convert_hf_to_gguf.py 160 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
  53. model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  54. if type(self) is Model:
  55. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  56. self.dir_model = dir_model
  57. self.ftype = ftype
  58. self.is_big_endian = is_big_endian
  59. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  60. self.use_temp_file = use_temp_file
  61. self.lazy = not eager
  62. self.model_name = model_name
  63. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  64. self.is_safetensors = len(self.part_names) > 0
  65. if not self.is_safetensors:
  66. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  67. self.hparams = Model.load_hparams(self.dir_model)
  68. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  69. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  70. self.tensor_names = None
  71. if self.ftype == gguf.LlamaFileType.GUESSED:
  72. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  73. _, first_tensor = next(self.get_tensors())
  74. if first_tensor.dtype == torch.float16:
  75. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  77. else:
  78. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  79. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  80. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  81. ftype_lw: str = ftype_up.lower()
  82. # allow templating the file name with the output ftype, useful with the "auto" ftype
  83. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  84. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  85. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  86. @classmethod
  87. def __init_subclass__(cls):
  88. # can't use an abstract property, because overriding it without type errors
  89. # would require using decorated functions instead of simply defining the property
  90. if "model_arch" not in cls.__dict__:
  91. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  92. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  93. key = next((k for k in keys if k in self.hparams), None)
  94. if key is not None:
  95. return self.hparams[key]
  96. if optional:
  97. return None
  98. raise KeyError(f"could not find any of: {keys}")
  99. def set_vocab(self):
  100. self._set_vocab_gpt2()
  101. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  102. tensor_names_from_parts: set[str] = set()
  103. if len(self.part_names) > 1:
  104. self.tensor_names = set()
  105. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  106. index_name += ".index.json"
  107. logger.info(f"gguf: loading model weight map from '{index_name}'")
  108. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  109. index: dict[str, Any] = json.load(f)
  110. weight_map = index.get("weight_map")
  111. if weight_map is None or not isinstance(weight_map, dict):
  112. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  113. self.tensor_names.update(weight_map.keys())
  114. else:
  115. self.tensor_names = tensor_names_from_parts
  116. for part_name in self.part_names:
  117. logger.info(f"gguf: loading model part '{part_name}'")
  118. ctx: ContextManager[Any]
  119. if self.is_safetensors:
  120. from safetensors import safe_open
  121. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  122. else:
  123. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  124. with ctx as model_part:
  125. tensor_names_from_parts.update(model_part.keys())
  126. for name in model_part.keys():
  127. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  128. if self.lazy:
  129. data = LazyTorchTensor.from_eager(data)
  130. yield name, data
  131. # only verify tensor name presence; it doesn't matter if they are not in the right files
  132. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  133. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  134. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  135. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  136. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  137. name: str = gguf.TENSOR_NAMES[key]
  138. if "{bid}" in name:
  139. assert bid is not None
  140. name = name.format(bid=bid)
  141. return name + suffix
  142. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  143. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  144. return False
  145. key_name: str = gguf.TENSOR_NAMES[key]
  146. if "{bid}" in key_name:
  147. if bid is None:
  148. return False
  149. key_name = key_name.format(bid=bid)
  150. else:
  151. if bid is not None:
  152. return False
  153. return name == (key_name + suffix)
  154. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  155. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  156. if new_name is None:
  157. raise ValueError(f"Can not map tensor {name!r}")
  158. return new_name
  159. def set_gguf_parameters(self):
  160. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  161. self.gguf_writer.add_block_count(self.block_count)
  162. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  163. self.gguf_writer.add_context_length(n_ctx)
  164. logger.info(f"gguf: context length = {n_ctx}")
  165. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  166. self.gguf_writer.add_embedding_length(n_embd)
  167. logger.info(f"gguf: embedding length = {n_embd}")
  168. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  169. self.gguf_writer.add_feed_forward_length(n_ff)
  170. logger.info(f"gguf: feed forward length = {n_ff}")
  171. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  172. self.gguf_writer.add_head_count(n_head)
  173. logger.info(f"gguf: head count = {n_head}")
  174. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  175. self.gguf_writer.add_head_count_kv(n_head_kv)
  176. logger.info(f"gguf: key-value head count = {n_head_kv}")
  177. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  178. self.gguf_writer.add_rope_freq_base(rope_theta)
  179. logger.info(f"gguf: rope theta = {rope_theta}")
  180. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  181. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  182. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  183. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  184. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  185. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  186. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  187. self.gguf_writer.add_expert_count(n_experts)
  188. logger.info(f"gguf: expert count = {n_experts}")
  189. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  190. self.gguf_writer.add_expert_used_count(n_experts_used)
  191. logger.info(f"gguf: experts used count = {n_experts_used}")
  192. self.gguf_writer.add_file_type(self.ftype)
  193. logger.info(f"gguf: file type = {self.ftype}")
  194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  195. del bid # unused
  196. return [(self.map_tensor_name(name), data_torch)]
  197. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  198. del name, new_name, bid, n_dims # unused
  199. return False
  200. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  201. del name, new_name, bid, n_dims # unused
  202. return False
  203. def write_tensors(self):
  204. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  205. for name, data_torch in self.get_tensors():
  206. # we don't need these
  207. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  208. continue
  209. old_dtype = data_torch.dtype
  210. # convert any unsupported data types to float32
  211. if data_torch.dtype not in (torch.float16, torch.float32):
  212. data_torch = data_torch.to(torch.float32)
  213. # use the first number-like part of the tensor name as the block id
  214. bid = None
  215. for part in name.split("."):
  216. if part.isdecimal():
  217. bid = int(part)
  218. break
  219. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  220. data: np.ndarray # type hint
  221. n_dims = len(data.shape)
  222. data_dtype = data.dtype
  223. data_qtype: gguf.GGMLQuantizationType | None = None
  224. # when both are True, f32 should win
  225. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  226. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  227. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  228. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  229. extra_f32 = any(cond for cond in (
  230. extra_f32,
  231. n_dims == 1,
  232. new_name.endswith("_norm.weight"),
  233. ))
  234. # Some tensor types are always in float32
  235. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  236. gguf.MODEL_TENSOR.FFN_GATE_INP,
  237. gguf.MODEL_TENSOR.POS_EMBD,
  238. gguf.MODEL_TENSOR.TOKEN_TYPES,
  239. ))
  240. # if f16 desired, convert any float32 2-dim weight tensors to float16
  241. extra_f16 = any(cond for cond in (
  242. extra_f16,
  243. (name.endswith(".weight") and n_dims >= 2),
  244. ))
  245. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  246. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  247. data = gguf.quantize_bf16(data)
  248. assert data.dtype == np.int16
  249. data_qtype = gguf.GGMLQuantizationType.BF16
  250. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  251. data = gguf.quantize_q8_0(data)
  252. assert data.dtype == np.uint8
  253. data_qtype = gguf.GGMLQuantizationType.Q8_0
  254. else: # default to float16 for quantized tensors
  255. if data_dtype != np.float16:
  256. data = data.astype(np.float16)
  257. data_qtype = gguf.GGMLQuantizationType.F16
  258. if data_qtype is None: # by default, convert to float32
  259. if data_dtype != np.float32:
  260. data = data.astype(np.float32)
  261. data_qtype = gguf.GGMLQuantizationType.F32
  262. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  263. # reverse shape to make it similar to the internal ggml dimension order
  264. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  265. # n_dims is implicit in the shape
  266. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  267. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  268. def write(self):
  269. self.write_tensors()
  270. self.gguf_writer.write_header_to_file(self.fname_out)
  271. self.gguf_writer.write_kv_data_to_file()
  272. self.gguf_writer.write_tensors_to_file(progress=True)
  273. self.gguf_writer.close()
  274. def write_vocab(self):
  275. if len(self.gguf_writer.tensors) != 1:
  276. raise ValueError('Splitting the vocabulary is not supported')
  277. self.gguf_writer.write_header_to_file(self.fname_out)
  278. self.gguf_writer.write_kv_data_to_file()
  279. self.gguf_writer.close()
  280. @staticmethod
  281. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  282. part_names: list[str] = []
  283. for filename in os.listdir(dir_model):
  284. if filename.startswith(prefix) and filename.endswith(suffix):
  285. part_names.append(filename)
  286. part_names.sort()
  287. return part_names
  288. @staticmethod
  289. def load_hparams(dir_model: Path):
  290. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  291. return json.load(f)
  292. @classmethod
  293. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  294. assert names
  295. def func(modelcls: AnyModel) -> AnyModel:
  296. for name in names:
  297. cls._model_classes[name] = modelcls
  298. return modelcls
  299. return func
  300. @classmethod
  301. def from_model_architecture(cls, arch: str) -> type[Model]:
  302. try:
  303. return cls._model_classes[arch]
  304. except KeyError:
  305. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  306. def does_token_look_special(self, token: str | bytes) -> bool:
  307. if isinstance(token, (bytes, bytearray)):
  308. token_text = token.decode(encoding="utf-8")
  309. elif isinstance(token, memoryview):
  310. token_text = token.tobytes().decode(encoding="utf-8")
  311. else:
  312. token_text = token
  313. # Some models mark some added tokens which ought to be control tokens as not special.
  314. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  315. seems_special = token_text in (
  316. "<pad>", # deepseek-coder
  317. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  318. )
  319. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  320. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  321. # TODO: should these be marked as UNUSED instead? (maybe not)
  322. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  323. return seems_special
  324. # used for GPT-2 BPE and WordPiece vocabs
  325. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  326. tokens: list[str] = []
  327. toktypes: list[int] = []
  328. from transformers import AutoTokenizer
  329. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  330. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  331. assert max(tokenizer.vocab.values()) < vocab_size
  332. tokpre = self.get_vocab_base_pre(tokenizer)
  333. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  334. added_vocab = tokenizer.get_added_vocab()
  335. for i in range(vocab_size):
  336. if i not in reverse_vocab:
  337. tokens.append(f"[PAD{i}]")
  338. toktypes.append(gguf.TokenType.UNUSED)
  339. else:
  340. token: str = reverse_vocab[i]
  341. if token in added_vocab:
  342. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  343. toktypes.append(gguf.TokenType.CONTROL)
  344. else:
  345. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  346. toktypes.append(gguf.TokenType.USER_DEFINED)
  347. else:
  348. toktypes.append(gguf.TokenType.NORMAL)
  349. tokens.append(token)
  350. return tokens, toktypes, tokpre
  351. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  352. # do not modify it manually!
  353. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  354. # Marker: Start get_vocab_base_pre
  355. def get_vocab_base_pre(self, tokenizer) -> str:
  356. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  357. # is specific for the BPE pre-tokenizer used by the model
  358. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  359. # use in llama.cpp to implement the same pre-tokenizer
  360. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  361. chktok = tokenizer.encode(chktxt)
  362. chkhsh = sha256(str(chktok).encode()).hexdigest()
  363. logger.debug(f"chktok: {chktok}")
  364. logger.debug(f"chkhsh: {chkhsh}")
  365. res = None
  366. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  367. # or pull the latest version of the model from Huggingface
  368. # don't edit the hashes manually!
  369. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  370. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  371. res = "llama-bpe"
  372. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  373. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  374. res = "deepseek-llm"
  375. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  376. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  377. res = "deepseek-coder"
  378. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  379. # ref: https://huggingface.co/tiiuae/falcon-7b
  380. res = "falcon"
  381. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  382. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  383. res = "bert-bge"
  384. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  385. # ref: https://huggingface.co/mosaicml/mpt-7b
  386. res = "mpt"
  387. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  388. # ref: https://huggingface.co/bigcode/starcoder2-3b
  389. res = "starcoder"
  390. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  391. # ref: https://huggingface.co/openai-community/gpt2
  392. res = "gpt-2"
  393. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  394. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  395. res = "stablelm2"
  396. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  397. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  398. res = "refact"
  399. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  400. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  401. res = "command-r"
  402. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  403. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  404. res = "qwen2"
  405. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  406. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  407. res = "olmo"
  408. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  409. # ref: https://huggingface.co/databricks/dbrx-base
  410. res = "dbrx"
  411. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  412. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  413. res = "jina-v2-en"
  414. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  415. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  416. res = "jina-v2-es"
  417. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  418. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  419. res = "jina-v2-de"
  420. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  421. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  422. res = "smaug-bpe"
  423. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  424. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  425. res = "poro-chat"
  426. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  427. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  428. res = "jina-v2-code"
  429. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  430. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  431. res = "chatglm-bpe"
  432. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  433. # ref: https://huggingface.co/LumiOpen/Viking-7B
  434. res = "viking"
  435. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  436. # ref: https://huggingface.co/core42/jais-13b
  437. res = "jais"
  438. if res is None:
  439. logger.warning("\n")
  440. logger.warning("**************************************************************************************")
  441. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  442. logger.warning("** There are 2 possible reasons for this:")
  443. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  444. logger.warning("** - the pre-tokenization config has changed upstream")
  445. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  446. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  447. logger.warning("**")
  448. logger.warning(f"** chkhsh: {chkhsh}")
  449. logger.warning("**************************************************************************************")
  450. logger.warning("\n")
  451. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  452. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  453. logger.debug(f"chkhsh: {chkhsh}")
  454. return res
  455. # Marker: End get_vocab_base_pre
  456. def _set_vocab_gpt2(self) -> None:
  457. tokens, toktypes, tokpre = self.get_vocab_base()
  458. self.gguf_writer.add_tokenizer_model("gpt2")
  459. self.gguf_writer.add_tokenizer_pre(tokpre)
  460. self.gguf_writer.add_token_list(tokens)
  461. self.gguf_writer.add_token_types(toktypes)
  462. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  463. special_vocab.add_to_gguf(self.gguf_writer)
  464. def _set_vocab_qwen(self):
  465. dir_model = self.dir_model
  466. hparams = self.hparams
  467. tokens: list[str] = []
  468. toktypes: list[int] = []
  469. from transformers import AutoTokenizer
  470. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  471. vocab_size = hparams["vocab_size"]
  472. assert max(tokenizer.get_vocab().values()) < vocab_size
  473. tokpre = self.get_vocab_base_pre(tokenizer)
  474. merges = []
  475. vocab = {}
  476. mergeable_ranks = tokenizer.mergeable_ranks
  477. for token, rank in mergeable_ranks.items():
  478. vocab[QwenModel.token_bytes_to_string(token)] = rank
  479. if len(token) == 1:
  480. continue
  481. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  482. assert len(merged) == 2
  483. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  484. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  485. added_vocab = tokenizer.special_tokens
  486. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  487. for i in range(vocab_size):
  488. if i not in reverse_vocab:
  489. tokens.append(f"[PAD{i}]")
  490. toktypes.append(gguf.TokenType.UNUSED)
  491. elif reverse_vocab[i] in added_vocab:
  492. tokens.append(reverse_vocab[i])
  493. toktypes.append(gguf.TokenType.CONTROL)
  494. else:
  495. tokens.append(reverse_vocab[i])
  496. toktypes.append(gguf.TokenType.NORMAL)
  497. self.gguf_writer.add_tokenizer_model("gpt2")
  498. self.gguf_writer.add_tokenizer_pre(tokpre)
  499. self.gguf_writer.add_token_list(tokens)
  500. self.gguf_writer.add_token_types(toktypes)
  501. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  502. special_vocab.merges = merges
  503. # only add special tokens when they were not already loaded from config.json
  504. if len(special_vocab.special_token_ids) == 0:
  505. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  506. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  507. # this one is usually not in config.json anyway
  508. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  509. special_vocab.add_to_gguf(self.gguf_writer)
  510. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  511. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  512. self.gguf_writer.add_tokenizer_model("llama")
  513. self.gguf_writer.add_tokenizer_pre("default")
  514. self.gguf_writer.add_token_list(tokens)
  515. self.gguf_writer.add_token_scores(scores)
  516. self.gguf_writer.add_token_types(toktypes)
  517. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  518. special_vocab.add_to_gguf(self.gguf_writer)
  519. def _create_vocab_sentencepiece(self):
  520. from sentencepiece import SentencePieceProcessor
  521. tokenizer_path = self.dir_model / 'tokenizer.model'
  522. if not tokenizer_path.is_file():
  523. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  524. tokenizer = SentencePieceProcessor()
  525. tokenizer.LoadFromFile(str(tokenizer_path))
  526. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  527. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  528. scores: list[float] = [-10000.0] * vocab_size
  529. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  530. for token_id in range(tokenizer.vocab_size()):
  531. piece = tokenizer.IdToPiece(token_id)
  532. text = piece.encode("utf-8")
  533. score = tokenizer.GetScore(token_id)
  534. toktype = SentencePieceTokenTypes.NORMAL
  535. if tokenizer.IsUnknown(token_id):
  536. toktype = SentencePieceTokenTypes.UNKNOWN
  537. elif tokenizer.IsControl(token_id):
  538. toktype = SentencePieceTokenTypes.CONTROL
  539. elif tokenizer.IsUnused(token_id):
  540. toktype = SentencePieceTokenTypes.UNUSED
  541. elif tokenizer.IsByte(token_id):
  542. toktype = SentencePieceTokenTypes.BYTE
  543. tokens[token_id] = text
  544. scores[token_id] = score
  545. toktypes[token_id] = toktype
  546. added_tokens_file = self.dir_model / 'added_tokens.json'
  547. if added_tokens_file.is_file():
  548. with open(added_tokens_file, "r", encoding="utf-8") as f:
  549. added_tokens_json = json.load(f)
  550. for key in added_tokens_json:
  551. token_id = added_tokens_json[key]
  552. if (token_id >= vocab_size):
  553. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  554. continue
  555. tokens[token_id] = key.encode("utf-8")
  556. scores[token_id] = -1000.0
  557. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  558. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  559. if tokenizer_config_file.is_file():
  560. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  561. tokenizer_config_json = json.load(f)
  562. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  563. for token_id, token_data in added_tokens_decoder.items():
  564. token_id = int(token_id)
  565. token: str = token_data["content"]
  566. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  567. assert tokens[token_id] == token.encode("utf-8")
  568. if token_data.get("special") or self.does_token_look_special(token):
  569. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  570. else:
  571. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  572. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  573. scores[token_id] = -1000.0
  574. tokens[token_id] = token.encode("utf-8")
  575. if vocab_size > len(tokens):
  576. pad_count = vocab_size - len(tokens)
  577. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  578. for i in range(1, pad_count + 1):
  579. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  580. scores.append(-1000.0)
  581. toktypes.append(SentencePieceTokenTypes.UNUSED)
  582. return tokens, scores, toktypes
  583. def _set_vocab_llama_hf(self):
  584. vocab = gguf.LlamaHfVocab(self.dir_model)
  585. tokens = []
  586. scores = []
  587. toktypes = []
  588. for text, score, toktype in vocab.all_tokens():
  589. tokens.append(text)
  590. scores.append(score)
  591. toktypes.append(toktype)
  592. assert len(tokens) == vocab.vocab_size
  593. self.gguf_writer.add_tokenizer_model("llama")
  594. self.gguf_writer.add_tokenizer_pre("default")
  595. self.gguf_writer.add_token_list(tokens)
  596. self.gguf_writer.add_token_scores(scores)
  597. self.gguf_writer.add_token_types(toktypes)
  598. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  599. special_vocab.add_to_gguf(self.gguf_writer)
  600. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  601. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  602. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  603. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  604. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  605. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  606. assert field # tokenizer model
  607. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  608. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  609. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  610. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  611. assert field # token list
  612. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  613. if model_name == "llama-spm":
  614. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  615. assert field # token scores
  616. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  617. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  618. assert field # token types
  619. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  620. if model_name != "llama-spm":
  621. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  622. assert field # token merges
  623. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  624. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  625. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  626. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  627. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  628. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  629. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  630. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  631. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  632. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  633. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  634. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  635. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  636. @Model.register("GPTNeoXForCausalLM")
  637. class GPTNeoXModel(Model):
  638. model_arch = gguf.MODEL_ARCH.GPTNEOX
  639. def set_gguf_parameters(self):
  640. block_count = self.hparams["num_hidden_layers"]
  641. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  642. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  643. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  644. self.gguf_writer.add_block_count(block_count)
  645. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  646. self.gguf_writer.add_rope_dimension_count(
  647. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  648. )
  649. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  650. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  651. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  653. del bid # unused
  654. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  655. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  656. tensors: list[tuple[str, Tensor]] = []
  657. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  658. # Map bloom-style qkv_linear to gpt-style qkv_linear
  659. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  660. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  661. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  662. data_torch = torch.cat(
  663. (
  664. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  665. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  666. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  667. ),
  668. dim=0,
  669. )
  670. logger.info("re-format attention.linear_qkv.weight")
  671. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  672. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  673. data_torch = torch.cat(
  674. (
  675. qkv_bias[:, 0, :].reshape((n_embed,)),
  676. qkv_bias[:, 1, :].reshape((n_embed,)),
  677. qkv_bias[:, 2, :].reshape((n_embed,)),
  678. ),
  679. dim=0,
  680. )
  681. logger.info("re-format attention.linear_qkv.bias")
  682. tensors.append((self.map_tensor_name(name), data_torch))
  683. return tensors
  684. @Model.register("BloomForCausalLM")
  685. class BloomModel(Model):
  686. model_arch = gguf.MODEL_ARCH.BLOOM
  687. def set_gguf_parameters(self):
  688. self.gguf_writer.add_name("Bloom")
  689. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  690. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  691. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  692. self.gguf_writer.add_embedding_length(n_embed)
  693. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  694. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  695. self.gguf_writer.add_head_count(n_head)
  696. self.gguf_writer.add_head_count_kv(n_head)
  697. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  698. self.gguf_writer.add_file_type(self.ftype)
  699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  700. del bid # unused
  701. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  702. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  703. name = re.sub(r'transformer\.', '', name)
  704. tensors: list[tuple[str, Tensor]] = []
  705. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  706. # Map bloom-style qkv_linear to gpt-style qkv_linear
  707. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  708. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  709. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  710. data_torch = torch.cat(
  711. (
  712. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  713. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  714. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  715. ),
  716. dim=0,
  717. )
  718. logger.info("re-format attention.linear_qkv.weight")
  719. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  720. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  721. data_torch = torch.cat(
  722. (
  723. qkv_bias[:, 0, :].reshape((n_embed,)),
  724. qkv_bias[:, 1, :].reshape((n_embed,)),
  725. qkv_bias[:, 2, :].reshape((n_embed,)),
  726. ),
  727. dim=0,
  728. )
  729. logger.info("re-format attention.linear_qkv.bias")
  730. tensors.append((self.map_tensor_name(name), data_torch))
  731. if name == "word_embeddings.weight":
  732. assert self.tensor_names is not None
  733. # TODO: tie them at runtime, don't duplicate in the model file
  734. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  735. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  736. return tensors
  737. @Model.register("MPTForCausalLM")
  738. class MPTModel(Model):
  739. model_arch = gguf.MODEL_ARCH.MPT
  740. def set_vocab(self):
  741. try:
  742. self._set_vocab_gpt2()
  743. except Exception:
  744. # Fallback for SEA-LION model
  745. self._set_vocab_sentencepiece()
  746. self.gguf_writer.add_add_bos_token(False)
  747. self.gguf_writer.add_pad_token_id(3)
  748. self.gguf_writer.add_eos_token_id(1)
  749. self.gguf_writer.add_unk_token_id(0)
  750. def set_gguf_parameters(self):
  751. block_count = self.hparams["n_layers"]
  752. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  753. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  754. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  755. self.gguf_writer.add_block_count(block_count)
  756. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  757. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  758. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  759. self.gguf_writer.add_head_count_kv(kv_n_heads)
  760. self.gguf_writer.add_layer_norm_eps(1e-5)
  761. if self.hparams["attn_config"]["clip_qkv"] is not None:
  762. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  763. if self.hparams["attn_config"]["alibi"]:
  764. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  765. else:
  766. self.gguf_writer.add_max_alibi_bias(0.0)
  767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  768. del bid # unused
  769. if "scales" in name:
  770. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  771. new_name = new_name.replace("scales", "act.scales")
  772. else:
  773. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  774. return [(new_name, data_torch)]
  775. @Model.register("OrionForCausalLM")
  776. class OrionModel(Model):
  777. model_arch = gguf.MODEL_ARCH.ORION
  778. def set_vocab(self):
  779. self._set_vocab_sentencepiece()
  780. def set_gguf_parameters(self):
  781. block_count = self.hparams["num_hidden_layers"]
  782. head_count = self.hparams["num_attention_heads"]
  783. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  784. hf_repo = self.hparams.get("_name_or_path", "")
  785. ctx_length = 0
  786. if "max_sequence_length" in self.hparams:
  787. ctx_length = self.hparams["max_sequence_length"]
  788. elif "max_position_embeddings" in self.hparams:
  789. ctx_length = self.hparams["max_position_embeddings"]
  790. elif "model_max_length" in self.hparams:
  791. ctx_length = self.hparams["model_max_length"]
  792. else:
  793. raise ValueError("gguf: can not find ctx length parameter.")
  794. self.gguf_writer.add_file_type(self.ftype)
  795. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  796. self.gguf_writer.add_source_hf_repo(hf_repo)
  797. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  798. self.gguf_writer.add_context_length(ctx_length)
  799. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  800. self.gguf_writer.add_block_count(block_count)
  801. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  802. self.gguf_writer.add_head_count(head_count)
  803. self.gguf_writer.add_head_count_kv(head_count_kv)
  804. # note: config provides rms norm but it is actually layer norm
  805. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  806. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  807. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  808. class BaichuanModel(Model):
  809. model_arch = gguf.MODEL_ARCH.BAICHUAN
  810. def set_vocab(self):
  811. self._set_vocab_sentencepiece()
  812. def set_gguf_parameters(self):
  813. block_count = self.hparams["num_hidden_layers"]
  814. head_count = self.hparams["num_attention_heads"]
  815. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  816. hf_repo = self.hparams.get("_name_or_path", "")
  817. ctx_length = 0
  818. if "max_sequence_length" in self.hparams:
  819. ctx_length = self.hparams["max_sequence_length"]
  820. elif "max_position_embeddings" in self.hparams:
  821. ctx_length = self.hparams["max_position_embeddings"]
  822. elif "model_max_length" in self.hparams:
  823. ctx_length = self.hparams["model_max_length"]
  824. else:
  825. raise ValueError("gguf: can not find ctx length parameter.")
  826. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  827. self.gguf_writer.add_source_hf_repo(hf_repo)
  828. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  829. self.gguf_writer.add_context_length(ctx_length)
  830. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  831. self.gguf_writer.add_block_count(block_count)
  832. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  833. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  834. self.gguf_writer.add_head_count(head_count)
  835. self.gguf_writer.add_head_count_kv(head_count_kv)
  836. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  837. self.gguf_writer.add_file_type(self.ftype)
  838. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  839. if self.hparams["rope_scaling"].get("type") == "linear":
  840. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  841. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  843. head_count = self.hparams["num_attention_heads"]
  844. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  845. tensors: list[tuple[str, Tensor]] = []
  846. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  847. logger.info(f"Unpacking and permuting layer {bid}")
  848. tensors = [
  849. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  850. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  851. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  852. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  853. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  854. self._reverse_hf_part(data_torch, 2)),
  855. ]
  856. else:
  857. tensors = [(self.map_tensor_name(name), data_torch)]
  858. return tensors
  859. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  860. if n_kv_head is not None and n_head != n_kv_head:
  861. n_head //= n_kv_head
  862. return (
  863. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  864. .swapaxes(1, 2)
  865. .reshape(weights.shape)
  866. )
  867. def _reverse_hf_permute_part(
  868. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  869. ) -> Tensor:
  870. r = weights.shape[0] // 3
  871. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  872. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  873. r = weights.shape[0] // 3
  874. return weights[r * n_part:r * n_part + r, ...]
  875. @Model.register("XverseForCausalLM")
  876. class XverseModel(Model):
  877. model_arch = gguf.MODEL_ARCH.XVERSE
  878. def set_vocab(self):
  879. assert (self.dir_model / "tokenizer.json").is_file()
  880. dir_model = self.dir_model
  881. hparams = self.hparams
  882. tokens: list[bytes] = []
  883. toktypes: list[int] = []
  884. from transformers import AutoTokenizer
  885. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  886. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  887. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  888. # because vocab_size is the count of items, and indexes start at 0.
  889. max_vocab_index = max(tokenizer.get_vocab().values())
  890. if max_vocab_index >= vocab_size:
  891. raise ValueError("Vocabulary size exceeds expected maximum size.")
  892. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  893. added_vocab = tokenizer.get_added_vocab()
  894. for token_id in range(vocab_size):
  895. token_text = reverse_vocab[token_id].encode('utf-8')
  896. # replace "\x00" to string with length > 0
  897. if token_text == b"\x00":
  898. toktype = gguf.TokenType.BYTE # special
  899. token_text = f"<{token_text}>".encode('utf-8')
  900. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  901. toktype = gguf.TokenType.BYTE # special
  902. elif reverse_vocab[token_id] in added_vocab:
  903. if tokenizer.added_tokens_decoder[token_id].special:
  904. toktype = gguf.TokenType.CONTROL
  905. else:
  906. toktype = gguf.TokenType.USER_DEFINED
  907. else:
  908. toktype = gguf.TokenType.NORMAL
  909. tokens.append(token_text)
  910. toktypes.append(toktype)
  911. self.gguf_writer.add_tokenizer_model("llama")
  912. self.gguf_writer.add_tokenizer_pre("default")
  913. self.gguf_writer.add_token_list(tokens)
  914. self.gguf_writer.add_token_types(toktypes)
  915. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  916. special_vocab.add_to_gguf(self.gguf_writer)
  917. def set_gguf_parameters(self):
  918. block_count = self.hparams["num_hidden_layers"]
  919. head_count = self.hparams["num_attention_heads"]
  920. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  921. hf_repo = self.hparams.get("_name_or_path", "")
  922. ctx_length = 0
  923. if "max_sequence_length" in self.hparams:
  924. ctx_length = self.hparams["max_sequence_length"]
  925. elif "max_position_embeddings" in self.hparams:
  926. ctx_length = self.hparams["max_position_embeddings"]
  927. elif "model_max_length" in self.hparams:
  928. ctx_length = self.hparams["model_max_length"]
  929. else:
  930. raise ValueError("gguf: can not find ctx length parameter.")
  931. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  932. self.gguf_writer.add_source_hf_repo(hf_repo)
  933. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  934. self.gguf_writer.add_context_length(ctx_length)
  935. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  936. self.gguf_writer.add_block_count(block_count)
  937. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  938. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  939. self.gguf_writer.add_head_count(head_count)
  940. self.gguf_writer.add_head_count_kv(head_count_kv)
  941. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  942. self.gguf_writer.add_file_type(self.ftype)
  943. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  944. if self.hparams["rope_scaling"].get("type") == "linear":
  945. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  946. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  948. del bid # unused
  949. head_count = self.hparams["num_attention_heads"]
  950. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  951. # HF models permute some of the tensors, so we need to undo that
  952. if name.endswith("q_proj.weight"):
  953. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  954. if name.endswith("k_proj.weight"):
  955. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  956. return [(self.map_tensor_name(name), data_torch)]
  957. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  958. if n_kv_head is not None and n_head != n_kv_head:
  959. n_head //= n_kv_head
  960. return (
  961. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  962. .swapaxes(1, 2)
  963. .reshape(weights.shape)
  964. )
  965. @Model.register("FalconForCausalLM", "RWForCausalLM")
  966. class FalconModel(Model):
  967. model_arch = gguf.MODEL_ARCH.FALCON
  968. def set_gguf_parameters(self):
  969. block_count = self.hparams.get("num_hidden_layers")
  970. if block_count is None:
  971. block_count = self.hparams["n_layer"] # old name
  972. n_head = self.hparams.get("num_attention_heads")
  973. if n_head is None:
  974. n_head = self.hparams["n_head"] # old name
  975. n_head_kv = self.hparams.get("num_kv_heads")
  976. if n_head_kv is None:
  977. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  978. self.gguf_writer.add_name("Falcon")
  979. self.gguf_writer.add_context_length(2048) # not in config.json
  980. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  981. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  982. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  983. self.gguf_writer.add_block_count(block_count)
  984. self.gguf_writer.add_head_count(n_head)
  985. self.gguf_writer.add_head_count_kv(n_head_kv)
  986. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  987. self.gguf_writer.add_file_type(self.ftype)
  988. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  989. del bid # unused
  990. # QKV tensor transform
  991. # The original query_key_value tensor contains n_head_kv "kv groups",
  992. # each consisting of n_head/n_head_kv query weights followed by one key
  993. # and one value weight (shared by all query heads in the kv group).
  994. # This layout makes it a big pain to work with in GGML.
  995. # So we rearrange them here,, so that we have n_head query weights
  996. # followed by n_head_kv key weights followed by n_head_kv value weights,
  997. # in contiguous fashion.
  998. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  999. if "query_key_value" in name:
  1000. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1001. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1002. head_dim = self.hparams["hidden_size"] // n_head
  1003. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1004. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1005. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1006. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1007. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1008. return [(self.map_tensor_name(name), data_torch)]
  1009. @Model.register("GPTBigCodeForCausalLM")
  1010. class StarCoderModel(Model):
  1011. model_arch = gguf.MODEL_ARCH.STARCODER
  1012. def set_gguf_parameters(self):
  1013. block_count = self.hparams["n_layer"]
  1014. self.gguf_writer.add_name("StarCoder")
  1015. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1016. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1017. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1018. self.gguf_writer.add_block_count(block_count)
  1019. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1020. self.gguf_writer.add_head_count_kv(1)
  1021. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1022. self.gguf_writer.add_file_type(self.ftype)
  1023. @Model.register("GPTRefactForCausalLM")
  1024. class RefactModel(Model):
  1025. model_arch = gguf.MODEL_ARCH.REFACT
  1026. def set_vocab(self):
  1027. super().set_vocab()
  1028. # TODO: how to determine special FIM tokens automatically?
  1029. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1030. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1031. special_vocab._set_special_token("prefix", 1)
  1032. special_vocab._set_special_token("suffix", 3)
  1033. special_vocab._set_special_token("middle", 2)
  1034. special_vocab.add_to_gguf(self.gguf_writer)
  1035. def set_gguf_parameters(self):
  1036. hidden_dim = self.hparams["n_embd"]
  1037. inner_dim = 4 * hidden_dim
  1038. hidden_dim = int(2 * inner_dim / 3)
  1039. multiple_of = 256
  1040. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1041. block_count = self.hparams["n_layer"]
  1042. self.gguf_writer.add_name("Refact")
  1043. # refact uses Alibi. So this is from config.json which might be used by training.
  1044. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1045. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1046. self.gguf_writer.add_feed_forward_length(ff_dim)
  1047. self.gguf_writer.add_block_count(block_count)
  1048. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1049. self.gguf_writer.add_head_count_kv(1)
  1050. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1051. self.gguf_writer.add_file_type(self.ftype)
  1052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1053. hidden_dim = self.hparams["n_embd"]
  1054. inner_dim = 4 * hidden_dim
  1055. hidden_dim = int(2 * inner_dim / 3)
  1056. multiple_of = 256
  1057. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1058. n_head = self.hparams["n_head"]
  1059. n_head_kv = 1
  1060. head_dim = self.hparams["n_embd"] // n_head
  1061. tensors: list[tuple[str, Tensor]] = []
  1062. if bid is not None:
  1063. if name == f"transformer.h.{bid}.attn.kv.weight":
  1064. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1065. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1066. elif name == f"transformer.h.{bid}.attn.q.weight":
  1067. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1068. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1069. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1070. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1071. if len(tensors) == 0:
  1072. tensors.append((self.map_tensor_name(name), data_torch))
  1073. return tensors
  1074. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1075. class StableLMModel(Model):
  1076. model_arch = gguf.MODEL_ARCH.STABLELM
  1077. def set_vocab(self):
  1078. if (self.dir_model / "tokenizer.json").is_file():
  1079. self._set_vocab_gpt2()
  1080. else:
  1081. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1082. self._set_vocab_qwen()
  1083. def set_gguf_parameters(self):
  1084. hparams = self.hparams
  1085. block_count = hparams["num_hidden_layers"]
  1086. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1087. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1088. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1089. self.gguf_writer.add_block_count(block_count)
  1090. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1091. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1092. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1093. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1094. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1095. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1096. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1097. self.gguf_writer.add_file_type(self.ftype)
  1098. _q_norms: list[dict[str, Tensor]] | None = None
  1099. _k_norms: list[dict[str, Tensor]] | None = None
  1100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1101. n_head = self.hparams["num_attention_heads"]
  1102. n_kv_head = self.hparams["num_key_value_heads"]
  1103. if name.find("q_layernorm.norms") != -1:
  1104. assert bid is not None
  1105. if self._q_norms is None:
  1106. self._q_norms = [{} for _ in range(self.block_count)]
  1107. self._q_norms[bid][name] = data_torch
  1108. if len(self._q_norms[bid]) >= n_head:
  1109. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1110. else:
  1111. return []
  1112. if name.find("k_layernorm.norms") != -1:
  1113. assert bid is not None
  1114. if self._k_norms is None:
  1115. self._k_norms = [{} for _ in range(self.block_count)]
  1116. self._k_norms[bid][name] = data_torch
  1117. if len(self._k_norms[bid]) >= n_kv_head:
  1118. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1119. else:
  1120. return []
  1121. return [(self.map_tensor_name(name), data_torch)]
  1122. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1123. datas: list[Tensor] = []
  1124. # extract the norms in order
  1125. for xid in range(n_head):
  1126. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1127. datas.append(norms[ename])
  1128. del norms[ename]
  1129. data_torch = torch.stack(datas, dim=0)
  1130. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1131. new_name = self.map_tensor_name(merged_name)
  1132. return [(new_name, data_torch)]
  1133. def write_tensors(self):
  1134. super().write_tensors()
  1135. if self._q_norms is not None or self._k_norms is not None:
  1136. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1137. norms = (
  1138. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1139. ) + (
  1140. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1141. )
  1142. if len(norms) > 0:
  1143. raise ValueError(f"Unprocessed norms: {norms}")
  1144. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1145. class LlamaModel(Model):
  1146. model_arch = gguf.MODEL_ARCH.LLAMA
  1147. def set_vocab(self):
  1148. try:
  1149. self._set_vocab_sentencepiece()
  1150. except FileNotFoundError:
  1151. try:
  1152. self._set_vocab_llama_hf()
  1153. except (FileNotFoundError, TypeError):
  1154. # Llama 3
  1155. self._set_vocab_gpt2()
  1156. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1157. if self.hparams.get("vocab_size", 32000) == 32016:
  1158. special_vocab = gguf.SpecialVocab(
  1159. self.dir_model, load_merges=False,
  1160. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1161. )
  1162. special_vocab._set_special_token("prefix", 32007)
  1163. special_vocab._set_special_token("suffix", 32008)
  1164. special_vocab._set_special_token("middle", 32009)
  1165. special_vocab._set_special_token("eot", 32010)
  1166. special_vocab.add_to_gguf(self.gguf_writer)
  1167. def set_gguf_parameters(self):
  1168. super().set_gguf_parameters()
  1169. hparams = self.hparams
  1170. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1171. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1172. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1173. if self.hparams["rope_scaling"].get("type") == "linear":
  1174. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1175. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1176. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1177. if tokenizer_config_file.is_file():
  1178. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1179. tokenizer_config_json = json.load(f)
  1180. if "add_prefix_space" in tokenizer_config_json:
  1181. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1182. # Apply to granite small models only
  1183. if self.hparams.get("vocab_size", 32000) == 49152:
  1184. self.gguf_writer.add_add_bos_token(False)
  1185. @staticmethod
  1186. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1187. if n_head_kv is not None and n_head != n_head_kv:
  1188. n_head = n_head_kv
  1189. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1190. .swapaxes(1, 2)
  1191. .reshape(weights.shape))
  1192. _experts: list[dict[str, Tensor]] | None = None
  1193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1194. n_head = self.hparams["num_attention_heads"]
  1195. n_kv_head = self.hparams.get("num_key_value_heads")
  1196. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1197. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1198. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1199. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1200. # process the experts separately
  1201. if name.find("block_sparse_moe.experts") != -1:
  1202. n_experts = self.hparams["num_local_experts"]
  1203. assert bid is not None
  1204. if self._experts is None:
  1205. self._experts = [{} for _ in range(self.block_count)]
  1206. self._experts[bid][name] = data_torch
  1207. if len(self._experts[bid]) >= n_experts * 3:
  1208. tensors: list[tuple[str, Tensor]] = []
  1209. # merge the experts into a single 3d tensor
  1210. for wid in ["w1", "w2", "w3"]:
  1211. datas: list[Tensor] = []
  1212. for xid in range(n_experts):
  1213. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1214. datas.append(self._experts[bid][ename])
  1215. del self._experts[bid][ename]
  1216. data_torch = torch.stack(datas, dim=0)
  1217. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1218. new_name = self.map_tensor_name(merged_name)
  1219. tensors.append((new_name, data_torch))
  1220. return tensors
  1221. else:
  1222. return []
  1223. return [(self.map_tensor_name(name), data_torch)]
  1224. def write_tensors(self):
  1225. super().write_tensors()
  1226. if self._experts is not None:
  1227. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1228. experts = [k for d in self._experts for k in d.keys()]
  1229. if len(experts) > 0:
  1230. raise ValueError(f"Unprocessed experts: {experts}")
  1231. @Model.register("BitnetForCausalLM")
  1232. class BitnetModel(Model):
  1233. model_arch = gguf.MODEL_ARCH.BITNET
  1234. def set_vocab(self):
  1235. self._set_vocab_sentencepiece()
  1236. def set_gguf_parameters(self):
  1237. super().set_gguf_parameters()
  1238. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1239. self.gguf_writer.add_rope_scaling_factor(1.0)
  1240. def weight_quant(self, weight):
  1241. dtype = weight.dtype
  1242. weight = weight.float()
  1243. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1244. weight = (weight * s).round().clamp(-1, 1) / s
  1245. scale = weight.abs().max().unsqueeze(0)
  1246. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1247. weight = torch.sign(weight).type(dtype)
  1248. return weight.type(dtype), scale.type(torch.float32)
  1249. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1250. new_name = self.map_tensor_name(name)
  1251. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1252. gguf.MODEL_TENSOR.ATTN_Q,
  1253. gguf.MODEL_TENSOR.ATTN_K,
  1254. gguf.MODEL_TENSOR.ATTN_V,
  1255. gguf.MODEL_TENSOR.ATTN_OUT,
  1256. gguf.MODEL_TENSOR.FFN_UP,
  1257. gguf.MODEL_TENSOR.FFN_DOWN,
  1258. gguf.MODEL_TENSOR.FFN_GATE,
  1259. ]):
  1260. # transform weight into 1/0/-1 (in fp32)
  1261. weight_torch, scale_torch = self.weight_quant(data_torch)
  1262. yield (new_name, weight_torch)
  1263. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1264. else:
  1265. yield (new_name, data_torch)
  1266. @Model.register("GrokForCausalLM")
  1267. class GrokModel(Model):
  1268. model_arch = gguf.MODEL_ARCH.GROK
  1269. def set_vocab(self):
  1270. self._set_vocab_sentencepiece()
  1271. def __init__(self, *args, **kwargs):
  1272. super().__init__(*args, **kwargs)
  1273. def set_gguf_parameters(self):
  1274. super().set_gguf_parameters()
  1275. self.gguf_writer.add_name("Grok")
  1276. _experts: list[dict[str, Tensor]] | None = None
  1277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1278. # process the experts separately
  1279. if name.find(".moe.") != -1:
  1280. n_experts = self.hparams["num_local_experts"]
  1281. assert bid is not None
  1282. if self._experts is None:
  1283. self._experts = [{} for _ in range(self.block_count)]
  1284. self._experts[bid][name] = data_torch
  1285. if len(self._experts[bid]) >= n_experts * 3:
  1286. tensors: list[tuple[str, Tensor]] = []
  1287. # merge the experts into a single 3d tensor
  1288. for wid in ["linear", "linear_1", "linear_v"]:
  1289. datas: list[Tensor] = []
  1290. for xid in range(n_experts):
  1291. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1292. datas.append(self._experts[bid][ename])
  1293. del self._experts[bid][ename]
  1294. data_torch = torch.stack(datas, dim=0)
  1295. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1296. new_name = self.map_tensor_name(merged_name)
  1297. tensors.append((new_name, data_torch))
  1298. return tensors
  1299. else:
  1300. return []
  1301. return [(self.map_tensor_name(name), data_torch)]
  1302. @Model.register("DbrxForCausalLM")
  1303. class DbrxModel(Model):
  1304. model_arch = gguf.MODEL_ARCH.DBRX
  1305. def set_gguf_parameters(self):
  1306. ffn_config = self.hparams["ffn_config"]
  1307. attn_config = self.hparams["attn_config"]
  1308. self.gguf_writer.add_name(self.hparams["model_type"])
  1309. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1310. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1311. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1312. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1313. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1314. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1315. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1316. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1317. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1318. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1319. self.gguf_writer.add_layer_norm_eps(1e-5)
  1320. self.gguf_writer.add_file_type(self.ftype)
  1321. logger.info(f"gguf: file type = {self.ftype}")
  1322. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1323. del bid # unused
  1324. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1325. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1326. n_embd = self.hparams["d_model"]
  1327. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1328. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1329. # But llama.cpp moe graph works differently
  1330. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1331. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1332. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1333. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1334. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1335. experts = False
  1336. for exp_tensor_name in exp_tensor_names.keys():
  1337. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1338. experts = True
  1339. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1340. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1341. data_torch = data_torch.permute(*permute_tensor)
  1342. break
  1343. # map tensor names
  1344. # In MoE models the ffn tensors are typically most of the model weights,
  1345. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1346. # Every other model has the weight names ending in .weight,
  1347. # let's assume that is the convention which is not the case for dbrx:
  1348. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1349. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1350. return [(new_name, data_torch)]
  1351. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1352. del name, new_name, bid # unused
  1353. return n_dims > 1
  1354. @Model.register("MiniCPMForCausalLM")
  1355. class MiniCPMModel(Model):
  1356. model_arch = gguf.MODEL_ARCH.MINICPM
  1357. def set_gguf_parameters(self):
  1358. block_count = self.hparams["num_hidden_layers"]
  1359. self.gguf_writer.add_name("MiniCPM")
  1360. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1361. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1362. self.gguf_writer.add_block_count(block_count)
  1363. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1364. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1365. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1366. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1367. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1368. self.gguf_writer.add_file_type(self.ftype)
  1369. def set_vocab(self):
  1370. self._set_vocab_llama_hf()
  1371. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1372. if n_kv_head is not None and n_head != n_kv_head:
  1373. n_head //= n_kv_head
  1374. return (
  1375. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1376. .swapaxes(1, 2)
  1377. .reshape(weights.shape)
  1378. )
  1379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1380. del bid # unused
  1381. n_head = self.hparams["num_attention_heads"]
  1382. n_kv_head = self.hparams.get("num_key_value_heads")
  1383. # HF models permute some of the tensors, so we need to undo that
  1384. if name.endswith(("q_proj.weight")):
  1385. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1386. if name.endswith(("k_proj.weight")):
  1387. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1388. return [(self.map_tensor_name(name), data_torch)]
  1389. @Model.register("QWenLMHeadModel")
  1390. class QwenModel(Model):
  1391. model_arch = gguf.MODEL_ARCH.QWEN
  1392. @staticmethod
  1393. def token_bytes_to_string(b):
  1394. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1395. byte_encoder = bytes_to_unicode()
  1396. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1397. @staticmethod
  1398. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1399. parts = [bytes([b]) for b in token]
  1400. while True:
  1401. min_idx = None
  1402. min_rank = None
  1403. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1404. rank = mergeable_ranks.get(pair[0] + pair[1])
  1405. if rank is not None and (min_rank is None or rank < min_rank):
  1406. min_idx = i
  1407. min_rank = rank
  1408. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1409. break
  1410. assert min_idx is not None
  1411. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1412. return parts
  1413. def set_vocab(self):
  1414. self._set_vocab_qwen()
  1415. def set_gguf_parameters(self):
  1416. self.gguf_writer.add_name("Qwen")
  1417. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1418. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1419. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1420. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1421. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1422. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1423. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1424. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1425. self.gguf_writer.add_file_type(self.ftype)
  1426. @Model.register("Qwen2ForCausalLM")
  1427. class Qwen2Model(Model):
  1428. model_arch = gguf.MODEL_ARCH.QWEN2
  1429. def set_vocab(self):
  1430. try:
  1431. self._set_vocab_sentencepiece()
  1432. except FileNotFoundError:
  1433. self._set_vocab_gpt2()
  1434. @Model.register("Qwen2MoeForCausalLM")
  1435. class Qwen2MoeModel(Model):
  1436. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1437. def set_gguf_parameters(self):
  1438. super().set_gguf_parameters()
  1439. if (n_experts := self.hparams.get("num_experts")) is not None:
  1440. self.gguf_writer.add_expert_count(n_experts)
  1441. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1442. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1443. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1444. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1445. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1446. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1447. _experts: list[dict[str, Tensor]] | None = None
  1448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1449. # process the experts separately
  1450. if name.find("experts") != -1:
  1451. n_experts = self.hparams["num_experts"]
  1452. assert bid is not None
  1453. if self._experts is None:
  1454. self._experts = [{} for _ in range(self.block_count)]
  1455. self._experts[bid][name] = data_torch
  1456. if len(self._experts[bid]) >= n_experts * 3:
  1457. tensors: list[tuple[str, Tensor]] = []
  1458. # merge the experts into a single 3d tensor
  1459. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1460. datas: list[Tensor] = []
  1461. for xid in range(n_experts):
  1462. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1463. datas.append(self._experts[bid][ename])
  1464. del self._experts[bid][ename]
  1465. data_torch = torch.stack(datas, dim=0)
  1466. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1467. new_name = self.map_tensor_name(merged_name)
  1468. tensors.append((new_name, data_torch))
  1469. return tensors
  1470. else:
  1471. return []
  1472. return [(self.map_tensor_name(name), data_torch)]
  1473. def write_tensors(self):
  1474. super().write_tensors()
  1475. if self._experts is not None:
  1476. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1477. experts = [k for d in self._experts for k in d.keys()]
  1478. if len(experts) > 0:
  1479. raise ValueError(f"Unprocessed experts: {experts}")
  1480. @Model.register("GPT2LMHeadModel")
  1481. class GPT2Model(Model):
  1482. model_arch = gguf.MODEL_ARCH.GPT2
  1483. def set_gguf_parameters(self):
  1484. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1485. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1486. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1487. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1488. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1489. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1490. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1491. self.gguf_writer.add_file_type(self.ftype)
  1492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1493. del bid # unused
  1494. tensors: list[tuple[str, Tensor]] = []
  1495. # we don't need these
  1496. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1497. return tensors
  1498. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1499. data_torch = data_torch.transpose(1, 0)
  1500. new_name = self.map_tensor_name(name)
  1501. tensors.append((new_name, data_torch))
  1502. # note: GPT2 output is tied to (same as) wte in original model
  1503. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1504. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1505. return tensors
  1506. @Model.register("PhiForCausalLM")
  1507. class Phi2Model(Model):
  1508. model_arch = gguf.MODEL_ARCH.PHI2
  1509. def set_gguf_parameters(self):
  1510. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1511. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1512. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1513. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1514. self.gguf_writer.add_name("Phi2")
  1515. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1516. self.gguf_writer.add_embedding_length(n_embd)
  1517. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1518. self.gguf_writer.add_block_count(block_count)
  1519. self.gguf_writer.add_head_count(n_head)
  1520. self.gguf_writer.add_head_count_kv(n_head)
  1521. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1522. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1523. self.gguf_writer.add_file_type(self.ftype)
  1524. self.gguf_writer.add_add_bos_token(False)
  1525. @Model.register("Phi3ForCausalLM")
  1526. class Phi3MiniModel(Model):
  1527. model_arch = gguf.MODEL_ARCH.PHI3
  1528. def set_vocab(self):
  1529. from sentencepiece import SentencePieceProcessor
  1530. tokenizer_path = self.dir_model / 'tokenizer.model'
  1531. if not tokenizer_path.is_file():
  1532. raise ValueError(f'Error: Missing {tokenizer_path}')
  1533. tokenizer = SentencePieceProcessor()
  1534. tokenizer.LoadFromFile(str(tokenizer_path))
  1535. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1536. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1537. scores: list[float] = [-10000.0] * vocab_size
  1538. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1539. for token_id in range(tokenizer.vocab_size()):
  1540. piece = tokenizer.IdToPiece(token_id)
  1541. text = piece.encode("utf-8")
  1542. score = tokenizer.GetScore(token_id)
  1543. toktype = SentencePieceTokenTypes.NORMAL
  1544. if tokenizer.IsUnknown(token_id):
  1545. toktype = SentencePieceTokenTypes.UNKNOWN
  1546. elif tokenizer.IsControl(token_id):
  1547. toktype = SentencePieceTokenTypes.CONTROL
  1548. elif tokenizer.IsUnused(token_id):
  1549. toktype = SentencePieceTokenTypes.UNUSED
  1550. elif tokenizer.IsByte(token_id):
  1551. toktype = SentencePieceTokenTypes.BYTE
  1552. tokens[token_id] = text
  1553. scores[token_id] = score
  1554. toktypes[token_id] = toktype
  1555. added_tokens_file = self.dir_model / 'added_tokens.json'
  1556. if added_tokens_file.is_file():
  1557. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1558. added_tokens_json = json.load(f)
  1559. for key in added_tokens_json:
  1560. token_id = added_tokens_json[key]
  1561. if (token_id >= vocab_size):
  1562. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1563. continue
  1564. tokens[token_id] = key.encode("utf-8")
  1565. scores[token_id] = -1000.0
  1566. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1567. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1568. if tokenizer_config_file.is_file():
  1569. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1570. tokenizer_config_json = json.load(f)
  1571. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1572. for token_id, foken_data in added_tokens_decoder.items():
  1573. token_id = int(token_id)
  1574. token = foken_data["content"].encode("utf-8")
  1575. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1576. assert tokens[token_id] == token
  1577. tokens[token_id] = token
  1578. scores[token_id] = -1000.0
  1579. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1580. if foken_data.get("special"):
  1581. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1582. tokenizer_file = self.dir_model / 'tokenizer.json'
  1583. if tokenizer_file.is_file():
  1584. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1585. tokenizer_json = json.load(f)
  1586. added_tokens = tokenizer_json.get("added_tokens", [])
  1587. for foken_data in added_tokens:
  1588. token_id = int(foken_data["id"])
  1589. token = foken_data["content"].encode("utf-8")
  1590. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1591. assert tokens[token_id] == token
  1592. tokens[token_id] = token
  1593. scores[token_id] = -1000.0
  1594. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1595. if foken_data.get("special"):
  1596. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1597. self.gguf_writer.add_tokenizer_model("llama")
  1598. self.gguf_writer.add_tokenizer_pre("default")
  1599. self.gguf_writer.add_token_list(tokens)
  1600. self.gguf_writer.add_token_scores(scores)
  1601. self.gguf_writer.add_token_types(toktypes)
  1602. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1603. special_vocab.add_to_gguf(self.gguf_writer)
  1604. def set_gguf_parameters(self):
  1605. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1606. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1607. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1608. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1609. rms_eps = self.find_hparam(["rms_norm_eps"])
  1610. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1611. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1612. rope_dims = n_embd // n_head
  1613. self.gguf_writer.add_name("Phi3")
  1614. self.gguf_writer.add_context_length(max_pos_embds)
  1615. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1616. self.gguf_writer.add_embedding_length(n_embd)
  1617. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1618. self.gguf_writer.add_block_count(block_count)
  1619. self.gguf_writer.add_head_count(n_head)
  1620. self.gguf_writer.add_head_count_kv(n_head_kv)
  1621. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1622. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1623. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1624. self.gguf_writer.add_file_type(self.ftype)
  1625. # write rope scaling for long context (128k) model
  1626. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1627. if (rope_scaling is None):
  1628. return
  1629. scale = max_pos_embds / orig_max_pos_embds
  1630. rope_scaling_type = rope_scaling.get('type', '').lower()
  1631. if len(rope_scaling_type) == 0:
  1632. raise KeyError('Missing the required key rope_scaling.type')
  1633. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1634. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1635. elif rope_scaling_type == 'yarn':
  1636. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1637. else:
  1638. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1639. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1640. long_factors = rope_scaling.get('long_factor', None)
  1641. short_factors = rope_scaling.get('short_factor', None)
  1642. if long_factors is None or short_factors is None:
  1643. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1644. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1645. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1646. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1647. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1648. @Model.register("PlamoForCausalLM")
  1649. class PlamoModel(Model):
  1650. model_arch = gguf.MODEL_ARCH.PLAMO
  1651. def set_vocab(self):
  1652. self._set_vocab_sentencepiece()
  1653. def set_gguf_parameters(self):
  1654. hparams = self.hparams
  1655. block_count = hparams["num_hidden_layers"]
  1656. self.gguf_writer.add_name("PLaMo")
  1657. self.gguf_writer.add_context_length(4096) # not in config.json
  1658. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1659. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1660. self.gguf_writer.add_block_count(block_count)
  1661. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1662. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1663. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1664. self.gguf_writer.add_file_type(self.ftype)
  1665. def shuffle_attn_q_weight(self, data_torch):
  1666. assert data_torch.size() == (5120, 5120)
  1667. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1668. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1669. data_torch = torch.reshape(data_torch, (5120, 5120))
  1670. return data_torch
  1671. def shuffle_attn_output_weight(self, data_torch):
  1672. assert data_torch.size() == (5120, 5120)
  1673. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1674. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1675. data_torch = torch.reshape(data_torch, (5120, 5120))
  1676. return data_torch
  1677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1678. del bid # unused
  1679. new_name = self.map_tensor_name(name)
  1680. # shuffle for broadcasting of gqa in ggml_mul_mat
  1681. if new_name.endswith("attn_q.weight"):
  1682. data_torch = self.shuffle_attn_q_weight(data_torch)
  1683. elif new_name.endswith("attn_output.weight"):
  1684. data_torch = self.shuffle_attn_output_weight(data_torch)
  1685. return [(new_name, data_torch)]
  1686. @Model.register("CodeShellForCausalLM")
  1687. class CodeShellModel(Model):
  1688. model_arch = gguf.MODEL_ARCH.CODESHELL
  1689. def set_gguf_parameters(self):
  1690. block_count = self.hparams["n_layer"]
  1691. self.gguf_writer.add_name("CodeShell")
  1692. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1693. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1694. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1695. self.gguf_writer.add_block_count(block_count)
  1696. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1697. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1698. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1699. self.gguf_writer.add_file_type(self.ftype)
  1700. self.gguf_writer.add_rope_freq_base(10000.0)
  1701. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1702. self.gguf_writer.add_rope_scaling_factor(1.0)
  1703. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1704. del bid # unused
  1705. new_name = self.map_tensor_name(name)
  1706. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1707. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1708. assert self.tensor_names is not None
  1709. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1710. # copy tok_embd.weight to output.weight
  1711. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1712. return tensors
  1713. @Model.register("InternLM2ForCausalLM")
  1714. class InternLM2Model(Model):
  1715. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1716. def set_vocab(self):
  1717. # (TODO): Is there a better way?
  1718. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1719. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1720. # recognized as an empty string in C++.
  1721. from sentencepiece import SentencePieceProcessor
  1722. from sentencepiece import sentencepiece_model_pb2 as model
  1723. tokenizer_path = self.dir_model / 'tokenizer.model'
  1724. tokens: list[bytes] = []
  1725. scores: list[float] = []
  1726. toktypes: list[int] = []
  1727. if not tokenizer_path.is_file():
  1728. logger.error(f'Error: Missing {tokenizer_path}')
  1729. sys.exit(1)
  1730. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1731. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1732. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1733. tokenizer = SentencePieceProcessor()
  1734. tokenizer.LoadFromFile(str(tokenizer_path))
  1735. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1736. for token_id in range(vocab_size):
  1737. piece = tokenizer.IdToPiece(token_id)
  1738. text = piece.encode("utf-8")
  1739. score = tokenizer.GetScore(token_id)
  1740. if text == b"\x00":
  1741. # (TODO): fixme
  1742. # Hack here and replace the \x00 characters.
  1743. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1744. text = "🐉".encode("utf-8")
  1745. toktype = SentencePieceTokenTypes.NORMAL
  1746. if tokenizer.IsUnknown(token_id):
  1747. toktype = SentencePieceTokenTypes.UNKNOWN
  1748. elif tokenizer.IsControl(token_id):
  1749. toktype = SentencePieceTokenTypes.CONTROL
  1750. elif tokenizer.IsUnused(token_id):
  1751. toktype = SentencePieceTokenTypes.UNUSED
  1752. elif tokenizer.IsByte(token_id):
  1753. toktype = SentencePieceTokenTypes.BYTE
  1754. # take care of ununsed raw token
  1755. if piece.startswith('[UNUSED'):
  1756. toktype = SentencePieceTokenTypes.UNUSED
  1757. tokens.append(text)
  1758. scores.append(score)
  1759. toktypes.append(toktype)
  1760. added_tokens_file = self.dir_model / 'added_tokens.json'
  1761. if added_tokens_file.is_file():
  1762. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1763. added_tokens_json = json.load(f)
  1764. for key in added_tokens_json:
  1765. tokens.append(key.encode("utf-8"))
  1766. scores.append(-1000.0)
  1767. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1768. chat_eos_token = '<|im_end|>'
  1769. chat_eos_token_id = None
  1770. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1771. if tokenizer_config_file.is_file():
  1772. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1773. tokenizer_config_json = json.load(f)
  1774. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1775. for token_id, foken_data in added_tokens_decoder.items():
  1776. token_id = int(token_id)
  1777. token = foken_data["content"]
  1778. if token == chat_eos_token:
  1779. chat_eos_token_id = token_id
  1780. token = token.encode("utf-8")
  1781. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1782. assert(tokens[token_id] == token)
  1783. tokens[token_id] = token
  1784. scores[token_id] = -1000.0
  1785. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1786. if foken_data.get("special"):
  1787. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1788. tokenizer_file = self.dir_model / 'tokenizer.json'
  1789. if tokenizer_file.is_file():
  1790. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1791. tokenizer_json = json.load(f)
  1792. added_tokens = tokenizer_json.get("added_tokens", [])
  1793. for foken_data in added_tokens:
  1794. token_id = int(foken_data["id"])
  1795. token = foken_data["content"]
  1796. if token == chat_eos_token:
  1797. chat_eos_token_id = token_id
  1798. token = token.encode("utf-8")
  1799. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1800. assert(tokens[token_id] == token)
  1801. tokens[token_id] = token
  1802. scores[token_id] = -1000.0
  1803. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1804. if foken_data.get("special"):
  1805. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1806. self.gguf_writer.add_tokenizer_model("llama")
  1807. self.gguf_writer.add_tokenizer_pre("default")
  1808. self.gguf_writer.add_token_list(tokens)
  1809. self.gguf_writer.add_token_scores(scores)
  1810. self.gguf_writer.add_token_types(toktypes)
  1811. self.gguf_writer.add_add_space_prefix(add_prefix)
  1812. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1813. old_eos = special_vocab.special_token_ids["eos"]
  1814. if chat_eos_token_id is not None:
  1815. # For the chat model, we replace the eos with '<|im_end|>'.
  1816. # TODO: this is a hack, should be fixed
  1817. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1818. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1819. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1820. " in chat mode so that the conversation can end normally.")
  1821. special_vocab.add_to_gguf(self.gguf_writer)
  1822. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1823. if n_head_kv is not None and n_head != n_head_kv:
  1824. n_head = n_head_kv
  1825. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1826. .swapaxes(1, 2)
  1827. .reshape(weights.shape))
  1828. def set_gguf_parameters(self):
  1829. self.gguf_writer.add_name("InternLM2")
  1830. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1831. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1832. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1833. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1834. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1835. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1836. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1837. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1838. self.gguf_writer.add_file_type(self.ftype)
  1839. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1840. if self.hparams["rope_scaling"].get("type") == "linear":
  1841. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1842. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1843. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1844. num_heads = self.hparams["num_attention_heads"]
  1845. num_kv_heads = self.hparams["num_key_value_heads"]
  1846. hidden_size = self.hparams["hidden_size"]
  1847. q_per_kv = num_heads // num_kv_heads
  1848. head_dim = hidden_size // num_heads
  1849. num_groups = num_heads // q_per_kv
  1850. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1851. if re.match(qkv_pattern, name):
  1852. bid = re.findall(qkv_pattern, name)[0]
  1853. qkv = data_torch
  1854. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1855. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1856. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1857. # The model weights of q and k equire additional reshape.
  1858. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1859. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1860. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1861. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1862. # v = rearrange(v, " o g n i -> o (g n i)").T
  1863. v = v.reshape((v.shape[0], -1)).T
  1864. return [
  1865. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1866. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1867. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1868. ]
  1869. else:
  1870. return [(self.map_tensor_name(name), data_torch)]
  1871. @Model.register("BertModel", "CamembertModel")
  1872. class BertModel(Model):
  1873. model_arch = gguf.MODEL_ARCH.BERT
  1874. def __init__(self, *args, **kwargs):
  1875. super().__init__(*args, **kwargs)
  1876. self.vocab_size = None
  1877. def set_gguf_parameters(self):
  1878. super().set_gguf_parameters()
  1879. self.gguf_writer.add_causal_attention(False)
  1880. # get pooling path
  1881. pooling_path = None
  1882. module_path = self.dir_model / "modules.json"
  1883. if module_path.is_file():
  1884. with open(module_path, encoding="utf-8") as f:
  1885. modules = json.load(f)
  1886. for mod in modules:
  1887. if mod["type"] == "sentence_transformers.models.Pooling":
  1888. pooling_path = mod["path"]
  1889. break
  1890. # get pooling type
  1891. if pooling_path is not None:
  1892. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1893. pooling = json.load(f)
  1894. if pooling["pooling_mode_mean_tokens"]:
  1895. pooling_type = gguf.PoolingType.MEAN
  1896. elif pooling["pooling_mode_cls_token"]:
  1897. pooling_type = gguf.PoolingType.CLS
  1898. else:
  1899. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1900. self.gguf_writer.add_pooling_type(pooling_type)
  1901. def set_vocab(self):
  1902. tokens, toktypes, tokpre = self.get_vocab_base()
  1903. self.vocab_size = len(tokens)
  1904. # we need this to validate the size of the token_type embeddings
  1905. # though currently we are passing all zeros to the token_type embeddings
  1906. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1907. # convert to phantom space vocab
  1908. def phantom(tok):
  1909. if tok.startswith("[") and tok.endswith("]"):
  1910. return tok
  1911. if tok.startswith("##"):
  1912. return tok[2:]
  1913. return "\u2581" + tok
  1914. tokens = list(map(phantom, tokens))
  1915. # add vocab to gguf
  1916. self.gguf_writer.add_tokenizer_model("bert")
  1917. self.gguf_writer.add_tokenizer_pre(tokpre)
  1918. self.gguf_writer.add_token_list(tokens)
  1919. self.gguf_writer.add_token_types(toktypes)
  1920. # handle special tokens
  1921. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1922. special_vocab.add_to_gguf(self.gguf_writer)
  1923. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1924. del bid # unused
  1925. # we are only using BERT for embeddings so we don't need the pooling layer
  1926. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1927. return [] # we don't need these
  1928. return [(self.map_tensor_name(name), data_torch)]
  1929. @Model.register("NomicBertModel")
  1930. class NomicBertModel(BertModel):
  1931. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1932. def __init__(self, *args, **kwargs):
  1933. super().__init__(*args, **kwargs)
  1934. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1935. self.hparams["n_ctx"] = 2048
  1936. # SwigLU activation
  1937. assert self.hparams["activation_function"] == "swiglu"
  1938. # this doesn't do anything in the HF version
  1939. assert self.hparams["causal"] is False
  1940. # no bias tensors
  1941. assert self.hparams["qkv_proj_bias"] is False
  1942. assert self.hparams["mlp_fc1_bias"] is False
  1943. assert self.hparams["mlp_fc2_bias"] is False
  1944. # norm at end of layer
  1945. assert self.hparams["prenorm"] is False
  1946. # standard RoPE
  1947. assert self.hparams["rotary_emb_fraction"] == 1.0
  1948. assert self.hparams["rotary_emb_interleaved"] is False
  1949. assert self.hparams["rotary_emb_scale_base"] is None
  1950. def set_gguf_parameters(self):
  1951. super().set_gguf_parameters()
  1952. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1953. @Model.register("GemmaForCausalLM")
  1954. class GemmaModel(Model):
  1955. model_arch = gguf.MODEL_ARCH.GEMMA
  1956. def set_vocab(self):
  1957. self._set_vocab_sentencepiece()
  1958. # TODO: these special tokens should be exported only for the CodeGemma family
  1959. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1960. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1961. special_vocab._set_special_token("prefix", 67)
  1962. special_vocab._set_special_token("suffix", 69)
  1963. special_vocab._set_special_token("middle", 68)
  1964. special_vocab._set_special_token("fsep", 70)
  1965. special_vocab._set_special_token("eot", 107)
  1966. special_vocab.add_to_gguf(self.gguf_writer)
  1967. self.gguf_writer.add_add_space_prefix(False)
  1968. def set_gguf_parameters(self):
  1969. hparams = self.hparams
  1970. block_count = hparams["num_hidden_layers"]
  1971. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1972. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1973. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1974. self.gguf_writer.add_block_count(block_count)
  1975. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1976. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1977. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1978. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1979. self.gguf_writer.add_key_length(hparams["head_dim"])
  1980. self.gguf_writer.add_value_length(hparams["head_dim"])
  1981. self.gguf_writer.add_file_type(self.ftype)
  1982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1983. del bid # unused
  1984. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1985. # To prevent errors, skip loading lm_head.weight.
  1986. if name == "lm_head.weight":
  1987. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1988. return []
  1989. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1990. if name.endswith("norm.weight"):
  1991. data_torch = data_torch + 1
  1992. return [(self.map_tensor_name(name), data_torch)]
  1993. @Model.register("Gemma2ForCausalLM")
  1994. class Gemma2Model(Model):
  1995. model_arch = gguf.MODEL_ARCH.GEMMA2
  1996. def set_vocab(self):
  1997. self._set_vocab_sentencepiece()
  1998. self.gguf_writer.add_add_space_prefix(False)
  1999. def set_gguf_parameters(self):
  2000. hparams = self.hparams
  2001. block_count = hparams["num_hidden_layers"]
  2002. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2003. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2004. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2005. self.gguf_writer.add_block_count(block_count)
  2006. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2007. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2008. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2009. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2010. self.gguf_writer.add_key_length(hparams["head_dim"])
  2011. self.gguf_writer.add_value_length(hparams["head_dim"])
  2012. self.gguf_writer.add_file_type(self.ftype)
  2013. self.gguf_writer.add_attn_logit_softcapping(
  2014. self.hparams["attn_logit_softcapping"]
  2015. )
  2016. self.gguf_writer.add_final_logit_softcapping(
  2017. self.hparams["final_logit_softcapping"]
  2018. )
  2019. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2020. # sanity check
  2021. attn_scalar = self.hparams["query_pre_attn_scalar"]
  2022. if attn_scalar != hparams["hidden_size"] / hparams["num_attention_heads"]:
  2023. raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head")
  2024. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2025. del bid # unused
  2026. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2027. # To prevent errors, skip loading lm_head.weight.
  2028. if name == "lm_head.weight":
  2029. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2030. return []
  2031. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2032. if name.endswith("norm.weight"):
  2033. data_torch = data_torch + 1
  2034. return [(self.map_tensor_name(name), data_torch)]
  2035. @Model.register("Starcoder2ForCausalLM")
  2036. class StarCoder2Model(Model):
  2037. model_arch = gguf.MODEL_ARCH.STARCODER2
  2038. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2039. class MambaModel(Model):
  2040. model_arch = gguf.MODEL_ARCH.MAMBA
  2041. def set_vocab(self):
  2042. vocab_size = self.hparams["vocab_size"]
  2043. # Round vocab size to next multiple of 8
  2044. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2045. # pad using ceiling division
  2046. # ref: https://stackoverflow.com/a/17511341/22827863
  2047. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2048. self.hparams["vocab_size"] = vocab_size
  2049. if (self.dir_model / "tokenizer.json").is_file():
  2050. self._set_vocab_gpt2()
  2051. elif (self.dir_model / "tokenizer.model").is_file():
  2052. self._set_vocab_sentencepiece()
  2053. else:
  2054. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2055. self._set_vocab_builtin("gpt-neox", vocab_size)
  2056. def set_gguf_parameters(self):
  2057. d_model = self.find_hparam(["hidden_size", "d_model"])
  2058. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2059. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2060. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2061. # ceiling division
  2062. # ref: https://stackoverflow.com/a/17511341/22827863
  2063. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2064. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2065. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2066. # Fail early for models which don't have a block expansion factor of 2
  2067. assert d_inner == 2 * d_model
  2068. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2069. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2070. self.gguf_writer.add_embedding_length(d_model)
  2071. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2072. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2073. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2074. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2075. self.gguf_writer.add_ssm_inner_size(d_inner)
  2076. self.gguf_writer.add_ssm_state_size(d_state)
  2077. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2078. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2079. self.gguf_writer.add_file_type(self.ftype)
  2080. _tok_embd = None
  2081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2082. del bid # unused
  2083. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2084. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2085. new_name = self.map_tensor_name(name)
  2086. if name.endswith(".A_log"):
  2087. logger.debug("A_log --> A ==> " + new_name)
  2088. data_torch = -torch.exp(data_torch)
  2089. # assuming token_embd.weight is seen before output.weight
  2090. if self._tok_embd is not None and new_name == output_name:
  2091. if torch.equal(self._tok_embd, data_torch):
  2092. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2093. return []
  2094. elif new_name == tok_embd_name:
  2095. self._tok_embd = data_torch
  2096. return [(new_name, data_torch)]
  2097. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2098. del n_dims # unused
  2099. return bid is not None and new_name in (
  2100. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2101. gguf.MODEL_TENSOR.SSM_CONV1D,
  2102. gguf.MODEL_TENSOR.SSM_X,
  2103. gguf.MODEL_TENSOR.SSM_DT,
  2104. gguf.MODEL_TENSOR.SSM_A,
  2105. gguf.MODEL_TENSOR.SSM_D,
  2106. ]
  2107. )
  2108. @Model.register("CohereForCausalLM")
  2109. class CommandR2Model(Model):
  2110. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2111. def __init__(self, *args, **kwargs):
  2112. super().__init__(*args, **kwargs)
  2113. # max_position_embeddings = 8192 in config.json but model was actually
  2114. # trained on 128k context length
  2115. # aya-23 models don't have model_max_length specified
  2116. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2117. def set_gguf_parameters(self):
  2118. super().set_gguf_parameters()
  2119. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2120. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2121. @Model.register("OlmoForCausalLM")
  2122. @Model.register("OLMoForCausalLM")
  2123. class OlmoModel(Model):
  2124. model_arch = gguf.MODEL_ARCH.OLMO
  2125. def set_gguf_parameters(self):
  2126. super().set_gguf_parameters()
  2127. self.gguf_writer.add_layer_norm_eps(1e-5)
  2128. clip_qkv = self.hparams.get("clip_qkv")
  2129. if clip_qkv is not None:
  2130. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2131. # Same as super class, but permuting q_proj, k_proj
  2132. # Copied from: LlamaModel
  2133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2134. del bid # unused
  2135. n_head = self.hparams["num_attention_heads"]
  2136. n_kv_head = self.hparams.get("num_key_value_heads")
  2137. if name.endswith("q_proj.weight"):
  2138. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2139. if name.endswith("k_proj.weight"):
  2140. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2141. return [(self.map_tensor_name(name), data_torch)]
  2142. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2143. class JinaBertV2Model(BertModel):
  2144. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2145. def __init__(self, *args, **kwargs):
  2146. super().__init__(*args, **kwargs)
  2147. self.intermediate_size = self.hparams["intermediate_size"]
  2148. def get_tensors(self):
  2149. for name, data in super().get_tensors():
  2150. if 'gated_layer' in name:
  2151. d1 = data[:self.intermediate_size, :]
  2152. name1 = name.replace('gated_layers', 'gated_layers_w')
  2153. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2154. d2 = data[self.intermediate_size:, :]
  2155. name2 = name.replace('gated_layers', 'gated_layers_v')
  2156. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2157. yield name1, d1
  2158. yield name2, d2
  2159. continue
  2160. yield name, data
  2161. def set_vocab(self, *args, **kwargs):
  2162. tokenizer_class = 'BertTokenizer'
  2163. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2164. tokenizer_class = json.load(f)['tokenizer_class']
  2165. if tokenizer_class == 'BertTokenizer':
  2166. super().set_vocab()
  2167. elif tokenizer_class == 'RobertaTokenizer':
  2168. self._set_vocab_gpt2()
  2169. self.gguf_writer.add_token_type_count(2)
  2170. else:
  2171. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2172. self.gguf_writer.add_add_bos_token(True)
  2173. self.gguf_writer.add_add_eos_token(True)
  2174. @Model.register("OpenELMForCausalLM")
  2175. class OpenELMModel(Model):
  2176. model_arch = gguf.MODEL_ARCH.OPENELM
  2177. @staticmethod
  2178. def _make_divisible(v: float | int, divisor: int) -> int:
  2179. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2180. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2181. # Make sure that round down does not go down by more than 10%.
  2182. if new_v < 0.9 * v:
  2183. new_v += divisor
  2184. return new_v
  2185. def __init__(self, *args, **kwargs):
  2186. super().__init__(*args, **kwargs)
  2187. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2188. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2189. self._n_embd: int = self.hparams["model_dim"]
  2190. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2191. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2192. self._ffn_dims: list[int] = [
  2193. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2194. for multiplier in ffn_multipliers
  2195. ]
  2196. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2197. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2198. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2199. def set_vocab(self):
  2200. try:
  2201. self._set_vocab_sentencepiece()
  2202. except FileNotFoundError:
  2203. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2204. def set_gguf_parameters(self):
  2205. n_embd = self._n_embd
  2206. head_dim = self.hparams["head_dim"]
  2207. rot_pct = 1.0
  2208. assert self.block_count == len(self._num_kv_heads)
  2209. assert self.block_count == len(self._num_query_heads)
  2210. assert self.block_count == len(self._ffn_dims)
  2211. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2212. self.gguf_writer.add_block_count(self.block_count)
  2213. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2214. self.gguf_writer.add_embedding_length(n_embd)
  2215. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2216. self.gguf_writer.add_head_count(self._num_query_heads)
  2217. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2218. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2219. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2220. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2221. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2222. self.gguf_writer.add_key_length(head_dim)
  2223. self.gguf_writer.add_value_length(head_dim)
  2224. self.gguf_writer.add_file_type(self.ftype)
  2225. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2226. if "n_layers" in keys:
  2227. return self.hparams["num_transformer_layers"]
  2228. return super().find_hparam(keys, optional)
  2229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2230. # split ff
  2231. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2232. ff_dim = self._ffn_dims[bid]
  2233. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2234. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2235. return
  2236. yield (self.map_tensor_name(name), data_torch)
  2237. @Model.register("ArcticForCausalLM")
  2238. class ArcticModel(Model):
  2239. model_arch = gguf.MODEL_ARCH.ARCTIC
  2240. def set_vocab(self):
  2241. # The reason for using a custom implementation here is that the
  2242. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2243. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2244. from sentencepiece import SentencePieceProcessor
  2245. tokenizer_path = self.dir_model / 'tokenizer.model'
  2246. if not tokenizer_path.is_file():
  2247. logger.error(f'Error: Missing {tokenizer_path}')
  2248. sys.exit(1)
  2249. # Read the whole vocabulary from the tokenizer.model file
  2250. tokenizer = SentencePieceProcessor()
  2251. tokenizer.LoadFromFile(str(tokenizer_path))
  2252. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2253. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2254. scores: list[float] = [-10000.0] * vocab_size
  2255. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2256. for token_id in range(tokenizer.vocab_size()):
  2257. piece = tokenizer.IdToPiece(token_id)
  2258. text = piece.encode("utf-8")
  2259. score = tokenizer.GetScore(token_id)
  2260. toktype = SentencePieceTokenTypes.NORMAL
  2261. if tokenizer.IsUnknown(token_id):
  2262. toktype = SentencePieceTokenTypes.UNKNOWN
  2263. elif tokenizer.IsControl(token_id):
  2264. toktype = SentencePieceTokenTypes.CONTROL
  2265. elif tokenizer.IsUnused(token_id):
  2266. toktype = SentencePieceTokenTypes.UNUSED
  2267. elif tokenizer.IsByte(token_id):
  2268. toktype = SentencePieceTokenTypes.BYTE
  2269. tokens[token_id] = text
  2270. scores[token_id] = score
  2271. toktypes[token_id] = toktype
  2272. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2273. # of information about added/redefined tokens and modify them accordingly.
  2274. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2275. if tokenizer_config_file.is_file():
  2276. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2277. tokenizer_config_json = json.load(f)
  2278. if "added_tokens_decoder" in tokenizer_config_json:
  2279. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2280. for token_id, token_json in added_tokens_decoder.items():
  2281. token_id = int(token_id)
  2282. if (token_id >= vocab_size):
  2283. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2284. continue
  2285. token_content = token_json["content"]
  2286. token_type = SentencePieceTokenTypes.USER_DEFINED
  2287. token_score = -10000.0
  2288. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2289. # Set the score to 0.0 as in the original tokenizer.model
  2290. if ("special" in token_json) and token_json["special"]:
  2291. if token_content == tokenizer_config_json["unk_token"]:
  2292. token_type = SentencePieceTokenTypes.UNKNOWN
  2293. else:
  2294. token_type = SentencePieceTokenTypes.CONTROL
  2295. token_score = 0.0
  2296. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2297. tokens[token_id] = token_content.encode("utf-8")
  2298. toktypes[token_id] = token_type
  2299. scores[token_id] = token_score
  2300. self.gguf_writer.add_tokenizer_model("llama")
  2301. self.gguf_writer.add_tokenizer_pre("default")
  2302. self.gguf_writer.add_token_list(tokens)
  2303. self.gguf_writer.add_token_scores(scores)
  2304. self.gguf_writer.add_token_types(toktypes)
  2305. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2306. special_vocab.add_to_gguf(self.gguf_writer)
  2307. def set_gguf_parameters(self):
  2308. super().set_gguf_parameters()
  2309. hparams = self.hparams
  2310. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2311. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2312. _experts: list[dict[str, Tensor]] | None = None
  2313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2314. n_head = self.hparams["num_attention_heads"]
  2315. n_kv_head = self.hparams.get("num_key_value_heads")
  2316. if name.endswith("q_proj.weight"):
  2317. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2318. if name.endswith("k_proj.weight"):
  2319. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2320. # process the experts separately
  2321. if name.find("block_sparse_moe.experts") != -1:
  2322. n_experts = self.hparams["num_local_experts"]
  2323. assert bid is not None
  2324. if self._experts is None:
  2325. self._experts = [{} for _ in range(self.block_count)]
  2326. self._experts[bid][name] = data_torch
  2327. if len(self._experts[bid]) >= n_experts * 3:
  2328. tensors: list[tuple[str, Tensor]] = []
  2329. # merge the experts into a single 3d tensor
  2330. for wid in ["w1", "w2", "w3"]:
  2331. datas: list[Tensor] = []
  2332. for xid in range(n_experts):
  2333. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2334. datas.append(self._experts[bid][ename])
  2335. del self._experts[bid][ename]
  2336. data_torch = torch.stack(datas, dim=0)
  2337. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2338. new_name = self.map_tensor_name(merged_name)
  2339. tensors.append((new_name, data_torch))
  2340. return tensors
  2341. else:
  2342. return []
  2343. return [(self.map_tensor_name(name), data_torch)]
  2344. def write_tensors(self):
  2345. super().write_tensors()
  2346. if self._experts is not None:
  2347. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2348. experts = [k for d in self._experts for k in d.keys()]
  2349. if len(experts) > 0:
  2350. raise ValueError(f"Unprocessed experts: {experts}")
  2351. @Model.register("DeepseekV2ForCausalLM")
  2352. class DeepseekV2Model(Model):
  2353. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2354. def set_vocab(self):
  2355. self._set_vocab_gpt2()
  2356. def set_gguf_parameters(self):
  2357. super().set_gguf_parameters()
  2358. hparams = self.hparams
  2359. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2360. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2361. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2362. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2363. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2364. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2365. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2366. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2367. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2368. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2369. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2370. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2371. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2372. if self.hparams["rope_scaling"].get("type") == "yarn":
  2373. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2374. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2375. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2376. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2377. _experts: list[dict[str, Tensor]] | None = None
  2378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2379. # process the experts separately
  2380. if name.find("mlp.experts") != -1:
  2381. n_experts = self.hparams["n_routed_experts"]
  2382. assert bid is not None
  2383. if self._experts is None:
  2384. self._experts = [{} for _ in range(self.block_count)]
  2385. self._experts[bid][name] = data_torch
  2386. if len(self._experts[bid]) >= n_experts * 3:
  2387. tensors: list[tuple[str, Tensor]] = []
  2388. # merge the experts into a single 3d tensor
  2389. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2390. datas: list[Tensor] = []
  2391. for xid in range(n_experts):
  2392. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2393. datas.append(self._experts[bid][ename])
  2394. del self._experts[bid][ename]
  2395. data_torch = torch.stack(datas, dim=0)
  2396. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2397. new_name = self.map_tensor_name(merged_name)
  2398. tensors.append((new_name, data_torch))
  2399. return tensors
  2400. else:
  2401. return []
  2402. return [(self.map_tensor_name(name), data_torch)]
  2403. def write_tensors(self):
  2404. super().write_tensors()
  2405. if self._experts is not None:
  2406. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2407. experts = [k for d in self._experts for k in d.keys()]
  2408. if len(experts) > 0:
  2409. raise ValueError(f"Unprocessed experts: {experts}")
  2410. @Model.register("T5WithLMHeadModel")
  2411. @Model.register("T5ForConditionalGeneration")
  2412. @Model.register("MT5ForConditionalGeneration")
  2413. @Model.register("UMT5ForConditionalGeneration")
  2414. class T5Model(Model):
  2415. model_arch = gguf.MODEL_ARCH.T5
  2416. def __init__(self, *args, **kwargs):
  2417. super().__init__(*args, **kwargs)
  2418. self.shared_token_embeddings_found = False
  2419. def set_vocab(self):
  2420. # to avoid TypeError: Descriptors cannot be created directly
  2421. # exception when importing sentencepiece_model_pb2
  2422. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2423. from sentencepiece import SentencePieceProcessor
  2424. from sentencepiece import sentencepiece_model_pb2 as model
  2425. tokenizer_path = self.dir_model / 'tokenizer.model'
  2426. # many older models use spiece.model tokenizer model filename
  2427. if not tokenizer_path.is_file():
  2428. tokenizer_path = self.dir_model / 'spiece.model'
  2429. if not tokenizer_path.is_file():
  2430. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2431. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2432. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2433. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2434. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2435. # assure the tokenizer model file name is correct
  2436. assert tokenizer_path.name == 'tokenizer.model'
  2437. return self._set_vocab_sentencepiece()
  2438. else:
  2439. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2440. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2441. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2442. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2443. tokenizer = SentencePieceProcessor()
  2444. tokenizer.LoadFromFile(str(tokenizer_path))
  2445. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2446. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2447. scores: list[float] = [-10000.0] * vocab_size
  2448. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2449. for token_id in range(tokenizer.vocab_size()):
  2450. piece = tokenizer.IdToPiece(token_id)
  2451. text = piece.encode("utf-8")
  2452. score = tokenizer.GetScore(token_id)
  2453. toktype = SentencePieceTokenTypes.NORMAL
  2454. if tokenizer.IsUnknown(token_id):
  2455. toktype = SentencePieceTokenTypes.UNKNOWN
  2456. elif tokenizer.IsControl(token_id):
  2457. toktype = SentencePieceTokenTypes.CONTROL
  2458. elif tokenizer.IsUnused(token_id):
  2459. toktype = SentencePieceTokenTypes.UNUSED
  2460. elif tokenizer.IsByte(token_id):
  2461. toktype = SentencePieceTokenTypes.BYTE
  2462. tokens[token_id] = text
  2463. scores[token_id] = score
  2464. toktypes[token_id] = toktype
  2465. added_tokens_file = self.dir_model / 'added_tokens.json'
  2466. if added_tokens_file.is_file():
  2467. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2468. added_tokens_json = json.load(f)
  2469. for key in added_tokens_json:
  2470. token_id = added_tokens_json[key]
  2471. if (token_id >= vocab_size):
  2472. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2473. continue
  2474. tokens[token_id] = key.encode("utf-8")
  2475. scores[token_id] = -1000.0
  2476. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2477. if vocab_size > len(tokens):
  2478. pad_count = vocab_size - len(tokens)
  2479. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2480. for i in range(1, pad_count + 1):
  2481. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2482. scores.append(-1000.0)
  2483. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2484. self.gguf_writer.add_tokenizer_model("t5")
  2485. self.gguf_writer.add_tokenizer_pre("default")
  2486. self.gguf_writer.add_token_list(tokens)
  2487. self.gguf_writer.add_token_scores(scores)
  2488. self.gguf_writer.add_token_types(toktypes)
  2489. self.gguf_writer.add_add_space_prefix(add_prefix)
  2490. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2491. if precompiled_charsmap:
  2492. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2493. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2494. special_vocab.add_to_gguf(self.gguf_writer)
  2495. self.gguf_writer.add_add_bos_token(False)
  2496. self.gguf_writer.add_add_eos_token(True)
  2497. def set_gguf_parameters(self):
  2498. self.gguf_writer.add_name("T5")
  2499. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2500. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2501. n_ctx = 512
  2502. self.gguf_writer.add_context_length(n_ctx)
  2503. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2504. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2505. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2506. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2507. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2508. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2509. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2510. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2511. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2512. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2513. self.gguf_writer.add_file_type(self.ftype)
  2514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2515. del bid # unused
  2516. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2517. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2518. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2519. # and decoder and ignore the remaining ones.
  2520. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2521. if not self.shared_token_embeddings_found:
  2522. name = "shared.weight"
  2523. self.shared_token_embeddings_found = True
  2524. else:
  2525. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2526. return []
  2527. return [(self.map_tensor_name(name), data_torch)]
  2528. @Model.register("JAISLMHeadModel")
  2529. class JaisModel(Model):
  2530. model_arch = gguf.MODEL_ARCH.JAIS
  2531. def __init__(self, *args, **kwargs):
  2532. super().__init__(*args, **kwargs)
  2533. # SwigLU activation
  2534. assert self.hparams["activation_function"] == "swiglu"
  2535. # ALiBi position embedding
  2536. assert self.hparams["position_embedding_type"] == "alibi"
  2537. # Embeddings scale
  2538. self.embeddings_scale = 1.0
  2539. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2540. self.output_is_wte = False
  2541. if 'mup_embeddings_scale' in self.hparams:
  2542. self.output_is_wte = True # Hack (?)
  2543. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2544. elif 'embeddings_scale' in self.hparams:
  2545. self.embeddings_scale = self.hparams['embeddings_scale']
  2546. else:
  2547. assert False
  2548. self.width_scale = 1.0
  2549. if 'mup_output_alpha' in self.hparams:
  2550. assert 'mup_width_scale' in self.hparams
  2551. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2552. elif 'width_scale' in self.hparams:
  2553. self.width_scale = self.hparams['width_scale']
  2554. else:
  2555. assert False
  2556. self.max_alibi_bias = 8.0
  2557. def set_vocab(self):
  2558. self._set_vocab_gpt2()
  2559. def set_gguf_parameters(self):
  2560. self.gguf_writer.add_name(self.dir_model.name)
  2561. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2562. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2563. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2564. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2565. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2566. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2567. self.gguf_writer.add_file_type(self.ftype)
  2568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2569. del bid # unused
  2570. tensors: list[tuple[str, Tensor]] = []
  2571. # we don't need these
  2572. if name.endswith((".attn.bias")):
  2573. return tensors
  2574. if name.endswith(("relative_pe.slopes")):
  2575. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2576. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2577. # but Jais's PyTorch model simply precalculates the slope values and places them
  2578. # in relative_pes.slopes
  2579. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2580. first_val = float(data_torch[0].item())
  2581. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2582. return tensors
  2583. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2584. data_torch = data_torch.transpose(1, 0)
  2585. new_name = self.map_tensor_name(name)
  2586. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2587. tensors.append((new_name, data_torch * self.embeddings_scale))
  2588. if self.output_is_wte:
  2589. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2590. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2591. assert not self.output_is_wte
  2592. tensors.append((new_name, data_torch * self.width_scale))
  2593. else:
  2594. tensors.append((new_name, data_torch))
  2595. return tensors
  2596. def write_tensors(self):
  2597. super().write_tensors()
  2598. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2599. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2600. class ChatGLMModel(Model):
  2601. model_arch = gguf.MODEL_ARCH.CHATGLM
  2602. def set_vocab_chatglm3(self):
  2603. dir_model = self.dir_model
  2604. hparams = self.hparams
  2605. tokens: list[bytes] = []
  2606. toktypes: list[int] = []
  2607. scores: list[float] = []
  2608. from transformers import AutoTokenizer
  2609. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2610. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2611. assert max(tokenizer.get_vocab().values()) < vocab_size
  2612. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2613. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2614. for token_id in range(vocab_size):
  2615. piece = tokenizer._convert_id_to_token(token_id)
  2616. if token_id == 0:
  2617. piece = "<unk>"
  2618. elif token_id == 1:
  2619. piece = "<bos>"
  2620. elif token_id == 2:
  2621. piece = "<eos>"
  2622. text = piece.encode("utf-8")
  2623. score = 0.0
  2624. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2625. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2626. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2627. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2628. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2629. if piece in special_tokens:
  2630. toktype = SentencePieceTokenTypes.CONTROL
  2631. elif len(piece) == 0:
  2632. text = f"[PAD{token_id}]".encode("utf-8")
  2633. toktype = SentencePieceTokenTypes.UNUSED
  2634. else:
  2635. toktype = SentencePieceTokenTypes.USER_DEFINED
  2636. tokens.append(text)
  2637. scores.append(score)
  2638. toktypes.append(toktype)
  2639. continue
  2640. toktype = SentencePieceTokenTypes.NORMAL
  2641. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2642. toktype = SentencePieceTokenTypes.UNKNOWN
  2643. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2644. toktype = SentencePieceTokenTypes.CONTROL
  2645. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2646. toktype = SentencePieceTokenTypes.UNUSED
  2647. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2648. toktype = SentencePieceTokenTypes.BYTE
  2649. tokens.append(text)
  2650. scores.append(score)
  2651. toktypes.append(toktype)
  2652. self.gguf_writer.add_tokenizer_model("llama")
  2653. # glm3 needs prefix and suffix formatted as:
  2654. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2655. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2656. self.gguf_writer.add_token_list(tokens)
  2657. self.gguf_writer.add_token_scores(scores)
  2658. self.gguf_writer.add_token_types(toktypes)
  2659. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2660. special_vocab.add_to_gguf(self.gguf_writer)
  2661. @staticmethod
  2662. def token_bytes_to_string(b):
  2663. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2664. byte_encoder = bytes_to_unicode()
  2665. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2666. @staticmethod
  2667. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2668. parts = [bytes([b]) for b in token]
  2669. while True:
  2670. min_idx = None
  2671. min_rank = None
  2672. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2673. rank = mergeable_ranks.get(pair[0] + pair[1])
  2674. if rank is not None and (min_rank is None or rank < min_rank):
  2675. min_idx = i
  2676. min_rank = rank
  2677. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2678. break
  2679. assert min_idx is not None
  2680. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2681. return parts
  2682. def set_vocab(self):
  2683. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2684. self.set_vocab_chatglm3()
  2685. return
  2686. dir_model = self.dir_model
  2687. hparams = self.hparams
  2688. tokens: list[str] = []
  2689. toktypes: list[int] = []
  2690. from transformers import AutoTokenizer
  2691. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2692. vocab_size = hparams["padded_vocab_size"]
  2693. assert max(tokenizer.get_vocab().values()) < vocab_size
  2694. tokpre = self.get_vocab_base_pre(tokenizer)
  2695. merges = []
  2696. vocab = {}
  2697. mergeable_ranks = tokenizer.mergeable_ranks
  2698. for token, rank in mergeable_ranks.items():
  2699. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2700. if len(token) == 1:
  2701. continue
  2702. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2703. assert len(merged) >= 2 and len(merged) <= 7
  2704. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2705. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2706. added_vocab = tokenizer.get_added_vocab()
  2707. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2708. for i in range(vocab_size):
  2709. if i not in reverse_vocab:
  2710. tokens.append(f"[PAD{i}]")
  2711. toktypes.append(gguf.TokenType.UNUSED)
  2712. elif reverse_vocab[i] in added_vocab:
  2713. tokens.append(reverse_vocab[i])
  2714. if tokenizer.added_tokens_decoder[i].special:
  2715. toktypes.append(gguf.TokenType.CONTROL)
  2716. else:
  2717. toktypes.append(gguf.TokenType.USER_DEFINED)
  2718. else:
  2719. tokens.append(reverse_vocab[i])
  2720. toktypes.append(gguf.TokenType.NORMAL)
  2721. self.gguf_writer.add_tokenizer_model("gpt2")
  2722. self.gguf_writer.add_tokenizer_pre(tokpre)
  2723. self.gguf_writer.add_token_list(tokens)
  2724. self.gguf_writer.add_token_types(toktypes)
  2725. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2726. special_vocab.merges = merges
  2727. # only add special tokens when they were not already loaded from config.json
  2728. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2729. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2730. # this one is usually not in config.json anyway
  2731. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2732. special_vocab.add_to_gguf(self.gguf_writer)
  2733. def set_gguf_parameters(self):
  2734. self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
  2735. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2736. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2737. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2738. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2739. self.gguf_writer.add_embedding_length(n_embed)
  2740. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2741. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2742. self.gguf_writer.add_head_count(n_head)
  2743. self.gguf_writer.add_head_count_kv(n_head_kv)
  2744. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2745. self.gguf_writer.add_file_type(self.ftype)
  2746. self.gguf_writer.add_rope_dimension_count(64)
  2747. self.gguf_writer.add_add_bos_token(False)
  2748. rope_freq = 10000
  2749. if "rope_ratio" in self.hparams:
  2750. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2751. self.gguf_writer.add_rope_freq_base(rope_freq)
  2752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2753. del bid # unused
  2754. if name.endswith(".rotary_pos_emb.inv_freq"):
  2755. return []
  2756. name = name.removeprefix("transformer.")
  2757. return [(self.map_tensor_name(name), data_torch)]
  2758. ###### CONVERSION LOGIC ######
  2759. # tree of lazy tensors
  2760. class LazyTorchTensor(gguf.LazyBase):
  2761. _tensor_type = torch.Tensor
  2762. # to keep the type-checker happy
  2763. dtype: torch.dtype
  2764. shape: torch.Size
  2765. # only used when converting a torch.Tensor to a np.ndarray
  2766. _dtype_map: dict[torch.dtype, type] = {
  2767. torch.float16: np.float16,
  2768. torch.float32: np.float32,
  2769. }
  2770. def numpy(self) -> gguf.LazyNumpyTensor:
  2771. dtype = self._dtype_map[self.dtype]
  2772. return gguf.LazyNumpyTensor(
  2773. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2774. lazy=self._lazy,
  2775. args=(self,),
  2776. func=(lambda s: s[0].numpy())
  2777. )
  2778. @classmethod
  2779. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2780. return torch.empty(size=shape, dtype=dtype, device="meta")
  2781. @classmethod
  2782. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2783. del types # unused
  2784. if kwargs is None:
  2785. kwargs = {}
  2786. if func is torch.Tensor.numpy:
  2787. return args[0].numpy()
  2788. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2789. def parse_args() -> argparse.Namespace:
  2790. parser = argparse.ArgumentParser(
  2791. description="Convert a huggingface model to a GGML compatible file")
  2792. parser.add_argument(
  2793. "--vocab-only", action="store_true",
  2794. help="extract only the vocab",
  2795. )
  2796. parser.add_argument(
  2797. "--outfile", type=Path,
  2798. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2799. )
  2800. parser.add_argument(
  2801. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2802. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2803. )
  2804. parser.add_argument(
  2805. "--bigendian", action="store_true",
  2806. help="model is executed on big endian machine",
  2807. )
  2808. parser.add_argument(
  2809. "model", type=Path,
  2810. help="directory containing model file",
  2811. )
  2812. parser.add_argument(
  2813. "--use-temp-file", action="store_true",
  2814. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2815. )
  2816. parser.add_argument(
  2817. "--no-lazy", action="store_true",
  2818. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2819. )
  2820. parser.add_argument(
  2821. "--model-name", type=str, default=None,
  2822. help="name of the model",
  2823. )
  2824. parser.add_argument(
  2825. "--verbose", action="store_true",
  2826. help="increase output verbosity",
  2827. )
  2828. parser.add_argument(
  2829. "--split-max-tensors", type=int, default=0,
  2830. help="max tensors in each split",
  2831. )
  2832. parser.add_argument(
  2833. "--split-max-size", type=str, default="0",
  2834. help="max size per split N(M|G)",
  2835. )
  2836. parser.add_argument(
  2837. "--dry-run", action="store_true",
  2838. help="only print out a split plan and exit, without writing any new files",
  2839. )
  2840. parser.add_argument(
  2841. "--no-tensor-first-split", action="store_true",
  2842. help="do not add tensors to the first split (disabled by default)"
  2843. )
  2844. return parser.parse_args()
  2845. def split_str_to_n_bytes(split_str: str) -> int:
  2846. if split_str.endswith("K"):
  2847. n = int(split_str[:-1]) * 1000
  2848. elif split_str.endswith("M"):
  2849. n = int(split_str[:-1]) * 1000 * 1000
  2850. elif split_str.endswith("G"):
  2851. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2852. elif split_str.isnumeric():
  2853. n = int(split_str)
  2854. else:
  2855. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2856. if n < 0:
  2857. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2858. return n
  2859. def main() -> None:
  2860. args = parse_args()
  2861. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2862. dir_model = args.model
  2863. if not dir_model.is_dir():
  2864. logger.error(f'Error: {args.model} is not a directory')
  2865. sys.exit(1)
  2866. ftype_map: dict[str, gguf.LlamaFileType] = {
  2867. "f32": gguf.LlamaFileType.ALL_F32,
  2868. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2869. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2870. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2871. "auto": gguf.LlamaFileType.GUESSED,
  2872. }
  2873. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2874. if args.use_temp_file and is_split:
  2875. logger.error("Error: Cannot use temp file when splitting")
  2876. sys.exit(1)
  2877. if args.outfile is not None:
  2878. fname_out = args.outfile
  2879. else:
  2880. # output in the same directory as the model by default
  2881. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2882. logger.info(f"Loading model: {dir_model.name}")
  2883. hparams = Model.load_hparams(dir_model)
  2884. with torch.inference_mode():
  2885. try:
  2886. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2887. except NotImplementedError:
  2888. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2889. sys.exit(1)
  2890. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
  2891. args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
  2892. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2893. small_first_shard=args.no_tensor_first_split)
  2894. logger.info("Set model parameters")
  2895. model_instance.set_gguf_parameters()
  2896. logger.info("Set model tokenizer")
  2897. model_instance.set_vocab()
  2898. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2899. if args.vocab_only:
  2900. logger.info("Exporting model vocab...")
  2901. model_instance.write_vocab()
  2902. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2903. else:
  2904. logger.info("Exporting model...")
  2905. model_instance.write()
  2906. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2907. logger.info(f"Model successfully exported to {out_path}")
  2908. if __name__ == '__main__':
  2909. main()