| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596 |
- #include "common.h"
- #include "llama.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <iterator>
- #include <iostream>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <unordered_map>
- #include <unordered_set>
- #include <vector>
- #include <cinttypes>
- #if defined(__APPLE__) && defined(__MACH__)
- #include <sys/types.h>
- #include <sys/sysctl.h>
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- # define NOMINMAX
- #endif
- #include <codecvt>
- #include <locale>
- #include <windows.h>
- #include <fcntl.h>
- #include <io.h>
- #else
- #include <sys/ioctl.h>
- #include <sys/stat.h>
- #include <unistd.h>
- #endif
- #if defined(LLAMA_USE_CURL)
- #include <curl/curl.h>
- #endif
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL))
- #define GGML_USE_CUBLAS_SYCL
- #endif
- #if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
- #define GGML_USE_CUBLAS_SYCL_VULKAN
- #endif
- #if defined(LLAMA_USE_CURL)
- #ifdef __linux__
- #include <linux/limits.h>
- #elif defined(_WIN32)
- #define PATH_MAX MAX_PATH
- #else
- #include <sys/syslimits.h>
- #endif
- #define LLAMA_CURL_MAX_PATH_LENGTH PATH_MAX
- #define LLAMA_CURL_MAX_HEADER_LENGTH 256
- #endif // LLAMA_USE_CURL
- int32_t get_num_physical_cores() {
- #ifdef __linux__
- // enumerate the set of thread siblings, num entries is num cores
- std::unordered_set<std::string> siblings;
- for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
- std::ifstream thread_siblings("/sys/devices/system/cpu"
- + std::to_string(cpu) + "/topology/thread_siblings");
- if (!thread_siblings.is_open()) {
- break; // no more cpus
- }
- std::string line;
- if (std::getline(thread_siblings, line)) {
- siblings.insert(line);
- }
- }
- if (!siblings.empty()) {
- return static_cast<int32_t>(siblings.size());
- }
- #elif defined(__APPLE__) && defined(__MACH__)
- int32_t num_physical_cores;
- size_t len = sizeof(num_physical_cores);
- int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
- if (result == 0) {
- return num_physical_cores;
- }
- result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
- if (result == 0) {
- return num_physical_cores;
- }
- #elif defined(_WIN32)
- //TODO: Implement
- #endif
- unsigned int n_threads = std::thread::hardware_concurrency();
- return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
- }
- void process_escapes(std::string& input) {
- std::size_t input_len = input.length();
- std::size_t output_idx = 0;
- for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
- if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
- switch (input[++input_idx]) {
- case 'n': input[output_idx++] = '\n'; break;
- case 'r': input[output_idx++] = '\r'; break;
- case 't': input[output_idx++] = '\t'; break;
- case '\'': input[output_idx++] = '\''; break;
- case '\"': input[output_idx++] = '\"'; break;
- case '\\': input[output_idx++] = '\\'; break;
- case 'x':
- // Handle \x12, etc
- if (input_idx + 2 < input_len) {
- const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
- char *err_p = nullptr;
- const long val = std::strtol(x, &err_p, 16);
- if (err_p == x + 2) {
- input_idx += 2;
- input[output_idx++] = char(val);
- break;
- }
- }
- // fall through
- default: input[output_idx++] = '\\';
- input[output_idx++] = input[input_idx]; break;
- }
- } else {
- input[output_idx++] = input[input_idx];
- }
- }
- input.resize(output_idx);
- }
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
- bool result = true;
- try {
- if (!gpt_params_parse_ex(argc, argv, params)) {
- gpt_print_usage(argc, argv, gpt_params());
- exit(0);
- }
- }
- catch (const std::invalid_argument & ex) {
- fprintf(stderr, "%s\n", ex.what());
- gpt_print_usage(argc, argv, gpt_params());
- exit(1);
- }
- return result;
- }
- static bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
- llama_sampling_params& sparams = params.sparams;
- if (arg == "-s" || arg == "--seed") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.seed = std::stoul(argv[i]);
- return true;
- }
- if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_threads = std::stoi(argv[i]);
- if (params.n_threads <= 0) {
- params.n_threads = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-tb" || arg == "--threads-batch") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_threads_batch = std::stoi(argv[i]);
- if (params.n_threads_batch <= 0) {
- params.n_threads_batch = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-td" || arg == "--threads-draft") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_threads_draft = std::stoi(argv[i]);
- if (params.n_threads_draft <= 0) {
- params.n_threads_draft = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-tbd" || arg == "--threads-batch-draft") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_threads_batch_draft = std::stoi(argv[i]);
- if (params.n_threads_batch_draft <= 0) {
- params.n_threads_batch_draft = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-p" || arg == "--prompt") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.prompt = argv[i];
- return true;
- }
- if (arg == "-e" || arg == "--escape") {
- params.escape = true;
- return true;
- }
- if (arg == "--prompt-cache") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.path_prompt_cache = argv[i];
- return true;
- }
- if (arg == "--prompt-cache-all") {
- params.prompt_cache_all = true;
- return true;
- }
- if (arg == "--prompt-cache-ro") {
- params.prompt_cache_ro = true;
- return true;
- }
- if (arg == "-bf" || arg == "--binary-file") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::ifstream file(argv[i], std::ios::binary);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- // store the external file name in params
- params.prompt_file = argv[i];
- std::ostringstream ss;
- ss << file.rdbuf();
- params.prompt = ss.str();
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
- return true;
- }
- if (arg == "-f" || arg == "--file") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- // store the external file name in params
- params.prompt_file = argv[i];
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- return true;
- }
- if (arg == "-n" || arg == "--n-predict") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_predict = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--top-k") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.top_k = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-c" || arg == "--ctx-size") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_ctx = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--grp-attn-n" || arg == "-gan") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.grp_attn_n = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--grp-attn-w" || arg == "-gaw") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.grp_attn_w = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--rope-freq-base") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.rope_freq_base = std::stof(argv[i]);
- return true;
- }
- if (arg == "--rope-freq-scale") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.rope_freq_scale = std::stof(argv[i]);
- return true;
- }
- if (arg == "--rope-scaling") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::string value(argv[i]);
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--rope-scale") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.rope_freq_scale = 1.0f / std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-orig-ctx") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.yarn_orig_ctx = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--yarn-ext-factor") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.yarn_ext_factor = std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-attn-factor") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.yarn_attn_factor = std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-beta-fast") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.yarn_beta_fast = std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-beta-slow") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.yarn_beta_slow = std::stof(argv[i]);
- return true;
- }
- if (arg == "--pooling") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::string value(argv[i]);
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--defrag-thold" || arg == "-dt") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.defrag_thold = std::stof(argv[i]);
- return true;
- }
- if (arg == "--samplers") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- const auto sampler_names = string_split(argv[i], ';');
- sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
- return true;
- }
- if (arg == "--sampling-seq") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
- return true;
- }
- if (arg == "--top-p") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.top_p = std::stof(argv[i]);
- return true;
- }
- if (arg == "--min-p") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.min_p = std::stof(argv[i]);
- return true;
- }
- if (arg == "--temp") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.temp = std::stof(argv[i]);
- sparams.temp = std::max(sparams.temp, 0.0f);
- return true;
- }
- if (arg == "--tfs") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.tfs_z = std::stof(argv[i]);
- return true;
- }
- if (arg == "--typical") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.typical_p = std::stof(argv[i]);
- return true;
- }
- if (arg == "--repeat-last-n") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.penalty_last_n = std::stoi(argv[i]);
- sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
- return true;
- }
- if (arg == "--repeat-penalty") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.penalty_repeat = std::stof(argv[i]);
- return true;
- }
- if (arg == "--frequency-penalty") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.penalty_freq = std::stof(argv[i]);
- return true;
- }
- if (arg == "--presence-penalty") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.penalty_present = std::stof(argv[i]);
- return true;
- }
- if (arg == "--dynatemp-range") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.dynatemp_range = std::stof(argv[i]);
- return true;
- }
- if (arg == "--dynatemp-exp") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.dynatemp_exponent = std::stof(argv[i]);
- return true;
- }
- if (arg == "--mirostat") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.mirostat = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--mirostat-lr") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.mirostat_eta = std::stof(argv[i]);
- return true;
- }
- if (arg == "--mirostat-ent") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.mirostat_tau = std::stof(argv[i]);
- return true;
- }
- if (arg == "--cfg-negative-prompt") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.cfg_negative_prompt = argv[i];
- return true;
- }
- if (arg == "--cfg-negative-prompt-file") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
- if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
- sparams.cfg_negative_prompt.pop_back();
- }
- return true;
- }
- if (arg == "--cfg-scale") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.cfg_scale = std::stof(argv[i]);
- return true;
- }
- if (arg == "-b" || arg == "--batch-size") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_batch = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-ub" || arg == "--ubatch-size") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_ubatch = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--keep") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_keep = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--draft") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_draft = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--chunks") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_chunks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-np" || arg == "--parallel") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_parallel = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-ns" || arg == "--sequences") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_sequences = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--p-split" || arg == "-ps") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.p_split = std::stof(argv[i]);
- return true;
- }
- if (arg == "-m" || arg == "--model") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.model = argv[i];
- return true;
- }
- if (arg == "-mu" || arg == "--model-url") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.model_url = argv[i];
- return true;
- }
- if (arg == "-md" || arg == "--model-draft") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.model_draft = argv[i];
- return true;
- }
- if (arg == "-a" || arg == "--alias") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.model_alias = argv[i];
- return true;
- }
- if (arg == "--lora") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.lora_adapter.emplace_back(argv[i], 1.0f);
- params.use_mmap = false;
- return true;
- }
- if (arg == "--lora-scaled") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- const char* lora_adapter = argv[i];
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
- params.use_mmap = false;
- return true;
- }
- if (arg == "--lora-base") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.lora_base = argv[i];
- return true;
- }
- if (arg == "--control-vector") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.control_vectors.push_back({ 1.0f, argv[i], });
- return true;
- }
- if (arg == "--control-vector-scaled") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- const char* fname = argv[i];
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.control_vectors.push_back({ std::stof(argv[i]), fname, });
- return true;
- }
- if (arg == "--control-vector-layer-range") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.control_vector_layer_start = std::stoi(argv[i]);
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.control_vector_layer_end = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--mmproj") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.mmproj = argv[i];
- return true;
- }
- if (arg == "--image") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.image = argv[i];
- return true;
- }
- if (arg == "-i" || arg == "--interactive") {
- params.interactive = true;
- return true;
- }
- if (arg == "--embedding") {
- params.embedding = true;
- return true;
- }
- if (arg == "--interactive-first") {
- params.interactive_first = true;
- return true;
- }
- if (arg == "-ins" || arg == "--instruct") {
- params.instruct = true;
- return true;
- }
- if (arg == "-cml" || arg == "--chatml") {
- params.chatml = true;
- return true;
- }
- if (arg == "--infill") {
- params.infill = true;
- return true;
- }
- if (arg == "-dkvc" || arg == "--dump-kv-cache") {
- params.dump_kv_cache = true;
- return true;
- }
- if (arg == "-nkvo" || arg == "--no-kv-offload") {
- params.no_kv_offload = true;
- return true;
- }
- if (arg == "-ctk" || arg == "--cache-type-k") {
- params.cache_type_k = argv[++i];
- return true;
- }
- if (arg == "-ctv" || arg == "--cache-type-v") {
- params.cache_type_v = argv[++i];
- return true;
- }
- if (arg == "--multiline-input") {
- params.multiline_input = true;
- return true;
- }
- if (arg == "--simple-io") {
- params.simple_io = true;
- return true;
- }
- if (arg == "-cb" || arg == "--cont-batching") {
- params.cont_batching = true;
- return true;
- }
- if (arg == "--color") {
- params.use_color = true;
- return true;
- }
- if (arg == "--mlock") {
- params.use_mlock = true;
- return true;
- }
- if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_gpu_layers = std::stoi(argv[i]);
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- return true;
- }
- if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_gpu_layers_draft = std::stoi(argv[i]);
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- return true;
- }
- if (arg == "--main-gpu" || arg == "-mg") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.main_gpu = std::stoi(argv[i]);
- #ifndef GGML_USE_CUBLAS_SYCL
- fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n");
- #endif // GGML_USE_CUBLAS_SYCL
- return true;
- }
- if (arg == "--split-mode" || arg == "-sm") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::string arg_next = argv[i];
- if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- }
- else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- }
- else if (arg_next == "row") {
- #ifdef GGML_USE_SYCL
- fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
- exit(1);
- #endif // GGML_USE_SYCL
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- }
- else {
- invalid_param = true;
- return true;
- }
- #ifndef GGML_USE_CUBLAS_SYCL
- fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n");
- #endif // GGML_USE_CUBLAS_SYCL
- return true;
- }
- if (arg == "--tensor-split" || arg == "-ts") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- if (split_arg.size() >= llama_max_devices()) {
- invalid_param = true;
- return true;
- }
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- params.tensor_split[i] = std::stof(split_arg[i]);
- }
- else {
- params.tensor_split[i] = 0.0f;
- }
- }
- #ifndef GGML_USE_CUBLAS_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n");
- #endif // GGML_USE_CUBLAS_SYCL
- return true;
- }
- if (arg == "--no-mmap") {
- params.use_mmap = false;
- return true;
- }
- if (arg == "--numa") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::string value(argv[i]);
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--verbose-prompt") {
- params.verbose_prompt = true;
- return true;
- }
- if (arg == "--no-display-prompt") {
- params.display_prompt = false;
- return true;
- }
- if (arg == "-r" || arg == "--reverse-prompt") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.antiprompt.emplace_back(argv[i]);
- return true;
- }
- if (arg == "-ld" || arg == "--logdir") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.logdir = argv[i];
- if (params.logdir.back() != DIRECTORY_SEPARATOR) {
- params.logdir += DIRECTORY_SEPARATOR;
- }
- return true;
- }
- if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.logits_file = argv[i];
- return true;
- }
- if (arg == "--perplexity" || arg == "--all-logits") {
- params.logits_all = true;
- return true;
- }
- if (arg == "--ppl-stride") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.ppl_stride = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-ptc" || arg == "--print-token-count") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.n_print = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--ppl-output-type") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.ppl_output_type = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--hellaswag") {
- params.hellaswag = true;
- return true;
- }
- if (arg == "--hellaswag-tasks") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.hellaswag_tasks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--winogrande") {
- params.winogrande = true;
- return true;
- }
- if (arg == "--winogrande-tasks") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.winogrande_tasks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--multiple-choice") {
- params.multiple_choice = true;
- return true;
- }
- if (arg == "--multiple-choice-tasks") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.multiple_choice_tasks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--kl-divergence") {
- params.kl_divergence = true;
- return true;
- }
- if (arg == "--ignore-eos") {
- params.ignore_eos = true;
- return true;
- }
- if (arg == "--no-penalize-nl") {
- sparams.penalize_nl = false;
- return true;
- }
- if (arg == "-l" || arg == "--logit-bias") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::stringstream ss(argv[i]);
- llama_token key;
- char sign;
- std::string value_str;
- try {
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- }
- else {
- throw std::exception();
- }
- }
- catch (const std::exception&) {
- invalid_param = true;
- return true;
- }
- return true;
- }
- if (arg == "-h" || arg == "--help") {
- gpt_print_usage(argc, argv, gpt_params());
- exit(0);
- }
- if (arg == "--version") {
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
- exit(0);
- }
- if (arg == "--random-prompt") {
- params.random_prompt = true;
- return true;
- }
- if (arg == "--in-prefix-bos") {
- params.input_prefix_bos = true;
- return true;
- }
- if (arg == "--in-prefix") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.input_prefix = argv[i];
- return true;
- }
- if (arg == "--in-suffix") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.input_suffix = argv[i];
- return true;
- }
- if (arg == "--grammar") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- sparams.grammar = argv[i];
- return true;
- }
- if (arg == "--grammar-file") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(sparams.grammar)
- );
- return true;
- }
- if (arg == "--override-kv") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- char* sep = strchr(argv[i], '=');
- if (sep == nullptr || sep - argv[i] >= 128) {
- fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
- invalid_param = true;
- return true;
- }
- struct llama_model_kv_override kvo;
- std::strncpy(kvo.key, argv[i], sep - argv[i]);
- kvo.key[sep - argv[i]] = 0;
- sep++;
- if (strncmp(sep, "int:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.int_value = std::atol(sep);
- }
- else if (strncmp(sep, "float:", 6) == 0) {
- sep += 6;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
- kvo.float_value = std::atof(sep);
- }
- else if (strncmp(sep, "bool:", 5) == 0) {
- sep += 5;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
- if (std::strcmp(sep, "true") == 0) {
- kvo.bool_value = true;
- }
- else if (std::strcmp(sep, "false") == 0) {
- kvo.bool_value = false;
- }
- else {
- fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
- invalid_param = true;
- return true;
- }
- }
- else {
- fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
- invalid_param = true;
- return true;
- }
- params.kv_overrides.push_back(kvo);
- return true;
- }
- #ifndef LOG_DISABLE_LOGS
- // Parse args for logging parameters
- if (log_param_single_parse(argv[i])) {
- // Do nothing, log_param_single_parse automatically does it's thing
- // and returns if a match was found and parsed.
- return true;
- }
- if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
- // We have a matching known parameter requiring an argument,
- // now we need to check if there is anything after this argv
- // and flag invalid_param or parse it.
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
- invalid_param = true;
- return true;
- }
- return true;
- }
- // End of Parse args for logging parameters
- #endif // LOG_DISABLE_LOGS
- return false;
- }
- bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
- bool invalid_param = false;
- std::string arg;
- const std::string arg_prefix = "--";
- llama_sampling_params & sparams = params.sparams;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
- throw std::invalid_argument("error: unknown argument: " + arg);
- }
- }
- if (invalid_param) {
- throw std::invalid_argument("error: invalid parameter for argument: " + arg);
- }
- if (params.prompt_cache_all &&
- (params.interactive || params.interactive_first ||
- params.instruct)) {
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
- }
- if (params.escape) {
- process_escapes(params.prompt);
- process_escapes(params.input_prefix);
- process_escapes(params.input_suffix);
- process_escapes(sparams.cfg_negative_prompt);
- for (auto & antiprompt : params.antiprompt) {
- process_escapes(antiprompt);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- return true;
- }
- void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
- const llama_sampling_params & sparams = params.sparams;
- std::string sampler_type_chars;
- std::string sampler_type_names;
- for (const auto sampler_type : sparams.samplers_sequence) {
- sampler_type_chars += static_cast<char>(sampler_type);
- sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
- }
- sampler_type_names.pop_back();
- printf("\n");
- printf("usage: %s [options]\n", argv[0]);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help show this help message and exit\n");
- printf(" --version show version and build info\n");
- printf(" -i, --interactive run in interactive mode\n");
- printf(" --interactive-first run in interactive mode and wait for input right away\n");
- printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
- printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
- printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
- printf(" -r PROMPT, --reverse-prompt PROMPT\n");
- printf(" halt generation at PROMPT, return control in interactive mode\n");
- printf(" (can be specified more than once for multiple prompts).\n");
- printf(" --color colorise output to distinguish prompt and user input from generations\n");
- printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
- printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
- printf(" -tb N, --threads-batch N\n");
- printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
- printf(" -td N, --threads-draft N");
- printf(" number of threads to use during generation (default: same as --threads)\n");
- printf(" -tbd N, --threads-batch-draft N\n");
- printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
- printf(" -p PROMPT, --prompt PROMPT\n");
- printf(" prompt to start generation with (default: empty)\n");
- printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
- printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
- printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
- printf(" not supported with --interactive or other interactive options\n");
- printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
- printf(" --random-prompt start with a randomized prompt.\n");
- printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
- printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
- printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
- printf(" -f FNAME, --file FNAME\n");
- printf(" prompt file to start generation.\n");
- printf(" -bf FNAME, --binary-file FNAME\n");
- printf(" binary file containing multiple choice tasks.\n");
- printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
- printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
- printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
- printf(" -ub N, --ubatch-size N\n");
- printf(" physical maximum batch size (default: %d)\n", params.n_ubatch);
- printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
- printf(" (default: %s)\n", sampler_type_names.c_str());
- printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
- printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
- printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
- printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
- printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
- printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
- printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
- printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
- printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
- printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
- printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
- printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
- printf(" --mirostat N use Mirostat sampling.\n");
- printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
- printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
- printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
- printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
- printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
- printf(" modifies the likelihood of token appearing in the completion,\n");
- printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
- printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
- printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
- printf(" --grammar-file FNAME file to read grammar from\n");
- printf(" --cfg-negative-prompt PROMPT\n");
- printf(" negative prompt to use for guidance. (default: empty)\n");
- printf(" --cfg-negative-prompt-file FNAME\n");
- printf(" negative prompt file to use for guidance. (default: empty)\n");
- printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
- printf(" --rope-scaling {none,linear,yarn}\n");
- printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
- printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
- printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
- printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
- printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
- printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
- printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
- printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
- printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
- printf(" --pooling {none,mean,cls}\n");
- printf(" pooling type for embeddings, use model default if unspecified\n");
- printf(" -dt N, --defrag-thold N\n");
- printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
- printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
- printf(" --no-penalize-nl do not penalize newline token\n");
- printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
- printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
- printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
- printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
- printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
- printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
- printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
- printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
- printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
- printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
- printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
- printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
- printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
- printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
- printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
- printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
- printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
- printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
- if (llama_supports_mlock()) {
- printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_supports_mmap()) {
- printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
- printf(" - distribute: spread execution evenly over all nodes\n");
- printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
- printf(" - numactl: use the CPU map provided by numactl\n");
- printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
- printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
- if (llama_supports_gpu_offload()) {
- printf(" -ngl N, --n-gpu-layers N\n");
- printf(" number of layers to store in VRAM\n");
- printf(" -ngld N, --n-gpu-layers-draft N\n");
- printf(" number of layers to store in VRAM for the draft model\n");
- printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
- printf(" how to split the model across multiple GPUs, one of:\n");
- printf(" - none: use one GPU only\n");
- printf(" - layer (default): split layers and KV across GPUs\n");
- printf(" - row: split rows across GPUs\n");
- printf(" -ts SPLIT, --tensor-split SPLIT\n");
- printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
- printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
- printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
- }
- printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
- printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
- printf(" -gan N, --grp-attn-n N\n");
- printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
- printf(" -gaw N, --grp-attn-w N\n");
- printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
- printf(" -dkvc, --dump-kv-cache\n");
- printf(" verbose print of the KV cache\n");
- printf(" -nkvo, --no-kv-offload\n");
- printf(" disable KV offload\n");
- printf(" -ctk TYPE, --cache-type-k TYPE\n");
- printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
- printf(" -ctv TYPE, --cache-type-v TYPE\n");
- printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
- printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
- printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
- printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
- printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
- printf(" --control-vector FNAME\n");
- printf(" add a control vector\n");
- printf(" --control-vector-scaled FNAME S\n");
- printf(" add a control vector with user defined scaling S\n");
- printf(" --control-vector-layer-range START END\n");
- printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
- printf(" -m FNAME, --model FNAME\n");
- printf(" model path (default: %s)\n", params.model.c_str());
- printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
- printf(" model download url (default: %s)\n", params.model_url.c_str());
- printf(" -md FNAME, --model-draft FNAME\n");
- printf(" draft model for speculative decoding\n");
- printf(" -ld LOGDIR, --logdir LOGDIR\n");
- printf(" path under which to save YAML logs (no logging if unset)\n");
- printf(" --override-kv KEY=TYPE:VALUE\n");
- printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
- printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
- printf(" -ptc N, --print-token-count N\n");
- printf(" print token count every N tokens (default: %d)\n", params.n_print);
- printf("\n");
- #ifndef LOG_DISABLE_LOGS
- log_print_usage();
- #endif // LOG_DISABLE_LOGS
- }
- std::string get_system_info(const gpt_params & params) {
- std::ostringstream os;
- os << "system_info: n_threads = " << params.n_threads;
- if (params.n_threads_batch != -1) {
- os << " (n_threads_batch = " << params.n_threads_batch << ")";
- }
- os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
- return os.str();
- }
- std::string gpt_random_prompt(std::mt19937 & rng) {
- const int r = rng() % 10;
- switch (r) {
- case 0: return "So";
- case 1: return "Once upon a time";
- case 2: return "When";
- case 3: return "The";
- case 4: return "After";
- case 5: return "If";
- case 6: return "import";
- case 7: return "He";
- case 8: return "She";
- case 9: return "They";
- }
- GGML_UNREACHABLE();
- }
- //
- // String utils
- //
- std::vector<std::string> string_split(std::string input, char separator) {
- std::vector<std::string> parts;
- size_t separator_pos = input.find(separator);
- while (separator_pos != std::string::npos) {
- std::string part = input.substr(0, separator_pos);
- parts.emplace_back(part);
- input = input.substr(separator_pos + 1);
- separator_pos = input.find(separator);
- }
- parts.emplace_back(input);
- return parts;
- }
- std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
- std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
- {"top_k", llama_sampler_type::TOP_K},
- {"top_p", llama_sampler_type::TOP_P},
- {"typical_p", llama_sampler_type::TYPICAL_P},
- {"min_p", llama_sampler_type::MIN_P},
- {"tfs_z", llama_sampler_type::TFS_Z},
- {"temperature", llama_sampler_type::TEMPERATURE}
- };
- // since samplers names are written multiple ways
- // make it ready for both system names and input names
- std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
- {"top-k", llama_sampler_type::TOP_K},
- {"top-p", llama_sampler_type::TOP_P},
- {"nucleus", llama_sampler_type::TOP_P},
- {"typical-p", llama_sampler_type::TYPICAL_P},
- {"typical", llama_sampler_type::TYPICAL_P},
- {"min-p", llama_sampler_type::MIN_P},
- {"tfs-z", llama_sampler_type::TFS_Z},
- {"tfs", llama_sampler_type::TFS_Z},
- {"temp", llama_sampler_type::TEMPERATURE}
- };
- std::vector<llama_sampler_type> sampler_types;
- sampler_types.reserve(names.size());
- for (const auto & name : names)
- {
- auto sampler_item = sampler_canonical_name_map.find(name);
- if (sampler_item != sampler_canonical_name_map.end())
- {
- sampler_types.push_back(sampler_item->second);
- }
- else
- {
- if (allow_alt_names)
- {
- sampler_item = sampler_alt_name_map.find(name);
- if (sampler_item != sampler_alt_name_map.end())
- {
- sampler_types.push_back(sampler_item->second);
- }
- }
- }
- }
- return sampler_types;
- }
- std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
- std::unordered_map<char, llama_sampler_type> sampler_name_map {
- {'k', llama_sampler_type::TOP_K},
- {'p', llama_sampler_type::TOP_P},
- {'y', llama_sampler_type::TYPICAL_P},
- {'m', llama_sampler_type::MIN_P},
- {'f', llama_sampler_type::TFS_Z},
- {'t', llama_sampler_type::TEMPERATURE}
- };
- std::vector<llama_sampler_type> sampler_types;
- sampler_types.reserve(names_string.size());
- for (const auto & c : names_string) {
- const auto sampler_item = sampler_name_map.find(c);
- if (sampler_item != sampler_name_map.end()) {
- sampler_types.push_back(sampler_item->second);
- }
- }
- return sampler_types;
- }
- std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
- switch (sampler_type) {
- case llama_sampler_type::TOP_K: return "top_k";
- case llama_sampler_type::TFS_Z: return "tfs_z";
- case llama_sampler_type::TYPICAL_P: return "typical_p";
- case llama_sampler_type::TOP_P: return "top_p";
- case llama_sampler_type::MIN_P: return "min_p";
- case llama_sampler_type::TEMPERATURE: return "temperature";
- default : return "";
- }
- }
- //
- // Model utils
- //
- struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
- auto mparams = llama_model_default_params();
- if (params.n_gpu_layers != -1) {
- mparams.n_gpu_layers = params.n_gpu_layers;
- }
- mparams.main_gpu = params.main_gpu;
- mparams.split_mode = params.split_mode;
- mparams.tensor_split = params.tensor_split;
- mparams.use_mmap = params.use_mmap;
- mparams.use_mlock = params.use_mlock;
- if (params.kv_overrides.empty()) {
- mparams.kv_overrides = NULL;
- } else {
- GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
- mparams.kv_overrides = params.kv_overrides.data();
- }
- return mparams;
- }
- static ggml_type kv_cache_type_from_str(const std::string & s) {
- if (s == "f32") {
- return GGML_TYPE_F32;
- }
- if (s == "f16") {
- return GGML_TYPE_F16;
- }
- if (s == "q8_0") {
- return GGML_TYPE_Q8_0;
- }
- if (s == "q4_0") {
- return GGML_TYPE_Q4_0;
- }
- if (s == "q4_1") {
- return GGML_TYPE_Q4_1;
- }
- if (s == "iq4_nl") {
- return GGML_TYPE_IQ4_NL;
- }
- if (s == "q5_0") {
- return GGML_TYPE_Q5_0;
- }
- if (s == "q5_1") {
- return GGML_TYPE_Q5_1;
- }
- throw std::runtime_error("Invalid cache type: " + s);
- }
- struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
- auto cparams = llama_context_default_params();
- cparams.n_ctx = params.n_ctx;
- cparams.n_seq_max = params.n_parallel;
- cparams.n_batch = params.n_batch;
- cparams.n_ubatch = params.n_ubatch;
- cparams.n_threads = params.n_threads;
- cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
- cparams.seed = params.seed;
- cparams.logits_all = params.logits_all;
- cparams.embeddings = params.embedding;
- cparams.rope_scaling_type = params.rope_scaling_type;
- cparams.rope_freq_base = params.rope_freq_base;
- cparams.rope_freq_scale = params.rope_freq_scale;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.yarn_orig_ctx = params.yarn_orig_ctx;
- cparams.pooling_type = params.pooling_type;
- cparams.defrag_thold = params.defrag_thold;
- cparams.offload_kqv = !params.no_kv_offload;
- cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
- cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
- return cparams;
- }
- void llama_batch_clear(struct llama_batch & batch) {
- batch.n_tokens = 0;
- }
- void llama_batch_add(
- struct llama_batch & batch,
- llama_token id,
- llama_pos pos,
- const std::vector<llama_seq_id> & seq_ids,
- bool logits) {
- batch.token [batch.n_tokens] = id;
- batch.pos [batch.n_tokens] = pos;
- batch.n_seq_id[batch.n_tokens] = seq_ids.size();
- for (size_t i = 0; i < seq_ids.size(); ++i) {
- batch.seq_id[batch.n_tokens][i] = seq_ids[i];
- }
- batch.logits [batch.n_tokens] = logits;
- batch.n_tokens++;
- }
- #ifdef LLAMA_USE_CURL
- struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model,
- struct llama_model_params params) {
- // Basic validation of the model_url
- if (!model_url || strlen(model_url) == 0) {
- fprintf(stderr, "%s: invalid model_url\n", __func__);
- return NULL;
- }
- // Initialize libcurl globally
- auto curl = curl_easy_init();
- if (!curl) {
- fprintf(stderr, "%s: error initializing libcurl\n", __func__);
- return NULL;
- }
- // Set the URL, allow to follow http redirection
- curl_easy_setopt(curl, CURLOPT_URL, model_url);
- curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
- #if defined(_WIN32)
- // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
- // operating system. Currently implemented under MS-Windows.
- curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
- #endif
- // Check if the file already exists locally
- struct stat model_file_info;
- auto file_exists = (stat(path_model, &model_file_info) == 0);
- // If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files
- char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
- char etag_path[LLAMA_CURL_MAX_PATH_LENGTH] = {0};
- snprintf(etag_path, sizeof(etag_path), "%s.etag", path_model);
- char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
- char last_modified_path[LLAMA_CURL_MAX_PATH_LENGTH] = {0};
- snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path_model);
- if (file_exists) {
- auto * f_etag = fopen(etag_path, "r");
- if (f_etag) {
- if (!fgets(etag, sizeof(etag), f_etag)) {
- fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path);
- } else {
- fprintf(stderr, "%s: previous model file found %s: %s\n", __func__, etag_path, etag);
- }
- fclose(f_etag);
- }
- auto * f_last_modified = fopen(last_modified_path, "r");
- if (f_last_modified) {
- if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) {
- fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path);
- } else {
- fprintf(stderr, "%s: previous model file found %s: %s\n", __func__, last_modified_path,
- last_modified);
- }
- fclose(f_last_modified);
- }
- }
- // Send a HEAD request to retrieve the etag and last-modified headers
- struct llama_load_model_from_url_headers {
- char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
- char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
- };
- llama_load_model_from_url_headers headers;
- {
- typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
- auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
- llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
- const char * etag_prefix = "etag: ";
- if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) {
- strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF
- }
- const char * last_modified_prefix = "last-modified: ";
- if (strncmp(buffer, last_modified_prefix, strlen(last_modified_prefix)) == 0) {
- strncpy(headers->last_modified, buffer + strlen(last_modified_prefix),
- n_items - strlen(last_modified_prefix) - 2); // Remove CRLF
- }
- return n_items;
- };
- curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
- curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress
- curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
- curl_easy_setopt(curl, CURLOPT_HEADERDATA, &headers);
- CURLcode res = curl_easy_perform(curl);
- if (res != CURLE_OK) {
- curl_easy_cleanup(curl);
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
- return NULL;
- }
- long http_code = 0;
- curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code != 200) {
- // HEAD not supported, we don't know if the file has changed
- // force trigger downloading
- file_exists = false;
- fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
- }
- }
- // If the ETag or the Last-Modified headers are different: trigger a new download
- if (!file_exists || strcmp(etag, headers.etag) != 0 || strcmp(last_modified, headers.last_modified) != 0) {
- char path_model_temporary[LLAMA_CURL_MAX_PATH_LENGTH] = {0};
- snprintf(path_model_temporary, sizeof(path_model_temporary), "%s.downloadInProgress", path_model);
- if (file_exists) {
- fprintf(stderr, "%s: deleting previous downloaded model file: %s\n", __func__, path_model);
- if (remove(path_model) != 0) {
- curl_easy_cleanup(curl);
- fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path_model);
- return NULL;
- }
- }
- // Set the output file
- auto * outfile = fopen(path_model_temporary, "wb");
- if (!outfile) {
- curl_easy_cleanup(curl);
- fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path_model);
- return NULL;
- }
- typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
- auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
- return fwrite(data, size, nmemb, (FILE *)fd);
- };
- curl_easy_setopt(curl, CURLOPT_NOBODY, 0L);
- curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
- curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile);
- // display download progress
- curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
- // start the download
- fprintf(stderr, "%s: downloading model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
- model_url, path_model, headers.etag, headers.last_modified);
- auto res = curl_easy_perform(curl);
- if (res != CURLE_OK) {
- fclose(outfile);
- curl_easy_cleanup(curl);
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
- return NULL;
- }
- long http_code = 0;
- curl_easy_getinfo (curl, CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code < 200 || http_code >= 400) {
- fclose(outfile);
- curl_easy_cleanup(curl);
- fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
- return NULL;
- }
- // Clean up
- fclose(outfile);
- // Write the new ETag to the .etag file
- if (strlen(headers.etag) > 0) {
- auto * etag_file = fopen(etag_path, "w");
- if (etag_file) {
- fputs(headers.etag, etag_file);
- fclose(etag_file);
- fprintf(stderr, "%s: model etag saved %s: %s\n", __func__, etag_path, headers.etag);
- }
- }
- // Write the new lastModified to the .etag file
- if (strlen(headers.last_modified) > 0) {
- auto * last_modified_file = fopen(last_modified_path, "w");
- if (last_modified_file) {
- fputs(headers.last_modified, last_modified_file);
- fclose(last_modified_file);
- fprintf(stderr, "%s: model last modified saved %s: %s\n", __func__, last_modified_path,
- headers.last_modified);
- }
- }
- if (rename(path_model_temporary, path_model) != 0) {
- curl_easy_cleanup(curl);
- fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_model_temporary, path_model);
- return NULL;
- }
- }
- curl_easy_cleanup(curl);
- return llama_load_model_from_file(path_model, params);
- }
- #else
- struct llama_model * llama_load_model_from_url(const char * /*model_url*/, const char * /*path_model*/,
- struct llama_model_params /*params*/) {
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
- return nullptr;
- }
- #endif // LLAMA_USE_CURL
- std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
- auto mparams = llama_model_params_from_gpt_params(params);
- llama_model * model = nullptr;
- if (!params.model_url.empty()) {
- model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
- } else {
- model = llama_load_model_from_file(params.model.c_str(), mparams);
- }
- if (model == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
- return std::make_tuple(nullptr, nullptr);
- }
- auto cparams = llama_context_params_from_gpt_params(params);
- llama_context * lctx = llama_new_context_with_model(model, cparams);
- if (lctx == NULL) {
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
- llama_free_model(model);
- return std::make_tuple(nullptr, nullptr);
- }
- if (!params.control_vectors.empty()) {
- if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
- if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
- const auto cvec = llama_control_vector_load(params.control_vectors);
- if (cvec.n_embd == -1) {
- llama_free(lctx);
- llama_free_model(model);
- return std::make_tuple(nullptr, nullptr);
- }
- int err = llama_control_vector_apply(lctx,
- cvec.data.data(),
- cvec.data.size(),
- cvec.n_embd,
- params.control_vector_layer_start,
- params.control_vector_layer_end);
- if (err) {
- llama_free(lctx);
- llama_free_model(model);
- return std::make_tuple(nullptr, nullptr);
- }
- }
- for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
- const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
- float lora_scale = std::get<1>(params.lora_adapter[i]);
- int err = llama_model_apply_lora_from_file(model,
- lora_adapter.c_str(),
- lora_scale,
- ((i > 0) || params.lora_base.empty())
- ? NULL
- : params.lora_base.c_str(),
- params.n_threads);
- if (err != 0) {
- fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
- llama_free(lctx);
- llama_free_model(model);
- return std::make_tuple(nullptr, nullptr);
- }
- }
- if (params.ignore_eos) {
- params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
- }
- {
- LOG("warming up the model with an empty run\n");
- std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
- llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
- llama_kv_cache_clear(lctx);
- llama_synchronize(lctx);
- llama_reset_timings(lctx);
- }
- return std::make_tuple(model, lctx);
- }
- //
- // Vocab utils
- //
- std::vector<llama_token> llama_tokenize(
- const struct llama_context * ctx,
- const std::string & text,
- bool add_bos,
- bool special) {
- return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
- }
- std::vector<llama_token> llama_tokenize(
- const struct llama_model * model,
- const std::string & text,
- bool add_bos,
- bool special) {
- // upper limit for the number of tokens
- int n_tokens = text.length() + add_bos;
- std::vector<llama_token> result(n_tokens);
- n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return result;
- }
- std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return std::string(result.data(), result.size());
- }
- std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
- const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
- std::string piece;
- std::string result;
- for (size_t i = 0; i < tokens.size(); ++i) {
- piece = llama_token_to_piece(ctx, tokens[i]);
- // remove the leading space of the first non-BOS token
- if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
- piece = piece.substr(1);
- }
- result += piece;
- }
- return result;
- }
- std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
- std::string piece;
- std::string result;
- for (size_t i = 0; i < tokens.size(); ++i) {
- piece = llama_token_to_piece(ctx, tokens[i]);
- result += piece;
- }
- // NOTE: the original tokenizer decodes bytes after collecting the pieces.
- return result;
- }
- bool llama_should_add_bos_token(const llama_model * model) {
- const int add_bos = llama_add_bos_token(model);
- return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
- }
- //
- // YAML utils
- //
- // returns true if successful, false otherwise
- bool create_directory_with_parents(const std::string & path) {
- #ifdef _WIN32
- std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
- std::wstring wpath = converter.from_bytes(path);
- // if the path already exists, check whether it's a directory
- const DWORD attributes = GetFileAttributesW(wpath.c_str());
- if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
- return true;
- }
- size_t pos_slash = 0;
- // process path from front to back, procedurally creating directories
- while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
- const std::wstring subpath = wpath.substr(0, pos_slash);
- const wchar_t * test = subpath.c_str();
- const bool success = CreateDirectoryW(test, NULL);
- if (!success) {
- const DWORD error = GetLastError();
- // if the path already exists, ensure that it's a directory
- if (error == ERROR_ALREADY_EXISTS) {
- const DWORD attributes = GetFileAttributesW(subpath.c_str());
- if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
- return false;
- }
- } else {
- return false;
- }
- }
- pos_slash += 1;
- }
- return true;
- #else
- // if the path already exists, check whether it's a directory
- struct stat info;
- if (stat(path.c_str(), &info) == 0) {
- return S_ISDIR(info.st_mode);
- }
- size_t pos_slash = 1; // skip leading slashes for directory creation
- // process path from front to back, procedurally creating directories
- while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
- const std::string subpath = path.substr(0, pos_slash);
- struct stat info;
- // if the path already exists, ensure that it's a directory
- if (stat(subpath.c_str(), &info) == 0) {
- if (!S_ISDIR(info.st_mode)) {
- return false;
- }
- } else {
- // create parent directories
- const int ret = mkdir(subpath.c_str(), 0755);
- if (ret != 0) {
- return false;
- }
- }
- pos_slash += 1;
- }
- return true;
- #endif // _WIN32
- }
- void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
- if (data.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- fprintf(stream, "%s: [", prop_name);
- for (size_t i = 0; i < data.size() - 1; ++i) {
- fprintf(stream, "%e, ", data[i]);
- }
- fprintf(stream, "%e]\n", data.back());
- }
- void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
- if (data.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- fprintf(stream, "%s: [", prop_name);
- for (size_t i = 0; i < data.size() - 1; ++i) {
- fprintf(stream, "%d, ", data[i]);
- }
- fprintf(stream, "%d]\n", data.back());
- }
- void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
- std::string data_str(data == NULL ? "" : data);
- if (data_str.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- size_t pos_start = 0;
- size_t pos_found = 0;
- if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
- data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
- data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
- data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
- data_str = "\"" + data_str + "\"";
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
- return;
- }
- if (data_str.find('\n') == std::string::npos) {
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
- return;
- }
- fprintf(stream, "%s: |\n", prop_name);
- while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
- fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
- pos_start = pos_found + 1;
- }
- }
- std::string get_sortable_timestamp() {
- using clock = std::chrono::system_clock;
- const clock::time_point current_time = clock::now();
- const time_t as_time_t = clock::to_time_t(current_time);
- char timestamp_no_ns[100];
- std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
- const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
- current_time.time_since_epoch() % 1000000000).count();
- char timestamp_ns[11];
- snprintf(timestamp_ns, 11, "%09" PRId64, ns);
- return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
- }
- void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
- const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
- const llama_sampling_params & sparams = params.sparams;
- fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
- fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
- fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
- fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
- fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
- fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
- fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
- fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
- fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
- fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
- fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
- fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
- fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
- fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
- fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
- fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
- fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
- fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
- fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
- fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
- #ifdef NDEBUG
- fprintf(stream, "debug: false\n");
- #else
- fprintf(stream, "debug: true\n");
- #endif // NDEBUG
- fprintf(stream, "model_desc: %s\n", model_desc);
- fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
- #ifdef __OPTIMIZE__
- fprintf(stream, "optimize: true\n");
- #else
- fprintf(stream, "optimize: false\n");
- #endif // __OPTIMIZE__
- fprintf(stream, "time: %s\n", timestamp.c_str());
- fprintf(stream, "\n");
- fprintf(stream, "###############\n");
- fprintf(stream, "# User Inputs #\n");
- fprintf(stream, "###############\n");
- fprintf(stream, "\n");
- fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
- fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
- dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
- fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
- fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
- fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
- fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
- fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
- fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
- fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
- dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
- fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
- fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
- fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
- const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
- const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
- fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
- dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
- fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
- dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
- fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
- fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
- fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
- fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
- fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
- fprintf(stream, "logit_bias:\n");
- for (std::pair<llama_token, float> lb : sparams.logit_bias) {
- if (ignore_eos && lb.first == logit_bias_eos->first) {
- continue;
- }
- fprintf(stream, " %d: %f", lb.first, lb.second);
- }
- fprintf(stream, "lora:\n");
- for (std::tuple<std::string, float> la : params.lora_adapter) {
- if (std::get<1>(la) != 1.0f) {
- continue;
- }
- fprintf(stream, " - %s\n", std::get<0>(la).c_str());
- }
- fprintf(stream, "lora_scaled:\n");
- for (std::tuple<std::string, float> la : params.lora_adapter) {
- if (std::get<1>(la) == 1.0f) {
- continue;
- }
- fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
- }
- fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
- fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
- fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
- fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
- fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
- fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
- fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
- fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
- fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
- fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
- fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
- fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
- fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
- fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
- fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
- fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
- fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
- fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
- dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
- fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
- fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
- fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
- dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
- fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
- fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
- fprintf(stream, "reverse_prompt:\n");
- for (std::string ap : params.antiprompt) {
- size_t pos = 0;
- while ((pos = ap.find('\n', pos)) != std::string::npos) {
- ap.replace(pos, 1, "\\n");
- pos += 1;
- }
- fprintf(stream, " - %s\n", ap.c_str());
- }
- fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
- fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
- fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
- fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
- fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
- fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
- const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
- dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
- fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
- fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
- fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
- fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
- fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
- fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
- fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
- fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
- }
- //
- // KV cache utils
- //
- void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
- static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
- printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
- view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
- llama_kv_cache_view_cell * c_curr = view.cells;
- llama_seq_id * cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- if (i % row_size == 0) {
- printf("\n%5d: ", i);
- }
- int seq_count = 0;
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] >= 0) { seq_count++; }
- }
- putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
- }
- printf("\n=== Done dumping\n");
- }
- void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
- static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
- view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
- std::unordered_map<llama_seq_id, size_t> seqs;
- llama_kv_cache_view_cell * c_curr = view.cells;
- llama_seq_id * cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] < 0) { continue; }
- if (seqs.find(cs_curr[j]) == seqs.end()) {
- if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
- const size_t sz = seqs.size();
- seqs[cs_curr[j]] = sz;
- }
- }
- if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
- }
- printf("=== Sequence legend: ");
- for (const auto & it : seqs) {
- printf("%zu=%d, ", it.second, it.first);
- }
- printf("'+'=other sequence ids");
- c_curr = view.cells;
- cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- if (i % row_size == 0) {
- printf("\n%5d: ", i);
- }
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] >= 0) {
- const auto & it = seqs.find(cs_curr[j]);
- putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
- } else {
- putchar('.');
- }
- }
- putchar(' ');
- }
- printf("\n=== Done dumping\n");
- }
- void llama_embd_normalize(const float * inp, float * out, int n) {
- double sum = 0.0;
- for (int i = 0; i < n; i++) {
- sum += inp[i] * inp[i];
- }
- sum = sqrt(sum);
- const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;
- for (int i = 0; i < n; i++) {
- out[i] = inp[i] * norm;
- }
- }
- float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
- double sum = 0.0;
- double sum1 = 0.0;
- double sum2 = 0.0;
- for (int i = 0; i < n; i++) {
- sum += embd1[i] * embd2[i];
- sum1 += embd1[i] * embd1[i];
- sum2 += embd2[i] * embd2[i];
- }
- return sum / (sqrt(sum1) * sqrt(sum2));
- }
- //
- // Control vector utils
- //
- static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
- int32_t n_tensors;
- size_t n_bytes = 0;
- uint32_t max_direction_layer = 0;
- llama_control_vector_data result = { -1, {} };
- // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
- {
- struct ggml_init_params meta_params = {
- /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
- /* .mem_buffer = */ nullptr,
- /* .no_alloc = */ true,
- };
- ggml_context * meta_ctx = ggml_init(meta_params);
- struct gguf_init_params meta_gguf_params = {
- /* .no_alloc = */ true,
- /* .ctx = */ &meta_ctx,
- };
- struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
- if (!meta_ctx_gguf) {
- fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
- ggml_free(meta_ctx);
- return result;
- }
- n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
- for (int i = 0; i < n_tensors; i++) {
- std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
- // split on '.'
- size_t dotpos = name.find('.');
- if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
- try {
- uint32_t layer = std::stoi(name.substr(dotpos + 1));
- if (layer == 0) {
- fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
- ggml_free(meta_ctx);
- gguf_free(meta_ctx_gguf);
- return result;
- }
- if (layer > max_direction_layer) {
- max_direction_layer = layer;
- }
- } catch (...) {
- fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
- ggml_free(meta_ctx);
- gguf_free(meta_ctx_gguf);
- return result;
- }
- }
- struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
- if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
- fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
- ggml_free(meta_ctx);
- gguf_free(meta_ctx_gguf);
- return result;
- }
- if (result.n_embd == -1) {
- result.n_embd = ggml_nelements(tensor_meta);
- } else if (ggml_nelements(tensor_meta) != result.n_embd) {
- fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
- ggml_free(meta_ctx);
- gguf_free(meta_ctx_gguf);
- return result;
- }
- n_bytes += ggml_nbytes(tensor_meta);
- }
- ggml_free(meta_ctx);
- gguf_free(meta_ctx_gguf);
- }
- if (n_tensors == 0) {
- fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
- return result;
- }
- // load and scale tensors into final control vector context
- struct ggml_init_params ggml_params = {
- /* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
- /* .mem_buffer = */ nullptr,
- /* .no_alloc = */ false,
- };
- struct ggml_context * ctx = ggml_init(ggml_params);
- struct gguf_init_params params = {
- /*.no_alloc = */ false,
- /*.ctx = */ &ctx,
- };
- struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
- if (!ctx_gguf) {
- fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
- ggml_free(ctx);
- return result;
- }
- // do not store data for layer 0 (it's not used)
- result.data.resize(result.n_embd * max_direction_layer);
- for (uint32_t il = 1; il <= max_direction_layer; il++) {
- const std::string name = "direction." + std::to_string(il);
- const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
- float * dst = result.data.data() + result.n_embd * (il - 1);
- if (tensor) {
- const float * src = (const float *) tensor->data;
- for (int j = 0; j < result.n_embd; j++) {
- dst[j] = src[j] * load_info.strength;
- }
- } else {
- for (int j = 0; j < result.n_embd; j++) {
- dst[j] = 0.0f;
- }
- }
- }
- return result;
- }
- llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
- llama_control_vector_data result = { -1, {} };
- for (const auto & info : load_infos) {
- auto cur = llama_control_vector_load_one(info);
- if (cur.n_embd == -1) {
- return result;
- }
- if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
- fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
- return result;
- }
- if (result.n_embd == -1) {
- result = std::move(cur);
- } else {
- for (size_t i = 0; i < cur.data.size(); i++) {
- result.data[i] += cur.data[i];
- }
- }
- }
- if (result.n_embd == -1) {
- fprintf(stderr, "%s: no vectors passed\n", __func__);
- }
- return result;
- }
|