #define GGML_F32_VEC GGML_F32x8
  1831. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1832. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1833. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1834. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1835. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1836. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1837. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1838. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1839. // F16 AVX
  1840. #define GGML_F16_STEP 32
  1841. #define GGML_F16_EPR 8
  1842. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1843. #define GGML_F32Cx8 __m256
  1844. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1845. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1846. #if defined(__F16C__)
  1847. // the _mm256_cvt intrinsics require F16C
  1848. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1849. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1850. #else
  1851. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1852. float tmp[8];
  1853. for (int i = 0; i < 8; i++)
  1854. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1855. return _mm256_loadu_ps(tmp);
  1856. }
  1857. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1858. float arr[8];
  1859. _mm256_storeu_ps(arr, y);
  1860. for (int i = 0; i < 8; i++)
  1861. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1862. }
  1863. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1864. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1865. #endif
  1866. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1867. #define GGML_F32Cx8_ADD _mm256_add_ps
  1868. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1869. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1870. #define GGML_F16_VEC GGML_F32Cx8
  1871. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1872. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1873. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1874. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1875. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1876. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1877. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1878. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1879. #elif defined(__POWER9_VECTOR__)
  1880. #define GGML_SIMD
  1881. // F32 POWER9
  1882. #define GGML_F32_STEP 32
  1883. #define GGML_F32_EPR 4
  1884. #define GGML_F32x4 vector float
  1885. #define GGML_F32x4_ZERO 0.0f
  1886. #define GGML_F32x4_SET1 vec_splats
  1887. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1888. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1889. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1890. #define GGML_F32x4_ADD vec_add
  1891. #define GGML_F32x4_MUL vec_mul
  1892. #define GGML_F32x4_REDUCE(res, x) \
  1893. { \
  1894. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1895. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1896. } \
  1897. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1898. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1899. } \
  1900. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1901. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1902. } \
  1903. res = vec_extract(x[0], 0) + \
  1904. vec_extract(x[0], 1) + \
  1905. vec_extract(x[0], 2) + \
  1906. vec_extract(x[0], 3); \
  1907. }
  1908. #define GGML_F32_VEC GGML_F32x4
  1909. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1910. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1911. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1912. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1913. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1914. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1915. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1916. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1917. // F16 POWER9
  1918. #define GGML_F16_STEP GGML_F32_STEP
  1919. #define GGML_F16_EPR GGML_F32_EPR
  1920. #define GGML_F16_VEC GGML_F32x4
  1921. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1922. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1923. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1924. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1925. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1926. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1927. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1928. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1929. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1930. #define GGML_F16_VEC_STORE(p, r, i) \
  1931. if (i & 0x1) \
  1932. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1933. r[i - GGML_ENDIAN_BYTE(0)]), \
  1934. 0, p - GGML_F16_EPR)
  1935. #elif defined(__wasm_simd128__)
  1936. #define GGML_SIMD
  1937. // F32 WASM
  1938. #define GGML_F32_STEP 16
  1939. #define GGML_F32_EPR 4
  1940. #define GGML_F32x4 v128_t
  1941. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1942. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1943. #define GGML_F32x4_LOAD wasm_v128_load
  1944. #define GGML_F32x4_STORE wasm_v128_store
  1945. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1946. #define GGML_F32x4_ADD wasm_f32x4_add
  1947. #define GGML_F32x4_MUL wasm_f32x4_mul
  1948. #define GGML_F32x4_REDUCE(res, x) \
  1949. { \
  1950. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1951. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1952. } \
  1953. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1954. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1955. } \
  1956. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1957. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1958. } \
  1959. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1960. wasm_f32x4_extract_lane(x[0], 1) + \
  1961. wasm_f32x4_extract_lane(x[0], 2) + \
  1962. wasm_f32x4_extract_lane(x[0], 3); \
  1963. }
  1964. #define GGML_F32_VEC GGML_F32x4
  1965. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1966. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1967. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1968. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1969. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1970. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1971. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1972. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1973. // F16 WASM
  1974. #define GGML_F16_STEP 16
  1975. #define GGML_F16_EPR 4
  1976. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1977. float tmp[4];
  1978. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1979. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1980. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1981. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1982. return wasm_v128_load(tmp);
  1983. }
  1984. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1985. float tmp[4];
  1986. wasm_v128_store(tmp, x);
  1987. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1988. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1989. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1990. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1991. }
  1992. #define GGML_F16x4 v128_t
  1993. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1994. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1995. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1996. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1997. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1998. #define GGML_F16x4_ADD wasm_f32x4_add
  1999. #define GGML_F16x4_MUL wasm_f32x4_mul
  2000. #define GGML_F16x4_REDUCE(res, x) \
  2001. { \
  2002. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2003. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2004. } \
  2005. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2006. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2007. } \
  2008. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2009. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2010. } \
  2011. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2012. wasm_f32x4_extract_lane(x[0], 1) + \
  2013. wasm_f32x4_extract_lane(x[0], 2) + \
  2014. wasm_f32x4_extract_lane(x[0], 3); \
  2015. }
  2016. #define GGML_F16_VEC GGML_F16x4
  2017. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2018. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2019. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2020. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2021. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2022. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2023. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2024. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2025. #elif defined(__SSE3__)
  2026. #define GGML_SIMD
  2027. // F32 SSE
  2028. #define GGML_F32_STEP 32
  2029. #define GGML_F32_EPR 4
  2030. #define GGML_F32x4 __m128
  2031. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2032. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2033. #define GGML_F32x4_LOAD _mm_loadu_ps
  2034. #define GGML_F32x4_STORE _mm_storeu_ps
  2035. #if defined(__FMA__)
  2036. // TODO: Does this work?
  2037. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2038. #else
  2039. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2040. #endif
  2041. #define GGML_F32x4_ADD _mm_add_ps
  2042. #define GGML_F32x4_MUL _mm_mul_ps
  2043. #define GGML_F32x4_REDUCE(res, x) \
  2044. { \
  2045. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2046. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2047. } \
  2048. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2049. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2050. } \
  2051. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2052. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2053. } \
  2054. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2055. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2056. }
  2057. // TODO: is this optimal ?
  2058. #define GGML_F32_VEC GGML_F32x4
  2059. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2060. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2061. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2062. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2063. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2064. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2065. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2066. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2067. // F16 SSE
  2068. #define GGML_F16_STEP 32
  2069. #define GGML_F16_EPR 4
  2070. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2071. float tmp[4];
  2072. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2073. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2074. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2075. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2076. return _mm_loadu_ps(tmp);
  2077. }
  2078. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2079. float arr[4];
  2080. _mm_storeu_ps(arr, y);
  2081. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2082. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2083. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2084. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2085. }
  2086. #define GGML_F32Cx4 __m128
  2087. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2088. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2089. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2090. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2091. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2092. #define GGML_F32Cx4_ADD _mm_add_ps
  2093. #define GGML_F32Cx4_MUL _mm_mul_ps
  2094. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2095. #define GGML_F16_VEC GGML_F32Cx4
  2096. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2097. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2098. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2099. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2100. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2101. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2102. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2103. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2104. #endif
  2105. // GGML_F32_ARR / GGML_F16_ARR
  2106. // number of registers to use per step
  2107. #ifdef GGML_SIMD
  2108. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2109. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2110. #endif
  2111. //
  2112. // fundamental operations
  2113. //
  2114. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2115. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2116. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2117. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2118. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2119. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2120. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2121. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2122. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2123. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2124. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2125. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2126. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2127. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2128. #ifdef GGML_SIMD
  2129. float sumf = 0.0f;
  2130. const int np = (n & ~(GGML_F32_STEP - 1));
  2131. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2132. GGML_F32_VEC ax[GGML_F32_ARR];
  2133. GGML_F32_VEC ay[GGML_F32_ARR];
  2134. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2135. for (int j = 0; j < GGML_F32_ARR; j++) {
  2136. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2137. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2138. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2139. }
  2140. }
  2141. // reduce sum0..sum3 to sum0
  2142. GGML_F32_VEC_REDUCE(sumf, sum);
  2143. // leftovers
  2144. for (int i = np; i < n; ++i) {
  2145. sumf += x[i]*y[i];
  2146. }
  2147. #else
  2148. // scalar
  2149. ggml_float sumf = 0.0;
  2150. for (int i = 0; i < n; ++i) {
  2151. sumf += (ggml_float)(x[i]*y[i]);
  2152. }
  2153. #endif
  2154. *s = sumf;
  2155. }
  2156. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2157. ggml_float sumf = 0.0;
  2158. #if defined(GGML_SIMD)
  2159. const int np = (n & ~(GGML_F16_STEP - 1));
  2160. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2161. GGML_F16_VEC ax[GGML_F16_ARR];
  2162. GGML_F16_VEC ay[GGML_F16_ARR];
  2163. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2164. for (int j = 0; j < GGML_F16_ARR; j++) {
  2165. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2166. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2167. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2168. }
  2169. }
  2170. // reduce sum0..sum3 to sum0
  2171. GGML_F16_VEC_REDUCE(sumf, sum);
  2172. // leftovers
  2173. for (int i = np; i < n; ++i) {
  2174. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2175. }
  2176. #else
  2177. for (int i = 0; i < n; ++i) {
  2178. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2179. }
  2180. #endif
  2181. *s = sumf;
  2182. }
  2183. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2184. const int nb = n / QK8_0;
  2185. assert(n % QK8_0 == 0);
  2186. assert(nb % 2 == 0);
  2187. const block_q4_0 * restrict x = vx;
  2188. const block_q8_0 * restrict y = vy;
  2189. #if defined(__ARM_NEON)
  2190. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2191. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2192. for (int i = 0; i < nb; i += 2) {
  2193. const block_q4_0 * restrict x0 = &x[i + 0];
  2194. const block_q4_0 * restrict x1 = &x[i + 1];
  2195. const block_q8_0 * restrict y0 = &y[i + 0];
  2196. const block_q8_0 * restrict y1 = &y[i + 1];
  2197. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2198. const int8x16_t s8b = vdupq_n_s8(0x8);
  2199. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2200. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2201. // 4-bit -> 8-bit
  2202. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2203. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2204. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2205. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2206. // sub 8
  2207. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2208. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2209. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2210. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2211. // load y
  2212. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2213. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2214. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2215. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2216. // interleave
  2217. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2218. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2219. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2220. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2221. #if defined(__ARM_FEATURE_DOTPROD)
  2222. // dot product into int32x4_t
  2223. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2224. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2225. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2226. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2227. #else
  2228. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2229. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2230. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2231. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2232. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2233. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2234. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2235. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2236. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2237. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2238. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2239. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2240. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2241. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2242. #endif
  2243. }
  2244. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2245. #elif defined(__AVX2__)
  2246. // Initialize accumulator with zeros
  2247. __m256 acc = _mm256_setzero_ps();
  2248. // Main loop
  2249. for (int i = 0; i < nb; ++i) {
  2250. /* Compute combined scale for the block */
  2251. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2252. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2253. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2254. const __m256i off = _mm256_set1_epi8( 8 );
  2255. bx = _mm256_sub_epi8( bx, off );
  2256. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2257. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2258. /* Multiply q with scale and accumulate */
  2259. acc = _mm256_fmadd_ps( d, q, acc );
  2260. }
  2261. *s = hsum_float_8(acc);
  2262. #elif defined(__AVX__)
  2263. // Initialize accumulator with zeros
  2264. __m256 acc = _mm256_setzero_ps();
  2265. // Main loop
  2266. for (int i = 0; i < nb; ++i) {
  2267. // Compute combined scale for the block
  2268. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2269. __m128i i32[2];
  2270. for (int j = 0; j < 2; ++j) {
  2271. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2272. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2273. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2274. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2275. const __m128i off = _mm_set1_epi8( 8 );
  2276. bx = _mm_sub_epi8( bx, off );
  2277. // Get absolute values of x vectors
  2278. const __m128i ax = _mm_sign_epi8(bx, bx);
  2279. // Sign the values of the y vectors
  2280. const __m128i sy = _mm_sign_epi8(by, bx);
  2281. // Perform multiplication and create 16-bit values
  2282. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2283. const __m128i ones = _mm_set1_epi16(1);
  2284. i32[j] = _mm_madd_epi16(ones, dot);
  2285. }
  2286. // Convert int32_t to float
  2287. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2288. // Apply the scale, and accumulate
  2289. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2290. }
  2291. *s = hsum_float_8(acc);
  2292. #else
  2293. // scalar
  2294. float sumf = 0.0;
  2295. for (int i = 0; i < nb; i++) {
  2296. const float d0 = x[i].d;
  2297. const float d1 = y[i].d;
  2298. const uint8_t * restrict p0 = x[i].qs;
  2299. const int8_t * restrict p1 = y[i].qs;
  2300. int sumi = 0;
  2301. for (int j = 0; j < QK8_0/2; j++) {
  2302. const uint8_t v0 = p0[j];
  2303. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2304. const int i1 = (int8_t) (v0 >> 4) - 8;
  2305. const int i2 = p1[2*j + 0];
  2306. const int i3 = p1[2*j + 1];
  2307. sumi += i0*i2 + i1*i3;
  2308. }
  2309. sumf += d0*d1*sumi;
  2310. }
  2311. *s = sumf;
  2312. #endif
  2313. }
  2314. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2315. const int nb = n / QK8_1;
  2316. assert(n % QK8_1 == 0);
  2317. assert(nb % 2 == 0);
  2318. const block_q4_1 * restrict x = vx;
  2319. const block_q8_1 * restrict y = vy;
  2320. // TODO: add AVX / WASM SIMD / etc
  2321. #if defined(__ARM_NEON)
  2322. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2323. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2324. float summs = 0;
  2325. for (int i = 0; i < nb; i += 2) {
  2326. const block_q4_1 * restrict x0 = &x[i + 0];
  2327. const block_q4_1 * restrict x1 = &x[i + 1];
  2328. const block_q8_1 * restrict y0 = &y[i + 0];
  2329. const block_q8_1 * restrict y1 = &y[i + 1];
  2330. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2331. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2332. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2333. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2334. // 4-bit -> 8-bit
  2335. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2336. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2337. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2338. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2339. // interleave
  2340. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2341. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2342. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2343. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2344. // load y
  2345. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2346. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2347. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2348. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2349. #if defined(__ARM_FEATURE_DOTPROD)
  2350. // dot product into int32x4_t
  2351. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2352. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2353. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2354. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2355. #else
  2356. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2357. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2358. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2359. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2360. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2361. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2362. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2363. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2364. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2365. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2366. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2367. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2368. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2369. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2370. #endif
  2371. }
  2372. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2373. #elif defined(__AVX2__)
  2374. // Initialize accumulator with zeros
  2375. __m256 acc = _mm256_setzero_ps();
  2376. float summs = 0;
  2377. // Main loop
  2378. for (int i = 0; i < nb; ++i) {
  2379. const float * d0 = &x[i].d;
  2380. const float * d1 = &y[i].d;
  2381. summs += x[i].m * (y[i].s0 + y[i].s1);
  2382. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2383. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2384. // Compute combined scales
  2385. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2386. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2387. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2388. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2389. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2390. // Accumulate d0*d1*x*y
  2391. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2392. }
  2393. *s = hsum_float_8(acc) + summs;
  2394. #else
  2395. // scalar
  2396. float sumf = 0.0;
  2397. for (int i = 0; i < nb; i++) {
  2398. const float d0 = x[i].d;
  2399. const float m0 = x[i].m;
  2400. const float d1 = y[i].d;
  2401. const uint8_t * restrict p0 = x[i].qs;
  2402. const int8_t * restrict p1 = y[i].qs;
  2403. // TODO: this is very slow ..
  2404. for (int j = 0; j < QK8_1/2; j++) {
  2405. const uint8_t v0 = p0[j];
  2406. const float f0 = d0*(v0 & 0x0F) + m0;
  2407. const float f1 = d0*(v0 >> 4) + m0;
  2408. const float f2 = d1*p1[2*j + 0];
  2409. const float f3 = d1*p1[2*j + 1];
  2410. sumf += f0*f2 + f1*f3;
  2411. }
  2412. }
  2413. *s = sumf;
  2414. #endif
  2415. }
  2416. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2417. const int nb = n / QK8_0;
  2418. assert(n % QK8_0 == 0);
  2419. assert(nb % 2 == 0);
  2420. assert(QK8_0 == 2*QK4_2);
  2421. const block_q4_2 * restrict x = vx;
  2422. const block_q8_0 * restrict y = vy;
  2423. #if defined(__ARM_NEON)
  2424. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2425. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2426. for (int i = 0; i < nb; i += 2) {
  2427. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2428. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2429. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2430. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2431. const block_q8_0 * restrict y0 = &y[i + 0];
  2432. const block_q8_0 * restrict y1 = &y[i + 1];
  2433. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2434. const int8x16_t s8b = vdupq_n_s8(0x8);
  2435. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2436. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2437. // 4-bit -> 8-bit
  2438. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2439. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2440. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2441. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2442. // sub 8
  2443. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2444. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2445. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2446. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2447. // interleave
  2448. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2449. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2450. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2451. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2452. // load y
  2453. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2454. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2455. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2456. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2457. #if defined(__ARM_FEATURE_DOTPROD)
  2458. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2459. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2460. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2461. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2462. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2463. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2464. #else
  2465. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2466. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2467. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2468. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2469. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2470. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2471. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2472. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2473. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2474. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2475. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2476. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2477. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2478. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2479. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2480. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2481. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2482. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2483. #endif
  2484. }
  2485. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2486. #elif defined(__AVX2__)
  2487. // Initialize accumulator with zeros
  2488. __m256 acc = _mm256_setzero_ps();
  2489. // Main loop
  2490. for (int i = 0; i < nb; i++) {
  2491. /* Compute combined scale for the block */
  2492. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2493. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2494. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2495. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2496. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2497. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2498. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2499. const __m256i off = _mm256_set1_epi8(8);
  2500. bx = _mm256_sub_epi8(bx, off);
  2501. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2502. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2503. /* Multiply q with scale and accumulate */
  2504. acc = _mm256_fmadd_ps(d, q, acc);
  2505. }
  2506. *s = hsum_float_8(acc);
  2507. #else
  2508. // scalar
  2509. float sumf = 0.0;
  2510. for (int i = 0; i < nb; i++) {
  2511. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2512. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2513. const int8_t * restrict y0 = y[i].qs;
  2514. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2515. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2516. int sumi_0 = 0;
  2517. int sumi_1 = 0;
  2518. for (int j = 0; j < QK8_0/4; j++) {
  2519. const uint8_t v0 = x0[j];
  2520. const uint8_t v1 = x1[j];
  2521. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2522. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2523. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2524. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2525. const int i2_0 = y0[2*j + 0];
  2526. const int i3_0 = y0[2*j + 1];
  2527. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2528. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2529. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2530. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2531. }
  2532. sumf += (d0 * y[i].d) * sumi_0;
  2533. sumf += (d1 * y[i].d) * sumi_1;
  2534. }
  2535. *s = sumf;
  2536. #endif
  2537. }
  2538. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2539. const int nb = n / QK8_1;
  2540. assert(n % QK8_1 == 0);
  2541. assert(nb % 2 == 0);
  2542. assert(QK8_1 == 2*QK4_3);
  2543. const block_q4_3 * restrict x = vx;
  2544. const block_q8_1 * restrict y = vy;
  2545. #if defined(__ARM_NEON)
  2546. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2547. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2548. float summs0 = 0.0f;
  2549. float summs1 = 0.0f;
  2550. for (int i = 0; i < nb; ++i) {
  2551. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2552. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2553. const block_q8_1 * restrict y0 = &y[i + 0];
  2554. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2555. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2556. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2557. // 4-bit -> 8-bit
  2558. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
  2559. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2560. // interleave
  2561. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2562. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2563. // load y
  2564. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2565. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2566. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2567. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2568. #if defined(__ARM_FEATURE_DOTPROD)
  2569. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2570. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2571. #else
  2572. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2573. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2574. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2575. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2576. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2577. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2578. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2579. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2580. #endif
  2581. }
  2582. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2583. #elif defined(__AVX2__)
  2584. // Initialize accumulator with zeros
  2585. __m256 acc = _mm256_setzero_ps();
  2586. float summs = 0.0f;
  2587. // Main loop
  2588. for (int i = 0; i < nb; i++) {
  2589. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2590. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2591. const __m256 dx = _mm256_set_m128(d1, d0);
  2592. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2593. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2594. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2595. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2596. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2597. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2598. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2599. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2600. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2601. }
  2602. *s = hsum_float_8(acc) + summs;
  2603. #else
  2604. // scalar
  2605. float sumf = 0.0;
  2606. for (int i = 0; i < nb; i++) {
  2607. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2608. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2609. const int8_t * restrict y0 = y[i].qs;
  2610. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2611. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2612. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2613. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2614. int sxy_0 = 0;
  2615. int sxy_1 = 0;
  2616. for (int j = 0; j < QK8_1/4; j++) {
  2617. const uint8_t v0 = x0[j];
  2618. const uint8_t v1 = x1[j];
  2619. const int x0_0 = v0 & 0x0F;
  2620. const int x1_0 = v0 >> 4;
  2621. const int x0_1 = v1 & 0x0F;
  2622. const int x1_1 = v1 >> 4;
  2623. const int y0_0 = y0[2*j + 0];
  2624. const int y1_0 = y0[2*j + 1];
  2625. const int y0_1 = y0[2*(j + QK8_1/4) + 0];
  2626. const int y1_1 = y0[2*(j + QK8_1/4) + 1];
  2627. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2628. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2629. }
  2630. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2631. }
  2632. *s = sumf;
  2633. #endif
  2634. }
  2635. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2636. const int nb = n / QK8_0;
  2637. assert(n % QK8_0 == 0);
  2638. assert(nb % 2 == 0);
  2639. assert(QK8_0 == QK5_0);
  2640. const block_q5_0 * restrict x = vx;
  2641. const block_q8_0 * restrict y = vy;
  2642. #if defined(__ARM_NEON)
  2643. float32x4_t sumv = vdupq_n_f32(0.0f);
  2644. uint64_t tmp[4];
  2645. for (int i = 0; i < nb; ++i) {
  2646. const block_q5_0 * restrict x0 = &x[i];
  2647. const block_q8_0 * restrict y0 = &y[i];
  2648. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2649. const int8x16_t s16b = vdupq_n_s8(0x10);
  2650. // extract the 5th bit
  2651. uint32_t qh;
  2652. memcpy(&qh, x0->qh, sizeof(qh));
  2653. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2654. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2655. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2656. tmp[3] = table_b2b_u[(qh >> 24) ];
  2657. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2658. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2659. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2660. // 4-bit -> 8-bit
  2661. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2662. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2663. // interleave
  2664. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2665. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2666. // add high bit and sub 16
  2667. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2668. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2669. // load y
  2670. const int8x16_t v1l = vld1q_s8(y0->qs);
  2671. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2672. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2673. #if defined(__ARM_FEATURE_DOTPROD)
  2674. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2675. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2676. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2677. #else
  2678. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2679. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2680. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2681. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2682. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2683. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2684. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2685. #endif
  2686. }
  2687. *s = vaddvq_f32(sumv);
  2688. #elif defined(__AVX2__)
  2689. // Initialize accumulator with zeros
  2690. __m256 acc = _mm256_setzero_ps();
  2691. // Main loop
  2692. for (int i = 0; i < nb; i++) {
  2693. /* Compute combined scale for the block */
  2694. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2695. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2696. const __m256i bxhi = _mm256_set_epi64x(
  2697. table_b2b_i[x[i].qh[3]], table_b2b_i[x[i].qh[2]],
  2698. table_b2b_i[x[i].qh[1]], table_b2b_i[x[i].qh[0]]);
  2699. bx = _mm256_or_si256(bx, bxhi);
  2700. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2701. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2702. /* Multiply q with scale and accumulate */
  2703. acc = _mm256_fmadd_ps(d, q, acc);
  2704. }
  2705. *s = hsum_float_8(acc);
  2706. #else
  2707. // scalar
  2708. float sumf = 0.0;
  2709. for (int i = 0; i < nb; i++) {
  2710. const uint8_t * restrict x0 = x[i].qs;
  2711. const int8_t * restrict y0 = y[i].qs;
  2712. uint32_t qh;
  2713. memcpy(&qh, x[i].qh, sizeof(qh));
  2714. const float d = GGML_FP16_TO_FP32(x[i].d);
  2715. int sxy = 0;
  2716. for (int j = 0; j < QK8_0/2; j++) {
  2717. const uint8_t v0 = x0[j];
  2718. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2719. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2720. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2721. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2722. const int y0_0 = y0[2*j + 0];
  2723. const int y1_0 = y0[2*j + 1];
  2724. sxy += x0_0*y0_0 + x1_0*y1_0;
  2725. }
  2726. sumf += (d*sxy)*y[i].d;
  2727. }
  2728. *s = sumf;
  2729. #endif
  2730. }
  2731. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2732. const int nb = n / QK8_1;
  2733. assert(n % QK8_1 == 0);
  2734. assert(nb % 2 == 0);
  2735. assert(QK8_1 == QK5_1);
  2736. const block_q5_1 * restrict x = vx;
  2737. const block_q8_1 * restrict y = vy;
  2738. #if defined(__ARM_NEON)
  2739. float32x4_t sumv = vdupq_n_f32(0.0f);
  2740. float summs = 0.0f;
  2741. uint64_t tmp[4];
  2742. for (int i = 0; i < nb; ++i) {
  2743. const block_q5_1 * restrict x0 = &x[i];
  2744. const block_q8_1 * restrict y0 = &y[i];
  2745. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2746. // extract the 5th bit
  2747. uint32_t qh;
  2748. memcpy(&qh, x0->qh, sizeof(qh));
  2749. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2750. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2751. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2752. tmp[3] = table_b2b_u[(qh >> 24) ];
  2753. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2754. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2755. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2756. // 4-bit -> 8-bit
  2757. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2758. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2759. // interleave
  2760. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2761. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2762. // add
  2763. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2764. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2765. // load y
  2766. const int8x16_t v1l = vld1q_s8(y0->qs);
  2767. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2768. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2769. #if defined(__ARM_FEATURE_DOTPROD)
  2770. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2771. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2772. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2773. #else
  2774. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2775. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2776. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2777. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2778. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2779. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2780. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2781. #endif
  2782. }
  2783. *s = vaddvq_f32(sumv) + summs;
  2784. #elif defined(__AVX2__)
  2785. // Initialize accumulator with zeros
  2786. __m256 acc = _mm256_setzero_ps();
  2787. float summs = 0.0f;
  2788. // Main loop
  2789. for (int i = 0; i < nb; i++) {
  2790. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2791. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2792. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2793. const __m256i bxhi = _mm256_set_epi64x(
  2794. table_b2b_u[x[i].qh[3]], table_b2b_u[x[i].qh[2]],
  2795. table_b2b_u[x[i].qh[1]], table_b2b_u[x[i].qh[0]]);
  2796. bx = _mm256_or_si256(bx, bxhi);
  2797. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2798. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2799. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2800. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2801. }
  2802. *s = hsum_float_8(acc) + summs;
  2803. #else
  2804. float sumf = 0.0;
  2805. for (int i = 0; i < nb; i++) {
  2806. const uint8_t * restrict x0 = x[i].qs;
  2807. const int8_t * restrict y0 = y[i].qs;
  2808. uint32_t qh;
  2809. memcpy(&qh, x[i].qh, sizeof(qh));
  2810. const float d = GGML_FP16_TO_FP32(x[i].d);
  2811. const float m = GGML_FP16_TO_FP32(x[i].m);
  2812. int sxy = 0;
  2813. for (int j = 0; j < QK8_1/2; j++) {
  2814. const uint8_t v0 = x0[j];
  2815. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2816. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2817. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2818. const int x1_0 = (v0 >> 4) | x1_0h;
  2819. const int y0_0 = y0[2*j + 0];
  2820. const int y1_0 = y0[2*j + 1];
  2821. sxy += x0_0*y0_0 + x1_0*y1_0;
  2822. }
  2823. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2824. }
  2825. *s = sumf;
  2826. #endif
  2827. }
  2828. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2829. const int nb = n / QK8_0;
  2830. assert(n % QK8_0 == 0);
  2831. assert(nb % 2 == 0);
  2832. assert(QK8_0 == QK8_0);
  2833. const block_q8_0 * restrict x = vx;
  2834. const block_q8_0 * restrict y = vy;
  2835. #if defined(__ARM_NEON)
  2836. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2837. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2838. for (int i = 0; i < nb; i += 2) {
  2839. const block_q8_0 * restrict x0 = &x[i + 0];
  2840. const block_q8_0 * restrict x1 = &x[i + 1];
  2841. const block_q8_0 * restrict y0 = &y[i + 0];
  2842. const block_q8_0 * restrict y1 = &y[i + 1];
  2843. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2844. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2845. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2846. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2847. // load y
  2848. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2849. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2850. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2851. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2852. #if defined(__ARM_FEATURE_DOTPROD)
  2853. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2854. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2855. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2856. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2857. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2858. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2859. #else
  2860. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2861. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2862. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2863. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2864. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2865. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2866. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2867. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2868. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2869. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2870. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2871. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2872. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2873. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2874. #endif
  2875. }
  2876. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2877. #else
  2878. // scalar
  2879. float sumf = 0.0;
  2880. for (int i = 0; i < nb; i++) {
  2881. const int8_t * restrict x0 = x[i].qs;
  2882. const int8_t * restrict y0 = y[i].qs;
  2883. int sumi = 0;
  2884. for (int j = 0; j < QK8_0; j++) {
  2885. const int v0 = x0[j];
  2886. const int v1 = y0[j];
  2887. sumi += v0*v1;
  2888. }
  2889. sumf += (x[i].d*y[i].d)*sumi;
  2890. }
  2891. *s = sumf;
  2892. #endif
  2893. }
  2894. // compute GGML_VEC_DOT_UNROLL dot products at once
  2895. // xs - x row stride in bytes
  2896. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2897. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2898. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2899. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2900. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2901. }
  2902. #if defined(GGML_SIMD)
  2903. const int np = (n & ~(GGML_F16_STEP - 1));
  2904. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2905. GGML_F16_VEC ax[GGML_F16_ARR];
  2906. GGML_F16_VEC ay[GGML_F16_ARR];
  2907. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2908. for (int j = 0; j < GGML_F16_ARR; j++) {
  2909. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2910. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2911. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2912. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2913. }
  2914. }
  2915. }
  2916. // reduce sum0..sum3 to sum0
  2917. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2918. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2919. }
  2920. // leftovers
  2921. for (int i = np; i < n; ++i) {
  2922. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2923. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2924. }
  2925. }
  2926. #else
  2927. for (int i = 0; i < n; ++i) {
  2928. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2929. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2930. }
  2931. }
  2932. #endif
  2933. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2934. s[i] = sumf[i];
  2935. }
  2936. }
  2937. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2938. #if defined(GGML_SIMD)
  2939. const int np = (n & ~(GGML_F32_STEP - 1));
  2940. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2941. GGML_F32_VEC ax[GGML_F32_ARR];
  2942. GGML_F32_VEC ay[GGML_F32_ARR];
  2943. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2944. for (int j = 0; j < GGML_F32_ARR; j++) {
  2945. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2946. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2947. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2948. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2949. }
  2950. }
  2951. // leftovers
  2952. for (int i = np; i < n; ++i) {
  2953. y[i] += x[i]*v;
  2954. }
  2955. #else
  2956. // scalar
  2957. for (int i = 0; i < n; ++i) {
  2958. y[i] += x[i]*v;
  2959. }
  2960. #endif
  2961. }
  2962. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2963. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2964. #if defined(GGML_SIMD)
  2965. const int np = (n & ~(GGML_F32_STEP - 1));
  2966. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2967. GGML_F32_VEC ay[GGML_F32_ARR];
  2968. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2969. for (int j = 0; j < GGML_F32_ARR; j++) {
  2970. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2971. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2972. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2973. }
  2974. }
  2975. // leftovers
  2976. for (int i = np; i < n; ++i) {
  2977. y[i] *= v;
  2978. }
  2979. #else
  2980. // scalar
  2981. for (int i = 0; i < n; ++i) {
  2982. y[i] *= v;
  2983. }
  2984. #endif
  2985. }
  2986. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2987. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2988. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2989. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2990. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2991. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2992. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2993. static const float GELU_COEF_A = 0.044715f;
  2994. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2995. inline static float ggml_gelu_f32(float x) {
  2996. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2997. }
  2998. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2999. const uint16_t * i16 = (const uint16_t *) x;
  3000. for (int i = 0; i < n; ++i) {
  3001. y[i] = table_gelu_f16[i16[i]];
  3002. }
  3003. }
  3004. #ifdef GGML_GELU_FP16
  3005. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3006. uint16_t t;
  3007. for (int i = 0; i < n; ++i) {
  3008. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3009. memcpy(&t, &fp16, sizeof(uint16_t));
  3010. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3011. }
  3012. }
  3013. #else
  3014. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3015. for (int i = 0; i < n; ++i) {
  3016. y[i] = ggml_gelu_f32(x[i]);
  3017. }
  3018. }
  3019. #endif
  3020. // Sigmoid Linear Unit (SiLU) function
  3021. inline static float ggml_silu_f32(float x) {
  3022. return x/(1.0f + expf(-x));
  3023. }
  3024. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3025. const uint16_t * i16 = (const uint16_t *) x;
  3026. for (int i = 0; i < n; ++i) {
  3027. y[i] = table_silu_f16[i16[i]];
  3028. }
  3029. }
  3030. #ifdef GGML_SILU_FP16
  3031. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3032. uint16_t t;
  3033. for (int i = 0; i < n; ++i) {
  3034. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3035. memcpy(&t, &fp16, sizeof(uint16_t));
  3036. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3037. }
  3038. }
  3039. #else
  3040. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3041. for (int i = 0; i < n; ++i) {
  3042. y[i] = ggml_silu_f32(x[i]);
  3043. }
  3044. }
  3045. #endif
  3046. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3047. #ifndef GGML_USE_ACCELERATE
  3048. ggml_float sum = 0.0;
  3049. for (int i = 0; i < n; ++i) {
  3050. sum += (ggml_float)x[i];
  3051. }
  3052. *s = sum;
  3053. #else
  3054. vDSP_sve(x, 1, s, n);
  3055. #endif
  3056. }
  3057. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3058. ggml_float sum = 0.0;
  3059. for (int i = 0; i < n; ++i) {
  3060. sum += (ggml_float)x[i];
  3061. }
  3062. *s = sum;
  3063. }
  3064. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3065. #ifndef GGML_USE_ACCELERATE
  3066. float max = -INFINITY;
  3067. for (int i = 0; i < n; ++i) {
  3068. max = MAX(max, x[i]);
  3069. }
  3070. *s = max;
  3071. #else
  3072. vDSP_maxv(x, 1, s, n);
  3073. #endif
  3074. }
  3075. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3076. ggml_vec_norm_f32(n, s, x);
  3077. *s = 1.f/(*s);
  3078. }
  3079. //
  3080. // logging
  3081. //
  3082. #if (GGML_DEBUG >= 1)
  3083. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3084. #else
  3085. #define GGML_PRINT_DEBUG(...)
  3086. #endif
  3087. #if (GGML_DEBUG >= 5)
  3088. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3089. #else
  3090. #define GGML_PRINT_DEBUG_5(...)
  3091. #endif
  3092. #if (GGML_DEBUG >= 10)
  3093. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3094. #else
  3095. #define GGML_PRINT_DEBUG_10(...)
  3096. #endif
  3097. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3098. //
  3099. // data types
  3100. //
  3101. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3102. [GGML_TYPE_F32] = 1,
  3103. [GGML_TYPE_F16] = 1,
  3104. [GGML_TYPE_Q4_0] = QK4_0,
  3105. [GGML_TYPE_Q4_1] = QK4_1,
  3106. [GGML_TYPE_Q4_2] = QK4_2,
  3107. [GGML_TYPE_Q4_3] = QK4_3,
  3108. [GGML_TYPE_Q5_0] = QK5_0,
  3109. [GGML_TYPE_Q5_1] = QK5_1,
  3110. [GGML_TYPE_Q8_0] = QK8_0,
  3111. [GGML_TYPE_Q8_1] = QK8_1,
  3112. [GGML_TYPE_I8] = 1,
  3113. [GGML_TYPE_I16] = 1,
  3114. [GGML_TYPE_I32] = 1,
  3115. };
  3116. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3117. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3118. [GGML_TYPE_F32] = sizeof(float),
  3119. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3120. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3121. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3122. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3123. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  3124. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3125. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3126. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3127. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3128. [GGML_TYPE_I8] = sizeof(int8_t),
  3129. [GGML_TYPE_I16] = sizeof(int16_t),
  3130. [GGML_TYPE_I32] = sizeof(int32_t),
  3131. };
  3132. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3133. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3134. [GGML_TYPE_F32] = "f32",
  3135. [GGML_TYPE_F16] = "f16",
  3136. [GGML_TYPE_Q4_0] = "q4_0",
  3137. [GGML_TYPE_Q4_1] = "q4_1",
  3138. [GGML_TYPE_Q4_2] = "q4_2",
  3139. [GGML_TYPE_Q4_3] = "q4_3",
  3140. [GGML_TYPE_Q5_0] = "q5_0",
  3141. [GGML_TYPE_Q5_1] = "q5_1",
  3142. [GGML_TYPE_Q8_0] = "q8_0",
  3143. [GGML_TYPE_Q8_1] = "q8_1",
  3144. [GGML_TYPE_I8] = "i8",
  3145. [GGML_TYPE_I16] = "i16",
  3146. [GGML_TYPE_I32] = "i32",
  3147. };
  3148. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3149. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3150. [GGML_TYPE_F32] = false,
  3151. [GGML_TYPE_F16] = false,
  3152. [GGML_TYPE_Q4_0] = true,
  3153. [GGML_TYPE_Q4_1] = true,
  3154. [GGML_TYPE_Q4_2] = true,
  3155. [GGML_TYPE_Q4_3] = true,
  3156. [GGML_TYPE_Q5_0] = true,
  3157. [GGML_TYPE_Q5_1] = true,
  3158. [GGML_TYPE_Q8_0] = true,
  3159. [GGML_TYPE_Q8_1] = true,
  3160. [GGML_TYPE_I8] = false,
  3161. [GGML_TYPE_I16] = false,
  3162. [GGML_TYPE_I32] = false,
  3163. };
  3164. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3165. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3166. "NONE",
  3167. "DUP",
  3168. "ADD",
  3169. "SUB",
  3170. "MUL",
  3171. "DIV",
  3172. "SQR",
  3173. "SQRT",
  3174. "SUM",
  3175. "MEAN",
  3176. "REPEAT",
  3177. "ABS",
  3178. "SGN",
  3179. "NEG",
  3180. "STEP",
  3181. "RELU",
  3182. "GELU",
  3183. "SILU",
  3184. "NORM",
  3185. "RMS_NORM",
  3186. "MUL_MAT",
  3187. "SCALE",
  3188. "CPY",
  3189. "CONT",
  3190. "RESHAPE",
  3191. "VIEW",
  3192. "PERMUTE",
  3193. "TRANSPOSE",
  3194. "GET_ROWS",
  3195. "DIAG_MASK_INF",
  3196. "SOFT_MAX",
  3197. "ROPE",
  3198. "CONV_1D_1S",
  3199. "CONV_1D_2S",
  3200. "FLASH_ATTN",
  3201. "FLASH_FF",
  3202. "MAP_UNARY",
  3203. "MAP_BINARY",
  3204. };
  3205. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3206. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3207. "none",
  3208. "x",
  3209. "x+y",
  3210. "x-y",
  3211. "x*y",
  3212. "x/y",
  3213. "x^2",
  3214. "√x",
  3215. "Σx",
  3216. "Σx/n",
  3217. "repeat(x)",
  3218. "abs(x)",
  3219. "sgn(x)",
  3220. "-x",
  3221. "step(x)",
  3222. "relu(x)",
  3223. "gelu(x)",
  3224. "silu(x)",
  3225. "norm(x)",
  3226. "rms_norm(x)",
  3227. "X*Y",
  3228. "x*v",
  3229. "x-\\>y",
  3230. "cont(x)",
  3231. "reshape(x)",
  3232. "view(x)",
  3233. "permute(x)",
  3234. "transpose(x)",
  3235. "get_rows(x)",
  3236. "diag_mask_inf(x)",
  3237. "soft_max(x)",
  3238. "rope(x)",
  3239. "conv_1d_1s(x)",
  3240. "conv_1d_2s(x)",
  3241. "flash_attn(x)",
  3242. "flash_ff(x)",
  3243. "f(x)",
  3244. "f(x,y)",
  3245. };
  3246. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3247. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3248. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3249. //
  3250. // ggml context
  3251. //
  3252. struct ggml_context {
  3253. size_t mem_size;
  3254. void * mem_buffer;
  3255. bool mem_buffer_owned;
  3256. bool no_alloc;
  3257. int n_objects;
  3258. struct ggml_object * objects_begin;
  3259. struct ggml_object * objects_end;
  3260. struct ggml_scratch scratch;
  3261. struct ggml_scratch scratch_save;
  3262. };
  3263. struct ggml_context_container {
  3264. bool used;
  3265. struct ggml_context context;
  3266. };
  3267. //
  3268. // compute types
  3269. //
  3270. enum ggml_task_type {
  3271. GGML_TASK_INIT = 0,
  3272. GGML_TASK_COMPUTE,
  3273. GGML_TASK_FINALIZE,
  3274. };
  3275. struct ggml_compute_params {
  3276. enum ggml_task_type type;
  3277. int ith, nth;
  3278. // work buffer for all threads
  3279. size_t wsize;
  3280. void * wdata;
  3281. };
  3282. //
  3283. // ggml state
  3284. //
  3285. struct ggml_state {
  3286. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3287. };
  3288. // global state
  3289. static struct ggml_state g_state;
  3290. static atomic_int g_state_barrier = 0;
  3291. // barrier via spin lock
  3292. inline static void ggml_critical_section_start(void) {
  3293. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3294. while (processing > 0) {
  3295. // wait for other threads to finish
  3296. atomic_fetch_sub(&g_state_barrier, 1);
  3297. sched_yield(); // TODO: reconsider this
  3298. processing = atomic_fetch_add(&g_state_barrier, 1);
  3299. }
  3300. }
  3301. // TODO: make this somehow automatically executed
  3302. // some sort of "sentry" mechanism
  3303. inline static void ggml_critical_section_end(void) {
  3304. atomic_fetch_sub(&g_state_barrier, 1);
  3305. }
  3306. ////////////////////////////////////////////////////////////////////////////////
  3307. void ggml_print_object(const struct ggml_object * obj) {
  3308. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3309. obj->offs, obj->size, (const void *) obj->next);
  3310. }
  3311. void ggml_print_objects(const struct ggml_context * ctx) {
  3312. struct ggml_object * obj = ctx->objects_begin;
  3313. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3314. while (obj != NULL) {
  3315. ggml_print_object(obj);
  3316. obj = obj->next;
  3317. }
  3318. GGML_PRINT("%s: --- end ---\n", __func__);
  3319. }
  3320. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3321. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3322. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3323. }
  3324. int ggml_nrows(const struct ggml_tensor * tensor) {
  3325. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3326. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3327. }
  3328. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3329. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3330. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3331. }
  3332. int ggml_blck_size(enum ggml_type type) {
  3333. return GGML_BLCK_SIZE[type];
  3334. }
  3335. size_t ggml_type_size(enum ggml_type type) {
  3336. return GGML_TYPE_SIZE[type];
  3337. }
  3338. float ggml_type_sizef(enum ggml_type type) {
  3339. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3340. }
  3341. const char * ggml_type_name(enum ggml_type type) {
  3342. return GGML_TYPE_NAME[type];
  3343. }
  3344. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3345. return GGML_TYPE_SIZE[tensor->type];
  3346. }
  3347. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3348. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3349. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3350. }
  3351. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3352. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3353. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3354. }
  3355. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3358. }
  3359. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. return
  3362. (t0->ne[0] == t1->ne[0]) &&
  3363. (t0->ne[2] == t1->ne[2]) &&
  3364. (t0->ne[3] == t1->ne[3]);
  3365. }
  3366. bool ggml_is_quantized(enum ggml_type type) {
  3367. return GGML_IS_QUANTIZED[type];
  3368. }
  3369. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3370. return tensor->nb[0] > tensor->nb[1];
  3371. }
  3372. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3373. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3374. return
  3375. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3376. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3377. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3378. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3379. }
  3380. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3381. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3382. return
  3383. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3384. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3385. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3386. }
  3387. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3388. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3389. return
  3390. (t0->ne[0] == t1->ne[0] ) &&
  3391. (t0->ne[1] == t1->ne[1] ) &&
  3392. (t0->ne[2] == t1->ne[2] ) &&
  3393. (t0->ne[3] == t1->ne[3] );
  3394. }
  3395. // check if t1 can be represented as a repeatition of t0
  3396. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3397. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3398. return
  3399. (t1->ne[0]%t0->ne[0] == 0) &&
  3400. (t1->ne[1]%t0->ne[1] == 0) &&
  3401. (t1->ne[2]%t0->ne[2] == 0) &&
  3402. (t1->ne[3]%t0->ne[3] == 0);
  3403. }
  3404. static inline int ggml_up32(int n) {
  3405. return (n + 31) & ~31;
  3406. }
  3407. static inline int ggml_up64(int n) {
  3408. return (n + 63) & ~63;
  3409. }
  3410. static inline int ggml_up(int n, int m) {
  3411. // assert m is a power of 2
  3412. GGML_ASSERT((m & (m - 1)) == 0);
  3413. return (n + m - 1) & ~(m - 1);
  3414. }
  3415. // assert that pointer is aligned to GGML_MEM_ALIGN
  3416. #define ggml_assert_aligned(ptr) \
  3417. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3418. ////////////////////////////////////////////////////////////////////////////////
  3419. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3420. // make this function thread safe
  3421. ggml_critical_section_start();
  3422. static bool is_first_call = true;
  3423. if (is_first_call) {
  3424. // initialize time system (required on Windows)
  3425. ggml_time_init();
  3426. // initialize GELU, SILU and EXP F32 tables
  3427. {
  3428. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3429. ggml_fp16_t ii;
  3430. for (int i = 0; i < (1 << 16); ++i) {
  3431. uint16_t ui = i;
  3432. memcpy(&ii, &ui, sizeof(ii));
  3433. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3434. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3435. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3436. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3437. }
  3438. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3439. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3440. }
  3441. // initialize g_state
  3442. {
  3443. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3444. g_state = (struct ggml_state) {
  3445. /*.contexts =*/ { { 0 } },
  3446. };
  3447. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3448. g_state.contexts[i].used = false;
  3449. }
  3450. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3451. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3452. }
  3453. // initialize cuBLAS
  3454. #if defined(GGML_USE_CUBLAS)
  3455. ggml_init_cublas();
  3456. #endif
  3457. is_first_call = false;
  3458. }
  3459. // find non-used context in g_state
  3460. struct ggml_context * ctx = NULL;
  3461. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3462. if (!g_state.contexts[i].used) {
  3463. g_state.contexts[i].used = true;
  3464. ctx = &g_state.contexts[i].context;
  3465. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3466. break;
  3467. }
  3468. }
  3469. if (ctx == NULL) {
  3470. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3471. ggml_critical_section_end();
  3472. return NULL;
  3473. }
  3474. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3475. *ctx = (struct ggml_context) {
  3476. /*.mem_size =*/ mem_size,
  3477. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3478. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3479. /*.no_alloc =*/ params.no_alloc,
  3480. /*.n_objects =*/ 0,
  3481. /*.objects_begin =*/ NULL,
  3482. /*.objects_end =*/ NULL,
  3483. /*.scratch =*/ { 0, 0, NULL, },
  3484. /*.scratch_save =*/ { 0, 0, NULL, },
  3485. };
  3486. GGML_ASSERT(ctx->mem_buffer != NULL);
  3487. ggml_assert_aligned(ctx->mem_buffer);
  3488. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3489. ggml_critical_section_end();
  3490. return ctx;
  3491. }
  3492. void ggml_free(struct ggml_context * ctx) {
  3493. // make this function thread safe
  3494. ggml_critical_section_start();
  3495. bool found = false;
  3496. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3497. if (&g_state.contexts[i].context == ctx) {
  3498. g_state.contexts[i].used = false;
  3499. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3500. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3501. if (ctx->mem_buffer_owned) {
  3502. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3503. }
  3504. found = true;
  3505. break;
  3506. }
  3507. }
  3508. if (!found) {
  3509. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3510. }
  3511. ggml_critical_section_end();
  3512. }
  3513. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3514. return ctx->objects_end->offs + ctx->objects_end->size;
  3515. }
  3516. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3517. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3518. ctx->scratch = scratch;
  3519. return result;
  3520. }
  3521. ////////////////////////////////////////////////////////////////////////////////
  3522. struct ggml_tensor * ggml_new_tensor_impl(
  3523. struct ggml_context * ctx,
  3524. enum ggml_type type,
  3525. int n_dims,
  3526. const int64_t* ne,
  3527. void* data) {
  3528. // always insert objects at the end of the context's memory pool
  3529. struct ggml_object * obj_cur = ctx->objects_end;
  3530. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3531. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3532. const size_t cur_end = cur_offs + cur_size;
  3533. size_t size_needed = 0;
  3534. if (data == NULL && !ctx->no_alloc) {
  3535. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3536. for (int i = 1; i < n_dims; i++) {
  3537. size_needed *= ne[i];
  3538. }
  3539. // align to GGML_MEM_ALIGN
  3540. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3541. }
  3542. char * const mem_buffer = ctx->mem_buffer;
  3543. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3544. if (ctx->scratch.data == NULL || data != NULL) {
  3545. size_needed += sizeof(struct ggml_tensor);
  3546. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3547. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3548. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3549. assert(false);
  3550. return NULL;
  3551. }
  3552. *obj_new = (struct ggml_object) {
  3553. .offs = cur_end + GGML_OBJECT_SIZE,
  3554. .size = size_needed,
  3555. .next = NULL,
  3556. };
  3557. } else {
  3558. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3559. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3560. assert(false);
  3561. return NULL;
  3562. }
  3563. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3564. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3565. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3566. assert(false);
  3567. return NULL;
  3568. }
  3569. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3570. *obj_new = (struct ggml_object) {
  3571. .offs = cur_end + GGML_OBJECT_SIZE,
  3572. .size = sizeof(struct ggml_tensor),
  3573. .next = NULL,
  3574. };
  3575. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3576. ctx->scratch.offs += size_needed;
  3577. }
  3578. if (obj_cur != NULL) {
  3579. obj_cur->next = obj_new;
  3580. } else {
  3581. // this is the first object in this context
  3582. ctx->objects_begin = obj_new;
  3583. }
  3584. ctx->objects_end = obj_new;
  3585. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3586. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3587. ggml_assert_aligned(result);
  3588. *result = (struct ggml_tensor) {
  3589. /*.type =*/ type,
  3590. /*.n_dims =*/ n_dims,
  3591. /*.ne =*/ { 1, 1, 1, 1 },
  3592. /*.nb =*/ { 0, 0, 0, 0 },
  3593. /*.op =*/ GGML_OP_NONE,
  3594. /*.is_param =*/ false,
  3595. /*.grad =*/ NULL,
  3596. /*.src0 =*/ NULL,
  3597. /*.src1 =*/ NULL,
  3598. /*.opt =*/ { NULL },
  3599. /*.n_tasks =*/ 0,
  3600. /*.perf_runs =*/ 0,
  3601. /*.perf_cycles =*/ 0,
  3602. /*.perf_time_us =*/ 0,
  3603. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3604. /*.pad =*/ { 0 },
  3605. };
  3606. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3607. //ggml_assert_aligned(result->data);
  3608. for (int i = 0; i < n_dims; i++) {
  3609. result->ne[i] = ne[i];
  3610. }
  3611. result->nb[0] = GGML_TYPE_SIZE[type];
  3612. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3613. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3614. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3615. }
  3616. ctx->n_objects++;
  3617. return result;
  3618. }
  3619. struct ggml_tensor * ggml_new_tensor(
  3620. struct ggml_context * ctx,
  3621. enum ggml_type type,
  3622. int n_dims,
  3623. const int64_t * ne) {
  3624. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3625. }
  3626. struct ggml_tensor * ggml_new_tensor_1d(
  3627. struct ggml_context * ctx,
  3628. enum ggml_type type,
  3629. int64_t ne0) {
  3630. return ggml_new_tensor(ctx, type, 1, &ne0);
  3631. }
  3632. struct ggml_tensor * ggml_new_tensor_2d(
  3633. struct ggml_context * ctx,
  3634. enum ggml_type type,
  3635. int64_t ne0,
  3636. int64_t ne1) {
  3637. const int64_t ne[2] = { ne0, ne1 };
  3638. return ggml_new_tensor(ctx, type, 2, ne);
  3639. }
  3640. struct ggml_tensor * ggml_new_tensor_3d(
  3641. struct ggml_context * ctx,
  3642. enum ggml_type type,
  3643. int64_t ne0,
  3644. int64_t ne1,
  3645. int64_t ne2) {
  3646. const int64_t ne[3] = { ne0, ne1, ne2 };
  3647. return ggml_new_tensor(ctx, type, 3, ne);
  3648. }
  3649. struct ggml_tensor * ggml_new_tensor_4d(
  3650. struct ggml_context * ctx,
  3651. enum ggml_type type,
  3652. int64_t ne0,
  3653. int64_t ne1,
  3654. int64_t ne2,
  3655. int64_t ne3) {
  3656. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3657. return ggml_new_tensor(ctx, type, 4, ne);
  3658. }
  3659. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3660. ctx->scratch_save = ctx->scratch;
  3661. ctx->scratch.data = NULL;
  3662. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3663. ctx->scratch = ctx->scratch_save;
  3664. ggml_set_i32(result, value);
  3665. return result;
  3666. }
  3667. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3668. ctx->scratch_save = ctx->scratch;
  3669. ctx->scratch.data = NULL;
  3670. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3671. ctx->scratch = ctx->scratch_save;
  3672. ggml_set_f32(result, value);
  3673. return result;
  3674. }
  3675. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3676. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3677. }
  3678. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3679. memset(tensor->data, 0, ggml_nbytes(tensor));
  3680. return tensor;
  3681. }
  3682. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3683. const int n = ggml_nrows(tensor);
  3684. const int nc = tensor->ne[0];
  3685. const size_t n1 = tensor->nb[1];
  3686. char * const data = tensor->data;
  3687. switch (tensor->type) {
  3688. case GGML_TYPE_I8:
  3689. {
  3690. assert(tensor->nb[0] == sizeof(int8_t));
  3691. for (int i = 0; i < n; i++) {
  3692. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3693. }
  3694. } break;
  3695. case GGML_TYPE_I16:
  3696. {
  3697. assert(tensor->nb[0] == sizeof(int16_t));
  3698. for (int i = 0; i < n; i++) {
  3699. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3700. }
  3701. } break;
  3702. case GGML_TYPE_I32:
  3703. {
  3704. assert(tensor->nb[0] == sizeof(int32_t));
  3705. for (int i = 0; i < n; i++) {
  3706. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3707. }
  3708. } break;
  3709. case GGML_TYPE_F16:
  3710. {
  3711. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3712. for (int i = 0; i < n; i++) {
  3713. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3714. }
  3715. } break;
  3716. case GGML_TYPE_F32:
  3717. {
  3718. assert(tensor->nb[0] == sizeof(float));
  3719. for (int i = 0; i < n; i++) {
  3720. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3721. }
  3722. } break;
  3723. default:
  3724. {
  3725. GGML_ASSERT(false);
  3726. } break;
  3727. }
  3728. return tensor;
  3729. }
  3730. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3731. const int n = ggml_nrows(tensor);
  3732. const int nc = tensor->ne[0];
  3733. const size_t n1 = tensor->nb[1];
  3734. char * const data = tensor->data;
  3735. switch (tensor->type) {
  3736. case GGML_TYPE_I8:
  3737. {
  3738. assert(tensor->nb[0] == sizeof(int8_t));
  3739. for (int i = 0; i < n; i++) {
  3740. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3741. }
  3742. } break;
  3743. case GGML_TYPE_I16:
  3744. {
  3745. assert(tensor->nb[0] == sizeof(int16_t));
  3746. for (int i = 0; i < n; i++) {
  3747. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3748. }
  3749. } break;
  3750. case GGML_TYPE_I32:
  3751. {
  3752. assert(tensor->nb[0] == sizeof(int32_t));
  3753. for (int i = 0; i < n; i++) {
  3754. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3755. }
  3756. } break;
  3757. case GGML_TYPE_F16:
  3758. {
  3759. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3760. for (int i = 0; i < n; i++) {
  3761. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3762. }
  3763. } break;
  3764. case GGML_TYPE_F32:
  3765. {
  3766. assert(tensor->nb[0] == sizeof(float));
  3767. for (int i = 0; i < n; i++) {
  3768. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3769. }
  3770. } break;
  3771. default:
  3772. {
  3773. GGML_ASSERT(false);
  3774. } break;
  3775. }
  3776. return tensor;
  3777. }
  3778. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3779. switch (tensor->type) {
  3780. case GGML_TYPE_I8:
  3781. {
  3782. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3783. return ((int8_t *)(tensor->data))[i];
  3784. } break;
  3785. case GGML_TYPE_I16:
  3786. {
  3787. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3788. return ((int16_t *)(tensor->data))[i];
  3789. } break;
  3790. case GGML_TYPE_I32:
  3791. {
  3792. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3793. return ((int32_t *)(tensor->data))[i];
  3794. } break;
  3795. case GGML_TYPE_F16:
  3796. {
  3797. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3798. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3799. } break;
  3800. case GGML_TYPE_F32:
  3801. {
  3802. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3803. return ((float *)(tensor->data))[i];
  3804. } break;
  3805. default:
  3806. {
  3807. GGML_ASSERT(false);
  3808. } break;
  3809. }
  3810. return 0.0f;
  3811. }
  3812. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3813. switch (tensor->type) {
  3814. case GGML_TYPE_I8:
  3815. {
  3816. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3817. ((int8_t *)(tensor->data))[i] = value;
  3818. } break;
  3819. case GGML_TYPE_I16:
  3820. {
  3821. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3822. ((int16_t *)(tensor->data))[i] = value;
  3823. } break;
  3824. case GGML_TYPE_I32:
  3825. {
  3826. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3827. ((int32_t *)(tensor->data))[i] = value;
  3828. } break;
  3829. case GGML_TYPE_F16:
  3830. {
  3831. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3832. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3833. } break;
  3834. case GGML_TYPE_F32:
  3835. {
  3836. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3837. ((float *)(tensor->data))[i] = value;
  3838. } break;
  3839. default:
  3840. {
  3841. GGML_ASSERT(false);
  3842. } break;
  3843. }
  3844. }
  3845. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3846. switch (tensor->type) {
  3847. case GGML_TYPE_I8:
  3848. {
  3849. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3850. return ((int8_t *)(tensor->data))[i];
  3851. } break;
  3852. case GGML_TYPE_I16:
  3853. {
  3854. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3855. return ((int16_t *)(tensor->data))[i];
  3856. } break;
  3857. case GGML_TYPE_I32:
  3858. {
  3859. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3860. return ((int32_t *)(tensor->data))[i];
  3861. } break;
  3862. case GGML_TYPE_F16:
  3863. {
  3864. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3865. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3866. } break;
  3867. case GGML_TYPE_F32:
  3868. {
  3869. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3870. return ((float *)(tensor->data))[i];
  3871. } break;
  3872. default:
  3873. {
  3874. GGML_ASSERT(false);
  3875. } break;
  3876. }
  3877. return 0.0f;
  3878. }
  3879. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3880. switch (tensor->type) {
  3881. case GGML_TYPE_I8:
  3882. {
  3883. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3884. ((int8_t *)(tensor->data))[i] = value;
  3885. } break;
  3886. case GGML_TYPE_I16:
  3887. {
  3888. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3889. ((int16_t *)(tensor->data))[i] = value;
  3890. } break;
  3891. case GGML_TYPE_I32:
  3892. {
  3893. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3894. ((int32_t *)(tensor->data))[i] = value;
  3895. } break;
  3896. case GGML_TYPE_F16:
  3897. {
  3898. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3899. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3900. } break;
  3901. case GGML_TYPE_F32:
  3902. {
  3903. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3904. ((float *)(tensor->data))[i] = value;
  3905. } break;
  3906. default:
  3907. {
  3908. GGML_ASSERT(false);
  3909. } break;
  3910. }
  3911. }
  3912. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3913. return tensor->data;
  3914. }
  3915. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3916. assert(tensor->type == GGML_TYPE_F32);
  3917. return (float *)(tensor->data);
  3918. }
  3919. struct ggml_tensor * ggml_view_tensor(
  3920. struct ggml_context * ctx,
  3921. const struct ggml_tensor * src) {
  3922. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3923. result->nb[0] = src->nb[0];
  3924. result->nb[1] = src->nb[1];
  3925. result->nb[2] = src->nb[2];
  3926. result->nb[3] = src->nb[3];
  3927. return result;
  3928. }
  3929. ////////////////////////////////////////////////////////////////////////////////
  3930. // ggml_dup
  3931. struct ggml_tensor * ggml_dup_impl(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a,
  3934. bool inplace) {
  3935. bool is_node = false;
  3936. if (!inplace && (a->grad)) {
  3937. is_node = true;
  3938. }
  3939. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3940. result->op = GGML_OP_DUP;
  3941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3942. result->src0 = a;
  3943. result->src1 = NULL;
  3944. return result;
  3945. }
  3946. struct ggml_tensor * ggml_dup(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a) {
  3949. return ggml_dup_impl(ctx, a, false);
  3950. }
  3951. struct ggml_tensor * ggml_dup_inplace(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a) {
  3954. return ggml_dup_impl(ctx, a, true);
  3955. }
  3956. // ggml_add
  3957. struct ggml_tensor * ggml_add_impl(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b,
  3961. bool inplace) {
  3962. GGML_ASSERT(ggml_are_same_shape(a, b));
  3963. bool is_node = false;
  3964. if (!inplace && (a->grad || b->grad)) {
  3965. is_node = true;
  3966. }
  3967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3968. result->op = GGML_OP_ADD;
  3969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3970. result->src0 = a;
  3971. result->src1 = b;
  3972. return result;
  3973. }
  3974. struct ggml_tensor * ggml_add(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. struct ggml_tensor * b) {
  3978. return ggml_add_impl(ctx, a, b, false);
  3979. }
  3980. struct ggml_tensor * ggml_add_inplace(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a,
  3983. struct ggml_tensor * b) {
  3984. return ggml_add_impl(ctx, a, b, true);
  3985. }
  3986. // ggml_sub
  3987. struct ggml_tensor * ggml_sub_impl(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. struct ggml_tensor * b,
  3991. bool inplace) {
  3992. GGML_ASSERT(ggml_are_same_shape(a, b));
  3993. bool is_node = false;
  3994. if (!inplace && (a->grad || b->grad)) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. result->op = GGML_OP_SUB;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src0 = a;
  4001. result->src1 = b;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_sub(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. struct ggml_tensor * b) {
  4008. return ggml_sub_impl(ctx, a, b, false);
  4009. }
  4010. struct ggml_tensor * ggml_sub_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. return ggml_sub_impl(ctx, a, b, true);
  4015. }
  4016. // ggml_mul
  4017. struct ggml_tensor * ggml_mul_impl(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. struct ggml_tensor * b,
  4021. bool inplace) {
  4022. GGML_ASSERT(ggml_are_same_shape(a, b));
  4023. bool is_node = false;
  4024. if (!inplace && (a->grad || b->grad)) {
  4025. is_node = true;
  4026. }
  4027. if (inplace) {
  4028. GGML_ASSERT(is_node == false);
  4029. }
  4030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4031. result->op = GGML_OP_MUL;
  4032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4033. result->src0 = a;
  4034. result->src1 = b;
  4035. return result;
  4036. }
  4037. struct ggml_tensor * ggml_mul(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a,
  4040. struct ggml_tensor * b) {
  4041. return ggml_mul_impl(ctx, a, b, false);
  4042. }
  4043. struct ggml_tensor * ggml_mul_inplace(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. struct ggml_tensor * b) {
  4047. return ggml_mul_impl(ctx, a, b, true);
  4048. }
  4049. // ggml_div
  4050. struct ggml_tensor * ggml_div_impl(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. struct ggml_tensor * b,
  4054. bool inplace) {
  4055. GGML_ASSERT(ggml_are_same_shape(a, b));
  4056. bool is_node = false;
  4057. if (!inplace && (a->grad || b->grad)) {
  4058. is_node = true;
  4059. }
  4060. if (inplace) {
  4061. GGML_ASSERT(is_node == false);
  4062. }
  4063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4064. result->op = GGML_OP_DIV;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src0 = a;
  4067. result->src1 = b;
  4068. return result;
  4069. }
  4070. struct ggml_tensor * ggml_div(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. struct ggml_tensor * b) {
  4074. return ggml_div_impl(ctx, a, b, false);
  4075. }
  4076. struct ggml_tensor * ggml_div_inplace(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. struct ggml_tensor * b) {
  4080. return ggml_div_impl(ctx, a, b, true);
  4081. }
  4082. // ggml_sqr
  4083. struct ggml_tensor * ggml_sqr_impl(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a,
  4086. bool inplace) {
  4087. bool is_node = false;
  4088. if (!inplace && (a->grad)) {
  4089. is_node = true;
  4090. }
  4091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4092. result->op = GGML_OP_SQR;
  4093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4094. result->src0 = a;
  4095. result->src1 = NULL;
  4096. return result;
  4097. }
  4098. struct ggml_tensor * ggml_sqr(
  4099. struct ggml_context * ctx,
  4100. struct ggml_tensor * a) {
  4101. return ggml_sqr_impl(ctx, a, false);
  4102. }
  4103. struct ggml_tensor * ggml_sqr_inplace(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a) {
  4106. return ggml_sqr_impl(ctx, a, true);
  4107. }
  4108. // ggml_sqrt
  4109. struct ggml_tensor * ggml_sqrt_impl(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. bool inplace) {
  4113. bool is_node = false;
  4114. if (!inplace && (a->grad)) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. result->op = GGML_OP_SQRT;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src0 = a;
  4121. result->src1 = NULL;
  4122. return result;
  4123. }
  4124. struct ggml_tensor * ggml_sqrt(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a) {
  4127. return ggml_sqrt_impl(ctx, a, false);
  4128. }
  4129. struct ggml_tensor * ggml_sqrt_inplace(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a) {
  4132. return ggml_sqrt_impl(ctx, a, true);
  4133. }
  4134. // ggml_sum
  4135. struct ggml_tensor * ggml_sum(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a) {
  4138. bool is_node = false;
  4139. if (a->grad) {
  4140. is_node = true;
  4141. }
  4142. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4143. result->op = GGML_OP_SUM;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src0 = a;
  4146. result->src1 = NULL;
  4147. return result;
  4148. }
  4149. // ggml_mean
  4150. struct ggml_tensor * ggml_mean(
  4151. struct ggml_context * ctx,
  4152. struct ggml_tensor * a) {
  4153. bool is_node = false;
  4154. if (a->grad) {
  4155. GGML_ASSERT(false); // TODO: implement
  4156. is_node = true;
  4157. }
  4158. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4159. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4160. result->op = GGML_OP_MEAN;
  4161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4162. result->src0 = a;
  4163. result->src1 = NULL;
  4164. return result;
  4165. }
  4166. // ggml_repeat
  4167. struct ggml_tensor * ggml_repeat(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. struct ggml_tensor * b) {
  4171. GGML_ASSERT(ggml_can_repeat(a, b));
  4172. bool is_node = false;
  4173. if (a->grad) {
  4174. is_node = true;
  4175. }
  4176. if (ggml_are_same_shape(a, b) && !is_node) {
  4177. return a;
  4178. }
  4179. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4180. result->op = GGML_OP_REPEAT;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src0 = a;
  4183. result->src1 = b;
  4184. return result;
  4185. }
  4186. // ggml_abs
  4187. struct ggml_tensor * ggml_abs_impl(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a,
  4190. bool inplace) {
  4191. bool is_node = false;
  4192. if (!inplace && (a->grad)) {
  4193. is_node = true;
  4194. }
  4195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4196. result->op = GGML_OP_ABS;
  4197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4198. result->src0 = a;
  4199. result->src1 = NULL;
  4200. return result;
  4201. }
  4202. struct ggml_tensor * ggml_abs(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a) {
  4205. return ggml_abs_impl(ctx, a, false);
  4206. }
  4207. struct ggml_tensor * ggml_abs_inplace(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_abs_impl(ctx, a, true);
  4211. }
  4212. // ggml_sgn
  4213. struct ggml_tensor * ggml_sgn_impl(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. bool inplace) {
  4217. bool is_node = false;
  4218. if (!inplace && (a->grad)) {
  4219. is_node = true;
  4220. }
  4221. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4222. result->op = GGML_OP_SGN;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src0 = a;
  4225. result->src1 = NULL;
  4226. return result;
  4227. }
  4228. struct ggml_tensor * ggml_sgn(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a) {
  4231. return ggml_sgn_impl(ctx, a, false);
  4232. }
  4233. struct ggml_tensor * ggml_sgn_inplace(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_sgn_impl(ctx, a, true);
  4237. }
  4238. // ggml_neg
  4239. struct ggml_tensor * ggml_neg_impl(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. bool inplace) {
  4243. bool is_node = false;
  4244. if (!inplace && (a->grad)) {
  4245. is_node = true;
  4246. }
  4247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4248. result->op = GGML_OP_NEG;
  4249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4250. result->src0 = a;
  4251. result->src1 = NULL;
  4252. return result;
  4253. }
  4254. struct ggml_tensor * ggml_neg(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a) {
  4257. return ggml_neg_impl(ctx, a, false);
  4258. }
  4259. struct ggml_tensor * ggml_neg_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a) {
  4262. return ggml_neg_impl(ctx, a, true);
  4263. }
  4264. // ggml_step
  4265. struct ggml_tensor * ggml_step_impl(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. bool inplace) {
  4269. bool is_node = false;
  4270. if (!inplace && (a->grad)) {
  4271. is_node = true;
  4272. }
  4273. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4274. result->op = GGML_OP_STEP;
  4275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4276. result->src0 = a;
  4277. result->src1 = NULL;
  4278. return result;
  4279. }
  4280. struct ggml_tensor * ggml_step(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a) {
  4283. return ggml_step_impl(ctx, a, false);
  4284. }
  4285. struct ggml_tensor * ggml_step_inplace(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_step_impl(ctx, a, true);
  4289. }
  4290. // ggml_relu
  4291. struct ggml_tensor * ggml_relu_impl(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. bool inplace) {
  4295. bool is_node = false;
  4296. if (!inplace && (a->grad)) {
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4300. result->op = GGML_OP_RELU;
  4301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4302. result->src0 = a;
  4303. result->src1 = NULL;
  4304. return result;
  4305. }
  4306. struct ggml_tensor * ggml_relu(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_relu_impl(ctx, a, false);
  4310. }
  4311. struct ggml_tensor * ggml_relu_inplace(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_relu_impl(ctx, a, true);
  4315. }
  4316. // ggml_gelu
  4317. struct ggml_tensor * ggml_gelu_impl(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. bool inplace) {
  4321. bool is_node = false;
  4322. if (!inplace && (a->grad)) {
  4323. is_node = true;
  4324. }
  4325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4326. result->op = GGML_OP_GELU;
  4327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4328. result->src0 = a;
  4329. result->src1 = NULL;
  4330. return result;
  4331. }
  4332. struct ggml_tensor * ggml_gelu(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. return ggml_gelu_impl(ctx, a, false);
  4336. }
  4337. struct ggml_tensor * ggml_gelu_inplace(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a) {
  4340. return ggml_gelu_impl(ctx, a, true);
  4341. }
  4342. // ggml_silu
  4343. struct ggml_tensor * ggml_silu_impl(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a,
  4346. bool inplace) {
  4347. bool is_node = false;
  4348. if (!inplace && (a->grad)) {
  4349. is_node = true;
  4350. }
  4351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4352. result->op = GGML_OP_SILU;
  4353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4354. result->src0 = a;
  4355. result->src1 = NULL;
  4356. return result;
  4357. }
  4358. struct ggml_tensor * ggml_silu(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a) {
  4361. return ggml_silu_impl(ctx, a, false);
  4362. }
  4363. struct ggml_tensor * ggml_silu_inplace(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a) {
  4366. return ggml_silu_impl(ctx, a, true);
  4367. }
  4368. // ggml_norm
  4369. struct ggml_tensor * ggml_norm_impl(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. bool inplace) {
  4373. bool is_node = false;
  4374. if (!inplace && (a->grad)) {
  4375. GGML_ASSERT(false); // TODO: implement backward
  4376. is_node = true;
  4377. }
  4378. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4379. result->op = GGML_OP_NORM;
  4380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4381. result->src0 = a;
  4382. result->src1 = NULL; // TODO: maybe store epsilon here?
  4383. return result;
  4384. }
  4385. struct ggml_tensor * ggml_norm(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a) {
  4388. return ggml_norm_impl(ctx, a, false);
  4389. }
  4390. struct ggml_tensor * ggml_norm_inplace(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a) {
  4393. return ggml_norm_impl(ctx, a, true);
  4394. }
  4395. struct ggml_tensor * ggml_rms_norm_impl(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. bool inplace) {
  4399. bool is_node = false;
  4400. if (!inplace && (a->grad)) {
  4401. GGML_ASSERT(false); // TODO: implement backward
  4402. is_node = true;
  4403. }
  4404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4405. result->op = GGML_OP_RMS_NORM;
  4406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4407. result->src0 = a;
  4408. result->src1 = NULL; // TODO: maybe store epsilon here?
  4409. return result;
  4410. }
  4411. struct ggml_tensor * ggml_rms_norm(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_rms_norm_impl(ctx, a, false);
  4415. }
  4416. struct ggml_tensor * ggml_rms_norm_inplace(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. return ggml_rms_norm_impl(ctx, a, true);
  4420. }
  4421. // ggml_mul_mat
  4422. struct ggml_tensor * ggml_mul_mat(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b) {
  4426. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4427. GGML_ASSERT(!ggml_is_transposed(a));
  4428. bool is_node = false;
  4429. if (a->grad || b->grad) {
  4430. is_node = true;
  4431. }
  4432. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4433. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4434. result->op = GGML_OP_MUL_MAT;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src0 = a;
  4437. result->src1 = b;
  4438. return result;
  4439. }
  4440. // ggml_scale
  4441. struct ggml_tensor * ggml_scale_impl(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. struct ggml_tensor * b,
  4445. bool inplace) {
  4446. GGML_ASSERT(ggml_is_scalar(b));
  4447. GGML_ASSERT(ggml_is_padded_1d(a));
  4448. bool is_node = false;
  4449. if (!inplace && (a->grad || b->grad)) {
  4450. GGML_ASSERT(false); // TODO: implement backward
  4451. is_node = true;
  4452. }
  4453. // TODO: when implement backward, fix this:
  4454. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4455. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4456. result->op = GGML_OP_SCALE;
  4457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4458. result->src0 = a;
  4459. result->src1 = b;
  4460. return result;
  4461. }
  4462. struct ggml_tensor * ggml_scale(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a,
  4465. struct ggml_tensor * b) {
  4466. return ggml_scale_impl(ctx, a, b, false);
  4467. }
  4468. struct ggml_tensor * ggml_scale_inplace(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. struct ggml_tensor * b) {
  4472. return ggml_scale_impl(ctx, a, b, true);
  4473. }
  4474. // ggml_cpy
  4475. struct ggml_tensor * ggml_cpy_impl(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. bool inplace) {
  4480. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4481. bool is_node = false;
  4482. if (!inplace && (a->grad || b->grad)) {
  4483. GGML_ASSERT(false); // TODO: implement backward
  4484. is_node = true;
  4485. }
  4486. // make a view of the destination
  4487. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4488. result->op = GGML_OP_CPY;
  4489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4490. result->src0 = a;
  4491. result->src1 = b;
  4492. return result;
  4493. }
  4494. struct ggml_tensor * ggml_cpy(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. struct ggml_tensor * b) {
  4498. return ggml_cpy_impl(ctx, a, b, false);
  4499. }
  4500. struct ggml_tensor * ggml_cpy_inplace(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b) {
  4504. return ggml_cpy_impl(ctx, a, b, true);
  4505. }
  4506. // ggml_cont
  4507. struct ggml_tensor * ggml_cont_impl(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. bool inplace) {
  4511. bool is_node = false;
  4512. if (!inplace && a->grad) {
  4513. GGML_ASSERT(false); // TODO: implement backward
  4514. is_node = true;
  4515. }
  4516. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4517. result->op = GGML_OP_CONT;
  4518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4519. result->src0 = a;
  4520. result->src1 = NULL;
  4521. return result;
  4522. }
  4523. struct ggml_tensor * ggml_cont(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a) {
  4526. return ggml_cont_impl(ctx, a, false);
  4527. }
  4528. struct ggml_tensor * ggml_cont_inplace(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a) {
  4531. return ggml_cont_impl(ctx, a, true);
  4532. }
  4533. // ggml_reshape
  4534. struct ggml_tensor * ggml_reshape(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. struct ggml_tensor * b) {
  4538. GGML_ASSERT(ggml_is_contiguous(a));
  4539. GGML_ASSERT(ggml_is_contiguous(b));
  4540. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4541. bool is_node = false;
  4542. if (a->grad || b->grad) {
  4543. GGML_ASSERT(false); // TODO: implement backward
  4544. is_node = true;
  4545. }
  4546. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4547. result->op = GGML_OP_RESHAPE;
  4548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4549. result->src0 = a;
  4550. result->src1 = NULL;
  4551. return result;
  4552. }
  4553. struct ggml_tensor * ggml_reshape_2d(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. int64_t ne0,
  4557. int64_t ne1) {
  4558. GGML_ASSERT(ggml_is_contiguous(a));
  4559. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4560. bool is_node = false;
  4561. if (a->grad) {
  4562. GGML_ASSERT(false); // TODO: implement backward
  4563. is_node = true;
  4564. }
  4565. const int64_t ne[2] = { ne0, ne1 };
  4566. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4567. result->op = GGML_OP_RESHAPE;
  4568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4569. result->src0 = a;
  4570. result->src1 = NULL;
  4571. return result;
  4572. }
  4573. struct ggml_tensor * ggml_reshape_3d(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. int64_t ne0,
  4577. int64_t ne1,
  4578. int64_t ne2) {
  4579. GGML_ASSERT(ggml_is_contiguous(a));
  4580. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4581. bool is_node = false;
  4582. if (a->grad) {
  4583. GGML_ASSERT(false); // TODO: implement backward
  4584. is_node = true;
  4585. }
  4586. const int64_t ne[3] = { ne0, ne1, ne2 };
  4587. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4588. result->op = GGML_OP_RESHAPE;
  4589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4590. result->src0 = a;
  4591. result->src1 = NULL;
  4592. return result;
  4593. }
  4594. // ggml_view_1d
  4595. struct ggml_tensor * ggml_view_1d(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. int64_t ne0,
  4599. size_t offset) {
  4600. if (a->grad) {
  4601. GGML_ASSERT(false); // gradient propagation is not supported
  4602. }
  4603. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4604. result->op = GGML_OP_VIEW;
  4605. result->grad = NULL;
  4606. result->src0 = a;
  4607. result->src1 = NULL; // TODO: maybe store the offset here?
  4608. return result;
  4609. }
  4610. // ggml_view_2d
  4611. struct ggml_tensor * ggml_view_2d(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. int64_t ne0,
  4615. int64_t ne1,
  4616. size_t nb1,
  4617. size_t offset) {
  4618. if (a->grad) {
  4619. GGML_ASSERT(false); // gradient propagation is not supported
  4620. }
  4621. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4622. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4623. result->nb[1] = nb1;
  4624. result->nb[2] = result->nb[1]*ne1;
  4625. result->nb[3] = result->nb[2];
  4626. result->op = GGML_OP_VIEW;
  4627. result->grad = NULL;
  4628. result->src0 = a;
  4629. result->src1 = NULL; // TODO: maybe store the offset here?
  4630. return result;
  4631. }
  4632. // ggml_view_3d
  4633. struct ggml_tensor * ggml_view_3d(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a,
  4636. int64_t ne0,
  4637. int64_t ne1,
  4638. int64_t ne2,
  4639. size_t nb1,
  4640. size_t nb2,
  4641. size_t offset) {
  4642. if (a->grad) {
  4643. GGML_ASSERT(false); // gradient propagation is not supported
  4644. }
  4645. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4646. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4647. result->nb[1] = nb1;
  4648. result->nb[2] = nb2;
  4649. result->nb[3] = result->nb[2]*ne2;
  4650. result->op = GGML_OP_VIEW;
  4651. result->grad = NULL;
  4652. result->src0 = a;
  4653. result->src1 = NULL; // TODO: maybe store the offset here?
  4654. return result;
  4655. }
  4656. // ggml_permute
  4657. struct ggml_tensor * ggml_permute(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int axis0,
  4661. int axis1,
  4662. int axis2,
  4663. int axis3) {
  4664. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4665. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4666. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4667. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4668. GGML_ASSERT(axis0 != axis1);
  4669. GGML_ASSERT(axis0 != axis2);
  4670. GGML_ASSERT(axis0 != axis3);
  4671. GGML_ASSERT(axis1 != axis2);
  4672. GGML_ASSERT(axis1 != axis3);
  4673. GGML_ASSERT(axis2 != axis3);
  4674. bool is_node = false;
  4675. if (a->grad) {
  4676. GGML_ASSERT(false); // TODO: implement backward
  4677. is_node = true;
  4678. }
  4679. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4680. int ne[GGML_MAX_DIMS];
  4681. int nb[GGML_MAX_DIMS];
  4682. ne[axis0] = a->ne[0];
  4683. ne[axis1] = a->ne[1];
  4684. ne[axis2] = a->ne[2];
  4685. ne[axis3] = a->ne[3];
  4686. nb[axis0] = a->nb[0];
  4687. nb[axis1] = a->nb[1];
  4688. nb[axis2] = a->nb[2];
  4689. nb[axis3] = a->nb[3];
  4690. result->ne[0] = ne[0];
  4691. result->ne[1] = ne[1];
  4692. result->ne[2] = ne[2];
  4693. result->ne[3] = ne[3];
  4694. result->nb[0] = nb[0];
  4695. result->nb[1] = nb[1];
  4696. result->nb[2] = nb[2];
  4697. result->nb[3] = nb[3];
  4698. result->op = GGML_OP_PERMUTE;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src0 = a;
  4701. result->src1 = NULL; // TODO: maybe store the permutation here?
  4702. return result;
  4703. }
  4704. // ggml_transpose
  4705. struct ggml_tensor * ggml_transpose(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a) {
  4708. bool is_node = false;
  4709. if (a->grad) {
  4710. GGML_ASSERT(false); // TODO: implement backward
  4711. is_node = true;
  4712. }
  4713. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4714. result->ne[0] = a->ne[1];
  4715. result->ne[1] = a->ne[0];
  4716. result->nb[0] = a->nb[1];
  4717. result->nb[1] = a->nb[0];
  4718. result->op = GGML_OP_TRANSPOSE;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src0 = a;
  4721. result->src1 = NULL;
  4722. return result;
  4723. }
  4724. // ggml_get_rows
  4725. struct ggml_tensor * ggml_get_rows(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. struct ggml_tensor * b) {
  4729. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4730. bool is_node = false;
  4731. if (a->grad || b->grad) {
  4732. GGML_ASSERT(false); // TODO: implement backward
  4733. is_node = true;
  4734. }
  4735. // TODO: implement non F32 return
  4736. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4737. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4738. result->op = GGML_OP_GET_ROWS;
  4739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4740. result->src0 = a;
  4741. result->src1 = b;
  4742. return result;
  4743. }
  4744. // ggml_diag_mask_inf
  4745. struct ggml_tensor * ggml_diag_mask_inf(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. int n_past) {
  4749. bool is_node = false;
  4750. if (a->grad) {
  4751. GGML_ASSERT(false); // TODO: implement backward
  4752. is_node = true;
  4753. }
  4754. // TODO: when implement backward, fix this:
  4755. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4756. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4757. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4758. result->op = GGML_OP_DIAG_MASK_INF;
  4759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4760. result->src0 = a;
  4761. result->src1 = b;
  4762. return result;
  4763. }
  4764. // ggml_soft_max
  4765. struct ggml_tensor * ggml_soft_max(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a) {
  4768. bool is_node = false;
  4769. if (a->grad) {
  4770. GGML_ASSERT(false); // TODO: implement backward
  4771. is_node = true;
  4772. }
  4773. // TODO: when implement backward, fix this:
  4774. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4775. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4776. result->op = GGML_OP_SOFT_MAX;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src0 = a;
  4779. result->src1 = NULL;
  4780. return result;
  4781. }
  4782. // ggml_rope
  4783. struct ggml_tensor * ggml_rope(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. int n_past,
  4787. int n_dims,
  4788. int mode) {
  4789. GGML_ASSERT(n_past >= 0);
  4790. bool is_node = false;
  4791. if (a->grad) {
  4792. GGML_ASSERT(false); // TODO: implement backward
  4793. is_node = true;
  4794. }
  4795. // TODO: when implement backward, fix this:
  4796. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4797. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4798. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4799. ((int32_t *) b->data)[0] = n_past;
  4800. ((int32_t *) b->data)[1] = n_dims;
  4801. ((int32_t *) b->data)[2] = mode;
  4802. result->op = GGML_OP_ROPE;
  4803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4804. result->src0 = a;
  4805. result->src1 = b;
  4806. return result;
  4807. }
  4808. // ggml_conv_1d_1s
  4809. struct ggml_tensor * ggml_conv_1d_1s(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b) {
  4813. GGML_ASSERT(ggml_is_matrix(b));
  4814. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4815. GGML_ASSERT(a->ne[3] == 1);
  4816. bool is_node = false;
  4817. if (a->grad || b->grad) {
  4818. GGML_ASSERT(false); // TODO: implement backward
  4819. is_node = true;
  4820. }
  4821. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4822. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4823. result->op = GGML_OP_CONV_1D_1S;
  4824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4825. result->src0 = a;
  4826. result->src1 = b;
  4827. return result;
  4828. }
  4829. // ggml_conv_1d_2s
  4830. struct ggml_tensor * ggml_conv_1d_2s(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a,
  4833. struct ggml_tensor * b) {
  4834. GGML_ASSERT(ggml_is_matrix(b));
  4835. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4836. GGML_ASSERT(a->ne[3] == 1);
  4837. bool is_node = false;
  4838. if (a->grad || b->grad) {
  4839. GGML_ASSERT(false); // TODO: implement backward
  4840. is_node = true;
  4841. }
  4842. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4843. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4844. result->op = GGML_OP_CONV_1D_2S;
  4845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4846. result->src0 = a;
  4847. result->src1 = b;
  4848. return result;
  4849. }
  4850. // ggml_flash_attn
  4851. struct ggml_tensor * ggml_flash_attn(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * q,
  4854. struct ggml_tensor * k,
  4855. struct ggml_tensor * v,
  4856. bool masked) {
  4857. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4858. // TODO: check if vT can be multiplied by (k*qT)
  4859. bool is_node = false;
  4860. if (q->grad || k->grad || v->grad) {
  4861. GGML_ASSERT(false); // TODO: implement backward
  4862. is_node = true;
  4863. }
  4864. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4865. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4866. result->op = GGML_OP_FLASH_ATTN;
  4867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4868. result->src0 = q;
  4869. result->src1 = k;
  4870. result->opt[0] = v;
  4871. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4872. return result;
  4873. }
  4874. // ggml_flash_ff
  4875. struct ggml_tensor * ggml_flash_ff(
  4876. struct ggml_context * ctx,
  4877. struct ggml_tensor * a,
  4878. struct ggml_tensor * b0,
  4879. struct ggml_tensor * b1,
  4880. struct ggml_tensor * c0,
  4881. struct ggml_tensor * c1) {
  4882. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4883. // TODO: more checks
  4884. bool is_node = false;
  4885. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4886. GGML_ASSERT(false); // TODO: implement backward
  4887. is_node = true;
  4888. }
  4889. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4890. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4891. result->op = GGML_OP_FLASH_FF;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src0 = a;
  4894. result->src1 = b0;
  4895. result->opt[0] = b1;
  4896. result->opt[1] = c0;
  4897. result->opt[2] = c1;
  4898. return result;
  4899. }
  4900. // ggml_map_unary
  4901. struct ggml_tensor * ggml_map_unary_impl_f32(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. const ggml_unary_op_f32_t fun,
  4905. bool inplace) {
  4906. bool is_node = false;
  4907. if (!inplace && a->grad) {
  4908. is_node = true;
  4909. }
  4910. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4911. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4912. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4913. result->op = GGML_OP_MAP_UNARY;
  4914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4915. result->src0 = a;
  4916. result->opt[0] = addr_tensor;
  4917. return result;
  4918. }
  4919. struct ggml_tensor * ggml_map_unary_f32(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. const ggml_unary_op_f32_t fun) {
  4923. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4924. }
  4925. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. const ggml_unary_op_f32_t fun) {
  4929. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4930. }
  4931. // ggml_map_binary
  4932. struct ggml_tensor * ggml_map_binary_impl_f32(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * b,
  4936. const ggml_binary_op_f32_t fun,
  4937. bool inplace) {
  4938. GGML_ASSERT(ggml_are_same_shape(a, b));
  4939. bool is_node = false;
  4940. if (!inplace && (a->grad || b->grad)) {
  4941. is_node = true;
  4942. }
  4943. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4944. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4945. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4946. result->op = GGML_OP_MAP_BINARY;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src0 = a;
  4949. result->src1 = b;
  4950. result->opt[0] = addr_tensor;
  4951. return result;
  4952. }
  4953. struct ggml_tensor * ggml_map_binary_f32(
  4954. struct ggml_context * ctx,
  4955. struct ggml_tensor * a,
  4956. struct ggml_tensor * b,
  4957. const ggml_binary_op_f32_t fun) {
  4958. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4959. }
  4960. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. struct ggml_tensor * b,
  4964. const ggml_binary_op_f32_t fun) {
  4965. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4966. }
  4967. ////////////////////////////////////////////////////////////////////////////////
  4968. void ggml_set_param(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * tensor) {
  4971. tensor->is_param = true;
  4972. GGML_ASSERT(tensor->grad == NULL);
  4973. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4974. }
  4975. // ggml_compute_forward_dup
  4976. static void ggml_compute_forward_dup_f16(
  4977. const struct ggml_compute_params * params,
  4978. const struct ggml_tensor * src0,
  4979. struct ggml_tensor * dst) {
  4980. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4982. return;
  4983. }
  4984. const int64_t ne00 = src0->ne[0];
  4985. const int64_t ne01 = src0->ne[1];
  4986. const int64_t ne02 = src0->ne[2];
  4987. const int64_t ne03 = src0->ne[3];
  4988. const int64_t ne0 = dst->ne[0];
  4989. const int64_t ne1 = dst->ne[1];
  4990. const int64_t ne2 = dst->ne[2];
  4991. const int64_t ne3 = dst->ne[3];
  4992. const size_t nb00 = src0->nb[0];
  4993. const size_t nb01 = src0->nb[1];
  4994. const size_t nb02 = src0->nb[2];
  4995. const size_t nb03 = src0->nb[3];
  4996. const size_t nb0 = dst->nb[0];
  4997. const size_t nb1 = dst->nb[1];
  4998. const size_t nb2 = dst->nb[2];
  4999. const size_t nb3 = dst->nb[3];
  5000. const int ith = params->ith; // thread index
  5001. const int nth = params->nth; // number of threads
  5002. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5003. // parallelize by elements
  5004. const int ne = ggml_nelements(dst);
  5005. const int dr = (ne + nth - 1) / nth;
  5006. const int ie0 = dr * ith;
  5007. const int ie1 = MIN(ie0 + dr, ne);
  5008. memcpy(
  5009. ((char *) dst->data + ie0*nb0),
  5010. ((char *) src0->data + ie0*nb00),
  5011. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5012. return;
  5013. }
  5014. // parallelize by rows
  5015. const int nr = ne01;
  5016. // number of rows per thread
  5017. const int dr = (nr + nth - 1) / nth;
  5018. // row range for this thread
  5019. const int ir0 = dr * ith;
  5020. const int ir1 = MIN(ir0 + dr, nr);
  5021. if (src0->type == dst->type &&
  5022. ne00 == ne0 &&
  5023. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5024. // copy by rows
  5025. const size_t rs = ne00*nb00;
  5026. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5027. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5028. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5029. memcpy(
  5030. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5031. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5032. rs);
  5033. }
  5034. }
  5035. }
  5036. return;
  5037. }
  5038. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5039. if (ggml_is_contiguous(dst)) {
  5040. if (nb00 == sizeof(ggml_fp16_t)) {
  5041. if (dst->type == GGML_TYPE_F16) {
  5042. size_t id = 0;
  5043. const size_t rs = ne00 * nb00;
  5044. char * dst_ptr = (char *) dst->data;
  5045. for (int i03 = 0; i03 < ne03; i03++) {
  5046. for (int i02 = 0; i02 < ne02; i02++) {
  5047. id += rs * ir0;
  5048. for (int i01 = ir0; i01 < ir1; i01++) {
  5049. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5050. memcpy(dst_ptr + id, src0_ptr, rs);
  5051. id += rs;
  5052. }
  5053. id += rs * (ne01 - ir1);
  5054. }
  5055. }
  5056. } else if (dst->type == GGML_TYPE_F32) {
  5057. size_t id = 0;
  5058. float * dst_ptr = (float *) dst->data;
  5059. for (int i03 = 0; i03 < ne03; i03++) {
  5060. for (int i02 = 0; i02 < ne02; i02++) {
  5061. id += ne00 * ir0;
  5062. for (int i01 = ir0; i01 < ir1; i01++) {
  5063. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5064. for (int i00 = 0; i00 < ne00; i00++) {
  5065. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5066. id++;
  5067. }
  5068. }
  5069. id += ne00 * (ne01 - ir1);
  5070. }
  5071. }
  5072. } else if (ggml_is_quantized(dst->type)) {
  5073. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5074. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5075. size_t id = 0;
  5076. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5077. char * dst_ptr = (char *) dst->data;
  5078. for (int i03 = 0; i03 < ne03; i03++) {
  5079. for (int i02 = 0; i02 < ne02; i02++) {
  5080. id += rs * ir0;
  5081. for (int i01 = ir0; i01 < ir1; i01++) {
  5082. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5083. for (int i00 = 0; i00 < ne00; i00++) {
  5084. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5085. }
  5086. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5087. id += rs;
  5088. }
  5089. id += rs * (ne01 - ir1);
  5090. }
  5091. }
  5092. } else {
  5093. GGML_ASSERT(false); // TODO: implement
  5094. }
  5095. } else {
  5096. //printf("%s: this is not optimal - fix me\n", __func__);
  5097. if (dst->type == GGML_TYPE_F32) {
  5098. size_t id = 0;
  5099. float * dst_ptr = (float *) dst->data;
  5100. for (int i03 = 0; i03 < ne03; i03++) {
  5101. for (int i02 = 0; i02 < ne02; i02++) {
  5102. id += ne00 * ir0;
  5103. for (int i01 = ir0; i01 < ir1; i01++) {
  5104. for (int i00 = 0; i00 < ne00; i00++) {
  5105. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5106. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5107. id++;
  5108. }
  5109. }
  5110. id += ne00 * (ne01 - ir1);
  5111. }
  5112. }
  5113. } else if (dst->type == GGML_TYPE_F16) {
  5114. size_t id = 0;
  5115. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5116. for (int i03 = 0; i03 < ne03; i03++) {
  5117. for (int i02 = 0; i02 < ne02; i02++) {
  5118. id += ne00 * ir0;
  5119. for (int i01 = ir0; i01 < ir1; i01++) {
  5120. for (int i00 = 0; i00 < ne00; i00++) {
  5121. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5122. dst_ptr[id] = *src0_ptr;
  5123. id++;
  5124. }
  5125. }
  5126. id += ne00 * (ne01 - ir1);
  5127. }
  5128. }
  5129. } else {
  5130. GGML_ASSERT(false); // TODO: implement
  5131. }
  5132. }
  5133. return;
  5134. }
  5135. // dst counters
  5136. int64_t i10 = 0;
  5137. int64_t i11 = 0;
  5138. int64_t i12 = 0;
  5139. int64_t i13 = 0;
  5140. if (dst->type == GGML_TYPE_F16) {
  5141. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5142. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5143. i10 += ne00 * ir0;
  5144. while (i10 >= ne0) {
  5145. i10 -= ne0;
  5146. if (++i11 == ne1) {
  5147. i11 = 0;
  5148. if (++i12 == ne2) {
  5149. i12 = 0;
  5150. if (++i13 == ne3) {
  5151. i13 = 0;
  5152. }
  5153. }
  5154. }
  5155. }
  5156. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5157. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5158. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5159. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5160. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5161. if (++i10 == ne00) {
  5162. i10 = 0;
  5163. if (++i11 == ne01) {
  5164. i11 = 0;
  5165. if (++i12 == ne02) {
  5166. i12 = 0;
  5167. if (++i13 == ne03) {
  5168. i13 = 0;
  5169. }
  5170. }
  5171. }
  5172. }
  5173. }
  5174. }
  5175. i10 += ne00 * (ne01 - ir1);
  5176. while (i10 >= ne0) {
  5177. i10 -= ne0;
  5178. if (++i11 == ne1) {
  5179. i11 = 0;
  5180. if (++i12 == ne2) {
  5181. i12 = 0;
  5182. if (++i13 == ne3) {
  5183. i13 = 0;
  5184. }
  5185. }
  5186. }
  5187. }
  5188. }
  5189. }
  5190. } else if (dst->type == GGML_TYPE_F32) {
  5191. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5193. i10 += ne00 * ir0;
  5194. while (i10 >= ne0) {
  5195. i10 -= ne0;
  5196. if (++i11 == ne1) {
  5197. i11 = 0;
  5198. if (++i12 == ne2) {
  5199. i12 = 0;
  5200. if (++i13 == ne3) {
  5201. i13 = 0;
  5202. }
  5203. }
  5204. }
  5205. }
  5206. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5207. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5208. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5209. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5210. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5211. if (++i10 == ne0) {
  5212. i10 = 0;
  5213. if (++i11 == ne1) {
  5214. i11 = 0;
  5215. if (++i12 == ne2) {
  5216. i12 = 0;
  5217. if (++i13 == ne3) {
  5218. i13 = 0;
  5219. }
  5220. }
  5221. }
  5222. }
  5223. }
  5224. }
  5225. i10 += ne00 * (ne01 - ir1);
  5226. while (i10 >= ne0) {
  5227. i10 -= ne0;
  5228. if (++i11 == ne1) {
  5229. i11 = 0;
  5230. if (++i12 == ne2) {
  5231. i12 = 0;
  5232. if (++i13 == ne3) {
  5233. i13 = 0;
  5234. }
  5235. }
  5236. }
  5237. }
  5238. }
  5239. }
  5240. } else {
  5241. GGML_ASSERT(false); // TODO: implement
  5242. }
  5243. }
  5244. static void ggml_compute_forward_dup_f32(
  5245. const struct ggml_compute_params * params,
  5246. const struct ggml_tensor * src0,
  5247. struct ggml_tensor * dst) {
  5248. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5250. return;
  5251. }
  5252. const int64_t ne00 = src0->ne[0];
  5253. const int64_t ne01 = src0->ne[1];
  5254. const int64_t ne02 = src0->ne[2];
  5255. const int64_t ne03 = src0->ne[3];
  5256. const int64_t ne0 = dst->ne[0];
  5257. const int64_t ne1 = dst->ne[1];
  5258. const int64_t ne2 = dst->ne[2];
  5259. const int64_t ne3 = dst->ne[3];
  5260. const size_t nb00 = src0->nb[0];
  5261. const size_t nb01 = src0->nb[1];
  5262. const size_t nb02 = src0->nb[2];
  5263. const size_t nb03 = src0->nb[3];
  5264. const size_t nb0 = dst->nb[0];
  5265. const size_t nb1 = dst->nb[1];
  5266. const size_t nb2 = dst->nb[2];
  5267. const size_t nb3 = dst->nb[3];
  5268. const int ith = params->ith; // thread index
  5269. const int nth = params->nth; // number of threads
  5270. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5271. // parallelize by elements
  5272. const int ne = ggml_nelements(dst);
  5273. const int dr = (ne + nth - 1) / nth;
  5274. const int ie0 = dr * ith;
  5275. const int ie1 = MIN(ie0 + dr, ne);
  5276. memcpy(
  5277. ((char *) dst->data + ie0*nb0),
  5278. ((char *) src0->data + ie0*nb00),
  5279. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5280. return;
  5281. }
  5282. // parallelize by rows
  5283. const int nr = ne01;
  5284. // number of rows per thread
  5285. const int dr = (nr + nth - 1) / nth;
  5286. // row range for this thread
  5287. const int ir0 = dr * ith;
  5288. const int ir1 = MIN(ir0 + dr, nr);
  5289. if (src0->type == dst->type &&
  5290. ne00 == ne0 &&
  5291. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5292. // copy by rows
  5293. const size_t rs = ne00*nb00;
  5294. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5295. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5296. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5297. memcpy(
  5298. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5299. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5300. rs);
  5301. }
  5302. }
  5303. }
  5304. return;
  5305. }
  5306. if (ggml_is_contiguous(dst)) {
  5307. // TODO: simplify
  5308. if (nb00 == sizeof(float)) {
  5309. if (dst->type == GGML_TYPE_F32) {
  5310. size_t id = 0;
  5311. const size_t rs = ne00 * nb00;
  5312. char * dst_ptr = (char *) dst->data;
  5313. for (int i03 = 0; i03 < ne03; i03++) {
  5314. for (int i02 = 0; i02 < ne02; i02++) {
  5315. id += rs * ir0;
  5316. for (int i01 = ir0; i01 < ir1; i01++) {
  5317. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5318. memcpy(dst_ptr + id, src0_ptr, rs);
  5319. id += rs;
  5320. }
  5321. id += rs * (ne01 - ir1);
  5322. }
  5323. }
  5324. } else if (dst->type == GGML_TYPE_F16) {
  5325. size_t id = 0;
  5326. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5327. for (int i03 = 0; i03 < ne03; i03++) {
  5328. for (int i02 = 0; i02 < ne02; i02++) {
  5329. id += ne00 * ir0;
  5330. for (int i01 = ir0; i01 < ir1; i01++) {
  5331. for (int i00 = 0; i00 < ne00; i00++) {
  5332. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5333. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5334. id++;
  5335. }
  5336. }
  5337. id += ne00 * (ne01 - ir1);
  5338. }
  5339. }
  5340. } else if (ggml_is_quantized(dst->type)) {
  5341. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5342. size_t id = 0;
  5343. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5344. char * dst_ptr = (char *) dst->data;
  5345. for (int i03 = 0; i03 < ne03; i03++) {
  5346. for (int i02 = 0; i02 < ne02; i02++) {
  5347. id += rs * ir0;
  5348. for (int i01 = ir0; i01 < ir1; i01++) {
  5349. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5350. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5351. id += rs;
  5352. }
  5353. id += rs * (ne01 - ir1);
  5354. }
  5355. }
  5356. } else {
  5357. GGML_ASSERT(false); // TODO: implement
  5358. }
  5359. } else {
  5360. //printf("%s: this is not optimal - fix me\n", __func__);
  5361. if (dst->type == GGML_TYPE_F32) {
  5362. size_t id = 0;
  5363. float * dst_ptr = (float *) dst->data;
  5364. for (int i03 = 0; i03 < ne03; i03++) {
  5365. for (int i02 = 0; i02 < ne02; i02++) {
  5366. id += ne00 * ir0;
  5367. for (int i01 = ir0; i01 < ir1; i01++) {
  5368. for (int i00 = 0; i00 < ne00; i00++) {
  5369. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5370. dst_ptr[id] = *src0_ptr;
  5371. id++;
  5372. }
  5373. }
  5374. id += ne00 * (ne01 - ir1);
  5375. }
  5376. }
  5377. } else if (dst->type == GGML_TYPE_F16) {
  5378. size_t id = 0;
  5379. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5380. for (int i03 = 0; i03 < ne03; i03++) {
  5381. for (int i02 = 0; i02 < ne02; i02++) {
  5382. id += ne00 * ir0;
  5383. for (int i01 = ir0; i01 < ir1; i01++) {
  5384. for (int i00 = 0; i00 < ne00; i00++) {
  5385. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5386. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5387. id++;
  5388. }
  5389. }
  5390. id += ne00 * (ne01 - ir1);
  5391. }
  5392. }
  5393. } else {
  5394. GGML_ASSERT(false); // TODO: implement
  5395. }
  5396. }
  5397. return;
  5398. }
  5399. // dst counters
  5400. int64_t i10 = 0;
  5401. int64_t i11 = 0;
  5402. int64_t i12 = 0;
  5403. int64_t i13 = 0;
  5404. if (dst->type == GGML_TYPE_F32) {
  5405. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5406. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5407. i10 += ne00 * ir0;
  5408. while (i10 >= ne0) {
  5409. i10 -= ne0;
  5410. if (++i11 == ne1) {
  5411. i11 = 0;
  5412. if (++i12 == ne2) {
  5413. i12 = 0;
  5414. if (++i13 == ne3) {
  5415. i13 = 0;
  5416. }
  5417. }
  5418. }
  5419. }
  5420. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5421. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5422. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5423. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5424. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5425. if (++i10 == ne0) {
  5426. i10 = 0;
  5427. if (++i11 == ne1) {
  5428. i11 = 0;
  5429. if (++i12 == ne2) {
  5430. i12 = 0;
  5431. if (++i13 == ne3) {
  5432. i13 = 0;
  5433. }
  5434. }
  5435. }
  5436. }
  5437. }
  5438. }
  5439. i10 += ne00 * (ne01 - ir1);
  5440. while (i10 >= ne0) {
  5441. i10 -= ne0;
  5442. if (++i11 == ne1) {
  5443. i11 = 0;
  5444. if (++i12 == ne2) {
  5445. i12 = 0;
  5446. if (++i13 == ne3) {
  5447. i13 = 0;
  5448. }
  5449. }
  5450. }
  5451. }
  5452. }
  5453. }
  5454. } else if (dst->type == GGML_TYPE_F16) {
  5455. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5456. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5457. i10 += ne00 * ir0;
  5458. while (i10 >= ne0) {
  5459. i10 -= ne0;
  5460. if (++i11 == ne1) {
  5461. i11 = 0;
  5462. if (++i12 == ne2) {
  5463. i12 = 0;
  5464. if (++i13 == ne3) {
  5465. i13 = 0;
  5466. }
  5467. }
  5468. }
  5469. }
  5470. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5471. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5472. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5473. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5474. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5475. if (++i10 == ne0) {
  5476. i10 = 0;
  5477. if (++i11 == ne1) {
  5478. i11 = 0;
  5479. if (++i12 == ne2) {
  5480. i12 = 0;
  5481. if (++i13 == ne3) {
  5482. i13 = 0;
  5483. }
  5484. }
  5485. }
  5486. }
  5487. }
  5488. }
  5489. i10 += ne00 * (ne01 - ir1);
  5490. while (i10 >= ne0) {
  5491. i10 -= ne0;
  5492. if (++i11 == ne1) {
  5493. i11 = 0;
  5494. if (++i12 == ne2) {
  5495. i12 = 0;
  5496. if (++i13 == ne3) {
  5497. i13 = 0;
  5498. }
  5499. }
  5500. }
  5501. }
  5502. }
  5503. }
  5504. } else {
  5505. GGML_ASSERT(false); // TODO: implement
  5506. }
  5507. }
  5508. static void ggml_compute_forward_dup(
  5509. const struct ggml_compute_params * params,
  5510. const struct ggml_tensor * src0,
  5511. struct ggml_tensor * dst) {
  5512. switch (src0->type) {
  5513. case GGML_TYPE_F16:
  5514. {
  5515. ggml_compute_forward_dup_f16(params, src0, dst);
  5516. } break;
  5517. case GGML_TYPE_F32:
  5518. {
  5519. ggml_compute_forward_dup_f32(params, src0, dst);
  5520. } break;
  5521. default:
  5522. {
  5523. GGML_ASSERT(false);
  5524. } break;
  5525. }
  5526. }
  5527. // ggml_compute_forward_add
  5528. static void ggml_compute_forward_add_f32(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. const struct ggml_tensor * src1,
  5532. struct ggml_tensor * dst) {
  5533. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5535. return;
  5536. }
  5537. const int ith = params->ith;
  5538. const int nth = params->nth;
  5539. const int n = ggml_nrows(src0);
  5540. const int nc = src0->ne[0];
  5541. const size_t nb00 = src0->nb[0];
  5542. const size_t nb01 = src0->nb[1];
  5543. const size_t nb10 = src1->nb[0];
  5544. const size_t nb11 = src1->nb[1];
  5545. const size_t nb0 = dst->nb[0];
  5546. const size_t nb1 = dst->nb[1];
  5547. GGML_ASSERT( nb0 == sizeof(float));
  5548. GGML_ASSERT(nb00 == sizeof(float));
  5549. if (nb10 == sizeof(float)) {
  5550. for (int j = ith; j < n; j += nth) {
  5551. #ifdef GGML_USE_ACCELERATE
  5552. vDSP_vadd(
  5553. (float *) ((char *) src0->data + j*nb01), 1,
  5554. (float *) ((char *) src1->data + j*nb11), 1,
  5555. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5556. #else
  5557. ggml_vec_add_f32(nc,
  5558. (float *) ((char *) dst->data + j*nb1),
  5559. (float *) ((char *) src0->data + j*nb01),
  5560. (float *) ((char *) src1->data + j*nb11));
  5561. #endif
  5562. }
  5563. } else {
  5564. // src1 is not contiguous
  5565. for (int j = ith; j < n; j += nth) {
  5566. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5567. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5568. for (int i = 0; i < nc; i++) {
  5569. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5570. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5571. }
  5572. }
  5573. }
  5574. }
  5575. static void ggml_compute_forward_add_f16_f32(
  5576. const struct ggml_compute_params * params,
  5577. const struct ggml_tensor * src0,
  5578. const struct ggml_tensor * src1,
  5579. struct ggml_tensor * dst) {
  5580. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5582. return;
  5583. }
  5584. const int ith = params->ith;
  5585. const int nth = params->nth;
  5586. const int n = ggml_nrows(src0);
  5587. const int nc = src0->ne[0];
  5588. const size_t nb00 = src0->nb[0];
  5589. const size_t nb01 = src0->nb[1];
  5590. const size_t nb10 = src1->nb[0];
  5591. const size_t nb11 = src1->nb[1];
  5592. const size_t nb0 = dst->nb[0];
  5593. const size_t nb1 = dst->nb[1];
  5594. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5595. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5596. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5597. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5598. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5599. if (nb10 == sizeof(float)) {
  5600. for (int j = ith; j < n; j += nth) {
  5601. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5602. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5603. for (int i = 0; i < nc; i++) {
  5604. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5605. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5606. }
  5607. }
  5608. }
  5609. else {
  5610. // src1 is not contiguous
  5611. GGML_ASSERT(false);
  5612. }
  5613. }
  5614. static void ggml_compute_forward_add_f16_f16(
  5615. const struct ggml_compute_params * params,
  5616. const struct ggml_tensor * src0,
  5617. const struct ggml_tensor * src1,
  5618. struct ggml_tensor * dst) {
  5619. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5621. return;
  5622. }
  5623. const int ith = params->ith;
  5624. const int nth = params->nth;
  5625. const int n = ggml_nrows(src0);
  5626. const int nc = src0->ne[0];
  5627. const size_t nb00 = src0->nb[0];
  5628. const size_t nb01 = src0->nb[1];
  5629. const size_t nb10 = src1->nb[0];
  5630. const size_t nb11 = src1->nb[1];
  5631. const size_t nb0 = dst->nb[0];
  5632. const size_t nb1 = dst->nb[1];
  5633. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5634. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5635. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5636. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5637. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5638. if (nb10 == sizeof(ggml_fp16_t)) {
  5639. for (int j = ith; j < n; j += nth) {
  5640. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5641. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5642. for (int i = 0; i < nc; i++) {
  5643. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5644. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5645. }
  5646. }
  5647. }
  5648. else {
  5649. // src1 is not contiguous
  5650. GGML_ASSERT(false);
  5651. }
  5652. }
  5653. static void ggml_compute_forward_add_q_f32(
  5654. const struct ggml_compute_params * params,
  5655. const struct ggml_tensor * src0,
  5656. const struct ggml_tensor * src1,
  5657. struct ggml_tensor * dst) {
  5658. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5660. return;
  5661. }
  5662. const int64_t ne00 = src0->ne[0];
  5663. const int64_t ne01 = src0->ne[1];
  5664. const int64_t ne02 = src0->ne[2];
  5665. const int64_t ne03 = src0->ne[3];
  5666. //const int64_t ne10 = src1->ne[0];
  5667. //const int64_t ne11 = src1->ne[1];
  5668. const int64_t ne12 = src1->ne[2];
  5669. const int64_t ne13 = src1->ne[3];
  5670. //const int64_t ne0 = dst->ne[0];
  5671. //const int64_t ne1 = dst->ne[1];
  5672. const int64_t ne2 = dst->ne[2];
  5673. const int64_t ne3 = dst->ne[3];
  5674. const int nb00 = src0->nb[0];
  5675. const int nb01 = src0->nb[1];
  5676. const int nb02 = src0->nb[2];
  5677. const int nb03 = src0->nb[3];
  5678. const int nb10 = src1->nb[0];
  5679. const int nb11 = src1->nb[1];
  5680. const int nb12 = src1->nb[2];
  5681. const int nb13 = src1->nb[3];
  5682. const int nb0 = dst->nb[0];
  5683. const int nb1 = dst->nb[1];
  5684. const int nb2 = dst->nb[2];
  5685. const int nb3 = dst->nb[3];
  5686. const int ith = params->ith;
  5687. const int nth = params->nth;
  5688. GGML_ASSERT(ne02 == ne12);
  5689. GGML_ASSERT(ne03 == ne13);
  5690. GGML_ASSERT(ne2 == ne12);
  5691. GGML_ASSERT(ne3 == ne13);
  5692. const enum ggml_type type = src0->type;
  5693. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5694. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5695. // we don't support permuted src0 or src1
  5696. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5697. GGML_ASSERT(nb10 == sizeof(float));
  5698. // dst cannot be transposed or permuted
  5699. GGML_ASSERT(nb0 <= nb1);
  5700. GGML_ASSERT(nb1 <= nb2);
  5701. GGML_ASSERT(nb2 <= nb3);
  5702. GGML_ASSERT(ggml_is_quantized(src0->type));
  5703. GGML_ASSERT(dst->type == src0->type);
  5704. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5705. // total rows in src0
  5706. const int nr = ne01*ne02*ne03;
  5707. // rows per thread
  5708. const int dr = (nr + nth - 1)/nth;
  5709. // row range for this thread
  5710. const int ir0 = dr*ith;
  5711. const int ir1 = MIN(ir0 + dr, nr);
  5712. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5713. for (int ir = ir0; ir < ir1; ++ir) {
  5714. // src0 indices
  5715. const int i03 = ir/(ne02*ne01);
  5716. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5717. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5718. // src1 and dst are same shape as src0 => same indices
  5719. const int i13 = i03;
  5720. const int i12 = i02;
  5721. const int i11 = i01;
  5722. const int i3 = i03;
  5723. const int i2 = i02;
  5724. const int i1 = i01;
  5725. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5726. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5727. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5728. assert(ne00 % 32 == 0);
  5729. // unquantize row from src0 to temp buffer
  5730. dequantize_row_q(src0_row, wdata, ne00);
  5731. // add src1
  5732. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5733. // quantize row to dst
  5734. quantize_row_q(wdata, dst_row, ne00);
  5735. }
  5736. }
  5737. static void ggml_compute_forward_add(
  5738. const struct ggml_compute_params * params,
  5739. const struct ggml_tensor * src0,
  5740. const struct ggml_tensor * src1,
  5741. struct ggml_tensor * dst) {
  5742. switch (src0->type) {
  5743. case GGML_TYPE_F32:
  5744. {
  5745. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5746. } break;
  5747. case GGML_TYPE_F16:
  5748. {
  5749. if (src1->type == GGML_TYPE_F16) {
  5750. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5751. }
  5752. else if (src1->type == GGML_TYPE_F32) {
  5753. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5754. }
  5755. else {
  5756. GGML_ASSERT(false);
  5757. }
  5758. } break;
  5759. case GGML_TYPE_Q4_0:
  5760. case GGML_TYPE_Q4_1:
  5761. case GGML_TYPE_Q4_2:
  5762. case GGML_TYPE_Q4_3:
  5763. case GGML_TYPE_Q5_0:
  5764. case GGML_TYPE_Q5_1:
  5765. case GGML_TYPE_Q8_0:
  5766. {
  5767. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5768. } break;
  5769. default:
  5770. {
  5771. GGML_ASSERT(false);
  5772. } break;
  5773. }
  5774. }
  5775. // ggml_compute_forward_sub
  5776. static void ggml_compute_forward_sub_f32(
  5777. const struct ggml_compute_params * params,
  5778. const struct ggml_tensor * src0,
  5779. const struct ggml_tensor * src1,
  5780. struct ggml_tensor * dst) {
  5781. assert(params->ith == 0);
  5782. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5783. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5784. return;
  5785. }
  5786. const int n = ggml_nrows(src0);
  5787. const int nc = src0->ne[0];
  5788. assert( dst->nb[0] == sizeof(float));
  5789. assert(src0->nb[0] == sizeof(float));
  5790. assert(src1->nb[0] == sizeof(float));
  5791. for (int i = 0; i < n; i++) {
  5792. ggml_vec_sub_f32(nc,
  5793. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5794. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5795. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5796. }
  5797. }
  5798. static void ggml_compute_forward_sub(
  5799. const struct ggml_compute_params * params,
  5800. const struct ggml_tensor * src0,
  5801. const struct ggml_tensor * src1,
  5802. struct ggml_tensor * dst) {
  5803. switch (src0->type) {
  5804. case GGML_TYPE_F32:
  5805. {
  5806. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5807. } break;
  5808. default:
  5809. {
  5810. GGML_ASSERT(false);
  5811. } break;
  5812. }
  5813. }
  5814. // ggml_compute_forward_mul
  5815. static void ggml_compute_forward_mul_f32(
  5816. const struct ggml_compute_params * params,
  5817. const struct ggml_tensor * src0,
  5818. const struct ggml_tensor * src1,
  5819. struct ggml_tensor * dst) {
  5820. assert(params->ith == 0);
  5821. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5823. return;
  5824. }
  5825. const int n = ggml_nrows(src0);
  5826. const int nc = src0->ne[0];
  5827. assert( dst->nb[0] == sizeof(float));
  5828. assert(src0->nb[0] == sizeof(float));
  5829. assert(src1->nb[0] == sizeof(float));
  5830. for (int i = 0; i < n; i++) {
  5831. ggml_vec_mul_f32(nc,
  5832. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5833. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5834. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5835. }
  5836. }
  5837. static void ggml_compute_forward_mul(
  5838. const struct ggml_compute_params * params,
  5839. const struct ggml_tensor * src0,
  5840. const struct ggml_tensor * src1,
  5841. struct ggml_tensor * dst) {
  5842. switch (src0->type) {
  5843. case GGML_TYPE_F32:
  5844. {
  5845. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5846. } break;
  5847. default:
  5848. {
  5849. GGML_ASSERT(false);
  5850. } break;
  5851. }
  5852. }
  5853. // ggml_compute_forward_div
  5854. static void ggml_compute_forward_div_f32(
  5855. const struct ggml_compute_params * params,
  5856. const struct ggml_tensor * src0,
  5857. const struct ggml_tensor * src1,
  5858. struct ggml_tensor * dst) {
  5859. assert(params->ith == 0);
  5860. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5862. return;
  5863. }
  5864. const int n = ggml_nrows(src0);
  5865. const int nc = src0->ne[0];
  5866. assert( dst->nb[0] == sizeof(float));
  5867. assert(src0->nb[0] == sizeof(float));
  5868. assert(src1->nb[0] == sizeof(float));
  5869. for (int i = 0; i < n; i++) {
  5870. ggml_vec_div_f32(nc,
  5871. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5872. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5873. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5874. }
  5875. }
  5876. static void ggml_compute_forward_div(
  5877. const struct ggml_compute_params * params,
  5878. const struct ggml_tensor * src0,
  5879. const struct ggml_tensor * src1,
  5880. struct ggml_tensor * dst) {
  5881. switch (src0->type) {
  5882. case GGML_TYPE_F32:
  5883. {
  5884. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5885. } break;
  5886. default:
  5887. {
  5888. GGML_ASSERT(false);
  5889. } break;
  5890. }
  5891. }
  5892. // ggml_compute_forward_sqr
  5893. static void ggml_compute_forward_sqr_f32(
  5894. const struct ggml_compute_params * params,
  5895. const struct ggml_tensor * src0,
  5896. struct ggml_tensor * dst) {
  5897. assert(params->ith == 0);
  5898. assert(ggml_are_same_shape(src0, dst));
  5899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5900. return;
  5901. }
  5902. const int n = ggml_nrows(src0);
  5903. const int nc = src0->ne[0];
  5904. assert( dst->nb[0] == sizeof(float));
  5905. assert(src0->nb[0] == sizeof(float));
  5906. for (int i = 0; i < n; i++) {
  5907. ggml_vec_sqr_f32(nc,
  5908. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5909. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5910. }
  5911. }
  5912. static void ggml_compute_forward_sqr(
  5913. const struct ggml_compute_params * params,
  5914. const struct ggml_tensor * src0,
  5915. struct ggml_tensor * dst) {
  5916. switch (src0->type) {
  5917. case GGML_TYPE_F32:
  5918. {
  5919. ggml_compute_forward_sqr_f32(params, src0, dst);
  5920. } break;
  5921. default:
  5922. {
  5923. GGML_ASSERT(false);
  5924. } break;
  5925. }
  5926. }
  5927. // ggml_compute_forward_sqrt
  5928. static void ggml_compute_forward_sqrt_f32(
  5929. const struct ggml_compute_params * params,
  5930. const struct ggml_tensor * src0,
  5931. struct ggml_tensor * dst) {
  5932. assert(params->ith == 0);
  5933. assert(ggml_are_same_shape(src0, dst));
  5934. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5935. return;
  5936. }
  5937. const int n = ggml_nrows(src0);
  5938. const int nc = src0->ne[0];
  5939. assert( dst->nb[0] == sizeof(float));
  5940. assert(src0->nb[0] == sizeof(float));
  5941. for (int i = 0; i < n; i++) {
  5942. ggml_vec_sqrt_f32(nc,
  5943. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5944. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5945. }
  5946. }
  5947. static void ggml_compute_forward_sqrt(
  5948. const struct ggml_compute_params * params,
  5949. const struct ggml_tensor * src0,
  5950. struct ggml_tensor * dst) {
  5951. switch (src0->type) {
  5952. case GGML_TYPE_F32:
  5953. {
  5954. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5955. } break;
  5956. default:
  5957. {
  5958. GGML_ASSERT(false);
  5959. } break;
  5960. }
  5961. }
  5962. // ggml_compute_forward_sum
  5963. static void ggml_compute_forward_sum_f32(
  5964. const struct ggml_compute_params * params,
  5965. const struct ggml_tensor * src0,
  5966. struct ggml_tensor * dst) {
  5967. assert(params->ith == 0);
  5968. assert(ggml_is_scalar(dst));
  5969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5970. return;
  5971. }
  5972. assert(ggml_is_scalar(dst));
  5973. assert(src0->nb[0] == sizeof(float));
  5974. const int64_t ne00 = src0->ne[0];
  5975. const int64_t ne01 = src0->ne[1];
  5976. const int64_t ne02 = src0->ne[2];
  5977. const int64_t ne03 = src0->ne[3];
  5978. const size_t nb01 = src0->nb[1];
  5979. const size_t nb02 = src0->nb[2];
  5980. const size_t nb03 = src0->nb[3];
  5981. ggml_float sum = 0;
  5982. ggml_float row_sum = 0;
  5983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5985. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5986. ggml_vec_sum_ggf(ne00,
  5987. &row_sum,
  5988. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5989. sum += row_sum;
  5990. }
  5991. }
  5992. }
  5993. ((float *) dst->data)[0] = sum;
  5994. }
  5995. static void ggml_compute_forward_sum(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. struct ggml_tensor * dst) {
  5999. switch (src0->type) {
  6000. case GGML_TYPE_F32:
  6001. {
  6002. ggml_compute_forward_sum_f32(params, src0, dst);
  6003. } break;
  6004. default:
  6005. {
  6006. GGML_ASSERT(false);
  6007. } break;
  6008. }
  6009. }
  6010. // ggml_compute_forward_mean
  6011. static void ggml_compute_forward_mean_f32(
  6012. const struct ggml_compute_params * params,
  6013. const struct ggml_tensor * src0,
  6014. struct ggml_tensor * dst) {
  6015. assert(params->ith == 0);
  6016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6017. return;
  6018. }
  6019. assert(src0->nb[0] == sizeof(float));
  6020. const int64_t ne00 = src0->ne[0];
  6021. const int64_t ne01 = src0->ne[1];
  6022. const int64_t ne02 = src0->ne[2];
  6023. const int64_t ne03 = src0->ne[3];
  6024. const size_t nb01 = src0->nb[1];
  6025. const size_t nb02 = src0->nb[2];
  6026. const size_t nb03 = src0->nb[3];
  6027. const int64_t ne0 = dst->ne[0];
  6028. const int64_t ne1 = dst->ne[1];
  6029. const int64_t ne2 = dst->ne[2];
  6030. const int64_t ne3 = dst->ne[3];
  6031. assert(ne0 == 1);
  6032. assert(ne1 == ne01);
  6033. assert(ne2 == ne02);
  6034. assert(ne3 == ne03);
  6035. UNUSED(ne0);
  6036. UNUSED(ne1);
  6037. UNUSED(ne2);
  6038. UNUSED(ne3);
  6039. const size_t nb1 = dst->nb[1];
  6040. const size_t nb2 = dst->nb[2];
  6041. const size_t nb3 = dst->nb[3];
  6042. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6043. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6044. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6045. ggml_vec_sum_f32(ne00,
  6046. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6047. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6048. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6049. }
  6050. }
  6051. }
  6052. }
  6053. static void ggml_compute_forward_mean(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. struct ggml_tensor * dst) {
  6057. switch (src0->type) {
  6058. case GGML_TYPE_F32:
  6059. {
  6060. ggml_compute_forward_mean_f32(params, src0, dst);
  6061. } break;
  6062. default:
  6063. {
  6064. GGML_ASSERT(false);
  6065. } break;
  6066. }
  6067. }
  6068. // ggml_compute_forward_repeat
  6069. static void ggml_compute_forward_repeat_f32(
  6070. const struct ggml_compute_params * params,
  6071. const struct ggml_tensor * src0,
  6072. struct ggml_tensor * dst) {
  6073. assert(params->ith == 0);
  6074. assert(ggml_can_repeat(src0, dst));
  6075. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6076. return;
  6077. }
  6078. // TODO: implement support for rank > 2 tensors
  6079. assert(src0->ne[2] == 1);
  6080. assert(src0->ne[3] == 1);
  6081. assert( dst->ne[2] == 1);
  6082. assert( dst->ne[3] == 1);
  6083. const int nc = dst->ne[0];
  6084. const int nr = dst->ne[1];
  6085. const int nc0 = src0->ne[0];
  6086. const int nr0 = src0->ne[1];
  6087. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6088. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6089. // TODO: support for transposed / permuted tensors
  6090. assert( dst->nb[0] == sizeof(float));
  6091. assert(src0->nb[0] == sizeof(float));
  6092. // TODO: maybe this is not optimal?
  6093. for (int i = 0; i < nrr; i++) {
  6094. for (int j = 0; j < ncr; j++) {
  6095. for (int k = 0; k < nr0; k++) {
  6096. ggml_vec_cpy_f32(nc0,
  6097. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6098. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6099. }
  6100. }
  6101. }
  6102. }
  6103. static void ggml_compute_forward_repeat(
  6104. const struct ggml_compute_params * params,
  6105. const struct ggml_tensor * src0,
  6106. struct ggml_tensor * dst) {
  6107. switch (src0->type) {
  6108. case GGML_TYPE_F32:
  6109. {
  6110. ggml_compute_forward_repeat_f32(params, src0, dst);
  6111. } break;
  6112. default:
  6113. {
  6114. GGML_ASSERT(false);
  6115. } break;
  6116. }
  6117. }
  6118. // ggml_compute_forward_abs
  6119. static void ggml_compute_forward_abs_f32(
  6120. const struct ggml_compute_params * params,
  6121. const struct ggml_tensor * src0,
  6122. struct ggml_tensor * dst) {
  6123. assert(params->ith == 0);
  6124. assert(ggml_are_same_shape(src0, dst));
  6125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6126. return;
  6127. }
  6128. const int n = ggml_nrows(src0);
  6129. const int nc = src0->ne[0];
  6130. assert(dst->nb[0] == sizeof(float));
  6131. assert(src0->nb[0] == sizeof(float));
  6132. for (int i = 0; i < n; i++) {
  6133. ggml_vec_abs_f32(nc,
  6134. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6135. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6136. }
  6137. }
  6138. static void ggml_compute_forward_abs(
  6139. const struct ggml_compute_params * params,
  6140. const struct ggml_tensor * src0,
  6141. struct ggml_tensor * dst) {
  6142. switch (src0->type) {
  6143. case GGML_TYPE_F32:
  6144. {
  6145. ggml_compute_forward_abs_f32(params, src0, dst);
  6146. } break;
  6147. default:
  6148. {
  6149. GGML_ASSERT(false);
  6150. } break;
  6151. }
  6152. }
  6153. // ggml_compute_forward_sgn
  6154. static void ggml_compute_forward_sgn_f32(
  6155. const struct ggml_compute_params * params,
  6156. const struct ggml_tensor * src0,
  6157. struct ggml_tensor * dst) {
  6158. assert(params->ith == 0);
  6159. assert(ggml_are_same_shape(src0, dst));
  6160. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6161. return;
  6162. }
  6163. const int n = ggml_nrows(src0);
  6164. const int nc = src0->ne[0];
  6165. assert(dst->nb[0] == sizeof(float));
  6166. assert(src0->nb[0] == sizeof(float));
  6167. for (int i = 0; i < n; i++) {
  6168. ggml_vec_sgn_f32(nc,
  6169. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6170. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6171. }
  6172. }
  6173. static void ggml_compute_forward_sgn(
  6174. const struct ggml_compute_params * params,
  6175. const struct ggml_tensor * src0,
  6176. struct ggml_tensor * dst) {
  6177. switch (src0->type) {
  6178. case GGML_TYPE_F32:
  6179. {
  6180. ggml_compute_forward_sgn_f32(params, src0, dst);
  6181. } break;
  6182. default:
  6183. {
  6184. GGML_ASSERT(false);
  6185. } break;
  6186. }
  6187. }
  6188. // ggml_compute_forward_neg
  6189. static void ggml_compute_forward_neg_f32(
  6190. const struct ggml_compute_params * params,
  6191. const struct ggml_tensor * src0,
  6192. struct ggml_tensor * dst) {
  6193. assert(params->ith == 0);
  6194. assert(ggml_are_same_shape(src0, dst));
  6195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6196. return;
  6197. }
  6198. const int n = ggml_nrows(src0);
  6199. const int nc = src0->ne[0];
  6200. assert(dst->nb[0] == sizeof(float));
  6201. assert(src0->nb[0] == sizeof(float));
  6202. for (int i = 0; i < n; i++) {
  6203. ggml_vec_neg_f32(nc,
  6204. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6205. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6206. }
  6207. }
  6208. static void ggml_compute_forward_neg(
  6209. const struct ggml_compute_params * params,
  6210. const struct ggml_tensor * src0,
  6211. struct ggml_tensor * dst) {
  6212. switch (src0->type) {
  6213. case GGML_TYPE_F32:
  6214. {
  6215. ggml_compute_forward_neg_f32(params, src0, dst);
  6216. } break;
  6217. default:
  6218. {
  6219. GGML_ASSERT(false);
  6220. } break;
  6221. }
  6222. }
  6223. // ggml_compute_forward_step
  6224. static void ggml_compute_forward_step_f32(
  6225. const struct ggml_compute_params * params,
  6226. const struct ggml_tensor * src0,
  6227. struct ggml_tensor * dst) {
  6228. assert(params->ith == 0);
  6229. assert(ggml_are_same_shape(src0, dst));
  6230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6231. return;
  6232. }
  6233. const int n = ggml_nrows(src0);
  6234. const int nc = src0->ne[0];
  6235. assert(dst->nb[0] == sizeof(float));
  6236. assert(src0->nb[0] == sizeof(float));
  6237. for (int i = 0; i < n; i++) {
  6238. ggml_vec_step_f32(nc,
  6239. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6240. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6241. }
  6242. }
  6243. static void ggml_compute_forward_step(
  6244. const struct ggml_compute_params * params,
  6245. const struct ggml_tensor * src0,
  6246. struct ggml_tensor * dst) {
  6247. switch (src0->type) {
  6248. case GGML_TYPE_F32:
  6249. {
  6250. ggml_compute_forward_step_f32(params, src0, dst);
  6251. } break;
  6252. default:
  6253. {
  6254. GGML_ASSERT(false);
  6255. } break;
  6256. }
  6257. }
  6258. // ggml_compute_forward_relu
  6259. static void ggml_compute_forward_relu_f32(
  6260. const struct ggml_compute_params * params,
  6261. const struct ggml_tensor * src0,
  6262. struct ggml_tensor * dst) {
  6263. assert(params->ith == 0);
  6264. assert(ggml_are_same_shape(src0, dst));
  6265. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6266. return;
  6267. }
  6268. const int n = ggml_nrows(src0);
  6269. const int nc = src0->ne[0];
  6270. assert(dst->nb[0] == sizeof(float));
  6271. assert(src0->nb[0] == sizeof(float));
  6272. for (int i = 0; i < n; i++) {
  6273. ggml_vec_relu_f32(nc,
  6274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6276. }
  6277. }
  6278. static void ggml_compute_forward_relu(
  6279. const struct ggml_compute_params * params,
  6280. const struct ggml_tensor * src0,
  6281. struct ggml_tensor * dst) {
  6282. switch (src0->type) {
  6283. case GGML_TYPE_F32:
  6284. {
  6285. ggml_compute_forward_relu_f32(params, src0, dst);
  6286. } break;
  6287. default:
  6288. {
  6289. GGML_ASSERT(false);
  6290. } break;
  6291. }
  6292. }
  6293. // ggml_compute_forward_gelu
  6294. static void ggml_compute_forward_gelu_f32(
  6295. const struct ggml_compute_params * params,
  6296. const struct ggml_tensor * src0,
  6297. struct ggml_tensor * dst) {
  6298. GGML_ASSERT(ggml_is_contiguous(src0));
  6299. GGML_ASSERT(ggml_is_contiguous(dst));
  6300. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6301. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6302. return;
  6303. }
  6304. const int ith = params->ith;
  6305. const int nth = params->nth;
  6306. const int nc = src0->ne[0];
  6307. const int nr = ggml_nrows(src0);
  6308. // rows per thread
  6309. const int dr = (nr + nth - 1)/nth;
  6310. // row range for this thread
  6311. const int ir0 = dr*ith;
  6312. const int ir1 = MIN(ir0 + dr, nr);
  6313. for (int i1 = ir0; i1 < ir1; i1++) {
  6314. ggml_vec_gelu_f32(nc,
  6315. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6316. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6317. #ifndef NDEBUG
  6318. for (int k = 0; k < nc; k++) {
  6319. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6320. UNUSED(x);
  6321. assert(!isnan(x));
  6322. assert(!isinf(x));
  6323. }
  6324. #endif
  6325. }
  6326. }
  6327. static void ggml_compute_forward_gelu(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. struct ggml_tensor * dst) {
  6331. switch (src0->type) {
  6332. case GGML_TYPE_F32:
  6333. {
  6334. ggml_compute_forward_gelu_f32(params, src0, dst);
  6335. } break;
  6336. default:
  6337. {
  6338. GGML_ASSERT(false);
  6339. } break;
  6340. }
  6341. //printf("XXXXXXXX gelu\n");
  6342. }
  6343. // ggml_compute_forward_silu
  6344. static void ggml_compute_forward_silu_f32(
  6345. const struct ggml_compute_params * params,
  6346. const struct ggml_tensor * src0,
  6347. struct ggml_tensor * dst) {
  6348. GGML_ASSERT(ggml_is_contiguous(src0));
  6349. GGML_ASSERT(ggml_is_contiguous(dst));
  6350. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6352. return;
  6353. }
  6354. const int ith = params->ith;
  6355. const int nth = params->nth;
  6356. const int nc = src0->ne[0];
  6357. const int nr = ggml_nrows(src0);
  6358. // rows per thread
  6359. const int dr = (nr + nth - 1)/nth;
  6360. // row range for this thread
  6361. const int ir0 = dr*ith;
  6362. const int ir1 = MIN(ir0 + dr, nr);
  6363. for (int i1 = ir0; i1 < ir1; i1++) {
  6364. ggml_vec_silu_f32(nc,
  6365. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6366. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6367. #ifndef NDEBUG
  6368. for (int k = 0; k < nc; k++) {
  6369. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6370. UNUSED(x);
  6371. assert(!isnan(x));
  6372. assert(!isinf(x));
  6373. }
  6374. #endif
  6375. }
  6376. }
  6377. static void ggml_compute_forward_silu(
  6378. const struct ggml_compute_params * params,
  6379. const struct ggml_tensor * src0,
  6380. struct ggml_tensor * dst) {
  6381. switch (src0->type) {
  6382. case GGML_TYPE_F32:
  6383. {
  6384. ggml_compute_forward_silu_f32(params, src0, dst);
  6385. } break;
  6386. default:
  6387. {
  6388. GGML_ASSERT(false);
  6389. } break;
  6390. }
  6391. }
  6392. // ggml_compute_forward_norm
  6393. static void ggml_compute_forward_norm_f32(
  6394. const struct ggml_compute_params * params,
  6395. const struct ggml_tensor * src0,
  6396. struct ggml_tensor * dst) {
  6397. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6399. return;
  6400. }
  6401. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6402. const int ith = params->ith;
  6403. const int nth = params->nth;
  6404. const int64_t ne00 = src0->ne[0];
  6405. const int64_t ne01 = src0->ne[1];
  6406. const int64_t ne02 = src0->ne[2];
  6407. const int64_t ne03 = src0->ne[3];
  6408. const size_t nb01 = src0->nb[1];
  6409. const size_t nb02 = src0->nb[2];
  6410. const size_t nb03 = src0->nb[3];
  6411. const size_t nb1 = dst->nb[1];
  6412. const size_t nb2 = dst->nb[2];
  6413. const size_t nb3 = dst->nb[3];
  6414. const float eps = 1e-5f; // TODO: make this a parameter
  6415. // TODO: optimize
  6416. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6417. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6418. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6419. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6420. ggml_float sum = 0.0;
  6421. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6422. sum += (ggml_float)x[i00];
  6423. }
  6424. float mean = sum/ne00;
  6425. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6426. ggml_float sum2 = 0.0;
  6427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6428. float v = x[i00] - mean;
  6429. y[i00] = v;
  6430. sum2 += (ggml_float)(v*v);
  6431. }
  6432. float variance = sum2/ne00;
  6433. const float scale = 1.0f/sqrtf(variance + eps);
  6434. ggml_vec_scale_f32(ne00, y, scale);
  6435. }
  6436. }
  6437. }
  6438. }
  6439. static void ggml_compute_forward_norm(
  6440. const struct ggml_compute_params * params,
  6441. const struct ggml_tensor * src0,
  6442. struct ggml_tensor * dst) {
  6443. switch (src0->type) {
  6444. case GGML_TYPE_F32:
  6445. {
  6446. ggml_compute_forward_norm_f32(params, src0, dst);
  6447. } break;
  6448. default:
  6449. {
  6450. GGML_ASSERT(false);
  6451. } break;
  6452. }
  6453. }
  6454. static void ggml_compute_forward_rms_norm_f32(
  6455. const struct ggml_compute_params * params,
  6456. const struct ggml_tensor * src0,
  6457. struct ggml_tensor * dst) {
  6458. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6460. return;
  6461. }
  6462. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6463. const int ith = params->ith;
  6464. const int nth = params->nth;
  6465. const int64_t ne00 = src0->ne[0];
  6466. const int64_t ne01 = src0->ne[1];
  6467. const int64_t ne02 = src0->ne[2];
  6468. const int64_t ne03 = src0->ne[3];
  6469. const size_t nb01 = src0->nb[1];
  6470. const size_t nb02 = src0->nb[2];
  6471. const size_t nb03 = src0->nb[3];
  6472. const size_t nb1 = dst->nb[1];
  6473. const size_t nb2 = dst->nb[2];
  6474. const size_t nb3 = dst->nb[3];
  6475. const float eps = 1e-6f; // TODO: make this a parameter
  6476. // TODO: optimize
  6477. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6478. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6479. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6480. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6481. ggml_float sum = 0.0;
  6482. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6483. sum += (ggml_float)(x[i00] * x[i00]);
  6484. }
  6485. float mean = sum/ne00;
  6486. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6487. memcpy(y, x, ne00 * sizeof(float));
  6488. // for (int i00 = 0; i00 < ne00; i00++) {
  6489. // y[i00] = x[i00];
  6490. // }
  6491. const float scale = 1.0f/sqrtf(mean + eps);
  6492. ggml_vec_scale_f32(ne00, y, scale);
  6493. }
  6494. }
  6495. }
  6496. }
  6497. static void ggml_compute_forward_rms_norm(
  6498. const struct ggml_compute_params * params,
  6499. const struct ggml_tensor * src0,
  6500. struct ggml_tensor * dst) {
  6501. switch (src0->type) {
  6502. case GGML_TYPE_F32:
  6503. {
  6504. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6505. } break;
  6506. default:
  6507. {
  6508. GGML_ASSERT(false);
  6509. } break;
  6510. }
  6511. }
  6512. // ggml_compute_forward_mul_mat
  6513. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6514. // helper function to determine if it is better to use BLAS or not
  6515. // for large matrices, BLAS is faster
  6516. static bool ggml_compute_forward_mul_mat_use_blas(
  6517. const struct ggml_tensor * src0,
  6518. const struct ggml_tensor * src1,
  6519. struct ggml_tensor * dst) {
  6520. //const int64_t ne00 = src0->ne[0];
  6521. //const int64_t ne01 = src0->ne[1];
  6522. const int64_t ne10 = src1->ne[0];
  6523. const int64_t ne0 = dst->ne[0];
  6524. const int64_t ne1 = dst->ne[1];
  6525. // TODO: find the optimal values for these
  6526. if (ggml_is_contiguous(src0) &&
  6527. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6528. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6529. return true;
  6530. }
  6531. return false;
  6532. }
  6533. #endif
  6534. static void ggml_compute_forward_mul_mat_f32(
  6535. const struct ggml_compute_params * params,
  6536. const struct ggml_tensor * src0,
  6537. const struct ggml_tensor * src1,
  6538. struct ggml_tensor * dst) {
  6539. int64_t t0 = ggml_perf_time_us();
  6540. UNUSED(t0);
  6541. const int64_t ne00 = src0->ne[0];
  6542. const int64_t ne01 = src0->ne[1];
  6543. const int64_t ne02 = src0->ne[2];
  6544. const int64_t ne03 = src0->ne[3];
  6545. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6546. const int64_t ne10 = src1->ne[0];
  6547. #endif
  6548. const int64_t ne11 = src1->ne[1];
  6549. #ifndef NDEBUG
  6550. const int64_t ne12 = src1->ne[2];
  6551. const int64_t ne13 = src1->ne[3];
  6552. const int64_t ne0 = dst->ne[0];
  6553. const int64_t ne1 = dst->ne[1];
  6554. const int64_t ne2 = dst->ne[2];
  6555. const int64_t ne3 = dst->ne[3];
  6556. const int nb00 = src0->nb[0];
  6557. #endif
  6558. const int nb01 = src0->nb[1];
  6559. const int nb02 = src0->nb[2];
  6560. const int nb03 = src0->nb[3];
  6561. #ifndef NDEBUG
  6562. const int nb10 = src1->nb[0];
  6563. #endif
  6564. const int nb11 = src1->nb[1];
  6565. const int nb12 = src1->nb[2];
  6566. const int nb13 = src1->nb[3];
  6567. const int nb0 = dst->nb[0];
  6568. const int nb1 = dst->nb[1];
  6569. const int nb2 = dst->nb[2];
  6570. const int nb3 = dst->nb[3];
  6571. const int ith = params->ith;
  6572. const int nth = params->nth;
  6573. assert(ne02 == ne12);
  6574. assert(ne03 == ne13);
  6575. assert(ne2 == ne12);
  6576. assert(ne3 == ne13);
  6577. // we don't support permuted src0 or src1
  6578. assert(nb00 == sizeof(float));
  6579. assert(nb10 == sizeof(float));
  6580. // dst cannot be transposed or permuted
  6581. assert(nb0 == sizeof(float));
  6582. assert(nb0 <= nb1);
  6583. assert(nb1 <= nb2);
  6584. assert(nb2 <= nb3);
  6585. assert(ne0 == ne01);
  6586. assert(ne1 == ne11);
  6587. assert(ne2 == ne02);
  6588. assert(ne3 == ne03);
  6589. // nb01 >= nb00 - src0 is not transposed
  6590. // compute by src0 rows
  6591. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6592. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6593. if (params->ith != 0) {
  6594. return;
  6595. }
  6596. if (params->type == GGML_TASK_INIT) {
  6597. return;
  6598. }
  6599. if (params->type == GGML_TASK_FINALIZE) {
  6600. return;
  6601. }
  6602. #if defined(GGML_USE_CUBLAS)
  6603. const float alpha = 1.0f;
  6604. const float beta = 0.0f;
  6605. const int x_ne = ne01 * ne10;
  6606. const int y_ne = ne11 * ne10;
  6607. const int d_ne = ne11 * ne01;
  6608. size_t x_size, y_size, d_size;
  6609. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6610. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6611. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6612. #endif
  6613. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6614. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6615. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6616. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6617. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6618. #if defined(GGML_USE_CUBLAS)
  6619. // copy data to device
  6620. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6621. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6622. // compute
  6623. CUBLAS_CHECK(
  6624. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6625. ne01, ne11, ne10,
  6626. &alpha, d_X, ne00,
  6627. d_Y, ne10,
  6628. &beta, d_D, ne01));
  6629. // copy data to host
  6630. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6631. #else
  6632. // zT = y * xT
  6633. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6634. ne11, ne01, ne10,
  6635. 1.0f, y, ne10,
  6636. x, ne00,
  6637. 0.0f, d, ne01);
  6638. #endif
  6639. }
  6640. }
  6641. #if defined(GGML_USE_CUBLAS)
  6642. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6643. ggml_cuda_pool_free(d_X, x_size);
  6644. ggml_cuda_pool_free(d_Y, y_size);
  6645. ggml_cuda_pool_free(d_D, d_size);
  6646. #endif
  6647. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6648. return;
  6649. }
  6650. #endif
  6651. if (params->type == GGML_TASK_INIT) {
  6652. return;
  6653. }
  6654. if (params->type == GGML_TASK_FINALIZE) {
  6655. return;
  6656. }
  6657. // parallelize by src0 rows using ggml_vec_dot_f32
  6658. // total rows in src0
  6659. const int nr = ne01*ne02*ne03;
  6660. // rows per thread
  6661. const int dr = (nr + nth - 1)/nth;
  6662. // row range for this thread
  6663. const int ir0 = dr*ith;
  6664. const int ir1 = MIN(ir0 + dr, nr);
  6665. for (int ir = ir0; ir < ir1; ++ir) {
  6666. // src0 indices
  6667. const int i03 = ir/(ne02*ne01);
  6668. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6669. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6670. for (int64_t ic = 0; ic < ne11; ++ic) {
  6671. // src1 indices
  6672. const int i13 = i03;
  6673. const int i12 = i02;
  6674. const int i11 = ic;
  6675. // dst indices
  6676. const int i0 = i01;
  6677. const int i1 = i11;
  6678. const int i2 = i02;
  6679. const int i3 = i03;
  6680. ggml_vec_dot_f32(ne00,
  6681. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6682. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6683. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6684. }
  6685. }
  6686. //int64_t t1 = ggml_perf_time_us();
  6687. //static int64_t acc = 0;
  6688. //acc += t1 - t0;
  6689. //if (t1 - t0 > 10) {
  6690. // printf("\n");
  6691. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6692. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6693. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6694. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6695. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6696. //}
  6697. }
  6698. static void ggml_compute_forward_mul_mat_f16_f32(
  6699. const struct ggml_compute_params * params,
  6700. const struct ggml_tensor * src0,
  6701. const struct ggml_tensor * src1,
  6702. struct ggml_tensor * dst) {
  6703. int64_t t0 = ggml_perf_time_us();
  6704. UNUSED(t0);
  6705. const int64_t ne00 = src0->ne[0];
  6706. const int64_t ne01 = src0->ne[1];
  6707. const int64_t ne02 = src0->ne[2];
  6708. const int64_t ne03 = src0->ne[3];
  6709. const int64_t ne10 = src1->ne[0];
  6710. const int64_t ne11 = src1->ne[1];
  6711. const int64_t ne12 = src1->ne[2];
  6712. const int64_t ne13 = src1->ne[3];
  6713. const int64_t ne0 = dst->ne[0];
  6714. const int64_t ne1 = dst->ne[1];
  6715. const int64_t ne2 = dst->ne[2];
  6716. const int64_t ne3 = dst->ne[3];
  6717. //const int64_t ne = ne0*ne1*ne2*ne3;
  6718. const int nb00 = src0->nb[0];
  6719. const int nb01 = src0->nb[1];
  6720. const int nb02 = src0->nb[2];
  6721. const int nb03 = src0->nb[3];
  6722. const int nb10 = src1->nb[0];
  6723. const int nb11 = src1->nb[1];
  6724. const int nb12 = src1->nb[2];
  6725. const int nb13 = src1->nb[3];
  6726. const int nb0 = dst->nb[0];
  6727. const int nb1 = dst->nb[1];
  6728. const int nb2 = dst->nb[2];
  6729. const int nb3 = dst->nb[3];
  6730. const int ith = params->ith;
  6731. const int nth = params->nth;
  6732. GGML_ASSERT(ne02 == ne12);
  6733. GGML_ASSERT(ne03 == ne13);
  6734. GGML_ASSERT(ne2 == ne12);
  6735. GGML_ASSERT(ne3 == ne13);
  6736. // TODO: we don't support permuted src0
  6737. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6738. // dst cannot be transposed or permuted
  6739. GGML_ASSERT(nb0 == sizeof(float));
  6740. GGML_ASSERT(nb0 <= nb1);
  6741. GGML_ASSERT(nb1 <= nb2);
  6742. GGML_ASSERT(nb2 <= nb3);
  6743. GGML_ASSERT(ne0 == ne01);
  6744. GGML_ASSERT(ne1 == ne11);
  6745. GGML_ASSERT(ne2 == ne02);
  6746. GGML_ASSERT(ne3 == ne03);
  6747. // nb01 >= nb00 - src0 is not transposed
  6748. // compute by src0 rows
  6749. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6750. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6751. GGML_ASSERT(nb10 == sizeof(float));
  6752. if (params->ith != 0) {
  6753. return;
  6754. }
  6755. if (params->type == GGML_TASK_INIT) {
  6756. return;
  6757. }
  6758. if (params->type == GGML_TASK_FINALIZE) {
  6759. return;
  6760. }
  6761. #if defined(GGML_USE_CUBLAS)
  6762. ggml_fp16_t * const wdata = params->wdata;
  6763. const float alpha = 1.0f;
  6764. const float beta = 0.0f;
  6765. const int x_ne = ne01 * ne10;
  6766. const int y_ne = ne11 * ne10;
  6767. const int d_ne = ne11 * ne01;
  6768. size_t x_size, y_size, d_size;
  6769. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6770. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6771. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6772. #else
  6773. float * const wdata = params->wdata;
  6774. #endif
  6775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6777. #if defined(GGML_USE_CUBLAS)
  6778. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6779. {
  6780. size_t id = 0;
  6781. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6782. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6783. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6784. }
  6785. }
  6786. }
  6787. #else
  6788. {
  6789. size_t id = 0;
  6790. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6791. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6792. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6793. }
  6794. }
  6795. }
  6796. #endif
  6797. #if defined(GGML_USE_CUBLAS)
  6798. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6799. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6800. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6801. // copy data to device
  6802. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6803. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6804. // compute
  6805. CUBLAS_CHECK(
  6806. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6807. ne01, ne11, ne10,
  6808. &alpha, d_X, CUDA_R_16F, ne00,
  6809. d_Y, CUDA_R_16F, ne10,
  6810. &beta, d_D, CUDA_R_32F, ne01,
  6811. CUBLAS_COMPUTE_32F,
  6812. CUBLAS_GEMM_DEFAULT));
  6813. // copy data to host
  6814. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6815. #else
  6816. const float * x = wdata;
  6817. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6818. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6819. // zT = y * xT
  6820. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6821. ne11, ne01, ne10,
  6822. 1.0f, y, ne10,
  6823. x, ne00,
  6824. 0.0f, d, ne01);
  6825. #endif
  6826. }
  6827. }
  6828. #if defined(GGML_USE_CUBLAS)
  6829. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6830. ggml_cuda_pool_free(d_X, x_size);
  6831. ggml_cuda_pool_free(d_Y, y_size);
  6832. ggml_cuda_pool_free(d_D, d_size);
  6833. #endif
  6834. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6835. return;
  6836. }
  6837. #endif
  6838. if (params->type == GGML_TASK_INIT) {
  6839. ggml_fp16_t * const wdata = params->wdata;
  6840. size_t id = 0;
  6841. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6842. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6843. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6844. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6845. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6846. }
  6847. }
  6848. }
  6849. }
  6850. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6851. return;
  6852. }
  6853. if (params->type == GGML_TASK_FINALIZE) {
  6854. return;
  6855. }
  6856. // fp16 -> half the size, so divide by 2
  6857. // TODO: do not support transposed src1
  6858. assert(nb10/2 == sizeof(ggml_fp16_t));
  6859. // parallelize by src0 rows using ggml_vec_dot_f16
  6860. // total rows in src0
  6861. const int nr = ne01*ne02*ne03;
  6862. // rows per thread
  6863. const int dr = (nr + nth - 1)/nth;
  6864. // row range for this thread
  6865. const int ir0 = dr*ith;
  6866. const int ir1 = MIN(ir0 + dr, nr);
  6867. ggml_fp16_t * wdata = params->wdata;
  6868. for (int ir = ir0; ir < ir1; ++ir) {
  6869. // src0 indices
  6870. const int i03 = ir/(ne02*ne01);
  6871. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6872. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6873. const int i13 = i03;
  6874. const int i12 = i02;
  6875. const int i0 = i01;
  6876. const int i2 = i02;
  6877. const int i3 = i03;
  6878. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6879. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6880. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6881. for (int64_t ic = 0; ic < ne11; ++ic) {
  6882. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6883. }
  6884. }
  6885. //int64_t t1 = ggml_time_us();
  6886. //static int64_t acc = 0;
  6887. //acc += t1 - t0;
  6888. //if (t1 - t0 > 10) {
  6889. // printf("\n");
  6890. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6891. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6892. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6893. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6894. //}
  6895. }
  6896. static void ggml_compute_forward_mul_mat_q_f32(
  6897. const struct ggml_compute_params * params,
  6898. const struct ggml_tensor * src0,
  6899. const struct ggml_tensor * src1,
  6900. struct ggml_tensor * dst) {
  6901. int64_t t0 = ggml_perf_time_us();
  6902. UNUSED(t0);
  6903. const int64_t ne00 = src0->ne[0];
  6904. const int64_t ne01 = src0->ne[1];
  6905. const int64_t ne02 = src0->ne[2];
  6906. const int64_t ne03 = src0->ne[3];
  6907. const int64_t ne10 = src1->ne[0];
  6908. const int64_t ne11 = src1->ne[1];
  6909. const int64_t ne12 = src1->ne[2];
  6910. const int64_t ne13 = src1->ne[3];
  6911. const int64_t ne0 = dst->ne[0];
  6912. const int64_t ne1 = dst->ne[1];
  6913. const int64_t ne2 = dst->ne[2];
  6914. const int64_t ne3 = dst->ne[3];
  6915. const int nb00 = src0->nb[0];
  6916. const int nb01 = src0->nb[1];
  6917. const int nb02 = src0->nb[2];
  6918. const int nb03 = src0->nb[3];
  6919. const int nb10 = src1->nb[0];
  6920. const int nb11 = src1->nb[1];
  6921. const int nb12 = src1->nb[2];
  6922. const int nb13 = src1->nb[3];
  6923. const int nb0 = dst->nb[0];
  6924. const int nb1 = dst->nb[1];
  6925. const int nb2 = dst->nb[2];
  6926. const int nb3 = dst->nb[3];
  6927. const int ith = params->ith;
  6928. const int nth = params->nth;
  6929. GGML_ASSERT(ne02 == ne12);
  6930. GGML_ASSERT(ne03 == ne13);
  6931. GGML_ASSERT(ne2 == ne12);
  6932. GGML_ASSERT(ne3 == ne13);
  6933. const enum ggml_type type = src0->type;
  6934. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6935. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6936. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6937. // we don't support permuted src0 or src1
  6938. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6939. GGML_ASSERT(nb10 == sizeof(float));
  6940. // dst cannot be transposed or permuted
  6941. GGML_ASSERT(nb0 == sizeof(float));
  6942. GGML_ASSERT(nb0 <= nb1);
  6943. GGML_ASSERT(nb1 <= nb2);
  6944. GGML_ASSERT(nb2 <= nb3);
  6945. GGML_ASSERT(ne0 == ne01);
  6946. GGML_ASSERT(ne1 == ne11);
  6947. GGML_ASSERT(ne2 == ne02);
  6948. GGML_ASSERT(ne3 == ne03);
  6949. // nb01 >= nb00 - src0 is not transposed
  6950. // compute by src0 rows
  6951. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6952. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6953. if (params->ith != 0) {
  6954. return;
  6955. }
  6956. if (params->type == GGML_TASK_INIT) {
  6957. return;
  6958. }
  6959. if (params->type == GGML_TASK_FINALIZE) {
  6960. return;
  6961. }
  6962. #if defined(GGML_USE_CUBLAS)
  6963. const float alpha = 1.0f;
  6964. const float beta = 0.0f;
  6965. const int x_ne = ne01 * ne10;
  6966. const int y_ne = ne11 * ne10;
  6967. const int d_ne = ne11 * ne01;
  6968. size_t x_size, y_size, d_size, q_size;
  6969. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6970. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6971. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6972. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6973. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6974. if (type == GGML_TYPE_Q4_0) {
  6975. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6976. }
  6977. else if (type == GGML_TYPE_Q4_1) {
  6978. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6979. }
  6980. else if (type == GGML_TYPE_Q4_2) {
  6981. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6982. }
  6983. else if (type == GGML_TYPE_Q4_3) {
  6984. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  6985. }
  6986. else if (type == GGML_TYPE_Q5_0) {
  6987. dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
  6988. }
  6989. else if (type == GGML_TYPE_Q5_1) {
  6990. dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
  6991. }
  6992. else if (type == GGML_TYPE_Q8_0) {
  6993. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  6994. }
  6995. else {
  6996. GGML_ASSERT(false);
  6997. }
  6998. #else
  6999. float * const wdata = params->wdata;
  7000. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7001. #endif
  7002. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7003. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7004. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7005. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7006. #if defined(GGML_USE_CUBLAS)
  7007. // copy and dequantize on device
  7008. CUDA_CHECK(
  7009. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  7010. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  7011. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  7012. CUDA_CHECK(cudaGetLastError());
  7013. #else
  7014. {
  7015. size_t id = 0;
  7016. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7017. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7018. id += ne00;
  7019. }
  7020. }
  7021. const float * x = wdata;
  7022. #endif
  7023. #if defined(GGML_USE_CUBLAS)
  7024. // copy data to device
  7025. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  7026. // compute
  7027. CUBLAS_CHECK(
  7028. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  7029. ne01, ne11, ne10,
  7030. &alpha, d_X, ne00,
  7031. d_Y, ne10,
  7032. &beta, d_D, ne01));
  7033. // copy data to host
  7034. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  7035. #else
  7036. // zT = y * xT
  7037. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7038. ne11, ne01, ne10,
  7039. 1.0f, y, ne10,
  7040. x, ne00,
  7041. 0.0f, d, ne01);
  7042. #endif
  7043. }
  7044. }
  7045. #if defined(GGML_USE_CUBLAS)
  7046. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  7047. ggml_cuda_pool_free(d_X, x_size);
  7048. ggml_cuda_pool_free(d_Y, y_size);
  7049. ggml_cuda_pool_free(d_D, d_size);
  7050. ggml_cuda_pool_free(d_Q, q_size);
  7051. #endif
  7052. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7053. return;
  7054. }
  7055. #endif
  7056. if (params->type == GGML_TASK_INIT) {
  7057. char * wdata = params->wdata;
  7058. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7059. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7060. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7061. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7062. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7063. wdata += row_size;
  7064. }
  7065. }
  7066. }
  7067. return;
  7068. }
  7069. if (params->type == GGML_TASK_FINALIZE) {
  7070. return;
  7071. }
  7072. // parallelize by src0 rows using ggml_vec_dot_q
  7073. // total rows in src0
  7074. const int nr = ne01*ne02*ne03;
  7075. // rows per thread
  7076. const int dr = (nr + nth - 1)/nth;
  7077. // row range for this thread
  7078. const int ir0 = dr*ith;
  7079. const int ir1 = MIN(ir0 + dr, nr);
  7080. void * wdata = params->wdata;
  7081. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7082. for (int ir = ir0; ir < ir1; ++ir) {
  7083. // src0 indices
  7084. const int i03 = ir/(ne02*ne01);
  7085. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7086. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7087. const int i13 = i03;
  7088. const int i12 = i02;
  7089. const int i0 = i01;
  7090. const int i2 = i02;
  7091. const int i3 = i03;
  7092. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7093. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7094. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7095. assert(ne00 % 32 == 0);
  7096. for (int64_t ic = 0; ic < ne11; ++ic) {
  7097. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7098. }
  7099. }
  7100. //int64_t t1 = ggml_time_us();
  7101. //static int64_t acc = 0;
  7102. //acc += t1 - t0;
  7103. //if (t1 - t0 > 10) {
  7104. // printf("\n");
  7105. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7106. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7107. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7108. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7109. //}
  7110. }
  7111. static void ggml_compute_forward_mul_mat(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. const struct ggml_tensor * src1,
  7115. struct ggml_tensor * dst) {
  7116. switch (src0->type) {
  7117. case GGML_TYPE_Q4_0:
  7118. case GGML_TYPE_Q4_1:
  7119. case GGML_TYPE_Q4_2:
  7120. case GGML_TYPE_Q4_3:
  7121. case GGML_TYPE_Q5_0:
  7122. case GGML_TYPE_Q5_1:
  7123. case GGML_TYPE_Q8_0:
  7124. case GGML_TYPE_Q8_1:
  7125. {
  7126. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7127. } break;
  7128. case GGML_TYPE_F16:
  7129. {
  7130. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7131. } break;
  7132. case GGML_TYPE_F32:
  7133. {
  7134. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7135. } break;
  7136. default:
  7137. {
  7138. GGML_ASSERT(false);
  7139. } break;
  7140. }
  7141. }
  7142. // ggml_compute_forward_scale
  7143. static void ggml_compute_forward_scale_f32(
  7144. const struct ggml_compute_params * params,
  7145. const struct ggml_tensor * src0,
  7146. const struct ggml_tensor * src1,
  7147. struct ggml_tensor * dst) {
  7148. GGML_ASSERT(ggml_is_contiguous(src0));
  7149. GGML_ASSERT(ggml_is_contiguous(dst));
  7150. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7151. GGML_ASSERT(ggml_is_scalar(src1));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. // scale factor
  7156. const float v = *(float *) src1->data;
  7157. const int ith = params->ith;
  7158. const int nth = params->nth;
  7159. const int nc = src0->ne[0];
  7160. const int nr = ggml_nrows(src0);
  7161. // rows per thread
  7162. const int dr = (nr + nth - 1)/nth;
  7163. // row range for this thread
  7164. const int ir0 = dr*ith;
  7165. const int ir1 = MIN(ir0 + dr, nr);
  7166. for (int i1 = ir0; i1 < ir1; i1++) {
  7167. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7168. }
  7169. }
  7170. static void ggml_compute_forward_scale(
  7171. const struct ggml_compute_params * params,
  7172. const struct ggml_tensor * src0,
  7173. const struct ggml_tensor * src1,
  7174. struct ggml_tensor * dst) {
  7175. switch (src0->type) {
  7176. case GGML_TYPE_F32:
  7177. {
  7178. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7179. } break;
  7180. default:
  7181. {
  7182. GGML_ASSERT(false);
  7183. } break;
  7184. }
  7185. }
  7186. // ggml_compute_forward_cpy
  7187. static void ggml_compute_forward_cpy(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. struct ggml_tensor * dst) {
  7191. ggml_compute_forward_dup(params, src0, dst);
  7192. }
  7193. // ggml_compute_forward_cont
  7194. static void ggml_compute_forward_cont(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. struct ggml_tensor * dst) {
  7198. ggml_compute_forward_dup(params, src0, dst);
  7199. }
  7200. // ggml_compute_forward_reshape
  7201. static void ggml_compute_forward_reshape(
  7202. const struct ggml_compute_params * params,
  7203. const struct ggml_tensor * src0,
  7204. struct ggml_tensor * dst) {
  7205. // NOP
  7206. UNUSED(params);
  7207. UNUSED(src0);
  7208. UNUSED(dst);
  7209. }
  7210. // ggml_compute_forward_view
  7211. static void ggml_compute_forward_view(
  7212. const struct ggml_compute_params * params,
  7213. const struct ggml_tensor * src0) {
  7214. // NOP
  7215. UNUSED(params);
  7216. UNUSED(src0);
  7217. }
  7218. // ggml_compute_forward_permute
  7219. static void ggml_compute_forward_permute(
  7220. const struct ggml_compute_params * params,
  7221. const struct ggml_tensor * src0) {
  7222. // NOP
  7223. UNUSED(params);
  7224. UNUSED(src0);
  7225. }
  7226. // ggml_compute_forward_transpose
  7227. static void ggml_compute_forward_transpose(
  7228. const struct ggml_compute_params * params,
  7229. const struct ggml_tensor * src0) {
  7230. // NOP
  7231. UNUSED(params);
  7232. UNUSED(src0);
  7233. }
  7234. // ggml_compute_forward_get_rows
  7235. static void ggml_compute_forward_get_rows_q(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. const struct ggml_tensor * src1,
  7239. struct ggml_tensor * dst) {
  7240. assert(params->ith == 0);
  7241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7242. return;
  7243. }
  7244. const int nc = src0->ne[0];
  7245. const int nr = ggml_nelements(src1);
  7246. const enum ggml_type type = src0->type;
  7247. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7248. assert( dst->ne[0] == nc);
  7249. assert( dst->ne[1] == nr);
  7250. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7251. for (int i = 0; i < nr; ++i) {
  7252. const int r = ((int32_t *) src1->data)[i];
  7253. dequantize_row_q(
  7254. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7255. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7256. }
  7257. }
  7258. static void ggml_compute_forward_get_rows_f16(
  7259. const struct ggml_compute_params * params,
  7260. const struct ggml_tensor * src0,
  7261. const struct ggml_tensor * src1,
  7262. struct ggml_tensor * dst) {
  7263. assert(params->ith == 0);
  7264. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7265. return;
  7266. }
  7267. const int nc = src0->ne[0];
  7268. const int nr = ggml_nelements(src1);
  7269. assert( dst->ne[0] == nc);
  7270. assert( dst->ne[1] == nr);
  7271. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7272. for (int i = 0; i < nr; ++i) {
  7273. const int r = ((int32_t *) src1->data)[i];
  7274. for (int j = 0; j < nc; ++j) {
  7275. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7276. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7277. }
  7278. }
  7279. }
  7280. static void ggml_compute_forward_get_rows_f32(
  7281. const struct ggml_compute_params * params,
  7282. const struct ggml_tensor * src0,
  7283. const struct ggml_tensor * src1,
  7284. struct ggml_tensor * dst) {
  7285. assert(params->ith == 0);
  7286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7287. return;
  7288. }
  7289. const int nc = src0->ne[0];
  7290. const int nr = ggml_nelements(src1);
  7291. assert( dst->ne[0] == nc);
  7292. assert( dst->ne[1] == nr);
  7293. assert(src0->nb[0] == sizeof(float));
  7294. for (int i = 0; i < nr; ++i) {
  7295. const int r = ((int32_t *) src1->data)[i];
  7296. ggml_vec_cpy_f32(nc,
  7297. (float *) ((char *) dst->data + i*dst->nb[1]),
  7298. (float *) ((char *) src0->data + r*src0->nb[1]));
  7299. }
  7300. }
  7301. static void ggml_compute_forward_get_rows(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. const struct ggml_tensor * src1,
  7305. struct ggml_tensor * dst) {
  7306. switch (src0->type) {
  7307. case GGML_TYPE_Q4_0:
  7308. case GGML_TYPE_Q4_1:
  7309. case GGML_TYPE_Q4_2:
  7310. case GGML_TYPE_Q4_3:
  7311. case GGML_TYPE_Q5_0:
  7312. case GGML_TYPE_Q5_1:
  7313. case GGML_TYPE_Q8_0:
  7314. case GGML_TYPE_Q8_1:
  7315. {
  7316. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7317. } break;
  7318. case GGML_TYPE_F16:
  7319. {
  7320. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7321. } break;
  7322. case GGML_TYPE_F32:
  7323. {
  7324. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7325. } break;
  7326. default:
  7327. {
  7328. GGML_ASSERT(false);
  7329. } break;
  7330. }
  7331. //static bool first = true;
  7332. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7333. //if (first) {
  7334. // first = false;
  7335. //} else {
  7336. // for (int k = 0; k < dst->ne[1]; ++k) {
  7337. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7338. // for (int i = 0; i < 16; ++i) {
  7339. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7340. // }
  7341. // printf("\n");
  7342. // }
  7343. // printf("\n");
  7344. // }
  7345. // printf("\n");
  7346. // exit(0);
  7347. //}
  7348. }
  7349. // ggml_compute_forward_diag_mask_inf
  7350. static void ggml_compute_forward_diag_mask_inf_f32(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. const struct ggml_tensor * src1,
  7354. struct ggml_tensor * dst) {
  7355. assert(params->ith == 0);
  7356. assert(src1->type == GGML_TYPE_I32);
  7357. assert(ggml_nelements(src1) == 1);
  7358. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7359. return;
  7360. }
  7361. const int n_past = ((int32_t *) src1->data)[0];
  7362. // TODO: handle transposed/permuted matrices
  7363. const int n = ggml_nrows(src0);
  7364. const int nc = src0->ne[0];
  7365. const int nr = src0->ne[1];
  7366. const int nz = n/nr;
  7367. assert( dst->nb[0] == sizeof(float));
  7368. assert(src0->nb[0] == sizeof(float));
  7369. for (int k = 0; k < nz; k++) {
  7370. for (int j = 0; j < nr; j++) {
  7371. for (int i = n_past; i < nc; i++) {
  7372. if (i > n_past + j) {
  7373. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7374. }
  7375. }
  7376. }
  7377. }
  7378. }
  7379. static void ggml_compute_forward_diag_mask_inf(
  7380. const struct ggml_compute_params * params,
  7381. const struct ggml_tensor * src0,
  7382. const struct ggml_tensor * src1,
  7383. struct ggml_tensor * dst) {
  7384. switch (src0->type) {
  7385. case GGML_TYPE_F32:
  7386. {
  7387. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7388. } break;
  7389. default:
  7390. {
  7391. GGML_ASSERT(false);
  7392. } break;
  7393. }
  7394. }
  7395. // ggml_compute_forward_soft_max
  7396. static void ggml_compute_forward_soft_max_f32(
  7397. const struct ggml_compute_params * params,
  7398. const struct ggml_tensor * src0,
  7399. struct ggml_tensor * dst) {
  7400. GGML_ASSERT(ggml_is_contiguous(src0));
  7401. GGML_ASSERT(ggml_is_contiguous(dst));
  7402. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7404. return;
  7405. }
  7406. // TODO: handle transposed/permuted matrices
  7407. const int ith = params->ith;
  7408. const int nth = params->nth;
  7409. const int nc = src0->ne[0];
  7410. const int nr = ggml_nrows(src0);
  7411. // rows per thread
  7412. const int dr = (nr + nth - 1)/nth;
  7413. // row range for this thread
  7414. const int ir0 = dr*ith;
  7415. const int ir1 = MIN(ir0 + dr, nr);
  7416. for (int i1 = ir0; i1 < ir1; i1++) {
  7417. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7418. #ifndef NDEBUG
  7419. for (int i = 0; i < nc; ++i) {
  7420. //printf("p[%d] = %f\n", i, p[i]);
  7421. assert(!isnan(p[i]));
  7422. }
  7423. #endif
  7424. float max = -INFINITY;
  7425. ggml_vec_max_f32(nc, &max, p);
  7426. ggml_float sum = 0.0;
  7427. uint16_t scvt;
  7428. for (int i = 0; i < nc; i++) {
  7429. if (p[i] == -INFINITY) {
  7430. p[i] = 0.0f;
  7431. } else {
  7432. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7433. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7434. memcpy(&scvt, &s, sizeof(scvt));
  7435. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7436. sum += (ggml_float)val;
  7437. p[i] = val;
  7438. }
  7439. }
  7440. assert(sum > 0.0);
  7441. sum = 1.0/sum;
  7442. ggml_vec_scale_f32(nc, p, sum);
  7443. #ifndef NDEBUG
  7444. for (int i = 0; i < nc; ++i) {
  7445. assert(!isnan(p[i]));
  7446. assert(!isinf(p[i]));
  7447. }
  7448. #endif
  7449. }
  7450. }
  7451. static void ggml_compute_forward_soft_max(
  7452. const struct ggml_compute_params * params,
  7453. const struct ggml_tensor * src0,
  7454. struct ggml_tensor * dst) {
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. {
  7458. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7459. } break;
  7460. default:
  7461. {
  7462. GGML_ASSERT(false);
  7463. } break;
  7464. }
  7465. }
  7466. // ggml_compute_forward_rope
  7467. static void ggml_compute_forward_rope_f32(
  7468. const struct ggml_compute_params * params,
  7469. const struct ggml_tensor * src0,
  7470. const struct ggml_tensor * src1,
  7471. struct ggml_tensor * dst) {
  7472. assert(src1->type == GGML_TYPE_I32);
  7473. assert(ggml_nelements(src1) == 3);
  7474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7475. return;
  7476. }
  7477. const int n_past = ((int32_t *) src1->data)[0];
  7478. const int n_dims = ((int32_t *) src1->data)[1];
  7479. const int mode = ((int32_t *) src1->data)[2];
  7480. //const int64_t ne0 = src0->ne[0];
  7481. const int64_t ne1 = src0->ne[1];
  7482. const int64_t ne2 = src0->ne[2];
  7483. const int64_t ne3 = src0->ne[3];
  7484. const int nb0 = src0->nb[0];
  7485. const int nb1 = src0->nb[1];
  7486. const int nb2 = src0->nb[2];
  7487. const int nb3 = src0->nb[3];
  7488. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7489. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7490. assert(nb0 == sizeof(float));
  7491. const int ith = params->ith;
  7492. const int nth = params->nth;
  7493. const int nr = ggml_nrows(src0);
  7494. // rows per thread
  7495. const int dr = (nr + nth - 1)/nth;
  7496. // row range for this thread
  7497. const int ir0 = dr*ith;
  7498. const int ir1 = MIN(ir0 + dr, nr);
  7499. // row index used to determine which thread to use
  7500. int ir = 0;
  7501. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7502. const bool is_neox = mode & 2;
  7503. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7504. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7505. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7506. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7507. if (ir++ < ir0) continue;
  7508. if (ir > ir1) break;
  7509. float theta = (float)p;
  7510. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7511. const float cos_theta = cosf(theta);
  7512. const float sin_theta = sinf(theta);
  7513. theta *= theta_scale;
  7514. if (!is_neox) {
  7515. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7516. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7517. const float x0 = src[0];
  7518. const float x1 = src[1];
  7519. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7520. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7521. } else {
  7522. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7523. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7524. const float x0 = src[0];
  7525. const float x1 = src[n_dims/2];
  7526. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7527. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7528. }
  7529. }
  7530. }
  7531. }
  7532. }
  7533. }
  7534. static void ggml_compute_forward_rope_f16(
  7535. const struct ggml_compute_params * params,
  7536. const struct ggml_tensor * src0,
  7537. const struct ggml_tensor * src1,
  7538. struct ggml_tensor * dst) {
  7539. assert(src1->type == GGML_TYPE_I32);
  7540. assert(ggml_nelements(src1) == 3);
  7541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7542. return;
  7543. }
  7544. const int n_past = ((int32_t *) src1->data)[0];
  7545. const int n_dims = ((int32_t *) src1->data)[1];
  7546. const int mode = ((int32_t *) src1->data)[2];
  7547. //const int64_t ne0 = src0->ne[0];
  7548. const int64_t ne1 = src0->ne[1];
  7549. const int64_t ne2 = src0->ne[2];
  7550. const int64_t ne3 = src0->ne[3];
  7551. const int nb0 = src0->nb[0];
  7552. const int nb1 = src0->nb[1];
  7553. const int nb2 = src0->nb[2];
  7554. const int nb3 = src0->nb[3];
  7555. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7556. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7557. assert(nb0 == sizeof(ggml_fp16_t));
  7558. const int ith = params->ith;
  7559. const int nth = params->nth;
  7560. const int nr = ggml_nrows(src0);
  7561. // rows per thread
  7562. const int dr = (nr + nth - 1)/nth;
  7563. // row range for this thread
  7564. const int ir0 = dr*ith;
  7565. const int ir1 = MIN(ir0 + dr, nr);
  7566. // row index used to determine which thread to use
  7567. int ir = 0;
  7568. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7569. const bool is_neox = mode & 2;
  7570. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7571. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7572. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7573. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7574. if (ir++ < ir0) continue;
  7575. if (ir > ir1) break;
  7576. float theta = (float)p;
  7577. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7578. const float cos_theta = cosf(theta);
  7579. const float sin_theta = sinf(theta);
  7580. theta *= theta_scale;
  7581. if (!is_neox) {
  7582. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7583. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7584. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7585. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7586. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7587. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7588. } else {
  7589. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7590. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7591. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7592. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7593. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7594. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7595. }
  7596. }
  7597. }
  7598. }
  7599. }
  7600. }
  7601. static void ggml_compute_forward_rope(
  7602. const struct ggml_compute_params * params,
  7603. const struct ggml_tensor * src0,
  7604. const struct ggml_tensor * src1,
  7605. struct ggml_tensor * dst) {
  7606. switch (src0->type) {
  7607. case GGML_TYPE_F16:
  7608. {
  7609. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7610. } break;
  7611. case GGML_TYPE_F32:
  7612. {
  7613. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7614. } break;
  7615. default:
  7616. {
  7617. GGML_ASSERT(false);
  7618. } break;
  7619. }
  7620. }
  7621. // ggml_compute_forward_conv_1d_1s
  7622. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * src0,
  7625. const struct ggml_tensor * src1,
  7626. struct ggml_tensor * dst) {
  7627. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7628. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7629. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7630. int64_t t0 = ggml_perf_time_us();
  7631. UNUSED(t0);
  7632. const int64_t ne00 = src0->ne[0];
  7633. const int64_t ne01 = src0->ne[1];
  7634. const int64_t ne02 = src0->ne[2];
  7635. //const int64_t ne03 = src0->ne[3];
  7636. const int64_t ne10 = src1->ne[0];
  7637. const int64_t ne11 = src1->ne[1];
  7638. //const int64_t ne12 = src1->ne[2];
  7639. //const int64_t ne13 = src1->ne[3];
  7640. //const int64_t ne0 = dst->ne[0];
  7641. //const int64_t ne1 = dst->ne[1];
  7642. //const int64_t ne2 = dst->ne[2];
  7643. //const int64_t ne3 = dst->ne[3];
  7644. //const int64_t ne = ne0*ne1*ne2*ne3;
  7645. const int nb00 = src0->nb[0];
  7646. const int nb01 = src0->nb[1];
  7647. const int nb02 = src0->nb[2];
  7648. //const int nb03 = src0->nb[3];
  7649. const int nb10 = src1->nb[0];
  7650. const int nb11 = src1->nb[1];
  7651. //const int nb12 = src1->nb[2];
  7652. //const int nb13 = src1->nb[3];
  7653. //const int nb0 = dst->nb[0];
  7654. const int nb1 = dst->nb[1];
  7655. //const int nb2 = dst->nb[2];
  7656. //const int nb3 = dst->nb[3];
  7657. const int ith = params->ith;
  7658. const int nth = params->nth;
  7659. const int nk = ne00;
  7660. const int nh = nk/2;
  7661. const int ew0 = ggml_up32(ne01);
  7662. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7663. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7664. GGML_ASSERT(nb10 == sizeof(float));
  7665. if (params->type == GGML_TASK_INIT) {
  7666. // TODO: fix this memset (wsize is overestimated)
  7667. memset(params->wdata, 0, params->wsize);
  7668. // prepare kernel data (src0)
  7669. {
  7670. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7672. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7673. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7674. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7676. dst_data[i00*ew0 + i01] = src[i00];
  7677. }
  7678. }
  7679. }
  7680. }
  7681. // prepare source data (src1)
  7682. {
  7683. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7684. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7685. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7686. ggml_fp16_t * dst_data = wdata;
  7687. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7688. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7689. }
  7690. }
  7691. }
  7692. return;
  7693. }
  7694. if (params->type == GGML_TASK_FINALIZE) {
  7695. return;
  7696. }
  7697. // total rows in dst
  7698. const int nr = ne02;
  7699. // rows per thread
  7700. const int dr = (nr + nth - 1)/nth;
  7701. // row range for this thread
  7702. const int ir0 = dr*ith;
  7703. const int ir1 = MIN(ir0 + dr, nr);
  7704. for (int i1 = ir0; i1 < ir1; i1++) {
  7705. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7706. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7707. dst_data[i0] = 0;
  7708. for (int k = -nh; k <= nh; k++) {
  7709. float v = 0.0f;
  7710. ggml_vec_dot_f16(ew0, &v,
  7711. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7712. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7713. dst_data[i0] += v;
  7714. }
  7715. }
  7716. }
  7717. }
  7718. static void ggml_compute_forward_conv_1d_1s_f32(
  7719. const struct ggml_compute_params * params,
  7720. const struct ggml_tensor * src0,
  7721. const struct ggml_tensor * src1,
  7722. struct ggml_tensor * dst) {
  7723. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7724. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7725. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7726. int64_t t0 = ggml_perf_time_us();
  7727. UNUSED(t0);
  7728. const int64_t ne00 = src0->ne[0];
  7729. const int64_t ne01 = src0->ne[1];
  7730. const int64_t ne02 = src0->ne[2];
  7731. //const int64_t ne03 = src0->ne[3];
  7732. const int64_t ne10 = src1->ne[0];
  7733. const int64_t ne11 = src1->ne[1];
  7734. //const int64_t ne12 = src1->ne[2];
  7735. //const int64_t ne13 = src1->ne[3];
  7736. //const int64_t ne0 = dst->ne[0];
  7737. //const int64_t ne1 = dst->ne[1];
  7738. //const int64_t ne2 = dst->ne[2];
  7739. //const int64_t ne3 = dst->ne[3];
  7740. //const int64_t ne = ne0*ne1*ne2*ne3;
  7741. const int nb00 = src0->nb[0];
  7742. const int nb01 = src0->nb[1];
  7743. const int nb02 = src0->nb[2];
  7744. //const int nb03 = src0->nb[3];
  7745. const int nb10 = src1->nb[0];
  7746. const int nb11 = src1->nb[1];
  7747. //const int nb12 = src1->nb[2];
  7748. //const int nb13 = src1->nb[3];
  7749. //const int nb0 = dst->nb[0];
  7750. const int nb1 = dst->nb[1];
  7751. //const int nb2 = dst->nb[2];
  7752. //const int nb3 = dst->nb[3];
  7753. const int ith = params->ith;
  7754. const int nth = params->nth;
  7755. const int nk = ne00;
  7756. const int nh = nk/2;
  7757. const int ew0 = ggml_up32(ne01);
  7758. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7759. GGML_ASSERT(nb00 == sizeof(float));
  7760. GGML_ASSERT(nb10 == sizeof(float));
  7761. if (params->type == GGML_TASK_INIT) {
  7762. // TODO: fix this memset (wsize is overestimated)
  7763. memset(params->wdata, 0, params->wsize);
  7764. // prepare kernel data (src0)
  7765. {
  7766. float * const wdata = (float *) params->wdata + 0;
  7767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7768. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7769. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7770. float * dst_data = wdata + i02*ew0*ne00;
  7771. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7772. dst_data[i00*ew0 + i01] = src[i00];
  7773. }
  7774. }
  7775. }
  7776. }
  7777. // prepare source data (src1)
  7778. {
  7779. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7780. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7781. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7782. float * dst_data = wdata;
  7783. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7784. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7785. }
  7786. }
  7787. }
  7788. return;
  7789. }
  7790. if (params->type == GGML_TASK_FINALIZE) {
  7791. return;
  7792. }
  7793. // total rows in dst
  7794. const int nr = ne02;
  7795. // rows per thread
  7796. const int dr = (nr + nth - 1)/nth;
  7797. // row range for this thread
  7798. const int ir0 = dr*ith;
  7799. const int ir1 = MIN(ir0 + dr, nr);
  7800. for (int i1 = ir0; i1 < ir1; i1++) {
  7801. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7802. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7803. dst_data[i0] = 0;
  7804. for (int k = -nh; k <= nh; k++) {
  7805. float v = 0.0f;
  7806. ggml_vec_dot_f32(ew0, &v,
  7807. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7808. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7809. dst_data[i0] += v;
  7810. }
  7811. }
  7812. }
  7813. }
  7814. static void ggml_compute_forward_conv_1d_1s(
  7815. const struct ggml_compute_params * params,
  7816. const struct ggml_tensor * src0,
  7817. const struct ggml_tensor * src1,
  7818. struct ggml_tensor * dst) {
  7819. switch (src0->type) {
  7820. case GGML_TYPE_F16:
  7821. {
  7822. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7823. } break;
  7824. case GGML_TYPE_F32:
  7825. {
  7826. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7827. } break;
  7828. default:
  7829. {
  7830. GGML_ASSERT(false);
  7831. } break;
  7832. }
  7833. }
  7834. // ggml_compute_forward_conv_1d_2s
  7835. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7836. const struct ggml_compute_params * params,
  7837. const struct ggml_tensor * src0,
  7838. const struct ggml_tensor * src1,
  7839. struct ggml_tensor * dst) {
  7840. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7841. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7842. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7843. int64_t t0 = ggml_perf_time_us();
  7844. UNUSED(t0);
  7845. const int64_t ne00 = src0->ne[0];
  7846. const int64_t ne01 = src0->ne[1];
  7847. const int64_t ne02 = src0->ne[2];
  7848. //const int64_t ne03 = src0->ne[3];
  7849. const int64_t ne10 = src1->ne[0];
  7850. const int64_t ne11 = src1->ne[1];
  7851. //const int64_t ne12 = src1->ne[2];
  7852. //const int64_t ne13 = src1->ne[3];
  7853. //const int64_t ne0 = dst->ne[0];
  7854. //const int64_t ne1 = dst->ne[1];
  7855. //const int64_t ne2 = dst->ne[2];
  7856. //const int64_t ne3 = dst->ne[3];
  7857. //const int64_t ne = ne0*ne1*ne2*ne3;
  7858. const int nb00 = src0->nb[0];
  7859. const int nb01 = src0->nb[1];
  7860. const int nb02 = src0->nb[2];
  7861. //const int nb03 = src0->nb[3];
  7862. const int nb10 = src1->nb[0];
  7863. const int nb11 = src1->nb[1];
  7864. //const int nb12 = src1->nb[2];
  7865. //const int nb13 = src1->nb[3];
  7866. //const int nb0 = dst->nb[0];
  7867. const int nb1 = dst->nb[1];
  7868. //const int nb2 = dst->nb[2];
  7869. //const int nb3 = dst->nb[3];
  7870. const int ith = params->ith;
  7871. const int nth = params->nth;
  7872. const int nk = ne00;
  7873. const int nh = nk/2;
  7874. const int ew0 = ggml_up32(ne01);
  7875. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7876. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7877. GGML_ASSERT(nb10 == sizeof(float));
  7878. if (params->type == GGML_TASK_INIT) {
  7879. // TODO: fix this memset (wsize is overestimated)
  7880. memset(params->wdata, 0, params->wsize);
  7881. // prepare kernel data (src0)
  7882. {
  7883. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7884. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7885. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7886. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7887. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7888. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7889. dst_data[i00*ew0 + i01] = src[i00];
  7890. }
  7891. }
  7892. }
  7893. }
  7894. // prepare source data (src1)
  7895. {
  7896. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7897. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7898. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7899. ggml_fp16_t * dst_data = wdata;
  7900. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7901. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7902. }
  7903. }
  7904. }
  7905. return;
  7906. }
  7907. if (params->type == GGML_TASK_FINALIZE) {
  7908. return;
  7909. }
  7910. // total rows in dst
  7911. const int nr = ne02;
  7912. // rows per thread
  7913. const int dr = (nr + nth - 1)/nth;
  7914. // row range for this thread
  7915. const int ir0 = dr*ith;
  7916. const int ir1 = MIN(ir0 + dr, nr);
  7917. for (int i1 = ir0; i1 < ir1; i1++) {
  7918. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7919. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7920. dst_data[i0/2] = 0;
  7921. for (int k = -nh; k <= nh; k++) {
  7922. float v = 0.0f;
  7923. ggml_vec_dot_f16(ew0, &v,
  7924. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7925. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7926. dst_data[i0/2] += v;
  7927. }
  7928. }
  7929. }
  7930. }
  7931. static void ggml_compute_forward_conv_1d_2s_f32(
  7932. const struct ggml_compute_params * params,
  7933. const struct ggml_tensor * src0,
  7934. const struct ggml_tensor * src1,
  7935. struct ggml_tensor * dst) {
  7936. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7937. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7938. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7939. int64_t t0 = ggml_perf_time_us();
  7940. UNUSED(t0);
  7941. const int64_t ne00 = src0->ne[0];
  7942. const int64_t ne01 = src0->ne[1];
  7943. const int64_t ne02 = src0->ne[2];
  7944. //const int64_t ne03 = src0->ne[3];
  7945. const int64_t ne10 = src1->ne[0];
  7946. const int64_t ne11 = src1->ne[1];
  7947. //const int64_t ne12 = src1->ne[2];
  7948. //const int64_t ne13 = src1->ne[3];
  7949. //const int64_t ne0 = dst->ne[0];
  7950. //const int64_t ne1 = dst->ne[1];
  7951. //const int64_t ne2 = dst->ne[2];
  7952. //const int64_t ne3 = dst->ne[3];
  7953. //const int64_t ne = ne0*ne1*ne2*ne3;
  7954. const int nb00 = src0->nb[0];
  7955. const int nb01 = src0->nb[1];
  7956. const int nb02 = src0->nb[2];
  7957. //const int nb03 = src0->nb[3];
  7958. const int nb10 = src1->nb[0];
  7959. const int nb11 = src1->nb[1];
  7960. //const int nb12 = src1->nb[2];
  7961. //const int nb13 = src1->nb[3];
  7962. //const int nb0 = dst->nb[0];
  7963. const int nb1 = dst->nb[1];
  7964. //const int nb2 = dst->nb[2];
  7965. //const int nb3 = dst->nb[3];
  7966. const int ith = params->ith;
  7967. const int nth = params->nth;
  7968. const int nk = ne00;
  7969. const int nh = nk/2;
  7970. const int ew0 = ggml_up32(ne01);
  7971. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7972. GGML_ASSERT(nb00 == sizeof(float));
  7973. GGML_ASSERT(nb10 == sizeof(float));
  7974. if (params->type == GGML_TASK_INIT) {
  7975. // TODO: fix this memset (wsize is overestimated)
  7976. memset(params->wdata, 0, params->wsize);
  7977. // prepare kernel data (src0)
  7978. {
  7979. float * const wdata = (float *) params->wdata + 0;
  7980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7981. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7982. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7983. float * dst_data = wdata + i02*ew0*ne00;
  7984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7985. dst_data[i00*ew0 + i01] = src[i00];
  7986. }
  7987. }
  7988. }
  7989. }
  7990. // prepare source data (src1)
  7991. {
  7992. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7993. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7994. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7995. float * dst_data = wdata;
  7996. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7997. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7998. }
  7999. }
  8000. }
  8001. return;
  8002. }
  8003. if (params->type == GGML_TASK_FINALIZE) {
  8004. return;
  8005. }
  8006. // total rows in dst
  8007. const int nr = ne02;
  8008. // rows per thread
  8009. const int dr = (nr + nth - 1)/nth;
  8010. // row range for this thread
  8011. const int ir0 = dr*ith;
  8012. const int ir1 = MIN(ir0 + dr, nr);
  8013. for (int i1 = ir0; i1 < ir1; i1++) {
  8014. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8015. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8016. dst_data[i0/2] = 0;
  8017. for (int k = -nh; k <= nh; k++) {
  8018. float v = 0.0f;
  8019. ggml_vec_dot_f32(ew0, &v,
  8020. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8021. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8022. dst_data[i0/2] += v;
  8023. }
  8024. }
  8025. }
  8026. }
  8027. static void ggml_compute_forward_conv_1d_2s(
  8028. const struct ggml_compute_params * params,
  8029. const struct ggml_tensor * src0,
  8030. const struct ggml_tensor * src1,
  8031. struct ggml_tensor * dst) {
  8032. switch (src0->type) {
  8033. case GGML_TYPE_F16:
  8034. {
  8035. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8036. } break;
  8037. case GGML_TYPE_F32:
  8038. {
  8039. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8040. } break;
  8041. default:
  8042. {
  8043. GGML_ASSERT(false);
  8044. } break;
  8045. }
  8046. }
  8047. // ggml_compute_forward_flash_attn
  8048. static void ggml_compute_forward_flash_attn_f32(
  8049. const struct ggml_compute_params * params,
  8050. const struct ggml_tensor * q,
  8051. const struct ggml_tensor * k,
  8052. const struct ggml_tensor * v,
  8053. const bool masked,
  8054. struct ggml_tensor * dst) {
  8055. int64_t t0 = ggml_perf_time_us();
  8056. UNUSED(t0);
  8057. const int64_t neq0 = q->ne[0];
  8058. const int64_t neq1 = q->ne[1];
  8059. const int64_t neq2 = q->ne[2];
  8060. const int64_t neq3 = q->ne[3];
  8061. const int64_t nek0 = k->ne[0];
  8062. const int64_t nek1 = k->ne[1];
  8063. //const int64_t nek2 = k->ne[2];
  8064. //const int64_t nek3 = k->ne[3];
  8065. //const int64_t nev0 = v->ne[0];
  8066. const int64_t nev1 = v->ne[1];
  8067. //const int64_t nev2 = v->ne[2];
  8068. //const int64_t nev3 = v->ne[3];
  8069. const int64_t ne0 = dst->ne[0];
  8070. const int64_t ne1 = dst->ne[1];
  8071. //const int64_t ne2 = dst->ne[2];
  8072. //const int64_t ne3 = dst->ne[3];
  8073. const int nbk0 = k->nb[0];
  8074. const int nbk1 = k->nb[1];
  8075. const int nbk2 = k->nb[2];
  8076. const int nbk3 = k->nb[3];
  8077. const int nbq0 = q->nb[0];
  8078. const int nbq1 = q->nb[1];
  8079. const int nbq2 = q->nb[2];
  8080. const int nbq3 = q->nb[3];
  8081. const int nbv0 = v->nb[0];
  8082. const int nbv1 = v->nb[1];
  8083. const int nbv2 = v->nb[2];
  8084. const int nbv3 = v->nb[3];
  8085. const int nb0 = dst->nb[0];
  8086. const int nb1 = dst->nb[1];
  8087. const int nb2 = dst->nb[2];
  8088. const int nb3 = dst->nb[3];
  8089. const int ith = params->ith;
  8090. const int nth = params->nth;
  8091. const int64_t D = neq0;
  8092. const int64_t N = neq1;
  8093. const int64_t P = nek1 - N;
  8094. const int64_t M = P + N;
  8095. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8096. GGML_ASSERT(ne0 == D);
  8097. GGML_ASSERT(ne1 == N);
  8098. GGML_ASSERT(P >= 0);
  8099. GGML_ASSERT(nbq0 == sizeof(float));
  8100. GGML_ASSERT(nbk0 == sizeof(float));
  8101. GGML_ASSERT(nbv0 == sizeof(float));
  8102. GGML_ASSERT(neq0 == D);
  8103. GGML_ASSERT(nek0 == D);
  8104. GGML_ASSERT(nev1 == D);
  8105. GGML_ASSERT(neq1 == N);
  8106. GGML_ASSERT(nek1 == N + P);
  8107. GGML_ASSERT(nev1 == D);
  8108. // dst cannot be transposed or permuted
  8109. GGML_ASSERT(nb0 == sizeof(float));
  8110. GGML_ASSERT(nb0 <= nb1);
  8111. GGML_ASSERT(nb1 <= nb2);
  8112. GGML_ASSERT(nb2 <= nb3);
  8113. if (params->type == GGML_TASK_INIT) {
  8114. return;
  8115. }
  8116. if (params->type == GGML_TASK_FINALIZE) {
  8117. return;
  8118. }
  8119. // parallelize by q rows using ggml_vec_dot_f32
  8120. // total rows in q
  8121. const int nr = neq1*neq2*neq3;
  8122. // rows per thread
  8123. const int dr = (nr + nth - 1)/nth;
  8124. // row range for this thread
  8125. const int ir0 = dr*ith;
  8126. const int ir1 = MIN(ir0 + dr, nr);
  8127. const float scale = 1.0f/sqrtf(D);
  8128. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8129. for (int ir = ir0; ir < ir1; ++ir) {
  8130. // q indices
  8131. const int iq3 = ir/(neq2*neq1);
  8132. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8133. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8134. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8135. for (int i = M; i < Mup; ++i) {
  8136. S[i] = -INFINITY;
  8137. }
  8138. for (int64_t ic = 0; ic < nek1; ++ic) {
  8139. // k indices
  8140. const int ik3 = iq3;
  8141. const int ik2 = iq2;
  8142. const int ik1 = ic;
  8143. // S indices
  8144. const int i1 = ik1;
  8145. ggml_vec_dot_f32(neq0,
  8146. S + i1,
  8147. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8148. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8149. }
  8150. // scale
  8151. ggml_vec_scale_f32(nek1, S, scale);
  8152. if (masked) {
  8153. for (int64_t i = P; i < M; i++) {
  8154. if (i > P + iq1) {
  8155. S[i] = -INFINITY;
  8156. }
  8157. }
  8158. }
  8159. // softmax
  8160. {
  8161. float max = -INFINITY;
  8162. ggml_vec_max_f32(M, &max, S);
  8163. ggml_float sum = 0.0;
  8164. {
  8165. #ifdef GGML_SOFT_MAX_ACCELERATE
  8166. max = -max;
  8167. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8168. vvexpf(S, S, &Mup);
  8169. ggml_vec_sum_f32(Mup, &sum, S);
  8170. #else
  8171. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8172. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8173. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8174. float * SS = S + i;
  8175. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8176. if (SS[j] == -INFINITY) {
  8177. SS[j] = 0.0f;
  8178. } else {
  8179. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8180. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8181. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8182. sump[j] += (ggml_float)val;
  8183. SS[j] = val;
  8184. }
  8185. }
  8186. }
  8187. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8188. sum += sump[i];
  8189. }
  8190. #endif
  8191. }
  8192. assert(sum > 0.0);
  8193. sum = 1.0/sum;
  8194. ggml_vec_scale_f32(M, S, sum);
  8195. #ifndef NDEBUG
  8196. for (int i = 0; i < M; ++i) {
  8197. assert(!isnan(S[i]));
  8198. assert(!isinf(S[i]));
  8199. }
  8200. #endif
  8201. }
  8202. for (int64_t ic = 0; ic < nev1; ++ic) {
  8203. // dst indices
  8204. const int i1 = iq1;
  8205. const int i2 = iq2;
  8206. const int i3 = iq3;
  8207. ggml_vec_dot_f32(nek1,
  8208. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8209. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8210. S);
  8211. }
  8212. }
  8213. }
  8214. static void ggml_compute_forward_flash_attn_f16(
  8215. const struct ggml_compute_params * params,
  8216. const struct ggml_tensor * q,
  8217. const struct ggml_tensor * k,
  8218. const struct ggml_tensor * v,
  8219. const bool masked,
  8220. struct ggml_tensor * dst) {
  8221. int64_t t0 = ggml_perf_time_us();
  8222. UNUSED(t0);
  8223. const int64_t neq0 = q->ne[0];
  8224. const int64_t neq1 = q->ne[1];
  8225. const int64_t neq2 = q->ne[2];
  8226. const int64_t neq3 = q->ne[3];
  8227. const int64_t nek0 = k->ne[0];
  8228. const int64_t nek1 = k->ne[1];
  8229. //const int64_t nek2 = k->ne[2];
  8230. //const int64_t nek3 = k->ne[3];
  8231. //const int64_t nev0 = v->ne[0];
  8232. const int64_t nev1 = v->ne[1];
  8233. //const int64_t nev2 = v->ne[2];
  8234. //const int64_t nev3 = v->ne[3];
  8235. const int64_t ne0 = dst->ne[0];
  8236. const int64_t ne1 = dst->ne[1];
  8237. //const int64_t ne2 = dst->ne[2];
  8238. //const int64_t ne3 = dst->ne[3];
  8239. const int nbk0 = k->nb[0];
  8240. const int nbk1 = k->nb[1];
  8241. const int nbk2 = k->nb[2];
  8242. const int nbk3 = k->nb[3];
  8243. const int nbq0 = q->nb[0];
  8244. const int nbq1 = q->nb[1];
  8245. const int nbq2 = q->nb[2];
  8246. const int nbq3 = q->nb[3];
  8247. const int nbv0 = v->nb[0];
  8248. const int nbv1 = v->nb[1];
  8249. const int nbv2 = v->nb[2];
  8250. const int nbv3 = v->nb[3];
  8251. const int nb0 = dst->nb[0];
  8252. const int nb1 = dst->nb[1];
  8253. const int nb2 = dst->nb[2];
  8254. const int nb3 = dst->nb[3];
  8255. const int ith = params->ith;
  8256. const int nth = params->nth;
  8257. const int64_t D = neq0;
  8258. const int64_t N = neq1;
  8259. const int64_t P = nek1 - N;
  8260. const int64_t M = P + N;
  8261. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8262. GGML_ASSERT(ne0 == D);
  8263. GGML_ASSERT(ne1 == N);
  8264. GGML_ASSERT(P >= 0);
  8265. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8266. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8267. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8268. GGML_ASSERT(neq0 == D);
  8269. GGML_ASSERT(nek0 == D);
  8270. GGML_ASSERT(nev1 == D);
  8271. GGML_ASSERT(neq1 == N);
  8272. GGML_ASSERT(nek1 == N + P);
  8273. GGML_ASSERT(nev1 == D);
  8274. // dst cannot be transposed or permuted
  8275. GGML_ASSERT(nb0 == sizeof(float));
  8276. GGML_ASSERT(nb0 <= nb1);
  8277. GGML_ASSERT(nb1 <= nb2);
  8278. GGML_ASSERT(nb2 <= nb3);
  8279. if (params->type == GGML_TASK_INIT) {
  8280. return;
  8281. }
  8282. if (params->type == GGML_TASK_FINALIZE) {
  8283. return;
  8284. }
  8285. // parallelize by q rows using ggml_vec_dot_f32
  8286. // total rows in q
  8287. const int nr = neq1*neq2*neq3;
  8288. // rows per thread
  8289. const int dr = (nr + nth - 1)/nth;
  8290. // row range for this thread
  8291. const int ir0 = dr*ith;
  8292. const int ir1 = MIN(ir0 + dr, nr);
  8293. const float scale = 1.0f/sqrtf(D);
  8294. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8295. for (int ir = ir0; ir < ir1; ++ir) {
  8296. // q indices
  8297. const int iq3 = ir/(neq2*neq1);
  8298. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8299. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8300. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8301. for (int i = M; i < Mup; ++i) {
  8302. S[i] = -INFINITY;
  8303. }
  8304. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8305. for (int64_t ic = 0; ic < nek1; ++ic) {
  8306. // k indices
  8307. const int ik3 = iq3;
  8308. const int ik2 = iq2;
  8309. const int ik1 = ic;
  8310. // S indices
  8311. const int i1 = ik1;
  8312. ggml_vec_dot_f16(neq0,
  8313. S + i1,
  8314. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8315. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8316. }
  8317. } else {
  8318. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8319. // k indices
  8320. const int ik3 = iq3;
  8321. const int ik2 = iq2;
  8322. const int ik1 = ic;
  8323. // S indices
  8324. const int i1 = ik1;
  8325. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8326. S + i1,
  8327. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8328. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8329. }
  8330. }
  8331. // scale
  8332. ggml_vec_scale_f32(nek1, S, scale);
  8333. if (masked) {
  8334. for (int64_t i = P; i < M; i++) {
  8335. if (i > P + iq1) {
  8336. S[i] = -INFINITY;
  8337. }
  8338. }
  8339. }
  8340. // softmax
  8341. {
  8342. float max = -INFINITY;
  8343. ggml_vec_max_f32(M, &max, S);
  8344. ggml_float sum = 0.0;
  8345. {
  8346. #ifdef GGML_SOFT_MAX_ACCELERATE
  8347. max = -max;
  8348. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8349. vvexpf(S, S, &Mup);
  8350. ggml_vec_sum_f32(Mup, &sum, S);
  8351. #else
  8352. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8353. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8354. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8355. float * SS = S + i;
  8356. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8357. if (SS[j] == -INFINITY) {
  8358. SS[j] = 0.0f;
  8359. } else {
  8360. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8361. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8362. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8363. sump[j] += (ggml_float)val;
  8364. SS[j] = val;
  8365. }
  8366. }
  8367. }
  8368. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8369. sum += sump[i];
  8370. }
  8371. #endif
  8372. }
  8373. assert(sum > 0.0);
  8374. sum = 1.0/sum;
  8375. ggml_vec_scale_f32(M, S, sum);
  8376. #ifndef NDEBUG
  8377. for (int i = 0; i < M; ++i) {
  8378. assert(!isnan(S[i]));
  8379. assert(!isinf(S[i]));
  8380. }
  8381. #endif
  8382. }
  8383. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8384. for (int64_t i = 0; i < M; i++) {
  8385. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8386. }
  8387. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8388. for (int64_t ic = 0; ic < nev1; ++ic) {
  8389. // dst indices
  8390. const int i1 = iq1;
  8391. const int i2 = iq2;
  8392. const int i3 = iq3;
  8393. ggml_vec_dot_f16(nek1,
  8394. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8395. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8396. S16);
  8397. }
  8398. } else {
  8399. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8400. // dst indices
  8401. const int i1 = iq1;
  8402. const int i2 = iq2;
  8403. const int i3 = iq3;
  8404. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8405. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8406. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8407. S16);
  8408. }
  8409. }
  8410. }
  8411. }
  8412. static void ggml_compute_forward_flash_attn(
  8413. const struct ggml_compute_params * params,
  8414. const struct ggml_tensor * q,
  8415. const struct ggml_tensor * k,
  8416. const struct ggml_tensor * v,
  8417. const bool masked,
  8418. struct ggml_tensor * dst) {
  8419. switch (q->type) {
  8420. case GGML_TYPE_F16:
  8421. {
  8422. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8423. } break;
  8424. case GGML_TYPE_F32:
  8425. {
  8426. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8427. } break;
  8428. default:
  8429. {
  8430. GGML_ASSERT(false);
  8431. } break;
  8432. }
  8433. }
  8434. // ggml_compute_forward_flash_ff
  8435. static void ggml_compute_forward_flash_ff_f16(
  8436. const struct ggml_compute_params * params,
  8437. const struct ggml_tensor * a, // F16
  8438. const struct ggml_tensor * b0, // F16 fc_w
  8439. const struct ggml_tensor * b1, // F32 fc_b
  8440. const struct ggml_tensor * c0, // F16 proj_w
  8441. const struct ggml_tensor * c1, // F32 proj_b
  8442. struct ggml_tensor * dst) {
  8443. int64_t t0 = ggml_perf_time_us();
  8444. UNUSED(t0);
  8445. const int64_t nea0 = a->ne[0];
  8446. const int64_t nea1 = a->ne[1];
  8447. const int64_t nea2 = a->ne[2];
  8448. const int64_t nea3 = a->ne[3];
  8449. const int64_t neb00 = b0->ne[0];
  8450. const int64_t neb01 = b0->ne[1];
  8451. //const int64_t neb02 = b0->ne[2];
  8452. //const int64_t neb03 = b0->ne[3];
  8453. const int64_t neb10 = b1->ne[0];
  8454. const int64_t neb11 = b1->ne[1];
  8455. //const int64_t neb12 = b1->ne[2];
  8456. //const int64_t neb13 = b1->ne[3];
  8457. const int64_t nec00 = c0->ne[0];
  8458. const int64_t nec01 = c0->ne[1];
  8459. //const int64_t nec02 = c0->ne[2];
  8460. //const int64_t nec03 = c0->ne[3];
  8461. const int64_t nec10 = c1->ne[0];
  8462. const int64_t nec11 = c1->ne[1];
  8463. //const int64_t nec12 = c1->ne[2];
  8464. //const int64_t nec13 = c1->ne[3];
  8465. const int64_t ne0 = dst->ne[0];
  8466. const int64_t ne1 = dst->ne[1];
  8467. const int64_t ne2 = dst->ne[2];
  8468. //const int64_t ne3 = dst->ne[3];
  8469. const int nba0 = a->nb[0];
  8470. const int nba1 = a->nb[1];
  8471. const int nba2 = a->nb[2];
  8472. const int nba3 = a->nb[3];
  8473. const int nbb00 = b0->nb[0];
  8474. const int nbb01 = b0->nb[1];
  8475. const int nbb02 = b0->nb[2];
  8476. const int nbb03 = b0->nb[3];
  8477. const int nbb10 = b1->nb[0];
  8478. //const int nbb11 = b1->nb[1];
  8479. //const int nbb12 = b1->nb[2];
  8480. //const int nbb13 = b1->nb[3];
  8481. const int nbc00 = c0->nb[0];
  8482. const int nbc01 = c0->nb[1];
  8483. const int nbc02 = c0->nb[2];
  8484. const int nbc03 = c0->nb[3];
  8485. const int nbc10 = c1->nb[0];
  8486. //const int nbc11 = c1->nb[1];
  8487. //const int nbc12 = c1->nb[2];
  8488. //const int nbc13 = c1->nb[3];
  8489. const int nb0 = dst->nb[0];
  8490. const int nb1 = dst->nb[1];
  8491. const int nb2 = dst->nb[2];
  8492. const int nb3 = dst->nb[3];
  8493. const int ith = params->ith;
  8494. const int nth = params->nth;
  8495. const int64_t D = nea0;
  8496. //const int64_t N = nea1;
  8497. const int64_t M = neb01;
  8498. GGML_ASSERT(ne0 == nea0);
  8499. GGML_ASSERT(ne1 == nea1);
  8500. GGML_ASSERT(ne2 == nea2);
  8501. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8502. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8503. GGML_ASSERT(nbb10 == sizeof(float));
  8504. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8505. GGML_ASSERT(nbc10 == sizeof(float));
  8506. GGML_ASSERT(neb00 == D);
  8507. GGML_ASSERT(neb01 == M);
  8508. GGML_ASSERT(neb10 == M);
  8509. GGML_ASSERT(neb11 == 1);
  8510. GGML_ASSERT(nec00 == M);
  8511. GGML_ASSERT(nec01 == D);
  8512. GGML_ASSERT(nec10 == D);
  8513. GGML_ASSERT(nec11 == 1);
  8514. // dst cannot be transposed or permuted
  8515. GGML_ASSERT(nb0 == sizeof(float));
  8516. GGML_ASSERT(nb0 <= nb1);
  8517. GGML_ASSERT(nb1 <= nb2);
  8518. GGML_ASSERT(nb2 <= nb3);
  8519. if (params->type == GGML_TASK_INIT) {
  8520. return;
  8521. }
  8522. if (params->type == GGML_TASK_FINALIZE) {
  8523. return;
  8524. }
  8525. // parallelize by a rows using ggml_vec_dot_f32
  8526. // total rows in a
  8527. const int nr = nea1*nea2*nea3;
  8528. // rows per thread
  8529. const int dr = (nr + nth - 1)/nth;
  8530. // row range for this thread
  8531. const int ir0 = dr*ith;
  8532. const int ir1 = MIN(ir0 + dr, nr);
  8533. for (int ir = ir0; ir < ir1; ++ir) {
  8534. // a indices
  8535. const int ia3 = ir/(nea2*nea1);
  8536. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8537. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8538. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8539. for (int64_t ic = 0; ic < neb01; ++ic) {
  8540. // b0 indices
  8541. const int ib03 = ia3;
  8542. const int ib02 = ia2;
  8543. const int ib01 = ic;
  8544. // S indices
  8545. const int i1 = ib01;
  8546. ggml_vec_dot_f16(nea0,
  8547. S + i1,
  8548. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8549. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8550. }
  8551. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8552. //ggml_vec_gelu_f32(neb01, S, S);
  8553. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8554. for (int64_t i = 0; i < M; i++) {
  8555. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8556. }
  8557. ggml_vec_gelu_f16(neb01, S16, S16);
  8558. {
  8559. // dst indices
  8560. const int i1 = ia1;
  8561. const int i2 = ia2;
  8562. const int i3 = ia3;
  8563. for (int64_t ic = 0; ic < nec01; ++ic) {
  8564. ggml_vec_dot_f16(neb01,
  8565. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8566. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8567. S16);
  8568. }
  8569. ggml_vec_add_f32(nec01,
  8570. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8571. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8572. (float *) c1->data);
  8573. }
  8574. }
  8575. }
  8576. static void ggml_compute_forward_flash_ff(
  8577. const struct ggml_compute_params * params,
  8578. const struct ggml_tensor * a,
  8579. const struct ggml_tensor * b0,
  8580. const struct ggml_tensor * b1,
  8581. const struct ggml_tensor * c0,
  8582. const struct ggml_tensor * c1,
  8583. struct ggml_tensor * dst) {
  8584. switch (b0->type) {
  8585. case GGML_TYPE_F16:
  8586. {
  8587. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8588. } break;
  8589. case GGML_TYPE_F32:
  8590. {
  8591. GGML_ASSERT(false); // TODO
  8592. } break;
  8593. default:
  8594. {
  8595. GGML_ASSERT(false);
  8596. } break;
  8597. }
  8598. }
  8599. // ggml_compute_forward_map_unary
  8600. static void ggml_compute_forward_map_unary_f32(
  8601. const struct ggml_compute_params * params,
  8602. const struct ggml_tensor * src0,
  8603. struct ggml_tensor * dst,
  8604. const ggml_unary_op_f32_t fun) {
  8605. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8607. return;
  8608. }
  8609. const int n = ggml_nrows(src0);
  8610. const int nc = src0->ne[0];
  8611. assert( dst->nb[0] == sizeof(float));
  8612. assert(src0->nb[0] == sizeof(float));
  8613. for (int i = 0; i < n; i++) {
  8614. fun(nc,
  8615. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8616. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8617. }
  8618. }
  8619. static void ggml_compute_forward_map_unary(
  8620. const struct ggml_compute_params * params,
  8621. const struct ggml_tensor * src0,
  8622. struct ggml_tensor * dst,
  8623. const ggml_unary_op_f32_t fun) {
  8624. switch (src0->type) {
  8625. case GGML_TYPE_F32:
  8626. {
  8627. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8628. } break;
  8629. default:
  8630. {
  8631. GGML_ASSERT(false);
  8632. } break;
  8633. }
  8634. }
  8635. // ggml_compute_forward_map_binary
  8636. static void ggml_compute_forward_map_binary_f32(
  8637. const struct ggml_compute_params * params,
  8638. const struct ggml_tensor * src0,
  8639. const struct ggml_tensor * src1,
  8640. struct ggml_tensor * dst,
  8641. const ggml_binary_op_f32_t fun) {
  8642. assert(params->ith == 0);
  8643. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8645. return;
  8646. }
  8647. const int n = ggml_nrows(src0);
  8648. const int nc = src0->ne[0];
  8649. assert( dst->nb[0] == sizeof(float));
  8650. assert(src0->nb[0] == sizeof(float));
  8651. assert(src1->nb[0] == sizeof(float));
  8652. for (int i = 0; i < n; i++) {
  8653. fun(nc,
  8654. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8655. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8656. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8657. }
  8658. }
  8659. static void ggml_compute_forward_map_binary(
  8660. const struct ggml_compute_params * params,
  8661. const struct ggml_tensor * src0,
  8662. const struct ggml_tensor * src1,
  8663. struct ggml_tensor * dst,
  8664. const ggml_binary_op_f32_t fun) {
  8665. switch (src0->type) {
  8666. case GGML_TYPE_F32:
  8667. {
  8668. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8669. } break;
  8670. default:
  8671. {
  8672. GGML_ASSERT(false);
  8673. } break;
  8674. }
  8675. }
  8676. /////////////////////////////////
  8677. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8678. GGML_ASSERT(params);
  8679. switch (tensor->op) {
  8680. case GGML_OP_DUP:
  8681. {
  8682. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8683. } break;
  8684. case GGML_OP_ADD:
  8685. {
  8686. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8687. } break;
  8688. case GGML_OP_SUB:
  8689. {
  8690. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8691. } break;
  8692. case GGML_OP_MUL:
  8693. {
  8694. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8695. } break;
  8696. case GGML_OP_DIV:
  8697. {
  8698. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8699. } break;
  8700. case GGML_OP_SQR:
  8701. {
  8702. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8703. } break;
  8704. case GGML_OP_SQRT:
  8705. {
  8706. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8707. } break;
  8708. case GGML_OP_SUM:
  8709. {
  8710. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8711. } break;
  8712. case GGML_OP_MEAN:
  8713. {
  8714. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8715. } break;
  8716. case GGML_OP_REPEAT:
  8717. {
  8718. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8719. } break;
  8720. case GGML_OP_ABS:
  8721. {
  8722. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8723. } break;
  8724. case GGML_OP_SGN:
  8725. {
  8726. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8727. } break;
  8728. case GGML_OP_NEG:
  8729. {
  8730. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8731. } break;
  8732. case GGML_OP_STEP:
  8733. {
  8734. ggml_compute_forward_step(params, tensor->src0, tensor);
  8735. } break;
  8736. case GGML_OP_RELU:
  8737. {
  8738. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8739. } break;
  8740. case GGML_OP_GELU:
  8741. {
  8742. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8743. } break;
  8744. case GGML_OP_SILU:
  8745. {
  8746. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8747. } break;
  8748. case GGML_OP_NORM:
  8749. {
  8750. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8751. } break;
  8752. case GGML_OP_RMS_NORM:
  8753. {
  8754. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8755. } break;
  8756. case GGML_OP_MUL_MAT:
  8757. {
  8758. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8759. } break;
  8760. case GGML_OP_SCALE:
  8761. {
  8762. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8763. } break;
  8764. case GGML_OP_CPY:
  8765. {
  8766. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8767. } break;
  8768. case GGML_OP_CONT:
  8769. {
  8770. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8771. } break;
  8772. case GGML_OP_RESHAPE:
  8773. {
  8774. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8775. } break;
  8776. case GGML_OP_VIEW:
  8777. {
  8778. ggml_compute_forward_view(params, tensor->src0);
  8779. } break;
  8780. case GGML_OP_PERMUTE:
  8781. {
  8782. ggml_compute_forward_permute(params, tensor->src0);
  8783. } break;
  8784. case GGML_OP_TRANSPOSE:
  8785. {
  8786. ggml_compute_forward_transpose(params, tensor->src0);
  8787. } break;
  8788. case GGML_OP_GET_ROWS:
  8789. {
  8790. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8791. } break;
  8792. case GGML_OP_DIAG_MASK_INF:
  8793. {
  8794. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8795. } break;
  8796. case GGML_OP_SOFT_MAX:
  8797. {
  8798. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8799. } break;
  8800. case GGML_OP_ROPE:
  8801. {
  8802. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8803. } break;
  8804. case GGML_OP_CONV_1D_1S:
  8805. {
  8806. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8807. } break;
  8808. case GGML_OP_CONV_1D_2S:
  8809. {
  8810. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8811. } break;
  8812. case GGML_OP_FLASH_ATTN:
  8813. {
  8814. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8815. GGML_ASSERT(t == 0 || t == 1);
  8816. bool masked = t != 0;
  8817. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8818. } break;
  8819. case GGML_OP_FLASH_FF:
  8820. {
  8821. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8822. } break;
  8823. case GGML_OP_MAP_UNARY:
  8824. {
  8825. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8826. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8827. }
  8828. break;
  8829. case GGML_OP_MAP_BINARY:
  8830. {
  8831. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8832. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8833. }
  8834. break;
  8835. case GGML_OP_NONE:
  8836. {
  8837. // nop
  8838. } break;
  8839. case GGML_OP_COUNT:
  8840. {
  8841. GGML_ASSERT(false);
  8842. } break;
  8843. }
  8844. }
  8845. ////////////////////////////////////////////////////////////////////////////////
  8846. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8847. struct ggml_tensor * src0 = tensor->src0;
  8848. struct ggml_tensor * src1 = tensor->src1;
  8849. switch (tensor->op) {
  8850. case GGML_OP_DUP:
  8851. {
  8852. if (src0->grad) {
  8853. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8854. }
  8855. } break;
  8856. case GGML_OP_ADD:
  8857. {
  8858. if (src0->grad) {
  8859. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8860. }
  8861. if (src1->grad) {
  8862. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8863. }
  8864. } break;
  8865. case GGML_OP_SUB:
  8866. {
  8867. if (src0->grad) {
  8868. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8869. }
  8870. if (src1->grad) {
  8871. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8872. }
  8873. } break;
  8874. case GGML_OP_MUL:
  8875. {
  8876. if (src0->grad) {
  8877. src0->grad =
  8878. ggml_add_impl(ctx,
  8879. src0->grad,
  8880. ggml_mul(ctx, src1, tensor->grad),
  8881. inplace);
  8882. }
  8883. if (src1->grad) {
  8884. src1->grad =
  8885. ggml_add_impl(ctx,
  8886. src1->grad,
  8887. ggml_mul(ctx, src0, tensor->grad),
  8888. inplace);
  8889. }
  8890. } break;
  8891. case GGML_OP_DIV:
  8892. {
  8893. if (src0->grad) {
  8894. src0->grad =
  8895. ggml_add_impl(ctx,
  8896. src0->grad,
  8897. ggml_div(ctx, tensor->grad, src1),
  8898. inplace);
  8899. }
  8900. if (src1->grad) {
  8901. src1->grad =
  8902. ggml_sub_impl(ctx,
  8903. src1->grad,
  8904. ggml_mul(ctx,
  8905. tensor->grad,
  8906. ggml_div(ctx, tensor, src1)),
  8907. inplace);
  8908. }
  8909. } break;
  8910. case GGML_OP_SQR:
  8911. {
  8912. if (src0->grad) {
  8913. src0->grad =
  8914. ggml_add_impl(ctx,
  8915. src0->grad,
  8916. ggml_mul(ctx,
  8917. ggml_mul(ctx, src0, tensor->grad),
  8918. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8919. inplace);
  8920. }
  8921. } break;
  8922. case GGML_OP_SQRT:
  8923. {
  8924. if (src0->grad) {
  8925. src0->grad =
  8926. ggml_add_impl(ctx,
  8927. src0->grad,
  8928. ggml_div(ctx,
  8929. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8930. tensor),
  8931. inplace);
  8932. }
  8933. } break;
  8934. case GGML_OP_SUM:
  8935. {
  8936. if (src0->grad) {
  8937. src0->grad =
  8938. ggml_add_impl(ctx,
  8939. src0->grad,
  8940. ggml_repeat(ctx, tensor->grad, src0->grad),
  8941. inplace);
  8942. }
  8943. } break;
  8944. case GGML_OP_MEAN:
  8945. {
  8946. GGML_ASSERT(false); // TODO: implement
  8947. } break;
  8948. case GGML_OP_REPEAT:
  8949. {
  8950. if (src0->grad) {
  8951. src0->grad =
  8952. ggml_add_impl(ctx,
  8953. src0->grad,
  8954. ggml_sum(ctx, tensor->grad),
  8955. inplace);
  8956. }
  8957. } break;
  8958. case GGML_OP_ABS:
  8959. {
  8960. if (src0->grad) {
  8961. src0->grad =
  8962. ggml_add_impl(ctx,
  8963. src0->grad,
  8964. ggml_mul(ctx,
  8965. ggml_sgn(ctx, src0),
  8966. tensor->grad),
  8967. inplace);
  8968. }
  8969. } break;
  8970. case GGML_OP_SGN:
  8971. {
  8972. if (src0->grad) {
  8973. // noop
  8974. }
  8975. } break;
  8976. case GGML_OP_NEG:
  8977. {
  8978. if (src0->grad) {
  8979. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8980. }
  8981. } break;
  8982. case GGML_OP_STEP:
  8983. {
  8984. if (src0->grad) {
  8985. // noop
  8986. }
  8987. } break;
  8988. case GGML_OP_RELU:
  8989. {
  8990. if (src0->grad) {
  8991. src0->grad = ggml_sub_impl(ctx,
  8992. src0->grad,
  8993. ggml_mul(ctx,
  8994. ggml_step(ctx, src0),
  8995. tensor->grad),
  8996. inplace);
  8997. }
  8998. } break;
  8999. case GGML_OP_GELU:
  9000. {
  9001. GGML_ASSERT(false); // TODO: not implemented
  9002. } break;
  9003. case GGML_OP_SILU:
  9004. {
  9005. GGML_ASSERT(false); // TODO: not implemented
  9006. } break;
  9007. case GGML_OP_NORM:
  9008. {
  9009. GGML_ASSERT(false); // TODO: not implemented
  9010. } break;
  9011. case GGML_OP_RMS_NORM:
  9012. {
  9013. GGML_ASSERT(false); // TODO: not implemented
  9014. } break;
  9015. case GGML_OP_MUL_MAT:
  9016. {
  9017. if (src0->grad) {
  9018. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9019. GGML_ASSERT(false);
  9020. }
  9021. if (src1->grad) {
  9022. src1->grad =
  9023. ggml_add_impl(ctx,
  9024. src1->grad,
  9025. ggml_mul_mat(ctx,
  9026. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9027. tensor->grad),
  9028. inplace);
  9029. }
  9030. } break;
  9031. case GGML_OP_SCALE:
  9032. {
  9033. GGML_ASSERT(false); // TODO: not implemented
  9034. } break;
  9035. case GGML_OP_CPY:
  9036. {
  9037. GGML_ASSERT(false); // TODO: not implemented
  9038. } break;
  9039. case GGML_OP_CONT:
  9040. {
  9041. GGML_ASSERT(false); // TODO: not implemented
  9042. } break;
  9043. case GGML_OP_RESHAPE:
  9044. {
  9045. GGML_ASSERT(false); // TODO: not implemented
  9046. } break;
  9047. case GGML_OP_VIEW:
  9048. {
  9049. GGML_ASSERT(false); // not supported
  9050. } break;
  9051. case GGML_OP_PERMUTE:
  9052. {
  9053. GGML_ASSERT(false); // TODO: not implemented
  9054. } break;
  9055. case GGML_OP_TRANSPOSE:
  9056. {
  9057. GGML_ASSERT(false); // TODO: not implemented
  9058. } break;
  9059. case GGML_OP_GET_ROWS:
  9060. {
  9061. GGML_ASSERT(false); // TODO: not implemented
  9062. } break;
  9063. case GGML_OP_DIAG_MASK_INF:
  9064. {
  9065. GGML_ASSERT(false); // TODO: not implemented
  9066. } break;
  9067. case GGML_OP_SOFT_MAX:
  9068. {
  9069. GGML_ASSERT(false); // TODO: not implemented
  9070. } break;
  9071. case GGML_OP_ROPE:
  9072. {
  9073. GGML_ASSERT(false); // TODO: not implemented
  9074. } break;
  9075. case GGML_OP_CONV_1D_1S:
  9076. {
  9077. GGML_ASSERT(false); // TODO: not implemented
  9078. } break;
  9079. case GGML_OP_CONV_1D_2S:
  9080. {
  9081. GGML_ASSERT(false); // TODO: not implemented
  9082. } break;
  9083. case GGML_OP_FLASH_ATTN:
  9084. {
  9085. GGML_ASSERT(false); // not supported
  9086. } break;
  9087. case GGML_OP_FLASH_FF:
  9088. {
  9089. GGML_ASSERT(false); // not supported
  9090. } break;
  9091. case GGML_OP_MAP_UNARY:
  9092. case GGML_OP_MAP_BINARY:
  9093. {
  9094. GGML_ASSERT(false); // not supported
  9095. } break;
  9096. case GGML_OP_NONE:
  9097. {
  9098. // nop
  9099. } break;
  9100. case GGML_OP_COUNT:
  9101. {
  9102. GGML_ASSERT(false);
  9103. } break;
  9104. }
  9105. }
  9106. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9107. if (node->grad == NULL) {
  9108. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9109. // it can also happen during forward pass, if the user performs computations with constants
  9110. if (node->op != GGML_OP_NONE) {
  9111. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9112. }
  9113. }
  9114. // check if already visited
  9115. for (int i = 0; i < cgraph->n_nodes; i++) {
  9116. if (cgraph->nodes[i] == node) {
  9117. return;
  9118. }
  9119. }
  9120. for (int i = 0; i < cgraph->n_leafs; i++) {
  9121. if (cgraph->leafs[i] == node) {
  9122. return;
  9123. }
  9124. }
  9125. if (node->src0) {
  9126. ggml_visit_parents(cgraph, node->src0);
  9127. }
  9128. if (node->src1) {
  9129. ggml_visit_parents(cgraph, node->src1);
  9130. }
  9131. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9132. if (node->opt[i]) {
  9133. ggml_visit_parents(cgraph, node->opt[i]);
  9134. }
  9135. }
  9136. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9137. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9138. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9139. cgraph->leafs[cgraph->n_leafs] = node;
  9140. cgraph->n_leafs++;
  9141. } else {
  9142. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9143. cgraph->nodes[cgraph->n_nodes] = node;
  9144. cgraph->grads[cgraph->n_nodes] = node->grad;
  9145. cgraph->n_nodes++;
  9146. }
  9147. }
  9148. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9149. if (!expand) {
  9150. cgraph->n_nodes = 0;
  9151. cgraph->n_leafs = 0;
  9152. }
  9153. const int n0 = cgraph->n_nodes;
  9154. UNUSED(n0);
  9155. ggml_visit_parents(cgraph, tensor);
  9156. const int n_new = cgraph->n_nodes - n0;
  9157. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9158. if (n_new > 0) {
  9159. // the last added node should always be starting point
  9160. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9161. }
  9162. }
  9163. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9164. ggml_build_forward_impl(cgraph, tensor, true);
  9165. }
  9166. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9167. struct ggml_cgraph result = {
  9168. /*.n_nodes =*/ 0,
  9169. /*.n_leafs =*/ 0,
  9170. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9171. /*.work_size =*/ 0,
  9172. /*.work =*/ NULL,
  9173. /*.nodes =*/ { NULL },
  9174. /*.grads =*/ { NULL },
  9175. /*.leafs =*/ { NULL },
  9176. /*.perf_runs =*/ 0,
  9177. /*.perf_cycles =*/ 0,
  9178. /*.perf_time_us =*/ 0,
  9179. };
  9180. ggml_build_forward_impl(&result, tensor, false);
  9181. return result;
  9182. }
  9183. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9184. struct ggml_cgraph result = *gf;
  9185. GGML_ASSERT(gf->n_nodes > 0);
  9186. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9187. if (keep) {
  9188. for (int i = 0; i < gf->n_nodes; i++) {
  9189. struct ggml_tensor * node = gf->nodes[i];
  9190. if (node->grad) {
  9191. node->grad = ggml_dup_tensor(ctx, node);
  9192. gf->grads[i] = node->grad;
  9193. }
  9194. }
  9195. }
  9196. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9197. struct ggml_tensor * node = gf->nodes[i];
  9198. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9199. if (node->grad) {
  9200. ggml_compute_backward(ctx, node, keep);
  9201. }
  9202. }
  9203. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9204. struct ggml_tensor * node = gf->nodes[i];
  9205. if (node->is_param) {
  9206. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9207. ggml_build_forward_impl(&result, node->grad, true);
  9208. }
  9209. }
  9210. return result;
  9211. }
  9212. //
  9213. // thread data
  9214. //
  9215. // synchronization is done via busy loops
  9216. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9217. //
  9218. #ifdef __APPLE__
  9219. //#include <os/lock.h>
  9220. //
  9221. //typedef os_unfair_lock ggml_lock_t;
  9222. //
  9223. //#define ggml_lock_init(x) UNUSED(x)
  9224. //#define ggml_lock_destroy(x) UNUSED(x)
  9225. //#define ggml_lock_lock os_unfair_lock_lock
  9226. //#define ggml_lock_unlock os_unfair_lock_unlock
  9227. //
  9228. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9229. typedef int ggml_lock_t;
  9230. #define ggml_lock_init(x) UNUSED(x)
  9231. #define ggml_lock_destroy(x) UNUSED(x)
  9232. #define ggml_lock_lock(x) UNUSED(x)
  9233. #define ggml_lock_unlock(x) UNUSED(x)
  9234. #define GGML_LOCK_INITIALIZER 0
  9235. typedef pthread_t ggml_thread_t;
  9236. #define ggml_thread_create pthread_create
  9237. #define ggml_thread_join pthread_join
  9238. #else
  9239. //typedef pthread_spinlock_t ggml_lock_t;
  9240. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9241. //#define ggml_lock_destroy pthread_spin_destroy
  9242. //#define ggml_lock_lock pthread_spin_lock
  9243. //#define ggml_lock_unlock pthread_spin_unlock
  9244. typedef int ggml_lock_t;
  9245. #define ggml_lock_init(x) UNUSED(x)
  9246. #define ggml_lock_destroy(x) UNUSED(x)
  9247. #define ggml_lock_lock(x) UNUSED(x)
  9248. #define ggml_lock_unlock(x) UNUSED(x)
  9249. #define GGML_LOCK_INITIALIZER 0
  9250. typedef pthread_t ggml_thread_t;
  9251. #define ggml_thread_create pthread_create
  9252. #define ggml_thread_join pthread_join
  9253. #endif
  9254. struct ggml_compute_state_shared {
  9255. ggml_lock_t spin;
  9256. int n_threads;
  9257. // synchronization primitives
  9258. atomic_int n_ready;
  9259. atomic_bool has_work;
  9260. atomic_bool stop; // stop all threads
  9261. };
  9262. struct ggml_compute_state {
  9263. ggml_thread_t thrd;
  9264. struct ggml_compute_params params;
  9265. struct ggml_tensor * node;
  9266. struct ggml_compute_state_shared * shared;
  9267. };
  9268. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9269. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9270. const int n_threads = state->shared->n_threads;
  9271. while (true) {
  9272. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9273. atomic_store(&state->shared->has_work, false);
  9274. } else {
  9275. while (atomic_load(&state->shared->has_work)) {
  9276. if (atomic_load(&state->shared->stop)) {
  9277. return 0;
  9278. }
  9279. ggml_lock_lock (&state->shared->spin);
  9280. ggml_lock_unlock(&state->shared->spin);
  9281. }
  9282. }
  9283. atomic_fetch_sub(&state->shared->n_ready, 1);
  9284. // wait for work
  9285. while (!atomic_load(&state->shared->has_work)) {
  9286. if (atomic_load(&state->shared->stop)) {
  9287. return 0;
  9288. }
  9289. ggml_lock_lock (&state->shared->spin);
  9290. ggml_lock_unlock(&state->shared->spin);
  9291. }
  9292. // check if we should stop
  9293. if (atomic_load(&state->shared->stop)) {
  9294. break;
  9295. }
  9296. if (state->node) {
  9297. if (state->params.ith < state->params.nth) {
  9298. ggml_compute_forward(&state->params, state->node);
  9299. }
  9300. state->node = NULL;
  9301. } else {
  9302. break;
  9303. }
  9304. }
  9305. return 0;
  9306. }
  9307. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9308. const int n_threads = cgraph->n_threads;
  9309. struct ggml_compute_state_shared state_shared = {
  9310. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9311. /*.n_threads =*/ n_threads,
  9312. /*.n_ready =*/ 0,
  9313. /*.has_work =*/ false,
  9314. /*.stop =*/ false,
  9315. };
  9316. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9317. // create thread pool
  9318. if (n_threads > 1) {
  9319. ggml_lock_init(&state_shared.spin);
  9320. atomic_store(&state_shared.has_work, true);
  9321. for (int j = 0; j < n_threads - 1; j++) {
  9322. workers[j] = (struct ggml_compute_state) {
  9323. .thrd = 0,
  9324. .params = {
  9325. .type = GGML_TASK_COMPUTE,
  9326. .ith = j + 1,
  9327. .nth = n_threads,
  9328. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9329. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9330. },
  9331. .node = NULL,
  9332. .shared = &state_shared,
  9333. };
  9334. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9335. GGML_ASSERT(rc == 0);
  9336. UNUSED(rc);
  9337. }
  9338. }
  9339. // initialize tasks + work buffer
  9340. {
  9341. size_t work_size = 0;
  9342. // thread scheduling for the different operations
  9343. for (int i = 0; i < cgraph->n_nodes; i++) {
  9344. struct ggml_tensor * node = cgraph->nodes[i];
  9345. switch (node->op) {
  9346. case GGML_OP_CPY:
  9347. case GGML_OP_DUP:
  9348. {
  9349. node->n_tasks = n_threads;
  9350. size_t cur = 0;
  9351. if (ggml_is_quantized(node->type)) {
  9352. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9353. }
  9354. work_size = MAX(work_size, cur);
  9355. } break;
  9356. case GGML_OP_ADD:
  9357. {
  9358. node->n_tasks = n_threads;
  9359. size_t cur = 0;
  9360. if (ggml_is_quantized(node->src0->type)) {
  9361. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9362. }
  9363. work_size = MAX(work_size, cur);
  9364. } break;
  9365. case GGML_OP_SUB:
  9366. case GGML_OP_MUL:
  9367. case GGML_OP_DIV:
  9368. case GGML_OP_SQR:
  9369. case GGML_OP_SQRT:
  9370. case GGML_OP_SUM:
  9371. case GGML_OP_MEAN:
  9372. case GGML_OP_REPEAT:
  9373. case GGML_OP_ABS:
  9374. case GGML_OP_SGN:
  9375. case GGML_OP_NEG:
  9376. case GGML_OP_STEP:
  9377. case GGML_OP_RELU:
  9378. {
  9379. node->n_tasks = 1;
  9380. } break;
  9381. case GGML_OP_GELU:
  9382. {
  9383. node->n_tasks = n_threads;
  9384. } break;
  9385. case GGML_OP_SILU:
  9386. {
  9387. node->n_tasks = n_threads;
  9388. } break;
  9389. case GGML_OP_NORM:
  9390. case GGML_OP_RMS_NORM:
  9391. {
  9392. node->n_tasks = n_threads;
  9393. } break;
  9394. case GGML_OP_MUL_MAT:
  9395. {
  9396. node->n_tasks = n_threads;
  9397. // TODO: use different scheduling for different matrix sizes
  9398. //const int nr0 = ggml_nrows(node->src0);
  9399. //const int nr1 = ggml_nrows(node->src1);
  9400. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9401. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9402. size_t cur = 0;
  9403. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9404. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9405. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9406. node->n_tasks = 1; // TODO: this actually is doing nothing
  9407. // the threads are still spinning
  9408. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9409. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9410. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9411. //printf("cur = %zu\n", cur);
  9412. } else {
  9413. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9414. }
  9415. #else
  9416. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9417. #endif
  9418. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9419. cur = 0;
  9420. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9421. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9422. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9423. node->n_tasks = 1;
  9424. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9425. } else
  9426. #endif
  9427. {
  9428. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9429. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9430. }
  9431. } else {
  9432. GGML_ASSERT(false);
  9433. }
  9434. work_size = MAX(work_size, cur);
  9435. } break;
  9436. case GGML_OP_SCALE:
  9437. {
  9438. node->n_tasks = n_threads;
  9439. } break;
  9440. case GGML_OP_CONT:
  9441. case GGML_OP_RESHAPE:
  9442. case GGML_OP_VIEW:
  9443. case GGML_OP_PERMUTE:
  9444. case GGML_OP_TRANSPOSE:
  9445. case GGML_OP_GET_ROWS:
  9446. case GGML_OP_DIAG_MASK_INF:
  9447. {
  9448. node->n_tasks = 1;
  9449. } break;
  9450. case GGML_OP_SOFT_MAX:
  9451. {
  9452. node->n_tasks = n_threads;
  9453. } break;
  9454. case GGML_OP_ROPE:
  9455. {
  9456. node->n_tasks = n_threads;
  9457. } break;
  9458. case GGML_OP_CONV_1D_1S:
  9459. case GGML_OP_CONV_1D_2S:
  9460. {
  9461. node->n_tasks = n_threads;
  9462. GGML_ASSERT(node->src0->ne[3] == 1);
  9463. GGML_ASSERT(node->src1->ne[2] == 1);
  9464. GGML_ASSERT(node->src1->ne[3] == 1);
  9465. size_t cur = 0;
  9466. const int nk = node->src0->ne[0];
  9467. if (node->src0->type == GGML_TYPE_F16 &&
  9468. node->src1->type == GGML_TYPE_F32) {
  9469. cur = sizeof(ggml_fp16_t)*(
  9470. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9471. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9472. );
  9473. } else if (node->src0->type == GGML_TYPE_F32 &&
  9474. node->src1->type == GGML_TYPE_F32) {
  9475. cur = sizeof(float)*(
  9476. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9477. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9478. );
  9479. } else {
  9480. GGML_ASSERT(false);
  9481. }
  9482. work_size = MAX(work_size, cur);
  9483. } break;
  9484. case GGML_OP_FLASH_ATTN:
  9485. {
  9486. node->n_tasks = n_threads;
  9487. size_t cur = 0;
  9488. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9489. if (node->src1->type == GGML_TYPE_F32) {
  9490. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9491. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9492. }
  9493. if (node->src1->type == GGML_TYPE_F16) {
  9494. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9495. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9496. }
  9497. work_size = MAX(work_size, cur);
  9498. } break;
  9499. case GGML_OP_FLASH_FF:
  9500. {
  9501. node->n_tasks = n_threads;
  9502. size_t cur = 0;
  9503. if (node->src1->type == GGML_TYPE_F32) {
  9504. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9505. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9506. }
  9507. if (node->src1->type == GGML_TYPE_F16) {
  9508. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9509. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9510. }
  9511. work_size = MAX(work_size, cur);
  9512. } break;
  9513. case GGML_OP_MAP_UNARY:
  9514. case GGML_OP_MAP_BINARY:
  9515. {
  9516. node->n_tasks = 1;
  9517. } break;
  9518. case GGML_OP_NONE:
  9519. {
  9520. node->n_tasks = 1;
  9521. } break;
  9522. case GGML_OP_COUNT:
  9523. {
  9524. GGML_ASSERT(false);
  9525. } break;
  9526. }
  9527. }
  9528. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9529. GGML_ASSERT(false); // TODO: better handling
  9530. }
  9531. if (work_size > 0 && cgraph->work == NULL) {
  9532. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9533. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9534. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9535. }
  9536. }
  9537. const int64_t perf_start_cycles = ggml_perf_cycles();
  9538. const int64_t perf_start_time_us = ggml_perf_time_us();
  9539. for (int i = 0; i < cgraph->n_nodes; i++) {
  9540. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9541. struct ggml_tensor * node = cgraph->nodes[i];
  9542. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9543. //if (node->grad == NULL && node->perf_runs > 0) {
  9544. // continue;
  9545. //}
  9546. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9547. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9548. // INIT
  9549. struct ggml_compute_params params = {
  9550. /*.type =*/ GGML_TASK_INIT,
  9551. /*.ith =*/ 0,
  9552. /*.nth =*/ node->n_tasks,
  9553. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9554. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9555. };
  9556. ggml_compute_forward(&params, node);
  9557. // COMPUTE
  9558. if (node->n_tasks > 1) {
  9559. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9560. atomic_store(&state_shared.has_work, false);
  9561. }
  9562. while (atomic_load(&state_shared.has_work)) {
  9563. ggml_lock_lock (&state_shared.spin);
  9564. ggml_lock_unlock(&state_shared.spin);
  9565. }
  9566. // launch thread pool
  9567. for (int j = 0; j < n_threads - 1; j++) {
  9568. workers[j].params = (struct ggml_compute_params) {
  9569. .type = GGML_TASK_COMPUTE,
  9570. .ith = j + 1,
  9571. .nth = node->n_tasks,
  9572. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9573. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9574. };
  9575. workers[j].node = node;
  9576. }
  9577. atomic_fetch_sub(&state_shared.n_ready, 1);
  9578. while (atomic_load(&state_shared.n_ready) > 0) {
  9579. ggml_lock_lock (&state_shared.spin);
  9580. ggml_lock_unlock(&state_shared.spin);
  9581. }
  9582. atomic_store(&state_shared.has_work, true);
  9583. }
  9584. params.type = GGML_TASK_COMPUTE;
  9585. ggml_compute_forward(&params, node);
  9586. // wait for thread pool
  9587. if (node->n_tasks > 1) {
  9588. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9589. atomic_store(&state_shared.has_work, false);
  9590. }
  9591. while (atomic_load(&state_shared.has_work)) {
  9592. ggml_lock_lock (&state_shared.spin);
  9593. ggml_lock_unlock(&state_shared.spin);
  9594. }
  9595. atomic_fetch_sub(&state_shared.n_ready, 1);
  9596. while (atomic_load(&state_shared.n_ready) != 0) {
  9597. ggml_lock_lock (&state_shared.spin);
  9598. ggml_lock_unlock(&state_shared.spin);
  9599. }
  9600. }
  9601. // FINALIZE
  9602. if (node->n_tasks > 1) {
  9603. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9604. atomic_store(&state_shared.has_work, false);
  9605. }
  9606. while (atomic_load(&state_shared.has_work)) {
  9607. ggml_lock_lock (&state_shared.spin);
  9608. ggml_lock_unlock(&state_shared.spin);
  9609. }
  9610. // launch thread pool
  9611. for (int j = 0; j < n_threads - 1; j++) {
  9612. workers[j].params = (struct ggml_compute_params) {
  9613. .type = GGML_TASK_FINALIZE,
  9614. .ith = j + 1,
  9615. .nth = node->n_tasks,
  9616. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9617. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9618. };
  9619. workers[j].node = node;
  9620. }
  9621. atomic_fetch_sub(&state_shared.n_ready, 1);
  9622. while (atomic_load(&state_shared.n_ready) > 0) {
  9623. ggml_lock_lock (&state_shared.spin);
  9624. ggml_lock_unlock(&state_shared.spin);
  9625. }
  9626. atomic_store(&state_shared.has_work, true);
  9627. }
  9628. params.type = GGML_TASK_FINALIZE;
  9629. ggml_compute_forward(&params, node);
  9630. // wait for thread pool
  9631. if (node->n_tasks > 1) {
  9632. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9633. atomic_store(&state_shared.has_work, false);
  9634. }
  9635. while (atomic_load(&state_shared.has_work)) {
  9636. ggml_lock_lock (&state_shared.spin);
  9637. ggml_lock_unlock(&state_shared.spin);
  9638. }
  9639. atomic_fetch_sub(&state_shared.n_ready, 1);
  9640. while (atomic_load(&state_shared.n_ready) != 0) {
  9641. ggml_lock_lock (&state_shared.spin);
  9642. ggml_lock_unlock(&state_shared.spin);
  9643. }
  9644. }
  9645. // performance stats (node)
  9646. {
  9647. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9648. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9649. node->perf_runs++;
  9650. node->perf_cycles += perf_cycles_cur;
  9651. node->perf_time_us += perf_time_us_cur;
  9652. }
  9653. }
  9654. // join thread pool
  9655. if (n_threads > 1) {
  9656. atomic_store(&state_shared.stop, true);
  9657. atomic_store(&state_shared.has_work, true);
  9658. for (int j = 0; j < n_threads - 1; j++) {
  9659. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9660. GGML_ASSERT(rc == 0);
  9661. UNUSED(rc);
  9662. }
  9663. ggml_lock_destroy(&state_shared.spin);
  9664. }
  9665. // performance stats (graph)
  9666. {
  9667. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9668. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9669. cgraph->perf_runs++;
  9670. cgraph->perf_cycles += perf_cycles_cur;
  9671. cgraph->perf_time_us += perf_time_us_cur;
  9672. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9673. __func__, cgraph->perf_runs,
  9674. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9675. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9676. (double) perf_time_us_cur / 1000.0,
  9677. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9678. }
  9679. }
  9680. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9681. for (int i = 0; i < cgraph->n_nodes; i++) {
  9682. struct ggml_tensor * grad = cgraph->grads[i];
  9683. if (grad) {
  9684. ggml_set_zero(grad);
  9685. }
  9686. }
  9687. }
  9688. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9689. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9690. GGML_PRINT("=== GRAPH ===\n");
  9691. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9692. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9693. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9694. for (int i = 0; i < cgraph->n_nodes; i++) {
  9695. struct ggml_tensor * node = cgraph->nodes[i];
  9696. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9697. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9698. i,
  9699. node->ne[0], node->ne[1], node->ne[2],
  9700. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9701. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9702. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9703. (double) node->perf_time_us / 1000.0,
  9704. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9705. }
  9706. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9707. for (int i = 0; i < cgraph->n_leafs; i++) {
  9708. struct ggml_tensor * node = cgraph->leafs[i];
  9709. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9710. i,
  9711. node->ne[0], node->ne[1],
  9712. GGML_OP_LABEL[node->op]);
  9713. }
  9714. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9715. if (perf_total_per_op_us[i] == 0) {
  9716. continue;
  9717. }
  9718. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9719. }
  9720. GGML_PRINT("========================================\n");
  9721. }
  9722. // check if node is part of the graph
  9723. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9724. if (cgraph == NULL) {
  9725. return true;
  9726. }
  9727. for (int i = 0; i < cgraph->n_nodes; i++) {
  9728. if (cgraph->nodes[i] == node) {
  9729. return true;
  9730. }
  9731. }
  9732. return false;
  9733. }
  9734. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9735. for (int i = 0; i < cgraph->n_nodes; i++) {
  9736. struct ggml_tensor * parent = cgraph->nodes[i];
  9737. if (parent->grad == node) {
  9738. return parent;
  9739. }
  9740. }
  9741. return NULL;
  9742. }
  9743. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9744. char color[16];
  9745. FILE * fp = fopen(filename, "w");
  9746. GGML_ASSERT(fp);
  9747. fprintf(fp, "digraph G {\n");
  9748. fprintf(fp, " newrank = true;\n");
  9749. fprintf(fp, " rankdir = LR;\n");
  9750. for (int i = 0; i < gb->n_nodes; i++) {
  9751. struct ggml_tensor * node = gb->nodes[i];
  9752. if (ggml_graph_get_parent(gb, node) != NULL) {
  9753. continue;
  9754. }
  9755. if (node->is_param) {
  9756. snprintf(color, sizeof(color), "yellow");
  9757. } else if (node->grad) {
  9758. if (ggml_graph_find(gf, node)) {
  9759. snprintf(color, sizeof(color), "green");
  9760. } else {
  9761. snprintf(color, sizeof(color), "lightblue");
  9762. }
  9763. } else {
  9764. snprintf(color, sizeof(color), "white");
  9765. }
  9766. fprintf(fp, " \"%p\" [ \
  9767. style = filled; fillcolor = %s; shape = record; \
  9768. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9769. (void *) node, color,
  9770. i, node->ne[0], node->ne[1],
  9771. GGML_OP_SYMBOL[node->op]);
  9772. if (node->grad) {
  9773. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9774. } else {
  9775. fprintf(fp, "\"; ]\n");
  9776. }
  9777. }
  9778. for (int i = 0; i < gb->n_leafs; i++) {
  9779. struct ggml_tensor * node = gb->leafs[i];
  9780. snprintf(color, sizeof(color), "pink");
  9781. if (ggml_nelements(node) == 1) {
  9782. fprintf(fp, " \"%p\" [ \
  9783. style = filled; fillcolor = %s; shape = record; \
  9784. label=\"<x>%.1e\"; ]\n",
  9785. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9786. } else {
  9787. fprintf(fp, " \"%p\" [ \
  9788. style = filled; fillcolor = %s; shape = record; \
  9789. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9790. (void *) node, color,
  9791. i, node->ne[0], node->ne[1]);
  9792. }
  9793. }
  9794. for (int i = 0; i < gb->n_nodes; i++) {
  9795. struct ggml_tensor * node = gb->nodes[i];
  9796. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9797. if (node->src0) {
  9798. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9799. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9800. parent0 ? (void *) parent0 : (void *) node->src0,
  9801. parent0 ? "g" : "x",
  9802. parent ? (void *) parent : (void *) node,
  9803. parent ? "g" : "x",
  9804. parent ? "empty" : "vee",
  9805. parent ? "dashed" : "solid");
  9806. }
  9807. if (node->src1) {
  9808. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9809. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9810. parent1 ? (void *) parent1 : (void *) node->src1,
  9811. parent1 ? "g" : "x",
  9812. parent ? (void *) parent : (void *) node,
  9813. parent ? "g" : "x",
  9814. parent ? "empty" : "vee",
  9815. parent ? "dashed" : "solid");
  9816. }
  9817. }
  9818. for (int i = 0; i < gb->n_leafs; i++) {
  9819. struct ggml_tensor * node = gb->leafs[i];
  9820. if (node->src0) {
  9821. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9822. (void *) node->src0, "x",
  9823. (void *) node, "x");
  9824. }
  9825. if (node->src1) {
  9826. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9827. (void *) node->src1, "x",
  9828. (void *) node, "x");
  9829. }
  9830. }
  9831. fprintf(fp, "}\n");
  9832. fclose(fp);
  9833. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9834. }
  9835. ////////////////////////////////////////////////////////////////////////////////
  9836. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9837. int i = 0;
  9838. for (int p = 0; p < np; ++p) {
  9839. const int64_t ne = ggml_nelements(ps[p]) ;
  9840. // TODO: add function to set tensor from array
  9841. for (int64_t j = 0; j < ne; ++j) {
  9842. ggml_set_f32_1d(ps[p], j, x[i++]);
  9843. }
  9844. }
  9845. }
  9846. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9847. int i = 0;
  9848. for (int p = 0; p < np; ++p) {
  9849. const int64_t ne = ggml_nelements(ps[p]) ;
  9850. // TODO: add function to get all elements at once
  9851. for (int64_t j = 0; j < ne; ++j) {
  9852. x[i++] = ggml_get_f32_1d(ps[p], j);
  9853. }
  9854. }
  9855. }
  9856. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9857. int i = 0;
  9858. for (int p = 0; p < np; ++p) {
  9859. const int64_t ne = ggml_nelements(ps[p]) ;
  9860. // TODO: add function to get all elements at once
  9861. for (int64_t j = 0; j < ne; ++j) {
  9862. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9863. }
  9864. }
  9865. }
  9866. //
  9867. // ADAM
  9868. //
  9869. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9870. //
  9871. static enum ggml_opt_result ggml_opt_adam(
  9872. struct ggml_context * ctx,
  9873. struct ggml_opt_params params,
  9874. struct ggml_tensor * f,
  9875. struct ggml_cgraph * gf,
  9876. struct ggml_cgraph * gb) {
  9877. GGML_ASSERT(ggml_is_scalar(f));
  9878. gf->n_threads = params.n_threads;
  9879. gb->n_threads = params.n_threads;
  9880. // these will store the parameters we want to optimize
  9881. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9882. int np = 0;
  9883. int nx = 0;
  9884. for (int i = 0; i < gf->n_nodes; ++i) {
  9885. if (gf->nodes[i]->is_param) {
  9886. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9887. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9888. ps[np++] = gf->nodes[i];
  9889. nx += ggml_nelements(gf->nodes[i]);
  9890. }
  9891. }
  9892. // constants
  9893. const float alpha = params.adam.alpha;
  9894. const float beta1 = params.adam.beta1;
  9895. const float beta2 = params.adam.beta2;
  9896. const float eps = params.adam.eps;
  9897. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9898. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9899. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9900. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9901. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9902. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9903. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9904. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9905. // initialize
  9906. ggml_vec_set_f32(nx, m, 0.0f);
  9907. ggml_vec_set_f32(nx, v, 0.0f);
  9908. // update view
  9909. ggml_opt_get_params(np, ps, x);
  9910. // compute the function value
  9911. ggml_graph_reset (gf);
  9912. ggml_set_f32 (f->grad, 1.0f);
  9913. ggml_graph_compute(ctx, gb);
  9914. float fx_prev = ggml_get_f32_1d(f, 0);
  9915. if (pf) {
  9916. pf[0] = fx_prev;
  9917. }
  9918. int n_no_improvement = 0;
  9919. float fx_best = fx_prev;
  9920. // run the optimizer
  9921. for (int t = 0; t < params.adam.n_iter; ++t) {
  9922. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9923. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9924. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9925. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9926. for (int i = 0; i < np; ++i) {
  9927. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9928. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9929. }
  9930. const int64_t t_start_wall = ggml_time_us();
  9931. const int64_t t_start_cpu = ggml_cycles();
  9932. UNUSED(t_start_wall);
  9933. UNUSED(t_start_cpu);
  9934. {
  9935. // update the gradient
  9936. ggml_opt_get_grad(np, ps, g1);
  9937. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9938. ggml_vec_scale_f32(nx, m, beta1);
  9939. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9940. // g2 = g1^2
  9941. ggml_vec_sqr_f32 (nx, g2, g1);
  9942. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9943. ggml_vec_scale_f32(nx, v, beta2);
  9944. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9945. // m^hat = m_t / (1 - beta1^t)
  9946. // v^hat = v_t / (1 - beta2^t)
  9947. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9948. ggml_vec_cpy_f32 (nx, mh, m);
  9949. ggml_vec_cpy_f32 (nx, vh, v);
  9950. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9951. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9952. ggml_vec_sqrt_f32 (nx, vh, vh);
  9953. ggml_vec_acc1_f32 (nx, vh, eps);
  9954. ggml_vec_div_f32 (nx, mh, mh, vh);
  9955. ggml_vec_sub_f32 (nx, x, x, mh);
  9956. // update the parameters
  9957. ggml_opt_set_params(np, ps, x);
  9958. }
  9959. ggml_graph_reset (gf);
  9960. ggml_set_f32 (f->grad, 1.0f);
  9961. ggml_graph_compute(ctx, gb);
  9962. const float fx = ggml_get_f32_1d(f, 0);
  9963. // check convergence
  9964. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9965. GGML_PRINT_DEBUG("converged\n");
  9966. return GGML_OPT_OK;
  9967. }
  9968. // delta-based convergence test
  9969. if (pf != NULL) {
  9970. // need at least params.past iterations to start checking for convergence
  9971. if (params.past <= t) {
  9972. const float rate = (pf[t%params.past] - fx)/fx;
  9973. if (fabsf(rate) < params.delta) {
  9974. return GGML_OPT_OK;
  9975. }
  9976. }
  9977. pf[t%params.past] = fx;
  9978. }
  9979. // check for improvement
  9980. if (params.max_no_improvement > 0) {
  9981. if (fx_best > fx) {
  9982. fx_best = fx;
  9983. n_no_improvement = 0;
  9984. } else {
  9985. ++n_no_improvement;
  9986. if (n_no_improvement >= params.max_no_improvement) {
  9987. return GGML_OPT_OK;
  9988. }
  9989. }
  9990. }
  9991. fx_prev = fx;
  9992. {
  9993. const int64_t t_end_cpu = ggml_cycles();
  9994. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9995. UNUSED(t_end_cpu);
  9996. const int64_t t_end_wall = ggml_time_us();
  9997. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9998. UNUSED(t_end_wall);
  9999. }
  10000. }
  10001. return GGML_OPT_DID_NOT_CONVERGE;
  10002. }
  10003. //
  10004. // L-BFGS
  10005. //
  10006. // the L-BFGS implementation below is based on the following implementation:
  10007. //
  10008. // https://github.com/chokkan/liblbfgs
  10009. //
  10010. struct ggml_lbfgs_iteration_data {
  10011. float alpha;
  10012. float ys;
  10013. float * s;
  10014. float * y;
  10015. };
  10016. static enum ggml_opt_result linesearch_backtracking(
  10017. struct ggml_context * ctx,
  10018. const struct ggml_opt_params * params,
  10019. int nx,
  10020. float * x,
  10021. float * fx,
  10022. float * g,
  10023. float * d,
  10024. float * step,
  10025. const float * xp,
  10026. struct ggml_tensor * f,
  10027. struct ggml_cgraph * gf,
  10028. struct ggml_cgraph * gb,
  10029. const int np,
  10030. struct ggml_tensor * ps[]) {
  10031. int count = 0;
  10032. float width = 0.0f;
  10033. float dg = 0.0f;
  10034. float finit = 0.0f;
  10035. float dginit = 0.0f;
  10036. float dgtest = 0.0f;
  10037. const float dec = 0.5f;
  10038. const float inc = 2.1f;
  10039. if (*step <= 0.f) {
  10040. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10041. }
  10042. // compute the initial gradient in the search direction
  10043. ggml_vec_dot_f32(nx, &dginit, g, d);
  10044. // make sure that d points to a descent direction
  10045. if (0 < dginit) {
  10046. return GGML_LINESEARCH_FAIL;
  10047. }
  10048. // initialize local variables
  10049. finit = *fx;
  10050. dgtest = params->lbfgs.ftol*dginit;
  10051. while (true) {
  10052. ggml_vec_cpy_f32(nx, x, xp);
  10053. ggml_vec_mad_f32(nx, x, d, *step);
  10054. // evaluate the function and gradient values
  10055. {
  10056. ggml_opt_set_params(np, ps, x);
  10057. ggml_graph_reset (gf);
  10058. ggml_set_f32 (f->grad, 1.0f);
  10059. ggml_graph_compute(ctx, gb);
  10060. ggml_opt_get_grad(np, ps, g);
  10061. *fx = ggml_get_f32_1d(f, 0);
  10062. }
  10063. ++count;
  10064. if (*fx > finit + (*step)*dgtest) {
  10065. width = dec;
  10066. } else {
  10067. // Armijo condition is satisfied
  10068. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10069. return count;
  10070. }
  10071. ggml_vec_dot_f32(nx, &dg, g, d);
  10072. // check the Wolfe condition
  10073. if (dg < params->lbfgs.wolfe * dginit) {
  10074. width = inc;
  10075. } else {
  10076. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10077. // regular Wolfe conditions
  10078. return count;
  10079. }
  10080. if(dg > -params->lbfgs.wolfe*dginit) {
  10081. width = dec;
  10082. } else {
  10083. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10084. return count;
  10085. }
  10086. return count;
  10087. }
  10088. }
  10089. if (*step < params->lbfgs.min_step) {
  10090. return GGML_LINESEARCH_MINIMUM_STEP;
  10091. }
  10092. if (*step > params->lbfgs.max_step) {
  10093. return GGML_LINESEARCH_MAXIMUM_STEP;
  10094. }
  10095. if (params->lbfgs.max_linesearch <= count) {
  10096. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10097. }
  10098. (*step) *= width;
  10099. }
  10100. return GGML_LINESEARCH_FAIL;
  10101. }
  10102. static enum ggml_opt_result ggml_opt_lbfgs(
  10103. struct ggml_context * ctx,
  10104. struct ggml_opt_params params,
  10105. struct ggml_tensor * f,
  10106. struct ggml_cgraph * gf,
  10107. struct ggml_cgraph * gb) {
  10108. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10109. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10110. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10111. return GGML_OPT_INVALID_WOLFE;
  10112. }
  10113. }
  10114. gf->n_threads = params.n_threads;
  10115. gb->n_threads = params.n_threads;
  10116. const int m = params.lbfgs.m;
  10117. // these will store the parameters we want to optimize
  10118. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10119. int np = 0;
  10120. int nx = 0;
  10121. for (int i = 0; i < gf->n_nodes; ++i) {
  10122. if (gf->nodes[i]->is_param) {
  10123. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10124. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10125. ps[np++] = gf->nodes[i];
  10126. nx += ggml_nelements(gf->nodes[i]);
  10127. }
  10128. }
  10129. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10130. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10131. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10132. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10133. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10134. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10135. float fx = 0.0f; // cost function value
  10136. float xnorm = 0.0f; // ||x||
  10137. float gnorm = 0.0f; // ||g||
  10138. float step = 0.0f;
  10139. // initialize x from the graph nodes
  10140. ggml_opt_get_params(np, ps, x);
  10141. // the L-BFGS memory
  10142. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10143. for (int i = 0; i < m; ++i) {
  10144. lm[i].alpha = 0.0f;
  10145. lm[i].ys = 0.0f;
  10146. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10147. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10148. }
  10149. // evaluate the function value and its gradient
  10150. {
  10151. ggml_opt_set_params(np, ps, x);
  10152. ggml_graph_reset (gf);
  10153. ggml_set_f32 (f->grad, 1.0f);
  10154. ggml_graph_compute(ctx, gb);
  10155. ggml_opt_get_grad(np, ps, g);
  10156. fx = ggml_get_f32_1d(f, 0);
  10157. }
  10158. if (pf) {
  10159. pf[0] = fx;
  10160. }
  10161. float fx_best = fx;
  10162. // search direction = -gradient
  10163. ggml_vec_neg_f32(nx, d, g);
  10164. // ||x||, ||g||
  10165. ggml_vec_norm_f32(nx, &xnorm, x);
  10166. ggml_vec_norm_f32(nx, &gnorm, g);
  10167. if (xnorm < 1.0f) {
  10168. xnorm = 1.0f;
  10169. }
  10170. // already optimized
  10171. if (gnorm/xnorm <= params.lbfgs.eps) {
  10172. return GGML_OPT_OK;
  10173. }
  10174. // initial step
  10175. ggml_vec_norm_inv_f32(nx, &step, d);
  10176. int j = 0;
  10177. int k = 1;
  10178. int ls = 0;
  10179. int end = 0;
  10180. int bound = 0;
  10181. int n_no_improvement = 0;
  10182. float ys = 0.0f;
  10183. float yy = 0.0f;
  10184. float beta = 0.0f;
  10185. while (true) {
  10186. // store the current position and gradient vectors
  10187. ggml_vec_cpy_f32(nx, xp, x);
  10188. ggml_vec_cpy_f32(nx, gp, g);
  10189. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10190. if (ls < 0) {
  10191. // linesearch failed - go back to the previous point and return
  10192. ggml_vec_cpy_f32(nx, x, xp);
  10193. ggml_vec_cpy_f32(nx, g, gp);
  10194. return ls;
  10195. }
  10196. ggml_vec_norm_f32(nx, &xnorm, x);
  10197. ggml_vec_norm_f32(nx, &gnorm, g);
  10198. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10199. if (xnorm < 1.0f) {
  10200. xnorm = 1.0f;
  10201. }
  10202. if (gnorm/xnorm <= params.lbfgs.eps) {
  10203. // converged
  10204. return GGML_OPT_OK;
  10205. }
  10206. // delta-based convergence test
  10207. if (pf != NULL) {
  10208. // need at least params.past iterations to start checking for convergence
  10209. if (params.past <= k) {
  10210. const float rate = (pf[k%params.past] - fx)/fx;
  10211. if (fabsf(rate) < params.delta) {
  10212. return GGML_OPT_OK;
  10213. }
  10214. }
  10215. pf[k%params.past] = fx;
  10216. }
  10217. // check for improvement
  10218. if (params.max_no_improvement > 0) {
  10219. if (fx < fx_best) {
  10220. fx_best = fx;
  10221. n_no_improvement = 0;
  10222. } else {
  10223. n_no_improvement++;
  10224. if (n_no_improvement >= params.max_no_improvement) {
  10225. return GGML_OPT_OK;
  10226. }
  10227. }
  10228. }
  10229. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10230. // reached the maximum number of iterations
  10231. return GGML_OPT_DID_NOT_CONVERGE;
  10232. }
  10233. // update vectors s and y:
  10234. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10235. // y_{k+1} = g_{k+1} - g_{k}.
  10236. //
  10237. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10238. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10239. // compute scalars ys and yy:
  10240. // ys = y^t \cdot s -> 1 / \rho.
  10241. // yy = y^t \cdot y.
  10242. //
  10243. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10244. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10245. lm[end].ys = ys;
  10246. // find new search direction
  10247. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10248. bound = (m <= k) ? m : k;
  10249. k++;
  10250. end = (end + 1)%m;
  10251. // initialize search direction with -g
  10252. ggml_vec_neg_f32(nx, d, g);
  10253. j = end;
  10254. for (int i = 0; i < bound; ++i) {
  10255. j = (j + m - 1) % m;
  10256. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10257. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10258. lm[j].alpha /= lm[j].ys;
  10259. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10260. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10261. }
  10262. ggml_vec_scale_f32(nx, d, ys/yy);
  10263. for (int i = 0; i < bound; ++i) {
  10264. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10265. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10266. beta /= lm[j].ys;
  10267. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10268. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10269. j = (j + 1)%m;
  10270. }
  10271. step = 1.0;
  10272. }
  10273. return GGML_OPT_DID_NOT_CONVERGE;
  10274. }
  10275. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10276. struct ggml_opt_params result;
  10277. switch (type) {
  10278. case GGML_OPT_ADAM:
  10279. {
  10280. result = (struct ggml_opt_params) {
  10281. .type = GGML_OPT_ADAM,
  10282. .n_threads = 1,
  10283. .past = 0,
  10284. .delta = 1e-5f,
  10285. .max_no_improvement = 100,
  10286. .print_forward_graph = true,
  10287. .print_backward_graph = true,
  10288. .adam = {
  10289. .n_iter = 10000,
  10290. .alpha = 0.001f,
  10291. .beta1 = 0.9f,
  10292. .beta2 = 0.999f,
  10293. .eps = 1e-8f,
  10294. .eps_f = 1e-5f,
  10295. .eps_g = 1e-3f,
  10296. },
  10297. };
  10298. } break;
  10299. case GGML_OPT_LBFGS:
  10300. {
  10301. result = (struct ggml_opt_params) {
  10302. .type = GGML_OPT_LBFGS,
  10303. .n_threads = 1,
  10304. .past = 0,
  10305. .delta = 1e-5f,
  10306. .max_no_improvement = 0,
  10307. .print_forward_graph = true,
  10308. .print_backward_graph = true,
  10309. .lbfgs = {
  10310. .m = 6,
  10311. .n_iter = 100,
  10312. .max_linesearch = 20,
  10313. .eps = 1e-5f,
  10314. .ftol = 1e-4f,
  10315. .wolfe = 0.9f,
  10316. .min_step = 1e-20f,
  10317. .max_step = 1e+20f,
  10318. .linesearch = GGML_LINESEARCH_DEFAULT,
  10319. },
  10320. };
  10321. } break;
  10322. }
  10323. return result;
  10324. }
  10325. enum ggml_opt_result ggml_opt(
  10326. struct ggml_context * ctx,
  10327. struct ggml_opt_params params,
  10328. struct ggml_tensor * f) {
  10329. bool free_ctx = false;
  10330. if (ctx == NULL) {
  10331. struct ggml_init_params params_ctx = {
  10332. .mem_size = 16*1024*1024,
  10333. .mem_buffer = NULL,
  10334. .no_alloc = false,
  10335. };
  10336. ctx = ggml_init(params_ctx);
  10337. if (ctx == NULL) {
  10338. return GGML_OPT_NO_CONTEXT;
  10339. }
  10340. free_ctx = true;
  10341. }
  10342. enum ggml_opt_result result = GGML_OPT_OK;
  10343. // build forward + backward compute graphs
  10344. struct ggml_cgraph gf = ggml_build_forward (f);
  10345. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10346. switch (params.type) {
  10347. case GGML_OPT_ADAM:
  10348. {
  10349. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10350. } break;
  10351. case GGML_OPT_LBFGS:
  10352. {
  10353. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10354. } break;
  10355. }
  10356. if (params.print_forward_graph) {
  10357. ggml_graph_print (&gf);
  10358. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10359. }
  10360. if (params.print_backward_graph) {
  10361. ggml_graph_print (&gb);
  10362. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10363. }
  10364. if (free_ctx) {
  10365. ggml_free(ctx);
  10366. }
  10367. return result;
  10368. }
  10369. ////////////////////////////////////////////////////////////////////////////////
  10370. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10371. assert(k % QK4_0 == 0);
  10372. const int nb = k / QK4_0;
  10373. for (int j = 0; j < n; j += k) {
  10374. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10375. quantize_row_q4_0_reference(src + j, y, k);
  10376. for (int i = 0; i < nb; i++) {
  10377. for (int l = 0; l < QK4_0; l += 2) {
  10378. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10379. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10380. hist[vi0]++;
  10381. hist[vi1]++;
  10382. }
  10383. }
  10384. }
  10385. return (n/QK4_0*sizeof(block_q4_0));
  10386. }
  10387. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10388. assert(k % QK4_1 == 0);
  10389. const int nb = k / QK4_1;
  10390. for (int j = 0; j < n; j += k) {
  10391. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10392. quantize_row_q4_1_reference(src + j, y, k);
  10393. for (int i = 0; i < nb; i++) {
  10394. for (int l = 0; l < QK4_1; l += 2) {
  10395. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10396. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10397. hist[vi0]++;
  10398. hist[vi1]++;
  10399. }
  10400. }
  10401. }
  10402. return (n/QK4_1*sizeof(block_q4_1));
  10403. }
  10404. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10405. assert(k % QK4_2 == 0);
  10406. const int nb = k / QK4_2;
  10407. for (int j = 0; j < n; j += k) {
  10408. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10409. quantize_row_q4_2_reference(src + j, y, k);
  10410. for (int i = 0; i < nb; i++) {
  10411. for (int l = 0; l < QK4_2; l += 2) {
  10412. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10413. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10414. hist[vi0]++;
  10415. hist[vi1]++;
  10416. }
  10417. }
  10418. }
  10419. return (n/QK4_2*sizeof(block_q4_2));
  10420. }
  10421. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  10422. assert(k % QK4_3 == 0);
  10423. const int nb = k / QK4_3;
  10424. for (int j = 0; j < n; j += k) {
  10425. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  10426. quantize_row_q4_3_reference(src + j, y, k);
  10427. for (int i = 0; i < nb; i++) {
  10428. for (int l = 0; l < QK4_3; l += 2) {
  10429. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10430. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10431. hist[vi0]++;
  10432. hist[vi1]++;
  10433. }
  10434. }
  10435. }
  10436. return (n/QK4_3*sizeof(block_q4_3));
  10437. }
  10438. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10439. assert(k % QK5_0 == 0);
  10440. const int nb = k / QK5_0;
  10441. for (int j = 0; j < n; j += k) {
  10442. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10443. quantize_row_q5_0_reference(src + j, y, k);
  10444. for (int i = 0; i < nb; i++) {
  10445. uint32_t qh;
  10446. memcpy(&qh, &y[i].qh, sizeof(qh));
  10447. for (int l = 0; l < QK5_0; l += 2) {
  10448. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10449. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10450. // cast to 16 bins
  10451. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10452. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10453. hist[vi0]++;
  10454. hist[vi1]++;
  10455. }
  10456. }
  10457. }
  10458. return (n/QK5_0*sizeof(block_q5_0));
  10459. }
  10460. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10461. assert(k % QK5_1 == 0);
  10462. const int nb = k / QK5_1;
  10463. for (int j = 0; j < n; j += k) {
  10464. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10465. quantize_row_q5_1_reference(src + j, y, k);
  10466. for (int i = 0; i < nb; i++) {
  10467. uint32_t qh;
  10468. memcpy(&qh, &y[i].qh, sizeof(qh));
  10469. for (int l = 0; l < QK5_1; l += 2) {
  10470. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10471. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10472. // cast to 16 bins
  10473. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10474. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10475. hist[vi0]++;
  10476. hist[vi1]++;
  10477. }
  10478. }
  10479. }
  10480. return (n/QK5_1*sizeof(block_q5_1));
  10481. }
  10482. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10483. assert(k % QK8_0 == 0);
  10484. const int nb = k / QK8_0;
  10485. for (int j = 0; j < n; j += k) {
  10486. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10487. quantize_row_q8_0_reference(src + j, y, k);
  10488. for (int i = 0; i < nb; i++) {
  10489. for (int l = 0; l < QK8_0; ++l) {
  10490. const int8_t vi = y[i].qs[l];
  10491. hist[vi/16 + 8]++;
  10492. }
  10493. }
  10494. }
  10495. return (n/QK8_0*sizeof(block_q8_0));
  10496. }
  10497. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10498. size_t result = 0;
  10499. switch (type) {
  10500. case GGML_TYPE_Q4_0:
  10501. {
  10502. GGML_ASSERT(start % QK4_0 == 0);
  10503. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10504. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10505. } break;
  10506. case GGML_TYPE_Q4_1:
  10507. {
  10508. GGML_ASSERT(start % QK4_1 == 0);
  10509. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10510. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10511. } break;
  10512. case GGML_TYPE_Q4_2:
  10513. {
  10514. GGML_ASSERT(start % QK4_2 == 0);
  10515. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10516. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10517. } break;
  10518. case GGML_TYPE_Q4_3:
  10519. {
  10520. GGML_ASSERT(start % QK4_3 == 0);
  10521. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10522. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10523. } break;
  10524. case GGML_TYPE_Q5_0:
  10525. {
  10526. GGML_ASSERT(start % QK5_0 == 0);
  10527. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10528. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10529. } break;
  10530. case GGML_TYPE_Q5_1:
  10531. {
  10532. GGML_ASSERT(start % QK5_1 == 0);
  10533. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10534. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10535. } break;
  10536. case GGML_TYPE_Q8_0:
  10537. {
  10538. GGML_ASSERT(start % QK8_0 == 0);
  10539. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10540. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10541. } break;
  10542. default:
  10543. assert(false);
  10544. }
  10545. return result;
  10546. }
  10547. ////////////////////////////////////////////////////////////////////////////////
  10548. int ggml_cpu_has_avx(void) {
  10549. #if defined(__AVX__)
  10550. return 1;
  10551. #else
  10552. return 0;
  10553. #endif
  10554. }
  10555. int ggml_cpu_has_avx2(void) {
  10556. #if defined(__AVX2__)
  10557. return 1;
  10558. #else
  10559. return 0;
  10560. #endif
  10561. }
  10562. int ggml_cpu_has_avx512(void) {
  10563. #if defined(__AVX512F__)
  10564. return 1;
  10565. #else
  10566. return 0;
  10567. #endif
  10568. }
  10569. int ggml_cpu_has_avx512_vbmi(void) {
  10570. #if defined(__AVX512VBMI__)
  10571. return 1;
  10572. #else
  10573. return 0;
  10574. #endif
  10575. }
  10576. int ggml_cpu_has_avx512_vnni(void) {
  10577. #if defined(__AVX512VNNI__)
  10578. return 1;
  10579. #else
  10580. return 0;
  10581. #endif
  10582. }
  10583. int ggml_cpu_has_fma(void) {
  10584. #if defined(__FMA__)
  10585. return 1;
  10586. #else
  10587. return 0;
  10588. #endif
  10589. }
  10590. int ggml_cpu_has_neon(void) {
  10591. #if defined(__ARM_NEON)
  10592. return 1;
  10593. #else
  10594. return 0;
  10595. #endif
  10596. }
  10597. int ggml_cpu_has_arm_fma(void) {
  10598. #if defined(__ARM_FEATURE_FMA)
  10599. return 1;
  10600. #else
  10601. return 0;
  10602. #endif
  10603. }
  10604. int ggml_cpu_has_f16c(void) {
  10605. #if defined(__F16C__)
  10606. return 1;
  10607. #else
  10608. return 0;
  10609. #endif
  10610. }
  10611. int ggml_cpu_has_fp16_va(void) {
  10612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10613. return 1;
  10614. #else
  10615. return 0;
  10616. #endif
  10617. }
  10618. int ggml_cpu_has_wasm_simd(void) {
  10619. #if defined(__wasm_simd128__)
  10620. return 1;
  10621. #else
  10622. return 0;
  10623. #endif
  10624. }
  10625. int ggml_cpu_has_blas(void) {
  10626. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10627. return 1;
  10628. #else
  10629. return 0;
  10630. #endif
  10631. }
  10632. int ggml_cpu_has_cublas(void) {
  10633. #if defined(GGML_USE_CUBLAS)
  10634. return 1;
  10635. #else
  10636. return 0;
  10637. #endif
  10638. }
  10639. int ggml_cpu_has_sse3(void) {
  10640. #if defined(__SSE3__)
  10641. return 1;
  10642. #else
  10643. return 0;
  10644. #endif
  10645. }
  10646. int ggml_cpu_has_vsx(void) {
  10647. #if defined(__POWER9_VECTOR__)
  10648. return 1;
  10649. #else
  10650. return 0;
  10651. #endif
  10652. }
  10653. ////////////////////////////////////////////////////////////////////////////////