llama.cpp 886 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_BLAS
  20. # include "ggml-blas.h"
  21. #endif
  22. #ifdef GGML_USE_METAL
  23. # include "ggml-metal.h"
  24. #endif
  25. // TODO: replace with ggml API call
  26. #define QK_K 256
  27. #ifdef __has_include
  28. #if __has_include(<unistd.h>)
  29. #include <unistd.h>
  30. #if defined(_POSIX_MAPPED_FILES)
  31. #include <sys/mman.h>
  32. #include <fcntl.h>
  33. #endif
  34. #if defined(_POSIX_MEMLOCK_RANGE)
  35. #include <sys/resource.h>
  36. #endif
  37. #endif
  38. #endif
  39. #if defined(_WIN32)
  40. #define WIN32_LEAN_AND_MEAN
  41. #ifndef NOMINMAX
  42. #define NOMINMAX
  43. #endif
  44. #include <windows.h>
  45. #ifndef PATH_MAX
  46. #define PATH_MAX MAX_PATH
  47. #endif
  48. #include <io.h>
  49. #endif
  50. #if __cplusplus >= 202000L
  51. #define LU8(x) (const char*)(u8##x)
  52. #else
  53. #define LU8(x) u8##x
  54. #endif
  55. #include <algorithm>
  56. #include <array>
  57. #include <cassert>
  58. #include <cctype>
  59. #include <cfloat>
  60. #include <cinttypes>
  61. #include <climits>
  62. #include <cmath>
  63. #include <cstdarg>
  64. #include <cstddef>
  65. #include <cstdint>
  66. #include <cstdio>
  67. #include <cstring>
  68. #include <ctime>
  69. #include <forward_list>
  70. #include <fstream>
  71. #include <functional>
  72. #include <future>
  73. #include <initializer_list>
  74. #include <locale>
  75. #include <map>
  76. #include <memory>
  77. #include <mutex>
  78. #include <numeric>
  79. #include <queue>
  80. #include <random>
  81. #include <regex>
  82. #include <set>
  83. #include <sstream>
  84. #include <thread>
  85. #include <type_traits>
  86. #include <unordered_map>
  87. #if defined(_MSC_VER)
  88. #pragma warning(disable: 4244 4267) // possible loss of data
  89. #endif
  90. #ifdef __GNUC__
  91. #ifdef __MINGW32__
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  93. #else
  94. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  95. #endif
  96. #else
  97. #define LLAMA_ATTRIBUTE_FORMAT(...)
  98. #endif
  99. // bump if necessary
  100. #define LLAMA_MAX_NODES 8192
  101. #define LLAMA_MAX_LAYERS 256
  102. #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
  103. //
  104. // logging
  105. //
  106. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  107. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  108. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  109. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  110. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  111. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  112. //
  113. // helpers
  114. //
  115. static size_t utf8_len(char src) {
  116. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  117. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  118. return lookup[highbits];
  119. }
  120. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  121. std::string result;
  122. for (size_t pos = 0; ; pos += search.length()) {
  123. auto new_pos = s.find(search, pos);
  124. if (new_pos == std::string::npos) {
  125. result += s.substr(pos, s.size() - pos);
  126. break;
  127. }
  128. result += s.substr(pos, new_pos - pos) + replace;
  129. pos = new_pos;
  130. }
  131. s = std::move(result);
  132. }
  133. static bool is_float_close(float a, float b, float abs_tol) {
  134. // Check for non-negative tolerance
  135. if (abs_tol < 0.0) {
  136. throw std::invalid_argument("Tolerance must be non-negative");
  137. }
  138. // Exact equality check
  139. if (a == b) {
  140. return true;
  141. }
  142. // Check for infinities
  143. if (std::isinf(a) || std::isinf(b)) {
  144. return false;
  145. }
  146. // Regular comparison using the provided absolute tolerance
  147. return std::fabs(b - a) <= abs_tol;
  148. }
  149. static void zeros(std::ofstream & file, size_t n) {
  150. char zero = 0;
  151. for (size_t i = 0; i < n; ++i) {
  152. file.write(&zero, 1);
  153. }
  154. }
  155. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  156. static std::string format(const char * fmt, ...) {
  157. va_list ap;
  158. va_list ap2;
  159. va_start(ap, fmt);
  160. va_copy(ap2, ap);
  161. int size = vsnprintf(NULL, 0, fmt, ap);
  162. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  163. std::vector<char> buf(size + 1);
  164. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  165. GGML_ASSERT(size2 == size);
  166. va_end(ap2);
  167. va_end(ap);
  168. return std::string(buf.data(), size);
  169. }
  170. //
  171. // gguf constants (sync with gguf.py)
  172. //
  173. enum llm_arch {
  174. LLM_ARCH_LLAMA,
  175. LLM_ARCH_FALCON,
  176. LLM_ARCH_BAICHUAN,
  177. LLM_ARCH_GROK,
  178. LLM_ARCH_GPT2,
  179. LLM_ARCH_GPTJ,
  180. LLM_ARCH_GPTNEOX,
  181. LLM_ARCH_MPT,
  182. LLM_ARCH_STARCODER,
  183. LLM_ARCH_REFACT,
  184. LLM_ARCH_BERT,
  185. LLM_ARCH_NOMIC_BERT,
  186. LLM_ARCH_JINA_BERT_V2,
  187. LLM_ARCH_BLOOM,
  188. LLM_ARCH_STABLELM,
  189. LLM_ARCH_QWEN,
  190. LLM_ARCH_QWEN2,
  191. LLM_ARCH_QWEN2MOE,
  192. LLM_ARCH_PHI2,
  193. LLM_ARCH_PHI3,
  194. LLM_ARCH_PLAMO,
  195. LLM_ARCH_CODESHELL,
  196. LLM_ARCH_ORION,
  197. LLM_ARCH_INTERNLM2,
  198. LLM_ARCH_MINICPM,
  199. LLM_ARCH_GEMMA,
  200. LLM_ARCH_GEMMA2,
  201. LLM_ARCH_STARCODER2,
  202. LLM_ARCH_MAMBA,
  203. LLM_ARCH_XVERSE,
  204. LLM_ARCH_COMMAND_R,
  205. LLM_ARCH_DBRX,
  206. LLM_ARCH_OLMO,
  207. LLM_ARCH_OPENELM,
  208. LLM_ARCH_ARCTIC,
  209. LLM_ARCH_DEEPSEEK2,
  210. LLM_ARCH_CHATGLM,
  211. LLM_ARCH_BITNET,
  212. LLM_ARCH_T5,
  213. LLM_ARCH_JAIS,
  214. LLM_ARCH_UNKNOWN,
  215. };
  216. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  217. { LLM_ARCH_LLAMA, "llama" },
  218. { LLM_ARCH_FALCON, "falcon" },
  219. { LLM_ARCH_GROK, "grok" },
  220. { LLM_ARCH_GPT2, "gpt2" },
  221. { LLM_ARCH_GPTJ, "gptj" },
  222. { LLM_ARCH_GPTNEOX, "gptneox" },
  223. { LLM_ARCH_MPT, "mpt" },
  224. { LLM_ARCH_BAICHUAN, "baichuan" },
  225. { LLM_ARCH_STARCODER, "starcoder" },
  226. { LLM_ARCH_REFACT, "refact" },
  227. { LLM_ARCH_BERT, "bert" },
  228. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  229. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  230. { LLM_ARCH_BLOOM, "bloom" },
  231. { LLM_ARCH_STABLELM, "stablelm" },
  232. { LLM_ARCH_QWEN, "qwen" },
  233. { LLM_ARCH_QWEN2, "qwen2" },
  234. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  235. { LLM_ARCH_PHI2, "phi2" },
  236. { LLM_ARCH_PHI3, "phi3" },
  237. { LLM_ARCH_PLAMO, "plamo" },
  238. { LLM_ARCH_CODESHELL, "codeshell" },
  239. { LLM_ARCH_ORION, "orion" },
  240. { LLM_ARCH_INTERNLM2, "internlm2" },
  241. { LLM_ARCH_MINICPM, "minicpm" },
  242. { LLM_ARCH_GEMMA, "gemma" },
  243. { LLM_ARCH_GEMMA2, "gemma2" },
  244. { LLM_ARCH_STARCODER2, "starcoder2" },
  245. { LLM_ARCH_MAMBA, "mamba" },
  246. { LLM_ARCH_XVERSE, "xverse" },
  247. { LLM_ARCH_COMMAND_R, "command-r" },
  248. { LLM_ARCH_DBRX, "dbrx" },
  249. { LLM_ARCH_OLMO, "olmo" },
  250. { LLM_ARCH_OPENELM, "openelm" },
  251. { LLM_ARCH_ARCTIC, "arctic" },
  252. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  253. { LLM_ARCH_CHATGLM, "chatglm" },
  254. { LLM_ARCH_BITNET, "bitnet" },
  255. { LLM_ARCH_T5, "t5" },
  256. { LLM_ARCH_JAIS, "jais" },
  257. { LLM_ARCH_UNKNOWN, "(unknown)" },
  258. };
  259. enum llm_kv {
  260. LLM_KV_GENERAL_ARCHITECTURE,
  261. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  262. LLM_KV_GENERAL_ALIGNMENT,
  263. LLM_KV_GENERAL_NAME,
  264. LLM_KV_GENERAL_AUTHOR,
  265. LLM_KV_GENERAL_VERSION,
  266. LLM_KV_GENERAL_URL,
  267. LLM_KV_GENERAL_DESCRIPTION,
  268. LLM_KV_GENERAL_LICENSE,
  269. LLM_KV_GENERAL_SOURCE_URL,
  270. LLM_KV_GENERAL_SOURCE_HF_REPO,
  271. LLM_KV_VOCAB_SIZE,
  272. LLM_KV_CONTEXT_LENGTH,
  273. LLM_KV_EMBEDDING_LENGTH,
  274. LLM_KV_BLOCK_COUNT,
  275. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  276. LLM_KV_FEED_FORWARD_LENGTH,
  277. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  278. LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
  279. LLM_KV_USE_PARALLEL_RESIDUAL,
  280. LLM_KV_TENSOR_DATA_LAYOUT,
  281. LLM_KV_EXPERT_COUNT,
  282. LLM_KV_EXPERT_USED_COUNT,
  283. LLM_KV_EXPERT_SHARED_COUNT,
  284. LLM_KV_EXPERT_WEIGHTS_SCALE,
  285. LLM_KV_POOLING_TYPE,
  286. LLM_KV_LOGIT_SCALE,
  287. LLM_KV_DECODER_START_TOKEN_ID,
  288. LLM_KV_ATTN_LOGIT_SOFTCAPPING,
  289. LLM_KV_FINAL_LOGIT_SOFTCAPPING,
  290. LLM_KV_ATTENTION_HEAD_COUNT,
  291. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  292. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  293. LLM_KV_ATTENTION_CLAMP_KQV,
  294. LLM_KV_ATTENTION_KEY_LENGTH,
  295. LLM_KV_ATTENTION_VALUE_LENGTH,
  296. LLM_KV_ATTENTION_LAYERNORM_EPS,
  297. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  298. LLM_KV_ATTENTION_CAUSAL,
  299. LLM_KV_ATTENTION_Q_LORA_RANK,
  300. LLM_KV_ATTENTION_KV_LORA_RANK,
  301. LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
  302. LLM_KV_ATTENTION_SLIDING_WINDOW,
  303. LLM_KV_ROPE_DIMENSION_COUNT,
  304. LLM_KV_ROPE_FREQ_BASE,
  305. LLM_KV_ROPE_SCALE_LINEAR,
  306. LLM_KV_ROPE_SCALING_TYPE,
  307. LLM_KV_ROPE_SCALING_FACTOR,
  308. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  309. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  310. LLM_KV_ROPE_SCALING_FINETUNED,
  311. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  312. LLM_KV_SPLIT_NO,
  313. LLM_KV_SPLIT_COUNT,
  314. LLM_KV_SPLIT_TENSORS_COUNT,
  315. LLM_KV_SSM_INNER_SIZE,
  316. LLM_KV_SSM_CONV_KERNEL,
  317. LLM_KV_SSM_STATE_SIZE,
  318. LLM_KV_SSM_TIME_STEP_RANK,
  319. LLM_KV_TOKENIZER_MODEL,
  320. LLM_KV_TOKENIZER_PRE,
  321. LLM_KV_TOKENIZER_LIST,
  322. LLM_KV_TOKENIZER_TOKEN_TYPE,
  323. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  324. LLM_KV_TOKENIZER_SCORES,
  325. LLM_KV_TOKENIZER_MERGES,
  326. LLM_KV_TOKENIZER_BOS_ID,
  327. LLM_KV_TOKENIZER_EOS_ID,
  328. LLM_KV_TOKENIZER_UNK_ID,
  329. LLM_KV_TOKENIZER_SEP_ID,
  330. LLM_KV_TOKENIZER_PAD_ID,
  331. LLM_KV_TOKENIZER_CLS_ID,
  332. LLM_KV_TOKENIZER_MASK_ID,
  333. LLM_KV_TOKENIZER_ADD_BOS,
  334. LLM_KV_TOKENIZER_ADD_EOS,
  335. LLM_KV_TOKENIZER_ADD_PREFIX,
  336. LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
  337. LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
  338. LLM_KV_TOKENIZER_HF_JSON,
  339. LLM_KV_TOKENIZER_RWKV,
  340. LLM_KV_TOKENIZER_PREFIX_ID,
  341. LLM_KV_TOKENIZER_SUFFIX_ID,
  342. LLM_KV_TOKENIZER_MIDDLE_ID,
  343. LLM_KV_TOKENIZER_EOT_ID,
  344. };
  345. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  346. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  347. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  348. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  349. { LLM_KV_GENERAL_NAME, "general.name" },
  350. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  351. { LLM_KV_GENERAL_VERSION, "general.version" },
  352. { LLM_KV_GENERAL_URL, "general.url" },
  353. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  354. { LLM_KV_GENERAL_LICENSE, "general.license" },
  355. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  356. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  357. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  358. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  359. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  360. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  361. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  362. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  363. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  364. { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
  365. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  366. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  367. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  368. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  369. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  370. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  371. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  372. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  373. { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
  374. { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
  375. { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
  376. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  377. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  378. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  379. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  380. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  381. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  382. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  383. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  384. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  385. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  386. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  387. { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
  388. { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
  389. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  390. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  391. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  392. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  393. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  394. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  395. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  396. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  397. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  398. { LLM_KV_SPLIT_NO, "split.no" },
  399. { LLM_KV_SPLIT_COUNT, "split.count" },
  400. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  401. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  402. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  403. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  404. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  405. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  406. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  407. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  408. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  409. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  410. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  411. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  412. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  413. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  414. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  415. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  416. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  417. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  418. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  419. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  420. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  421. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  422. { LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" },
  423. { LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
  424. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  425. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  426. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  427. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  428. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  429. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  430. };
  431. struct LLM_KV {
  432. LLM_KV(llm_arch arch) : arch(arch) {}
  433. llm_arch arch;
  434. std::string operator()(llm_kv kv) const {
  435. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  436. }
  437. };
  438. enum llm_tensor {
  439. LLM_TENSOR_TOKEN_EMBD,
  440. LLM_TENSOR_TOKEN_EMBD_NORM,
  441. LLM_TENSOR_TOKEN_TYPES,
  442. LLM_TENSOR_POS_EMBD,
  443. LLM_TENSOR_OUTPUT,
  444. LLM_TENSOR_OUTPUT_NORM,
  445. LLM_TENSOR_ROPE_FREQS,
  446. LLM_TENSOR_ROPE_FACTORS_LONG,
  447. LLM_TENSOR_ROPE_FACTORS_SHORT,
  448. LLM_TENSOR_ATTN_Q,
  449. LLM_TENSOR_ATTN_K,
  450. LLM_TENSOR_ATTN_V,
  451. LLM_TENSOR_ATTN_QKV,
  452. LLM_TENSOR_ATTN_OUT,
  453. LLM_TENSOR_ATTN_NORM,
  454. LLM_TENSOR_ATTN_NORM_2,
  455. LLM_TENSOR_ATTN_OUT_NORM,
  456. LLM_TENSOR_ATTN_POST_NORM,
  457. LLM_TENSOR_ATTN_ROT_EMBD,
  458. LLM_TENSOR_FFN_GATE_INP,
  459. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  460. LLM_TENSOR_FFN_NORM,
  461. LLM_TENSOR_FFN_POST_NORM,
  462. LLM_TENSOR_FFN_GATE,
  463. LLM_TENSOR_FFN_DOWN,
  464. LLM_TENSOR_FFN_UP,
  465. LLM_TENSOR_FFN_ACT,
  466. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  467. LLM_TENSOR_FFN_GATE_EXP,
  468. LLM_TENSOR_FFN_UP_EXP,
  469. LLM_TENSOR_FFN_NORM_EXPS,
  470. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  471. LLM_TENSOR_FFN_GATE_EXPS,
  472. LLM_TENSOR_FFN_UP_EXPS,
  473. LLM_TENSOR_FFN_DOWN_SHEXP,
  474. LLM_TENSOR_FFN_GATE_SHEXP,
  475. LLM_TENSOR_FFN_UP_SHEXP,
  476. LLM_TENSOR_ATTN_Q_NORM,
  477. LLM_TENSOR_ATTN_K_NORM,
  478. LLM_TENSOR_LAYER_OUT_NORM,
  479. LLM_TENSOR_SSM_IN,
  480. LLM_TENSOR_SSM_CONV1D,
  481. LLM_TENSOR_SSM_X,
  482. LLM_TENSOR_SSM_DT,
  483. LLM_TENSOR_SSM_A,
  484. LLM_TENSOR_SSM_D,
  485. LLM_TENSOR_SSM_OUT,
  486. LLM_TENSOR_ATTN_Q_A,
  487. LLM_TENSOR_ATTN_Q_B,
  488. LLM_TENSOR_ATTN_KV_A_MQA,
  489. LLM_TENSOR_ATTN_KV_B,
  490. LLM_TENSOR_ATTN_Q_A_NORM,
  491. LLM_TENSOR_ATTN_KV_A_NORM,
  492. LLM_TENSOR_ATTN_SUB_NORM,
  493. LLM_TENSOR_FFN_SUB_NORM,
  494. LLM_TENSOR_DEC_ATTN_NORM,
  495. LLM_TENSOR_DEC_ATTN_Q,
  496. LLM_TENSOR_DEC_ATTN_K,
  497. LLM_TENSOR_DEC_ATTN_V,
  498. LLM_TENSOR_DEC_ATTN_OUT,
  499. LLM_TENSOR_DEC_ATTN_REL_B,
  500. LLM_TENSOR_DEC_CROSS_ATTN_NORM,
  501. LLM_TENSOR_DEC_CROSS_ATTN_Q,
  502. LLM_TENSOR_DEC_CROSS_ATTN_K,
  503. LLM_TENSOR_DEC_CROSS_ATTN_V,
  504. LLM_TENSOR_DEC_CROSS_ATTN_OUT,
  505. LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
  506. LLM_TENSOR_DEC_FFN_NORM,
  507. LLM_TENSOR_DEC_FFN_GATE,
  508. LLM_TENSOR_DEC_FFN_DOWN,
  509. LLM_TENSOR_DEC_FFN_UP,
  510. LLM_TENSOR_DEC_OUTPUT_NORM,
  511. LLM_TENSOR_ENC_ATTN_NORM,
  512. LLM_TENSOR_ENC_ATTN_Q,
  513. LLM_TENSOR_ENC_ATTN_K,
  514. LLM_TENSOR_ENC_ATTN_V,
  515. LLM_TENSOR_ENC_ATTN_OUT,
  516. LLM_TENSOR_ENC_ATTN_REL_B,
  517. LLM_TENSOR_ENC_FFN_NORM,
  518. LLM_TENSOR_ENC_FFN_GATE,
  519. LLM_TENSOR_ENC_FFN_DOWN,
  520. LLM_TENSOR_ENC_FFN_UP,
  521. LLM_TENSOR_ENC_OUTPUT_NORM,
  522. };
  523. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  524. {
  525. LLM_ARCH_LLAMA,
  526. {
  527. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  528. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  529. { LLM_TENSOR_OUTPUT, "output" },
  530. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  531. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  532. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  533. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  534. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  535. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  536. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  537. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  538. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  539. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  540. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  541. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  542. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  543. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  544. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  545. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  546. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  547. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  548. },
  549. },
  550. {
  551. LLM_ARCH_BAICHUAN,
  552. {
  553. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  554. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  555. { LLM_TENSOR_OUTPUT, "output" },
  556. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  557. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  558. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  559. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  560. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  561. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  562. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  563. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  564. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  565. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  566. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  567. },
  568. },
  569. {
  570. LLM_ARCH_FALCON,
  571. {
  572. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  573. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  574. { LLM_TENSOR_OUTPUT, "output" },
  575. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  576. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  577. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  578. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  579. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  580. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  581. },
  582. },
  583. {
  584. LLM_ARCH_GROK,
  585. {
  586. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  587. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  588. { LLM_TENSOR_OUTPUT, "output" },
  589. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  590. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  591. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  592. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  593. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  594. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  595. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  596. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  597. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  598. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  599. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  600. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  601. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  602. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  603. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  604. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  605. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  606. },
  607. },
  608. {
  609. LLM_ARCH_GPT2,
  610. {
  611. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  612. { LLM_TENSOR_POS_EMBD, "position_embd" },
  613. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  614. { LLM_TENSOR_OUTPUT, "output" },
  615. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  616. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  617. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  618. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  619. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  620. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  621. },
  622. },
  623. {
  624. LLM_ARCH_GPTJ,
  625. {
  626. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  627. },
  628. },
  629. {
  630. LLM_ARCH_GPTNEOX,
  631. {
  632. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  633. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  634. { LLM_TENSOR_OUTPUT, "output" },
  635. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  636. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  637. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  638. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  639. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  640. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  641. },
  642. },
  643. {
  644. LLM_ARCH_MPT,
  645. {
  646. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  647. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  648. { LLM_TENSOR_OUTPUT, "output"},
  649. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  650. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  651. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  652. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  653. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  654. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  655. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  656. { LLM_TENSOR_POS_EMBD, "position_embd" },
  657. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  658. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  659. },
  660. },
  661. {
  662. LLM_ARCH_STARCODER,
  663. {
  664. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  665. { LLM_TENSOR_POS_EMBD, "position_embd" },
  666. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  667. { LLM_TENSOR_OUTPUT, "output" },
  668. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  669. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  670. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  671. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  672. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  673. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  674. },
  675. },
  676. {
  677. LLM_ARCH_REFACT,
  678. {
  679. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  680. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  681. { LLM_TENSOR_OUTPUT, "output" },
  682. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  683. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  684. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  685. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  686. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  687. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  688. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  689. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  690. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  691. },
  692. },
  693. {
  694. LLM_ARCH_BERT,
  695. {
  696. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  697. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  698. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  699. { LLM_TENSOR_POS_EMBD, "position_embd" },
  700. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  701. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  702. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  703. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  704. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  705. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  706. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  707. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  708. },
  709. },
  710. {
  711. LLM_ARCH_NOMIC_BERT,
  712. {
  713. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  714. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  715. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  716. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  717. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  718. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  719. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  720. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  721. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  722. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  723. },
  724. },
  725. {
  726. LLM_ARCH_JINA_BERT_V2,
  727. {
  728. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  729. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  730. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  731. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  732. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  733. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  734. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  735. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  736. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  737. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  738. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  739. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  740. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  741. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  742. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  743. },
  744. },
  745. {
  746. LLM_ARCH_BLOOM,
  747. {
  748. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  749. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  750. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  751. { LLM_TENSOR_OUTPUT, "output" },
  752. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  753. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  754. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  755. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  756. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  757. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  758. },
  759. },
  760. {
  761. LLM_ARCH_STABLELM,
  762. {
  763. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  764. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  765. { LLM_TENSOR_OUTPUT, "output" },
  766. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  767. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  768. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  769. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  770. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  771. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  772. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  773. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  774. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  775. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  776. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  777. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  778. },
  779. },
  780. {
  781. LLM_ARCH_QWEN,
  782. {
  783. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  784. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  785. { LLM_TENSOR_OUTPUT, "output" },
  786. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  787. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  788. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  789. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  790. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  791. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  792. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  793. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  794. },
  795. },
  796. {
  797. LLM_ARCH_QWEN2,
  798. {
  799. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  800. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  801. { LLM_TENSOR_OUTPUT, "output" },
  802. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  803. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  804. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  805. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  806. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  807. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  808. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  809. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  810. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  811. },
  812. },
  813. {
  814. LLM_ARCH_QWEN2MOE,
  815. {
  816. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  817. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  818. { LLM_TENSOR_OUTPUT, "output" },
  819. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  820. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  821. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  822. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  823. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  824. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  825. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  826. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  827. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  828. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  829. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  830. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  831. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  832. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  833. },
  834. },
  835. {
  836. LLM_ARCH_PHI2,
  837. {
  838. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  839. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  840. { LLM_TENSOR_OUTPUT, "output" },
  841. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  842. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  843. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  844. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  845. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  846. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  847. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  848. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  849. },
  850. },
  851. {
  852. LLM_ARCH_PHI3,
  853. {
  854. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  855. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  856. { LLM_TENSOR_OUTPUT, "output" },
  857. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  858. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  859. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  860. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  861. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  862. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  863. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  864. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  865. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  866. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  867. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  868. },
  869. },
  870. {
  871. LLM_ARCH_PLAMO,
  872. {
  873. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  874. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  875. { LLM_TENSOR_OUTPUT, "output" },
  876. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  877. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  878. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  879. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  880. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  881. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  882. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  883. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  884. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  885. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  886. },
  887. },
  888. {
  889. LLM_ARCH_CODESHELL,
  890. {
  891. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  892. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  893. { LLM_TENSOR_OUTPUT, "output" },
  894. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  895. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  896. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  897. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  898. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  899. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  900. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  901. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  902. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  903. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  904. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  905. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  906. },
  907. },
  908. {
  909. LLM_ARCH_ORION,
  910. {
  911. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  912. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  913. { LLM_TENSOR_OUTPUT, "output" },
  914. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  915. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  916. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  917. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  918. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  919. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  920. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  921. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  922. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  923. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  924. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  925. },
  926. },
  927. {
  928. LLM_ARCH_INTERNLM2,
  929. {
  930. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  931. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  932. { LLM_TENSOR_OUTPUT, "output" },
  933. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  934. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  935. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  936. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  937. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  938. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  939. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  940. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  941. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  942. },
  943. },
  944. {
  945. LLM_ARCH_MINICPM,
  946. {
  947. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  948. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  949. { LLM_TENSOR_OUTPUT, "output" },
  950. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  951. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  952. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  953. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  954. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  955. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  956. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  957. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  958. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  959. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  960. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  961. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  962. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  963. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  964. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  965. },
  966. },
  967. {
  968. LLM_ARCH_GEMMA,
  969. {
  970. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  971. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  972. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  973. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  974. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  975. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  976. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  977. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  978. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  979. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  980. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  981. },
  982. },
  983. {
  984. LLM_ARCH_GEMMA2,
  985. {
  986. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  987. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  988. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  989. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  990. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  991. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  992. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  993. { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
  994. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  995. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  996. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  997. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  998. { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
  999. },
  1000. },
  1001. {
  1002. LLM_ARCH_STARCODER2,
  1003. {
  1004. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1005. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1006. { LLM_TENSOR_OUTPUT, "output" },
  1007. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1008. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1009. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1010. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1011. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1012. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1013. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1014. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1015. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1016. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1017. },
  1018. },
  1019. {
  1020. LLM_ARCH_MAMBA,
  1021. {
  1022. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1023. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1024. { LLM_TENSOR_OUTPUT, "output" },
  1025. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1026. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  1027. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  1028. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  1029. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  1030. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  1031. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  1032. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  1033. },
  1034. },
  1035. {
  1036. LLM_ARCH_XVERSE,
  1037. {
  1038. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1039. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1040. { LLM_TENSOR_OUTPUT, "output" },
  1041. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1042. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1043. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1044. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1045. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1046. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1047. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  1048. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1049. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1050. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1051. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1052. },
  1053. },
  1054. {
  1055. LLM_ARCH_COMMAND_R,
  1056. {
  1057. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1058. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1059. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1060. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1061. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1062. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1063. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1064. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1065. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1066. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1067. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  1068. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  1069. },
  1070. },
  1071. {
  1072. LLM_ARCH_DBRX,
  1073. {
  1074. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1075. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1076. { LLM_TENSOR_OUTPUT, "output" },
  1077. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1078. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1079. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1080. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  1081. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1082. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1083. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1084. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1085. },
  1086. },
  1087. {
  1088. LLM_ARCH_OLMO,
  1089. {
  1090. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1091. { LLM_TENSOR_OUTPUT, "output" },
  1092. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1093. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1094. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1095. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1096. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1097. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1098. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1099. },
  1100. },
  1101. {
  1102. LLM_ARCH_OPENELM,
  1103. {
  1104. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1105. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1106. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1107. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1108. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  1109. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  1110. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1111. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1112. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1113. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1114. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1115. },
  1116. },
  1117. {
  1118. LLM_ARCH_ARCTIC,
  1119. {
  1120. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1121. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1122. { LLM_TENSOR_OUTPUT, "output" },
  1123. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1124. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1125. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1126. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1127. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1128. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1129. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1130. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1131. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1132. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1133. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1134. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1135. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1136. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1137. },
  1138. },
  1139. {
  1140. LLM_ARCH_DEEPSEEK2,
  1141. {
  1142. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1143. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1144. { LLM_TENSOR_OUTPUT, "output" },
  1145. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1146. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1147. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1148. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1149. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1150. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1151. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1152. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1153. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1154. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1155. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1156. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1157. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1158. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1159. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1160. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1161. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1162. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1163. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1164. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1165. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1166. },
  1167. },
  1168. {
  1169. LLM_ARCH_CHATGLM,
  1170. {
  1171. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1172. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  1173. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1174. { LLM_TENSOR_OUTPUT, "output" },
  1175. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1176. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1177. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1178. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1179. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1180. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1181. },
  1182. },
  1183. {
  1184. LLM_ARCH_BITNET,
  1185. {
  1186. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1187. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1188. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1189. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1190. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1191. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1192. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1193. { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
  1194. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1195. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1196. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1197. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1198. { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
  1199. },
  1200. },
  1201. {
  1202. LLM_ARCH_T5,
  1203. {
  1204. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1205. { LLM_TENSOR_OUTPUT, "output" },
  1206. { LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" },
  1207. { LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" },
  1208. { LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" },
  1209. { LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" },
  1210. { LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" },
  1211. { LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" },
  1212. { LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" },
  1213. { LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" },
  1214. { LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" },
  1215. { LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" },
  1216. { LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" },
  1217. { LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" },
  1218. { LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" },
  1219. { LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" },
  1220. { LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" },
  1221. { LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" },
  1222. { LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" },
  1223. { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
  1224. { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
  1225. { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
  1226. { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
  1227. { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
  1228. { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
  1229. { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
  1230. { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
  1231. { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
  1232. { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
  1233. { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
  1234. },
  1235. },
  1236. {
  1237. LLM_ARCH_JAIS,
  1238. {
  1239. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1240. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1241. { LLM_TENSOR_OUTPUT, "output" },
  1242. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1243. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1244. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1245. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1246. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1247. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1248. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1249. },
  1250. },
  1251. {
  1252. LLM_ARCH_UNKNOWN,
  1253. {
  1254. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1255. },
  1256. },
  1257. };
  1258. static llm_arch llm_arch_from_string(const std::string & name) {
  1259. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1260. if (kv.second == name) {
  1261. return kv.first;
  1262. }
  1263. }
  1264. return LLM_ARCH_UNKNOWN;
  1265. }
  1266. // helper to handle gguf constants
  1267. // usage:
  1268. //
  1269. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1270. //
  1271. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1272. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1273. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1274. //
  1275. struct LLM_TN {
  1276. LLM_TN(llm_arch arch) : arch(arch) {}
  1277. llm_arch arch;
  1278. std::string operator()(llm_tensor tensor) const {
  1279. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1280. return "__missing__";
  1281. }
  1282. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1283. }
  1284. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1285. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1286. return "__missing__";
  1287. }
  1288. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1289. }
  1290. std::string operator()(llm_tensor tensor, int bid) const {
  1291. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1292. return "__missing__";
  1293. }
  1294. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1295. }
  1296. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1297. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1298. return "__missing__";
  1299. }
  1300. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1301. }
  1302. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1303. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1304. return "__missing__";
  1305. }
  1306. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1307. }
  1308. };
  1309. //
  1310. // gguf helpers
  1311. //
  1312. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1313. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1314. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1315. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1316. };
  1317. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1318. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1319. if (kv.second == name) {
  1320. return (llama_rope_scaling_type) kv.first;
  1321. }
  1322. }
  1323. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1324. }
  1325. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1326. switch (type) {
  1327. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1328. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1329. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1330. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1331. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1332. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1333. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1334. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1335. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1336. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1337. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1338. default: return format("unknown type %d", type);
  1339. }
  1340. }
  1341. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1342. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1343. switch (type) {
  1344. case GGUF_TYPE_STRING:
  1345. return gguf_get_val_str(ctx_gguf, i);
  1346. case GGUF_TYPE_ARRAY:
  1347. {
  1348. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1349. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1350. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1351. std::stringstream ss;
  1352. ss << "[";
  1353. for (int j = 0; j < arr_n; j++) {
  1354. if (arr_type == GGUF_TYPE_STRING) {
  1355. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1356. // escape quotes
  1357. replace_all(val, "\\", "\\\\");
  1358. replace_all(val, "\"", "\\\"");
  1359. ss << '"' << val << '"';
  1360. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1361. ss << "???";
  1362. } else {
  1363. ss << gguf_data_to_str(arr_type, data, j);
  1364. }
  1365. if (j < arr_n - 1) {
  1366. ss << ", ";
  1367. }
  1368. }
  1369. ss << "]";
  1370. return ss.str();
  1371. }
  1372. default:
  1373. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1374. }
  1375. }
  1376. //
  1377. // llama helpers
  1378. //
  1379. #if defined(_WIN32)
  1380. static std::string llama_format_win_err(DWORD err) {
  1381. LPSTR buf;
  1382. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1383. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1384. if (!size) {
  1385. return "FormatMessageA failed";
  1386. }
  1387. std::string ret(buf, size);
  1388. LocalFree(buf);
  1389. return ret;
  1390. }
  1391. #endif
  1392. template <typename T>
  1393. struct no_init {
  1394. T value;
  1395. no_init() { /* do nothing */ }
  1396. };
  1397. struct llama_file {
  1398. #if defined(_WIN32)
  1399. // use FILE * so we don't have to re-open the file to mmap
  1400. FILE * fp;
  1401. HANDLE fp_win32;
  1402. size_t size;
  1403. private:
  1404. std::string GetErrorMessageWin32(DWORD error_code) const {
  1405. std::string ret;
  1406. LPSTR lpMsgBuf = NULL;
  1407. DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1408. NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
  1409. if (!bufLen) {
  1410. ret = format("Win32 error code: %s", error_code);
  1411. } else {
  1412. ret = lpMsgBuf;
  1413. LocalFree(lpMsgBuf);
  1414. }
  1415. return ret;
  1416. }
  1417. public:
  1418. llama_file(const char * fname, const char * mode) {
  1419. fp = ggml_fopen(fname, mode);
  1420. if (fp == NULL) {
  1421. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1422. }
  1423. fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
  1424. seek(0, SEEK_END);
  1425. size = tell();
  1426. seek(0, SEEK_SET);
  1427. }
  1428. size_t tell() const {
  1429. // SetFilePointerEx returns the current position when seeking relative 0 bytes
  1430. LARGE_INTEGER li;
  1431. li.QuadPart = 0;
  1432. BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
  1433. if (!ret) {
  1434. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1435. }
  1436. return li.QuadPart;
  1437. }
  1438. void seek(size_t offset, int whence) const {
  1439. // no need to convert SEEK_* to FILE_*. The enums are the same.
  1440. // Still, keep static asserts to avoid failures in the future.
  1441. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
  1442. static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
  1443. static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
  1444. LARGE_INTEGER li;
  1445. li.QuadPart = offset;
  1446. BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
  1447. if (!ret) {
  1448. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1449. }
  1450. }
  1451. void read_raw(void * ptr, size_t len) const {
  1452. // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
  1453. // use the Win32 API to do file io instead of the C/C++ library functions.
  1454. // There are conditions under which ReadFile cannot read chunks >64MB.
  1455. // Thus split the operation into smaller chunks if len exceeds this limit.
  1456. size_t bytes_read = 0;
  1457. while (bytes_read < len) {
  1458. size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
  1459. DWORD chunk_read = 0;
  1460. BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
  1461. if (!result) {
  1462. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1463. }
  1464. if (chunk_read < chunk_size || chunk_read == 0) {
  1465. throw std::runtime_error("unexpectedly reached end of file");
  1466. }
  1467. bytes_read += chunk_read;
  1468. } ;
  1469. }
  1470. uint32_t read_u32() const {
  1471. uint32_t val;
  1472. read_raw(&val, sizeof(val));
  1473. return val;
  1474. }
  1475. void write_raw(const void * ptr, size_t len) const {
  1476. // There are conditions under which WriteFile cannot write chunks >64MB.
  1477. // Thus split the operation into smaller chunks if len exceeds this limit.
  1478. size_t bytes_written = 0;
  1479. while (bytes_written < len) {
  1480. size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
  1481. DWORD chunk_written = 0;
  1482. BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
  1483. if (!result) {
  1484. throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1485. }
  1486. if (chunk_written < chunk_size || chunk_written == 0) {
  1487. throw std::runtime_error("unexpectedly failed to write bytes");
  1488. }
  1489. bytes_written += chunk_written;
  1490. }
  1491. }
  1492. void write_u32(std::uint32_t val) const {
  1493. write_raw(&val, sizeof(val));
  1494. }
  1495. ~llama_file() {
  1496. if (fp) {
  1497. std::fclose(fp);
  1498. }
  1499. }
  1500. #else
  1501. // use FILE * so we don't have to re-open the file to mmap
  1502. FILE * fp;
  1503. size_t size;
  1504. llama_file(const char * fname, const char * mode) {
  1505. fp = ggml_fopen(fname, mode);
  1506. if (fp == NULL) {
  1507. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1508. }
  1509. seek(0, SEEK_END);
  1510. size = tell();
  1511. seek(0, SEEK_SET);
  1512. }
  1513. size_t tell() const {
  1514. #ifdef _WIN32
  1515. __int64 ret = _ftelli64(fp);
  1516. #else
  1517. long ret = std::ftell(fp);
  1518. #endif
  1519. if (ret == -1) {
  1520. throw std::runtime_error(format("ftell error: %s", strerror(errno)));
  1521. }
  1522. return (size_t) ret;
  1523. }
  1524. void seek(size_t offset, int whence) const {
  1525. #ifdef _WIN32
  1526. int ret = _fseeki64(fp, (__int64) offset, whence);
  1527. #else
  1528. int ret = std::fseek(fp, (long) offset, whence);
  1529. #endif
  1530. if (ret != 0) {
  1531. throw std::runtime_error(format("seek error: %s", strerror(errno)));
  1532. }
  1533. }
  1534. void read_raw(void * ptr, size_t len) const {
  1535. if (len == 0) {
  1536. return;
  1537. }
  1538. errno = 0;
  1539. std::size_t ret = std::fread(ptr, len, 1, fp);
  1540. if (ferror(fp)) {
  1541. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1542. }
  1543. if (ret != 1) {
  1544. throw std::runtime_error("unexpectedly reached end of file");
  1545. }
  1546. }
  1547. uint32_t read_u32() const {
  1548. uint32_t ret;
  1549. read_raw(&ret, sizeof(ret));
  1550. return ret;
  1551. }
  1552. void write_raw(const void * ptr, size_t len) const {
  1553. if (len == 0) {
  1554. return;
  1555. }
  1556. errno = 0;
  1557. size_t ret = std::fwrite(ptr, len, 1, fp);
  1558. if (ret != 1) {
  1559. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1560. }
  1561. }
  1562. void write_u32(std::uint32_t val) const {
  1563. write_raw(&val, sizeof(val));
  1564. }
  1565. ~llama_file() {
  1566. if (fp) {
  1567. std::fclose(fp);
  1568. }
  1569. }
  1570. #endif
  1571. };
  1572. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1573. struct llama_mmap {
  1574. void * addr;
  1575. size_t size;
  1576. llama_mmap(const llama_mmap &) = delete;
  1577. #ifdef _POSIX_MAPPED_FILES
  1578. static constexpr bool SUPPORTED = true;
  1579. // list of mapped fragments (first_offset, last_offset)
  1580. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1581. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1582. size = file->size;
  1583. int fd = fileno(file->fp);
  1584. int flags = MAP_SHARED;
  1585. // prefetch/readahead impairs performance on NUMA systems
  1586. if (numa) { prefetch = 0; }
  1587. #ifdef __linux__
  1588. // advise the kernel to read the file sequentially (increases readahead)
  1589. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1590. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1591. strerror(errno));
  1592. }
  1593. if (prefetch) { flags |= MAP_POPULATE; }
  1594. #endif
  1595. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1596. if (addr == MAP_FAILED) { // NOLINT
  1597. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1598. }
  1599. if (prefetch > 0) {
  1600. // advise the kernel to preload the mapped memory
  1601. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1602. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1603. strerror(errno));
  1604. }
  1605. }
  1606. if (numa) {
  1607. // advise the kernel not to use readahead
  1608. // (because the next page might not belong on the same node)
  1609. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1610. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1611. strerror(errno));
  1612. }
  1613. }
  1614. // initialize list of mapped_fragments
  1615. mapped_fragments.emplace_back(0, file->size);
  1616. }
  1617. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1618. // align first to the next page
  1619. size_t offset_in_page = *first & (page_size - 1);
  1620. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1621. *first += offset_to_page;
  1622. // align last to the previous page
  1623. *last = *last & ~(page_size - 1);
  1624. if (*last <= *first) {
  1625. *last = *first;
  1626. }
  1627. }
  1628. // partially unmap the file in the range [first, last)
  1629. void unmap_fragment(size_t first, size_t last) {
  1630. // note: this function must not be called multiple times with overlapping ranges
  1631. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1632. int page_size = sysconf(_SC_PAGESIZE);
  1633. align_range(&first, &last, page_size);
  1634. size_t len = last - first;
  1635. if (len == 0) {
  1636. return;
  1637. }
  1638. GGML_ASSERT(first % page_size == 0);
  1639. GGML_ASSERT(last % page_size == 0);
  1640. GGML_ASSERT(last > first);
  1641. void * next_page_start = (uint8_t *) addr + first;
  1642. // unmap the range
  1643. if (munmap(next_page_start, len)) {
  1644. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1645. }
  1646. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1647. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1648. for (const auto & frag : mapped_fragments) {
  1649. if (frag.first < first && frag.second > last) {
  1650. // the range is in the middle of the fragment, split it
  1651. new_mapped_fragments.emplace_back(frag.first, first);
  1652. new_mapped_fragments.emplace_back(last, frag.second);
  1653. } else if (frag.first < first && frag.second > first) {
  1654. // the range starts in the middle of the fragment
  1655. new_mapped_fragments.emplace_back(frag.first, first);
  1656. } else if (frag.first < last && frag.second > last) {
  1657. // the range ends in the middle of the fragment
  1658. new_mapped_fragments.emplace_back(last, frag.second);
  1659. } else if (frag.first >= first && frag.second <= last) {
  1660. // the range covers the entire fragment
  1661. } else {
  1662. // the range is outside the fragment
  1663. new_mapped_fragments.push_back(frag);
  1664. }
  1665. }
  1666. mapped_fragments = std::move(new_mapped_fragments);
  1667. }
  1668. ~llama_mmap() {
  1669. for (const auto & frag : mapped_fragments) {
  1670. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1671. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1672. }
  1673. }
  1674. }
  1675. #elif defined(_WIN32)
  1676. static constexpr bool SUPPORTED = true;
  1677. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1678. GGML_UNUSED(numa);
  1679. size = file->size;
  1680. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1681. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1682. if (hMapping == NULL) {
  1683. DWORD error = GetLastError();
  1684. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1685. }
  1686. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1687. DWORD error = GetLastError();
  1688. CloseHandle(hMapping);
  1689. if (addr == NULL) {
  1690. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1691. }
  1692. if (prefetch > 0) {
  1693. #if _WIN32_WINNT >= 0x602
  1694. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1695. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1696. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1697. // may fail on pre-Windows 8 systems
  1698. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1699. if (pPrefetchVirtualMemory) {
  1700. // advise the kernel to preload the mapped memory
  1701. WIN32_MEMORY_RANGE_ENTRY range;
  1702. range.VirtualAddress = addr;
  1703. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1704. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1705. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1706. llama_format_win_err(GetLastError()).c_str());
  1707. }
  1708. }
  1709. #else
  1710. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1711. #endif
  1712. }
  1713. }
  1714. void unmap_fragment(size_t first, size_t last) {
  1715. // not supported
  1716. GGML_UNUSED(first);
  1717. GGML_UNUSED(last);
  1718. }
  1719. ~llama_mmap() {
  1720. if (!UnmapViewOfFile(addr)) {
  1721. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1722. llama_format_win_err(GetLastError()).c_str());
  1723. }
  1724. }
  1725. #else
  1726. static constexpr bool SUPPORTED = false;
  1727. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1728. GGML_UNUSED(file);
  1729. GGML_UNUSED(prefetch);
  1730. GGML_UNUSED(numa);
  1731. throw std::runtime_error("mmap not supported");
  1732. }
  1733. void unmap_fragment(size_t first, size_t last) {
  1734. GGML_UNUSED(first);
  1735. GGML_UNUSED(last);
  1736. throw std::runtime_error("mmap not supported");
  1737. }
  1738. #endif
  1739. };
  1740. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1741. // Represents some region of memory being locked using mlock or VirtualLock;
  1742. // will automatically unlock on destruction.
  1743. struct llama_mlock {
  1744. void * addr = NULL;
  1745. size_t size = 0;
  1746. bool failed_already = false;
  1747. llama_mlock() {}
  1748. llama_mlock(const llama_mlock &) = delete;
  1749. ~llama_mlock() {
  1750. if (size) {
  1751. raw_unlock(addr, size);
  1752. }
  1753. }
  1754. void init(void * ptr) {
  1755. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1756. addr = ptr;
  1757. }
  1758. void grow_to(size_t target_size) {
  1759. GGML_ASSERT(addr);
  1760. if (failed_already) {
  1761. return;
  1762. }
  1763. size_t granularity = lock_granularity();
  1764. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1765. if (target_size > size) {
  1766. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1767. size = target_size;
  1768. } else {
  1769. failed_already = true;
  1770. }
  1771. }
  1772. }
  1773. #ifdef _POSIX_MEMLOCK_RANGE
  1774. static constexpr bool SUPPORTED = true;
  1775. static size_t lock_granularity() {
  1776. return (size_t) sysconf(_SC_PAGESIZE);
  1777. }
  1778. #ifdef __APPLE__
  1779. #define MLOCK_SUGGESTION \
  1780. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1781. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1782. #else
  1783. #define MLOCK_SUGGESTION \
  1784. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1785. #endif
  1786. bool raw_lock(const void * addr, size_t size) const {
  1787. if (!mlock(addr, size)) {
  1788. return true;
  1789. }
  1790. char* errmsg = std::strerror(errno);
  1791. bool suggest = (errno == ENOMEM);
  1792. // Check if the resource limit is fine after all
  1793. struct rlimit lock_limit;
  1794. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1795. suggest = false;
  1796. }
  1797. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1798. suggest = false;
  1799. }
  1800. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1801. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1802. return false;
  1803. }
  1804. #undef MLOCK_SUGGESTION
  1805. static void raw_unlock(void * addr, size_t size) {
  1806. if (munlock(addr, size)) {
  1807. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1808. }
  1809. }
  1810. #elif defined(_WIN32)
  1811. static constexpr bool SUPPORTED = true;
  1812. static size_t lock_granularity() {
  1813. SYSTEM_INFO si;
  1814. GetSystemInfo(&si);
  1815. return (size_t) si.dwPageSize;
  1816. }
  1817. bool raw_lock(void * ptr, size_t len) const {
  1818. for (int tries = 1; ; tries++) {
  1819. if (VirtualLock(ptr, len)) {
  1820. return true;
  1821. }
  1822. if (tries == 2) {
  1823. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1824. len, size, llama_format_win_err(GetLastError()).c_str());
  1825. return false;
  1826. }
  1827. // It failed but this was only the first try; increase the working
  1828. // set size and try again.
  1829. SIZE_T min_ws_size, max_ws_size;
  1830. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1831. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1832. llama_format_win_err(GetLastError()).c_str());
  1833. return false;
  1834. }
  1835. // Per MSDN: "The maximum number of pages that a process can lock
  1836. // is equal to the number of pages in its minimum working set minus
  1837. // a small overhead."
  1838. // Hopefully a megabyte is enough overhead:
  1839. size_t increment = len + 1048576;
  1840. // The minimum must be <= the maximum, so we need to increase both:
  1841. min_ws_size += increment;
  1842. max_ws_size += increment;
  1843. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1844. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1845. llama_format_win_err(GetLastError()).c_str());
  1846. return false;
  1847. }
  1848. }
  1849. }
  1850. static void raw_unlock(void * ptr, size_t len) {
  1851. if (!VirtualUnlock(ptr, len)) {
  1852. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1853. llama_format_win_err(GetLastError()).c_str());
  1854. }
  1855. }
  1856. #else
  1857. static constexpr bool SUPPORTED = false;
  1858. static size_t lock_granularity() {
  1859. return (size_t) 65536;
  1860. }
  1861. bool raw_lock(const void * addr, size_t len) const {
  1862. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1863. return false;
  1864. }
  1865. static void raw_unlock(const void * addr, size_t len) {}
  1866. #endif
  1867. };
  1868. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1869. // NOTE: avoid ever using this except for building the token_to_piece caches
  1870. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1871. std::string piece;
  1872. piece.resize(piece.capacity()); // using string internal cache
  1873. const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
  1874. if (n_chars < 0) {
  1875. piece.resize(-n_chars);
  1876. int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
  1877. GGML_ASSERT(check == -n_chars);
  1878. }
  1879. else {
  1880. piece.resize(n_chars);
  1881. }
  1882. return piece;
  1883. }
  1884. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1885. ggml_backend_buffer_type_t buft = nullptr;
  1886. #if defined(GGML_USE_CUDA)
  1887. // host buffers should only be used when data is expected to be copied to/from the GPU
  1888. if (host_buffer) {
  1889. buft = ggml_backend_cuda_host_buffer_type();
  1890. }
  1891. #elif defined(GGML_USE_SYCL)
  1892. if (host_buffer) {
  1893. buft = ggml_backend_sycl_host_buffer_type();
  1894. }
  1895. #elif defined(GGML_USE_CPU_HBM)
  1896. buft = ggml_backend_cpu_hbm_buffer_type();
  1897. #elif defined(GGML_USE_VULKAN)
  1898. if (host_buffer) {
  1899. buft = ggml_backend_vk_host_buffer_type();
  1900. }
  1901. #endif
  1902. if (buft == nullptr) {
  1903. buft = ggml_backend_cpu_buffer_type();
  1904. }
  1905. return buft;
  1906. GGML_UNUSED(host_buffer);
  1907. }
  1908. //
  1909. // globals
  1910. //
  1911. struct llama_state {
  1912. llama_state() {
  1913. #ifdef GGML_USE_METAL
  1914. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1915. #elif defined(GGML_USE_CUDA)
  1916. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1917. #endif
  1918. }
  1919. // We save the log callback globally
  1920. ggml_log_callback log_callback = llama_log_callback_default;
  1921. void * log_callback_user_data = nullptr;
  1922. };
  1923. static llama_state g_state;
  1924. // available llama models
  1925. enum e_model {
  1926. MODEL_UNKNOWN,
  1927. MODEL_14M,
  1928. MODEL_17M,
  1929. MODEL_22M,
  1930. MODEL_33M,
  1931. MODEL_60M,
  1932. MODEL_70M,
  1933. MODEL_80M,
  1934. MODEL_109M,
  1935. MODEL_137M,
  1936. MODEL_160M,
  1937. MODEL_220M,
  1938. MODEL_250M,
  1939. MODEL_270M,
  1940. MODEL_335M,
  1941. MODEL_410M,
  1942. MODEL_450M,
  1943. MODEL_770M,
  1944. MODEL_780M,
  1945. MODEL_0_5B,
  1946. MODEL_1B,
  1947. MODEL_1_3B,
  1948. MODEL_1_4B,
  1949. MODEL_2B,
  1950. MODEL_2_8B,
  1951. MODEL_3B,
  1952. MODEL_4B,
  1953. MODEL_6B,
  1954. MODEL_6_9B,
  1955. MODEL_7B,
  1956. MODEL_8B,
  1957. MODEL_9B,
  1958. MODEL_11B,
  1959. MODEL_12B,
  1960. MODEL_13B,
  1961. MODEL_14B,
  1962. MODEL_15B,
  1963. MODEL_16B,
  1964. MODEL_20B,
  1965. MODEL_30B,
  1966. MODEL_34B,
  1967. MODEL_35B,
  1968. MODEL_40B,
  1969. MODEL_65B,
  1970. MODEL_70B,
  1971. MODEL_236B,
  1972. MODEL_314B,
  1973. MODEL_SMALL,
  1974. MODEL_MEDIUM,
  1975. MODEL_LARGE,
  1976. MODEL_XL,
  1977. MODEL_A2_7B,
  1978. MODEL_8x7B,
  1979. MODEL_8x22B,
  1980. MODEL_16x12B,
  1981. MODEL_10B_128x3_66B,
  1982. MODEL_57B_A14B,
  1983. MODEL_27B,
  1984. };
  1985. static const size_t kiB = 1024;
  1986. static const size_t MiB = 1024*kiB;
  1987. static const size_t GiB = 1024*MiB;
  1988. struct llama_hparams {
  1989. bool vocab_only;
  1990. bool rope_finetuned;
  1991. bool use_par_res;
  1992. uint32_t n_vocab;
  1993. uint32_t n_ctx_train; // context size the model was trained on
  1994. uint32_t n_embd;
  1995. uint32_t n_layer;
  1996. uint32_t n_rot;
  1997. uint32_t n_swa = 0; // sliding window attention (SWA)
  1998. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1999. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  2000. uint32_t n_expert = 0;
  2001. uint32_t n_expert_used = 0;
  2002. uint32_t n_vocab_type = 0; // for BERT-style token types
  2003. uint32_t n_rel_attn_bkts = 0;
  2004. std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
  2005. std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
  2006. std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
  2007. uint32_t n_layer_dense_lead = 0;
  2008. uint32_t n_lora_q = 0;
  2009. uint32_t n_lora_kv = 0;
  2010. uint32_t n_ff_exp = 0;
  2011. uint32_t n_ff_shexp = 0;
  2012. uint32_t n_expert_shared = 0;
  2013. float expert_weights_scale = 0.0;
  2014. float f_norm_eps;
  2015. float f_norm_rms_eps;
  2016. float f_attn_logit_softcapping = 50.0f;
  2017. float f_final_logit_softcapping = 30.0f;
  2018. float rope_attn_factor = 1.0f;
  2019. float rope_freq_base_train;
  2020. float rope_freq_scale_train;
  2021. uint32_t n_ctx_orig_yarn;
  2022. float rope_yarn_log_mul;
  2023. // for State Space Models
  2024. uint32_t ssm_d_conv = 0;
  2025. uint32_t ssm_d_inner = 0;
  2026. uint32_t ssm_d_state = 0;
  2027. uint32_t ssm_dt_rank = 0;
  2028. float f_clamp_kqv = 0.0f;
  2029. float f_max_alibi_bias = 0.0f;
  2030. float f_logit_scale = 0.0f;
  2031. bool causal_attn = true;
  2032. bool use_alibi = false;
  2033. bool attn_soft_cap = false;
  2034. // needed by encoder-decoder models (e.g. T5, FLAN-T5)
  2035. // ref: https://github.com/ggerganov/llama.cpp/pull/8141
  2036. llama_token dec_start_token_id = -1;
  2037. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  2038. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  2039. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  2040. bool operator!=(const llama_hparams & other) const {
  2041. if (this->vocab_only != other.vocab_only) return true;
  2042. if (this->n_vocab != other.n_vocab) return true;
  2043. if (this->n_ctx_train != other.n_ctx_train) return true;
  2044. if (this->n_embd != other.n_embd) return true;
  2045. if (this->n_layer != other.n_layer) return true;
  2046. if (this->n_rot != other.n_rot) return true;
  2047. if (this->n_swa != other.n_swa) return true;
  2048. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  2049. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  2050. if (this->n_expert != other.n_expert) return true;
  2051. if (this->n_expert_used != other.n_expert_used) return true;
  2052. if (this->n_head_arr != other.n_head_arr) return true;
  2053. if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
  2054. if (this->n_ff_arr != other.n_ff_arr) return true;
  2055. if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
  2056. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  2057. if (this->n_lora_q != other.n_lora_q) return true;
  2058. if (this->n_lora_kv != other.n_lora_kv) return true;
  2059. if (this->n_ff_exp != other.n_ff_exp) return true;
  2060. if (this->n_ff_shexp != other.n_ff_shexp) return true;
  2061. if (this->n_expert_shared != other.n_expert_shared) return true;
  2062. if (this->rope_finetuned != other.rope_finetuned) return true;
  2063. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  2064. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  2065. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  2066. if (this->ssm_d_state != other.ssm_d_state) return true;
  2067. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  2068. if (this->dec_start_token_id != other.dec_start_token_id) return true;
  2069. const float EPSILON = 1e-9f;
  2070. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  2071. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  2072. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  2073. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  2074. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  2075. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  2076. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  2077. return false;
  2078. }
  2079. uint32_t n_head(uint32_t il = 0) const {
  2080. if (il < n_layer) {
  2081. return n_head_arr[il];
  2082. }
  2083. GGML_ASSERT(false);
  2084. return 0;
  2085. }
  2086. uint32_t n_head_kv(uint32_t il = 0) const {
  2087. if (il < n_layer) {
  2088. return n_head_kv_arr[il];
  2089. }
  2090. GGML_ASSERT(false);
  2091. return 0;
  2092. }
  2093. uint32_t n_ff(uint32_t il = 0) const {
  2094. if (il < n_layer) {
  2095. return n_ff_arr[il];
  2096. }
  2097. GGML_ASSERT(false);
  2098. return 0;
  2099. }
  2100. uint32_t n_gqa(uint32_t il = 0) const {
  2101. const uint32_t n_head = this->n_head(il);
  2102. const uint32_t n_head_kv = this->n_head_kv(il);
  2103. if (n_head_kv == 0) {
  2104. return 0;
  2105. }
  2106. return n_head/n_head_kv;
  2107. }
  2108. uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
  2109. const uint32_t n_head_kv = this->n_head_kv(il);
  2110. return n_embd_head_k * n_head_kv;
  2111. }
  2112. uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
  2113. const uint32_t n_head_kv = this->n_head_kv(il);
  2114. return n_embd_head_v * n_head_kv;
  2115. }
  2116. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  2117. // corresponds to Mamba's conv_states size
  2118. // TODO: maybe support other convolution strides than 1
  2119. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  2120. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  2121. }
  2122. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  2123. // corresponds to Mamba's ssm_states size
  2124. return ssm_d_state * ssm_d_inner;
  2125. }
  2126. };
  2127. static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
  2128. struct llama_cparams {
  2129. uint32_t n_ctx; // context size used during inference
  2130. uint32_t n_batch;
  2131. uint32_t n_ubatch;
  2132. uint32_t n_seq_max;
  2133. uint32_t n_threads; // number of threads to use for generation
  2134. uint32_t n_threads_batch; // number of threads to use for batch processing
  2135. float rope_freq_base;
  2136. float rope_freq_scale;
  2137. uint32_t n_ctx_orig_yarn;
  2138. // These hyperparameters are not exposed in GGUF, because all
  2139. // existing YaRN models use the same values for them.
  2140. float yarn_ext_factor;
  2141. float yarn_attn_factor;
  2142. float yarn_beta_fast;
  2143. float yarn_beta_slow;
  2144. float defrag_thold;
  2145. bool embeddings;
  2146. bool causal_attn;
  2147. bool offload_kqv;
  2148. bool flash_attn;
  2149. enum llama_pooling_type pooling_type;
  2150. ggml_backend_sched_eval_callback cb_eval;
  2151. void * cb_eval_user_data;
  2152. };
  2153. // TODO: separate into "llama_layer_enc" and "llama_layer_dec"
  2154. struct llama_layer {
  2155. // normalization
  2156. struct ggml_tensor * attn_norm;
  2157. struct ggml_tensor * attn_norm_b;
  2158. struct ggml_tensor * attn_norm_2;
  2159. struct ggml_tensor * attn_norm_2_b;
  2160. struct ggml_tensor * attn_q_norm;
  2161. struct ggml_tensor * attn_q_norm_b;
  2162. struct ggml_tensor * attn_k_norm;
  2163. struct ggml_tensor * attn_k_norm_b;
  2164. struct ggml_tensor * attn_out_norm;
  2165. struct ggml_tensor * attn_out_norm_b;
  2166. struct ggml_tensor * attn_q_a_norm;
  2167. struct ggml_tensor * attn_kv_a_norm;
  2168. struct ggml_tensor * attn_sub_norm;
  2169. struct ggml_tensor * attn_post_norm;
  2170. struct ggml_tensor * ffn_sub_norm;
  2171. struct ggml_tensor * attn_norm_cross;
  2172. struct ggml_tensor * attn_norm_enc;
  2173. // attention
  2174. struct ggml_tensor * wq;
  2175. struct ggml_tensor * wk;
  2176. struct ggml_tensor * wv;
  2177. struct ggml_tensor * wo;
  2178. struct ggml_tensor * wqkv;
  2179. struct ggml_tensor * wq_a;
  2180. struct ggml_tensor * wq_b;
  2181. struct ggml_tensor * wkv_a_mqa;
  2182. struct ggml_tensor * wkv_b;
  2183. struct ggml_tensor * wq_cross;
  2184. struct ggml_tensor * wk_cross;
  2185. struct ggml_tensor * wv_cross;
  2186. struct ggml_tensor * wo_cross;
  2187. struct ggml_tensor * wq_enc;
  2188. struct ggml_tensor * wk_enc;
  2189. struct ggml_tensor * wv_enc;
  2190. struct ggml_tensor * wo_enc;
  2191. // attention bias
  2192. struct ggml_tensor * bq;
  2193. struct ggml_tensor * bk;
  2194. struct ggml_tensor * bv;
  2195. struct ggml_tensor * bo;
  2196. struct ggml_tensor * bqkv;
  2197. // relative position bias
  2198. struct ggml_tensor * attn_rel_b;
  2199. struct ggml_tensor * attn_rel_b_enc;
  2200. struct ggml_tensor * attn_rel_b_cross;
  2201. // normalization
  2202. struct ggml_tensor * ffn_norm;
  2203. struct ggml_tensor * ffn_norm_b;
  2204. struct ggml_tensor * ffn_post_norm;
  2205. struct ggml_tensor * layer_out_norm;
  2206. struct ggml_tensor * layer_out_norm_b;
  2207. struct ggml_tensor * ffn_norm_exps;
  2208. struct ggml_tensor * ffn_norm_enc;
  2209. // ff
  2210. struct ggml_tensor * ffn_gate; // w1
  2211. struct ggml_tensor * ffn_down; // w2
  2212. struct ggml_tensor * ffn_up; // w3
  2213. struct ggml_tensor * ffn_gate_enc;
  2214. struct ggml_tensor * ffn_down_enc;
  2215. struct ggml_tensor * ffn_up_enc;
  2216. // ff MoE
  2217. struct ggml_tensor * ffn_gate_inp;
  2218. struct ggml_tensor * ffn_gate_exps;
  2219. struct ggml_tensor * ffn_down_exps;
  2220. struct ggml_tensor * ffn_up_exps ;
  2221. // ff shared expert (shexp)
  2222. struct ggml_tensor * ffn_gate_inp_shexp;
  2223. struct ggml_tensor * ffn_gate_shexp;
  2224. struct ggml_tensor * ffn_down_shexp;
  2225. struct ggml_tensor * ffn_up_shexp;
  2226. // ff bias
  2227. struct ggml_tensor * ffn_gate_b = nullptr;
  2228. struct ggml_tensor * ffn_down_b = nullptr; // b2
  2229. struct ggml_tensor * ffn_up_b = nullptr; // b3
  2230. struct ggml_tensor * ffn_act;
  2231. // mamba proj
  2232. struct ggml_tensor * ssm_in;
  2233. struct ggml_tensor * ssm_x;
  2234. struct ggml_tensor * ssm_dt;
  2235. struct ggml_tensor * ssm_out;
  2236. // mamba
  2237. struct ggml_tensor * ssm_conv1d;
  2238. struct ggml_tensor * ssm_a;
  2239. struct ggml_tensor * ssm_d;
  2240. // mamba bias
  2241. struct ggml_tensor * ssm_conv1d_b;
  2242. struct ggml_tensor * ssm_dt_b;
  2243. // long rope factors
  2244. struct ggml_tensor * rope_long = nullptr;
  2245. struct ggml_tensor * rope_short = nullptr;
  2246. // bitnet scale
  2247. struct ggml_tensor * wq_scale;
  2248. struct ggml_tensor * wk_scale;
  2249. struct ggml_tensor * wv_scale;
  2250. struct ggml_tensor * wo_scale;
  2251. struct ggml_tensor * ffn_gate_scale;
  2252. struct ggml_tensor * ffn_up_scale;
  2253. struct ggml_tensor * ffn_down_scale;
  2254. };
  2255. struct llama_kv_cell {
  2256. llama_pos pos = -1;
  2257. llama_pos delta = 0;
  2258. int32_t src = 0; // used by recurrent state models to copy states
  2259. std::set<llama_seq_id> seq_id;
  2260. bool has_seq_id(const llama_seq_id & id) const {
  2261. return seq_id.find(id) != seq_id.end();
  2262. }
  2263. bool is_empty() const {
  2264. return seq_id.empty();
  2265. }
  2266. bool is_same_seq(const llama_kv_cell & other) const {
  2267. return seq_id == other.seq_id;
  2268. }
  2269. };
  2270. // ring-buffer of cached KV data
  2271. struct llama_kv_cache {
  2272. bool has_shift = false;
  2273. bool do_defrag = false;
  2274. bool do_copy = false;
  2275. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  2276. bool v_trans = true; // the value tensor is transposed
  2277. // Note: The value of head isn't only used to optimize searching
  2278. // for a free KV slot. llama_decode_internal also uses it, so it
  2279. // cannot be freely changed after a slot has been allocated.
  2280. uint32_t head = 0;
  2281. uint32_t size = 0;
  2282. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  2283. // computed before each graph build
  2284. uint32_t n = 0;
  2285. ggml_type type_k = GGML_TYPE_F16;
  2286. ggml_type type_v = GGML_TYPE_F16;
  2287. std::vector<llama_kv_cell> cells;
  2288. std::vector<struct ggml_tensor *> k_l; // per layer
  2289. std::vector<struct ggml_tensor *> v_l;
  2290. std::vector<struct ggml_context *> ctxs;
  2291. std::vector<ggml_backend_buffer_t> bufs;
  2292. size_t total_size() const {
  2293. size_t size = 0;
  2294. for (ggml_backend_buffer_t buf : bufs) {
  2295. size += ggml_backend_buffer_get_size(buf);
  2296. }
  2297. return size;
  2298. }
  2299. ~llama_kv_cache() {
  2300. for (struct ggml_context * ctx : ctxs) {
  2301. ggml_free(ctx);
  2302. }
  2303. for (ggml_backend_buffer_t buf : bufs) {
  2304. ggml_backend_buffer_free(buf);
  2305. }
  2306. }
  2307. };
  2308. struct llama_control_vector {
  2309. std::vector<struct ggml_tensor *> tensors; // per layer
  2310. std::vector<struct ggml_context *> ctxs;
  2311. std::vector<ggml_backend_buffer_t> bufs;
  2312. int32_t layer_start = -1;
  2313. int32_t layer_end = -1;
  2314. struct ggml_tensor * tensor_for(int il) const {
  2315. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  2316. return nullptr;
  2317. }
  2318. return tensors[il];
  2319. }
  2320. struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
  2321. ggml_tensor * layer_dir = tensor_for(il);
  2322. if (layer_dir != nullptr) {
  2323. cur = ggml_add(ctx, cur, layer_dir);
  2324. }
  2325. return cur;
  2326. }
  2327. ~llama_control_vector() {
  2328. for (struct ggml_context * ctx : ctxs) {
  2329. ggml_free(ctx);
  2330. }
  2331. for (ggml_backend_buffer_t buf : bufs) {
  2332. ggml_backend_buffer_free(buf);
  2333. }
  2334. }
  2335. };
  2336. struct llama_vocab {
  2337. using id = int32_t;
  2338. using token = std::string;
  2339. using tattr = llama_token_attr;
  2340. struct token_data {
  2341. token text;
  2342. float score;
  2343. tattr attr;
  2344. };
  2345. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  2346. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  2347. int max_token_len = 0; // used for optimizing longest token search
  2348. std::unordered_map<token, id> token_to_id;
  2349. std::vector<token_data> id_to_token;
  2350. std::vector<id> cache_special_tokens;
  2351. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  2352. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  2353. // default LLaMA special tokens
  2354. id special_bos_id = 1;
  2355. id special_eos_id = 2;
  2356. id special_unk_id = 0;
  2357. id special_sep_id = -1;
  2358. id special_pad_id = -1;
  2359. id special_cls_id = -1;
  2360. id special_mask_id = -1;
  2361. id linefeed_id = 13;
  2362. id special_prefix_id = -1;
  2363. id special_suffix_id = -1;
  2364. id special_middle_id = -1;
  2365. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  2366. // tokenizer flags
  2367. bool tokenizer_add_space_prefix = false;
  2368. bool tokenizer_add_bos = false;
  2369. bool tokenizer_add_eos = false;
  2370. bool tokenizer_ignore_merges = false;
  2371. bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
  2372. bool tokenizer_remove_extra_whitespaces = false;
  2373. bool tokenizer_escape_whitespaces = true;
  2374. bool tokenizer_treat_whitespace_as_suffix = false;
  2375. std::vector<char> precompiled_charsmap;
  2376. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2377. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2378. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2379. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2380. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2381. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  2382. if (it == bpe_ranks.end()) {
  2383. return -1;
  2384. }
  2385. return it->second;
  2386. }
  2387. };
  2388. struct llama_model {
  2389. e_model type = MODEL_UNKNOWN;
  2390. llm_arch arch = LLM_ARCH_UNKNOWN;
  2391. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2392. std::string name = "n/a";
  2393. llama_hparams hparams = {};
  2394. llama_vocab vocab;
  2395. struct ggml_tensor * tok_embd;
  2396. struct ggml_tensor * type_embd;
  2397. struct ggml_tensor * pos_embd;
  2398. struct ggml_tensor * tok_norm;
  2399. struct ggml_tensor * tok_norm_b;
  2400. struct ggml_tensor * output_norm;
  2401. struct ggml_tensor * output_norm_b;
  2402. struct ggml_tensor * output;
  2403. struct ggml_tensor * output_b;
  2404. struct ggml_tensor * output_norm_enc;
  2405. std::vector<llama_layer> layers;
  2406. llama_split_mode split_mode;
  2407. int main_gpu;
  2408. int n_gpu_layers;
  2409. std::vector<std::string> rpc_servers;
  2410. // gguf metadata
  2411. std::unordered_map<std::string, std::string> gguf_kv;
  2412. // layer -> buffer type mapping
  2413. struct layer_buft {
  2414. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2415. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2416. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2417. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2418. ggml_backend_buffer_type_t buft; // everything else
  2419. };
  2420. layer_buft buft_input;
  2421. layer_buft buft_output;
  2422. std::vector<layer_buft> buft_layer;
  2423. // contexts where the model tensors metadata is stored
  2424. std::vector<struct ggml_context *> ctxs;
  2425. // the model memory buffers for the tensor data
  2426. std::vector<ggml_backend_buffer_t> bufs;
  2427. // model memory mapped files
  2428. llama_mmaps mappings;
  2429. // objects representing data potentially being locked in memory
  2430. llama_mlocks mlock_bufs;
  2431. llama_mlocks mlock_mmaps;
  2432. // for quantize-stats only
  2433. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2434. int64_t t_load_us = 0;
  2435. int64_t t_start_us = 0;
  2436. ~llama_model() {
  2437. for (struct ggml_context * ctx : ctxs) {
  2438. ggml_free(ctx);
  2439. }
  2440. for (ggml_backend_buffer_t buf : bufs) {
  2441. #ifdef GGML_USE_CUDA
  2442. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2443. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2444. }
  2445. #endif
  2446. ggml_backend_buffer_free(buf);
  2447. }
  2448. }
  2449. };
  2450. struct llama_context {
  2451. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2452. ~llama_context() {
  2453. ggml_backend_sched_free(sched);
  2454. for (ggml_backend_t backend : backends) {
  2455. ggml_backend_free(backend);
  2456. }
  2457. ggml_backend_buffer_free(buf_output);
  2458. }
  2459. llama_cparams cparams;
  2460. std::vector<ggml_backend_t> backends;
  2461. #ifdef GGML_USE_METAL
  2462. ggml_backend_t backend_metal = nullptr;
  2463. #endif
  2464. #ifdef GGML_USE_BLAS
  2465. ggml_backend_t backend_blas = nullptr;
  2466. #endif
  2467. ggml_backend_t backend_cpu = nullptr;
  2468. const llama_model & model;
  2469. // key + value cache for the self attention
  2470. struct llama_kv_cache kv_self;
  2471. std::mt19937 rng;
  2472. bool has_evaluated_once = false;
  2473. int64_t t_start_us;
  2474. int64_t t_load_us;
  2475. int64_t t_sample_us = 0;
  2476. int64_t t_p_eval_us = 0;
  2477. int64_t t_eval_us = 0;
  2478. int64_t t_compute_start_us = 0;
  2479. int64_t n_queued_tokens = 0;
  2480. int32_t n_sample = 0; // number of tokens sampled
  2481. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2482. int32_t n_eval = 0; // number of eval calls
  2483. // host buffer for the model output (logits and embeddings)
  2484. ggml_backend_buffer_t buf_output = nullptr;
  2485. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2486. size_t logits_size = 0; // capacity (of floats) for logits
  2487. float * logits = nullptr;
  2488. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2489. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2490. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2491. bool logits_all = false;
  2492. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2493. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2494. size_t embd_size = 0; // capacity (of floats) for embeddings
  2495. float * embd = nullptr;
  2496. // sequence embeddings output (map of [n_embd] vectors)
  2497. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2498. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2499. // whether we are computing encoder output or decoder output
  2500. bool is_encoding = false;
  2501. // output of the encoder part of the encoder-decoder models
  2502. std::vector<float> embd_enc;
  2503. std::vector<std::set<llama_seq_id>> seq_ids_enc;
  2504. // memory buffers used to evaluate the model
  2505. std::vector<uint8_t> buf_compute_meta;
  2506. ggml_backend_sched_t sched = nullptr;
  2507. ggml_abort_callback abort_callback = nullptr;
  2508. void * abort_callback_data = nullptr;
  2509. // input tensors
  2510. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2511. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2512. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2513. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2514. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2515. struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
  2516. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2517. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2518. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2519. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2520. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2521. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2522. struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
  2523. struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
  2524. struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
  2525. // control vectors
  2526. struct llama_control_vector cvec;
  2527. };
  2528. static size_t llama_get_device_count(const llama_model & model) {
  2529. size_t count = 1;
  2530. #if defined(GGML_USE_CUDA)
  2531. count = ggml_backend_cuda_get_device_count();
  2532. #elif defined(GGML_USE_SYCL)
  2533. count = ggml_backend_sycl_get_device_count();
  2534. #elif defined(GGML_USE_VULKAN)
  2535. count = ggml_backend_vk_get_device_count();
  2536. #endif
  2537. #if defined(GGML_USE_RPC)
  2538. count += model.rpc_servers.size();
  2539. #endif
  2540. return count;
  2541. GGML_UNUSED(model);
  2542. }
  2543. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2544. ggml_backend_buffer_type_t buft = nullptr;
  2545. #if defined(GGML_USE_RPC)
  2546. int dev_count = (int)llama_get_device_count(model);
  2547. int rpc_count = (int)model.rpc_servers.size();
  2548. if (gpu >= dev_count - rpc_count) {
  2549. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2550. return ggml_backend_rpc_buffer_type(endpoint);
  2551. }
  2552. #endif
  2553. #if defined(GGML_USE_METAL)
  2554. buft = ggml_backend_metal_buffer_type();
  2555. #elif defined(GGML_USE_CUDA)
  2556. buft = ggml_backend_cuda_buffer_type(gpu);
  2557. #elif defined(GGML_USE_VULKAN)
  2558. buft = ggml_backend_vk_buffer_type(gpu);
  2559. #elif defined(GGML_USE_SYCL)
  2560. buft = ggml_backend_sycl_buffer_type(gpu);
  2561. #elif defined(GGML_USE_KOMPUTE)
  2562. buft = ggml_backend_kompute_buffer_type(gpu);
  2563. if (buft == nullptr) {
  2564. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2565. }
  2566. #endif
  2567. if (buft == nullptr) {
  2568. buft = llama_default_buffer_type_cpu(true);
  2569. }
  2570. return buft;
  2571. GGML_UNUSED(model);
  2572. GGML_UNUSED(gpu);
  2573. }
  2574. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2575. ggml_backend_buffer_type_t buft = nullptr;
  2576. #ifdef GGML_USE_CUDA
  2577. if (ggml_backend_cuda_get_device_count() > 1) {
  2578. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2579. }
  2580. #endif
  2581. #ifdef GGML_USE_SYCL
  2582. if (ggml_backend_sycl_get_device_count() > 1) {
  2583. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2584. }
  2585. #endif
  2586. if (buft == nullptr) {
  2587. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2588. }
  2589. return buft;
  2590. GGML_UNUSED(tensor_split);
  2591. }
  2592. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2593. #if defined(GGML_USE_RPC)
  2594. int dev_count = (int)llama_get_device_count(model);
  2595. int rpc_count = (int)model.rpc_servers.size();
  2596. if (device >= dev_count - rpc_count) {
  2597. size_t total;
  2598. size_t free;
  2599. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2600. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2601. return free;
  2602. }
  2603. #endif
  2604. #if defined(GGML_USE_CUDA)
  2605. size_t total;
  2606. size_t free;
  2607. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2608. return free;
  2609. #elif defined(GGML_USE_SYCL)
  2610. size_t total;
  2611. size_t free;
  2612. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2613. return free;
  2614. #elif defined(GGML_USE_VULKAN)
  2615. size_t total;
  2616. size_t free;
  2617. ggml_backend_vk_get_device_memory(device, &free, &total);
  2618. return free;
  2619. #else
  2620. return 1;
  2621. #endif
  2622. GGML_UNUSED(model);
  2623. GGML_UNUSED(device);
  2624. }
  2625. //
  2626. // kv cache helpers
  2627. //
  2628. static bool llama_kv_cache_init(
  2629. struct llama_kv_cache & cache,
  2630. const llama_context * ctx,
  2631. ggml_type type_k,
  2632. ggml_type type_v,
  2633. uint32_t kv_size,
  2634. bool offload) {
  2635. const llama_model & model = ctx->model;
  2636. const llama_cparams & cparams = ctx->cparams;
  2637. const struct llama_hparams & hparams = model.hparams;
  2638. const int64_t n_layer = hparams.n_layer;
  2639. cache.has_shift = false;
  2640. // TODO: find a nicer way to add other recurrent model architectures
  2641. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2642. cache.v_trans = !cparams.flash_attn;
  2643. cache.head = 0;
  2644. cache.size = kv_size;
  2645. cache.used = 0;
  2646. cache.type_k = type_k;
  2647. cache.type_v = type_v;
  2648. cache.cells.clear();
  2649. cache.cells.resize(kv_size);
  2650. if (cache.recurrent) {
  2651. // init state copy sources
  2652. for (uint32_t i = 0; i < cache.size; ++i) {
  2653. cache.cells[i].src = i;
  2654. }
  2655. }
  2656. // count used buffer types
  2657. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2658. if (offload) {
  2659. for (int64_t i = 0; i < n_layer; ++i) {
  2660. buft_layer_count[model.buft_layer[i].buft]++;
  2661. }
  2662. } else {
  2663. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2664. }
  2665. // create a context for each buffer type
  2666. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2667. for (auto & it : buft_layer_count) {
  2668. int n_layers = it.second;
  2669. struct ggml_init_params params = {
  2670. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2671. /*.mem_buffer =*/ NULL,
  2672. /*.no_alloc =*/ true,
  2673. };
  2674. ggml_context * ctx = ggml_init(params);
  2675. if (!ctx) {
  2676. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2677. return false;
  2678. }
  2679. ctx_map[it.first] = ctx;
  2680. cache.ctxs.push_back(ctx);
  2681. }
  2682. cache.k_l.reserve(n_layer);
  2683. cache.v_l.reserve(n_layer);
  2684. for (int i = 0; i < (int) n_layer; i++) {
  2685. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
  2686. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
  2687. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2688. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2689. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2690. ggml_format_name(k, "cache_k_l%d", i);
  2691. ggml_format_name(v, "cache_v_l%d", i);
  2692. cache.k_l.push_back(k);
  2693. cache.v_l.push_back(v);
  2694. }
  2695. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2696. for (auto it : ctx_map) {
  2697. ggml_backend_buffer_type_t buft = it.first;
  2698. ggml_context * ctx = it.second;
  2699. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2700. if (!buf) {
  2701. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2702. return false;
  2703. }
  2704. ggml_backend_buffer_clear(buf, 0);
  2705. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2706. cache.bufs.push_back(buf);
  2707. }
  2708. return true;
  2709. }
  2710. // find an empty slot of size "n_tokens" in the cache
  2711. // updates the cache head
  2712. // Note: On success, it's important that cache.head points
  2713. // to the first cell of the slot.
  2714. static bool llama_kv_cache_find_slot(
  2715. struct llama_kv_cache & cache,
  2716. const struct llama_batch & batch) {
  2717. const uint32_t n_tokens = batch.n_tokens;
  2718. if (cache.recurrent) {
  2719. // For recurrent state architectures (like Mamba),
  2720. // each KV cache cell can store the state for a whole sequence.
  2721. llama_seq_id min = cache.size - 1;
  2722. llama_seq_id max = 0;
  2723. for (uint32_t i = 0; i < n_tokens; ++i) {
  2724. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2725. llama_seq_id seq_id = batch.seq_id[i][j];
  2726. // make sure it's a valid seq_id
  2727. if ((uint32_t) seq_id < cache.size) {
  2728. if (seq_id > max) {
  2729. max = seq_id;
  2730. }
  2731. if (seq_id < min) {
  2732. min = seq_id;
  2733. }
  2734. // Assuming the tokens are in-order
  2735. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2736. // What should happen when the pos backtracks or skips a value?
  2737. // Clearing the state mid-batch would require special-casing which isn't done.
  2738. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2739. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2740. }
  2741. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2742. cache.used += 1;
  2743. }
  2744. cache.cells[seq_id].pos = batch.pos[i];
  2745. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2746. } else {
  2747. // too big seq_id
  2748. // TODO: would it be possible to resize the KV cache size instead?
  2749. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2750. return false;
  2751. }
  2752. }
  2753. }
  2754. // allow getting the range of used cells, from head to head + n
  2755. cache.head = min;
  2756. cache.n = max - min + 1;
  2757. // sanity check
  2758. return max >= min;
  2759. }
  2760. // otherwise, one cell per token.
  2761. if (n_tokens > cache.size) {
  2762. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2763. return false;
  2764. }
  2765. uint32_t n_tested = 0;
  2766. while (true) {
  2767. if (cache.head + n_tokens > cache.size) {
  2768. n_tested += cache.size - cache.head;
  2769. cache.head = 0;
  2770. continue;
  2771. }
  2772. bool found = true;
  2773. for (uint32_t i = 0; i < n_tokens; i++) {
  2774. if (cache.cells[cache.head + i].pos >= 0) {
  2775. found = false;
  2776. cache.head += i + 1;
  2777. n_tested += i + 1;
  2778. break;
  2779. }
  2780. }
  2781. if (found) {
  2782. break;
  2783. }
  2784. if (n_tested >= cache.size) {
  2785. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2786. return false;
  2787. }
  2788. }
  2789. for (uint32_t i = 0; i < n_tokens; i++) {
  2790. cache.cells[cache.head + i].pos = batch.pos[i];
  2791. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2792. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2793. }
  2794. }
  2795. cache.used += n_tokens;
  2796. return true;
  2797. }
  2798. // find how many cells are currently in use
  2799. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2800. for (uint32_t i = cache.size; i > 0; --i) {
  2801. const llama_kv_cell & cell = cache.cells[i - 1];
  2802. if (cell.pos >= 0 && !cell.is_empty()) {
  2803. return i;
  2804. }
  2805. }
  2806. return 0;
  2807. }
  2808. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2809. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2810. cache.cells[i].pos = -1;
  2811. cache.cells[i].seq_id.clear();
  2812. }
  2813. cache.head = 0;
  2814. cache.used = 0;
  2815. for (auto & buf : cache.bufs) {
  2816. ggml_backend_buffer_clear(buf, 0);
  2817. }
  2818. }
  2819. static bool llama_kv_cache_seq_rm(
  2820. struct llama_kv_cache & cache,
  2821. llama_seq_id seq_id,
  2822. llama_pos p0,
  2823. llama_pos p1) {
  2824. uint32_t new_head = cache.size;
  2825. if (p0 < 0) p0 = 0;
  2826. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2827. // models like Mamba can't have a state partially erased
  2828. if (cache.recurrent) {
  2829. if (seq_id >= (int64_t) cache.size) {
  2830. // could be fatal
  2831. return false;
  2832. }
  2833. if (0 <= seq_id) {
  2834. // partial intersection is invalid
  2835. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2836. return false;
  2837. }
  2838. } else {
  2839. // seq_id is negative, then the range should include everything or nothing
  2840. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2841. return false;
  2842. }
  2843. }
  2844. }
  2845. for (uint32_t i = 0; i < cache.size; ++i) {
  2846. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2847. if (seq_id < 0) {
  2848. cache.cells[i].seq_id.clear();
  2849. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2850. cache.cells[i].seq_id.erase(seq_id);
  2851. } else {
  2852. continue;
  2853. }
  2854. if (cache.cells[i].is_empty()) {
  2855. // keep count of the number of used cells
  2856. if (cache.cells[i].pos >= 0) cache.used--;
  2857. cache.cells[i].pos = -1;
  2858. if (new_head == cache.size) new_head = i;
  2859. }
  2860. }
  2861. }
  2862. // If we freed up a slot, set head to it so searching can start there.
  2863. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2864. return true;
  2865. }
  2866. static void llama_kv_cache_seq_cp(
  2867. struct llama_kv_cache & cache,
  2868. llama_seq_id seq_id_src,
  2869. llama_seq_id seq_id_dst,
  2870. llama_pos p0,
  2871. llama_pos p1) {
  2872. if (p0 < 0) p0 = 0;
  2873. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2874. if (cache.recurrent) {
  2875. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2876. seq_id_src = cache.cells[seq_id_src].src;
  2877. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2878. // intent to "copy from"
  2879. // supports copy chains thanks to taking the source of the source
  2880. cache.cells[seq_id_dst].src = seq_id_src;
  2881. // preserve the "keep or clear" status of the copied sequence
  2882. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2883. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2884. } else {
  2885. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2886. }
  2887. cache.do_copy = true;
  2888. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2889. }
  2890. return;
  2891. }
  2892. // otherwise, this is the KV cache of a Transformer-like model
  2893. cache.head = 0;
  2894. for (uint32_t i = 0; i < cache.size; ++i) {
  2895. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2896. cache.cells[i].seq_id.insert(seq_id_dst);
  2897. }
  2898. }
  2899. }
  2900. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2901. uint32_t new_head = cache.size;
  2902. for (uint32_t i = 0; i < cache.size; ++i) {
  2903. if (!cache.cells[i].has_seq_id(seq_id)) {
  2904. if (cache.cells[i].pos >= 0) cache.used--;
  2905. cache.cells[i].pos = -1;
  2906. cache.cells[i].seq_id.clear();
  2907. if (new_head == cache.size) new_head = i;
  2908. } else {
  2909. cache.cells[i].seq_id.clear();
  2910. cache.cells[i].seq_id.insert(seq_id);
  2911. }
  2912. }
  2913. // If we freed up a slot, set head to it so searching can start there.
  2914. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2915. }
  2916. static void llama_kv_cache_seq_add(
  2917. struct llama_kv_cache & cache,
  2918. llama_seq_id seq_id,
  2919. llama_pos p0,
  2920. llama_pos p1,
  2921. llama_pos delta) {
  2922. uint32_t new_head = cache.size;
  2923. if (p0 < 0) p0 = 0;
  2924. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2925. // If there is no range then return early to avoid looping over the cache.
  2926. if (p0 == p1) return;
  2927. if (cache.recurrent) {
  2928. // for Mamba-like models, only the pos needs to be shifted
  2929. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2930. llama_kv_cell & cell = cache.cells[seq_id];
  2931. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2932. cell.pos += delta;
  2933. }
  2934. }
  2935. return;
  2936. }
  2937. for (uint32_t i = 0; i < cache.size; ++i) {
  2938. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2939. cache.has_shift = true;
  2940. cache.cells[i].pos += delta;
  2941. cache.cells[i].delta += delta;
  2942. if (cache.cells[i].pos < 0) {
  2943. if (!cache.cells[i].is_empty()) {
  2944. cache.used--;
  2945. }
  2946. cache.cells[i].pos = -1;
  2947. cache.cells[i].seq_id.clear();
  2948. if (new_head == cache.size) {
  2949. new_head = i;
  2950. }
  2951. }
  2952. }
  2953. }
  2954. // If we freed up a slot, set head to it so searching can start there.
  2955. // Otherwise we just start the next search from the beginning.
  2956. cache.head = new_head != cache.size ? new_head : 0;
  2957. }
  2958. static void llama_kv_cache_seq_div(
  2959. struct llama_kv_cache & cache,
  2960. llama_seq_id seq_id,
  2961. llama_pos p0,
  2962. llama_pos p1,
  2963. int d) {
  2964. if (p0 < 0) p0 = 0;
  2965. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2966. // If there is no range then return early to avoid looping over the cache.
  2967. if (p0 == p1) return;
  2968. if (cache.recurrent) {
  2969. // for Mamba-like models, only the pos needs to be changed
  2970. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2971. llama_kv_cell & cell = cache.cells[seq_id];
  2972. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2973. cell.pos /= d;
  2974. }
  2975. }
  2976. return;
  2977. }
  2978. for (uint32_t i = 0; i < cache.size; ++i) {
  2979. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2980. cache.has_shift = true;
  2981. {
  2982. llama_pos p_old = cache.cells[i].pos;
  2983. cache.cells[i].pos /= d;
  2984. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2985. }
  2986. }
  2987. }
  2988. }
  2989. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2990. llama_pos result = 0;
  2991. for (uint32_t i = 0; i < cache.size; ++i) {
  2992. if (cache.cells[i].has_seq_id(seq_id)) {
  2993. result = std::max(result, cache.cells[i].pos);
  2994. }
  2995. }
  2996. return result;
  2997. }
  2998. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2999. cache.do_defrag = true;
  3000. }
  3001. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  3002. // the FA kernels require padding to avoid extra runtime boundary checks
  3003. return cparams.flash_attn ? 256u : 32u;
  3004. }
  3005. //
  3006. // model loading and saving
  3007. //
  3008. enum llama_fver {
  3009. GGUF_FILE_VERSION_V1 = 1,
  3010. GGUF_FILE_VERSION_V2 = 2,
  3011. GGUF_FILE_VERSION_V3 = 3,
  3012. };
  3013. static const char * llama_file_version_name(llama_fver version) {
  3014. switch (version) {
  3015. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  3016. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  3017. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  3018. }
  3019. return "unknown";
  3020. }
  3021. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  3022. char buf[256];
  3023. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  3024. for (size_t i = 1; i < ne.size(); i++) {
  3025. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  3026. }
  3027. return buf;
  3028. }
  3029. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  3030. char buf[256];
  3031. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  3032. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3033. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  3034. }
  3035. return buf;
  3036. }
  3037. namespace GGUFMeta {
  3038. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  3039. struct GKV_Base_Type {
  3040. static constexpr gguf_type gt = gt_;
  3041. static T getter(const gguf_context * ctx, const int kid) {
  3042. return gfun(ctx, kid);
  3043. }
  3044. };
  3045. template<typename T> struct GKV_Base;
  3046. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  3047. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  3048. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  3049. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  3050. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  3051. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  3052. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  3053. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  3054. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  3055. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  3056. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  3057. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  3058. template<> struct GKV_Base<std::string> {
  3059. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  3060. static std::string getter(const gguf_context * ctx, const int kid) {
  3061. return gguf_get_val_str(ctx, kid);
  3062. }
  3063. };
  3064. struct ArrayInfo {
  3065. const gguf_type gt;
  3066. const size_t length;
  3067. const void * data;
  3068. };
  3069. template<> struct GKV_Base<ArrayInfo> {
  3070. public:
  3071. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  3072. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  3073. return ArrayInfo {
  3074. gguf_get_arr_type(ctx, k),
  3075. size_t(gguf_get_arr_n(ctx, k)),
  3076. gguf_get_arr_data(ctx, k),
  3077. };
  3078. }
  3079. };
  3080. template<typename T>
  3081. class GKV : public GKV_Base<T> {
  3082. GKV() = delete;
  3083. public:
  3084. static T get_kv(const gguf_context * ctx, const int k) {
  3085. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  3086. if (kt != GKV::gt) {
  3087. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  3088. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  3089. }
  3090. return GKV::getter(ctx, k);
  3091. }
  3092. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  3093. switch (ty) {
  3094. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  3095. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  3096. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  3097. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  3098. }
  3099. return "unknown";
  3100. }
  3101. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  3102. if (!ovrd) { return false; }
  3103. if (ovrd->tag == expected_type) {
  3104. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  3105. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  3106. switch (ovrd->tag) {
  3107. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  3108. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  3109. } break;
  3110. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  3111. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  3112. } break;
  3113. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  3114. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  3115. } break;
  3116. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  3117. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  3118. } break;
  3119. default:
  3120. // Shouldn't be possible to end up here, but just in case...
  3121. throw std::runtime_error(
  3122. format("Unsupported attempt to override %s type for metadata key %s\n",
  3123. override_type_to_str(ovrd->tag), ovrd->key));
  3124. }
  3125. return true;
  3126. }
  3127. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  3128. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  3129. return false;
  3130. }
  3131. template<typename OT>
  3132. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  3133. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  3134. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  3135. target = ovrd->val_bool;
  3136. return true;
  3137. }
  3138. return false;
  3139. }
  3140. template<typename OT>
  3141. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  3142. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  3143. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  3144. target = ovrd->val_i64;
  3145. return true;
  3146. }
  3147. return false;
  3148. }
  3149. template<typename OT>
  3150. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  3151. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  3152. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  3153. target = ovrd->val_f64;
  3154. return true;
  3155. }
  3156. return false;
  3157. }
  3158. template<typename OT>
  3159. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  3160. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  3161. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  3162. target = ovrd->val_str;
  3163. return true;
  3164. }
  3165. return false;
  3166. }
  3167. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  3168. if (try_override<T>(target, ovrd)) {
  3169. return true;
  3170. }
  3171. if (k < 0) { return false; }
  3172. target = get_kv(ctx, k);
  3173. return true;
  3174. }
  3175. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  3176. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  3177. }
  3178. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  3179. return set(ctx, key.c_str(), target, ovrd);
  3180. }
  3181. };
  3182. }
  3183. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  3184. struct llama_model_loader {
  3185. int n_kv = 0;
  3186. int n_tensors = 0;
  3187. int n_created = 0;
  3188. int64_t n_elements = 0;
  3189. size_t n_bytes = 0;
  3190. bool use_mmap = false;
  3191. bool check_tensors;
  3192. llama_files files;
  3193. llama_ftype ftype;
  3194. llama_fver fver;
  3195. llama_mmaps mappings;
  3196. // Holds information on a model weight
  3197. struct llama_tensor_weight {
  3198. uint16_t idx; // source file index
  3199. size_t offs; // tensor data offset in the original file
  3200. ggml_tensor * tensor;
  3201. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  3202. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  3203. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  3204. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  3205. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  3206. }
  3207. }
  3208. };
  3209. std::vector<llama_tensor_weight> weights;
  3210. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  3211. struct gguf_context * meta = NULL;
  3212. std::vector<ggml_context *> contexts;
  3213. std::string arch_name;
  3214. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  3215. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  3216. int trace = 0;
  3217. if (getenv("LLAMA_TRACE")) {
  3218. trace = atoi(getenv("LLAMA_TRACE"));
  3219. }
  3220. if (param_overrides_p != nullptr) {
  3221. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  3222. kv_overrides.insert({std::string(p->key), *p});
  3223. }
  3224. }
  3225. struct ggml_context * ctx = NULL;
  3226. struct gguf_init_params params = {
  3227. /*.no_alloc = */ true,
  3228. /*.ctx = */ &ctx,
  3229. };
  3230. meta = gguf_init_from_file(fname.c_str(), params);
  3231. if (!meta) {
  3232. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  3233. }
  3234. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  3235. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  3236. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  3237. contexts.emplace_back(ctx);
  3238. // Save tensors data offset of the main file.
  3239. // For subsidiary files, `meta` tensor data offset must not be used,
  3240. // so we build a unified tensors index for weights.
  3241. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  3242. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  3243. }
  3244. uint16_t n_split = 0;
  3245. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  3246. // Load additional GGML contexts
  3247. if (n_split > 1) {
  3248. uint16_t idx = 0;
  3249. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  3250. if (idx != 0) {
  3251. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  3252. }
  3253. char split_prefix[PATH_MAX] = {0};
  3254. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  3255. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  3256. }
  3257. if (trace > 0) {
  3258. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  3259. }
  3260. char split_path[PATH_MAX] = {0};
  3261. for (idx = 1; idx < n_split; idx++) {
  3262. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  3263. struct gguf_init_params split_params = {
  3264. /*.no_alloc = */ true,
  3265. /*.ctx = */ &ctx,
  3266. };
  3267. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  3268. if (!ctx_gguf) {
  3269. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  3270. }
  3271. files.emplace_back(new llama_file(split_path, "rb"));
  3272. contexts.emplace_back(ctx);
  3273. // Save tensors data offset info of the shard.
  3274. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  3275. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  3276. }
  3277. gguf_free(ctx_gguf);
  3278. }
  3279. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  3280. // sanity check
  3281. {
  3282. const int n_tensors_loaded = (int) weights.size();
  3283. if (n_tensors != n_tensors_loaded) {
  3284. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  3285. }
  3286. }
  3287. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  3288. }
  3289. n_kv = gguf_get_n_kv(meta);
  3290. n_tensors = weights.size();
  3291. fver = (enum llama_fver) gguf_get_version(meta);
  3292. std::set<std::string> tensor_names;
  3293. for (auto & w : weights) {
  3294. n_elements += ggml_nelements(w.tensor);
  3295. n_bytes += ggml_nbytes(w.tensor);
  3296. // make sure there is no duplicated tensor names
  3297. const std::string name(w.tensor->name);
  3298. auto found = tensor_names.find(name);
  3299. if (found != tensor_names.end()) {
  3300. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  3301. }
  3302. tensor_names.insert(name);
  3303. }
  3304. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  3305. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  3306. // determine file type based on the number of tensors for each quantization and print meta data
  3307. // TODO: make optional
  3308. {
  3309. std::map<enum ggml_type, uint32_t> n_type;
  3310. uint32_t n_type_max = 0;
  3311. enum ggml_type type_max = GGML_TYPE_F32;
  3312. for (int i = 0; i < n_tensors; i++) {
  3313. const ggml_tensor * tensor = weights.at(i).tensor;
  3314. enum ggml_type type = tensor->type;
  3315. n_type[type]++;
  3316. if (n_type_max < n_type[type]) {
  3317. n_type_max = n_type[type];
  3318. type_max = type;
  3319. }
  3320. if (trace > 0) {
  3321. const uint16_t sid = weights.at(i).idx;
  3322. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  3323. }
  3324. }
  3325. switch (type_max) {
  3326. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  3327. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  3328. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  3329. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  3330. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  3331. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  3332. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  3333. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  3334. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  3335. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  3336. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  3337. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  3338. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  3339. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  3340. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  3341. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  3342. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  3343. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  3344. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  3345. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  3346. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  3347. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  3348. case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
  3349. case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
  3350. case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
  3351. default:
  3352. {
  3353. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  3354. ftype = LLAMA_FTYPE_ALL_F32;
  3355. } break;
  3356. }
  3357. // this is a way to mark that we have "guessed" the file type
  3358. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  3359. {
  3360. const int kid = gguf_find_key(meta, "general.file_type");
  3361. if (kid >= 0) {
  3362. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  3363. }
  3364. }
  3365. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  3366. for (int i = 0; i < n_kv; i++) {
  3367. const char * name = gguf_get_key(meta, i);
  3368. const enum gguf_type type = gguf_get_kv_type(meta, i);
  3369. const std::string type_name =
  3370. type == GGUF_TYPE_ARRAY
  3371. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  3372. : gguf_type_name(type);
  3373. std::string value = gguf_kv_to_str(meta, i);
  3374. const size_t MAX_VALUE_LEN = 40;
  3375. if (value.size() > MAX_VALUE_LEN) {
  3376. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  3377. }
  3378. replace_all(value, "\n", "\\n");
  3379. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  3380. }
  3381. // print type counts
  3382. for (auto & kv : n_type) {
  3383. if (kv.second == 0) {
  3384. continue;
  3385. }
  3386. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  3387. }
  3388. }
  3389. if (!llama_mmap::SUPPORTED) {
  3390. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  3391. use_mmap = false;
  3392. }
  3393. this->use_mmap = use_mmap;
  3394. this->check_tensors = check_tensors;
  3395. }
  3396. ~llama_model_loader() {
  3397. if (meta) {
  3398. gguf_free(meta);
  3399. }
  3400. for (auto * ctx : contexts) {
  3401. ggml_free(ctx);
  3402. }
  3403. }
  3404. template<typename T>
  3405. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3406. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3407. const int kid = gguf_find_key(meta, key.c_str());
  3408. if (kid < 0) {
  3409. if (required) {
  3410. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3411. }
  3412. return false;
  3413. }
  3414. struct GGUFMeta::ArrayInfo arr_info =
  3415. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3416. result = arr_info.length;
  3417. return true;
  3418. }
  3419. template<typename T>
  3420. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3421. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3422. return get_arr_n(llm_kv(kid), result, required);
  3423. }
  3424. template<typename T>
  3425. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3426. const int kid = gguf_find_key(meta, key.c_str());
  3427. if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
  3428. if (required) {
  3429. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  3430. }
  3431. return false;
  3432. }
  3433. struct GGUFMeta::ArrayInfo arr_info =
  3434. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3435. switch (arr_info.gt) {
  3436. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  3437. case GGUF_TYPE_INT32: GGML_ASSERT(
  3438. (std::is_same<T, int32_t>::value) ||
  3439. (std::is_same<T, uint32_t>::value)); break;
  3440. default:
  3441. throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
  3442. }
  3443. result.resize(arr_info.length);
  3444. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3445. return true;
  3446. }
  3447. template<typename T, size_t N_MAX>
  3448. bool get_arr(const std::string & key, std::array<T, N_MAX> & result, const bool required = true) {
  3449. const int kid = gguf_find_key(meta, key.c_str());
  3450. if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
  3451. if (required) {
  3452. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  3453. }
  3454. return false;
  3455. }
  3456. struct GGUFMeta::ArrayInfo arr_info =
  3457. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3458. switch (arr_info.gt) {
  3459. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  3460. case GGUF_TYPE_INT32: GGML_ASSERT(
  3461. (std::is_same<T, int32_t>::value) ||
  3462. (std::is_same<T, uint32_t>::value)); break;
  3463. default:
  3464. throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
  3465. }
  3466. GGML_ASSERT(arr_info.length <= N_MAX);
  3467. std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
  3468. return true;
  3469. }
  3470. template<typename T>
  3471. bool get_arr(const enum llm_kv kid, T & result, const bool required = true) {
  3472. return get_arr(llm_kv(kid), result, required);
  3473. }
  3474. template<typename T>
  3475. bool get_key(const std::string & key, T & result, const bool required = true) {
  3476. auto it = kv_overrides.find(key);
  3477. const struct llama_model_kv_override * override =
  3478. it != kv_overrides.end() ? &it->second : nullptr;
  3479. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3480. if (required && !found) {
  3481. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3482. }
  3483. return found;
  3484. }
  3485. template<typename T>
  3486. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3487. return get_key(llm_kv(kid), result, required);
  3488. }
  3489. // get array of n <= N_MAX elements, or a single element repeated n times
  3490. template<typename T, size_t N_MAX>
  3491. bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, const bool required = true) {
  3492. GGML_ASSERT(n <= N_MAX);
  3493. const int kid = gguf_find_key(meta, key.c_str());
  3494. if (kid < 0) {
  3495. if (required) {
  3496. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3497. }
  3498. return false;
  3499. }
  3500. if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) {
  3501. struct GGUFMeta::ArrayInfo arr_info =
  3502. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3503. if (n != arr_info.length) {
  3504. throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
  3505. }
  3506. return get_arr(key, result, required);
  3507. } else {
  3508. T value;
  3509. bool ok = get_key(key, value, required);
  3510. if (!ok) {
  3511. return false;
  3512. }
  3513. for (uint32_t i = 0; i < n; i++) {
  3514. result[i] = value;
  3515. }
  3516. return true;
  3517. }
  3518. }
  3519. template<typename T>
  3520. bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) {
  3521. return get_key_or_arr(llm_kv(kid), result, n, required);
  3522. }
  3523. std::string get_arch_name() const {
  3524. return arch_name;
  3525. }
  3526. enum llm_arch get_arch() const {
  3527. return llm_kv.arch;
  3528. }
  3529. const char * get_tensor_name(int i) const {
  3530. return weights.at(i).tensor->name;
  3531. }
  3532. const llama_tensor_weight * get_weight(const char * name) const {
  3533. for (const auto & weight : weights) {
  3534. if (strcmp(name, weight.tensor->name) == 0) {
  3535. return &weight;
  3536. }
  3537. }
  3538. return nullptr;
  3539. }
  3540. const llama_tensor_weight * get_weight(int i) const {
  3541. return get_weight(get_tensor_name(i));
  3542. }
  3543. const llama_tensor_weight & require_weight(const char * name) const {
  3544. const llama_tensor_weight * weight = get_weight(name);
  3545. if (!weight) {
  3546. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3547. }
  3548. return *weight;
  3549. }
  3550. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3551. const auto * weight = get_weight(name);
  3552. if (!weight) {
  3553. return nullptr;
  3554. }
  3555. return weight->tensor;
  3556. }
  3557. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3558. struct ggml_tensor * tensor = get_tensor_meta(name);
  3559. if (!tensor) {
  3560. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3561. }
  3562. return tensor;
  3563. }
  3564. struct ggml_tensor * get_tensor_meta(int i) const {
  3565. return get_tensor_meta(get_tensor_name(i));
  3566. }
  3567. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3568. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3569. ggml_set_name(tensor, ggml_get_name(cur));
  3570. if (duplicated) {
  3571. size_data += ggml_nbytes(cur);
  3572. } else {
  3573. n_created++;
  3574. }
  3575. return tensor;
  3576. }
  3577. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3578. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3579. if (cur == NULL) {
  3580. if (!required) {
  3581. return NULL;
  3582. }
  3583. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3584. }
  3585. {
  3586. bool is_ok = true;
  3587. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3588. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3589. is_ok = false;
  3590. break;
  3591. }
  3592. }
  3593. if (!is_ok) {
  3594. throw std::runtime_error(
  3595. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3596. __func__, name.c_str(),
  3597. llama_format_tensor_shape(ne).c_str(),
  3598. llama_format_tensor_shape(cur).c_str()));
  3599. }
  3600. }
  3601. return cur;
  3602. }
  3603. static const int TENSOR_NOT_REQUIRED = 1;
  3604. static const int TENSOR_DUPLICATED = 2;
  3605. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3606. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3607. if (cur == NULL) {
  3608. return NULL;
  3609. }
  3610. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3611. }
  3612. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3613. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3614. if (cur == NULL) {
  3615. return NULL;
  3616. }
  3617. if (cur->type != base->type) {
  3618. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3619. }
  3620. std::array<int64_t, GGML_MAX_DIMS> dims;
  3621. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3622. dims[i] = i < ne.size() ? ne[i] : 1;
  3623. }
  3624. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3625. dims[0], dims[1], dims[2], dims[3],
  3626. cur->nb[1], cur->nb[2], cur->nb[3],
  3627. offset);
  3628. ggml_set_name(tensor, name.c_str());
  3629. n_created++;
  3630. return tensor;
  3631. }
  3632. void done_getting_tensors() const {
  3633. if (n_created != n_tensors) {
  3634. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3635. }
  3636. }
  3637. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3638. if (use_mmap) {
  3639. mappings.reserve(files.size());
  3640. mmaps_used.reserve(files.size());
  3641. for (const auto & file : files) {
  3642. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3643. mmaps_used.emplace_back(mapping->size, 0);
  3644. if (mlock_mmaps) {
  3645. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3646. mlock_mmap->init(mapping->addr);
  3647. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3648. }
  3649. mappings.emplace_back(std::move(mapping));
  3650. }
  3651. }
  3652. // compute the total size of all tensors for progress reporting
  3653. for (auto & w : weights) {
  3654. size_data += ggml_nbytes(w.tensor);
  3655. }
  3656. }
  3657. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3658. GGML_ASSERT(!mappings.empty());
  3659. const auto & mapping = mappings.at(idx);
  3660. *first = mapping->size;
  3661. *last = 0;
  3662. *addr = mapping->addr;
  3663. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3664. try {
  3665. const auto * weight = get_weight(ggml_get_name(tensor));
  3666. if (!weight) {
  3667. continue;
  3668. }
  3669. if (weight->idx != idx) {
  3670. continue;
  3671. }
  3672. *first = std::min(*first, weight->offs);
  3673. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3674. } catch(...) {
  3675. // the tensor is not in the model
  3676. }
  3677. }
  3678. }
  3679. // for backwards compatibility, does not support ggml-backend
  3680. void load_data_for(struct ggml_tensor * cur) const {
  3681. const auto & w = require_weight(ggml_get_name(cur));
  3682. if (use_mmap) {
  3683. const auto & mapping = mappings.at(w.idx);
  3684. if (cur->data == nullptr) {
  3685. cur->data = (uint8_t *)mapping->addr + w.offs;
  3686. } else {
  3687. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3688. }
  3689. } else {
  3690. GGML_ASSERT(cur->data != nullptr);
  3691. GGML_ASSERT(w.idx < files.size());
  3692. const auto & file = files.at(w.idx);
  3693. file->seek(w.offs, SEEK_SET);
  3694. file->read_raw(cur->data, ggml_nbytes(cur));
  3695. }
  3696. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3697. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3698. }
  3699. }
  3700. size_t size_done = 0;
  3701. size_t size_data = 0;
  3702. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3703. // Returns false if cancelled by progress_callback
  3704. bool load_all_data(
  3705. struct ggml_context * ctx,
  3706. llama_buf_map & bufs_mmap,
  3707. llama_mlocks * lmlocks,
  3708. llama_progress_callback progress_callback,
  3709. void * progress_callback_user_data) {
  3710. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3711. std::vector<no_init<uint8_t>> read_buf;
  3712. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3713. #if defined(GGML_USE_CUDA)
  3714. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  3715. // NVMe raid configurations might require more / larger buffers.
  3716. constexpr size_t n_buffers = 4;
  3717. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  3718. std::vector<ggml_backend_buffer_t> host_buffers;
  3719. std::vector<void*> host_ptrs;
  3720. std::vector<ggml_backend_event_t> events;
  3721. size_t buffer_idx = 0; // buffer to use for async loads
  3722. ggml_backend_t cuda_backend = nullptr;
  3723. if (!use_mmap && !check_tensors) {
  3724. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  3725. // First determine if the CUDA backend is active, and if so, determine the device ID.
  3726. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
  3727. if (buf) {
  3728. ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
  3729. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  3730. auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
  3731. if (buffer_type == cuda_buffer_type) {
  3732. cuda_backend = ggml_backend_cuda_init(i);
  3733. break;
  3734. }
  3735. }
  3736. }
  3737. // If the cuda backend is active create pinned memory buffers and events for synchronisation.
  3738. if (cuda_backend) {
  3739. for (size_t idx = 0; idx < n_buffers; ++idx) {
  3740. host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
  3741. host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
  3742. events.emplace_back(ggml_backend_event_new(cuda_backend));
  3743. }
  3744. }
  3745. }
  3746. #endif
  3747. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3748. const auto * weight = get_weight(ggml_get_name(cur));
  3749. if (weight == nullptr) {
  3750. // this can happen with split experts models
  3751. continue;
  3752. }
  3753. if (progress_callback) {
  3754. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3755. return false;
  3756. }
  3757. }
  3758. size_t n_size = ggml_nbytes(cur);
  3759. if (use_mmap) {
  3760. const auto & mapping = mappings.at(weight->idx);
  3761. ggml_backend_buffer_t buf_mmap = nullptr;
  3762. if (bufs_mmap.count(weight->idx)) {
  3763. buf_mmap = bufs_mmap.at(weight->idx);
  3764. }
  3765. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3766. if (check_tensors) {
  3767. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3768. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3769. }));
  3770. }
  3771. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3772. if (buf_mmap && cur->data == nullptr) {
  3773. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3774. if (lmlocks) {
  3775. const auto & lmlock = lmlocks->at(weight->idx);
  3776. lmlock->grow_to(weight->offs + n_size);
  3777. }
  3778. auto & mmap_used = mmaps_used[weight->idx];
  3779. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3780. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3781. } else {
  3782. ggml_backend_tensor_set(cur, data, 0, n_size);
  3783. }
  3784. } else {
  3785. GGML_ASSERT(weight->idx < files.size());
  3786. const auto & file = files.at(weight->idx);
  3787. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3788. file->seek(weight->offs, SEEK_SET);
  3789. file->read_raw(cur->data, n_size);
  3790. if (check_tensors) {
  3791. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3792. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3793. }));
  3794. }
  3795. } else {
  3796. #if defined(GGML_USE_CUDA)
  3797. // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  3798. if (cuda_backend) {
  3799. file->seek(weight->offs, SEEK_SET);
  3800. size_t bytes_read = 0;
  3801. while (bytes_read < n_size) {
  3802. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  3803. ggml_backend_event_synchronize(events[buffer_idx]);
  3804. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  3805. ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  3806. ggml_backend_event_record(events[buffer_idx]);
  3807. bytes_read += read_iteration;
  3808. ++buffer_idx;
  3809. buffer_idx %= n_buffers;
  3810. }
  3811. }
  3812. else
  3813. #endif
  3814. {
  3815. read_buf.resize(n_size);
  3816. file->seek(weight->offs, SEEK_SET);
  3817. file->read_raw(read_buf.data(), n_size);
  3818. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3819. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3820. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3821. }
  3822. }
  3823. }
  3824. }
  3825. size_done += n_size;
  3826. }
  3827. #if defined(GGML_USE_CUDA)
  3828. // free temporary resources used for async cuda uploads
  3829. if (cuda_backend) {
  3830. for (size_t idx = 0; idx < n_buffers;++idx) {
  3831. ggml_backend_event_synchronize(events[idx]);
  3832. ggml_backend_event_free(events[idx]);
  3833. ggml_backend_buffer_free(host_buffers[idx]);
  3834. }
  3835. ggml_backend_free(cuda_backend);
  3836. }
  3837. #endif
  3838. // check validation results
  3839. bool validation_failed = false;
  3840. for (auto & future : validation_result) {
  3841. auto result = future.get();
  3842. if (!result.second) {
  3843. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3844. validation_failed = true;
  3845. }
  3846. }
  3847. if (validation_failed) {
  3848. throw std::runtime_error("found tensors with invalid data");
  3849. }
  3850. // check if this is the last call and do final cleanup
  3851. if (size_done >= size_data) {
  3852. // unmap offloaded tensors and metadata
  3853. if (use_mmap) {
  3854. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3855. const auto & mmap_used = mmaps_used.at(idx);
  3856. auto & mapping = mappings.at(idx);
  3857. mapping->unmap_fragment(0, mmap_used.first);
  3858. if (mmap_used.second != 0) {
  3859. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3860. }
  3861. }
  3862. }
  3863. if (progress_callback) {
  3864. // Even though the model is done loading, we still honor
  3865. // cancellation since we need to free allocations.
  3866. return progress_callback(1.0f, progress_callback_user_data);
  3867. }
  3868. }
  3869. return true;
  3870. }
  3871. };
  3872. template<>
  3873. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3874. uint32_t tmp;
  3875. const bool found = get_key(kid, tmp, required);
  3876. if (found) {
  3877. result = (enum llama_pooling_type) tmp;
  3878. } else {
  3879. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3880. }
  3881. return found;
  3882. }
  3883. //
  3884. // load LLaMA models
  3885. //
  3886. static const char * llama_model_arch_name(llm_arch arch) {
  3887. auto it = LLM_ARCH_NAMES.find(arch);
  3888. if (it == LLM_ARCH_NAMES.end()) {
  3889. return "unknown";
  3890. }
  3891. return it->second;
  3892. }
  3893. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3894. if (ftype & LLAMA_FTYPE_GUESSED) {
  3895. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3896. }
  3897. switch (ftype) {
  3898. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3899. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3900. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3901. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3902. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3903. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3904. return "Q4_1, some F16";
  3905. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3906. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3907. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3908. // K-quants
  3909. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3910. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3911. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3912. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3913. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3914. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3915. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3916. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3917. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3918. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3919. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3920. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3921. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3922. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3923. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3924. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3925. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3926. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3927. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3928. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3929. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3930. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3931. case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
  3932. case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
  3933. case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
  3934. default: return "unknown, may not work";
  3935. }
  3936. }
  3937. static const char * llama_model_type_name(e_model type) {
  3938. switch (type) {
  3939. case MODEL_14M: return "14M";
  3940. case MODEL_17M: return "17M";
  3941. case MODEL_22M: return "22M";
  3942. case MODEL_33M: return "33M";
  3943. case MODEL_60M: return "60M";
  3944. case MODEL_70M: return "70M";
  3945. case MODEL_80M: return "80M";
  3946. case MODEL_109M: return "109M";
  3947. case MODEL_137M: return "137M";
  3948. case MODEL_160M: return "160M";
  3949. case MODEL_220M: return "220M";
  3950. case MODEL_250M: return "250M";
  3951. case MODEL_270M: return "270M";
  3952. case MODEL_335M: return "335M";
  3953. case MODEL_410M: return "410M";
  3954. case MODEL_450M: return "450M";
  3955. case MODEL_770M: return "770M";
  3956. case MODEL_780M: return "780M";
  3957. case MODEL_0_5B: return "0.5B";
  3958. case MODEL_1B: return "1B";
  3959. case MODEL_1_3B: return "1.3B";
  3960. case MODEL_1_4B: return "1.4B";
  3961. case MODEL_2B: return "2B";
  3962. case MODEL_2_8B: return "2.8B";
  3963. case MODEL_3B: return "3B";
  3964. case MODEL_4B: return "4B";
  3965. case MODEL_6B: return "6B";
  3966. case MODEL_6_9B: return "6.9B";
  3967. case MODEL_7B: return "7B";
  3968. case MODEL_8B: return "8B";
  3969. case MODEL_9B: return "9B";
  3970. case MODEL_11B: return "11B";
  3971. case MODEL_12B: return "12B";
  3972. case MODEL_13B: return "13B";
  3973. case MODEL_14B: return "14B";
  3974. case MODEL_15B: return "15B";
  3975. case MODEL_16B: return "16B";
  3976. case MODEL_20B: return "20B";
  3977. case MODEL_30B: return "30B";
  3978. case MODEL_34B: return "34B";
  3979. case MODEL_35B: return "35B";
  3980. case MODEL_40B: return "40B";
  3981. case MODEL_65B: return "65B";
  3982. case MODEL_70B: return "70B";
  3983. case MODEL_236B: return "236B";
  3984. case MODEL_314B: return "314B";
  3985. case MODEL_SMALL: return "0.1B";
  3986. case MODEL_MEDIUM: return "0.4B";
  3987. case MODEL_LARGE: return "0.8B";
  3988. case MODEL_XL: return "1.5B";
  3989. case MODEL_A2_7B: return "A2.7B";
  3990. case MODEL_8x7B: return "8x7B";
  3991. case MODEL_8x22B: return "8x22B";
  3992. case MODEL_16x12B: return "16x12B";
  3993. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3994. case MODEL_57B_A14B: return "57B.A14B";
  3995. case MODEL_27B: return "27B";
  3996. default: return "?B";
  3997. }
  3998. }
  3999. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  4000. switch (type) {
  4001. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  4002. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  4003. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  4004. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  4005. case LLAMA_VOCAB_TYPE_UGM: return "UGM";
  4006. default: return "unknown";
  4007. }
  4008. }
  4009. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  4010. model.arch = ml.get_arch();
  4011. if (model.arch == LLM_ARCH_UNKNOWN) {
  4012. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  4013. }
  4014. }
  4015. static void llm_load_hparams(
  4016. llama_model_loader & ml,
  4017. llama_model & model) {
  4018. auto & hparams = model.hparams;
  4019. const gguf_context * ctx = ml.meta;
  4020. // get metadata as string
  4021. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  4022. enum gguf_type type = gguf_get_kv_type(ctx, i);
  4023. if (type == GGUF_TYPE_ARRAY) {
  4024. continue;
  4025. }
  4026. const char * name = gguf_get_key(ctx, i);
  4027. const std::string value = gguf_kv_to_str(ctx, i);
  4028. model.gguf_kv.emplace(name, value);
  4029. }
  4030. // get general kv
  4031. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  4032. // get hparams kv
  4033. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  4034. // everything past this point is not vocab-related
  4035. if (hparams.vocab_only) {
  4036. return;
  4037. }
  4038. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  4039. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  4040. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  4041. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  4042. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  4043. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  4044. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  4045. if (hparams.n_expert > 0) {
  4046. GGML_ASSERT(hparams.n_expert_used > 0);
  4047. } else {
  4048. GGML_ASSERT(hparams.n_expert_used == 0);
  4049. }
  4050. // zero-out the per-layer hparams
  4051. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  4052. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  4053. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  4054. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
  4055. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
  4056. // n_head_kv is optional, default to n_head
  4057. hparams.n_head_kv_arr = hparams.n_head_arr;
  4058. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  4059. bool rope_finetuned = false;
  4060. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  4061. hparams.rope_finetuned = rope_finetuned;
  4062. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  4063. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  4064. // rope_freq_base (optional)
  4065. hparams.rope_freq_base_train = 10000.0f;
  4066. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  4067. std::string rope_scaling("linear");
  4068. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  4069. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  4070. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  4071. // rope_freq_scale (inverse of the kv) is optional
  4072. float ropescale = 0.0f;
  4073. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  4074. // try the old key name
  4075. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  4076. }
  4077. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  4078. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  4079. // non-transformer models do not have attention heads
  4080. if (hparams.n_head() > 0) {
  4081. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  4082. // gpt-j n_rot = rotary_dim
  4083. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  4084. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  4085. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  4086. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  4087. // sanity check for n_rot (optional)
  4088. hparams.n_rot = hparams.n_embd_head_k;
  4089. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  4090. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  4091. if (hparams.n_rot != hparams.n_embd_head_k) {
  4092. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  4093. }
  4094. }
  4095. } else {
  4096. hparams.n_rot = 0;
  4097. hparams.n_embd_head_k = 0;
  4098. hparams.n_embd_head_v = 0;
  4099. }
  4100. // arch-specific KVs
  4101. switch (model.arch) {
  4102. case LLM_ARCH_LLAMA:
  4103. {
  4104. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4105. if (hparams.n_expert == 8) {
  4106. switch (hparams.n_layer) {
  4107. case 32: model.type = e_model::MODEL_8x7B; break;
  4108. case 56: model.type = e_model::MODEL_8x22B; break;
  4109. default: model.type = e_model::MODEL_UNKNOWN;
  4110. }
  4111. } else {
  4112. switch (hparams.n_layer) {
  4113. case 22: model.type = e_model::MODEL_1B; break;
  4114. case 26: model.type = e_model::MODEL_3B; break;
  4115. // granite uses a vocab with len 49152
  4116. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  4117. case 36: model.type = e_model::MODEL_8B; break; // granite
  4118. case 40: model.type = e_model::MODEL_13B; break;
  4119. case 48: model.type = e_model::MODEL_34B; break;
  4120. case 60: model.type = e_model::MODEL_30B; break;
  4121. case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  4122. default: model.type = e_model::MODEL_UNKNOWN;
  4123. }
  4124. }
  4125. } break;
  4126. case LLM_ARCH_MINICPM:
  4127. {
  4128. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4129. switch (hparams.n_layer) {
  4130. case 40: model.type = e_model::MODEL_2B; break;
  4131. default: model.type = e_model::MODEL_UNKNOWN;
  4132. }
  4133. } break;
  4134. case LLM_ARCH_GROK:
  4135. {
  4136. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4137. switch (hparams.n_layer) {
  4138. case 64: model.type = e_model::MODEL_314B; break;
  4139. default: model.type = e_model::MODEL_UNKNOWN;
  4140. }
  4141. } break;
  4142. case LLM_ARCH_FALCON:
  4143. {
  4144. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4145. switch (hparams.n_layer) {
  4146. case 32: model.type = e_model::MODEL_7B; break;
  4147. case 60: model.type = e_model::MODEL_40B; break;
  4148. default: model.type = e_model::MODEL_UNKNOWN;
  4149. }
  4150. } break;
  4151. case LLM_ARCH_BAICHUAN:
  4152. {
  4153. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4154. switch (hparams.n_layer) {
  4155. case 32: model.type = e_model::MODEL_7B; break;
  4156. case 40: model.type = e_model::MODEL_13B; break;
  4157. default: model.type = e_model::MODEL_UNKNOWN;
  4158. }
  4159. if (model.type == e_model::MODEL_13B) {
  4160. // TODO: become GGUF KV parameter
  4161. hparams.f_max_alibi_bias = 8.0f;
  4162. }
  4163. } break;
  4164. case LLM_ARCH_STARCODER:
  4165. {
  4166. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4167. switch (hparams.n_layer) {
  4168. case 24: model.type = e_model::MODEL_1B; break;
  4169. case 36: model.type = e_model::MODEL_3B; break;
  4170. case 42: model.type = e_model::MODEL_7B; break;
  4171. case 40: model.type = e_model::MODEL_15B; break;
  4172. default: model.type = e_model::MODEL_UNKNOWN;
  4173. }
  4174. } break;
  4175. case LLM_ARCH_REFACT:
  4176. {
  4177. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4178. switch (hparams.n_layer) {
  4179. case 32: model.type = e_model::MODEL_1B; break;
  4180. default: model.type = e_model::MODEL_UNKNOWN;
  4181. }
  4182. // TODO: become GGUF KV parameter
  4183. hparams.f_max_alibi_bias = 8.0f;
  4184. } break;
  4185. case LLM_ARCH_BERT:
  4186. {
  4187. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4188. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  4189. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  4190. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  4191. switch (hparams.n_layer) {
  4192. case 3:
  4193. model.type = e_model::MODEL_17M; break; // bge-micro
  4194. case 6:
  4195. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  4196. case 12:
  4197. switch (hparams.n_embd) {
  4198. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  4199. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  4200. } break;
  4201. case 24:
  4202. model.type = e_model::MODEL_335M; break; // bge-large
  4203. }
  4204. } break;
  4205. case LLM_ARCH_JINA_BERT_V2:
  4206. {
  4207. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4208. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  4209. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  4210. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  4211. hparams.f_max_alibi_bias = 8.0f;
  4212. switch (hparams.n_layer) {
  4213. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  4214. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  4215. }
  4216. } break;
  4217. case LLM_ARCH_NOMIC_BERT:
  4218. {
  4219. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4220. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  4221. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  4222. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  4223. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  4224. model.type = e_model::MODEL_137M;
  4225. }
  4226. } break;
  4227. case LLM_ARCH_BLOOM:
  4228. {
  4229. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4230. switch (hparams.n_layer) {
  4231. case 24: model.type = e_model::MODEL_1B; break;
  4232. case 30:
  4233. switch (hparams.n_embd) {
  4234. case 2560: model.type = e_model::MODEL_3B; break;
  4235. case 4096: model.type = e_model::MODEL_7B; break;
  4236. } break;
  4237. }
  4238. // TODO: become GGUF KV parameter
  4239. hparams.f_max_alibi_bias = 8.0f;
  4240. } break;
  4241. case LLM_ARCH_MPT:
  4242. {
  4243. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4244. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4245. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  4246. switch (hparams.n_layer) {
  4247. case 32: model.type = e_model::MODEL_7B; break;
  4248. case 48: model.type = e_model::MODEL_30B; break;
  4249. default: model.type = e_model::MODEL_UNKNOWN;
  4250. }
  4251. } break;
  4252. case LLM_ARCH_STABLELM:
  4253. {
  4254. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4255. switch (hparams.n_layer) {
  4256. case 24: model.type = e_model::MODEL_1B; break;
  4257. case 32: model.type = e_model::MODEL_3B; break;
  4258. case 40: model.type = e_model::MODEL_12B; break;
  4259. default: model.type = e_model::MODEL_UNKNOWN;
  4260. }
  4261. } break;
  4262. case LLM_ARCH_QWEN:
  4263. {
  4264. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4265. switch (hparams.n_layer) {
  4266. case 32: model.type = e_model::MODEL_7B; break;
  4267. case 40: model.type = e_model::MODEL_13B; break;
  4268. default: model.type = e_model::MODEL_UNKNOWN;
  4269. }
  4270. } break;
  4271. case LLM_ARCH_QWEN2:
  4272. {
  4273. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4274. switch (hparams.n_layer) {
  4275. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  4276. case 32: model.type = e_model::MODEL_7B; break;
  4277. case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  4278. case 80: model.type = e_model::MODEL_70B; break;
  4279. default: model.type = e_model::MODEL_UNKNOWN;
  4280. }
  4281. } break;
  4282. case LLM_ARCH_QWEN2MOE:
  4283. {
  4284. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  4285. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  4286. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4287. switch (hparams.n_layer) {
  4288. case 24: model.type = e_model::MODEL_A2_7B; break;
  4289. case 28: model.type = e_model::MODEL_57B_A14B; break;
  4290. default: model.type = e_model::MODEL_UNKNOWN;
  4291. }
  4292. } break;
  4293. case LLM_ARCH_PHI2:
  4294. {
  4295. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4296. switch (hparams.n_layer) {
  4297. case 24: model.type = e_model::MODEL_1B; break;
  4298. case 32: model.type = e_model::MODEL_3B; break;
  4299. default: model.type = e_model::MODEL_UNKNOWN;
  4300. }
  4301. } break;
  4302. case LLM_ARCH_PHI3:
  4303. {
  4304. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4305. switch (hparams.n_layer) {
  4306. case 24: model.type = e_model::MODEL_1B; break;
  4307. case 32: model.type = e_model::MODEL_3B; break;
  4308. case 40: model.type = e_model::MODEL_14B; break;
  4309. default: model.type = e_model::MODEL_UNKNOWN;
  4310. }
  4311. } break;
  4312. case LLM_ARCH_PLAMO:
  4313. {
  4314. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4315. switch (hparams.n_layer) {
  4316. case 40: model.type = e_model::MODEL_13B; break;
  4317. default: model.type = e_model::MODEL_UNKNOWN;
  4318. }
  4319. } break;
  4320. case LLM_ARCH_GPT2:
  4321. {
  4322. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4323. switch (hparams.n_layer) {
  4324. case 12: model.type = e_model::MODEL_SMALL; break;
  4325. case 24: model.type = e_model::MODEL_MEDIUM; break;
  4326. case 36: model.type = e_model::MODEL_LARGE; break;
  4327. case 48: model.type = e_model::MODEL_XL; break;
  4328. default: model.type = e_model::MODEL_UNKNOWN;
  4329. }
  4330. } break;
  4331. case LLM_ARCH_CODESHELL:
  4332. {
  4333. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4334. switch (hparams.n_layer) {
  4335. case 42: model.type = e_model::MODEL_SMALL; break;
  4336. default: model.type = e_model::MODEL_UNKNOWN;
  4337. }
  4338. } break;
  4339. case LLM_ARCH_ORION:
  4340. {
  4341. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4342. switch (hparams.n_layer) {
  4343. case 40: model.type = e_model::MODEL_14B; break;
  4344. default: model.type = e_model::MODEL_UNKNOWN;
  4345. }
  4346. } break;
  4347. case LLM_ARCH_INTERNLM2:
  4348. {
  4349. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4350. switch (hparams.n_layer) {
  4351. case 32: model.type = e_model::MODEL_7B; break;
  4352. case 48: model.type = e_model::MODEL_20B; break;
  4353. default: model.type = e_model::MODEL_UNKNOWN;
  4354. }
  4355. } break;
  4356. case LLM_ARCH_GEMMA:
  4357. {
  4358. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4359. switch (hparams.n_layer) {
  4360. case 18: model.type = e_model::MODEL_2B; break;
  4361. case 28: model.type = e_model::MODEL_7B; break;
  4362. default: model.type = e_model::MODEL_UNKNOWN;
  4363. }
  4364. } break;
  4365. case LLM_ARCH_GEMMA2:
  4366. {
  4367. hparams.n_swa = 4096; // default value of gemma 2
  4368. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  4369. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4370. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  4371. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  4372. hparams.attn_soft_cap = true;
  4373. switch (hparams.n_layer) {
  4374. case 42: model.type = e_model::MODEL_9B; break;
  4375. case 46: model.type = e_model::MODEL_27B; break;
  4376. default: model.type = e_model::MODEL_UNKNOWN;
  4377. }
  4378. } break;
  4379. case LLM_ARCH_STARCODER2:
  4380. {
  4381. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4382. switch (hparams.n_layer) {
  4383. case 30: model.type = e_model::MODEL_3B; break;
  4384. case 32: model.type = e_model::MODEL_7B; break;
  4385. case 40: model.type = e_model::MODEL_15B; break;
  4386. case 52: model.type = e_model::MODEL_20B; break; // granite
  4387. case 88: model.type = e_model::MODEL_34B; break; // granite
  4388. default: model.type = e_model::MODEL_UNKNOWN;
  4389. }
  4390. } break;
  4391. case LLM_ARCH_MAMBA:
  4392. {
  4393. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  4394. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  4395. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  4396. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  4397. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4398. switch (hparams.n_layer) {
  4399. case 24:
  4400. switch (hparams.n_embd) {
  4401. case 768: model.type = e_model::MODEL_SMALL; break;
  4402. default: model.type = e_model::MODEL_UNKNOWN;
  4403. } break;
  4404. case 48:
  4405. switch (hparams.n_embd) {
  4406. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  4407. case 1536: model.type = e_model::MODEL_LARGE; break;
  4408. case 2048: model.type = e_model::MODEL_XL; break;
  4409. default: model.type = e_model::MODEL_UNKNOWN;
  4410. } break;
  4411. case 64:
  4412. switch (hparams.n_embd) {
  4413. case 2560: model.type = e_model::MODEL_3B; break;
  4414. default: model.type = e_model::MODEL_UNKNOWN;
  4415. } break;
  4416. default: model.type = e_model::MODEL_UNKNOWN;
  4417. }
  4418. } break;
  4419. case LLM_ARCH_XVERSE:
  4420. {
  4421. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4422. switch (hparams.n_layer) {
  4423. case 32: model.type = e_model::MODEL_7B; break;
  4424. case 40: model.type = e_model::MODEL_13B; break;
  4425. case 80: model.type = e_model::MODEL_65B; break;
  4426. default: model.type = e_model::MODEL_UNKNOWN;
  4427. }
  4428. } break;
  4429. case LLM_ARCH_COMMAND_R:
  4430. {
  4431. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  4432. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4433. switch (hparams.n_layer) {
  4434. case 40: model.type = e_model::MODEL_35B; break;
  4435. default: model.type = e_model::MODEL_UNKNOWN;
  4436. }
  4437. } break;
  4438. case LLM_ARCH_DBRX:
  4439. {
  4440. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4441. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  4442. switch (hparams.n_layer) {
  4443. case 40: model.type = e_model::MODEL_16x12B; break;
  4444. default: model.type = e_model::MODEL_UNKNOWN;
  4445. }
  4446. } break;
  4447. case LLM_ARCH_OLMO:
  4448. {
  4449. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4450. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4451. switch (hparams.n_layer) {
  4452. case 22: model.type = e_model::MODEL_1B; break;
  4453. case 32: model.type = e_model::MODEL_7B; break;
  4454. case 80: model.type = e_model::MODEL_70B; break;
  4455. default: model.type = e_model::MODEL_UNKNOWN;
  4456. }
  4457. } break;
  4458. case LLM_ARCH_OPENELM:
  4459. {
  4460. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4461. switch (hparams.n_layer) {
  4462. case 16: model.type = e_model::MODEL_270M; break;
  4463. case 20: model.type = e_model::MODEL_450M; break;
  4464. case 28: model.type = e_model::MODEL_1B; break;
  4465. case 36: model.type = e_model::MODEL_3B; break;
  4466. default: model.type = e_model::MODEL_UNKNOWN;
  4467. }
  4468. } break;
  4469. case LLM_ARCH_GPTNEOX:
  4470. {
  4471. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4472. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  4473. switch (hparams.n_layer) {
  4474. case 6:
  4475. switch (hparams.n_ff()) {
  4476. case 512: model.type = e_model::MODEL_14M; break;
  4477. case 2048: model.type = e_model::MODEL_70M; break;
  4478. default: model.type = e_model::MODEL_UNKNOWN;
  4479. } break;
  4480. case 12:
  4481. switch (hparams.n_ff()) {
  4482. case 3072: model.type = e_model::MODEL_160M; break;
  4483. default: model.type = e_model::MODEL_UNKNOWN;
  4484. } break;
  4485. case 16:
  4486. switch (hparams.n_ff()) {
  4487. case 8192: model.type = e_model::MODEL_1B; break;
  4488. default: model.type = e_model::MODEL_UNKNOWN;
  4489. } break;
  4490. case 24:
  4491. switch (hparams.n_ff()) {
  4492. case 4096: model.type = e_model::MODEL_410M; break;
  4493. case 8192: model.type = e_model::MODEL_1_4B; break;
  4494. default: model.type = e_model::MODEL_UNKNOWN;
  4495. } break;
  4496. case 32:
  4497. switch (hparams.n_ff()) {
  4498. case 10240: model.type = e_model::MODEL_2_8B; break;
  4499. case 16384: model.type = e_model::MODEL_6_9B; break;
  4500. default: model.type = e_model::MODEL_UNKNOWN;
  4501. } break;
  4502. case 36:
  4503. switch (hparams.n_ff()) {
  4504. case 20480: model.type = e_model::MODEL_12B; break;
  4505. default: model.type = e_model::MODEL_UNKNOWN;
  4506. } break;
  4507. case 44:
  4508. switch (hparams.n_ff()) {
  4509. case 24576: model.type = e_model::MODEL_20B; break;
  4510. default: model.type = e_model::MODEL_UNKNOWN;
  4511. } break;
  4512. default: model.type = e_model::MODEL_UNKNOWN;
  4513. }
  4514. } break;
  4515. case LLM_ARCH_ARCTIC:
  4516. {
  4517. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4518. if (hparams.n_expert == 128) {
  4519. switch (hparams.n_layer) {
  4520. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  4521. default: model.type = e_model::MODEL_UNKNOWN;
  4522. }
  4523. } else {
  4524. model.type = e_model::MODEL_UNKNOWN;
  4525. }
  4526. } break;
  4527. case LLM_ARCH_DEEPSEEK2:
  4528. {
  4529. bool is_lite = (hparams.n_layer == 27);
  4530. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4531. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  4532. if (!is_lite) {
  4533. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  4534. }
  4535. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  4536. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  4537. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  4538. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  4539. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  4540. switch (hparams.n_layer) {
  4541. case 27: model.type = e_model::MODEL_16B; break;
  4542. case 60: model.type = e_model::MODEL_236B; break;
  4543. default: model.type = e_model::MODEL_UNKNOWN;
  4544. }
  4545. } break;
  4546. case LLM_ARCH_CHATGLM:
  4547. {
  4548. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4549. switch (hparams.n_layer) {
  4550. case 28: model.type = e_model::MODEL_6B; break;
  4551. case 40: model.type = e_model::MODEL_9B; break;
  4552. default: model.type = e_model::MODEL_UNKNOWN;
  4553. }
  4554. } break;
  4555. case LLM_ARCH_BITNET:
  4556. {
  4557. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4558. switch (hparams.n_layer) {
  4559. case 26: model.type = e_model::MODEL_3B; break;
  4560. default: model.type = e_model::MODEL_UNKNOWN;
  4561. }
  4562. } break;
  4563. case LLM_ARCH_T5:
  4564. {
  4565. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4566. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  4567. uint32_t dec_start_token_id;
  4568. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  4569. hparams.dec_start_token_id = dec_start_token_id;
  4570. }
  4571. switch (hparams.n_layer) {
  4572. case 6: model.type = e_model::MODEL_60M; break; // t5-small
  4573. case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
  4574. case 12:
  4575. switch (hparams.n_ff()) {
  4576. case 3072: model.type = e_model::MODEL_220M; break; // t5-base
  4577. case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
  4578. default: model.type = e_model::MODEL_UNKNOWN;
  4579. } break;
  4580. case 24:
  4581. switch (hparams.n_ff()) {
  4582. case 4096: model.type = e_model::MODEL_770M; break; // t5-large
  4583. case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
  4584. case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
  4585. case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl
  4586. case 65536: model.type = e_model::MODEL_11B; break; // t5-11b
  4587. case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl
  4588. default: model.type = e_model::MODEL_UNKNOWN;
  4589. } break;
  4590. default: model.type = e_model::MODEL_UNKNOWN;
  4591. }
  4592. } break;
  4593. case LLM_ARCH_JAIS:
  4594. {
  4595. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4596. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  4597. switch (hparams.n_layer) {
  4598. case 24: model.type = e_model::MODEL_1_3B; break;
  4599. case 40: model.type = e_model::MODEL_13B; break;
  4600. /* TODO: add variants */
  4601. default: model.type = e_model::MODEL_UNKNOWN;
  4602. }
  4603. } break;
  4604. default: (void)0;
  4605. }
  4606. model.ftype = ml.ftype;
  4607. if (hparams.f_max_alibi_bias > 0.0f) {
  4608. hparams.use_alibi = true;
  4609. }
  4610. hparams.rope_type = llama_rope_type(&model);
  4611. }
  4612. // TODO: This should probably be in llama.h
  4613. static std::vector<llama_vocab::id> llama_tokenize_internal(
  4614. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  4615. );
  4616. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  4617. static void llm_load_vocab(
  4618. llama_model_loader & ml,
  4619. llama_model & model) {
  4620. auto & vocab = model.vocab;
  4621. struct gguf_context * ctx = ml.meta;
  4622. const auto kv = LLM_KV(model.arch);
  4623. // determine vocab type
  4624. {
  4625. std::string tokenizer_model;
  4626. std::string tokenizer_pre;
  4627. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  4628. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4629. if (tokenizer_model == "no_vocab") {
  4630. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  4631. // default special tokens
  4632. vocab.special_bos_id = -1;
  4633. vocab.special_eos_id = -1;
  4634. vocab.special_unk_id = -1;
  4635. vocab.special_sep_id = -1;
  4636. vocab.special_pad_id = -1;
  4637. vocab.special_cls_id = -1;
  4638. vocab.special_mask_id = -1;
  4639. vocab.linefeed_id = -1;
  4640. return;
  4641. } else if (tokenizer_model == "llama") {
  4642. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4643. // default special tokens
  4644. vocab.special_bos_id = 1;
  4645. vocab.special_eos_id = 2;
  4646. vocab.special_unk_id = 0;
  4647. vocab.special_sep_id = -1;
  4648. vocab.special_pad_id = -1;
  4649. vocab.special_cls_id = -1;
  4650. vocab.special_mask_id = -1;
  4651. } else if (tokenizer_model == "bert") {
  4652. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4653. // default special tokens
  4654. vocab.special_bos_id = -1;
  4655. vocab.special_eos_id = -1;
  4656. vocab.special_unk_id = 100;
  4657. vocab.special_sep_id = 102;
  4658. vocab.special_pad_id = 0;
  4659. vocab.special_cls_id = 101;
  4660. vocab.special_mask_id = 103;
  4661. } else if (tokenizer_model == "gpt2") {
  4662. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4663. // read bpe merges and populate bpe ranks
  4664. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4665. if (merges_keyidx == -1) {
  4666. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4667. }
  4668. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4669. for (int i = 0; i < n_merges; i++) {
  4670. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4671. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4672. std::string first;
  4673. std::string second;
  4674. const size_t pos = word.find(' ', 1);
  4675. if (pos != std::string::npos) {
  4676. first = word.substr(0, pos);
  4677. second = word.substr(pos + 1);
  4678. }
  4679. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4680. }
  4681. // default special tokens
  4682. vocab.special_bos_id = 11;
  4683. vocab.special_eos_id = 11;
  4684. vocab.special_unk_id = -1;
  4685. vocab.special_sep_id = -1;
  4686. vocab.special_pad_id = -1;
  4687. vocab.special_cls_id = -1;
  4688. vocab.special_mask_id = -1;
  4689. } else if (tokenizer_model == "t5") {
  4690. vocab.type = LLAMA_VOCAB_TYPE_UGM;
  4691. // default special tokens
  4692. vocab.special_bos_id = -1;
  4693. vocab.special_eos_id = 1;
  4694. vocab.special_unk_id = 2;
  4695. vocab.special_sep_id = -1;
  4696. vocab.special_pad_id = 0;
  4697. vocab.special_cls_id = -1;
  4698. vocab.special_mask_id = -1;
  4699. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4700. if (add_space_prefix_keyidx != -1) {
  4701. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4702. } // The default value of add_space_prefix is true.
  4703. const int remove_extra_whitespaces_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS).c_str());
  4704. if (remove_extra_whitespaces_keyidx != -1) {
  4705. vocab.tokenizer_remove_extra_whitespaces = gguf_get_val_bool(ctx, remove_extra_whitespaces_keyidx);
  4706. } // The default value of remove_extra_whitespaces is false.
  4707. const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
  4708. if (precompiled_charsmap_keyidx != -1) {
  4709. size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
  4710. const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
  4711. vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap);
  4712. #ifdef IS_BIG_ENDIAN
  4713. // correct endiannes of data in precompiled_charsmap binary blob
  4714. uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0];
  4715. *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
  4716. assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
  4717. size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
  4718. uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)];
  4719. for (size_t i = 0; i < xcda_array_size; ++i) {
  4720. xcda_array[i] = __builtin_bswap32(xcda_array[i]);
  4721. }
  4722. #endif
  4723. }
  4724. } else {
  4725. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4726. }
  4727. // for now, only BPE models have pre-tokenizers
  4728. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4729. vocab.tokenizer_add_space_prefix = false;
  4730. vocab.tokenizer_clean_spaces = true;
  4731. if (tokenizer_pre.empty()) {
  4732. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4733. LLAMA_LOG_WARN("%s: \n", __func__);
  4734. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4735. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4736. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4737. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4738. LLAMA_LOG_WARN("%s: \n", __func__);
  4739. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4740. } else if (tokenizer_pre == "default") {
  4741. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4742. } else if (
  4743. tokenizer_pre == "llama3" ||
  4744. tokenizer_pre == "llama-v3" ||
  4745. tokenizer_pre == "llama-bpe") {
  4746. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4747. vocab.tokenizer_ignore_merges = true;
  4748. vocab.tokenizer_add_bos = true;
  4749. } else if (
  4750. tokenizer_pre == "deepseek-llm") {
  4751. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4752. vocab.tokenizer_clean_spaces = false;
  4753. } else if (
  4754. tokenizer_pre == "deepseek-coder") {
  4755. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4756. vocab.tokenizer_clean_spaces = false;
  4757. } else if (
  4758. tokenizer_pre == "falcon") {
  4759. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4760. } else if (
  4761. tokenizer_pre == "mpt") {
  4762. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4763. } else if (
  4764. tokenizer_pre == "starcoder") {
  4765. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4766. } else if (
  4767. tokenizer_pre == "gpt-2" ||
  4768. tokenizer_pre == "phi-2" ||
  4769. tokenizer_pre == "jina-es" ||
  4770. tokenizer_pre == "jina-de" ||
  4771. tokenizer_pre == "jina-v2-es" ||
  4772. tokenizer_pre == "jina-v2-de" ||
  4773. tokenizer_pre == "jina-v2-code") {
  4774. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4775. } else if (
  4776. tokenizer_pre == "refact") {
  4777. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4778. } else if (
  4779. tokenizer_pre == "command-r") {
  4780. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4781. vocab.tokenizer_clean_spaces = false;
  4782. } else if (
  4783. tokenizer_pre == "qwen2") {
  4784. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4785. vocab.tokenizer_clean_spaces = false;
  4786. } else if (
  4787. tokenizer_pre == "stablelm2") {
  4788. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4789. } else if (
  4790. tokenizer_pre == "olmo") {
  4791. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4792. } else if (
  4793. tokenizer_pre == "dbrx") {
  4794. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4795. } else if (
  4796. tokenizer_pre == "smaug-bpe") {
  4797. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4798. } else if (
  4799. tokenizer_pre == "poro-chat") {
  4800. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  4801. vocab.tokenizer_clean_spaces = false;
  4802. } else if (
  4803. tokenizer_pre == "chatglm-bpe") {
  4804. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
  4805. vocab.special_bos_id = -1;
  4806. } else if (
  4807. tokenizer_pre == "viking") {
  4808. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
  4809. vocab.tokenizer_clean_spaces = false;
  4810. } else if (
  4811. tokenizer_pre == "jais") {
  4812. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
  4813. } else {
  4814. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4815. }
  4816. } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4817. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4818. vocab.tokenizer_add_space_prefix = true;
  4819. vocab.tokenizer_clean_spaces = false;
  4820. vocab.tokenizer_add_bos = true;
  4821. vocab.tokenizer_add_eos = false;
  4822. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4823. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4824. vocab.tokenizer_add_space_prefix = false;
  4825. vocab.tokenizer_clean_spaces = true;
  4826. vocab.tokenizer_add_bos = true;
  4827. vocab.tokenizer_add_eos = false;
  4828. } else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
  4829. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4830. vocab.tokenizer_add_bos = false;
  4831. vocab.tokenizer_add_eos = true;
  4832. } else {
  4833. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4834. }
  4835. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4836. if (add_space_prefix_keyidx != -1) {
  4837. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4838. }
  4839. }
  4840. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4841. if (token_idx == -1) {
  4842. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4843. }
  4844. const float * scores = nullptr;
  4845. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4846. if (score_idx != -1) {
  4847. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4848. }
  4849. const int * toktypes = nullptr;
  4850. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4851. if (toktype_idx != -1) {
  4852. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4853. }
  4854. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4855. vocab.id_to_token.resize(n_vocab);
  4856. for (uint32_t i = 0; i < n_vocab; i++) {
  4857. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4858. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4859. vocab.token_to_id[word] = i;
  4860. vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
  4861. auto & token_data = vocab.id_to_token[i];
  4862. token_data.text = std::move(word);
  4863. token_data.score = scores ? scores[i] : 0.0f;
  4864. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4865. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4866. switch(toktypes[i]) {
  4867. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4868. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4869. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4870. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4871. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4872. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4873. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4874. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4875. }
  4876. }
  4877. }
  4878. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4879. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4880. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4881. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4882. // prior to support of FIM special tokens in GGUF, the following
  4883. // will allow those models to continue to work. The general names
  4884. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4885. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4886. // new versions of these models have been published.
  4887. std::string gen_name;
  4888. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4889. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4890. [](unsigned char c){ return std::tolower(c); });
  4891. if (gen_name.find("code") != std::string::npos) {
  4892. if (model.arch == LLM_ARCH_LLAMA
  4893. && 32010 < vocab.id_to_token.size()
  4894. && vocab.id_to_token[32007].text.find("<PRE>") != std::string::npos
  4895. && vocab.id_to_token[32008].text.find("<SUF>") != std::string::npos
  4896. && vocab.id_to_token[32009].text.find("<MID>") != std::string::npos
  4897. && vocab.id_to_token[32010].text.find("<EOT>") != std::string::npos) {
  4898. vocab.special_prefix_id = 32007;
  4899. vocab.special_suffix_id = 32008;
  4900. vocab.special_middle_id = 32009;
  4901. vocab.special_eot_id = 32010;
  4902. } else if (model.arch == LLM_ARCH_GEMMA
  4903. && 107 < vocab.id_to_token.size()
  4904. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  4905. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  4906. && vocab.id_to_token[68].text == "<|fim_middle|>"
  4907. && vocab.id_to_token[107].text == "<end_of_turn>") {
  4908. vocab.special_prefix_id = 67;
  4909. vocab.special_suffix_id = 69;
  4910. vocab.special_middle_id = 68;
  4911. // TODO: this is not EOT, it is "file separator" token, needs fix
  4912. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4913. //vocab.special_eot_id = 70;
  4914. vocab.special_eot_id = 107;
  4915. }
  4916. }
  4917. try {
  4918. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4919. } catch (const std::exception & e) {
  4920. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4921. vocab.linefeed_id = vocab.special_pad_id;
  4922. }
  4923. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4924. vocab.linefeed_id = vocab.special_pad_id;
  4925. } else {
  4926. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4927. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4928. vocab.linefeed_id = ids[0];
  4929. }
  4930. // special tokens
  4931. {
  4932. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4933. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4934. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4935. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4936. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4937. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4938. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4939. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4940. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4941. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4942. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4943. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4944. };
  4945. for (const auto & it : special_token_types) {
  4946. const std::string & key = kv(std::get<0>(it));
  4947. int32_t & id = std::get<1>(it);
  4948. uint32_t new_id;
  4949. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4950. continue;
  4951. }
  4952. if (new_id >= vocab.id_to_token.size()) {
  4953. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4954. __func__, key.c_str(), new_id, id);
  4955. } else {
  4956. id = new_id;
  4957. }
  4958. }
  4959. // Handle add_bos_token and add_eos_token
  4960. {
  4961. bool temp = true;
  4962. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4963. vocab.tokenizer_add_bos = temp;
  4964. }
  4965. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4966. vocab.tokenizer_add_eos = temp;
  4967. }
  4968. }
  4969. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4970. //
  4971. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4972. // for now, we apply this workaround to find the EOT token based on its text
  4973. if (vocab.special_eot_id == -1) {
  4974. for (const auto & t : vocab.token_to_id) {
  4975. if (
  4976. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4977. // need to fix convert script
  4978. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4979. (t.first == "<|eot_id|>" ||
  4980. t.first == "<|im_end|>" ||
  4981. t.first == "<|end|>" ||
  4982. t.first == "<end_of_turn>" ||
  4983. t.first == "<|endoftext|>"
  4984. )
  4985. ) {
  4986. vocab.special_eot_id = t.second;
  4987. break;
  4988. }
  4989. }
  4990. }
  4991. }
  4992. // build special tokens cache
  4993. {
  4994. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4995. if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
  4996. vocab.cache_special_tokens.push_back(id);
  4997. }
  4998. }
  4999. std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  5000. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  5001. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  5002. }
  5003. );
  5004. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  5005. }
  5006. // build token to piece cache
  5007. {
  5008. size_t size_cache = 0;
  5009. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  5010. for (uint32_t id = 0; id < n_vocab; ++id) {
  5011. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  5012. size_cache += cache_token_to_piece[id].size();
  5013. }
  5014. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  5015. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  5016. }
  5017. // Handle per token attributes
  5018. //NOTE: Each model customizes per token attributes.
  5019. //NOTE: Per token attributes are missing from the GGUF file.
  5020. //TODO: Extract attributes from GGUF file.
  5021. {
  5022. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  5023. for (auto substr : substrs) {
  5024. if (str.find(substr) < std::string::npos) {
  5025. return true;
  5026. }
  5027. }
  5028. return false;
  5029. };
  5030. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  5031. uint32_t current = vocab.id_to_token.at(id).attr;
  5032. current = value ? (current | attr) : (current & ~attr);
  5033. vocab.id_to_token[id].attr = (llama_token_attr) current;
  5034. };
  5035. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  5036. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  5037. };
  5038. std::string model_name;
  5039. std::string tokenizer_pre;
  5040. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  5041. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  5042. // model name to lowercase
  5043. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  5044. [] (const std::string::value_type x) {
  5045. return std::tolower(x);
  5046. }
  5047. );
  5048. // set attributes by model/tokenizer name
  5049. if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
  5050. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  5051. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  5052. for (auto id : vocab.cache_special_tokens) {
  5053. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  5054. }
  5055. for (auto token : {"</s>"}) {
  5056. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  5057. }
  5058. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  5059. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  5060. }
  5061. }
  5062. }
  5063. }
  5064. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  5065. const auto & hparams = model.hparams;
  5066. const auto & vocab = model.vocab;
  5067. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  5068. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  5069. bool is_var = false;
  5070. std::vector<uint32_t> v;
  5071. for (uint32_t i = 0; i < n; ++i) {
  5072. v.push_back(f(i));
  5073. if (v[i] != v[0]) {
  5074. is_var = true;
  5075. }
  5076. }
  5077. std::stringstream ss;
  5078. if (is_var) {
  5079. ss << "[";
  5080. for (uint32_t i = 0; i < n; ++i) {
  5081. ss << v[i];
  5082. if (i < n - 1) {
  5083. ss << ", ";
  5084. }
  5085. }
  5086. ss << "]";
  5087. } else {
  5088. ss << v[0];
  5089. }
  5090. return ss.str();
  5091. };
  5092. // hparams
  5093. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  5094. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  5095. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  5096. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  5097. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  5098. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  5099. if (!hparams.vocab_only) {
  5100. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  5101. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  5102. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  5103. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  5104. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  5105. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  5106. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  5107. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  5108. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  5109. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  5110. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  5111. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  5112. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  5113. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  5114. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  5115. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  5116. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  5117. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  5118. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  5119. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  5120. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  5121. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  5122. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  5123. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  5124. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  5125. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  5126. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  5127. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  5128. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  5129. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  5130. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  5131. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  5132. }
  5133. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  5134. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  5135. if (ml.n_elements >= 1e12) {
  5136. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  5137. } else if (ml.n_elements >= 1e9) {
  5138. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  5139. } else if (ml.n_elements >= 1e6) {
  5140. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  5141. } else {
  5142. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  5143. }
  5144. if (ml.n_bytes < GiB) {
  5145. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  5146. } else {
  5147. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  5148. }
  5149. // general kv
  5150. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  5151. // special tokens
  5152. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  5153. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  5154. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  5155. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  5156. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  5157. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  5158. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  5159. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  5160. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  5161. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  5162. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  5163. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  5164. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
  5165. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  5166. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5167. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  5168. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  5169. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5170. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5171. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5172. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  5173. }
  5174. if (model.arch == LLM_ARCH_QWEN2MOE) {
  5175. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5176. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5177. }
  5178. }
  5179. // Returns false if cancelled by progress_callback
  5180. static bool llm_load_tensors(
  5181. llama_model_loader & ml,
  5182. llama_model & model,
  5183. int n_gpu_layers,
  5184. enum llama_split_mode split_mode,
  5185. int main_gpu,
  5186. const float * tensor_split,
  5187. bool use_mlock,
  5188. llama_progress_callback progress_callback,
  5189. void * progress_callback_user_data) {
  5190. model.t_start_us = ggml_time_us();
  5191. auto & hparams = model.hparams;
  5192. model.split_mode = split_mode;
  5193. model.main_gpu = main_gpu;
  5194. model.n_gpu_layers = n_gpu_layers;
  5195. const int n_layer = hparams.n_layer;
  5196. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  5197. bool use_mmap_buffer = true;
  5198. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  5199. model.buft_input = llama_default_buffer_type_cpu(true);
  5200. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  5201. model.buft_layer.resize(n_layer);
  5202. // assign cpu layers
  5203. for (int i = 0; i < i_gpu_start; ++i) {
  5204. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  5205. }
  5206. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  5207. // calculate the split points
  5208. int device_count = llama_get_device_count(model);
  5209. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  5210. std::vector<float> splits(device_count);
  5211. if (all_zero) {
  5212. // default split, by free memory
  5213. for (int i = 0; i < device_count; ++i) {
  5214. splits[i] = llama_get_device_memory(model, i);
  5215. }
  5216. } else {
  5217. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  5218. }
  5219. // sum and normalize the splits to get the split points
  5220. float split_sum = 0.0f;
  5221. for (int i = 0; i < device_count; ++i) {
  5222. split_sum += splits[i];
  5223. splits[i] = split_sum;
  5224. }
  5225. for (int i = 0; i < device_count; ++i) {
  5226. splits[i] /= split_sum;
  5227. }
  5228. // assign the repeating layers to the devices according to the splits
  5229. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  5230. for (int i = i_gpu_start; i < n_layer; ++i) {
  5231. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  5232. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  5233. }
  5234. // assign the output layer
  5235. if (n_gpu_layers > n_layer) {
  5236. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  5237. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  5238. } else {
  5239. model.buft_output = llama_default_buffer_type_cpu(true);
  5240. }
  5241. } else {
  5242. ggml_backend_buffer_type_t split_buft;
  5243. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  5244. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  5245. } else {
  5246. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  5247. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  5248. }
  5249. // assign the repeating layers
  5250. for (int i = i_gpu_start; i < n_layer; ++i) {
  5251. model.buft_layer[i] = {
  5252. split_buft,
  5253. llama_default_buffer_type_offload(model, main_gpu)
  5254. };
  5255. }
  5256. // assign the output layer
  5257. if (n_gpu_layers > n_layer) {
  5258. model.buft_output = {
  5259. split_buft,
  5260. llama_default_buffer_type_offload(model, main_gpu)
  5261. };
  5262. } else {
  5263. model.buft_output = llama_default_buffer_type_cpu(true);
  5264. }
  5265. }
  5266. // count used buffer types
  5267. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  5268. buft_layer_count[model.buft_input.buft]++;
  5269. buft_layer_count[model.buft_input.buft_matrix]++;
  5270. buft_layer_count[model.buft_output.buft]++;
  5271. buft_layer_count[model.buft_output.buft_matrix]++;
  5272. for (int i = 0; i < n_layer; ++i) {
  5273. buft_layer_count[model.buft_layer[i].buft]++;
  5274. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  5275. }
  5276. // create one context per buffer type
  5277. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  5278. // for moe merged tensors
  5279. ctx_size += ggml_tensor_overhead()*n_layer*3;
  5280. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  5281. for (auto & it : buft_layer_count) {
  5282. struct ggml_init_params params = {
  5283. /*.mem_size =*/ ctx_size,
  5284. /*.mem_buffer =*/ NULL,
  5285. /*.no_alloc =*/ true,
  5286. };
  5287. ggml_context * ctx = ggml_init(params);
  5288. if (!ctx) {
  5289. throw std::runtime_error(format("failed to create context"));
  5290. }
  5291. ctx_map[it.first] = ctx;
  5292. model.ctxs.push_back(ctx);
  5293. }
  5294. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  5295. // create tensors for the weights
  5296. {
  5297. // note: cast to int64_t since we will use these for the tensor dimensions
  5298. const int64_t n_head = hparams.n_head();
  5299. const int64_t n_head_kv = hparams.n_head_kv();
  5300. const int64_t n_embd = hparams.n_embd;
  5301. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5302. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5303. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5304. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5305. const int64_t n_ff = hparams.n_ff();
  5306. const int64_t n_embd_gqa = n_embd_v_gqa;
  5307. const int64_t n_vocab = hparams.n_vocab;
  5308. const int64_t n_vocab_type = hparams.n_vocab_type;
  5309. const int64_t n_expert = hparams.n_expert;
  5310. const int64_t n_expert_used = hparams.n_expert_used;
  5311. const int64_t n_ctx_train = hparams.n_ctx_train;
  5312. if (n_expert > 0 && hparams.n_expert_used == 0) {
  5313. throw std::runtime_error("model has expert layers but no expert layers are used");
  5314. }
  5315. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  5316. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  5317. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  5318. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  5319. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  5320. model.layers.resize(n_layer);
  5321. const auto tn = LLM_TN(model.arch);
  5322. switch (model.arch) {
  5323. case LLM_ARCH_LLAMA:
  5324. case LLM_ARCH_REFACT:
  5325. case LLM_ARCH_MINICPM:
  5326. {
  5327. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5328. // output
  5329. {
  5330. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5331. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5332. // if output is NULL, init from the input tok embed
  5333. if (model.output == NULL) {
  5334. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5335. }
  5336. }
  5337. for (int i = 0; i < n_layer; ++i) {
  5338. ggml_context * ctx_layer = ctx_for_layer(i);
  5339. ggml_context * ctx_split = ctx_for_layer_split(i);
  5340. auto & layer = model.layers[i];
  5341. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5342. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5343. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5344. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5345. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5346. // optional bias tensors
  5347. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5348. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5349. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5350. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5351. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5352. if (n_expert == 0) {
  5353. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5354. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5355. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5356. // optional MLP bias
  5357. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5358. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5359. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5360. } else {
  5361. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5362. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5363. if (layer.ffn_gate_exps) {
  5364. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5365. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5366. } else {
  5367. // merge split expert into a single tensor for compatibility with older models
  5368. // requires disabling mmap
  5369. use_mmap_buffer = false;
  5370. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  5371. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  5372. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  5373. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  5374. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  5375. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  5376. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  5377. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  5378. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  5379. for (uint32_t x = 0; x < n_expert; ++x) {
  5380. // the individual experts are loaded into a view of the merged tensor
  5381. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  5382. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  5383. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  5384. }
  5385. }
  5386. }
  5387. }
  5388. } break;
  5389. case LLM_ARCH_GROK:
  5390. {
  5391. if (n_expert == 0) {
  5392. throw std::runtime_error("Grok model cannot have zero experts");
  5393. }
  5394. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5395. // output
  5396. {
  5397. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5398. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5399. // if output is NULL, init from the input tok embed
  5400. if (model.output == NULL) {
  5401. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5402. }
  5403. }
  5404. for (int i = 0; i < n_layer; ++i) {
  5405. ggml_context * ctx_layer = ctx_for_layer(i);
  5406. ggml_context * ctx_split = ctx_for_layer_split(i);
  5407. auto & layer = model.layers[i];
  5408. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5409. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5410. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5411. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5412. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5413. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5414. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5415. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5416. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5417. if (layer.ffn_gate_exps) {
  5418. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5419. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5420. } else {
  5421. // merge split expert into a single tensor for compatibility with older models
  5422. // requires disabling mmap
  5423. use_mmap_buffer = false;
  5424. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  5425. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  5426. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  5427. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  5428. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  5429. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  5430. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  5431. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  5432. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  5433. for (uint32_t x = 0; x < n_expert; ++x) {
  5434. // the individual experts are loaded into a view of the merged tensor
  5435. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  5436. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  5437. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  5438. }
  5439. }
  5440. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5441. }
  5442. } break;
  5443. case LLM_ARCH_DBRX:
  5444. {
  5445. if (n_expert == 0) {
  5446. throw std::runtime_error("DBRX model cannot have zero experts");
  5447. }
  5448. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5449. // output
  5450. {
  5451. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5452. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5453. }
  5454. for (int i = 0; i < n_layer; ++i) {
  5455. ggml_context * ctx_layer = ctx_for_layer(i);
  5456. ggml_context * ctx_split = ctx_for_layer_split(i);
  5457. auto & layer = model.layers[i];
  5458. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5459. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5460. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5461. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5462. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5463. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5464. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  5465. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5466. }
  5467. } break;
  5468. case LLM_ARCH_BAICHUAN:
  5469. {
  5470. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5471. {
  5472. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5473. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5474. }
  5475. for (int i = 0; i < n_layer; ++i) {
  5476. ggml_context * ctx_layer = ctx_for_layer(i);
  5477. ggml_context * ctx_split = ctx_for_layer_split(i);
  5478. auto & layer = model.layers[i];
  5479. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5480. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5481. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5482. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5483. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5484. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5485. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5486. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5487. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5488. }
  5489. } break;
  5490. case LLM_ARCH_FALCON:
  5491. {
  5492. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5493. // output
  5494. {
  5495. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5496. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5497. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5498. if (!model.output) {
  5499. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  5500. }
  5501. }
  5502. for (int i = 0; i < n_layer; ++i) {
  5503. ggml_context * ctx_layer = ctx_for_layer(i);
  5504. ggml_context * ctx_split = ctx_for_layer_split(i);
  5505. auto & layer = model.layers[i];
  5506. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5507. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5508. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5509. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5510. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5511. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5512. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5513. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5514. }
  5515. } break;
  5516. case LLM_ARCH_STARCODER:
  5517. {
  5518. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5519. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
  5520. // output
  5521. {
  5522. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5523. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5524. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5525. if (!model.output) {
  5526. // needs to be on GPU
  5527. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5528. }
  5529. }
  5530. for (int i = 0; i < n_layer; ++i) {
  5531. ggml_context * ctx_layer = ctx_for_layer(i);
  5532. ggml_context * ctx_split = ctx_for_layer_split(i);
  5533. auto & layer = model.layers[i];
  5534. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5535. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5536. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5537. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5538. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5539. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5540. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5541. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5542. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5543. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5544. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5545. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5546. }
  5547. } break;
  5548. case LLM_ARCH_BERT:
  5549. case LLM_ARCH_NOMIC_BERT:
  5550. {
  5551. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5552. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  5553. if (model.arch == LLM_ARCH_BERT) {
  5554. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
  5555. }
  5556. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5557. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5558. for (int i = 0; i < n_layer; ++i) {
  5559. ggml_context * ctx_layer = ctx_for_layer(i);
  5560. ggml_context * ctx_split = ctx_for_layer_split(i);
  5561. auto & layer = model.layers[i];
  5562. if (model.arch == LLM_ARCH_BERT) {
  5563. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5564. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5565. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5566. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5567. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5568. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5569. } else {
  5570. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5571. }
  5572. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5573. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5574. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5575. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5576. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5577. if (model.arch == LLM_ARCH_BERT) {
  5578. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5579. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5580. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5581. } else {
  5582. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5583. }
  5584. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5585. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5586. }
  5587. } break;
  5588. case LLM_ARCH_JINA_BERT_V2:
  5589. {
  5590. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  5591. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings
  5592. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  5593. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  5594. for (int i = 0; i < n_layer; ++i) {
  5595. ggml_context * ctx_layer = ctx_for_layer(i);
  5596. ggml_context * ctx_split = ctx_for_layer_split(i);
  5597. auto & layer = model.layers[i]; // JinaBertLayer
  5598. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5599. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5600. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5601. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5602. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5603. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5604. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5605. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5606. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5607. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5608. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  5609. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  5610. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  5611. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5612. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5613. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5614. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5615. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5616. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5617. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5618. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5619. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5620. }
  5621. } break;
  5622. case LLM_ARCH_BLOOM:
  5623. {
  5624. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5625. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5626. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5627. // output
  5628. {
  5629. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5630. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5631. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5632. }
  5633. for (int i = 0; i < n_layer; ++i) {
  5634. ggml_context * ctx_layer = ctx_for_layer(i);
  5635. ggml_context * ctx_split = ctx_for_layer_split(i);
  5636. auto & layer = model.layers[i];
  5637. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5638. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5639. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5640. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5641. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5642. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5643. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5644. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5645. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5646. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5647. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5648. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5649. }
  5650. } break;
  5651. case LLM_ARCH_MPT:
  5652. {
  5653. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5654. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5655. // output
  5656. {
  5657. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5658. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5659. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5660. if (!model.output) {
  5661. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  5662. }
  5663. }
  5664. for (int i = 0; i < n_layer; ++i) {
  5665. ggml_context * ctx_layer = ctx_for_layer(i);
  5666. ggml_context * ctx_split = ctx_for_layer_split(i);
  5667. auto & layer = model.layers[i];
  5668. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5669. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5670. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5671. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5672. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5673. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5674. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5675. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5676. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5677. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5678. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5679. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5680. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5681. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5682. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5683. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5684. // AWQ ScaleActivation layer
  5685. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5686. }
  5687. } break;
  5688. case LLM_ARCH_STABLELM:
  5689. {
  5690. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5691. // output
  5692. {
  5693. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5694. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5695. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5696. }
  5697. for (int i = 0; i < n_layer; ++i) {
  5698. ggml_context * ctx_layer = ctx_for_layer(i);
  5699. ggml_context * ctx_split = ctx_for_layer_split(i);
  5700. auto & layer = model.layers[i];
  5701. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5702. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5703. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5704. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5705. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5706. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5707. // optional bias tensors, present in Stable LM 2 1.6B
  5708. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5709. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5710. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5711. // optional q and k layernorms, present in StableLM 2 12B
  5712. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5713. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5714. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  5715. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5716. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5717. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5718. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5719. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5720. }
  5721. } break;
  5722. case LLM_ARCH_QWEN:
  5723. {
  5724. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5725. // output
  5726. {
  5727. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5728. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5729. }
  5730. for (int i = 0; i < n_layer; ++i) {
  5731. ggml_context * ctx_layer = ctx_for_layer(i);
  5732. ggml_context * ctx_split = ctx_for_layer_split(i);
  5733. auto & layer = model.layers[i];
  5734. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5735. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  5736. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  5737. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5738. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5739. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  5740. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  5741. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  5742. }
  5743. } break;
  5744. case LLM_ARCH_QWEN2:
  5745. {
  5746. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5747. // output
  5748. {
  5749. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5750. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5751. // if output is NULL, init from the input tok embed
  5752. if (model.output == NULL) {
  5753. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5754. }
  5755. }
  5756. for (int i = 0; i < n_layer; ++i) {
  5757. ggml_context * ctx_layer = ctx_for_layer(i);
  5758. ggml_context * ctx_split = ctx_for_layer_split(i);
  5759. auto & layer = model.layers[i];
  5760. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5761. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5762. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5763. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5764. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5765. // optional bias tensors
  5766. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5767. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5768. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5769. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5770. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5771. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5772. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5773. }
  5774. } break;
  5775. case LLM_ARCH_QWEN2MOE:
  5776. {
  5777. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5778. // output
  5779. {
  5780. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5781. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5782. }
  5783. for (int i = 0; i < n_layer; ++i) {
  5784. ggml_context * ctx_layer = ctx_for_layer(i);
  5785. ggml_context * ctx_split = ctx_for_layer_split(i);
  5786. auto & layer = model.layers[i];
  5787. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5788. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5789. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5790. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5791. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5792. // optional bias tensors
  5793. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5794. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5795. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5796. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5797. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5798. GGML_ASSERT(n_expert > 0);
  5799. GGML_ASSERT(n_expert_used > 0);
  5800. // MoE branch
  5801. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  5802. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5803. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5804. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5805. // Shared expert branch
  5806. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  5807. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5808. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp});
  5809. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
  5810. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp});
  5811. }
  5812. } break;
  5813. case LLM_ARCH_PHI2:
  5814. {
  5815. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5816. // output
  5817. {
  5818. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5819. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5820. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5821. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5822. }
  5823. for (int i = 0; i < n_layer; ++i) {
  5824. ggml_context * ctx_layer = ctx_for_layer(i);
  5825. ggml_context * ctx_split = ctx_for_layer_split(i);
  5826. auto & layer = model.layers[i];
  5827. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5828. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5829. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5830. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5831. if (layer.wqkv == nullptr) {
  5832. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5833. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5834. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5835. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5836. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5837. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5838. }
  5839. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5840. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5841. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5842. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5843. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5844. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5845. }
  5846. } break;
  5847. case LLM_ARCH_PHI3:
  5848. {
  5849. const int64_t n_embd_head = n_embd / n_head;
  5850. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5851. // output
  5852. {
  5853. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5854. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5855. }
  5856. for (int i = 0; i < n_layer; ++i) {
  5857. ggml_context * ctx_layer = ctx_for_layer(i);
  5858. ggml_context * ctx_split = ctx_for_layer_split(i);
  5859. auto & layer = model.layers[i];
  5860. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5861. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5862. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5863. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5864. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5865. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5866. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5867. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5868. }
  5869. } break;
  5870. case LLM_ARCH_PLAMO:
  5871. {
  5872. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5873. // output
  5874. {
  5875. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5876. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5877. }
  5878. for (int i = 0; i < n_layer; ++i) {
  5879. ggml_context * ctx_layer = ctx_for_layer(i);
  5880. ggml_context * ctx_split = ctx_for_layer_split(i);
  5881. auto & layer = model.layers[i];
  5882. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5883. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5884. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5885. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5886. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5887. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5888. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5889. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5890. }
  5891. } break;
  5892. case LLM_ARCH_GPT2:
  5893. {
  5894. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5895. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
  5896. // output
  5897. {
  5898. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5899. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5900. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5901. }
  5902. for (int i = 0; i < n_layer; ++i) {
  5903. ggml_context * ctx_layer = ctx_for_layer(i);
  5904. ggml_context * ctx_split = ctx_for_layer_split(i);
  5905. auto & layer = model.layers[i];
  5906. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5907. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5908. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5909. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5910. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5911. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5912. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5913. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5914. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5915. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5916. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5917. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5918. }
  5919. } break;
  5920. case LLM_ARCH_CODESHELL:
  5921. {
  5922. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5923. // output
  5924. {
  5925. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5926. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5927. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5928. }
  5929. for (int i = 0; i < n_layer; ++i) {
  5930. ggml_context * ctx_layer = ctx_for_layer(i);
  5931. ggml_context * ctx_split = ctx_for_layer_split(i);
  5932. auto & layer = model.layers[i];
  5933. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5934. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5935. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5936. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5937. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5938. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5939. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5940. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5941. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5942. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5943. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5944. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5945. }
  5946. } break;
  5947. case LLM_ARCH_ORION:
  5948. {
  5949. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5950. {
  5951. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5952. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5953. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5954. }
  5955. for (int i = 0; i < n_layer; ++i) {
  5956. ggml_context * ctx_layer = ctx_for_layer(i);
  5957. ggml_context * ctx_split = ctx_for_layer_split(i);
  5958. auto & layer = model.layers[i];
  5959. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5960. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5961. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5962. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5963. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5964. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5965. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5966. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5967. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5968. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5969. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5970. }
  5971. } break;
  5972. case LLM_ARCH_INTERNLM2:
  5973. {
  5974. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5975. // output
  5976. {
  5977. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5978. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5979. }
  5980. for (int i = 0; i < n_layer; ++i) {
  5981. ggml_context * ctx_layer = ctx_for_layer(i);
  5982. ggml_context * ctx_split = ctx_for_layer_split(i);
  5983. auto & layer = model.layers[i];
  5984. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5985. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5986. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5987. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5988. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5989. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5990. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5991. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5992. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5993. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5994. }
  5995. } break;
  5996. case LLM_ARCH_GEMMA:
  5997. {
  5998. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5999. // output
  6000. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6001. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  6002. for (int i = 0; i < n_layer; ++i) {
  6003. ggml_context * ctx_layer = ctx_for_layer(i);
  6004. ggml_context * ctx_split = ctx_for_layer_split(i);
  6005. auto & layer = model.layers[i];
  6006. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6007. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
  6008. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6009. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6010. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
  6011. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6012. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6013. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6014. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6015. }
  6016. } break;
  6017. case LLM_ARCH_GEMMA2:
  6018. {
  6019. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6020. // output
  6021. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6022. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  6023. for (int i = 0; i < n_layer; ++i) {
  6024. ggml_context * ctx_layer = ctx_for_layer(i);
  6025. ggml_context * ctx_split = ctx_for_layer_split(i);
  6026. auto & layer = model.layers[i];
  6027. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6028. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
  6029. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6030. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6031. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
  6032. layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
  6033. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6034. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6035. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6036. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6037. layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
  6038. }
  6039. } break;
  6040. case LLM_ARCH_STARCODER2:
  6041. {
  6042. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6043. // output
  6044. {
  6045. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6046. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6047. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6048. // if output is NULL, init from the input tok embed
  6049. if (model.output == NULL) {
  6050. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6051. }
  6052. }
  6053. for (int i = 0; i < n_layer; ++i) {
  6054. ggml_context * ctx_layer = ctx_for_layer(i);
  6055. ggml_context * ctx_split = ctx_for_layer_split(i);
  6056. auto & layer = model.layers[i];
  6057. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6058. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6059. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6060. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6061. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6062. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6063. // optional bias tensors
  6064. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  6065. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  6066. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  6067. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6068. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6069. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6070. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6071. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6072. // optional bias tensors
  6073. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6074. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  6075. }
  6076. } break;
  6077. case LLM_ARCH_MAMBA:
  6078. {
  6079. const int64_t d_conv = hparams.ssm_d_conv;
  6080. const int64_t d_inner = hparams.ssm_d_inner;
  6081. const int64_t d_state = hparams.ssm_d_state;
  6082. const int64_t dt_rank = hparams.ssm_dt_rank;
  6083. // only an expansion factor of 2 is supported for now
  6084. GGML_ASSERT(2 * n_embd == d_inner);
  6085. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6086. // output
  6087. {
  6088. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6089. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6090. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  6091. if (model.output == NULL) {
  6092. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6093. }
  6094. }
  6095. for (int i = 0; i < n_layer; ++i) {
  6096. ggml_context * ctx_layer = ctx_for_layer(i);
  6097. ggml_context * ctx_split = ctx_for_layer_split(i);
  6098. auto & layer = model.layers[i];
  6099. // norm
  6100. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6101. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  6102. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  6103. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  6104. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  6105. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  6106. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  6107. // no "weight" suffix for these
  6108. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  6109. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  6110. // out_proj
  6111. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  6112. }
  6113. } break;
  6114. case LLM_ARCH_XVERSE:
  6115. {
  6116. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6117. {
  6118. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6119. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6120. }
  6121. for (int i = 0; i < n_layer; ++i) {
  6122. ggml_context * ctx_layer = ctx_for_layer(i);
  6123. ggml_context * ctx_split = ctx_for_layer_split(i);
  6124. auto & layer = model.layers[i];
  6125. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6126. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6127. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6128. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6129. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6130. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6131. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6132. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6133. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6134. }
  6135. } break;
  6136. case LLM_ARCH_COMMAND_R:
  6137. {
  6138. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6139. // output
  6140. {
  6141. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6142. // init output from the input tok embed
  6143. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6144. }
  6145. for (int i = 0; i < n_layer; ++i) {
  6146. ggml_context * ctx_layer = ctx_for_layer(i);
  6147. ggml_context * ctx_split = ctx_for_layer_split(i);
  6148. auto & layer = model.layers[i];
  6149. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6150. if (n_layer >= 64){
  6151. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
  6152. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
  6153. }
  6154. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6155. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6156. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6157. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6158. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6159. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6160. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6161. }
  6162. } break;
  6163. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  6164. {
  6165. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6166. // output
  6167. {
  6168. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6169. // if output is NULL, init from the input tok embed
  6170. if (model.output == NULL) {
  6171. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6172. }
  6173. }
  6174. for (int i = 0; i < n_layer; ++i) {
  6175. ggml_context * ctx_split = ctx_for_layer_split(i);
  6176. auto & layer = model.layers[i];
  6177. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6178. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6179. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6180. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6181. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6182. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6183. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6184. }
  6185. } break;
  6186. case LLM_ARCH_OPENELM:
  6187. {
  6188. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6189. // output
  6190. {
  6191. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6192. // init output from the input tok embed
  6193. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6194. }
  6195. for (int i = 0; i < n_layer; ++i) {
  6196. const int64_t n_head = hparams.n_head(i);
  6197. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  6198. const int64_t n_ff = hparams.n_ff(i);
  6199. ggml_context * ctx_layer = ctx_for_layer(i);
  6200. ggml_context * ctx_split = ctx_for_layer_split(i);
  6201. auto & layer = model.layers[i];
  6202. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6203. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
  6204. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
  6205. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
  6206. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});
  6207. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6208. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6209. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6210. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6211. }
  6212. } break;
  6213. case LLM_ARCH_GPTNEOX:
  6214. {
  6215. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6216. // output
  6217. {
  6218. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6219. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6220. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6221. }
  6222. for (int i = 0; i < n_layer; ++i) {
  6223. ggml_context * ctx_layer = ctx_for_layer(i);
  6224. ggml_context * ctx_split = ctx_for_layer_split(i);
  6225. auto & layer = model.layers[i];
  6226. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6227. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6228. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6229. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6230. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6231. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6232. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6233. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6234. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6235. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6236. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6237. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6238. }
  6239. } break;
  6240. case LLM_ARCH_ARCTIC:
  6241. {
  6242. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6243. // output
  6244. {
  6245. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6246. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6247. // if output is NULL, init from the input tok embed
  6248. if (model.output == NULL) {
  6249. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6250. }
  6251. }
  6252. for (int i = 0; i < n_layer; ++i) {
  6253. ggml_context * ctx_layer = ctx_for_layer(i);
  6254. ggml_context * ctx_split = ctx_for_layer_split(i);
  6255. auto & layer = model.layers[i];
  6256. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6257. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6258. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6259. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6260. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6261. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6262. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  6263. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  6264. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  6265. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  6266. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  6267. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  6268. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  6269. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  6270. }
  6271. } break;
  6272. case LLM_ARCH_DEEPSEEK2:
  6273. {
  6274. const bool is_lite = (hparams.n_layer == 27);
  6275. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  6276. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6277. const int64_t q_lora_rank = hparams.n_lora_q;
  6278. const int64_t kv_lora_rank = hparams.n_lora_kv;
  6279. const int64_t n_ff_exp = hparams.n_ff_exp;
  6280. const int64_t n_expert_shared = hparams.n_expert_shared;
  6281. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6282. // output
  6283. {
  6284. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6285. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6286. }
  6287. for (int i = 0; i < n_layer; ++i) {
  6288. ggml_context * ctx_layer = ctx_for_layer(i);
  6289. ggml_context * ctx_split = ctx_for_layer_split(i);
  6290. auto & layer = model.layers[i];
  6291. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6292. if (!is_lite) {
  6293. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  6294. }
  6295. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  6296. if (!is_lite) {
  6297. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  6298. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
  6299. } else {
  6300. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  6301. }
  6302. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
  6303. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
  6304. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd});
  6305. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6306. if (i < (int) hparams.n_layer_dense_lead) {
  6307. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6308. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6309. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6310. } else {
  6311. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  6312. GGML_ASSERT(n_expert > 0);
  6313. GGML_ASSERT(n_expert_used > 0);
  6314. // MoE branch
  6315. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  6316. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  6317. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  6318. // Shared expert branch
  6319. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
  6320. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd});
  6321. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
  6322. }
  6323. }
  6324. } break;
  6325. case LLM_ARCH_BITNET:
  6326. {
  6327. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6328. // output
  6329. {
  6330. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6331. }
  6332. for (int i = 0; i < n_layer; ++i) {
  6333. ggml_context * ctx_layer = ctx_for_layer(i);
  6334. ggml_context * ctx_split = ctx_for_layer_split(i);
  6335. auto & layer = model.layers[i];
  6336. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6337. layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
  6338. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  6339. layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
  6340. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  6341. layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
  6342. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  6343. layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
  6344. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6345. layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
  6346. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6347. layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
  6348. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6349. layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
  6350. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6351. layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
  6352. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6353. layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
  6354. }
  6355. } break;
  6356. case LLM_ARCH_T5:
  6357. {
  6358. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  6359. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6360. // output
  6361. {
  6362. model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
  6363. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});
  6364. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6365. // if output is NULL, init from the input tok embed
  6366. if (model.output == NULL) {
  6367. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  6368. }
  6369. }
  6370. for (int i = 0; i < n_layer; ++i) {
  6371. ggml_context * ctx_layer = ctx_for_layer(i);
  6372. ggml_context * ctx_split = ctx_for_layer_split(i);
  6373. auto & layer = model.layers[i];
  6374. layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
  6375. layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6376. layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  6377. layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6378. layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6379. layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  6380. layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
  6381. layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6382. layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6383. layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
  6384. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
  6385. layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6386. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  6387. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6388. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6389. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  6390. layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
  6391. // this tensor seems to be unused in HF transformers implementation
  6392. layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6393. layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  6394. layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  6395. layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  6396. layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
  6397. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
  6398. layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  6399. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd});
  6400. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
  6401. }
  6402. } break;
  6403. case LLM_ARCH_JAIS:
  6404. {
  6405. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6406. // Output
  6407. {
  6408. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6409. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  6410. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6411. }
  6412. for (int i = 0; i < n_layer; ++i) {
  6413. ggml_context * ctx_layer = ctx_for_layer(i);
  6414. ggml_context * ctx_split = ctx_for_layer_split(i);
  6415. auto & layer = model.layers[i];
  6416. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6417. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  6418. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  6419. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  6420. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6421. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  6422. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6423. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  6424. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6425. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  6426. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  6427. layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff});
  6428. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  6429. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  6430. }
  6431. } break;
  6432. case LLM_ARCH_CHATGLM:
  6433. {
  6434. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  6435. // output
  6436. {
  6437. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  6438. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  6439. }
  6440. for (int i = 0; i < n_layer; ++i) {
  6441. ggml_context * ctx_layer = ctx_for_layer(i);
  6442. ggml_context * ctx_split = ctx_for_layer_split(i);
  6443. auto & layer = model.layers[i];
  6444. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  6445. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
  6446. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)});
  6447. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  6448. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  6449. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});
  6450. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  6451. }
  6452. } break;
  6453. default:
  6454. throw std::runtime_error("unknown architecture");
  6455. }
  6456. }
  6457. ml.done_getting_tensors();
  6458. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  6459. model.mappings.reserve(ml.mappings.size());
  6460. // create the backend buffers
  6461. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  6462. ctx_bufs.reserve(ctx_map.size());
  6463. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  6464. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  6465. model.bufs.reserve(n_max_backend_buffer);
  6466. for (auto & it : ctx_map) {
  6467. ggml_backend_buffer_type_t buft = it.first;
  6468. ggml_context * ctx = it.second;
  6469. llama_buf_map bufs;
  6470. bufs.reserve(n_max_backend_buffer);
  6471. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  6472. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  6473. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  6474. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  6475. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  6476. void * addr = nullptr;
  6477. size_t first, last;
  6478. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  6479. if (first >= last) {
  6480. continue;
  6481. }
  6482. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  6483. if (buf == nullptr) {
  6484. throw std::runtime_error("unable to allocate backend CPU buffer");
  6485. }
  6486. model.bufs.push_back(buf);
  6487. bufs.emplace(idx, buf);
  6488. #ifdef GGML_USE_CUDA
  6489. if (n_layer >= n_gpu_layers) {
  6490. ggml_backend_cuda_register_host_buffer(
  6491. ggml_backend_buffer_get_base(buf),
  6492. ggml_backend_buffer_get_size(buf));
  6493. }
  6494. #endif
  6495. }
  6496. }
  6497. #ifdef GGML_USE_METAL
  6498. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  6499. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  6500. const size_t max_size = ggml_get_max_tensor_size(ctx);
  6501. void * addr = nullptr;
  6502. size_t first, last;
  6503. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  6504. if (first >= last) {
  6505. continue;
  6506. }
  6507. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  6508. if (buf == nullptr) {
  6509. throw std::runtime_error("unable to allocate backend metal buffer");
  6510. }
  6511. model.bufs.push_back(buf);
  6512. bufs.emplace(idx, buf);
  6513. }
  6514. }
  6515. #endif
  6516. else {
  6517. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  6518. if (buf == nullptr) {
  6519. throw std::runtime_error("unable to allocate backend buffer");
  6520. }
  6521. model.bufs.push_back(buf);
  6522. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  6523. model.mlock_bufs.emplace_back(new llama_mlock);
  6524. auto & mlock_buf = model.mlock_bufs.back();
  6525. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  6526. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  6527. }
  6528. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  6529. bufs.emplace(idx, buf);
  6530. }
  6531. }
  6532. if (bufs.empty()) {
  6533. throw std::runtime_error("failed to allocate buffer");
  6534. }
  6535. for (auto & buf : bufs) {
  6536. // indicate that this buffer contains weights
  6537. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  6538. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  6539. }
  6540. ctx_bufs.emplace_back(ctx, bufs);
  6541. }
  6542. if (llama_supports_gpu_offload()) {
  6543. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  6544. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  6545. if (n_gpu_layers > (int) hparams.n_layer) {
  6546. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  6547. }
  6548. const int max_backend_supported_layers = hparams.n_layer + 1;
  6549. const int max_offloadable_layers = hparams.n_layer + 1;
  6550. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  6551. }
  6552. // print memory requirements
  6553. for (ggml_backend_buffer_t buf : model.bufs) {
  6554. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  6555. }
  6556. // populate tensors_by_name
  6557. for (ggml_context * ctx : model.ctxs) {
  6558. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  6559. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  6560. }
  6561. }
  6562. // load tensor data
  6563. for (auto & it : ctx_bufs) {
  6564. ggml_context * ctx = it.first;
  6565. auto & bufs = it.second;
  6566. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  6567. return false;
  6568. }
  6569. }
  6570. if (use_mmap_buffer) {
  6571. for (auto & mapping : ml.mappings) {
  6572. model.mappings.emplace_back(std::move(mapping));
  6573. }
  6574. }
  6575. // loading time will be recalculate after the first eval, so
  6576. // we take page faults deferred by mmap() into consideration
  6577. model.t_load_us = ggml_time_us() - model.t_start_us;
  6578. return true;
  6579. }
  6580. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  6581. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  6582. try {
  6583. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  6584. model.hparams.vocab_only = params.vocab_only;
  6585. try {
  6586. llm_load_arch(ml, model);
  6587. } catch(const std::exception & e) {
  6588. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  6589. }
  6590. try {
  6591. llm_load_hparams(ml, model);
  6592. } catch(const std::exception & e) {
  6593. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  6594. }
  6595. try {
  6596. llm_load_vocab(ml, model);
  6597. } catch(const std::exception & e) {
  6598. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  6599. }
  6600. llm_load_print_meta(ml, model);
  6601. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  6602. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  6603. throw std::runtime_error("vocab size mismatch");
  6604. }
  6605. if (params.vocab_only) {
  6606. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  6607. return 0;
  6608. }
  6609. #ifdef GGML_USE_KOMPUTE
  6610. if (params.n_gpu_layers > 0 && (
  6611. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  6612. || !(
  6613. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  6614. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  6615. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  6616. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  6617. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  6618. )
  6619. )) {
  6620. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  6621. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  6622. params.n_gpu_layers = 0;
  6623. }
  6624. #endif
  6625. if (!llm_load_tensors(
  6626. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  6627. params.progress_callback, params.progress_callback_user_data
  6628. )) {
  6629. return -2;
  6630. }
  6631. } catch (const std::exception & err) {
  6632. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  6633. return -1;
  6634. }
  6635. return 0;
  6636. }
  6637. //
  6638. // llm_build
  6639. //
  6640. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  6641. enum llm_ffn_op_type {
  6642. LLM_FFN_SILU,
  6643. LLM_FFN_GELU,
  6644. LLM_FFN_RELU,
  6645. LLM_FFN_RELU_SQR,
  6646. LLM_FFN_SWIGLU,
  6647. };
  6648. enum llm_ffn_gate_type {
  6649. LLM_FFN_SEQ,
  6650. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  6651. };
  6652. enum llm_norm_type {
  6653. LLM_NORM,
  6654. LLM_NORM_RMS,
  6655. };
  6656. static struct ggml_tensor * llm_build_inp_embd(
  6657. struct ggml_context * ctx,
  6658. struct llama_context & lctx,
  6659. const llama_hparams & hparams,
  6660. const llama_batch & batch,
  6661. struct ggml_tensor * tok_embd,
  6662. const llm_build_cb & cb) {
  6663. const int64_t n_embd = hparams.n_embd;
  6664. struct ggml_tensor * inpL;
  6665. if (batch.token) {
  6666. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  6667. cb(lctx.inp_tokens, "inp_tokens", -1);
  6668. ggml_set_input(lctx.inp_tokens);
  6669. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  6670. } else {
  6671. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  6672. inpL = lctx.inp_embd;
  6673. ggml_set_input(lctx.inp_embd);
  6674. }
  6675. cb(inpL, "inp_embd", -1);
  6676. return inpL;
  6677. }
  6678. static void llm_build_kv_store(
  6679. struct ggml_context * ctx,
  6680. const llama_hparams & hparams,
  6681. const llama_cparams & cparams,
  6682. const llama_kv_cache & kv,
  6683. struct ggml_cgraph * graph,
  6684. struct ggml_tensor * k_cur,
  6685. struct ggml_tensor * v_cur,
  6686. int32_t n_tokens,
  6687. int32_t kv_head,
  6688. const llm_build_cb & cb,
  6689. int64_t il) {
  6690. const int64_t n_ctx = cparams.n_ctx;
  6691. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  6692. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  6693. GGML_ASSERT(kv.size == n_ctx);
  6694. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  6695. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  6696. cb(k_cache_view, "k_cache_view", il);
  6697. // note: storing RoPE-ed version of K in the KV cache
  6698. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  6699. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  6700. struct ggml_tensor * v_cache_view = nullptr;
  6701. if (cparams.flash_attn) {
  6702. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  6703. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  6704. } else {
  6705. // note: the V cache is transposed when not using flash attention
  6706. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  6707. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  6708. (kv_head)*ggml_element_size(kv.v_l[il]));
  6709. v_cur = ggml_transpose(ctx, v_cur);
  6710. }
  6711. cb(v_cache_view, "v_cache_view", il);
  6712. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  6713. }
  6714. static struct ggml_tensor * llm_build_norm(
  6715. struct ggml_context * ctx,
  6716. struct ggml_tensor * cur,
  6717. const llama_hparams & hparams,
  6718. struct ggml_tensor * mw,
  6719. struct ggml_tensor * mb,
  6720. llm_norm_type type,
  6721. const llm_build_cb & cb,
  6722. int il) {
  6723. switch (type) {
  6724. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  6725. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  6726. }
  6727. if (mw || mb) {
  6728. cb(cur, "norm", il);
  6729. }
  6730. if (mw) {
  6731. cur = ggml_mul(ctx, cur, mw);
  6732. if (mb) {
  6733. cb(cur, "norm_w", il);
  6734. }
  6735. }
  6736. if (mb) {
  6737. cur = ggml_add(ctx, cur, mb);
  6738. }
  6739. return cur;
  6740. }
  6741. static struct ggml_tensor * llm_build_ffn(
  6742. struct ggml_context * ctx,
  6743. struct ggml_tensor * cur,
  6744. struct ggml_tensor * up,
  6745. struct ggml_tensor * up_b,
  6746. struct ggml_tensor * up_s,
  6747. struct ggml_tensor * gate,
  6748. struct ggml_tensor * gate_b,
  6749. struct ggml_tensor * gate_s,
  6750. struct ggml_tensor * down,
  6751. struct ggml_tensor * down_b,
  6752. struct ggml_tensor * down_s,
  6753. struct ggml_tensor * act_scales,
  6754. llm_ffn_op_type type_op,
  6755. llm_ffn_gate_type type_gate,
  6756. const llm_build_cb & cb,
  6757. int il) {
  6758. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  6759. cb(tmp, "ffn_up", il);
  6760. if (up_b) {
  6761. tmp = ggml_add(ctx, tmp, up_b);
  6762. cb(tmp, "ffn_up_b", il);
  6763. }
  6764. if (up_s) {
  6765. tmp = ggml_mul(ctx, tmp, up_s);
  6766. cb(tmp, "ffn_up_s", il);
  6767. }
  6768. if (gate) {
  6769. switch (type_gate) {
  6770. case LLM_FFN_SEQ:
  6771. {
  6772. cur = ggml_mul_mat(ctx, gate, tmp);
  6773. cb(cur, "ffn_gate", il);
  6774. } break;
  6775. case LLM_FFN_PAR:
  6776. {
  6777. cur = ggml_mul_mat(ctx, gate, cur);
  6778. cb(cur, "ffn_gate", il);
  6779. } break;
  6780. }
  6781. if (gate_b) {
  6782. cur = ggml_add(ctx, cur, gate_b);
  6783. cb(cur, "ffn_gate_b", il);
  6784. }
  6785. if (gate_s) {
  6786. cur = ggml_mul(ctx, cur, gate_s);
  6787. cb(cur, "ffn_gate_s", il);
  6788. }
  6789. } else {
  6790. cur = tmp;
  6791. }
  6792. switch (type_op) {
  6793. case LLM_FFN_SILU:
  6794. {
  6795. cur = ggml_silu(ctx, cur);
  6796. cb(cur, "ffn_silu", il);
  6797. } break;
  6798. case LLM_FFN_GELU:
  6799. {
  6800. cur = ggml_gelu(ctx, cur);
  6801. cb(cur, "ffn_gelu", il);
  6802. if (act_scales != NULL) {
  6803. cur = ggml_div(ctx, cur, act_scales);
  6804. cb(cur, "ffn_act", il);
  6805. }
  6806. } break;
  6807. case LLM_FFN_RELU:
  6808. {
  6809. cur = ggml_relu(ctx, cur);
  6810. cb(cur, "ffn_relu", il);
  6811. } break;
  6812. case LLM_FFN_RELU_SQR:
  6813. {
  6814. cur = ggml_relu(ctx, cur);
  6815. cb(cur, "ffn_relu", il);
  6816. cur = ggml_sqr(ctx, cur);
  6817. cb(cur, "ffn_sqr(relu)", il);
  6818. } break;
  6819. case LLM_FFN_SWIGLU:
  6820. {
  6821. // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
  6822. int64_t split_point = cur->ne[0] / 2;
  6823. struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
  6824. struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
  6825. x0 = ggml_silu(ctx, x0);
  6826. cb(cur, "ffn_silu", il);
  6827. cur = ggml_mul(ctx, x0, x1);
  6828. cb(cur, "ffn_mul", il);
  6829. } break;
  6830. }
  6831. if (type_gate == LLM_FFN_PAR) {
  6832. cur = ggml_mul(ctx, cur, tmp);
  6833. cb(cur, "ffn_gate_par", il);
  6834. }
  6835. if (down) {
  6836. cur = ggml_mul_mat(ctx, down, cur);
  6837. }
  6838. if (down_b) {
  6839. cb(cur, "ffn_down", il);
  6840. }
  6841. if (down_b) {
  6842. cur = ggml_add(ctx, cur, down_b);
  6843. }
  6844. if (down_s) {
  6845. cur = ggml_mul(ctx, cur, down_s);
  6846. cb(cur, "ffn_down_s", il);
  6847. }
  6848. return cur;
  6849. }
  6850. static struct ggml_tensor * llm_build_moe_ffn(
  6851. struct ggml_context * ctx,
  6852. struct ggml_tensor * cur,
  6853. struct ggml_tensor * gate_inp,
  6854. struct ggml_tensor * up_exps,
  6855. struct ggml_tensor * gate_exps,
  6856. struct ggml_tensor * down_exps,
  6857. int64_t n_expert,
  6858. int64_t n_expert_used,
  6859. llm_ffn_op_type type_op,
  6860. bool norm_w,
  6861. bool scale_w,
  6862. float w_scale,
  6863. const llm_build_cb & cb,
  6864. int il) {
  6865. int64_t n_embd = cur->ne[0];
  6866. int64_t n_tokens = cur->ne[1];
  6867. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  6868. cb(logits, "ffn_moe_logits", il);
  6869. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  6870. cb(probs, "ffn_moe_probs", il);
  6871. // select experts
  6872. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  6873. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  6874. cb(selected_experts, "ffn_moe_topk", il);
  6875. ggml_tensor * weights = ggml_get_rows(ctx,
  6876. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  6877. cb(weights, "ffn_moe_weights", il);
  6878. if (norm_w) {
  6879. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  6880. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  6881. cb(weights_sum, "ffn_moe_weights_sum", il);
  6882. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  6883. cb(weights, "ffn_moe_weights_norm", il);
  6884. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  6885. }
  6886. if (scale_w) {
  6887. weights = ggml_scale(ctx, weights, w_scale);
  6888. cb(weights, "ffn_moe_weights_scaled", il);
  6889. }
  6890. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  6891. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6892. cb(up, "ffn_moe_up", il);
  6893. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6894. cb(gate, "ffn_moe_gate", il);
  6895. switch (type_op) {
  6896. case LLM_FFN_SILU:
  6897. {
  6898. gate = ggml_silu(ctx, gate);
  6899. cb(gate, "ffn_moe_silu", il);
  6900. } break;
  6901. case LLM_FFN_GELU:
  6902. {
  6903. gate = ggml_gelu(ctx, gate);
  6904. cb(gate, "ffn_moe_gelu", il);
  6905. } break;
  6906. default:
  6907. GGML_ASSERT(false);
  6908. }
  6909. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  6910. cb(par, "ffn_moe_gate_par", il);
  6911. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  6912. cb(experts, "ffn_moe_down", il);
  6913. experts = ggml_mul(ctx, experts, weights);
  6914. // aggregate experts
  6915. ggml_tensor * moe_out = nullptr;
  6916. for (int i = 0; i < n_expert_used; ++i) {
  6917. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  6918. experts->nb[2], i*experts->nb[1]);
  6919. if (i == 0) {
  6920. moe_out = cur_expert;
  6921. } else {
  6922. moe_out = ggml_add(ctx, moe_out, cur_expert);
  6923. }
  6924. }
  6925. if (n_expert_used == 1) {
  6926. // avoid returning a non-contiguous tensor
  6927. moe_out = ggml_cont(ctx, moe_out);
  6928. }
  6929. return moe_out;
  6930. }
  6931. static struct ggml_tensor * llm_build_kqv(
  6932. struct ggml_context * ctx,
  6933. const llama_model & model,
  6934. const llama_hparams & hparams,
  6935. const llama_cparams & cparams,
  6936. const llama_kv_cache & kv,
  6937. struct ggml_cgraph * graph,
  6938. struct ggml_tensor * wo,
  6939. struct ggml_tensor * wo_b,
  6940. struct ggml_tensor * q_cur,
  6941. struct ggml_tensor * kq_mask,
  6942. int32_t n_tokens,
  6943. int32_t n_kv,
  6944. float kq_scale,
  6945. const llm_build_cb & cb,
  6946. int il) {
  6947. const int64_t n_ctx = cparams.n_ctx;
  6948. const int64_t n_head = hparams.n_head(il);
  6949. const int64_t n_head_kv = hparams.n_head_kv(il);
  6950. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6951. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  6952. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6953. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  6954. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6955. cb(q, "q", il);
  6956. struct ggml_tensor * k =
  6957. ggml_view_3d(ctx, kv.k_l[il],
  6958. n_embd_head_k, n_kv, n_head_kv,
  6959. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6960. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6961. 0);
  6962. cb(k, "k", il);
  6963. struct ggml_tensor * cur;
  6964. if (cparams.flash_attn) {
  6965. GGML_UNUSED(model);
  6966. GGML_UNUSED(n_ctx);
  6967. // split cached v into n_head heads (not transposed)
  6968. struct ggml_tensor * v =
  6969. ggml_view_3d(ctx, kv.v_l[il],
  6970. n_embd_head_v, n_kv, n_head_kv,
  6971. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6972. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6973. 0);
  6974. cb(v, "v", il);
  6975. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6976. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6977. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6978. }
  6979. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6980. } else {
  6981. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6982. cb(kq, "kq", il);
  6983. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
  6984. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6985. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6986. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6987. }
  6988. if (model.arch == LLM_ARCH_GROK) {
  6989. // need to do the following:
  6990. // multiply by attn_output_multiplyer of 0.08838834764831845
  6991. // and then :
  6992. // kq = 30 * tanh(kq / 30)
  6993. // before the softmax below
  6994. //try from phi2
  6995. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6996. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6997. kq = ggml_scale(ctx, kq, 30);
  6998. }
  6999. if (hparams.attn_soft_cap) {
  7000. kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
  7001. kq = ggml_tanh(ctx, kq);
  7002. kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
  7003. }
  7004. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  7005. cb(kq, "kq_soft_max_ext", il);
  7006. GGML_ASSERT(kv.size == n_ctx);
  7007. // split cached v into n_head heads
  7008. struct ggml_tensor * v =
  7009. ggml_view_3d(ctx, kv.v_l[il],
  7010. n_kv, n_embd_head_v, n_head_kv,
  7011. ggml_element_size(kv.v_l[il])*n_ctx,
  7012. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  7013. 0);
  7014. cb(v, "v", il);
  7015. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  7016. cb(kqv, "kqv", il);
  7017. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  7018. cb(kqv_merged, "kqv_merged", il);
  7019. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  7020. cb(cur, "kqv_merged_cont", il);
  7021. }
  7022. ggml_build_forward_expand(graph, cur);
  7023. if (wo) {
  7024. cur = ggml_mul_mat(ctx, wo, cur);
  7025. }
  7026. if (wo_b) {
  7027. cb(cur, "kqv_wo", il);
  7028. }
  7029. if (wo_b) {
  7030. cur = ggml_add(ctx, cur, wo_b);
  7031. }
  7032. return cur;
  7033. }
  7034. static struct ggml_tensor * llm_build_kv(
  7035. struct ggml_context * ctx,
  7036. const llama_model & model,
  7037. const llama_hparams & hparams,
  7038. const llama_cparams & cparams,
  7039. const llama_kv_cache & kv,
  7040. struct ggml_cgraph * graph,
  7041. struct ggml_tensor * wo,
  7042. struct ggml_tensor * wo_b,
  7043. struct ggml_tensor * k_cur,
  7044. struct ggml_tensor * v_cur,
  7045. struct ggml_tensor * q_cur,
  7046. struct ggml_tensor * kq_mask,
  7047. int32_t n_tokens,
  7048. int32_t kv_head,
  7049. int32_t n_kv,
  7050. float kq_scale,
  7051. const llm_build_cb & cb,
  7052. int il) {
  7053. // these nodes are added to the graph together so that they are not reordered
  7054. // by doing so, the number of splits in the graph is reduced
  7055. ggml_build_forward_expand(graph, q_cur);
  7056. ggml_build_forward_expand(graph, k_cur);
  7057. ggml_build_forward_expand(graph, v_cur);
  7058. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  7059. struct ggml_tensor * cur;
  7060. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  7061. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  7062. cb(cur, "kqv_out", il);
  7063. return cur;
  7064. }
  7065. struct llm_build_context {
  7066. const llama_model & model;
  7067. llama_context & lctx;
  7068. const llama_hparams & hparams;
  7069. const llama_cparams & cparams;
  7070. const llama_batch & batch;
  7071. const llama_kv_cache & kv_self;
  7072. const int64_t n_embd;
  7073. const int64_t n_layer;
  7074. const int64_t n_rot;
  7075. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  7076. const int64_t n_head;
  7077. const int64_t n_head_kv;
  7078. const int64_t n_embd_head_k;
  7079. const int64_t n_embd_k_gqa;
  7080. const int64_t n_embd_head_v;
  7081. const int64_t n_embd_v_gqa;
  7082. const int64_t n_expert;
  7083. const int64_t n_expert_used;
  7084. const float freq_base;
  7085. const float freq_scale;
  7086. const float ext_factor;
  7087. const float attn_factor;
  7088. const float beta_fast;
  7089. const float beta_slow;
  7090. const float norm_eps;
  7091. const float norm_rms_eps;
  7092. const int32_t n_tokens;
  7093. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  7094. const int32_t n_outputs;
  7095. const int32_t n_outputs_enc;
  7096. const int32_t kv_head; // index of where we store new KV data in the cache
  7097. const int32_t n_ctx_orig;
  7098. const bool flash_attn;
  7099. const enum llama_pooling_type pooling_type;
  7100. const enum llama_rope_type rope_type;
  7101. const llm_build_cb & cb;
  7102. std::vector<uint8_t> & buf_compute_meta;
  7103. struct ggml_context * ctx0 = nullptr;
  7104. // TODO: consider making the entire interface noexcept
  7105. llm_build_context(
  7106. llama_context & lctx,
  7107. const llama_batch & batch,
  7108. const llm_build_cb & cb,
  7109. bool worst_case) :
  7110. model (lctx.model),
  7111. lctx (lctx),
  7112. hparams (model.hparams),
  7113. cparams (lctx.cparams),
  7114. batch (batch),
  7115. kv_self (lctx.kv_self),
  7116. n_embd (hparams.n_embd),
  7117. n_layer (hparams.n_layer),
  7118. n_rot (hparams.n_rot),
  7119. n_ctx (cparams.n_ctx),
  7120. n_head (hparams.n_head()),
  7121. n_head_kv (hparams.n_head_kv()),
  7122. n_embd_head_k (hparams.n_embd_head_k),
  7123. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  7124. n_embd_head_v (hparams.n_embd_head_v),
  7125. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  7126. n_expert (hparams.n_expert),
  7127. n_expert_used (hparams.n_expert_used),
  7128. freq_base (cparams.rope_freq_base),
  7129. freq_scale (cparams.rope_freq_scale),
  7130. ext_factor (cparams.yarn_ext_factor),
  7131. attn_factor (cparams.yarn_attn_factor),
  7132. beta_fast (cparams.yarn_beta_fast),
  7133. beta_slow (cparams.yarn_beta_slow),
  7134. norm_eps (hparams.f_norm_eps),
  7135. norm_rms_eps (hparams.f_norm_rms_eps),
  7136. n_tokens (batch.n_tokens),
  7137. n_kv (worst_case ? kv_self.size : kv_self.n),
  7138. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  7139. n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
  7140. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  7141. n_ctx_orig (cparams.n_ctx_orig_yarn),
  7142. flash_attn (cparams.flash_attn),
  7143. pooling_type (cparams.pooling_type),
  7144. rope_type (hparams.rope_type),
  7145. cb (cb),
  7146. buf_compute_meta (lctx.buf_compute_meta) {
  7147. // all initializations should be done in init()
  7148. }
  7149. void init() {
  7150. struct ggml_init_params params = {
  7151. /*.mem_size =*/ buf_compute_meta.size(),
  7152. /*.mem_buffer =*/ buf_compute_meta.data(),
  7153. /*.no_alloc =*/ true,
  7154. };
  7155. ctx0 = ggml_init(params);
  7156. lctx.inp_tokens = nullptr;
  7157. lctx.inp_embd = nullptr;
  7158. lctx.inp_pos = nullptr;
  7159. lctx.inp_out_ids = nullptr;
  7160. lctx.inp_KQ_mask = nullptr;
  7161. lctx.inp_KQ_mask_swa = nullptr;
  7162. lctx.inp_K_shift = nullptr;
  7163. lctx.inp_mean = nullptr;
  7164. lctx.inp_cls = nullptr;
  7165. lctx.inp_s_copy = nullptr;
  7166. lctx.inp_s_mask = nullptr;
  7167. lctx.inp_s_seq = nullptr;
  7168. lctx.inp_pos_bucket = nullptr;
  7169. lctx.inp_embd_enc = nullptr;
  7170. lctx.inp_KQ_mask_cross = nullptr;
  7171. }
  7172. void free() {
  7173. if (ctx0) {
  7174. ggml_free(ctx0);
  7175. ctx0 = nullptr;
  7176. }
  7177. }
  7178. struct ggml_cgraph * build_k_shift() {
  7179. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7180. GGML_ASSERT(kv_self.size == n_ctx);
  7181. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  7182. cb(lctx.inp_K_shift, "K_shift", -1);
  7183. ggml_set_input(lctx.inp_K_shift);
  7184. for (int il = 0; il < n_layer; ++il) {
  7185. const int64_t n_head_kv = hparams.n_head_kv(il);
  7186. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  7187. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7188. struct ggml_tensor * tmp =
  7189. // we rotate only the first n_rot dimensions
  7190. ggml_rope_ext_inplace(ctx0,
  7191. ggml_view_3d(ctx0, kv_self.k_l[il],
  7192. n_embd_head_k, n_head_kv, n_ctx,
  7193. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  7194. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  7195. 0),
  7196. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7197. ext_factor, attn_factor, beta_fast, beta_slow);
  7198. cb(tmp, "K_shifted", il);
  7199. ggml_build_forward_expand(gf, tmp);
  7200. }
  7201. return gf;
  7202. }
  7203. struct ggml_cgraph * build_s_copy() {
  7204. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7205. GGML_ASSERT(kv_self.recurrent);
  7206. struct ggml_tensor * state_copy = build_inp_s_copy();
  7207. for (int il = 0; il < n_layer; ++il) {
  7208. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  7209. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  7210. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  7211. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  7212. // TODO: name the intermediate tensors with cb()
  7213. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  7214. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  7215. }
  7216. return gf;
  7217. }
  7218. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  7219. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7220. for (uint32_t i = 0; i < ids.size(); ++i) {
  7221. const uint32_t id = ids[i];
  7222. if (i == id || id == ids.size()) {
  7223. continue;
  7224. }
  7225. uint32_t nm = 1;
  7226. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  7227. nm++;
  7228. }
  7229. for (int il = 0; il < n_layer; ++il) {
  7230. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  7231. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  7232. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  7233. n_embd_k_gqa, nm,
  7234. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  7235. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  7236. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  7237. n_embd_k_gqa, nm,
  7238. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  7239. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  7240. ggml_tensor * view_v_src;
  7241. ggml_tensor * view_v_dst;
  7242. if (flash_attn) {
  7243. // NOTE: the V cache is not transposed when using flash attention
  7244. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  7245. n_embd_v_gqa, nm,
  7246. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  7247. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  7248. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  7249. n_embd_v_gqa, nm,
  7250. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  7251. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  7252. } else {
  7253. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  7254. nm, n_embd_v_gqa,
  7255. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  7256. ggml_row_size(kv_self.v_l[il]->type, i));
  7257. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  7258. nm, n_embd_v_gqa,
  7259. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  7260. ggml_row_size(kv_self.v_l[il]->type, id));
  7261. }
  7262. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  7263. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  7264. }
  7265. i += nm - 1;
  7266. }
  7267. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  7268. return gf;
  7269. }
  7270. struct ggml_tensor * build_inp_pos() {
  7271. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  7272. cb(lctx.inp_pos, "inp_pos", -1);
  7273. ggml_set_input(lctx.inp_pos);
  7274. return lctx.inp_pos;
  7275. }
  7276. struct ggml_tensor * build_rope_factors(int il) {
  7277. // choose long/short freq factors based on the context size
  7278. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  7279. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  7280. return model.layers[il].rope_long;
  7281. }
  7282. return model.layers[il].rope_short;
  7283. }
  7284. struct ggml_tensor * build_inp_out_ids() {
  7285. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  7286. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  7287. ggml_set_input(lctx.inp_out_ids);
  7288. return lctx.inp_out_ids;
  7289. }
  7290. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  7291. lctx.inp_KQ_mask = causal
  7292. ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
  7293. : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  7294. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  7295. ggml_set_input(lctx.inp_KQ_mask);
  7296. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  7297. }
  7298. struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
  7299. GGML_ASSERT(hparams.n_swa > 0);
  7300. lctx.inp_KQ_mask_swa = causal
  7301. ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
  7302. : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  7303. cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
  7304. ggml_set_input(lctx.inp_KQ_mask_swa);
  7305. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
  7306. }
  7307. struct ggml_tensor * build_inp_mean() {
  7308. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  7309. cb(lctx.inp_mean, "inp_mean", -1);
  7310. ggml_set_input(lctx.inp_mean);
  7311. return lctx.inp_mean;
  7312. }
  7313. struct ggml_tensor * build_inp_cls() {
  7314. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  7315. cb(lctx.inp_cls, "inp_cls", -1);
  7316. ggml_set_input(lctx.inp_cls);
  7317. return lctx.inp_cls;
  7318. }
  7319. struct ggml_tensor * build_inp_s_copy() {
  7320. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  7321. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  7322. ggml_set_input(lctx.inp_s_copy);
  7323. return lctx.inp_s_copy;
  7324. }
  7325. struct ggml_tensor * build_inp_s_mask() {
  7326. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  7327. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  7328. ggml_set_input(lctx.inp_s_mask);
  7329. return lctx.inp_s_mask;
  7330. }
  7331. struct ggml_tensor * build_inp_s_seq() {
  7332. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  7333. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  7334. ggml_set_input(lctx.inp_s_seq);
  7335. return lctx.inp_s_seq;
  7336. }
  7337. struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
  7338. // find result_norm tensor for input
  7339. struct ggml_tensor * inp = nullptr;
  7340. for (int i = gf->n_nodes - 1; i >= 0; --i) {
  7341. inp = gf->nodes[i];
  7342. if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  7343. break;
  7344. } else {
  7345. inp = nullptr;
  7346. }
  7347. }
  7348. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  7349. struct ggml_tensor * cur;
  7350. switch (pooling_type) {
  7351. case LLAMA_POOLING_TYPE_MEAN:
  7352. {
  7353. struct ggml_tensor * inp_mean = build_inp_mean();
  7354. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  7355. } break;
  7356. case LLAMA_POOLING_TYPE_CLS:
  7357. case LLAMA_POOLING_TYPE_LAST:
  7358. {
  7359. struct ggml_tensor * inp_cls = build_inp_cls();
  7360. cur = ggml_get_rows(ctx0, inp, inp_cls);
  7361. } break;
  7362. case LLAMA_POOLING_TYPE_NONE:
  7363. {
  7364. cur = inp;
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false && "unknown pooling type");
  7369. } break;
  7370. }
  7371. cb(cur, "result_embd_pooled", -1);
  7372. ggml_build_forward_expand(gf, cur);
  7373. return gf;
  7374. }
  7375. struct ggml_tensor * llm_build_pos_bucket(bool causal) {
  7376. if (causal) {
  7377. lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  7378. } else {
  7379. lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
  7380. }
  7381. ggml_set_input(lctx.inp_pos_bucket);
  7382. cb(lctx.inp_pos_bucket, "pos_bucket", -1);
  7383. return lctx.inp_pos_bucket;
  7384. }
  7385. struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
  7386. struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
  7387. cb(pos_bucket_1d, "pos_bucket_1d", -1);
  7388. struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
  7389. cb(pos_bias, "pos_bias", -1);
  7390. pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0], 0);
  7391. cb(pos_bias, "pos_bias", -1);
  7392. pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
  7393. cb(pos_bias, "pos_bias", -1);
  7394. pos_bias = ggml_cont(ctx0, pos_bias);
  7395. cb(pos_bias, "pos_bias", -1);
  7396. return pos_bias;
  7397. }
  7398. struct ggml_tensor * llm_build_inp_embd_enc() {
  7399. const int64_t n_embd = hparams.n_embd;
  7400. lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
  7401. ggml_set_input(lctx.inp_embd_enc);
  7402. cb(lctx.inp_embd_enc, "embd_enc", -1);
  7403. return lctx.inp_embd_enc;
  7404. }
  7405. struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
  7406. lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  7407. ggml_set_input(lctx.inp_KQ_mask_cross);
  7408. cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
  7409. return lctx.inp_KQ_mask_cross;
  7410. }
  7411. struct ggml_cgraph * build_llama() {
  7412. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7413. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7414. int32_t n_tokens = this->n_tokens;
  7415. const int64_t n_embd_head = hparams.n_embd_head_v;
  7416. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7417. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7418. struct ggml_tensor * cur;
  7419. struct ggml_tensor * inpL;
  7420. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7421. // inp_pos - contains the positions
  7422. struct ggml_tensor * inp_pos = build_inp_pos();
  7423. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7424. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7425. for (int il = 0; il < n_layer; ++il) {
  7426. struct ggml_tensor * inpSA = inpL;
  7427. // norm
  7428. cur = llm_build_norm(ctx0, inpL, hparams,
  7429. model.layers[il].attn_norm, NULL,
  7430. LLM_NORM_RMS, cb, il);
  7431. cb(cur, "attn_norm", il);
  7432. // self-attention
  7433. {
  7434. // compute Q and K and RoPE them
  7435. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7436. cb(Qcur, "Qcur", il);
  7437. if (model.layers[il].bq) {
  7438. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7439. cb(Qcur, "Qcur", il);
  7440. }
  7441. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7442. cb(Kcur, "Kcur", il);
  7443. if (model.layers[il].bk) {
  7444. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7445. cb(Kcur, "Kcur", il);
  7446. }
  7447. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7448. cb(Vcur, "Vcur", il);
  7449. if (model.layers[il].bv) {
  7450. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7451. cb(Vcur, "Vcur", il);
  7452. }
  7453. Qcur = ggml_rope_ext(
  7454. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7455. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7456. ext_factor, attn_factor, beta_fast, beta_slow
  7457. );
  7458. cb(Qcur, "Qcur", il);
  7459. Kcur = ggml_rope_ext(
  7460. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7461. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7462. ext_factor, attn_factor, beta_fast, beta_slow
  7463. );
  7464. cb(Kcur, "Kcur", il);
  7465. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7466. model.layers[il].wo, model.layers[il].bo,
  7467. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7468. }
  7469. if (il == n_layer - 1) {
  7470. // skip computing output for unused tokens
  7471. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7472. n_tokens = n_outputs;
  7473. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7474. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7475. }
  7476. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7477. cb(ffn_inp, "ffn_inp", il);
  7478. // feed-forward network
  7479. if (model.layers[il].ffn_gate_inp == nullptr) {
  7480. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7481. model.layers[il].ffn_norm, NULL,
  7482. LLM_NORM_RMS, cb, il);
  7483. cb(cur, "ffn_norm", il);
  7484. cur = llm_build_ffn(ctx0, cur,
  7485. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7486. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  7487. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7488. NULL,
  7489. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7490. cb(cur, "ffn_out", il);
  7491. } else {
  7492. // MoE branch
  7493. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7494. model.layers[il].ffn_norm, NULL,
  7495. LLM_NORM_RMS, cb, il);
  7496. cb(cur, "ffn_norm", il);
  7497. cur = llm_build_moe_ffn(ctx0, cur,
  7498. model.layers[il].ffn_gate_inp,
  7499. model.layers[il].ffn_up_exps,
  7500. model.layers[il].ffn_gate_exps,
  7501. model.layers[il].ffn_down_exps,
  7502. n_expert, n_expert_used,
  7503. LLM_FFN_SILU, true,
  7504. false, 0.0,
  7505. cb, il);
  7506. cb(cur, "ffn_moe_out", il);
  7507. }
  7508. cur = ggml_add(ctx0, cur, ffn_inp);
  7509. cb(cur, "ffn_out", il);
  7510. cur = lctx.cvec.apply_to(ctx0, cur, il);
  7511. cb(cur, "l_out", il);
  7512. // input for next layer
  7513. inpL = cur;
  7514. }
  7515. cur = inpL;
  7516. cur = llm_build_norm(ctx0, cur, hparams,
  7517. model.output_norm, NULL,
  7518. LLM_NORM_RMS, cb, -1);
  7519. cb(cur, "result_norm", -1);
  7520. // lm_head
  7521. cur = ggml_mul_mat(ctx0, model.output, cur);
  7522. cb(cur, "result_output", -1);
  7523. ggml_build_forward_expand(gf, cur);
  7524. return gf;
  7525. }
  7526. struct ggml_cgraph * build_baichuan() {
  7527. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7528. const int64_t n_embd_head = hparams.n_embd_head_v;
  7529. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7530. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7531. struct ggml_tensor * cur;
  7532. struct ggml_tensor * inpL;
  7533. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7534. // inp_pos - contains the positions
  7535. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  7536. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7537. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7538. for (int il = 0; il < n_layer; ++il) {
  7539. struct ggml_tensor * inpSA = inpL;
  7540. cur = llm_build_norm(ctx0, inpL, hparams,
  7541. model.layers[il].attn_norm, NULL,
  7542. LLM_NORM_RMS, cb, il);
  7543. cb(cur, "attn_norm", il);
  7544. // self-attention
  7545. {
  7546. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7547. cb(Qcur, "Qcur", il);
  7548. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7549. cb(Kcur, "Kcur", il);
  7550. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7551. cb(Vcur, "Vcur", il);
  7552. switch (model.type) {
  7553. case MODEL_7B:
  7554. Qcur = ggml_rope_ext(
  7555. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7556. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7557. ext_factor, attn_factor, beta_fast, beta_slow
  7558. );
  7559. Kcur = ggml_rope_ext(
  7560. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7561. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7562. ext_factor, attn_factor, beta_fast, beta_slow
  7563. );
  7564. break;
  7565. case MODEL_13B:
  7566. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  7567. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  7568. break;
  7569. default:
  7570. GGML_ASSERT(false);
  7571. }
  7572. cb(Qcur, "Qcur", il);
  7573. cb(Kcur, "Kcur", il);
  7574. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7575. model.layers[il].wo, NULL,
  7576. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7577. }
  7578. if (il == n_layer - 1) {
  7579. // skip computing output for unused tokens
  7580. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7581. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7582. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7583. }
  7584. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7585. cb(ffn_inp, "ffn_inp", il);
  7586. // feed-forward network
  7587. {
  7588. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7589. model.layers[il].ffn_norm, NULL,
  7590. LLM_NORM_RMS, cb, il);
  7591. cb(cur, "ffn_norm", il);
  7592. cur = llm_build_ffn(ctx0, cur,
  7593. model.layers[il].ffn_up, NULL, NULL,
  7594. model.layers[il].ffn_gate, NULL, NULL,
  7595. model.layers[il].ffn_down, NULL, NULL,
  7596. NULL,
  7597. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7598. cb(cur, "ffn_out", il);
  7599. }
  7600. cur = ggml_add(ctx0, cur, ffn_inp);
  7601. cur = lctx.cvec.apply_to(ctx0, cur, il);
  7602. cb(cur, "l_out", il);
  7603. // input for next layer
  7604. inpL = cur;
  7605. }
  7606. cur = inpL;
  7607. cur = llm_build_norm(ctx0, cur, hparams,
  7608. model.output_norm, NULL,
  7609. LLM_NORM_RMS, cb, -1);
  7610. cb(cur, "result_norm", -1);
  7611. // lm_head
  7612. cur = ggml_mul_mat(ctx0, model.output, cur);
  7613. cb(cur, "result_output", -1);
  7614. ggml_build_forward_expand(gf, cur);
  7615. return gf;
  7616. }
  7617. struct ggml_cgraph * build_xverse() {
  7618. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7619. const int64_t n_embd_head = hparams.n_embd_head_v;
  7620. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7621. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7622. struct ggml_tensor * cur;
  7623. struct ggml_tensor * inpL;
  7624. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7625. // inp_pos - contains the positions
  7626. struct ggml_tensor * inp_pos = build_inp_pos();
  7627. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7628. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7629. for (int il = 0; il < n_layer; ++il) {
  7630. struct ggml_tensor * inpSA = inpL;
  7631. cur = llm_build_norm(ctx0, inpL, hparams,
  7632. model.layers[il].attn_norm, NULL,
  7633. LLM_NORM_RMS, cb, il);
  7634. cb(cur, "attn_norm", il);
  7635. // self-attention
  7636. {
  7637. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7638. cb(Qcur, "Qcur", il);
  7639. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7640. cb(Kcur, "Kcur", il);
  7641. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7642. cb(Vcur, "Vcur", il);
  7643. Qcur = ggml_rope_ext(
  7644. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7645. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7646. ext_factor, attn_factor, beta_fast, beta_slow
  7647. );
  7648. cb(Qcur, "Qcur", il);
  7649. Kcur = ggml_rope_ext(
  7650. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7651. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7652. ext_factor, attn_factor, beta_fast, beta_slow
  7653. );
  7654. cb(Kcur, "Kcur", il);
  7655. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7656. model.layers[il].wo, NULL,
  7657. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7658. }
  7659. if (il == n_layer - 1) {
  7660. // skip computing output for unused tokens
  7661. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7662. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7663. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7664. }
  7665. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7666. cb(ffn_inp, "ffn_inp", il);
  7667. // feed-forward network
  7668. {
  7669. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7670. model.layers[il].ffn_norm, NULL,
  7671. LLM_NORM_RMS, cb, il);
  7672. cb(cur, "ffn_norm", il);
  7673. cur = llm_build_ffn(ctx0, cur,
  7674. model.layers[il].ffn_up, NULL, NULL,
  7675. model.layers[il].ffn_gate, NULL, NULL,
  7676. model.layers[il].ffn_down, NULL, NULL,
  7677. NULL,
  7678. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7679. cb(cur, "ffn_out", il);
  7680. }
  7681. cur = ggml_add(ctx0, cur, ffn_inp);
  7682. cur = lctx.cvec.apply_to(ctx0, cur, il);
  7683. cb(cur, "l_out", il);
  7684. // input for next layer
  7685. inpL = cur;
  7686. }
  7687. cur = inpL;
  7688. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  7689. cb(cur, "result_norm", -1);
  7690. // lm_head
  7691. cur = ggml_mul_mat(ctx0, model.output, cur);
  7692. cb(cur, "result_output", -1);
  7693. ggml_build_forward_expand(gf, cur);
  7694. return gf;
  7695. }
  7696. struct ggml_cgraph * build_falcon() {
  7697. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7698. const int64_t n_embd_head = hparams.n_embd_head_v;
  7699. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7700. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7701. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7702. struct ggml_tensor * cur;
  7703. struct ggml_tensor * inpL;
  7704. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7705. // inp_pos - contains the positions
  7706. struct ggml_tensor * inp_pos = build_inp_pos();
  7707. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7708. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7709. for (int il = 0; il < n_layer; ++il) {
  7710. struct ggml_tensor * attn_norm;
  7711. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7712. model.layers[il].attn_norm,
  7713. model.layers[il].attn_norm_b,
  7714. LLM_NORM, cb, il);
  7715. cb(attn_norm, "attn_norm", il);
  7716. // self-attention
  7717. {
  7718. if (model.layers[il].attn_norm_2) {
  7719. // Falcon-40B
  7720. cur = llm_build_norm(ctx0, inpL, hparams,
  7721. model.layers[il].attn_norm_2,
  7722. model.layers[il].attn_norm_2_b,
  7723. LLM_NORM, cb, il);
  7724. cb(cur, "attn_norm_2", il);
  7725. } else {
  7726. cur = attn_norm;
  7727. }
  7728. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7729. cb(cur, "wqkv", il);
  7730. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7731. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7732. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7733. cb(Qcur, "Qcur", il);
  7734. cb(Kcur, "Kcur", il);
  7735. cb(Vcur, "Vcur", il);
  7736. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7737. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7738. // using mode = 2 for neox mode
  7739. Qcur = ggml_rope_ext(
  7740. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7741. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7742. );
  7743. cb(Qcur, "Qcur", il);
  7744. Kcur = ggml_rope_ext(
  7745. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7746. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7747. );
  7748. cb(Kcur, "Kcur", il);
  7749. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7750. model.layers[il].wo, NULL,
  7751. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7752. }
  7753. if (il == n_layer - 1) {
  7754. // skip computing output for unused tokens
  7755. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7756. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7757. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7758. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  7759. }
  7760. struct ggml_tensor * ffn_inp = cur;
  7761. // feed forward
  7762. {
  7763. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  7764. model.layers[il].ffn_up, NULL, NULL,
  7765. NULL, NULL, NULL,
  7766. model.layers[il].ffn_down, NULL, NULL,
  7767. NULL,
  7768. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7769. cb(cur, "ffn_out", il);
  7770. }
  7771. cur = ggml_add(ctx0, cur, ffn_inp);
  7772. cur = ggml_add(ctx0, cur, inpL);
  7773. cur = lctx.cvec.apply_to(ctx0, cur, il);
  7774. cb(cur, "l_out", il);
  7775. // input for next layer
  7776. inpL = cur;
  7777. }
  7778. cur = inpL;
  7779. // norm
  7780. cur = llm_build_norm(ctx0, cur, hparams,
  7781. model.output_norm,
  7782. model.output_norm_b,
  7783. LLM_NORM, cb, -1);
  7784. cb(cur, "result_norm", -1);
  7785. cur = ggml_mul_mat(ctx0, model.output, cur);
  7786. cb(cur, "result_output", -1);
  7787. ggml_build_forward_expand(gf, cur);
  7788. return gf;
  7789. }
  7790. struct ggml_cgraph * build_grok() {
  7791. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7792. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7793. int32_t n_tokens = this->n_tokens;
  7794. const int64_t n_embd_head = hparams.n_embd_head_v;
  7795. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7796. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7797. struct ggml_tensor * cur;
  7798. struct ggml_tensor * inpL;
  7799. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7800. // multiply by embedding_multiplier_scale of 78.38367176906169
  7801. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  7802. // inp_pos - contains the positions
  7803. struct ggml_tensor * inp_pos = build_inp_pos();
  7804. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7805. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7806. for (int il = 0; il < n_layer; ++il) {
  7807. struct ggml_tensor * inpSA = inpL;
  7808. // norm
  7809. cur = llm_build_norm(ctx0, inpL, hparams,
  7810. model.layers[il].attn_norm, NULL,
  7811. LLM_NORM_RMS, cb, il);
  7812. cb(cur, "attn_norm", il);
  7813. // self-attention
  7814. {
  7815. // compute Q and K and RoPE them
  7816. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7817. cb(Qcur, "Qcur", il);
  7818. if (model.layers[il].bq) {
  7819. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7820. cb(Qcur, "Qcur", il);
  7821. }
  7822. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7823. cb(Kcur, "Kcur", il);
  7824. if (model.layers[il].bk) {
  7825. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7826. cb(Kcur, "Kcur", il);
  7827. }
  7828. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7829. cb(Vcur, "Vcur", il);
  7830. if (model.layers[il].bv) {
  7831. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7832. cb(Vcur, "Vcur", il);
  7833. }
  7834. Qcur = ggml_rope_ext(
  7835. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7836. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7837. ext_factor, attn_factor, beta_fast, beta_slow
  7838. );
  7839. cb(Qcur, "Qcur", il);
  7840. Kcur = ggml_rope_ext(
  7841. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7842. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7843. ext_factor, attn_factor, beta_fast, beta_slow
  7844. );
  7845. cb(Kcur, "Kcur", il);
  7846. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7847. model.layers[il].wo, model.layers[il].bo,
  7848. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7849. }
  7850. if (il == n_layer - 1) {
  7851. // skip computing output for unused tokens
  7852. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7853. n_tokens = n_outputs;
  7854. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7855. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7856. }
  7857. // Grok
  7858. // if attn_out_norm is present then apply it before adding the input
  7859. if (model.layers[il].attn_out_norm) {
  7860. cur = llm_build_norm(ctx0, cur, hparams,
  7861. model.layers[il].attn_out_norm, NULL,
  7862. LLM_NORM_RMS, cb, il);
  7863. cb(cur, "attn_out_norm", il);
  7864. }
  7865. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7866. cb(ffn_inp, "ffn_inp", il);
  7867. // feed-forward network
  7868. // MoE branch
  7869. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7870. model.layers[il].ffn_norm, NULL,
  7871. LLM_NORM_RMS, cb, il);
  7872. cb(cur, "ffn_norm", il);
  7873. cur = llm_build_moe_ffn(ctx0, cur,
  7874. model.layers[il].ffn_gate_inp,
  7875. model.layers[il].ffn_up_exps,
  7876. model.layers[il].ffn_gate_exps,
  7877. model.layers[il].ffn_down_exps,
  7878. n_expert, n_expert_used,
  7879. LLM_FFN_GELU, true,
  7880. false, 0.0,
  7881. cb, il);
  7882. cb(cur, "ffn_moe_out", il);
  7883. // Grok
  7884. // if layer_out_norm is present then apply it before adding the input
  7885. // Idea: maybe ffn_out_norm is a better name
  7886. if (model.layers[il].layer_out_norm) {
  7887. cur = llm_build_norm(ctx0, cur, hparams,
  7888. model.layers[il].layer_out_norm, NULL,
  7889. LLM_NORM_RMS, cb, il);
  7890. cb(cur, "layer_out_norm", il);
  7891. }
  7892. cur = ggml_add(ctx0, cur, ffn_inp);
  7893. cb(cur, "ffn_out", il);
  7894. cur = lctx.cvec.apply_to(ctx0, cur, il);
  7895. cb(cur, "l_out", il);
  7896. // input for next layer
  7897. inpL = cur;
  7898. }
  7899. cur = inpL;
  7900. cur = llm_build_norm(ctx0, cur, hparams,
  7901. model.output_norm, NULL,
  7902. LLM_NORM_RMS, cb, -1);
  7903. cb(cur, "result_norm", -1);
  7904. // lm_head
  7905. cur = ggml_mul_mat(ctx0, model.output, cur);
  7906. // Grok
  7907. // multiply logits by output_multiplier_scale of 0.5773502691896257
  7908. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  7909. cb(cur, "result_output", -1);
  7910. ggml_build_forward_expand(gf, cur);
  7911. return gf;
  7912. }
  7913. struct ggml_cgraph * build_dbrx() {
  7914. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7915. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7916. int32_t n_tokens = this->n_tokens;
  7917. const int64_t n_embd_head = hparams.n_embd_head_v;
  7918. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7919. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7920. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7921. struct ggml_tensor * cur;
  7922. struct ggml_tensor * inpL;
  7923. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7924. // inp_pos - contains the positions
  7925. struct ggml_tensor * inp_pos = build_inp_pos();
  7926. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7927. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7928. for (int il = 0; il < n_layer; ++il) {
  7929. struct ggml_tensor * inpSA = inpL;
  7930. // norm
  7931. cur = llm_build_norm(ctx0, inpL, hparams,
  7932. model.layers[il].attn_norm, NULL,
  7933. LLM_NORM, cb, il);
  7934. cb(cur, "attn_norm", il);
  7935. // self-attention
  7936. {
  7937. struct ggml_tensor * Qcur = nullptr;
  7938. struct ggml_tensor * Kcur = nullptr;
  7939. struct ggml_tensor * Vcur = nullptr;
  7940. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7941. cb(cur, "wqkv", il);
  7942. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7943. cb(cur, "wqkv_clamped", il);
  7944. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7945. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7946. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7947. cb(Qcur, "Qcur", il);
  7948. cb(Kcur, "Kcur", il);
  7949. cb(Vcur, "Vcur", il);
  7950. Qcur = ggml_rope_ext(
  7951. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7952. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7953. ext_factor, attn_factor, beta_fast, beta_slow
  7954. );
  7955. cb(Qcur, "Qcur", il);
  7956. Kcur = ggml_rope_ext(
  7957. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7958. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7959. ext_factor, attn_factor, beta_fast, beta_slow
  7960. );
  7961. cb(Kcur, "Kcur", il);
  7962. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7963. model.layers[il].wo, NULL,
  7964. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7965. }
  7966. if (il == n_layer - 1) {
  7967. // skip computing output for unused tokens
  7968. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7969. n_tokens = n_outputs;
  7970. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7971. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7972. }
  7973. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7974. cb(ffn_inp, "ffn_inp", il);
  7975. // feed-forward network
  7976. // MoE branch
  7977. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7978. model.layers[il].attn_out_norm, NULL,
  7979. LLM_NORM, cb, il);
  7980. cb(cur, "attn_out_norm", il);
  7981. cur = llm_build_moe_ffn(ctx0, cur,
  7982. model.layers[il].ffn_gate_inp,
  7983. model.layers[il].ffn_up_exps,
  7984. model.layers[il].ffn_gate_exps,
  7985. model.layers[il].ffn_down_exps,
  7986. n_expert, n_expert_used,
  7987. LLM_FFN_SILU, true,
  7988. false, 0.0,
  7989. cb, il);
  7990. cb(cur, "ffn_moe_out", il);
  7991. cur = ggml_add(ctx0, cur, ffn_inp);
  7992. cb(cur, "ffn_out", il);
  7993. cur = lctx.cvec.apply_to(ctx0, cur, il);
  7994. cb(cur, "l_out", il);
  7995. // input for next layer
  7996. inpL = cur;
  7997. }
  7998. cur = inpL;
  7999. cur = llm_build_norm(ctx0, cur, hparams,
  8000. model.output_norm, NULL,
  8001. LLM_NORM, cb, -1);
  8002. cb(cur, "result_norm", -1);
  8003. // lm_head
  8004. cur = ggml_mul_mat(ctx0, model.output, cur);
  8005. cb(cur, "result_output", -1);
  8006. ggml_build_forward_expand(gf, cur);
  8007. return gf;
  8008. }
  8009. struct ggml_cgraph * build_starcoder() {
  8010. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8011. const int64_t n_embd_head = hparams.n_embd_head_v;
  8012. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8013. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8014. struct ggml_tensor * cur;
  8015. struct ggml_tensor * inpL;
  8016. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8017. // inp_pos - contains the positions
  8018. struct ggml_tensor * inp_pos = build_inp_pos();
  8019. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8020. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8021. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8022. cb(pos, "pos_embd", -1);
  8023. inpL = ggml_add(ctx0, inpL, pos);
  8024. cb(inpL, "inpL", -1);
  8025. for (int il = 0; il < n_layer; ++il) {
  8026. cur = llm_build_norm(ctx0, inpL, hparams,
  8027. model.layers[il].attn_norm,
  8028. model.layers[il].attn_norm_b,
  8029. LLM_NORM, cb, il);
  8030. cb(cur, "attn_norm", il);
  8031. // self-attention
  8032. {
  8033. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8034. cb(cur, "wqkv", il);
  8035. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8036. cb(cur, "bqkv", il);
  8037. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8038. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8039. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8040. cb(Qcur, "Qcur", il);
  8041. cb(Kcur, "Kcur", il);
  8042. cb(Vcur, "Vcur", il);
  8043. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8044. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8045. model.layers[il].wo, model.layers[il].bo,
  8046. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8047. }
  8048. if (il == n_layer - 1) {
  8049. // skip computing output for unused tokens
  8050. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8051. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8052. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8053. }
  8054. // add the input
  8055. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8056. cb(ffn_inp, "ffn_inp", il);
  8057. // FF
  8058. {
  8059. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8060. model.layers[il].ffn_norm,
  8061. model.layers[il].ffn_norm_b,
  8062. LLM_NORM, cb, il);
  8063. cb(cur, "ffn_norm", il);
  8064. cur = llm_build_ffn(ctx0, cur,
  8065. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8066. NULL, NULL, NULL,
  8067. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8068. NULL,
  8069. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8070. cb(cur, "ffn_out", il);
  8071. }
  8072. cur = ggml_add(ctx0, cur, ffn_inp);
  8073. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8074. cb(cur, "l_out", il);
  8075. // input for next layer
  8076. inpL = cur;
  8077. }
  8078. cur = llm_build_norm(ctx0, inpL, hparams,
  8079. model.output_norm,
  8080. model.output_norm_b,
  8081. LLM_NORM, cb, -1);
  8082. cb(cur, "result_norm", -1);
  8083. cur = ggml_mul_mat(ctx0, model.output, cur);
  8084. cb(cur, "result_output", -1);
  8085. ggml_build_forward_expand(gf, cur);
  8086. return gf;
  8087. }
  8088. struct ggml_cgraph * build_refact() {
  8089. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8090. const int64_t n_embd_head = hparams.n_embd_head_v;
  8091. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8092. struct ggml_tensor * cur;
  8093. struct ggml_tensor * inpL;
  8094. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8095. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8096. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8097. for (int il = 0; il < n_layer; ++il) {
  8098. struct ggml_tensor * inpSA = inpL;
  8099. cur = llm_build_norm(ctx0, inpL, hparams,
  8100. model.layers[il].attn_norm, NULL,
  8101. LLM_NORM_RMS, cb, il);
  8102. cb(cur, "attn_norm", il);
  8103. // self-attention
  8104. {
  8105. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8106. cb(Qcur, "Qcur", il);
  8107. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8108. cb(Kcur, "Kcur", il);
  8109. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8110. cb(Vcur, "Vcur", il);
  8111. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8112. cb(Kcur, "Kcur", il);
  8113. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8114. cb(Qcur, "Qcur", il);
  8115. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8116. model.layers[il].wo, NULL,
  8117. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8118. }
  8119. if (il == n_layer - 1) {
  8120. // skip computing output for unused tokens
  8121. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8122. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8123. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8124. }
  8125. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8126. cb(ffn_inp, "ffn_inp", il);
  8127. // feed-forward network
  8128. {
  8129. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8130. model.layers[il].ffn_norm, NULL,
  8131. LLM_NORM_RMS, cb, il);
  8132. cb(cur, "ffn_norm", il);
  8133. cur = llm_build_ffn(ctx0, cur,
  8134. model.layers[il].ffn_up, NULL, NULL,
  8135. model.layers[il].ffn_gate, NULL, NULL,
  8136. model.layers[il].ffn_down, NULL, NULL,
  8137. NULL,
  8138. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8139. cb(cur, "ffn_out", il);
  8140. }
  8141. cur = ggml_add(ctx0, cur, ffn_inp);
  8142. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8143. cb(cur, "l_out", il);
  8144. // input for next layer
  8145. inpL = cur;
  8146. }
  8147. cur = inpL;
  8148. cur = llm_build_norm(ctx0, cur, hparams,
  8149. model.output_norm, NULL,
  8150. LLM_NORM_RMS, cb, -1);
  8151. cb(cur, "result_norm", -1);
  8152. // lm_head
  8153. cur = ggml_mul_mat(ctx0, model.output, cur);
  8154. cb(cur, "result_output", -1);
  8155. ggml_build_forward_expand(gf, cur);
  8156. return gf;
  8157. }
  8158. struct ggml_cgraph * build_bert() {
  8159. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8160. const int64_t n_embd_head = hparams.n_embd_head_v;
  8161. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8162. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8163. struct ggml_tensor * cur;
  8164. struct ggml_tensor * inpL;
  8165. struct ggml_tensor * inp_pos = nullptr;
  8166. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  8167. inp_pos = build_inp_pos();
  8168. }
  8169. // construct input embeddings (token, type, position)
  8170. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8171. // token types are hardcoded to zero ("Sentence A")
  8172. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  8173. inpL = ggml_add(ctx0, inpL, type_row0);
  8174. if (model.arch == LLM_ARCH_BERT) {
  8175. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  8176. }
  8177. cb(inpL, "inp_embd", -1);
  8178. // embed layer norm
  8179. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  8180. cb(inpL, "inp_norm", -1);
  8181. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8182. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  8183. // iterate layers
  8184. for (int il = 0; il < n_layer; ++il) {
  8185. struct ggml_tensor * cur = inpL;
  8186. struct ggml_tensor * Qcur;
  8187. struct ggml_tensor * Kcur;
  8188. struct ggml_tensor * Vcur;
  8189. // self-attention
  8190. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  8191. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  8192. cb(Qcur, "Qcur", il);
  8193. if (model.layers[il].attn_q_norm) {
  8194. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8195. model.layers[il].attn_q_norm,
  8196. model.layers[il].attn_q_norm_b,
  8197. LLM_NORM, cb, il);
  8198. }
  8199. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  8200. cb(Kcur, "Kcur", il);
  8201. if (model.layers[il].attn_k_norm) {
  8202. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8203. model.layers[il].attn_k_norm,
  8204. model.layers[il].attn_k_norm_b,
  8205. LLM_NORM, cb, il);
  8206. }
  8207. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  8208. cb(Vcur, "Vcur", il);
  8209. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8210. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8211. } else {
  8212. // compute Q and K and RoPE them
  8213. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8214. cb(cur, "wqkv", il);
  8215. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8216. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8217. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8218. cb(Qcur, "Qcur", il);
  8219. cb(Kcur, "Kcur", il);
  8220. cb(Vcur, "Vcur", il);
  8221. Qcur = ggml_rope_ext(
  8222. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8223. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8224. ext_factor, attn_factor, beta_fast, beta_slow
  8225. );
  8226. cb(Qcur, "Qcur", il);
  8227. Kcur = ggml_rope_ext(
  8228. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8229. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8230. ext_factor, attn_factor, beta_fast, beta_slow
  8231. );
  8232. cb(Kcur, "Kcur", il);
  8233. }
  8234. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8235. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8236. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8237. cb(kq, "kq", il);
  8238. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  8239. cb(kq, "kq_soft_max_ext", il);
  8240. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  8241. cb(v, "v", il);
  8242. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  8243. cb(kqv, "kqv", il);
  8244. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8245. cb(kqv_merged, "kqv_merged", il);
  8246. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8247. cb(cur, "kqv_merged_cont", il);
  8248. ggml_build_forward_expand(gf, cur);
  8249. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  8250. if (model.layers[il].bo) {
  8251. cb(cur, "kqv_wo", il);
  8252. }
  8253. if (model.layers[il].bo) {
  8254. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8255. }
  8256. cb(cur, "kqv_out", il);
  8257. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8258. // skip computing output for unused tokens
  8259. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8260. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8261. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8262. }
  8263. // re-add the layer input
  8264. cur = ggml_add(ctx0, cur, inpL);
  8265. // attention layer norm
  8266. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  8267. if (model.layers[il].attn_norm_2 != nullptr) {
  8268. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  8269. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  8270. }
  8271. struct ggml_tensor * ffn_inp = cur;
  8272. cb(ffn_inp, "ffn_inp", il);
  8273. // feed-forward network
  8274. if (model.arch == LLM_ARCH_BERT) {
  8275. cur = llm_build_ffn(ctx0, cur,
  8276. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8277. NULL, NULL, NULL,
  8278. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8279. NULL,
  8280. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8281. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  8282. cur = llm_build_ffn(ctx0, cur,
  8283. model.layers[il].ffn_up, NULL, NULL,
  8284. model.layers[il].ffn_gate, NULL, NULL,
  8285. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8286. NULL,
  8287. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8288. } else {
  8289. cur = llm_build_ffn(ctx0, cur,
  8290. model.layers[il].ffn_up, NULL, NULL,
  8291. model.layers[il].ffn_gate, NULL, NULL,
  8292. model.layers[il].ffn_down, NULL, NULL,
  8293. NULL,
  8294. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8295. }
  8296. cb(cur, "ffn_out", il);
  8297. // attentions bypass the intermediate layer
  8298. cur = ggml_add(ctx0, cur, ffn_inp);
  8299. // output layer norm
  8300. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  8301. // input for next layer
  8302. inpL = cur;
  8303. }
  8304. // final output
  8305. cur = inpL;
  8306. cb(cur, "result_embd", -1);
  8307. ggml_build_forward_expand(gf, cur);
  8308. return gf;
  8309. }
  8310. struct ggml_cgraph * build_bloom() {
  8311. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8312. const int64_t n_embd_head = hparams.n_embd_head_v;
  8313. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8314. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8315. struct ggml_tensor * cur;
  8316. struct ggml_tensor * inpL;
  8317. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8318. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8319. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8320. inpL = llm_build_norm(ctx0, inpL, hparams,
  8321. model.tok_norm,
  8322. model.tok_norm_b,
  8323. LLM_NORM, cb, -1);
  8324. cb(inpL, "inp_norm", -1);
  8325. for (int il = 0; il < n_layer; ++il) {
  8326. cur = llm_build_norm(ctx0, inpL, hparams,
  8327. model.layers[il].attn_norm,
  8328. model.layers[il].attn_norm_b,
  8329. LLM_NORM, cb, il);
  8330. cb(cur, "attn_norm", il);
  8331. // self-attention
  8332. {
  8333. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8334. cb(cur, "wqkv", il);
  8335. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8336. cb(cur, "bqkv", il);
  8337. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8338. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8339. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8340. cb(Qcur, "Qcur", il);
  8341. cb(Kcur, "Kcur", il);
  8342. cb(Vcur, "Vcur", il);
  8343. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8344. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8345. model.layers[il].wo, model.layers[il].bo,
  8346. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8347. }
  8348. if (il == n_layer - 1) {
  8349. // skip computing output for unused tokens
  8350. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8351. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8352. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8353. }
  8354. // Add the input
  8355. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8356. cb(ffn_inp, "ffn_inp", il);
  8357. // FF
  8358. {
  8359. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8360. model.layers[il].ffn_norm,
  8361. model.layers[il].ffn_norm_b,
  8362. LLM_NORM, cb, il);
  8363. cb(cur, "ffn_norm", il);
  8364. cur = llm_build_ffn(ctx0, cur,
  8365. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8366. NULL, NULL, NULL,
  8367. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8368. NULL,
  8369. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8370. cb(cur, "ffn_out", il);
  8371. }
  8372. cur = ggml_add(ctx0, cur, ffn_inp);
  8373. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8374. cb(cur, "l_out", il);
  8375. // input for next layer
  8376. inpL = cur;
  8377. }
  8378. cur = llm_build_norm(ctx0, inpL, hparams,
  8379. model.output_norm,
  8380. model.output_norm_b,
  8381. LLM_NORM, cb, -1);
  8382. cb(cur, "result_norm", -1);
  8383. cur = ggml_mul_mat(ctx0, model.output, cur);
  8384. cb(cur, "result_output", -1);
  8385. ggml_build_forward_expand(gf, cur);
  8386. return gf;
  8387. }
  8388. struct ggml_cgraph * build_mpt() {
  8389. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8390. const int64_t n_embd_head = hparams.n_embd_head_v;
  8391. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8392. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8393. struct ggml_tensor * cur;
  8394. struct ggml_tensor * pos;
  8395. struct ggml_tensor * inpL;
  8396. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8397. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8398. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8399. if (model.pos_embd) {
  8400. // inp_pos - contains the positions
  8401. struct ggml_tensor * inp_pos = build_inp_pos();
  8402. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8403. cb(pos, "pos_embd", -1);
  8404. inpL = ggml_add(ctx0, inpL, pos);
  8405. cb(inpL, "inpL", -1);
  8406. }
  8407. for (int il = 0; il < n_layer; ++il) {
  8408. struct ggml_tensor * attn_norm;
  8409. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  8410. model.layers[il].attn_norm,
  8411. model.layers[il].attn_norm_b,
  8412. LLM_NORM, cb, il);
  8413. cb(attn_norm, "attn_norm", il);
  8414. // self-attention
  8415. {
  8416. cur = attn_norm;
  8417. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8418. cb(cur, "wqkv", il);
  8419. if (model.layers[il].bqkv){
  8420. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8421. cb(cur, "bqkv", il);
  8422. }
  8423. if (hparams.f_clamp_kqv > 0.0f) {
  8424. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8425. cb(cur, "wqkv_clamped", il);
  8426. }
  8427. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8428. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8429. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8430. cb(Qcur, "Qcur", il);
  8431. cb(Kcur, "Kcur", il);
  8432. cb(Vcur, "Vcur", il);
  8433. // Q/K Layernorm
  8434. if (model.layers[il].attn_q_norm) {
  8435. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8436. model.layers[il].attn_q_norm,
  8437. model.layers[il].attn_q_norm_b,
  8438. LLM_NORM, cb, il);
  8439. cb(Qcur, "Qcur", il);
  8440. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8441. model.layers[il].attn_k_norm,
  8442. model.layers[il].attn_k_norm_b,
  8443. LLM_NORM, cb, il);
  8444. cb(Kcur, "Kcur", il);
  8445. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8446. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8447. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8448. model.layers[il].wo, model.layers[il].bo,
  8449. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8450. } else {
  8451. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8452. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8453. model.layers[il].wo, model.layers[il].bo,
  8454. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8455. }
  8456. }
  8457. if (il == n_layer - 1) {
  8458. // skip computing output for unused tokens
  8459. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8460. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8461. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8462. }
  8463. // Add the input
  8464. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8465. cb(ffn_inp, "ffn_inp", il);
  8466. // feed forward
  8467. {
  8468. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8469. model.layers[il].ffn_norm,
  8470. model.layers[il].ffn_norm_b,
  8471. LLM_NORM, cb, il);
  8472. cb(cur, "ffn_norm", il);
  8473. cur = llm_build_ffn(ctx0, cur,
  8474. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8475. NULL, NULL, NULL,
  8476. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8477. model.layers[il].ffn_act,
  8478. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8479. cb(cur, "ffn_out", il);
  8480. }
  8481. cur = ggml_add(ctx0, cur, ffn_inp);
  8482. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8483. cb(cur, "l_out", il);
  8484. // input for next layer
  8485. inpL = cur;
  8486. }
  8487. cur = inpL;
  8488. cur = llm_build_norm(ctx0, cur, hparams,
  8489. model.output_norm,
  8490. model.output_norm_b,
  8491. LLM_NORM, cb, -1);
  8492. cb(cur, "result_norm", -1);
  8493. cur = ggml_mul_mat(ctx0, model.output, cur);
  8494. cb(cur, "result_output", -1);
  8495. ggml_build_forward_expand(gf, cur);
  8496. return gf;
  8497. }
  8498. struct ggml_cgraph * build_stablelm() {
  8499. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8500. const int64_t n_embd_head = hparams.n_embd_head_v;
  8501. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8502. struct ggml_tensor * cur;
  8503. struct ggml_tensor * inpL;
  8504. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8505. // inp_pos - contains the positions
  8506. struct ggml_tensor * inp_pos = build_inp_pos();
  8507. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8508. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8509. for (int il = 0; il < n_layer; ++il) {
  8510. // norm
  8511. cur = llm_build_norm(ctx0, inpL, hparams,
  8512. model.layers[il].attn_norm,
  8513. model.layers[il].attn_norm_b,
  8514. LLM_NORM, cb, il);
  8515. cb(cur, "attn_norm", il);
  8516. struct ggml_tensor * inpSA = cur;
  8517. // self-attention
  8518. {
  8519. // compute Q and K and RoPE them
  8520. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8521. cb(Qcur, "Qcur", il);
  8522. if (model.layers[il].bq) {
  8523. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8524. cb(Qcur, "Qcur", il);
  8525. }
  8526. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8527. cb(Kcur, "Kcur", il);
  8528. if (model.layers[il].bk) {
  8529. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8530. cb(Kcur, "Kcur", il);
  8531. }
  8532. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8533. cb(Vcur, "Vcur", il);
  8534. if (model.layers[il].bv) {
  8535. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8536. cb(Vcur, "Vcur", il);
  8537. }
  8538. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8539. cb(Qcur, "Qcur", il);
  8540. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8541. cb(Kcur, "Kcur", il);
  8542. if (model.layers[il].attn_q_norm) {
  8543. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8544. model.layers[il].attn_q_norm,
  8545. NULL,
  8546. LLM_NORM, cb, il);
  8547. cb(Qcur, "Qcur", il);
  8548. }
  8549. if (model.layers[il].attn_k_norm) {
  8550. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8551. model.layers[il].attn_k_norm,
  8552. NULL,
  8553. LLM_NORM, cb, il);
  8554. cb(Kcur, "Kcur", il);
  8555. }
  8556. Qcur = ggml_rope_ext(
  8557. ctx0, Qcur, inp_pos, nullptr,
  8558. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8559. ext_factor, attn_factor, beta_fast, beta_slow
  8560. );
  8561. cb(Qcur, "Qcur", il);
  8562. Kcur = ggml_rope_ext(
  8563. ctx0, Kcur, inp_pos, nullptr,
  8564. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8565. ext_factor, attn_factor, beta_fast, beta_slow
  8566. );
  8567. cb(Kcur, "Kcur", il);
  8568. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8569. model.layers[il].wo, NULL,
  8570. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8571. }
  8572. if (il == n_layer - 1) {
  8573. // skip computing output for unused tokens
  8574. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8575. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8576. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8577. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8578. }
  8579. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8580. cb(ffn_inp, "ffn_inp", il);
  8581. // feed-forward network
  8582. {
  8583. if (model.layers[il].ffn_norm) {
  8584. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8585. model.layers[il].ffn_norm,
  8586. model.layers[il].ffn_norm_b,
  8587. LLM_NORM, cb, il);
  8588. cb(cur, "ffn_norm", il);
  8589. } else {
  8590. // parallel residual
  8591. cur = inpSA;
  8592. }
  8593. cur = llm_build_ffn(ctx0, cur,
  8594. model.layers[il].ffn_up, NULL, NULL,
  8595. model.layers[il].ffn_gate, NULL, NULL,
  8596. model.layers[il].ffn_down, NULL, NULL,
  8597. NULL,
  8598. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8599. cb(cur, "ffn_out", il);
  8600. }
  8601. cur = ggml_add(ctx0, cur, ffn_inp);
  8602. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8603. cb(cur, "l_out", il);
  8604. // input for next layer
  8605. inpL = cur;
  8606. }
  8607. cur = inpL;
  8608. cur = llm_build_norm(ctx0, cur, hparams,
  8609. model.output_norm,
  8610. model.output_norm_b,
  8611. LLM_NORM, cb, -1);
  8612. cb(cur, "result_norm", -1);
  8613. // lm_head
  8614. cur = ggml_mul_mat(ctx0, model.output, cur);
  8615. cb(cur, "result_output", -1);
  8616. ggml_build_forward_expand(gf, cur);
  8617. return gf;
  8618. }
  8619. struct ggml_cgraph * build_qwen() {
  8620. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8621. const int64_t n_embd_head = hparams.n_embd_head_v;
  8622. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8623. struct ggml_tensor * cur;
  8624. struct ggml_tensor * inpL;
  8625. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8626. // inp_pos - contains the positions
  8627. struct ggml_tensor * inp_pos = build_inp_pos();
  8628. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8629. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8630. for (int il = 0; il < n_layer; ++il) {
  8631. struct ggml_tensor * inpSA = inpL;
  8632. cur = llm_build_norm(ctx0, inpL, hparams,
  8633. model.layers[il].attn_norm, NULL,
  8634. LLM_NORM_RMS, cb, il);
  8635. cb(cur, "attn_norm", il);
  8636. // self-attention
  8637. {
  8638. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8639. cb(cur, "wqkv", il);
  8640. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8641. cb(cur, "bqkv", il);
  8642. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8643. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8644. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  8645. cb(Qcur, "Qcur", il);
  8646. cb(Kcur, "Kcur", il);
  8647. cb(Vcur, "Vcur", il);
  8648. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8649. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8650. // using mode = 2 for neox mode
  8651. Qcur = ggml_rope_ext(
  8652. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8653. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8654. );
  8655. cb(Qcur, "Qcur", il);
  8656. Kcur = ggml_rope_ext(
  8657. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8658. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8659. );
  8660. cb(Kcur, "Kcur", il);
  8661. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8662. model.layers[il].wo, NULL,
  8663. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8664. }
  8665. if (il == n_layer - 1) {
  8666. // skip computing output for unused tokens
  8667. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8668. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8669. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8670. }
  8671. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8672. cb(ffn_inp, "ffn_inp", il);
  8673. // feed-forward forward
  8674. {
  8675. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8676. model.layers[il].ffn_norm, NULL,
  8677. LLM_NORM_RMS, cb, il);
  8678. cb(cur, "ffn_norm", il);
  8679. cur = llm_build_ffn(ctx0, cur,
  8680. model.layers[il].ffn_up, NULL, NULL,
  8681. model.layers[il].ffn_gate, NULL, NULL,
  8682. model.layers[il].ffn_down, NULL, NULL,
  8683. NULL,
  8684. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8685. cb(cur, "ffn_out", il);
  8686. }
  8687. cur = ggml_add(ctx0, cur, ffn_inp);
  8688. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8689. cb(cur, "l_out", il);
  8690. // input for next layer
  8691. inpL = cur;
  8692. }
  8693. cur = inpL;
  8694. cur = llm_build_norm(ctx0, cur, hparams,
  8695. model.output_norm, NULL,
  8696. LLM_NORM_RMS, cb, -1);
  8697. cb(cur, "result_norm", -1);
  8698. // lm_head
  8699. cur = ggml_mul_mat(ctx0, model.output, cur);
  8700. cb(cur, "result_output", -1);
  8701. ggml_build_forward_expand(gf, cur);
  8702. return gf;
  8703. }
  8704. struct ggml_cgraph * build_qwen2() {
  8705. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8706. const int64_t n_embd_head = hparams.n_embd_head_v;
  8707. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8708. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8709. struct ggml_tensor * cur;
  8710. struct ggml_tensor * inpL;
  8711. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8712. // inp_pos - contains the positions
  8713. struct ggml_tensor * inp_pos = build_inp_pos();
  8714. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8715. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8716. for (int il = 0; il < n_layer; ++il) {
  8717. struct ggml_tensor * inpSA = inpL;
  8718. // norm
  8719. cur = llm_build_norm(ctx0, inpL, hparams,
  8720. model.layers[il].attn_norm, NULL,
  8721. LLM_NORM_RMS, cb, il);
  8722. cb(cur, "attn_norm", il);
  8723. // self-attention
  8724. {
  8725. // compute Q and K and RoPE them
  8726. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8727. cb(Qcur, "Qcur", il);
  8728. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8729. cb(Qcur, "Qcur", il);
  8730. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8731. cb(Kcur, "Kcur", il);
  8732. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8733. cb(Kcur, "Kcur", il);
  8734. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8735. cb(Vcur, "Vcur", il);
  8736. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8737. cb(Vcur, "Vcur", il);
  8738. Qcur = ggml_rope_ext(
  8739. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8740. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8741. ext_factor, attn_factor, beta_fast, beta_slow
  8742. );
  8743. cb(Qcur, "Qcur", il);
  8744. Kcur = ggml_rope_ext(
  8745. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8746. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8747. ext_factor, attn_factor, beta_fast, beta_slow
  8748. );
  8749. cb(Kcur, "Kcur", il);
  8750. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8751. model.layers[il].wo, model.layers[il].bo,
  8752. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8753. }
  8754. if (il == n_layer - 1) {
  8755. // skip computing output for unused tokens
  8756. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8757. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8758. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8759. }
  8760. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8761. cb(ffn_inp, "ffn_inp", il);
  8762. // feed-forward network
  8763. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8764. model.layers[il].ffn_norm, NULL,
  8765. LLM_NORM_RMS, cb, il);
  8766. cb(cur, "ffn_norm", il);
  8767. cur = llm_build_ffn(ctx0, cur,
  8768. model.layers[il].ffn_up, NULL, NULL,
  8769. model.layers[il].ffn_gate, NULL, NULL,
  8770. model.layers[il].ffn_down, NULL, NULL,
  8771. NULL,
  8772. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8773. cb(cur, "ffn_out", il);
  8774. cur = ggml_add(ctx0, cur, ffn_inp);
  8775. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8776. cb(cur, "l_out", il);
  8777. // input for next layer
  8778. inpL = cur;
  8779. }
  8780. cur = inpL;
  8781. cur = llm_build_norm(ctx0, cur, hparams,
  8782. model.output_norm, NULL,
  8783. LLM_NORM_RMS, cb, -1);
  8784. cb(cur, "result_norm", -1);
  8785. // lm_head
  8786. cur = ggml_mul_mat(ctx0, model.output, cur);
  8787. cb(cur, "result_output", -1);
  8788. ggml_build_forward_expand(gf, cur);
  8789. return gf;
  8790. }
  8791. struct ggml_cgraph * build_qwen2moe() {
  8792. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8793. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8794. int32_t n_tokens = this->n_tokens;
  8795. const int64_t n_embd_head = hparams.n_embd_head_v;
  8796. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8797. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8798. struct ggml_tensor * cur;
  8799. struct ggml_tensor * inpL;
  8800. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8801. // inp_pos - contains the positions
  8802. struct ggml_tensor * inp_pos = build_inp_pos();
  8803. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8804. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8805. for (int il = 0; il < n_layer; ++il) {
  8806. struct ggml_tensor * inpSA = inpL;
  8807. // norm
  8808. cur = llm_build_norm(ctx0, inpL, hparams,
  8809. model.layers[il].attn_norm, NULL,
  8810. LLM_NORM_RMS, cb, il);
  8811. cb(cur, "attn_norm", il);
  8812. // self_attention
  8813. {
  8814. // compute Q and K and RoPE them
  8815. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8816. cb(Qcur, "Qcur", il);
  8817. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8818. cb(Qcur, "Qcur", il);
  8819. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8820. cb(Kcur, "Kcur", il);
  8821. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8822. cb(Kcur, "Kcur", il);
  8823. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8824. cb(Vcur, "Vcur", il);
  8825. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8826. cb(Vcur, "Vcur", il);
  8827. Qcur = ggml_rope_ext(
  8828. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8829. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8830. ext_factor, attn_factor, beta_fast, beta_slow
  8831. );
  8832. cb(Qcur, "Qcur", il);
  8833. Kcur = ggml_rope_ext(
  8834. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8835. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8836. ext_factor, attn_factor, beta_fast, beta_slow
  8837. );
  8838. cb(Kcur, "Kcur", il);
  8839. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8840. model.layers[il].wo, model.layers[il].bo,
  8841. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8842. }
  8843. if (il == n_layer - 1) {
  8844. // skip computing output for unused tokens
  8845. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8846. n_tokens = n_outputs;
  8847. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8848. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8849. }
  8850. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8851. cb(ffn_inp, "ffn_inp", il);
  8852. // MoE branch
  8853. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8854. model.layers[il].ffn_norm, NULL,
  8855. LLM_NORM_RMS, cb, il);
  8856. cb(cur, "ffn_norm", il);
  8857. ggml_tensor * moe_out =
  8858. llm_build_moe_ffn(ctx0, cur,
  8859. model.layers[il].ffn_gate_inp,
  8860. model.layers[il].ffn_up_exps,
  8861. model.layers[il].ffn_gate_exps,
  8862. model.layers[il].ffn_down_exps,
  8863. n_expert, n_expert_used,
  8864. LLM_FFN_SILU, false,
  8865. false, 0.0,
  8866. cb, il);
  8867. cb(cur, "ffn_moe_out", il);
  8868. // FFN shared expert
  8869. {
  8870. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  8871. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  8872. // sigmoid
  8873. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  8874. cb(cur_gate, "ffn_shexp_gate", il);
  8875. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  8876. model.layers[il].ffn_up_shexp, NULL, NULL,
  8877. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8878. model.layers[il].ffn_down_shexp, NULL, NULL,
  8879. NULL,
  8880. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8881. cb(cur_ffn, "ffn_shexp", il);
  8882. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  8883. cb(ffn_shexp_out, "ffn_shexp_out", il);
  8884. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  8885. cb(moe_out, "ffn_out", il);
  8886. cur = moe_out;
  8887. }
  8888. cur = ggml_add(ctx0, cur, ffn_inp);
  8889. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8890. cb(cur, "l_out", il);
  8891. // input for next layer
  8892. inpL = cur;
  8893. }
  8894. cur = inpL;
  8895. cur = llm_build_norm(ctx0, cur, hparams,
  8896. model.output_norm, NULL,
  8897. LLM_NORM_RMS, cb, -1);
  8898. cb(cur, "result_norm", -1);
  8899. // lm_head
  8900. cur = ggml_mul_mat(ctx0, model.output, cur);
  8901. cb(cur, "result_output", -1);
  8902. ggml_build_forward_expand(gf, cur);
  8903. return gf;
  8904. }
  8905. struct ggml_cgraph * build_phi2() {
  8906. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8907. const int64_t n_embd_head = hparams.n_embd_head_v;
  8908. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8909. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8910. struct ggml_tensor * cur;
  8911. struct ggml_tensor * attn_norm_output;
  8912. struct ggml_tensor * ffn_output;
  8913. struct ggml_tensor * inpL;
  8914. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8915. // inp_pos - contains the positions
  8916. struct ggml_tensor * inp_pos = build_inp_pos();
  8917. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8918. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8919. for (int il = 0; il < n_layer; ++il) {
  8920. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8921. model.layers[il].attn_norm,
  8922. model.layers[il].attn_norm_b,
  8923. LLM_NORM, cb, il);
  8924. cb(attn_norm_output, "attn_norm", il);
  8925. // self-attention
  8926. {
  8927. struct ggml_tensor * Qcur = nullptr;
  8928. struct ggml_tensor * Kcur = nullptr;
  8929. struct ggml_tensor * Vcur = nullptr;
  8930. if (model.layers[il].wqkv) {
  8931. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8932. cb(cur, "wqkv", il);
  8933. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8934. cb(cur, "bqkv", il);
  8935. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8936. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8937. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8938. } else {
  8939. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8940. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8941. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8942. }
  8943. cb(Qcur, "Qcur", il);
  8944. cb(Kcur, "Kcur", il);
  8945. cb(Vcur, "Vcur", il);
  8946. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8947. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8948. Qcur = ggml_rope_ext(
  8949. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8950. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8951. );
  8952. cb(Qcur, "Qcur", il);
  8953. // with phi2, we scale the Q to avoid precision issues
  8954. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  8955. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  8956. cb(Qcur, "Qcur", il);
  8957. Kcur = ggml_rope_ext(
  8958. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8959. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8960. );
  8961. cb(Kcur, "Kcur", il);
  8962. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8963. model.layers[il].wo, model.layers[il].bo,
  8964. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8965. }
  8966. if (il == n_layer - 1) {
  8967. // skip computing output for unused tokens
  8968. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8969. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8970. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8971. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  8972. }
  8973. // FF
  8974. {
  8975. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  8976. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8977. NULL, NULL, NULL,
  8978. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8979. NULL,
  8980. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8981. cb(ffn_output, "ffn_out", il);
  8982. }
  8983. cur = ggml_add(ctx0, cur, ffn_output);
  8984. cur = ggml_add(ctx0, cur, inpL);
  8985. cur = lctx.cvec.apply_to(ctx0, cur, il);
  8986. cb(cur, "l_out", il);
  8987. // input for next layer
  8988. inpL = cur;
  8989. }
  8990. cur = llm_build_norm(ctx0, inpL, hparams,
  8991. model.output_norm,
  8992. model.output_norm_b,
  8993. LLM_NORM, cb, -1);
  8994. cb(cur, "result_norm", -1);
  8995. cur = ggml_mul_mat(ctx0, model.output, cur);
  8996. cb(cur, "result_output_no_bias", -1);
  8997. cur = ggml_add(ctx0, cur, model.output_b);
  8998. cb(cur, "result_output", -1);
  8999. ggml_build_forward_expand(gf, cur);
  9000. return gf;
  9001. }
  9002. struct ggml_cgraph * build_phi3() {
  9003. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9004. const int64_t n_embd_head = hparams.n_embd_head_v;
  9005. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9006. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9007. struct ggml_tensor * cur;
  9008. struct ggml_tensor * inpL;
  9009. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9010. // inp_pos - contains the positions
  9011. struct ggml_tensor * inp_pos = build_inp_pos();
  9012. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9013. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9014. for (int il = 0; il < n_layer; ++il) {
  9015. auto residual = inpL;
  9016. // self-attention
  9017. {
  9018. // rope freq factors for 128k context
  9019. struct ggml_tensor * rope_factors = build_rope_factors(il);
  9020. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  9021. model.layers[il].attn_norm,
  9022. NULL,
  9023. LLM_NORM_RMS, cb, il);
  9024. cb(attn_norm_output, "attn_norm", il);
  9025. struct ggml_tensor * Qcur = nullptr;
  9026. struct ggml_tensor * Kcur = nullptr;
  9027. struct ggml_tensor * Vcur = nullptr;
  9028. if (model.layers[il].wqkv) {
  9029. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  9030. cb(cur, "wqkv", il);
  9031. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  9032. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  9033. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  9034. }
  9035. else {
  9036. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  9037. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  9038. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  9039. }
  9040. cb(Qcur, "Qcur", il);
  9041. cb(Kcur, "Kcur", il);
  9042. cb(Vcur, "Vcur", il);
  9043. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9044. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9045. Qcur = ggml_rope_ext(
  9046. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  9047. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  9048. );
  9049. cb(Qcur, "Qcur", il);
  9050. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  9051. cb(Qcur, "Qcur", il);
  9052. Kcur = ggml_rope_ext(
  9053. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  9054. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  9055. );
  9056. cb(Kcur, "Kcur", il);
  9057. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9058. model.layers[il].wo, model.layers[il].bo,
  9059. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  9060. }
  9061. if (il == n_layer - 1) {
  9062. // skip computing output for unused tokens
  9063. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  9064. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9065. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  9066. }
  9067. cur = ggml_add(ctx0, cur, residual);
  9068. residual = cur;
  9069. cur = llm_build_norm(ctx0, cur, hparams,
  9070. model.layers[il].ffn_norm, NULL,
  9071. LLM_NORM_RMS, cb, il);
  9072. cb(cur, "ffn_norm", il);
  9073. // FF
  9074. // special-case: the up and gate tensors are merged into a single tensor
  9075. // TOOD: support into llm_build_ffn
  9076. {
  9077. cur = llm_build_ffn(ctx0, cur,
  9078. model.layers[il].ffn_up, NULL, NULL,
  9079. NULL, NULL, NULL,
  9080. model.layers[il].ffn_down, NULL, NULL,
  9081. NULL,
  9082. LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
  9083. cb(cur, "ffn_out", il);
  9084. }
  9085. cur = ggml_add(ctx0, residual, cur);
  9086. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9087. cb(cur, "l_out", il);
  9088. // input for next layer
  9089. inpL = cur;
  9090. }
  9091. cur = llm_build_norm(ctx0, inpL, hparams,
  9092. model.output_norm,
  9093. NULL,
  9094. LLM_NORM_RMS, cb, -1);
  9095. cb(cur, "result_norm", -1);
  9096. cur = ggml_mul_mat(ctx0, model.output, cur);
  9097. cb(cur, "result_output", -1);
  9098. ggml_build_forward_expand(gf, cur);
  9099. return gf;
  9100. }
  9101. struct ggml_cgraph * build_plamo() {
  9102. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  9103. const int64_t n_embd_head = hparams.n_embd_head_v;
  9104. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9105. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9106. struct ggml_tensor * cur;
  9107. struct ggml_tensor * inpL;
  9108. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9109. // inp_pos - contains the positions
  9110. struct ggml_tensor * inp_pos = build_inp_pos();
  9111. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9112. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9113. for (int il = 0; il < n_layer; ++il) {
  9114. // norm
  9115. cur = llm_build_norm(ctx0, inpL, hparams,
  9116. model.layers[il].attn_norm, NULL,
  9117. LLM_NORM_RMS, cb, il);
  9118. cb(cur, "attn_norm", il);
  9119. struct ggml_tensor * attention_norm = cur;
  9120. // self-attention
  9121. {
  9122. // compute Q and K and RoPE them
  9123. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9124. cb(Qcur, "Qcur", il);
  9125. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9126. cb(Kcur, "Kcur", il);
  9127. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9128. cb(Vcur, "Vcur", il);
  9129. Qcur = ggml_rope_ext(
  9130. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  9131. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  9132. ext_factor, attn_factor, beta_fast, beta_slow);
  9133. cb(Qcur, "Qcur", il);
  9134. Kcur = ggml_rope_ext(
  9135. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  9136. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  9137. ext_factor, attn_factor, beta_fast, beta_slow);
  9138. cb(Kcur, "Kcur", il);
  9139. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9140. model.layers[il].wo, NULL,
  9141. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9142. }
  9143. struct ggml_tensor * sa_out = cur;
  9144. cur = attention_norm;
  9145. if (il == n_layer - 1) {
  9146. // skip computing output for unused tokens
  9147. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9148. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9149. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  9150. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9151. }
  9152. // feed-forward network
  9153. {
  9154. cur = llm_build_ffn(ctx0, cur,
  9155. model.layers[il].ffn_up, NULL, NULL,
  9156. model.layers[il].ffn_gate, NULL, NULL,
  9157. model.layers[il].ffn_down, NULL, NULL,
  9158. NULL,
  9159. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9160. cb(cur, "ffn_out", il);
  9161. }
  9162. cur = ggml_add(ctx0, cur, sa_out);
  9163. cur = ggml_add(ctx0, cur, inpL);
  9164. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9165. cb(cur, "l_out", il);
  9166. // input for next layer
  9167. inpL = cur;
  9168. }
  9169. cur = inpL;
  9170. cur = llm_build_norm(ctx0, cur, hparams,
  9171. model.output_norm, NULL,
  9172. LLM_NORM_RMS, cb, -1);
  9173. cb(cur, "result_norm", -1);
  9174. // lm_head
  9175. cur = ggml_mul_mat(ctx0, model.output, cur);
  9176. cb(cur, "result_output", -1);
  9177. ggml_build_forward_expand(gf, cur);
  9178. return gf;
  9179. }
  9180. struct ggml_cgraph * build_gpt2() {
  9181. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9182. const int64_t n_embd_head = hparams.n_embd_head_v;
  9183. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9184. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9185. struct ggml_tensor * cur;
  9186. struct ggml_tensor * pos;
  9187. struct ggml_tensor * inpL;
  9188. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9189. // inp_pos - contains the positions
  9190. struct ggml_tensor * inp_pos = build_inp_pos();
  9191. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9192. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9193. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  9194. cb(pos, "pos_embd", -1);
  9195. inpL = ggml_add(ctx0, inpL, pos);
  9196. cb(inpL, "inpL", -1);
  9197. for (int il = 0; il < n_layer; ++il) {
  9198. cur = llm_build_norm(ctx0, inpL, hparams,
  9199. model.layers[il].attn_norm,
  9200. model.layers[il].attn_norm_b,
  9201. LLM_NORM, cb, il);
  9202. cb(cur, "attn_norm", il);
  9203. // self-attention
  9204. {
  9205. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9206. cb(cur, "wqkv", il);
  9207. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9208. cb(cur, "bqkv", il);
  9209. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9210. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9211. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9212. cb(Qcur, "Qcur", il);
  9213. cb(Kcur, "Kcur", il);
  9214. cb(Vcur, "Vcur", il);
  9215. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9216. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9217. model.layers[il].wo, model.layers[il].bo,
  9218. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9219. }
  9220. if (il == n_layer - 1) {
  9221. // skip computing output for unused tokens
  9222. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9223. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9224. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9225. }
  9226. // add the input
  9227. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9228. cb(ffn_inp, "ffn_inp", il);
  9229. // FF
  9230. {
  9231. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9232. model.layers[il].ffn_norm,
  9233. model.layers[il].ffn_norm_b,
  9234. LLM_NORM, cb, il);
  9235. cb(cur, "ffn_norm", il);
  9236. cur = llm_build_ffn(ctx0, cur,
  9237. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9238. NULL, NULL, NULL,
  9239. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9240. NULL,
  9241. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9242. cb(cur, "ffn_out", il);
  9243. }
  9244. cur = ggml_add(ctx0, cur, ffn_inp);
  9245. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9246. cb(cur, "l_out", il);
  9247. // input for next layer
  9248. inpL = cur;
  9249. }
  9250. cur = llm_build_norm(ctx0, inpL, hparams,
  9251. model.output_norm,
  9252. model.output_norm_b,
  9253. LLM_NORM, cb, -1);
  9254. cb(cur, "result_norm", -1);
  9255. cur = ggml_mul_mat(ctx0, model.output, cur);
  9256. cb(cur, "result_output", -1);
  9257. ggml_build_forward_expand(gf, cur);
  9258. return gf;
  9259. }
  9260. struct ggml_cgraph * build_codeshell() {
  9261. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9262. const int64_t n_embd_head = hparams.n_embd_head_v;
  9263. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9264. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9265. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9266. struct ggml_tensor * cur;
  9267. struct ggml_tensor * inpL;
  9268. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9269. // inp_pos - contains the positions
  9270. struct ggml_tensor * inp_pos = build_inp_pos();
  9271. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9272. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9273. for (int il = 0; il < n_layer; ++il) {
  9274. cur = llm_build_norm(ctx0, inpL, hparams,
  9275. model.layers[il].attn_norm,
  9276. model.layers[il].attn_norm_b,
  9277. LLM_NORM, cb, il);
  9278. cb(cur, "attn_norm", il);
  9279. // self-attention
  9280. {
  9281. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9282. cb(cur, "wqkv", il);
  9283. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9284. cb(cur, "bqkv", il);
  9285. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9286. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9287. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9288. cb(tmpq, "tmpq", il);
  9289. cb(tmpk, "tmpk", il);
  9290. cb(Vcur, "Vcur", il);
  9291. struct ggml_tensor * Qcur = ggml_rope_ext(
  9292. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9293. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9294. ext_factor, attn_factor, beta_fast, beta_slow
  9295. );
  9296. cb(Qcur, "Qcur", il);
  9297. struct ggml_tensor * Kcur = ggml_rope_ext(
  9298. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9299. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9300. ext_factor, attn_factor, beta_fast, beta_slow
  9301. );
  9302. cb(Kcur, "Kcur", il);
  9303. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9304. model.layers[il].wo, model.layers[il].bo,
  9305. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9306. }
  9307. if (il == n_layer - 1) {
  9308. // skip computing output for unused tokens
  9309. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9310. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9311. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9312. }
  9313. // add the input
  9314. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9315. cb(ffn_inp, "ffn_inp", il);
  9316. // FF
  9317. {
  9318. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9319. model.layers[il].ffn_norm,
  9320. model.layers[il].ffn_norm_b,
  9321. LLM_NORM, cb, il);
  9322. cb(cur, "ffn_norm", il);
  9323. cur = llm_build_ffn(ctx0, cur,
  9324. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9325. NULL, NULL, NULL,
  9326. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9327. NULL,
  9328. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9329. cb(cur, "ffn_out", il);
  9330. }
  9331. cur = ggml_add(ctx0, cur, ffn_inp);
  9332. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9333. cb(cur, "l_out", il);
  9334. // input for next layer
  9335. inpL = cur;
  9336. }
  9337. cur = llm_build_norm(ctx0, inpL, hparams,
  9338. model.output_norm,
  9339. model.output_norm_b,
  9340. LLM_NORM, cb, -1);
  9341. cb(cur, "result_norm", -1);
  9342. cur = ggml_mul_mat(ctx0, model.output, cur);
  9343. cb(cur, "result_output", -1);
  9344. ggml_build_forward_expand(gf, cur);
  9345. return gf;
  9346. }
  9347. struct ggml_cgraph * build_orion() {
  9348. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9349. const int64_t n_embd_head = hparams.n_embd_head_v;
  9350. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9351. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9352. struct ggml_tensor * cur;
  9353. struct ggml_tensor * inpL;
  9354. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9355. // inp_pos - contains the positions
  9356. struct ggml_tensor * inp_pos = build_inp_pos();
  9357. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9358. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9359. for (int il = 0; il < n_layer; ++il) {
  9360. struct ggml_tensor * inpSA = inpL;
  9361. // norm
  9362. cur = llm_build_norm(ctx0, inpL, hparams,
  9363. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  9364. LLM_NORM, cb, il);
  9365. cb(cur, "attn_norm", il);
  9366. // self-attention
  9367. {
  9368. // compute Q and K and RoPE them
  9369. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9370. cb(Qcur, "Qcur", il);
  9371. // if (model.layers[il].bq) {
  9372. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9373. // cb(Qcur, "Qcur", il);
  9374. // }
  9375. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9376. cb(Kcur, "Kcur", il);
  9377. // if (model.layers[il].bk) {
  9378. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9379. // cb(Kcur, "Kcur", il);
  9380. // }
  9381. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9382. cb(Vcur, "Vcur", il);
  9383. // if (model.layers[il].bv) {
  9384. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9385. // cb(Vcur, "Vcur", il);
  9386. // }
  9387. Qcur = ggml_rope_ext(
  9388. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9389. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9390. ext_factor, attn_factor, beta_fast, beta_slow
  9391. );
  9392. cb(Qcur, "Qcur", il);
  9393. Kcur = ggml_rope_ext(
  9394. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9395. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9396. ext_factor, attn_factor, beta_fast, beta_slow
  9397. );
  9398. cb(Kcur, "Kcur", il);
  9399. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9400. model.layers[il].wo, NULL,
  9401. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9402. }
  9403. if (il == n_layer - 1) {
  9404. // skip computing output for unused tokens
  9405. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9406. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9407. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9408. }
  9409. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9410. cb(ffn_inp, "ffn_inp", il);
  9411. // feed-forward network
  9412. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9413. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  9414. LLM_NORM, cb, il);
  9415. cb(cur, "ffn_norm", il);
  9416. cur = llm_build_ffn(ctx0, cur,
  9417. model.layers[il].ffn_up, NULL, NULL,
  9418. model.layers[il].ffn_gate, NULL, NULL,
  9419. model.layers[il].ffn_down, NULL, NULL,
  9420. NULL,
  9421. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9422. cb(cur, "ffn_out", il);
  9423. cur = ggml_add(ctx0, cur, ffn_inp);
  9424. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9425. cb(cur, "l_out", il);
  9426. // input for next layer
  9427. inpL = cur;
  9428. }
  9429. cur = inpL;
  9430. cur = llm_build_norm(ctx0, cur, hparams,
  9431. model.output_norm, model.output_norm_b,
  9432. LLM_NORM, cb, -1);
  9433. cb(cur, "result_norm", -1);
  9434. // lm_head
  9435. cur = ggml_mul_mat(ctx0, model.output, cur);
  9436. cb(cur, "result_output", -1);
  9437. ggml_build_forward_expand(gf, cur);
  9438. return gf;
  9439. }
  9440. struct ggml_cgraph * build_internlm2() {
  9441. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9442. const int64_t n_embd_head = hparams.n_embd_head_v;
  9443. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9444. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9445. struct ggml_tensor * cur;
  9446. struct ggml_tensor * inpL;
  9447. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9448. // inp_pos - contains the positions
  9449. struct ggml_tensor * inp_pos = build_inp_pos();
  9450. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9451. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9452. for (int il = 0; il < n_layer; ++il) {
  9453. struct ggml_tensor * inpSA = inpL;
  9454. // norm
  9455. cur = llm_build_norm(ctx0, inpL, hparams,
  9456. model.layers[il].attn_norm, NULL,
  9457. LLM_NORM_RMS, cb, il);
  9458. cb(cur, "attn_norm", il);
  9459. // self-attention
  9460. {
  9461. // compute Q and K and RoPE them
  9462. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9463. cb(Qcur, "Qcur", il);
  9464. if (model.layers[il].bq) {
  9465. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9466. cb(Qcur, "Qcur", il);
  9467. }
  9468. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9469. cb(Kcur, "Kcur", il);
  9470. if (model.layers[il].bk) {
  9471. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9472. cb(Kcur, "Kcur", il);
  9473. }
  9474. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9475. cb(Vcur, "Vcur", il);
  9476. if (model.layers[il].bv) {
  9477. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9478. cb(Vcur, "Vcur", il);
  9479. }
  9480. Qcur = ggml_rope_ext(
  9481. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9482. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9483. ext_factor, attn_factor, beta_fast, beta_slow
  9484. );
  9485. cb(Qcur, "Qcur", il);
  9486. Kcur = ggml_rope_ext(
  9487. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9488. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9489. ext_factor, attn_factor, beta_fast, beta_slow
  9490. );
  9491. cb(Kcur, "Kcur", il);
  9492. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9493. model.layers[il].wo, model.layers[il].bo,
  9494. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9495. }
  9496. if (il == n_layer - 1) {
  9497. // skip computing output for unused tokens
  9498. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9499. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9500. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9501. }
  9502. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9503. cb(ffn_inp, "ffn_inp", il);
  9504. // feed-forward network
  9505. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9506. model.layers[il].ffn_norm, NULL,
  9507. LLM_NORM_RMS, cb, il);
  9508. cb(cur, "ffn_norm", il);
  9509. cur = llm_build_ffn(ctx0, cur,
  9510. model.layers[il].ffn_up, NULL, NULL,
  9511. model.layers[il].ffn_gate, NULL, NULL,
  9512. model.layers[il].ffn_down, NULL, NULL,
  9513. NULL,
  9514. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9515. cb(cur, "ffn_out", il);
  9516. cur = ggml_add(ctx0, cur, ffn_inp);
  9517. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9518. cb(cur, "l_out", il);
  9519. // input for next layer
  9520. inpL = cur;
  9521. }
  9522. cur = inpL;
  9523. cur = llm_build_norm(ctx0, cur, hparams,
  9524. model.output_norm, NULL,
  9525. LLM_NORM_RMS, cb, -1);
  9526. cb(cur, "result_norm", -1);
  9527. // lm_head
  9528. cur = ggml_mul_mat(ctx0, model.output, cur);
  9529. cb(cur, "result_output", -1);
  9530. ggml_build_forward_expand(gf, cur);
  9531. return gf;
  9532. }
  9533. // ref: https://arxiv.org/abs/2203.03466
  9534. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  9535. // based on the original build_llama() function
  9536. struct ggml_cgraph * build_minicpm() {
  9537. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9538. const int64_t n_embd_head = hparams.n_embd_head_v;
  9539. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9540. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9541. const int64_t n_embd = hparams.n_embd;
  9542. //TODO: if the model varies, these parameters need to be read from the model
  9543. const int64_t n_embd_base = 256;
  9544. const float scale_embd = 12.0f;
  9545. const float scale_depth = 1.4f;
  9546. struct ggml_tensor * cur;
  9547. struct ggml_tensor * inpL;
  9548. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9549. // scale the input embeddings
  9550. inpL = ggml_scale(ctx0, inpL, scale_embd);
  9551. cb(inpL, "inp_scaled", -1);
  9552. // inp_pos - contains the positions
  9553. struct ggml_tensor * inp_pos = build_inp_pos();
  9554. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9555. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9556. for (int il = 0; il < n_layer; ++il) {
  9557. struct ggml_tensor * inpSA = inpL;
  9558. // norm
  9559. cur = llm_build_norm(ctx0, inpL, hparams,
  9560. model.layers[il].attn_norm, NULL,
  9561. LLM_NORM_RMS, cb, il);
  9562. cb(cur, "attn_norm", il);
  9563. // self-attention
  9564. {
  9565. // compute Q and K and RoPE them
  9566. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9567. cb(Qcur, "Qcur", il);
  9568. if (model.layers[il].bq) {
  9569. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9570. cb(Qcur, "Qcur", il);
  9571. }
  9572. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9573. cb(Kcur, "Kcur", il);
  9574. if (model.layers[il].bk) {
  9575. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9576. cb(Kcur, "Kcur", il);
  9577. }
  9578. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9579. cb(Vcur, "Vcur", il);
  9580. if (model.layers[il].bv) {
  9581. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9582. cb(Vcur, "Vcur", il);
  9583. }
  9584. Qcur = ggml_rope_ext(
  9585. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9586. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9587. ext_factor, attn_factor, beta_fast, beta_slow
  9588. );
  9589. cb(Qcur, "Qcur", il);
  9590. Kcur = ggml_rope_ext(
  9591. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9592. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9593. ext_factor, attn_factor, beta_fast, beta_slow
  9594. );
  9595. cb(Kcur, "Kcur", il);
  9596. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9597. model.layers[il].wo, model.layers[il].bo,
  9598. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9599. }
  9600. if (il == n_layer - 1) {
  9601. // skip computing output for unused tokens
  9602. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9603. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9604. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9605. }
  9606. // scale_res - scale the hidden states for residual connection
  9607. const float scale_res = scale_depth/sqrtf(float(n_layer));
  9608. cur = ggml_scale(ctx0, cur, scale_res);
  9609. cb(cur, "hidden_scaled", -1);
  9610. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9611. cb(ffn_inp, "ffn_inp", il);
  9612. // feed-forward network
  9613. {
  9614. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9615. model.layers[il].ffn_norm, NULL,
  9616. LLM_NORM_RMS, cb, il);
  9617. cb(cur, "ffn_norm", il);
  9618. cur = llm_build_ffn(ctx0, cur,
  9619. model.layers[il].ffn_up, NULL, NULL,
  9620. model.layers[il].ffn_gate, NULL, NULL,
  9621. model.layers[il].ffn_down, NULL, NULL,
  9622. NULL,
  9623. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9624. cb(cur, "ffn_out", il);
  9625. }
  9626. // scale the hidden states for residual connection
  9627. cur = ggml_scale(ctx0, cur, scale_res);
  9628. cb(cur, "hidden_scaled_ffn", -1);
  9629. cur = ggml_add(ctx0, cur, ffn_inp);
  9630. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9631. cb(cur, "l_out", il);
  9632. // input for next layer
  9633. inpL = cur;
  9634. }
  9635. cur = inpL;
  9636. cur = llm_build_norm(ctx0, cur, hparams,
  9637. model.output_norm, NULL,
  9638. LLM_NORM_RMS, cb, -1);
  9639. cb(cur, "result_norm", -1);
  9640. // lm_head scaling
  9641. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  9642. cur = ggml_scale(ctx0, cur, scale_lmhead);
  9643. cb(cur, "lmhead_scaling", -1);
  9644. // lm_head
  9645. cur = ggml_mul_mat(ctx0, model.output, cur);
  9646. cb(cur, "result_output", -1);
  9647. ggml_build_forward_expand(gf, cur);
  9648. return gf;
  9649. }
  9650. struct ggml_cgraph * build_gemma() {
  9651. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9652. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  9653. struct ggml_tensor * cur;
  9654. struct ggml_tensor * inpL;
  9655. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9656. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  9657. cb(inpL, "inp_scaled", -1);
  9658. // inp_pos - contains the positions
  9659. struct ggml_tensor * inp_pos = build_inp_pos();
  9660. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9661. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9662. for (int il = 0; il < n_layer; ++il) {
  9663. // norm
  9664. cur = llm_build_norm(ctx0, inpL, hparams,
  9665. model.layers[il].attn_norm, NULL,
  9666. LLM_NORM_RMS, cb, il);
  9667. cb(cur, "attn_norm", il);
  9668. // self-attention
  9669. {
  9670. // compute Q and K and RoPE them
  9671. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9672. cb(Qcur, "Qcur", il);
  9673. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9674. cb(Kcur, "Kcur", il);
  9675. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9676. cb(Vcur, "Vcur", il);
  9677. Qcur = ggml_rope_ext(
  9678. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  9679. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9680. ext_factor, attn_factor, beta_fast, beta_slow);
  9681. cb(Qcur, "Qcur", il);
  9682. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  9683. cb(Qcur, "Qcur_scaled", il);
  9684. Kcur = ggml_rope_ext(
  9685. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  9686. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9687. ext_factor, attn_factor, beta_fast, beta_slow);
  9688. cb(Kcur, "Kcur", il);
  9689. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9690. model.layers[il].wo, NULL,
  9691. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  9692. }
  9693. if (il == n_layer - 1) {
  9694. // skip computing output for unused tokens
  9695. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9696. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9697. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9698. }
  9699. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  9700. cb(sa_out, "sa_out", il);
  9701. cur = llm_build_norm(ctx0, sa_out, hparams,
  9702. model.layers[il].ffn_norm, NULL,
  9703. LLM_NORM_RMS, cb, il);
  9704. cb(cur, "ffn_norm", il);
  9705. // feed-forward network
  9706. {
  9707. cur = llm_build_ffn(ctx0, cur,
  9708. model.layers[il].ffn_up, NULL, NULL,
  9709. model.layers[il].ffn_gate, NULL, NULL,
  9710. model.layers[il].ffn_down, NULL, NULL,
  9711. NULL,
  9712. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  9713. cb(cur, "ffn_out", il);
  9714. }
  9715. cur = ggml_add(ctx0, cur, sa_out);
  9716. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9717. cb(cur, "l_out", il);
  9718. // input for next layer
  9719. inpL = cur;
  9720. }
  9721. cur = inpL;
  9722. cur = llm_build_norm(ctx0, cur, hparams,
  9723. model.output_norm, NULL,
  9724. LLM_NORM_RMS, cb, -1);
  9725. cb(cur, "result_norm", -1);
  9726. // lm_head
  9727. cur = ggml_mul_mat(ctx0, model.output, cur);
  9728. cb(cur, "result_output", -1);
  9729. ggml_build_forward_expand(gf, cur);
  9730. return gf;
  9731. }
  9732. struct ggml_cgraph * build_gemma2() {
  9733. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9734. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  9735. struct ggml_tensor * cur;
  9736. struct ggml_tensor * inpL;
  9737. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9738. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  9739. cb(inpL, "inp_scaled", -1);
  9740. // inp_pos - contains the positions
  9741. struct ggml_tensor * inp_pos = build_inp_pos();
  9742. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9743. // gemma 2 requires different mask for layers using sliding window (SWA)
  9744. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
  9745. struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
  9746. for (int il = 0; il < n_layer; ++il) {
  9747. // (il % 2) layers use SWA
  9748. struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
  9749. // norm
  9750. cur = llm_build_norm(ctx0, inpL, hparams,
  9751. model.layers[il].attn_norm, NULL,
  9752. LLM_NORM_RMS, cb, il);
  9753. cb(cur, "attn_norm", il);
  9754. // self-attention
  9755. {
  9756. // compute Q and K and RoPE them
  9757. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9758. cb(Qcur, "Qcur", il);
  9759. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9760. cb(Kcur, "Kcur", il);
  9761. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9762. cb(Vcur, "Vcur", il);
  9763. Qcur = ggml_rope_ext(
  9764. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  9765. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9766. ext_factor, attn_factor, beta_fast, beta_slow);
  9767. cb(Qcur, "Qcur", il);
  9768. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head)));
  9769. cb(Qcur, "Qcur_scaled", il);
  9770. Kcur = ggml_rope_ext(
  9771. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  9772. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9773. ext_factor, attn_factor, beta_fast, beta_slow);
  9774. cb(Kcur, "Kcur", il);
  9775. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9776. model.layers[il].wo, NULL,
  9777. Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  9778. }
  9779. cur = llm_build_norm(ctx0, cur, hparams,
  9780. model.layers[il].attn_post_norm, NULL,
  9781. LLM_NORM_RMS, cb, il);
  9782. cb(cur, "attn_post_norm", il);
  9783. if (il == n_layer - 1) {
  9784. // skip computing output for unused tokens
  9785. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9786. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9787. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9788. }
  9789. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  9790. cb(sa_out, "sa_out", il);
  9791. cur = llm_build_norm(ctx0, sa_out, hparams,
  9792. model.layers[il].ffn_norm, NULL,
  9793. LLM_NORM_RMS, cb, il);
  9794. cb(cur, "ffn_norm", il);
  9795. // feed-forward network
  9796. {
  9797. cur = llm_build_ffn(ctx0, cur,
  9798. model.layers[il].ffn_up, NULL, NULL,
  9799. model.layers[il].ffn_gate, NULL, NULL,
  9800. model.layers[il].ffn_down, NULL, NULL,
  9801. NULL,
  9802. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  9803. cb(cur, "ffn_out", il);
  9804. }
  9805. cur = llm_build_norm(ctx0, cur, hparams,
  9806. model.layers[il].ffn_post_norm, NULL,
  9807. LLM_NORM_RMS, cb, -1);
  9808. cb(cur, "ffn_post_norm", -1);
  9809. cur = ggml_add(ctx0, cur, sa_out);
  9810. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9811. cb(cur, "l_out", il);
  9812. // input for next layer
  9813. inpL = cur;
  9814. }
  9815. cur = inpL;
  9816. cur = llm_build_norm(ctx0, cur, hparams,
  9817. model.output_norm, NULL,
  9818. LLM_NORM_RMS, cb, -1);
  9819. cb(cur, "result_norm", -1);
  9820. // lm_head
  9821. cur = ggml_mul_mat(ctx0, model.output, cur);
  9822. // final logit soft-capping
  9823. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  9824. cur = ggml_tanh(ctx0, cur);
  9825. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  9826. cb(cur, "result_output", -1);
  9827. ggml_build_forward_expand(gf, cur);
  9828. return gf;
  9829. }
  9830. struct ggml_cgraph * build_starcoder2() {
  9831. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9832. const int64_t n_embd_head = hparams.n_embd_head_v;
  9833. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9834. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9835. struct ggml_tensor * cur;
  9836. struct ggml_tensor * inpL;
  9837. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9838. // inp_pos - contains the positions
  9839. struct ggml_tensor * inp_pos = build_inp_pos();
  9840. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9841. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9842. for (int il = 0; il < n_layer; ++il) {
  9843. struct ggml_tensor * inpSA = inpL;
  9844. // norm
  9845. cur = llm_build_norm(ctx0, inpL, hparams,
  9846. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  9847. LLM_NORM, cb, il);
  9848. cb(cur, "attn_norm", il);
  9849. // self-attention
  9850. {
  9851. // compute Q and K and RoPE them
  9852. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9853. cb(Qcur, "Qcur", il);
  9854. if (model.layers[il].bq) {
  9855. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9856. cb(Qcur, "Qcur", il);
  9857. }
  9858. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9859. cb(Kcur, "Kcur", il);
  9860. if (model.layers[il].bk) {
  9861. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9862. cb(Kcur, "Kcur", il);
  9863. }
  9864. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9865. cb(Vcur, "Vcur", il);
  9866. if (model.layers[il].bv) {
  9867. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9868. cb(Vcur, "Vcur", il);
  9869. }
  9870. Qcur = ggml_rope_ext(
  9871. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9872. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9873. ext_factor, attn_factor, beta_fast, beta_slow
  9874. );
  9875. cb(Qcur, "Qcur", il);
  9876. Kcur = ggml_rope_ext(
  9877. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9878. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9879. ext_factor, attn_factor, beta_fast, beta_slow
  9880. );
  9881. cb(Kcur, "Kcur", il);
  9882. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9883. model.layers[il].wo, model.layers[il].bo,
  9884. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9885. }
  9886. if (il == n_layer - 1) {
  9887. // skip computing output for unused tokens
  9888. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9889. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9890. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9891. }
  9892. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9893. cb(ffn_inp, "ffn_inp", il);
  9894. // feed-forward network
  9895. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9896. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  9897. LLM_NORM, cb, il);
  9898. cb(cur, "ffn_norm", il);
  9899. cur = llm_build_ffn(ctx0, cur,
  9900. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9901. NULL, NULL, NULL,
  9902. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9903. NULL,
  9904. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9905. cb(cur, "ffn_out", il);
  9906. cur = ggml_add(ctx0, cur, ffn_inp);
  9907. cur = lctx.cvec.apply_to(ctx0, cur, il);
  9908. cb(cur, "l_out", il);
  9909. // input for next layer
  9910. inpL = cur;
  9911. }
  9912. cur = inpL;
  9913. cur = llm_build_norm(ctx0, cur, hparams,
  9914. model.output_norm, model.output_norm_b,
  9915. LLM_NORM, cb, -1);
  9916. cb(cur, "result_norm", -1);
  9917. // lm_head
  9918. cur = ggml_mul_mat(ctx0, model.output, cur);
  9919. cb(cur, "result_output", -1);
  9920. ggml_build_forward_expand(gf, cur);
  9921. return gf;
  9922. }
  9923. struct ggml_cgraph * build_mamba() {
  9924. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9925. const int64_t d_model = n_embd;
  9926. const int64_t d_conv = hparams.ssm_d_conv;
  9927. const int64_t d_inner = hparams.ssm_d_inner;
  9928. GGML_ASSERT(2 * d_model == d_inner);
  9929. const int64_t d_state = hparams.ssm_d_state;
  9930. const int64_t dt_rank = hparams.ssm_dt_rank;
  9931. struct ggml_tensor * cur;
  9932. struct ggml_tensor * inpL;
  9933. // {n_embd, n_tokens}
  9934. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9935. struct ggml_tensor * state_mask = build_inp_s_mask();
  9936. struct ggml_tensor * state_seq = build_inp_s_seq();
  9937. for (int il = 0; il < n_layer; ++il) {
  9938. // (ab)using the KV cache to store the states
  9939. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  9940. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  9941. // clear states of sequences which are starting at the beginning of this batch
  9942. {
  9943. conv_states = ggml_mul(ctx0,
  9944. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  9945. state_mask);
  9946. ssm_states = ggml_mul(ctx0,
  9947. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  9948. state_mask);
  9949. }
  9950. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  9951. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  9952. // norm
  9953. cur = llm_build_norm(ctx0, inpL, hparams,
  9954. model.layers[il].attn_norm, NULL,
  9955. LLM_NORM_RMS, cb, il);
  9956. cb(cur, "attn_norm", il);
  9957. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  9958. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  9959. // split the above in two
  9960. // => {d_inner, n_tokens}
  9961. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  9962. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  9963. // conv
  9964. {
  9965. // Custom operator which is needed only to ease simultaneous sequence processing.
  9966. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  9967. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  9968. // then element-wise multiply that with the conv1d weigth,
  9969. // then sum the elements of each row,
  9970. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9971. // then permute away the ne[0] dimension,
  9972. // and then you're left with the resulting x tensor.
  9973. // The new conv_states is the last (d_conv - 1) columns
  9974. // of the last 3rd dimensional "layer" of the self-overlapping view.
  9975. // For simultaneous sequences, it's more complicated.
  9976. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  9977. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  9978. ggml_build_forward_expand(gf,
  9979. ggml_cpy(ctx0,
  9980. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  9981. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  9982. // extract x from x_conv
  9983. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  9984. // bias
  9985. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  9986. x = ggml_silu(ctx0, x);
  9987. }
  9988. // ssm
  9989. {
  9990. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  9991. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  9992. // split
  9993. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  9994. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  9995. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  9996. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  9997. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  9998. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  9999. // Custom operator to optimize the parallel associative scan
  10000. // as described in the Annex D of the Mamba paper.
  10001. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  10002. // because only a single tensor can be returned.
  10003. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  10004. // store last states (the second part of y_ssm_states)
  10005. ggml_build_forward_expand(gf,
  10006. ggml_cpy(ctx0,
  10007. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  10008. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  10009. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  10010. if (il == n_layer - 1) {
  10011. // skip computing output for unused tokens
  10012. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10013. x = ggml_get_rows(ctx0, x, inp_out_ids);
  10014. y = ggml_get_rows(ctx0, y, inp_out_ids);
  10015. z = ggml_get_rows(ctx0, z, inp_out_ids);
  10016. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10017. }
  10018. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  10019. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  10020. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  10021. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  10022. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  10023. }
  10024. // residual
  10025. cur = ggml_add(ctx0, cur, inpL);
  10026. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10027. cb(cur, "l_out", il);
  10028. // input for next layer
  10029. inpL = cur;
  10030. }
  10031. // final rmsnorm
  10032. cur = llm_build_norm(ctx0, inpL, hparams,
  10033. model.output_norm, NULL,
  10034. LLM_NORM_RMS, cb, -1);
  10035. cb(cur, "result_norm", -1);
  10036. // lm_head
  10037. cur = ggml_mul_mat(ctx0, model.output, cur);
  10038. cb(cur, "result_output", -1);
  10039. ggml_build_forward_expand(gf, cur);
  10040. return gf;
  10041. }
  10042. struct ggml_cgraph * build_command_r() {
  10043. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10044. const int64_t n_embd_head = hparams.n_embd_head_v;
  10045. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10046. const float f_logit_scale = hparams.f_logit_scale;
  10047. struct ggml_tensor * cur;
  10048. struct ggml_tensor * inpL;
  10049. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10050. // inp_pos - contains the positions
  10051. struct ggml_tensor * inp_pos = build_inp_pos();
  10052. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10053. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10054. for (int il = 0; il < n_layer; ++il) {
  10055. // norm
  10056. cur = llm_build_norm(ctx0, inpL, hparams,
  10057. model.layers[il].attn_norm, NULL,
  10058. LLM_NORM, cb, il);
  10059. cb(cur, "attn_norm", il);
  10060. struct ggml_tensor * ffn_inp = cur;
  10061. // self-attention
  10062. {
  10063. // compute Q and K and RoPE them
  10064. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10065. cb(Qcur, "Qcur", il);
  10066. if (model.layers[il].bq) {
  10067. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10068. cb(Qcur, "Qcur", il);
  10069. }
  10070. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  10071. cb(Kcur, "Kcur", il);
  10072. if (model.layers[il].bk) {
  10073. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10074. cb(Kcur, "Kcur", il);
  10075. }
  10076. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  10077. cb(Vcur, "Vcur", il);
  10078. if (model.layers[il].bv) {
  10079. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10080. cb(Vcur, "Vcur", il);
  10081. }
  10082. if (model.layers[il].attn_q_norm) {
  10083. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  10084. ggml_element_size(Qcur) * n_embd_head,
  10085. ggml_element_size(Qcur) * n_embd_head * n_head,
  10086. 0);
  10087. cb(Qcur, "Qcur", il);
  10088. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  10089. ggml_element_size(Kcur) * n_embd_head,
  10090. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  10091. 0);
  10092. cb(Kcur, "Kcur", il);
  10093. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  10094. model.layers[il].attn_q_norm,
  10095. NULL,
  10096. LLM_NORM, cb, il);
  10097. cb(Qcur, "Qcur", il);
  10098. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  10099. model.layers[il].attn_k_norm,
  10100. NULL,
  10101. LLM_NORM, cb, il);
  10102. cb(Kcur, "Kcur", il);
  10103. }
  10104. Qcur = ggml_rope_ext(
  10105. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10106. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10107. ext_factor, attn_factor, beta_fast, beta_slow
  10108. );
  10109. cb(Qcur, "Qcur", il);
  10110. Kcur = ggml_rope_ext(
  10111. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10112. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10113. ext_factor, attn_factor, beta_fast, beta_slow
  10114. );
  10115. cb(Kcur, "Kcur", il);
  10116. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10117. model.layers[il].wo, model.layers[il].bo,
  10118. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10119. }
  10120. if (il == n_layer - 1) {
  10121. // skip computing output for unused tokens
  10122. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10123. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10124. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10125. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  10126. }
  10127. struct ggml_tensor * attn_out = cur;
  10128. // feed-forward network
  10129. {
  10130. cur = llm_build_ffn(ctx0, ffn_inp,
  10131. model.layers[il].ffn_up, NULL, NULL,
  10132. model.layers[il].ffn_gate, NULL, NULL,
  10133. model.layers[il].ffn_down, NULL, NULL,
  10134. NULL,
  10135. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10136. cb(cur, "ffn_out", il);
  10137. }
  10138. // add together residual + FFN + self-attention
  10139. cur = ggml_add(ctx0, cur, inpL);
  10140. cur = ggml_add(ctx0, cur, attn_out);
  10141. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10142. cb(cur, "l_out", il);
  10143. // input for next layer
  10144. inpL = cur;
  10145. }
  10146. cur = inpL;
  10147. cur = llm_build_norm(ctx0, cur, hparams,
  10148. model.output_norm, NULL,
  10149. LLM_NORM, cb, -1);
  10150. cb(cur, "result_norm", -1);
  10151. // lm_head
  10152. cur = ggml_mul_mat(ctx0, model.output, cur);
  10153. if (f_logit_scale) {
  10154. cur = ggml_scale(ctx0, cur, f_logit_scale);
  10155. }
  10156. cb(cur, "result_output", -1);
  10157. ggml_build_forward_expand(gf, cur);
  10158. return gf;
  10159. }
  10160. // ref: https://allenai.org/olmo
  10161. // based on the original build_llama() function, changes:
  10162. // * non-parametric layer norm
  10163. // * clamp qkv
  10164. // * removed bias
  10165. // * removed MoE
  10166. struct ggml_cgraph * build_olmo() {
  10167. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10168. // mutable variable, needed during the last layer of the computation to skip unused tokens
  10169. int32_t n_tokens = this->n_tokens;
  10170. const int64_t n_embd_head = hparams.n_embd_head_v;
  10171. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10172. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10173. struct ggml_tensor * cur;
  10174. struct ggml_tensor * inpL;
  10175. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10176. // inp_pos - contains the positions
  10177. struct ggml_tensor * inp_pos = build_inp_pos();
  10178. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10179. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10180. for (int il = 0; il < n_layer; ++il) {
  10181. struct ggml_tensor * inpSA = inpL;
  10182. // norm
  10183. cur = llm_build_norm(ctx0, inpL, hparams,
  10184. NULL, NULL,
  10185. LLM_NORM, cb, il);
  10186. cb(cur, "attn_norm", il);
  10187. // self-attention
  10188. {
  10189. // compute Q and K and RoPE them
  10190. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10191. cb(Qcur, "Qcur", il);
  10192. if (hparams.f_clamp_kqv > 0.0f) {
  10193. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  10194. cb(Qcur, "Qcur", il);
  10195. }
  10196. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  10197. cb(Kcur, "Kcur", il);
  10198. if (hparams.f_clamp_kqv > 0.0f) {
  10199. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  10200. cb(Kcur, "Kcur", il);
  10201. }
  10202. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  10203. cb(Vcur, "Vcur", il);
  10204. if (hparams.f_clamp_kqv > 0.0f) {
  10205. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  10206. cb(Vcur, "Vcur", il);
  10207. }
  10208. Qcur = ggml_rope_ext(
  10209. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10210. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10211. ext_factor, attn_factor, beta_fast, beta_slow
  10212. );
  10213. cb(Qcur, "Qcur", il);
  10214. Kcur = ggml_rope_ext(
  10215. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10216. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10217. ext_factor, attn_factor, beta_fast, beta_slow
  10218. );
  10219. cb(Kcur, "Kcur", il);
  10220. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10221. model.layers[il].wo, nullptr,
  10222. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10223. }
  10224. if (il == n_layer - 1) {
  10225. // skip computing output for unused tokens
  10226. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10227. n_tokens = n_outputs;
  10228. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10229. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10230. }
  10231. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10232. cb(ffn_inp, "ffn_inp", il);
  10233. // feed-forward network
  10234. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10235. NULL, NULL,
  10236. LLM_NORM, cb, il);
  10237. cb(cur, "ffn_norm", il);
  10238. cur = llm_build_ffn(ctx0, cur,
  10239. model.layers[il].ffn_up, NULL, NULL,
  10240. model.layers[il].ffn_gate, NULL, NULL,
  10241. model.layers[il].ffn_down, NULL, NULL,
  10242. NULL,
  10243. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10244. cb(cur, "ffn_out", il);
  10245. cur = ggml_add(ctx0, cur, ffn_inp);
  10246. cb(cur, "ffn_out", il);
  10247. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10248. cb(cur, "l_out", il);
  10249. // input for next layer
  10250. inpL = cur;
  10251. }
  10252. cur = inpL;
  10253. cur = llm_build_norm(ctx0, cur, hparams,
  10254. NULL, NULL,
  10255. LLM_NORM, cb, -1);
  10256. cb(cur, "result_norm", -1);
  10257. // lm_head
  10258. cur = ggml_mul_mat(ctx0, model.output, cur);
  10259. cb(cur, "result_output", -1);
  10260. ggml_build_forward_expand(gf, cur);
  10261. return gf;
  10262. }
  10263. struct ggml_cgraph * build_openelm() {
  10264. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10265. const int64_t n_embd_head = hparams.n_embd_head_v;
  10266. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10267. struct ggml_tensor * cur;
  10268. struct ggml_tensor * inpL;
  10269. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10270. // inp_pos - contains the positions
  10271. struct ggml_tensor * inp_pos = build_inp_pos();
  10272. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10273. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10274. for (int il = 0; il < n_layer; ++il) {
  10275. const int64_t n_head = hparams.n_head(il);
  10276. const int64_t n_head_kv = hparams.n_head_kv(il);
  10277. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  10278. cur = inpL;
  10279. struct ggml_tensor * residual = cur;
  10280. // norm
  10281. cur = llm_build_norm(ctx0, inpL, hparams,
  10282. model.layers[il].attn_norm, NULL,
  10283. LLM_NORM_RMS, cb, il);
  10284. cb(cur, "attn_norm", il);
  10285. // self-attention
  10286. {
  10287. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  10288. cb(cur, "wqkv", il);
  10289. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  10290. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  10291. cb(Qcur, "Qcur", il);
  10292. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  10293. cb(Kcur, "Kcur", il);
  10294. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  10295. cb(Vcur, "Vcur", il);
  10296. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  10297. model.layers[il].attn_q_norm, NULL,
  10298. LLM_NORM_RMS, cb, il);
  10299. cb(Qcur, "Qcur", il);
  10300. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  10301. model.layers[il].attn_k_norm, NULL,
  10302. LLM_NORM_RMS, cb, il);
  10303. cb(Kcur, "Kcur", il);
  10304. Qcur = ggml_rope_ext(
  10305. ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
  10306. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  10307. );
  10308. cb(Qcur, "Qcur", il);
  10309. Kcur = ggml_rope_ext(
  10310. ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
  10311. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  10312. );
  10313. cb(Kcur, "Kcur", il);
  10314. Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
  10315. cb(Qcur, "Vcur", il);
  10316. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10317. model.layers[il].wo, NULL,
  10318. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10319. }
  10320. if (il == n_layer - 1) {
  10321. // skip computing output for unused tokens
  10322. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10323. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  10324. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10325. }
  10326. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  10327. cb(ffn_inp, "ffn_inp", il);
  10328. // feed-forward network
  10329. {
  10330. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10331. model.layers[il].ffn_norm, NULL,
  10332. LLM_NORM_RMS, cb, il);
  10333. cb(cur, "ffn_norm", il);
  10334. cur = llm_build_ffn(ctx0, cur,
  10335. model.layers[il].ffn_up, NULL, NULL,
  10336. model.layers[il].ffn_gate, NULL, NULL,
  10337. model.layers[il].ffn_down, NULL, NULL,
  10338. NULL,
  10339. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10340. cb(cur, "ffn_out", il);
  10341. }
  10342. cur = ggml_add(ctx0, cur, ffn_inp);
  10343. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10344. cb(cur, "l_out", il);
  10345. inpL = cur;
  10346. }
  10347. cur = inpL;
  10348. // norm
  10349. cur = llm_build_norm(ctx0, cur, hparams,
  10350. model.output_norm, NULL,
  10351. LLM_NORM_RMS, cb, -1);
  10352. cb(cur, "result_norm", -1);
  10353. cur = ggml_mul_mat(ctx0, model.output, cur);
  10354. cb(cur, "result_output", -1);
  10355. ggml_build_forward_expand(gf, cur);
  10356. return gf;
  10357. }
  10358. struct ggml_cgraph * build_gptneox() {
  10359. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10360. const int64_t n_embd_head = hparams.n_embd_head_v;
  10361. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10362. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10363. struct ggml_tensor * cur;
  10364. struct ggml_tensor * inpL;
  10365. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10366. // inp_pos - contains the positions
  10367. struct ggml_tensor * inp_pos = build_inp_pos();
  10368. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10369. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10370. for (int il = 0; il < n_layer; ++il) {
  10371. cur = llm_build_norm(ctx0, inpL, hparams,
  10372. model.layers[il].attn_norm,
  10373. model.layers[il].attn_norm_b,
  10374. LLM_NORM, cb, il);
  10375. cb(cur, "attn_norm", il);
  10376. // self-attention
  10377. {
  10378. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  10379. cb(cur, "wqkv", il);
  10380. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  10381. cb(cur, "bqkv", il);
  10382. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  10383. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  10384. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  10385. cb(Qcur, "Qcur", il);
  10386. cb(Kcur, "Kcur", il);
  10387. cb(Vcur, "Vcur", il);
  10388. Qcur = ggml_rope_ext(
  10389. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10390. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10391. ext_factor, attn_factor, beta_fast, beta_slow
  10392. );
  10393. cb(Qcur, "Qcur", il);
  10394. Kcur = ggml_rope_ext(
  10395. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10396. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10397. ext_factor, attn_factor, beta_fast, beta_slow
  10398. );
  10399. cb(Kcur, "Kcur", il);
  10400. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10401. model.layers[il].wo, model.layers[il].bo,
  10402. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10403. }
  10404. if (il == n_layer - 1) {
  10405. // skip computing output for unused tokens
  10406. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10407. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10408. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10409. }
  10410. // ffn
  10411. if (hparams.use_par_res) {
  10412. // attention and ffn are computed in parallel
  10413. // x = x + attn(ln1(x)) + ffn(ln2(x))
  10414. struct ggml_tensor * attn_out = cur;
  10415. cur = llm_build_norm(ctx0, inpL, hparams,
  10416. model.layers[il].ffn_norm,
  10417. model.layers[il].ffn_norm_b,
  10418. LLM_NORM, cb, il);
  10419. cb(cur, "ffn_norm", il);
  10420. cur = llm_build_ffn(ctx0, cur,
  10421. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10422. NULL, NULL, NULL,
  10423. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10424. NULL,
  10425. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  10426. cb(cur, "ffn_out", il);
  10427. cur = ggml_add(ctx0, cur, inpL);
  10428. cb(cur, "ffn_out", il);
  10429. cur = ggml_add(ctx0, cur, attn_out);
  10430. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10431. cb(cur, "l_out", il);
  10432. // input for next layer
  10433. inpL = cur;
  10434. } else {
  10435. // attention and ffn are computed sequentially
  10436. // x = x + attn(ln1(x))
  10437. // x = x + ffn(ln2(x))
  10438. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  10439. cb(ffn_inp, "ffn_inp", il);
  10440. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10441. model.layers[il].ffn_norm,
  10442. model.layers[il].ffn_norm_b,
  10443. LLM_NORM, cb, il);
  10444. cb(cur, "ffn_norm", il);
  10445. cur = llm_build_ffn(ctx0, cur,
  10446. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10447. NULL, NULL, NULL,
  10448. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10449. NULL,
  10450. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  10451. cb(cur, "ffn_out", il);
  10452. cur = ggml_add(ctx0, cur, ffn_inp);
  10453. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10454. cb(cur, "l_out", il);
  10455. // input for next layer
  10456. inpL = cur;
  10457. }
  10458. }
  10459. cur = llm_build_norm(ctx0, inpL, hparams,
  10460. model.output_norm,
  10461. model.output_norm_b,
  10462. LLM_NORM, cb, -1);
  10463. cb(cur, "result_norm", -1);
  10464. cur = ggml_mul_mat(ctx0, model.output, cur);
  10465. cb(cur, "result_output", -1);
  10466. ggml_build_forward_expand(gf, cur);
  10467. return gf;
  10468. }
  10469. struct ggml_cgraph * build_arctic() {
  10470. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10471. // mutable variable, needed during the last layer of the computation to skip unused tokens
  10472. int32_t n_tokens = this->n_tokens;
  10473. const int64_t n_embd_head = hparams.n_embd_head_v;
  10474. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10475. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10476. struct ggml_tensor * cur;
  10477. struct ggml_tensor * inpL;
  10478. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10479. // inp_pos - contains the positions
  10480. struct ggml_tensor * inp_pos = build_inp_pos();
  10481. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10482. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10483. for (int il = 0; il < n_layer; ++il) {
  10484. struct ggml_tensor * inpSA = inpL;
  10485. // norm
  10486. cur = llm_build_norm(ctx0, inpL, hparams,
  10487. model.layers[il].attn_norm, NULL,
  10488. LLM_NORM_RMS, cb, il);
  10489. cb(cur, "attn_norm", il);
  10490. // self-attention
  10491. {
  10492. // compute Q and K and RoPE them
  10493. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10494. cb(Qcur, "Qcur", il);
  10495. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  10496. cb(Kcur, "Kcur", il);
  10497. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  10498. cb(Vcur, "Vcur", il);
  10499. Qcur = ggml_rope_ext(
  10500. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10501. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10502. ext_factor, attn_factor, beta_fast, beta_slow
  10503. );
  10504. cb(Qcur, "Qcur", il);
  10505. Kcur = ggml_rope_ext(
  10506. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10507. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10508. ext_factor, attn_factor, beta_fast, beta_slow
  10509. );
  10510. cb(Kcur, "Kcur", il);
  10511. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10512. model.layers[il].wo, NULL,
  10513. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10514. }
  10515. if (il == n_layer - 1) {
  10516. // skip computing output for unused tokens
  10517. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10518. n_tokens = n_outputs;
  10519. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10520. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10521. }
  10522. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10523. cb(ffn_inp, "ffn_inp", il);
  10524. // feed-forward network
  10525. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10526. model.layers[il].ffn_norm, NULL,
  10527. LLM_NORM_RMS, cb, il);
  10528. cb(cur, "ffn_norm", il);
  10529. cur = llm_build_ffn(ctx0, cur,
  10530. model.layers[il].ffn_up, NULL, NULL,
  10531. model.layers[il].ffn_gate, NULL, NULL,
  10532. model.layers[il].ffn_down, NULL, NULL,
  10533. NULL,
  10534. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10535. cb(cur, "ffn_out", il);
  10536. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  10537. cb(ffn_out, "ffn_out", il);
  10538. // MoE
  10539. cur = llm_build_norm(ctx0, inpSA, hparams,
  10540. model.layers[il].ffn_norm_exps, NULL,
  10541. LLM_NORM_RMS, cb, il);
  10542. cb(cur, "ffn_norm_exps", il);
  10543. cur = llm_build_moe_ffn(ctx0, cur,
  10544. model.layers[il].ffn_gate_inp,
  10545. model.layers[il].ffn_up_exps,
  10546. model.layers[il].ffn_gate_exps,
  10547. model.layers[il].ffn_down_exps,
  10548. n_expert, n_expert_used,
  10549. LLM_FFN_SILU, true,
  10550. false, 0.0,
  10551. cb, il);
  10552. cb(cur, "ffn_moe_out", il);
  10553. cur = ggml_add(ctx0, cur, ffn_out);
  10554. cb(cur, "ffn_out", il);
  10555. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10556. cb(cur, "l_out", il);
  10557. // input for next layer
  10558. inpL = cur;
  10559. }
  10560. cur = inpL;
  10561. cur = llm_build_norm(ctx0, cur, hparams,
  10562. model.output_norm, NULL,
  10563. LLM_NORM_RMS, cb, -1);
  10564. cb(cur, "result_norm", -1);
  10565. // lm_head
  10566. cur = ggml_mul_mat(ctx0, model.output, cur);
  10567. cb(cur, "result_output", -1);
  10568. ggml_build_forward_expand(gf, cur);
  10569. return gf;
  10570. }
  10571. struct ggml_cgraph * build_deepseek2() {
  10572. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10573. // mutable variable, needed during the last layer of the computation to skip unused tokens
  10574. int32_t n_tokens = this->n_tokens;
  10575. bool is_lite = (hparams.n_layer == 27);
  10576. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  10577. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  10578. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  10579. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  10580. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  10581. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  10582. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  10583. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  10584. struct ggml_tensor * cur;
  10585. struct ggml_tensor * inpL;
  10586. // {n_embd, n_tokens}
  10587. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10588. // inp_pos - contains the positions
  10589. struct ggml_tensor * inp_pos = build_inp_pos();
  10590. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10591. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10592. for (int il = 0; il < n_layer; ++il) {
  10593. struct ggml_tensor * inpSA = inpL;
  10594. // norm
  10595. cur = llm_build_norm(ctx0, inpL, hparams,
  10596. model.layers[il].attn_norm, NULL,
  10597. LLM_NORM_RMS, cb, il);
  10598. cb(cur, "attn_norm", il);
  10599. // self_attention
  10600. {
  10601. struct ggml_tensor * q = NULL;
  10602. if (!is_lite) {
  10603. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  10604. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  10605. cb(q, "q", il);
  10606. q = llm_build_norm(ctx0, q, hparams,
  10607. model.layers[il].attn_q_a_norm, NULL,
  10608. LLM_NORM_RMS, cb, il);
  10609. cb(q, "q", il);
  10610. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  10611. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  10612. cb(q, "q", il);
  10613. } else {
  10614. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10615. cb(q, "q", il);
  10616. }
  10617. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10618. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  10619. ggml_row_size(q->type, hparams.n_embd_head_k),
  10620. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10621. 0);
  10622. cb(q_nope, "q_nope", il);
  10623. // and {n_head * n_embd_head_qk_rope, n_tokens}
  10624. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  10625. ggml_row_size(q->type, hparams.n_embd_head_k),
  10626. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10627. ggml_row_size(q->type, n_embd_head_qk_nope));
  10628. cb(q_pe, "q_pe", il);
  10629. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10630. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10631. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10632. // split into {kv_lora_rank, n_tokens}
  10633. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10634. kv_pe_compresseed->nb[1],
  10635. 0);
  10636. cb(kv_compressed, "kv_compressed", il);
  10637. // and {n_embd_head_qk_rope, n_tokens}
  10638. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10639. kv_pe_compresseed->nb[1],
  10640. kv_pe_compresseed->nb[1],
  10641. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10642. cb(k_pe, "k_pe", il);
  10643. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  10644. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  10645. model.layers[il].attn_kv_a_norm, NULL,
  10646. LLM_NORM_RMS, cb, il);
  10647. cb(kv_compressed, "kv_compressed", il);
  10648. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10649. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10650. cb(kv, "kv", il);
  10651. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10652. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10653. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10654. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10655. 0);
  10656. cb(k_nope, "k_nope", il);
  10657. // and {n_head * n_embd_head_v, n_tokens}
  10658. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10659. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10660. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10661. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10662. cb(v_states, "v_states", il);
  10663. v_states = ggml_cont(ctx0, v_states);
  10664. cb(v_states, "v_states", il);
  10665. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10666. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10667. 0);
  10668. cb(v_states, "v_states", il);
  10669. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  10670. q_pe = ggml_rope_ext(
  10671. ctx0, q_pe, inp_pos, nullptr,
  10672. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10673. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  10674. );
  10675. cb(q_pe, "q_pe", il);
  10676. // shared RoPE key
  10677. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  10678. k_pe = ggml_rope_ext(
  10679. ctx0, k_pe, inp_pos, nullptr,
  10680. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10681. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  10682. );
  10683. cb(k_pe, "k_pe", il);
  10684. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10685. cb(q_states, "q_states", il);
  10686. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10687. cb(k_states, "k_states", il);
  10688. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10689. model.layers[il].wo, NULL,
  10690. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  10691. }
  10692. if (il == n_layer - 1) {
  10693. // skip computing output for unused tokens
  10694. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10695. n_tokens = n_outputs;
  10696. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10697. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10698. }
  10699. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10700. cb(ffn_inp, "ffn_inp", il);
  10701. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  10702. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10703. model.layers[il].ffn_norm, NULL,
  10704. LLM_NORM_RMS, cb, il);
  10705. cb(cur, "ffn_norm", il);
  10706. cur = llm_build_ffn(ctx0, cur,
  10707. model.layers[il].ffn_up, NULL, NULL,
  10708. model.layers[il].ffn_gate, NULL, NULL,
  10709. model.layers[il].ffn_down, NULL, NULL,
  10710. NULL,
  10711. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10712. cb(cur, "ffn_out", il);
  10713. } else {
  10714. // MoE branch
  10715. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10716. model.layers[il].ffn_norm, NULL,
  10717. LLM_NORM_RMS, cb, il);
  10718. cb(cur, "ffn_norm", il);
  10719. ggml_tensor * moe_out =
  10720. llm_build_moe_ffn(ctx0, cur,
  10721. model.layers[il].ffn_gate_inp,
  10722. model.layers[il].ffn_up_exps,
  10723. model.layers[il].ffn_gate_exps,
  10724. model.layers[il].ffn_down_exps,
  10725. n_expert, n_expert_used,
  10726. LLM_FFN_SILU, false,
  10727. true, hparams.expert_weights_scale,
  10728. cb, il);
  10729. cb(moe_out, "ffn_moe_out", il);
  10730. // FFN shared expert
  10731. {
  10732. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  10733. model.layers[il].ffn_up_shexp, NULL, NULL,
  10734. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10735. model.layers[il].ffn_down_shexp, NULL, NULL,
  10736. NULL,
  10737. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10738. cb(ffn_shexp, "ffn_shexp", il);
  10739. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10740. cb(cur, "ffn_out", il);
  10741. }
  10742. }
  10743. cur = ggml_add(ctx0, cur, ffn_inp);
  10744. cur = lctx.cvec.apply_to(ctx0, cur, il);
  10745. cb(cur, "l_out", il);
  10746. // input for next layer
  10747. inpL = cur;
  10748. }
  10749. cur = inpL;
  10750. cur = llm_build_norm(ctx0, cur, hparams,
  10751. model.output_norm, NULL,
  10752. LLM_NORM_RMS, cb, -1);
  10753. cb(cur, "result_norm", -1);
  10754. // lm_head
  10755. cur = ggml_mul_mat(ctx0, model.output, cur);
  10756. cb(cur, "result_output", -1);
  10757. ggml_build_forward_expand(gf, cur);
  10758. return gf;
  10759. }
  10760. struct ggml_cgraph * build_bitnet() {
  10761. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10762. const int64_t n_embd_head = hparams.n_embd_head_v;
  10763. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10764. struct ggml_tensor * cur;
  10765. struct ggml_tensor * inpL;
  10766. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10767. // inp_pos - contains the positions
  10768. struct ggml_tensor * inp_pos = build_inp_pos();
  10769. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10770. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  10771. for (int il = 0; il < n_layer; ++il) {
  10772. struct ggml_tensor * inpSA = inpL;
  10773. cur = llm_build_norm(ctx0, inpL, hparams,
  10774. model.layers[il].attn_norm, NULL,
  10775. LLM_NORM_RMS, cb, il);
  10776. cb(cur, "attn_norm", il);
  10777. // self-attention
  10778. {
  10779. // compute Q and K and RoPE them
  10780. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10781. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  10782. cb(Qcur, "Qcur", il);
  10783. if (model.layers[il].bq) {
  10784. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10785. cb(Qcur, "Qcur", il);
  10786. }
  10787. // B1.K
  10788. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  10789. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  10790. cb(Kcur, "Kcur", il);
  10791. if (model.layers[il].bk) {
  10792. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10793. cb(Kcur, "Kcur", il);
  10794. }
  10795. // B1.V
  10796. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  10797. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  10798. cb(Vcur, "Vcur", il);
  10799. if (model.layers[il].bv) {
  10800. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10801. cb(Vcur, "Vcur", il);
  10802. }
  10803. Qcur = ggml_rope_ext(
  10804. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  10805. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10806. ext_factor, attn_factor, beta_fast, beta_slow
  10807. );
  10808. cb(Qcur, "Qcur", il);
  10809. Kcur = ggml_rope_ext(
  10810. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  10811. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10812. ext_factor, attn_factor, beta_fast, beta_slow
  10813. );
  10814. cb(Kcur, "Kcur", il);
  10815. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  10816. NULL, NULL,
  10817. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  10818. cur = llm_build_norm(ctx0, cur, hparams,
  10819. model.layers[il].attn_sub_norm, NULL,
  10820. LLM_NORM_RMS, cb, il);
  10821. cb(cur, "attn_sub_norm", il);
  10822. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  10823. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  10824. if (model.layers[il].bo) {
  10825. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  10826. }
  10827. cb(cur, "attn_o_out", il);
  10828. }
  10829. if (il == n_layer - 1) {
  10830. // skip computing output for unused tokens
  10831. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10832. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10833. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10834. }
  10835. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10836. cb(ffn_inp, "ffn_inp", il);
  10837. // feed-forward forward
  10838. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10839. model.layers[il].ffn_norm, NULL,
  10840. LLM_NORM_RMS, cb, il);
  10841. cb(cur, "ffn_norm", il);
  10842. cur = llm_build_ffn(ctx0, cur,
  10843. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  10844. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  10845. NULL, NULL, NULL,
  10846. NULL,
  10847. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  10848. cb(cur, "ffn_sub_out", il);
  10849. cur = llm_build_norm(ctx0, cur, hparams,
  10850. model.layers[il].ffn_sub_norm, NULL,
  10851. LLM_NORM_RMS, cb, il);
  10852. cb(cur, "ffn_sub_norm", il);
  10853. cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
  10854. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  10855. cb(cur, "ffn_down", il);
  10856. cur = ggml_add(ctx0, cur, ffn_inp);
  10857. cb(cur, "l_out", il);
  10858. // input for next layer
  10859. inpL = cur;
  10860. }
  10861. cur = inpL;
  10862. cur = llm_build_norm(ctx0, cur, hparams,
  10863. model.output_norm, NULL,
  10864. LLM_NORM_RMS, cb, -1);
  10865. cb(cur, "result_norm", -1);
  10866. // lm_head
  10867. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  10868. cb(cur, "result_output", -1);
  10869. ggml_build_forward_expand(gf, cur);
  10870. return gf;
  10871. }
  10872. struct ggml_cgraph * build_t5() {
  10873. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  10874. // mutable variable, needed during the last layer of the computation to skip unused tokens
  10875. int32_t n_tokens = this->n_tokens;
  10876. const int64_t n_embd_head = hparams.n_embd_head_v;
  10877. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10878. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10879. struct ggml_tensor * cur;
  10880. struct ggml_tensor * inpL;
  10881. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  10882. if (lctx.is_encoding) {
  10883. struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
  10884. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  10885. struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
  10886. for (int il = 0; il < n_layer; ++il) {
  10887. struct ggml_tensor * inpSA = inpL;
  10888. // norm
  10889. cur = llm_build_norm(ctx0, inpL, hparams,
  10890. model.layers[il].attn_norm_enc, NULL,
  10891. LLM_NORM_RMS, cb, il);
  10892. cb(cur, "attn_norm", il);
  10893. // self-attention
  10894. {
  10895. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_enc, cur);
  10896. cb(Qcur, "Qcur", il);
  10897. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_enc, cur);
  10898. cb(Kcur, "Kcur", il);
  10899. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_enc, cur);
  10900. cb(Vcur, "Vcur", il);
  10901. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10902. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10903. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  10904. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  10905. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  10906. cb(kq, "kq", il);
  10907. struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  10908. struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
  10909. struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
  10910. cb(kq_b, "kq_b", il);
  10911. kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
  10912. cb(kq, "kq_soft_max_ext", il);
  10913. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  10914. cb(v, "v", il);
  10915. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  10916. cb(kqv, "kqv", il);
  10917. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  10918. cb(kqv_merged, "kqv_merged", il);
  10919. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  10920. cb(cur, "kqv_merged_cont", il);
  10921. ggml_build_forward_expand(gf, cur);
  10922. cur = ggml_mul_mat(ctx0, model.layers[il].wo_enc, cur);
  10923. cb(cur, "kqv_out", il);
  10924. }
  10925. if (il == n_layer - 1) {
  10926. // skip computing output for unused tokens
  10927. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  10928. n_tokens = n_outputs;
  10929. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10930. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10931. }
  10932. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10933. cb(ffn_inp, "ffn_inp", il);
  10934. // feed-forward network
  10935. {
  10936. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  10937. model.layers[il].ffn_norm_enc, NULL,
  10938. LLM_NORM_RMS, cb, il);
  10939. cb(cur, "ffn_norm", il);
  10940. // T5 uses relu, flan-T5 uses gelu-gated
  10941. cur = llm_build_ffn(ctx0, cur,
  10942. model.layers[il].ffn_up_enc, NULL, NULL,
  10943. model.layers[il].ffn_gate_enc, NULL, NULL,
  10944. model.layers[il].ffn_down_enc, NULL, NULL,
  10945. NULL,
  10946. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  10947. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  10948. cb, il);
  10949. cb(cur, "ffn_out", il);
  10950. }
  10951. cur = ggml_add(ctx0, cur, ffn_inp);
  10952. cb(cur, "ffn_out", il);
  10953. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  10954. if (layer_dir != nullptr) {
  10955. cur = ggml_add(ctx0, cur, layer_dir);
  10956. }
  10957. cb(cur, "l_out", il);
  10958. // input for next layer
  10959. inpL = cur;
  10960. }
  10961. cur = inpL;
  10962. cb(cur, "result_embd", -1);
  10963. cur = llm_build_norm(ctx0, cur, hparams,
  10964. model.output_norm_enc, NULL,
  10965. LLM_NORM_RMS, cb, -1);
  10966. cb(cur, "result_norm", -1);
  10967. } else {
  10968. GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
  10969. struct ggml_tensor * embd_enc = llm_build_inp_embd_enc();
  10970. struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
  10971. struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
  10972. struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
  10973. for (int il = 0; il < n_layer; ++il) {
  10974. struct ggml_tensor * inpSA = inpL;
  10975. // norm
  10976. cur = llm_build_norm(ctx0, inpL, hparams,
  10977. model.layers[il].attn_norm, NULL,
  10978. LLM_NORM_RMS, cb, il);
  10979. cb(cur, "attn_norm", il);
  10980. // self-attention
  10981. {
  10982. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10983. cb(Qcur, "Qcur", il);
  10984. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  10985. cb(Kcur, "Kcur", il);
  10986. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  10987. cb(Vcur, "Vcur", il);
  10988. llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
  10989. struct ggml_tensor * k =
  10990. ggml_view_3d(ctx0, kv_self.k_l[il],
  10991. n_embd_head_k, n_kv, n_head_kv,
  10992. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  10993. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  10994. 0);
  10995. cb(k, "k", il);
  10996. struct ggml_tensor * v =
  10997. ggml_view_3d(ctx0, kv_self.v_l[il],
  10998. n_kv, n_embd_head_v, n_head_kv,
  10999. ggml_element_size(kv_self.v_l[il])*n_ctx,
  11000. ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
  11001. 0);
  11002. cb(v, "v", il);
  11003. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11004. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  11005. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  11006. cb(kq, "kq", il);
  11007. struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  11008. struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
  11009. struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
  11010. cb(kq_b, "kq_b", il);
  11011. kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
  11012. cb(kq, "kq_soft_max_ext", il);
  11013. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  11014. cb(kqv, "kqv", il);
  11015. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  11016. cb(kqv_merged, "kqv_merged", il);
  11017. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  11018. cb(cur, "kqv_merged_cont", il);
  11019. ggml_build_forward_expand(gf, cur);
  11020. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  11021. cb(cur, "kqv_out", il);
  11022. }
  11023. cur = ggml_add(ctx0, cur, inpSA);
  11024. cb(cur, "cross_inp", il);
  11025. struct ggml_tensor * inpCA = cur;
  11026. // norm
  11027. cur = llm_build_norm(ctx0, cur, hparams,
  11028. model.layers[il].attn_norm_cross, NULL,
  11029. LLM_NORM_RMS, cb, il);
  11030. cb(cur, "attn_norm_cross", il);
  11031. // cross-attention
  11032. {
  11033. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_cross, cur);
  11034. cb(Qcur, "Qcur", il);
  11035. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_cross, embd_enc);
  11036. cb(Kcur, "Kcur", il);
  11037. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_cross, embd_enc);
  11038. cb(Vcur, "Vcur", il);
  11039. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11040. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  11041. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  11042. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  11043. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  11044. cb(kq, "kq", il);
  11045. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  11046. cb(kq, "kq_soft_max_ext", il);
  11047. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  11048. cb(v, "v", il);
  11049. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  11050. cb(kqv, "kqv", il);
  11051. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  11052. cb(kqv_merged, "kqv_merged", il);
  11053. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  11054. cb(cur, "kqv_merged_cont", il);
  11055. ggml_build_forward_expand(gf, cur);
  11056. cur = ggml_mul_mat(ctx0, model.layers[il].wo_cross, cur);
  11057. cb(cur, "kqv_out", il);
  11058. }
  11059. if (il == n_layer - 1) {
  11060. // skip computing output for unused tokens
  11061. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11062. n_tokens = n_outputs;
  11063. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11064. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11065. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  11066. }
  11067. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  11068. cb(ffn_inp, "ffn_inp", il);
  11069. // feed-forward network
  11070. {
  11071. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11072. model.layers[il].ffn_norm, NULL,
  11073. LLM_NORM_RMS, cb, il);
  11074. cb(cur, "ffn_norm", il);
  11075. // T5 uses relu, flan-T5 uses gelu-gated
  11076. cur = llm_build_ffn(ctx0, cur,
  11077. model.layers[il].ffn_up, NULL, NULL,
  11078. model.layers[il].ffn_gate, NULL, NULL,
  11079. model.layers[il].ffn_down, NULL, NULL,
  11080. NULL,
  11081. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  11082. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  11083. cb, il);
  11084. cb(cur, "ffn_out", il);
  11085. }
  11086. cur = ggml_add(ctx0, cur, ffn_inp);
  11087. cb(cur, "ffn_out", il);
  11088. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  11089. if (layer_dir != nullptr) {
  11090. cur = ggml_add(ctx0, cur, layer_dir);
  11091. }
  11092. cb(cur, "l_out", il);
  11093. // input for next layer
  11094. inpL = cur;
  11095. }
  11096. cur = inpL;
  11097. cb(cur, "result_embd", -1);
  11098. cur = llm_build_norm(ctx0, cur, hparams,
  11099. model.output_norm, NULL,
  11100. LLM_NORM_RMS, cb, -1);
  11101. cb(cur, "result_norm", -1);
  11102. // lm_head
  11103. cur = ggml_mul_mat(ctx0, model.output, cur);
  11104. cb(cur, "result_output", -1);
  11105. }
  11106. ggml_build_forward_expand(gf, cur);
  11107. return gf;
  11108. }
  11109. struct ggml_cgraph * build_jais() {
  11110. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  11111. const int64_t n_embd_head = hparams.n_embd_head_v;
  11112. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11113. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11114. struct ggml_tensor * cur;
  11115. struct ggml_tensor * inpL;
  11116. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11117. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11118. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11119. for (int il = 0; il < n_layer; ++il) {
  11120. cur = llm_build_norm(ctx0, inpL, hparams,
  11121. model.layers[il].attn_norm,
  11122. model.layers[il].attn_norm_b,
  11123. LLM_NORM, cb, il);
  11124. cb(cur, "attn_norm", il);
  11125. // self-attention
  11126. {
  11127. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  11128. cb(cur, "wqkv", il);
  11129. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  11130. cb(cur, "bqkv", il);
  11131. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  11132. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  11133. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  11134. cb(Qcur, "Qcur", il);
  11135. cb(Kcur, "Kcur", il);
  11136. cb(Vcur, "Vcur", il);
  11137. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11138. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  11139. model.layers[il].wo, model.layers[il].bo,
  11140. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
  11141. }
  11142. if (il == n_layer - 1) {
  11143. // skip computing output for unused tokens
  11144. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11145. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11146. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  11147. }
  11148. // add the input
  11149. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  11150. cb(ffn_inp, "ffn_inp", il);
  11151. // FF
  11152. {
  11153. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11154. model.layers[il].ffn_norm,
  11155. model.layers[il].ffn_norm_b,
  11156. LLM_NORM, cb, il);
  11157. cb(cur, "ffn_norm", il);
  11158. cur = llm_build_ffn(ctx0, cur,
  11159. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11160. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  11161. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11162. NULL,
  11163. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  11164. cb(cur, "ffn_out", il);
  11165. }
  11166. inpL = ggml_add(ctx0, cur, ffn_inp);
  11167. cb(inpL, "l_out", il);
  11168. }
  11169. cur = llm_build_norm(ctx0, inpL, hparams,
  11170. model.output_norm,
  11171. model.output_norm_b,
  11172. LLM_NORM, cb, -1);
  11173. cb(cur, "result_norm", -1);
  11174. cur = ggml_mul_mat(ctx0, model.output, cur);
  11175. cb(cur, "result_output", -1);
  11176. ggml_build_forward_expand(gf, cur);
  11177. return gf;
  11178. }
  11179. struct ggml_cgraph * build_chatglm() {
  11180. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  11181. const int64_t n_embd_head = hparams.n_embd_head_v;
  11182. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11183. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11184. struct ggml_tensor * cur;
  11185. struct ggml_tensor * inpL;
  11186. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  11187. // inp_pos - contains the positions
  11188. struct ggml_tensor * inp_pos = build_inp_pos();
  11189. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  11190. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  11191. for (int il = 0; il < n_layer; ++il) {
  11192. struct ggml_tensor * inpSA = inpL;
  11193. cur = llm_build_norm(ctx0, inpL, hparams,
  11194. model.layers[il].attn_norm,
  11195. NULL,
  11196. LLM_NORM_RMS, cb, il);
  11197. cb(cur, "attn_norm", il);
  11198. // self-attention
  11199. {
  11200. struct ggml_tensor * Qcur = nullptr;
  11201. struct ggml_tensor * Kcur = nullptr;
  11202. struct ggml_tensor * Vcur = nullptr;
  11203. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  11204. cb(cur, "wqkv", il);
  11205. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  11206. cb(cur, "bqkv", il);
  11207. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  11208. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  11209. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  11210. cb(Qcur, "Qcur", il);
  11211. cb(Kcur, "Kcur", il);
  11212. cb(Vcur, "Vcur", il);
  11213. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  11214. Qcur = ggml_rope_ext(
  11215. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  11216. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11217. ext_factor, attn_factor, beta_fast, beta_slow
  11218. );
  11219. cb(Qcur, "Qcur_rope", il);
  11220. Kcur = ggml_rope_ext(
  11221. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  11222. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11223. ext_factor, attn_factor, beta_fast, beta_slow
  11224. );
  11225. cb(Kcur, "Kcur_rope", il);
  11226. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  11227. model.layers[il].wo, NULL,
  11228. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  11229. }
  11230. if (il == n_layer - 1) {
  11231. // skip computing output for unused tokens
  11232. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  11233. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11234. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11235. }
  11236. // Add the input
  11237. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11238. cb(ffn_inp, "ffn_inp", il);
  11239. // FF
  11240. {
  11241. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  11242. model.layers[il].ffn_norm,
  11243. NULL,
  11244. LLM_NORM_RMS, cb, il);
  11245. cb(cur, "ffn_norm", il);
  11246. cur = llm_build_ffn(ctx0, cur,
  11247. model.layers[il].ffn_up, NULL, NULL,
  11248. NULL, NULL, NULL,
  11249. model.layers[il].ffn_down, NULL, NULL,
  11250. NULL,
  11251. LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
  11252. cb(cur, "ffn_out", il);
  11253. }
  11254. inpL = ggml_add(ctx0, cur, ffn_inp);
  11255. cb(inpL, "l_out", il);
  11256. }
  11257. cur = llm_build_norm(ctx0, inpL, hparams,
  11258. model.output_norm,
  11259. NULL,
  11260. LLM_NORM_RMS, cb, -1);
  11261. cb(cur, "result_norm", -1);
  11262. cur = ggml_mul_mat(ctx0, model.output, cur);
  11263. cb(cur, "result_output", -1);
  11264. ggml_build_forward_expand(gf, cur);
  11265. return gf;
  11266. }
  11267. };
  11268. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  11269. llama_batch dummy;
  11270. dummy.n_tokens = 0;
  11271. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  11272. struct llm_build_context llm(lctx, dummy, cb, false);
  11273. llm.init();
  11274. struct ggml_cgraph * result = llm.build_defrag(ids);
  11275. llm.free();
  11276. return result;
  11277. }
  11278. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  11279. llama_batch dummy;
  11280. dummy.n_tokens = 0;
  11281. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  11282. struct llm_build_context llm(lctx, dummy, cb, false);
  11283. llm.init();
  11284. struct ggml_cgraph * result = llm.build_k_shift();
  11285. llm.free();
  11286. return result;
  11287. }
  11288. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  11289. llama_batch dummy;
  11290. dummy.n_tokens = 0;
  11291. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  11292. struct llm_build_context llm(lctx, dummy, cb, false);
  11293. llm.init();
  11294. struct ggml_cgraph * result = llm.build_s_copy();
  11295. llm.free();
  11296. return result;
  11297. }
  11298. static struct ggml_cgraph * llama_build_graph(
  11299. llama_context & lctx,
  11300. const llama_batch & batch,
  11301. bool worst_case) {
  11302. const auto & model = lctx.model;
  11303. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  11304. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  11305. if (il >= 0) {
  11306. ggml_format_name(cur, "%s-%d", name, il);
  11307. } else {
  11308. ggml_set_name(cur, name);
  11309. }
  11310. if (!lctx.cparams.offload_kqv) {
  11311. if (strcmp(name, "kqv_merged_cont") == 0) {
  11312. // all nodes between the KV store and the attention output are run on the CPU
  11313. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  11314. }
  11315. }
  11316. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  11317. // FIXME: fix in ggml_backend_sched
  11318. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  11319. if (batch.n_tokens < 32 || full_offload) {
  11320. if (il != -1 && strcmp(name, "norm") == 0) {
  11321. for (auto * backend : lctx.backends) {
  11322. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  11323. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  11324. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  11325. break;
  11326. }
  11327. }
  11328. }
  11329. }
  11330. };
  11331. struct ggml_cgraph * result = NULL;
  11332. struct llm_build_context llm(lctx, batch, cb, worst_case);
  11333. llm.init();
  11334. switch (model.arch) {
  11335. case LLM_ARCH_LLAMA:
  11336. {
  11337. result = llm.build_llama();
  11338. } break;
  11339. case LLM_ARCH_BAICHUAN:
  11340. {
  11341. result = llm.build_baichuan();
  11342. } break;
  11343. case LLM_ARCH_FALCON:
  11344. {
  11345. result = llm.build_falcon();
  11346. } break;
  11347. case LLM_ARCH_GROK:
  11348. {
  11349. result = llm.build_grok();
  11350. } break;
  11351. case LLM_ARCH_STARCODER:
  11352. {
  11353. result = llm.build_starcoder();
  11354. } break;
  11355. case LLM_ARCH_REFACT:
  11356. {
  11357. result = llm.build_refact();
  11358. } break;
  11359. case LLM_ARCH_BERT:
  11360. case LLM_ARCH_JINA_BERT_V2:
  11361. case LLM_ARCH_NOMIC_BERT:
  11362. {
  11363. result = llm.build_bert();
  11364. } break;
  11365. case LLM_ARCH_BLOOM:
  11366. {
  11367. result = llm.build_bloom();
  11368. } break;
  11369. case LLM_ARCH_MPT:
  11370. {
  11371. result = llm.build_mpt();
  11372. } break;
  11373. case LLM_ARCH_STABLELM:
  11374. {
  11375. result = llm.build_stablelm();
  11376. } break;
  11377. case LLM_ARCH_QWEN:
  11378. {
  11379. result = llm.build_qwen();
  11380. } break;
  11381. case LLM_ARCH_QWEN2:
  11382. {
  11383. result = llm.build_qwen2();
  11384. } break;
  11385. case LLM_ARCH_QWEN2MOE:
  11386. {
  11387. result = llm.build_qwen2moe();
  11388. } break;
  11389. case LLM_ARCH_PHI2:
  11390. {
  11391. result = llm.build_phi2();
  11392. } break;
  11393. case LLM_ARCH_PHI3:
  11394. {
  11395. result = llm.build_phi3();
  11396. } break;
  11397. case LLM_ARCH_PLAMO:
  11398. {
  11399. result = llm.build_plamo();
  11400. } break;
  11401. case LLM_ARCH_GPT2:
  11402. {
  11403. result = llm.build_gpt2();
  11404. } break;
  11405. case LLM_ARCH_CODESHELL:
  11406. {
  11407. result = llm.build_codeshell();
  11408. } break;
  11409. case LLM_ARCH_ORION:
  11410. {
  11411. result = llm.build_orion();
  11412. } break;
  11413. case LLM_ARCH_INTERNLM2:
  11414. {
  11415. result = llm.build_internlm2();
  11416. } break;
  11417. case LLM_ARCH_MINICPM:
  11418. {
  11419. result = llm.build_minicpm();
  11420. } break;
  11421. case LLM_ARCH_GEMMA:
  11422. {
  11423. result = llm.build_gemma();
  11424. } break;
  11425. case LLM_ARCH_GEMMA2:
  11426. {
  11427. result = llm.build_gemma2();
  11428. } break;
  11429. case LLM_ARCH_STARCODER2:
  11430. {
  11431. result = llm.build_starcoder2();
  11432. } break;
  11433. case LLM_ARCH_MAMBA:
  11434. {
  11435. result = llm.build_mamba();
  11436. } break;
  11437. case LLM_ARCH_XVERSE:
  11438. {
  11439. result = llm.build_xverse();
  11440. } break;
  11441. case LLM_ARCH_COMMAND_R:
  11442. {
  11443. result = llm.build_command_r();
  11444. } break;
  11445. case LLM_ARCH_DBRX:
  11446. {
  11447. result = llm.build_dbrx();
  11448. } break;
  11449. case LLM_ARCH_OLMO:
  11450. {
  11451. result = llm.build_olmo();
  11452. } break;
  11453. case LLM_ARCH_OPENELM:
  11454. {
  11455. result = llm.build_openelm();
  11456. } break;
  11457. case LLM_ARCH_GPTNEOX:
  11458. {
  11459. result = llm.build_gptneox();
  11460. } break;
  11461. case LLM_ARCH_ARCTIC:
  11462. {
  11463. result = llm.build_arctic();
  11464. } break;
  11465. case LLM_ARCH_DEEPSEEK2:
  11466. {
  11467. result = llm.build_deepseek2();
  11468. } break;
  11469. case LLM_ARCH_CHATGLM:
  11470. {
  11471. result = llm.build_chatglm();
  11472. } break;
  11473. case LLM_ARCH_BITNET:
  11474. {
  11475. result = llm.build_bitnet();
  11476. } break;
  11477. case LLM_ARCH_T5:
  11478. {
  11479. result = llm.build_t5();
  11480. } break;
  11481. case LLM_ARCH_JAIS:
  11482. {
  11483. result = llm.build_jais();
  11484. } break;
  11485. default:
  11486. GGML_ASSERT(false);
  11487. }
  11488. // add on pooling layer
  11489. if (lctx.cparams.embeddings) {
  11490. result = llm.append_pooling(result);
  11491. }
  11492. llm.free();
  11493. return result;
  11494. }
  11495. static void llama_set_k_shift(llama_context & lctx) {
  11496. const int64_t kv_size = lctx.kv_self.size;
  11497. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  11498. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  11499. for (int i = 0; i < kv_size; ++i) {
  11500. data[i] = lctx.kv_self.cells[i].delta;
  11501. }
  11502. }
  11503. static void llama_set_s_copy(llama_context & lctx) {
  11504. const int64_t kv_size = lctx.kv_self.size;
  11505. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  11506. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  11507. for (int i = 0; i < kv_size; ++i) {
  11508. data[i] = lctx.kv_self.cells[i].src;
  11509. }
  11510. }
  11511. static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
  11512. // TODO move to hparams if a T5 variant appears that uses a different value
  11513. const int64_t max_distance = 128;
  11514. if (bidirectional) {
  11515. n_buckets >>= 1;
  11516. }
  11517. const int64_t max_exact = n_buckets >> 1;
  11518. int32_t relative_position = x - y;
  11519. int32_t relative_bucket = 0;
  11520. if (bidirectional) {
  11521. relative_bucket += (relative_position > 0) * n_buckets;
  11522. relative_position = abs(relative_position);
  11523. } else {
  11524. relative_position = -std::min<int32_t>(relative_position, 0);
  11525. }
  11526. int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
  11527. relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
  11528. relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
  11529. return relative_bucket;
  11530. }
  11531. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  11532. //
  11533. // set input data
  11534. //
  11535. const auto & hparams = lctx.model.hparams;
  11536. const auto & cparams = lctx.cparams;
  11537. const auto & kv_self = lctx.kv_self;
  11538. if (batch.token) {
  11539. const int64_t n_tokens = batch.n_tokens;
  11540. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  11541. }
  11542. if (batch.embd) {
  11543. const int64_t n_embd = hparams.n_embd;
  11544. const int64_t n_tokens = batch.n_tokens;
  11545. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  11546. }
  11547. if (batch.pos && lctx.inp_pos) {
  11548. const int64_t n_tokens = batch.n_tokens;
  11549. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  11550. }
  11551. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  11552. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  11553. const int64_t n_tokens = batch.n_tokens;
  11554. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  11555. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  11556. if (lctx.n_outputs == n_tokens) {
  11557. for (int i = 0; i < n_tokens; ++i) {
  11558. data[i] = i;
  11559. }
  11560. } else if (batch.logits) {
  11561. int32_t n_outputs = 0;
  11562. for (int i = 0; i < n_tokens; ++i) {
  11563. if (batch.logits[i]) {
  11564. data[n_outputs++] = i;
  11565. }
  11566. }
  11567. // the graph needs to have been passed the correct number of outputs
  11568. GGML_ASSERT(lctx.n_outputs == n_outputs);
  11569. } else if (lctx.n_outputs == 1) {
  11570. // only keep last output
  11571. data[0] = n_tokens - 1;
  11572. } else {
  11573. GGML_ASSERT(lctx.n_outputs == 0);
  11574. }
  11575. }
  11576. GGML_ASSERT(
  11577. // (!a || b) is a logical implication (a -> b)
  11578. // !hparams.causal_attn -> !cparams.causal_attn
  11579. (hparams.causal_attn || !cparams.causal_attn) &&
  11580. "causal attention is not supported by this model"
  11581. );
  11582. if (lctx.inp_KQ_mask) {
  11583. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  11584. if (cparams.causal_attn && !lctx.is_encoding) {
  11585. const int64_t n_kv = kv_self.n;
  11586. const int64_t n_tokens = batch.n_tokens;
  11587. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  11588. float * data = (float *) lctx.inp_KQ_mask->data;
  11589. float * data_swa = nullptr;
  11590. if (lctx.inp_KQ_mask_swa) {
  11591. data_swa = (float *) lctx.inp_KQ_mask_swa->data;
  11592. }
  11593. // For causal attention, use only the previous KV cells
  11594. // of the correct sequence for each token of the batch.
  11595. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  11596. for (int h = 0; h < 1; ++h) {
  11597. for (int j = 0; j < n_tokens; ++j) {
  11598. const llama_pos pos = batch.pos[j];
  11599. const llama_seq_id seq_id = batch.seq_id[j][0];
  11600. for (int i = 0; i < n_kv; ++i) {
  11601. float f;
  11602. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  11603. f = -INFINITY;
  11604. } else {
  11605. if (hparams.use_alibi) {
  11606. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  11607. } else {
  11608. f = 0.0f;
  11609. }
  11610. }
  11611. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  11612. // may need to cut off old tokens for sliding window
  11613. if (data_swa) {
  11614. if (pos - lctx.kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
  11615. f = -INFINITY;
  11616. }
  11617. data_swa[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  11618. }
  11619. }
  11620. }
  11621. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  11622. for (int j = 0; j < n_kv; ++j) {
  11623. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  11624. }
  11625. }
  11626. }
  11627. } else {
  11628. // when using kv cache, the mask needs to match the kv cache size
  11629. const int64_t n_tokens = batch.n_tokens;
  11630. const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
  11631. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  11632. float * data = (float *) lctx.inp_KQ_mask->data;
  11633. for (int h = 0; h < 1; ++h) {
  11634. for (int j = 0; j < n_tokens; ++j) {
  11635. const llama_seq_id seq_id = batch.seq_id[j][0];
  11636. for (int i = 0; i < n_tokens; ++i) {
  11637. float f = -INFINITY;
  11638. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  11639. if (batch.seq_id[i][s] == seq_id) {
  11640. if (hparams.use_alibi) {
  11641. f = -fabs(batch.pos[i] - batch.pos[j]);
  11642. } else {
  11643. f = 0.0f;
  11644. }
  11645. break;
  11646. }
  11647. }
  11648. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  11649. }
  11650. for (int i = n_tokens; i < n_stride; ++i) {
  11651. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  11652. }
  11653. }
  11654. }
  11655. }
  11656. }
  11657. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  11658. const int64_t n_tokens = batch.n_tokens;
  11659. GGML_ASSERT(lctx.inp_mean);
  11660. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  11661. float * data = (float *) lctx.inp_mean->data;
  11662. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  11663. std::vector<uint64_t> sum(n_tokens, 0);
  11664. for (int i = 0; i < n_tokens; ++i) {
  11665. const llama_seq_id seq_id = batch.seq_id[i][0];
  11666. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  11667. sum[seq_id] += 1;
  11668. }
  11669. std::vector<float> div(n_tokens, 0.0f);
  11670. for (int i = 0; i < n_tokens; ++i) {
  11671. const uint64_t s = sum[i];
  11672. if (s > 0) {
  11673. div[i] = 1.0f/float(s);
  11674. }
  11675. }
  11676. for (int i = 0; i < n_tokens; ++i) {
  11677. const llama_seq_id seq_id = batch.seq_id[i][0];
  11678. data[seq_id*n_tokens + i] = div[seq_id];
  11679. }
  11680. }
  11681. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  11682. const int64_t n_tokens = batch.n_tokens;
  11683. GGML_ASSERT(lctx.inp_cls);
  11684. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  11685. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  11686. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  11687. for (int i = 0; i < n_tokens; ++i) {
  11688. const llama_seq_id seq_id = batch.seq_id[i][0];
  11689. const llama_pos pos = batch.pos[i];
  11690. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  11691. if (pos == 0) {
  11692. data[seq_id] = i;
  11693. }
  11694. }
  11695. }
  11696. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
  11697. const int64_t n_tokens = batch.n_tokens;
  11698. GGML_ASSERT(lctx.inp_cls);
  11699. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  11700. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  11701. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  11702. std::vector<int> last_pos(n_tokens, -1);
  11703. std::vector<int> last_row(n_tokens, -1);
  11704. for (int i = 0; i < n_tokens; ++i) {
  11705. const llama_seq_id seq_id = batch.seq_id[i][0];
  11706. const llama_pos pos = batch.pos[i];
  11707. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
  11708. if (pos >= last_pos[seq_id]) {
  11709. last_pos[seq_id] = pos;
  11710. last_row[seq_id] = i;
  11711. }
  11712. }
  11713. for (int i = 0; i < n_tokens; ++i) {
  11714. if (last_row[i] >= 0) {
  11715. data[i] = last_row[i];
  11716. }
  11717. }
  11718. }
  11719. if (kv_self.recurrent) {
  11720. const int64_t n_kv = kv_self.n;
  11721. if (lctx.inp_s_mask) {
  11722. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  11723. float * data = (float *) lctx.inp_s_mask->data;
  11724. // states which are not affected by the current batch are left untouched
  11725. for (int i = 0; i < n_kv; ++i) {
  11726. llama_seq_id seq_id = i + lctx.kv_self.head;
  11727. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  11728. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  11729. data[i] = (float) has_self_seq;
  11730. // ensure current sequences will be kept
  11731. if (!has_self_seq && kv_cell.pos >= 0) {
  11732. kv_cell.seq_id.insert(seq_id);
  11733. }
  11734. }
  11735. }
  11736. // For Mamba (and other recurrent architectures),
  11737. // update the correct state(s)/sequence(s) for each token of the batch.
  11738. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  11739. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  11740. if (lctx.inp_s_seq) {
  11741. const int64_t n_tokens = batch.n_tokens;
  11742. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  11743. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  11744. for (int j = 0; j < n_tokens; ++j) {
  11745. const int32_t n_seq = batch.n_seq_id[j];
  11746. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  11747. for (int i = 0; i < n_kv; ++i) {
  11748. if (i < n_seq) {
  11749. // for this type of model, the head is the minimum seq_id of the batch
  11750. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  11751. } else {
  11752. data[j*n_kv + i] = -1;
  11753. }
  11754. }
  11755. }
  11756. }
  11757. }
  11758. if (lctx.inp_pos_bucket) {
  11759. const int64_t n_tokens = batch.n_tokens;
  11760. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
  11761. int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
  11762. if (!lctx.is_encoding) {
  11763. const int64_t n_kv = kv_self.n;
  11764. for (int h = 0; h < 1; ++h) {
  11765. for (int j = 0; j < n_tokens; ++j) {
  11766. for (int i = 0; i < n_kv; ++i) {
  11767. data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
  11768. }
  11769. }
  11770. }
  11771. } else {
  11772. for (int h = 0; h < 1; ++h) {
  11773. for (int j = 0; j < n_tokens; ++j) {
  11774. for (int i = 0; i < n_tokens; ++i) {
  11775. data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
  11776. }
  11777. }
  11778. }
  11779. }
  11780. }
  11781. if (!lctx.is_encoding && lctx.inp_embd_enc) {
  11782. assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
  11783. assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
  11784. ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
  11785. }
  11786. if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
  11787. const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
  11788. const int64_t n_tokens = batch.n_tokens;
  11789. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
  11790. float * data = (float *) lctx.inp_KQ_mask_cross->data;
  11791. for (int h = 0; h < 1; ++h) {
  11792. for (int j = 0; j < n_tokens; ++j) {
  11793. for (int i = 0; i < n_output_enc; ++i) {
  11794. float f = -INFINITY;
  11795. for (int s = 0; s < batch.n_seq_id[j]; ++s) {
  11796. const llama_seq_id seq_id = batch.seq_id[j][s];
  11797. if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
  11798. f = 0.0f;
  11799. }
  11800. }
  11801. data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
  11802. }
  11803. }
  11804. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  11805. for (int j = 0; j < n_output_enc; ++j) {
  11806. data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
  11807. }
  11808. }
  11809. }
  11810. }
  11811. }
  11812. // Make sure enough space is available for outputs.
  11813. // Returns max number of outputs for which space was reserved.
  11814. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  11815. const auto & cparams = lctx.cparams;
  11816. const auto & hparams = lctx.model.hparams;
  11817. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  11818. const auto n_batch = cparams.n_batch;
  11819. const auto n_vocab = hparams.n_vocab;
  11820. const auto n_embd = hparams.n_embd;
  11821. // TODO: use a per-batch flag for logits presence instead
  11822. const bool has_logits = !cparams.embeddings;
  11823. const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
  11824. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  11825. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  11826. if (lctx.output_ids.empty()) {
  11827. // init, never resized afterwards
  11828. lctx.output_ids.resize(n_batch);
  11829. }
  11830. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  11831. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  11832. // alloc only when more than the current capacity is required
  11833. // TODO: also consider shrinking the buffer
  11834. if (!lctx.buf_output || prev_size < new_size) {
  11835. if (lctx.buf_output) {
  11836. #ifndef NDEBUG
  11837. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  11838. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  11839. #endif
  11840. ggml_backend_buffer_free(lctx.buf_output);
  11841. lctx.buf_output = nullptr;
  11842. lctx.logits = nullptr;
  11843. lctx.embd = nullptr;
  11844. }
  11845. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  11846. if (lctx.buf_output == nullptr) {
  11847. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  11848. return 0;
  11849. }
  11850. }
  11851. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  11852. lctx.logits = has_logits ? output_base : nullptr;
  11853. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  11854. lctx.output_size = n_outputs_max;
  11855. lctx.logits_size = logits_size;
  11856. lctx.embd_size = embd_size;
  11857. // set all ids as invalid (negative)
  11858. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  11859. ggml_backend_buffer_clear(lctx.buf_output, 0);
  11860. lctx.n_outputs = 0;
  11861. return n_outputs_max;
  11862. }
  11863. static void llama_graph_compute(
  11864. llama_context & lctx,
  11865. ggml_cgraph * gf,
  11866. int n_threads) {
  11867. #ifdef GGML_USE_METAL
  11868. if (ggml_backend_is_metal(lctx.backend_metal)) {
  11869. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  11870. }
  11871. #endif
  11872. if (lctx.backend_cpu != nullptr) {
  11873. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  11874. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  11875. }
  11876. #ifdef GGML_USE_BLAS
  11877. if (lctx.backend_blas != nullptr) {
  11878. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  11879. }
  11880. #endif
  11881. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  11882. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  11883. }
  11884. // decode a batch of tokens by evaluating the transformer
  11885. //
  11886. // - lctx: llama context
  11887. // - batch: batch to evaluate
  11888. //
  11889. // return 0 on success
  11890. // return positive int on warning
  11891. // return negative int on error
  11892. //
  11893. static int llama_decode_internal(
  11894. llama_context & lctx,
  11895. llama_batch batch_all) { // TODO: rename back to batch
  11896. lctx.is_encoding = false;
  11897. const uint32_t n_tokens_all = batch_all.n_tokens;
  11898. if (n_tokens_all == 0) {
  11899. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  11900. return -1;
  11901. }
  11902. const auto & model = lctx.model;
  11903. const auto & hparams = model.hparams;
  11904. const auto & cparams = lctx.cparams;
  11905. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  11906. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  11907. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  11908. if (lctx.t_compute_start_us == 0) {
  11909. lctx.t_compute_start_us = ggml_time_us();
  11910. }
  11911. lctx.n_queued_tokens += n_tokens_all;
  11912. auto & kv_self = lctx.kv_self;
  11913. const int64_t n_embd = hparams.n_embd;
  11914. const int64_t n_vocab = hparams.n_vocab;
  11915. uint32_t n_outputs = 0;
  11916. uint32_t n_outputs_prev = 0;
  11917. const auto n_ubatch = cparams.n_ubatch;
  11918. // TODO: simplify or deprecate
  11919. std::vector<llama_pos> pos;
  11920. std::vector<int32_t> n_seq_id;
  11921. std::vector<llama_seq_id *> seq_id_arr;
  11922. std::vector<std::vector<llama_seq_id>> seq_id;
  11923. // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
  11924. const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
  11925. // count outputs
  11926. if (batch_all.logits && !embd_pooled) {
  11927. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  11928. n_outputs += batch_all.logits[i] != 0;
  11929. }
  11930. } else if (lctx.logits_all || embd_pooled) {
  11931. n_outputs = n_tokens_all;
  11932. } else {
  11933. // keep last output only
  11934. n_outputs = 1;
  11935. }
  11936. // reserve output buffer
  11937. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  11938. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  11939. return -2;
  11940. };
  11941. // set output mappings
  11942. if (batch_all.logits) {
  11943. int32_t i_logits = 0;
  11944. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  11945. if (batch_all.logits[i]) {
  11946. lctx.output_ids[i] = i_logits++;
  11947. }
  11948. }
  11949. } else {
  11950. for (uint32_t i = 0; i < n_outputs; ++i) {
  11951. lctx.output_ids[i] = i;
  11952. }
  11953. }
  11954. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  11955. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  11956. llama_batch u_batch = {
  11957. /* .n_tokens = */ (int32_t) n_tokens,
  11958. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  11959. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  11960. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  11961. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  11962. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  11963. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  11964. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  11965. /* .all_pos_1 = */ batch_all.all_pos_1,
  11966. /* .all_seq_id = */ batch_all.all_seq_id,
  11967. };
  11968. // count the outputs in this u_batch
  11969. {
  11970. int32_t n_outputs_new = 0;
  11971. if (u_batch.logits && !embd_pooled) {
  11972. for (uint32_t i = 0; i < n_tokens; i++) {
  11973. n_outputs_new += u_batch.logits[i] != 0;
  11974. }
  11975. } else if (n_outputs == n_tokens_all) {
  11976. n_outputs_new = n_tokens;
  11977. } else {
  11978. // keep last output only
  11979. if (cur_token + n_tokens >= n_tokens_all) {
  11980. n_outputs_new = 1;
  11981. }
  11982. }
  11983. // needs to happen before the graph is built
  11984. lctx.n_outputs = n_outputs_new;
  11985. }
  11986. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  11987. GGML_ASSERT(n_threads > 0);
  11988. // helpers for smoother batch API transition
  11989. // after deprecating the llama_eval calls, these will be removed
  11990. if (u_batch.pos == nullptr) {
  11991. pos.resize(n_tokens);
  11992. for (uint32_t i = 0; i < n_tokens; i++) {
  11993. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  11994. }
  11995. u_batch.pos = pos.data();
  11996. }
  11997. if (u_batch.seq_id == nullptr) {
  11998. n_seq_id.resize(n_tokens);
  11999. seq_id.resize(n_tokens);
  12000. seq_id_arr.resize(n_tokens);
  12001. for (uint32_t i = 0; i < n_tokens; i++) {
  12002. n_seq_id[i] = 1;
  12003. seq_id[i].resize(1);
  12004. seq_id[i][0] = u_batch.all_seq_id;
  12005. seq_id_arr[i] = seq_id[i].data();
  12006. }
  12007. u_batch.n_seq_id = n_seq_id.data();
  12008. u_batch.seq_id = seq_id_arr.data();
  12009. }
  12010. // non-causal masks do not use the KV cache
  12011. if (hparams.causal_attn) {
  12012. llama_kv_cache_update(&lctx);
  12013. // if we have enough unused cells before the current head ->
  12014. // better to start searching from the beginning of the cache, hoping to fill it
  12015. if (kv_self.head > kv_self.used + 2*n_tokens) {
  12016. kv_self.head = 0;
  12017. }
  12018. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  12019. return 1;
  12020. }
  12021. if (!kv_self.recurrent) {
  12022. // a heuristic, to avoid attending the full cache if it is not yet utilized
  12023. // after enough generations, the benefit from this heuristic disappears
  12024. // if we start defragmenting the cache, the benefit from this will be more important
  12025. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  12026. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  12027. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  12028. }
  12029. }
  12030. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  12031. ggml_backend_sched_reset(lctx.sched);
  12032. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  12033. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  12034. // the output is always the last tensor in the graph
  12035. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  12036. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  12037. if (lctx.n_outputs == 0) {
  12038. // no output
  12039. res = nullptr;
  12040. embd = nullptr;
  12041. } else if (cparams.embeddings) {
  12042. res = nullptr; // do not extract logits for embedding case
  12043. embd = gf->nodes[gf->n_nodes - 1];
  12044. if (strcmp(embd->name, "result_embd_pooled") != 0) {
  12045. embd = gf->nodes[gf->n_nodes - 2];
  12046. }
  12047. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
  12048. } else {
  12049. embd = nullptr; // do not extract embeddings when not needed
  12050. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  12051. }
  12052. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  12053. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  12054. llama_set_inputs(lctx, u_batch);
  12055. llama_graph_compute(lctx, gf, n_threads);
  12056. // update the kv ring buffer
  12057. {
  12058. kv_self.head += n_tokens;
  12059. // Ensure kv cache head points to a valid index.
  12060. if (kv_self.head >= kv_self.size) {
  12061. kv_self.head = 0;
  12062. }
  12063. }
  12064. // plot the computation graph in dot format (for debugging purposes)
  12065. //if (n_past%100 == 0) {
  12066. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  12067. //}
  12068. // extract logits
  12069. if (res) {
  12070. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  12071. GGML_ASSERT(backend_res != nullptr);
  12072. GGML_ASSERT(lctx.logits != nullptr);
  12073. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  12074. const int32_t n_outputs_new = lctx.n_outputs;
  12075. if (n_outputs_new) {
  12076. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  12077. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  12078. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  12079. }
  12080. }
  12081. // extract embeddings
  12082. if (embd) {
  12083. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  12084. GGML_ASSERT(backend_embd != nullptr);
  12085. switch (cparams.pooling_type) {
  12086. case LLAMA_POOLING_TYPE_NONE:
  12087. {
  12088. // extract token embeddings
  12089. GGML_ASSERT(lctx.embd != nullptr);
  12090. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  12091. const int32_t n_outputs_new = lctx.n_outputs;
  12092. if (n_outputs_new) {
  12093. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  12094. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  12095. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  12096. }
  12097. } break;
  12098. case LLAMA_POOLING_TYPE_MEAN:
  12099. case LLAMA_POOLING_TYPE_CLS:
  12100. case LLAMA_POOLING_TYPE_LAST:
  12101. {
  12102. // extract sequence embeddings
  12103. auto & embd_seq_out = lctx.embd_seq;
  12104. embd_seq_out.clear();
  12105. for (uint32_t i = 0; i < n_tokens; i++) {
  12106. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  12107. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  12108. continue;
  12109. }
  12110. embd_seq_out[seq_id].resize(n_embd);
  12111. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  12112. }
  12113. } break;
  12114. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  12115. {
  12116. GGML_ASSERT(false && "unknown pooling type");
  12117. } break;
  12118. }
  12119. }
  12120. n_outputs_prev += lctx.n_outputs;
  12121. }
  12122. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  12123. lctx.n_outputs = n_outputs;
  12124. // wait for the computation to finish (automatically done when obtaining the model output)
  12125. //llama_synchronize(&lctx);
  12126. // decide if we need to defrag the kv cache
  12127. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  12128. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  12129. // queue defragmentation for next llama_kv_cache_update
  12130. if (fragmentation > cparams.defrag_thold) {
  12131. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  12132. llama_kv_cache_defrag(kv_self);
  12133. }
  12134. }
  12135. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  12136. // overlap with device computation.
  12137. ggml_backend_sched_reset(lctx.sched);
  12138. return 0;
  12139. }
  12140. // encode a batch of tokens by evaluating the encoder part of the transformer
  12141. //
  12142. // - lctx: llama context
  12143. // - batch: batch to evaluate
  12144. //
  12145. // return 0 on success
  12146. // return positive int on warning
  12147. // return negative int on error
  12148. //
  12149. static int llama_encode_internal(
  12150. llama_context & lctx,
  12151. llama_batch batch) {
  12152. lctx.is_encoding = true;
  12153. const uint32_t n_tokens = batch.n_tokens;
  12154. if (n_tokens == 0) {
  12155. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  12156. return -1;
  12157. }
  12158. const auto & model = lctx.model;
  12159. const auto & hparams = model.hparams;
  12160. const auto & cparams = lctx.cparams;
  12161. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  12162. // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
  12163. GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
  12164. if (lctx.t_compute_start_us == 0) {
  12165. lctx.t_compute_start_us = ggml_time_us();
  12166. }
  12167. lctx.n_queued_tokens += n_tokens;
  12168. const int64_t n_embd = hparams.n_embd;
  12169. // TODO: simplify or deprecate
  12170. std::vector<llama_pos> pos;
  12171. std::vector<int32_t> n_seq_id;
  12172. std::vector<llama_seq_id *> seq_id_arr;
  12173. std::vector<std::vector<llama_seq_id>> seq_id;
  12174. // reserve output buffer
  12175. if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
  12176. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
  12177. return -2;
  12178. };
  12179. for (uint32_t i = 0; i < n_tokens; ++i) {
  12180. lctx.output_ids[i] = i;
  12181. }
  12182. lctx.inp_embd_enc = NULL;
  12183. lctx.n_outputs = n_tokens;
  12184. const int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  12185. GGML_ASSERT(n_threads > 0);
  12186. // helpers for smoother batch API transition
  12187. // after deprecating the llama_eval calls, these will be removed
  12188. if (batch.pos == nullptr) {
  12189. pos.resize(n_tokens);
  12190. for (uint32_t i = 0; i < n_tokens; i++) {
  12191. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  12192. }
  12193. batch.pos = pos.data();
  12194. }
  12195. if (batch.seq_id == nullptr) {
  12196. n_seq_id.resize(n_tokens);
  12197. seq_id.resize(n_tokens);
  12198. seq_id_arr.resize(n_tokens);
  12199. for (uint32_t i = 0; i < n_tokens; i++) {
  12200. n_seq_id[i] = 1;
  12201. seq_id[i].resize(1);
  12202. seq_id[i][0] = batch.all_seq_id;
  12203. seq_id_arr[i] = seq_id[i].data();
  12204. }
  12205. batch.n_seq_id = n_seq_id.data();
  12206. batch.seq_id = seq_id_arr.data();
  12207. }
  12208. ggml_backend_sched_reset(lctx.sched);
  12209. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  12210. ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
  12211. // the output embeddings after the final encoder normalization
  12212. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 1];
  12213. GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
  12214. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  12215. llama_set_inputs(lctx, batch);
  12216. llama_graph_compute(lctx, gf, n_threads);
  12217. // extract embeddings
  12218. if (embd) {
  12219. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  12220. GGML_ASSERT(backend_embd != nullptr);
  12221. // extract token embeddings
  12222. GGML_ASSERT(lctx.embd != nullptr);
  12223. lctx.embd_enc.resize(n_tokens*n_embd);
  12224. float * embd_out = lctx.embd_enc.data();
  12225. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
  12226. // remember the sequence ids used during the encoding - needed for cross attention later
  12227. lctx.seq_ids_enc.resize(n_tokens);
  12228. for (uint32_t i = 0; i < n_tokens; i++) {
  12229. for (int s = 0; s < batch.n_seq_id[i]; s++) {
  12230. llama_seq_id seq_id = batch.seq_id[i][s];
  12231. lctx.seq_ids_enc[i].insert(seq_id);
  12232. }
  12233. }
  12234. }
  12235. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  12236. // overlap with device computation.
  12237. ggml_backend_sched_reset(lctx.sched);
  12238. return 0;
  12239. }
  12240. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  12241. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  12242. auto & kv_self = lctx.kv_self;
  12243. const auto & hparams = lctx.model.hparams;
  12244. const uint32_t n_layer = hparams.n_layer;
  12245. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  12246. const uint32_t n_used = kv_self.used;
  12247. assert(n_used <= n_kv);
  12248. //const int64_t t_start = ggml_time_us();
  12249. // number of cells moved
  12250. uint32_t n_moves = 0;
  12251. // each move requires 6*n_layer tensors (see build_defrag)
  12252. // - source view, destination view, copy operation
  12253. // - x2 for keys and values
  12254. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  12255. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  12256. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  12257. // determine which KV cells to move where
  12258. //
  12259. // cell i moves to ids[i]
  12260. //
  12261. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  12262. //
  12263. std::vector<uint32_t> ids(n_kv, n_kv);
  12264. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  12265. const auto & cell0 = kv_self.cells[i0];
  12266. if (!cell0.is_empty()) {
  12267. ids[i0] = i0;
  12268. continue;
  12269. }
  12270. // found a hole - fill it with data from the end of the cache
  12271. uint32_t nh = 1;
  12272. // determine the size of the hole
  12273. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  12274. nh++;
  12275. }
  12276. uint32_t nf = 0;
  12277. uint32_t is = n_kv - 1;
  12278. // starting from the end, find nh non-empty cells
  12279. for (; is > i0; --is) {
  12280. const auto & cell1 = kv_self.cells[is];
  12281. if (cell1.is_empty() || ids[is] != n_kv) {
  12282. continue;
  12283. }
  12284. // non-empty cell which is not yet moved
  12285. nf++;
  12286. if (nf == nh) {
  12287. break;
  12288. }
  12289. }
  12290. // this can only happen if `n_used` is not accurate, which would be a bug
  12291. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  12292. nf = 0;
  12293. uint32_t i1 = is;
  12294. // are we moving a continuous block of memory?
  12295. bool cont = false;
  12296. // should we stop searching for the next move?
  12297. bool stop = false;
  12298. // go back and move the nf cells to the hole
  12299. for (; i1 < n_kv; ++i1) {
  12300. auto & cell1 = kv_self.cells[i1];
  12301. if (cell1.is_empty() || ids[i1] != n_kv) {
  12302. if (n_moves == max_moves) {
  12303. stop = true;
  12304. break;
  12305. }
  12306. cont = false;
  12307. continue;
  12308. }
  12309. // this cell goes to (i0 + nf)
  12310. ids[i1] = i0 + nf;
  12311. // move the cell meta data
  12312. kv_self.cells[i0 + nf] = cell1;
  12313. // clear the old cell and move the head there
  12314. cell1 = llama_kv_cell();
  12315. kv_self.head = n_used;
  12316. if (!cont) {
  12317. n_moves++;
  12318. cont = true;
  12319. }
  12320. nf++;
  12321. if (nf == nh) {
  12322. break;
  12323. }
  12324. }
  12325. if (stop || n_moves == max_moves) {
  12326. break;
  12327. }
  12328. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  12329. i0 += nh - 1;
  12330. }
  12331. if (n_moves == 0) {
  12332. return;
  12333. }
  12334. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  12335. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  12336. #if 0
  12337. // CPU defrag
  12338. //
  12339. // TODO: optimizations are possible:
  12340. // - multiple threads
  12341. // - avoid copying to the host memory when already there
  12342. //
  12343. // likely not worth the effort, as we have ggml_graph based defrag
  12344. //
  12345. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  12346. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  12347. const uint32_t kv_size = kv_self.size;
  12348. std::vector<uint8_t> buf_k;
  12349. std::vector<uint8_t> buf_v;
  12350. for (uint32_t il = 0; il < n_layer; ++il) {
  12351. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  12352. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  12353. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  12354. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  12355. buf_k.resize(k_size);
  12356. buf_v.resize(v_size);
  12357. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  12358. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  12359. // batch move [i, i+nm) to [id, id+nm)
  12360. // note: cells can move only to a lower index
  12361. for (uint32_t i = 0; i < n_kv; ++i) {
  12362. const uint32_t id = ids[i];
  12363. if (i == id || id == n_kv) {
  12364. continue;
  12365. }
  12366. uint32_t nm = 1;
  12367. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  12368. nm++;
  12369. }
  12370. // move keys
  12371. {
  12372. const int64_t os = i*k_size_row;
  12373. const int64_t od = id*k_size_row;
  12374. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  12375. }
  12376. // move values (note: they are transposed)
  12377. {
  12378. const int64_t os = i;
  12379. const int64_t od = id;
  12380. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  12381. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  12382. }
  12383. }
  12384. i += nm - 1;
  12385. }
  12386. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  12387. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  12388. }
  12389. #else
  12390. // ggml_graph defrag
  12391. ggml_backend_sched_reset(lctx.sched);
  12392. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  12393. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  12394. #endif
  12395. //const int64_t t_end = ggml_time_us();
  12396. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  12397. }
  12398. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  12399. bool need_reserve = false;
  12400. // apply K-shift if needed
  12401. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  12402. {
  12403. ggml_backend_sched_reset(lctx.sched);
  12404. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  12405. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  12406. llama_set_k_shift(lctx);
  12407. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  12408. need_reserve = true;
  12409. }
  12410. {
  12411. auto & kv_self = lctx.kv_self;
  12412. kv_self.has_shift = false;
  12413. for (uint32_t i = 0; i < kv_self.size; ++i) {
  12414. kv_self.cells[i].delta = 0;
  12415. }
  12416. }
  12417. }
  12418. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  12419. {
  12420. ggml_backend_sched_reset(lctx.sched);
  12421. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  12422. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  12423. llama_set_s_copy(lctx);
  12424. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  12425. need_reserve = true;
  12426. }
  12427. {
  12428. auto & kv_self = lctx.kv_self;
  12429. kv_self.do_copy = false;
  12430. for (uint32_t i = 0; i < kv_self.size; ++i) {
  12431. kv_self.cells[i].src = i;
  12432. }
  12433. }
  12434. }
  12435. // defragment the KV cache if needed
  12436. if (lctx.kv_self.do_defrag) {
  12437. llama_kv_cache_defrag_internal(lctx);
  12438. need_reserve = true;
  12439. lctx.kv_self.do_defrag = false;
  12440. }
  12441. // reserve a worst case graph again
  12442. if (need_reserve) {
  12443. // TODO: extract to a function
  12444. // build worst-case graph
  12445. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  12446. int n_past = lctx.cparams.n_ctx - n_tokens;
  12447. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12448. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12449. // initialize scheduler with the worst-case graph
  12450. ggml_backend_sched_reset(lctx.sched);
  12451. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  12452. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12453. }
  12454. }
  12455. }
  12456. //
  12457. // tokenizer
  12458. //
  12459. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  12460. return vocab.type;
  12461. }
  12462. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  12463. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12464. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  12465. }
  12466. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  12467. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12468. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  12469. }
  12470. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  12471. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12472. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  12473. }
  12474. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  12475. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12476. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  12477. }
  12478. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  12479. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12480. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  12481. }
  12482. static bool llama_is_unused_token(const llama_vocab& vocab, llama_token id) {
  12483. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12484. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
  12485. }
  12486. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  12487. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  12488. GGML_ASSERT(llama_is_byte_token(vocab, id));
  12489. const auto & token_data = vocab.id_to_token.at(id);
  12490. switch (llama_vocab_get_type(vocab)) {
  12491. case LLAMA_VOCAB_TYPE_SPM:
  12492. case LLAMA_VOCAB_TYPE_UGM: {
  12493. auto buf = token_data.text.substr(3, 2);
  12494. return strtol(buf.c_str(), NULL, 16);
  12495. }
  12496. case LLAMA_VOCAB_TYPE_BPE: {
  12497. GGML_ASSERT(false);
  12498. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  12499. }
  12500. case LLAMA_VOCAB_TYPE_WPM: {
  12501. GGML_ASSERT(false);
  12502. }
  12503. default:
  12504. GGML_ASSERT(false);
  12505. }
  12506. }
  12507. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  12508. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  12509. static const char * hex = "0123456789ABCDEF";
  12510. switch (llama_vocab_get_type(vocab)) {
  12511. case LLAMA_VOCAB_TYPE_SPM:
  12512. case LLAMA_VOCAB_TYPE_UGM: {
  12513. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  12514. auto token = vocab.token_to_id.find(buf);
  12515. if (token != vocab.token_to_id.end()) {
  12516. return (*token).second;
  12517. }
  12518. // Try to fall back to just the byte as a string
  12519. const char buf2[2] = { (char)ch, 0 };
  12520. return vocab.token_to_id.at(buf2);
  12521. }
  12522. case LLAMA_VOCAB_TYPE_WPM:
  12523. case LLAMA_VOCAB_TYPE_BPE: {
  12524. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  12525. }
  12526. default:
  12527. GGML_ASSERT(false);
  12528. }
  12529. }
  12530. static void llama_escape_whitespace(std::string & text) {
  12531. replace_all(text, " ", "\xe2\x96\x81");
  12532. }
  12533. static void llama_unescape_whitespace(std::string & word) {
  12534. replace_all(word, "\xe2\x96\x81", " ");
  12535. }
  12536. struct llm_symbol {
  12537. using index = int;
  12538. index prev;
  12539. index next;
  12540. const char * text;
  12541. size_t n;
  12542. };
  12543. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  12544. // SPM tokenizer
  12545. // original implementation:
  12546. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  12547. struct llm_bigram_spm {
  12548. struct comparator {
  12549. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  12550. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  12551. }
  12552. };
  12553. using queue_storage = std::vector<llm_bigram_spm>;
  12554. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  12555. llm_symbol::index left;
  12556. llm_symbol::index right;
  12557. float score;
  12558. size_t size;
  12559. };
  12560. struct llm_tokenizer_spm {
  12561. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  12562. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  12563. // split string into utf8 chars
  12564. int index = 0;
  12565. size_t offs = 0;
  12566. while (offs < text.size()) {
  12567. llm_symbol sym;
  12568. size_t len = utf8_len(text[offs]);
  12569. sym.text = text.c_str() + offs;
  12570. sym.n = std::min(len, text.size() - offs);
  12571. offs += sym.n;
  12572. sym.prev = index - 1;
  12573. sym.next = offs == text.size() ? -1 : index + 1;
  12574. index++;
  12575. symbols.emplace_back(sym);
  12576. }
  12577. // seed the work queue with all possible 2-character tokens.
  12578. for (size_t i = 1; i < symbols.size(); ++i) {
  12579. try_add_bigram(i - 1, i);
  12580. }
  12581. // keep substituting the highest frequency pairs for as long as we can.
  12582. while (!work_queue.empty()) {
  12583. auto bigram = work_queue.top();
  12584. work_queue.pop();
  12585. auto & left_sym = symbols[bigram.left];
  12586. auto & right_sym = symbols[bigram.right];
  12587. // if one of the symbols already got merged, skip it.
  12588. if (left_sym.n == 0 || right_sym.n == 0 ||
  12589. left_sym.n + right_sym.n != bigram.size) {
  12590. continue;
  12591. }
  12592. // merge the right sym into the left one
  12593. left_sym.n += right_sym.n;
  12594. right_sym.n = 0;
  12595. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  12596. // remove the right sym from the chain
  12597. left_sym.next = right_sym.next;
  12598. if (right_sym.next >= 0) {
  12599. symbols[right_sym.next].prev = bigram.left;
  12600. }
  12601. // find more substitutions
  12602. try_add_bigram(left_sym.prev, bigram.left);
  12603. try_add_bigram(bigram.left, left_sym.next);
  12604. }
  12605. for (int i = 0; i != -1; i = symbols[i].next) {
  12606. auto & symbol = symbols[i];
  12607. resegment(symbol, output);
  12608. }
  12609. }
  12610. private:
  12611. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  12612. auto text = std::string(symbol.text, symbol.n);
  12613. auto token = vocab.token_to_id.find(text);
  12614. // Do we need to support is_unused?
  12615. if (token != vocab.token_to_id.end()) {
  12616. output.push_back((*token).second);
  12617. return;
  12618. }
  12619. const auto p = rev_merge.find(text);
  12620. if (p == rev_merge.end()) {
  12621. // output any symbols that did not form tokens as bytes.
  12622. output.reserve(output.size() + symbol.n);
  12623. for (int j = 0; j < (int)symbol.n; ++j) {
  12624. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  12625. output.push_back(token_id);
  12626. }
  12627. return;
  12628. }
  12629. resegment(symbols[p->second.first], output);
  12630. resegment(symbols[p->second.second], output);
  12631. }
  12632. void try_add_bigram(int left, int right) {
  12633. if (left == -1 || right == -1) {
  12634. return;
  12635. }
  12636. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  12637. auto token = vocab.token_to_id.find(text);
  12638. if (token == vocab.token_to_id.end()) {
  12639. return;
  12640. }
  12641. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  12642. return;
  12643. }
  12644. const auto & tok_data = vocab.id_to_token[(*token).second];
  12645. llm_bigram_spm bigram;
  12646. bigram.left = left;
  12647. bigram.right = right;
  12648. bigram.score = tok_data.score;
  12649. bigram.size = text.size();
  12650. work_queue.push(bigram);
  12651. // Do we need to support is_unused?
  12652. rev_merge[text] = std::make_pair(left, right);
  12653. }
  12654. const llama_vocab & vocab;
  12655. std::vector<llm_symbol> symbols;
  12656. llm_bigram_spm::queue work_queue;
  12657. std::map<std::string, std::pair<int, int>> rev_merge;
  12658. };
  12659. // BPE tokenizer
  12660. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  12661. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  12662. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  12663. struct llm_bigram_bpe {
  12664. struct comparator {
  12665. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  12666. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  12667. }
  12668. };
  12669. using queue_storage = std::vector<llm_bigram_bpe>;
  12670. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  12671. llm_symbol::index left;
  12672. llm_symbol::index right;
  12673. std::string text;
  12674. int rank;
  12675. size_t size;
  12676. };
  12677. struct llm_tokenizer_bpe {
  12678. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
  12679. GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
  12680. switch (vocab.type_pre) {
  12681. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  12682. regex_exprs = {
  12683. // original regex from tokenizer.json
  12684. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  12685. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  12686. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  12687. };
  12688. break;
  12689. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  12690. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  12691. regex_exprs = {
  12692. // same as llama3
  12693. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  12694. };
  12695. break;
  12696. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  12697. regex_exprs = {
  12698. "[\r\n]",
  12699. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  12700. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  12701. "\\s+$",
  12702. "[一-龥ࠀ-一가-퟿]+",
  12703. "\\p{N}+",
  12704. };
  12705. break;
  12706. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  12707. regex_exprs = {
  12708. "[\r\n]",
  12709. "\\s?\\p{L}+",
  12710. "\\s?\\p{P}+",
  12711. "[一-龥ࠀ-一가-퟿]+",
  12712. "\\p{N}",
  12713. };
  12714. break;
  12715. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  12716. regex_exprs = {
  12717. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  12718. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  12719. "[0-9][0-9][0-9]",
  12720. };
  12721. break;
  12722. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  12723. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  12724. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  12725. regex_exprs = {
  12726. "\\p{N}",
  12727. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  12728. };
  12729. break;
  12730. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  12731. case LLAMA_VOCAB_PRE_TYPE_MPT:
  12732. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  12733. case LLAMA_VOCAB_PRE_TYPE_JAIS:
  12734. regex_exprs = {
  12735. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  12736. };
  12737. break;
  12738. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  12739. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  12740. regex_exprs = {
  12741. // original regex from tokenizer.json
  12742. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  12743. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  12744. };
  12745. break;
  12746. case LLAMA_VOCAB_PRE_TYPE_PORO:
  12747. regex_exprs = {
  12748. " ?[^(\\s|.,!?…。,、।۔،)]+",
  12749. };
  12750. break;
  12751. case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
  12752. regex_exprs = {
  12753. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  12754. };
  12755. break;
  12756. case LLAMA_VOCAB_PRE_TYPE_VIKING:
  12757. regex_exprs = {
  12758. " ?[^(\\s|.,!?…。,、।۔،)]+",
  12759. "\\p{N}",
  12760. };
  12761. break;
  12762. default:
  12763. // default regex for BPE tokenization pre-processing
  12764. regex_exprs = {
  12765. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  12766. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  12767. "\\p{N}+",
  12768. "[0-9][0-9][0-9]",
  12769. };
  12770. break;
  12771. }
  12772. }
  12773. void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
  12774. output.push_back(token_id);
  12775. }
  12776. bool append_bos(std::vector<llama_vocab::id> & output) const {
  12777. if (vocab.tokenizer_add_bos) {
  12778. GGML_ASSERT(vocab.special_bos_id != -1);
  12779. output.push_back(vocab.special_bos_id);
  12780. return true;
  12781. }
  12782. return false;
  12783. }
  12784. bool append_eos(std::vector<llama_vocab::id> & output) const {
  12785. if (vocab.tokenizer_add_eos) {
  12786. GGML_ASSERT(vocab.special_eos_id != -1);
  12787. output.push_back(vocab.special_eos_id);
  12788. return true;
  12789. }
  12790. return false;
  12791. }
  12792. void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
  12793. if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  12794. LLAMA_LOG_WARN(
  12795. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  12796. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  12797. "Are you sure this is what you want?\n", __FUNCTION__);
  12798. }
  12799. if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
  12800. LLAMA_LOG_WARN(
  12801. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  12802. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  12803. "Are you sure this is what you want?\n", __FUNCTION__);
  12804. }
  12805. }
  12806. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  12807. int final_prev_index = -1;
  12808. const auto word_collection = unicode_regex_split(text, regex_exprs);
  12809. symbols_final.clear();
  12810. for (auto & word : word_collection) {
  12811. work_queue = llm_bigram_bpe::queue();
  12812. symbols.clear();
  12813. int index = 0;
  12814. size_t offset = 0;
  12815. if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  12816. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  12817. offset = word.size();
  12818. }
  12819. while (offset < word.size()) {
  12820. llm_symbol sym;
  12821. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  12822. sym.text = word.c_str() + offset;
  12823. sym.n = char_len;
  12824. offset += sym.n;
  12825. sym.prev = index - 1;
  12826. sym.next = offset == word.size() ? -1 : index + 1;
  12827. index++;
  12828. symbols.emplace_back(sym);
  12829. }
  12830. for (size_t i = 1; i < symbols.size(); ++i) {
  12831. add_new_bigram(i - 1, i);
  12832. }
  12833. // build token(s)
  12834. while (!work_queue.empty()) {
  12835. auto bigram = work_queue.top();
  12836. work_queue.pop();
  12837. auto & left_symbol = symbols[bigram.left];
  12838. auto & right_symbol = symbols[bigram.right];
  12839. if (left_symbol.n == 0 || right_symbol.n == 0) {
  12840. continue;
  12841. }
  12842. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  12843. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  12844. if (left_token + right_token != bigram.text) {
  12845. continue; // Skip this bigram if it's outdated
  12846. }
  12847. // merge the right sym into the left one
  12848. left_symbol.n += right_symbol.n;
  12849. right_symbol.n = 0;
  12850. // remove the right sym from the chain
  12851. left_symbol.next = right_symbol.next;
  12852. if (right_symbol.next >= 0) {
  12853. symbols[right_symbol.next].prev = bigram.left;
  12854. }
  12855. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  12856. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  12857. }
  12858. // add the finished tokens to the final list keeping correct order for next and prev
  12859. for (auto & sym : symbols) {
  12860. if (sym.n > 0) {
  12861. sym.prev = final_prev_index;
  12862. sym.next = -1;
  12863. if (final_prev_index != -1) {
  12864. symbols_final[final_prev_index].next = symbols_final.size();
  12865. }
  12866. symbols_final.emplace_back(sym);
  12867. final_prev_index = symbols_final.size() - 1;
  12868. }
  12869. }
  12870. }
  12871. symbols = symbols_final;
  12872. if (!symbols.empty()) {
  12873. for (int i = 0; i != -1; i = symbols[i].next) {
  12874. auto & symbol = symbols[i];
  12875. if (symbol.n == 0) {
  12876. continue;
  12877. }
  12878. const std::string str = std::string(symbol.text, symbol.n);
  12879. const auto token = vocab.token_to_id.find(str);
  12880. if (token == vocab.token_to_id.end()) {
  12881. for (auto j = str.begin(); j != str.end(); ++j) {
  12882. std::string byte_str(1, *j);
  12883. auto token_multibyte = vocab.token_to_id.find(byte_str);
  12884. if (token_multibyte != vocab.token_to_id.end()) {
  12885. output.push_back(token_multibyte->second);
  12886. }
  12887. }
  12888. } else {
  12889. output.push_back((*token).second);
  12890. }
  12891. }
  12892. }
  12893. }
  12894. private:
  12895. void add_new_bigram(int left, int right) {
  12896. if (left == -1 || right == -1) {
  12897. return;
  12898. }
  12899. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  12900. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  12901. int rank_found = -1;
  12902. rank_found = vocab.find_bpe_rank(left_token, right_token);
  12903. if (rank_found < 0) {
  12904. return;
  12905. }
  12906. llm_bigram_bpe bigram;
  12907. bigram.left = left;
  12908. bigram.right = right;
  12909. bigram.text = left_token + right_token;
  12910. bigram.size = left_token.size() + right_token.size();
  12911. bigram.rank = rank_found;
  12912. work_queue.push(bigram);
  12913. }
  12914. const llama_vocab & vocab;
  12915. std::vector<std::string> regex_exprs;
  12916. std::vector<llm_symbol> symbols;
  12917. std::vector<llm_symbol> symbols_final;
  12918. llm_bigram_bpe::queue work_queue;
  12919. };
  12920. struct llm_tokenizer_wpm {
  12921. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  12922. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
  12923. const auto & token_map = vocab.token_to_id;
  12924. // normalize and split by whitespace
  12925. std::vector<std::string> words = preprocess(text);
  12926. // bos token prepended already
  12927. // find the longest tokens that form the words
  12928. for (const std::string & word : words) {
  12929. // skip empty words
  12930. if (word.size() == 0) {
  12931. continue;
  12932. }
  12933. // prepend phantom space
  12934. const std::string word1 = "\xe2\x96\x81" + word;
  12935. const int n = word1.size();
  12936. const size_t current_tokens = output.size();
  12937. // we're at the start of a new word
  12938. // move through character position in word
  12939. for (int i = 0; i < n; ++i) {
  12940. // loop through possible match length
  12941. bool match = false;
  12942. for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
  12943. auto it = token_map.find(word1.substr(i, j - i));
  12944. if (it != token_map.end()) {
  12945. output.push_back(it->second);
  12946. match = true;
  12947. i = j - 1;
  12948. break;
  12949. }
  12950. }
  12951. if (!match) { // discard all
  12952. output.resize(current_tokens);
  12953. break; // and discard next tokens
  12954. }
  12955. }
  12956. // we didn't find any matches for this word
  12957. if (current_tokens == output.size()) {
  12958. output.push_back(vocab.special_unk_id);
  12959. }
  12960. }
  12961. }
  12962. // TODO: reduce string copies by using cpts_offs array
  12963. std::vector<std::string> preprocess(const std::string & text) const {
  12964. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  12965. std::vector<std::string> words(1, "");
  12966. for (const uint32_t cpt : cpts_nfd) {
  12967. const auto flags = unicode_cpt_flags(cpt);
  12968. if (flags.is_whitespace) {
  12969. if (words.back().size()) { // finish previous word if any
  12970. words.emplace_back();
  12971. }
  12972. continue;
  12973. }
  12974. assert (!flags.is_separator);
  12975. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  12976. continue;
  12977. }
  12978. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  12979. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  12980. if (words.back().size()) { // finish previous word if any
  12981. words.emplace_back();
  12982. }
  12983. words.back() = s; // single char word
  12984. words.emplace_back(); // start a new word
  12985. } else {
  12986. words.back() += s; // append char to word
  12987. }
  12988. }
  12989. if (!words.back().size()) {
  12990. words.pop_back();
  12991. }
  12992. return words;
  12993. }
  12994. static bool is_chinese_char(uint32_t cpt) {
  12995. return
  12996. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  12997. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  12998. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  12999. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  13000. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  13001. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  13002. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  13003. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  13004. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  13005. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  13006. }
  13007. const llama_vocab & vocab;
  13008. };
  13009. struct naive_trie {
  13010. naive_trie() : has_value(false), value(0) {
  13011. }
  13012. void insert(const char * key, size_t len, int32_t value = 0) {
  13013. if (len == 0) {
  13014. this->has_value = true;
  13015. this->value = value;
  13016. return;
  13017. }
  13018. char c = key[0];
  13019. auto res = children.find(c);
  13020. if (res != children.end()) {
  13021. res->second.insert(key + 1, len - 1, value);
  13022. } else {
  13023. auto res = children.insert(std::make_pair(c, naive_trie()));
  13024. res.first->second.insert(key + 1, len - 1, value);
  13025. }
  13026. }
  13027. std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) {
  13028. if (len == 0 || offset == len) {
  13029. return std::make_pair(key, offset);
  13030. }
  13031. char c = key[offset];
  13032. auto res = children.find(c);
  13033. if (res != children.end()) {
  13034. return res->second.get_longest_prefix(key, len, offset + 1);
  13035. } else {
  13036. return std::make_pair(key, offset);
  13037. }
  13038. }
  13039. struct naive_trie * traverse(const char c) {
  13040. auto res = children.find(c);
  13041. if (res != children.end()) {
  13042. return &res->second;
  13043. } else {
  13044. return NULL;
  13045. }
  13046. }
  13047. std::map<char, struct naive_trie> children;
  13048. bool has_value;
  13049. llama_token value;
  13050. };
  13051. struct llm_tokenizer_ugm {
  13052. llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) {
  13053. if (vocab.precompiled_charsmap.size() > 0) {
  13054. size_t charsmap_offset = 0;
  13055. // First four bytes of precompiled_charsmap contains length of binary
  13056. // blob containing XOR-compressed compact double array (XCDA) entries
  13057. uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
  13058. charsmap_offset += sizeof(xcda_blob_size);
  13059. if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
  13060. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  13061. }
  13062. // Next xcda_blob_size bytes contain entries of XOR-compressed compact
  13063. // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
  13064. xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
  13065. xcda_array_size = xcda_blob_size / sizeof(uint32_t);
  13066. charsmap_offset += xcda_blob_size;
  13067. // Remaining bytes of precompiled charsmap contain null-terminated
  13068. // replacement strings for prefixes matched by the XCDA.
  13069. prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
  13070. prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
  13071. }
  13072. for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
  13073. const auto &token_data = vocab.id_to_token[id];
  13074. if (llama_is_normal_token(vocab, id)) {
  13075. min_score = std::min<float>(min_score, token_data.score);
  13076. max_score = std::max<float>(max_score, token_data.score);
  13077. }
  13078. if (llama_is_normal_token(vocab, id) ||
  13079. llama_is_user_defined_token(vocab, id) ||
  13080. llama_is_unused_token(vocab, id)) {
  13081. token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
  13082. }
  13083. if (llama_is_user_defined_token(vocab, id)) {
  13084. user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
  13085. }
  13086. }
  13087. unknown_token_score = min_score - unknown_token_score_penalty;
  13088. }
  13089. /* This implementation is based on SentencePiece optimized Viterbi algorithm for
  13090. * unigram language models. The general idea is to:
  13091. * - move along the input sequence in steps of one UTF code point,
  13092. * - at each step find all possible tokenizations of the prefix by
  13093. * traversing the tokens trie,
  13094. * - for each tokenization store the best one so far (by higher score)
  13095. * - use the position in sequence after given token as an index to store
  13096. * results
  13097. * - if there was no valid tokenization of the current UTF code point
  13098. * then use unknown token with additional score penalty
  13099. * After processing the whole sequence we backtrack from the end to get
  13100. * the best tokenization.
  13101. */
  13102. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  13103. // normalize the input first
  13104. std::string normalized;
  13105. normalize(text, &normalized);
  13106. size_t input_len = normalized.size();
  13107. if (input_len == 0) {
  13108. return;
  13109. }
  13110. // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
  13111. std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
  13112. // at the beginning tokenization score is zero
  13113. tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
  13114. for (size_t input_offset = 0; input_offset < input_len;) {
  13115. size_t prefix_offset = input_offset;
  13116. // calculate how many code units are in the currently processed UTF code point
  13117. size_t n_utf8_code_units = std::min<size_t>(utf8_len(normalized[input_offset]), input_len - input_offset);
  13118. // traverse the token matcher trie to find a matching token
  13119. bool single_codepoint_token_found = false;
  13120. const struct best_tokenization & current_best = tokenization_results[input_offset];
  13121. struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]);
  13122. while (prefix_offset <= input_len && node != NULL) {
  13123. // check if we found valid token in prefix
  13124. if (node->has_value) {
  13125. // check if it corresponds to the whole UTF code point
  13126. if (prefix_offset - input_offset == n_utf8_code_units) {
  13127. single_codepoint_token_found = true;
  13128. }
  13129. llama_token token_id = node->value;
  13130. const auto & token_data = vocab.id_to_token[token_id];
  13131. // we set the user-defined token scores to 0 to make them more likely to be selected
  13132. // (normal token scores are log probabilities, so they are negative)
  13133. // score type is double here to make tokenization results exactly
  13134. // the same as in the HF tokenizer using SentencePiece
  13135. const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
  13136. const double challenger_score = current_best.score_sum + token_score;
  13137. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  13138. if (challenger_score > current_champ.score_sum) {
  13139. struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
  13140. current_champ = challenger;
  13141. }
  13142. }
  13143. node = node->traverse(normalized[prefix_offset++]);
  13144. }
  13145. // if we didn't find a valid token corresponding to the whole UTF code point
  13146. // then use unknown token as the tokenization of this UTF code point
  13147. if (!single_codepoint_token_found) {
  13148. const double challenger_score = current_best.score_sum + unknown_token_score;
  13149. prefix_offset = input_offset + n_utf8_code_units;
  13150. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  13151. if (challenger_score > current_champ.score_sum) {
  13152. struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
  13153. current_champ = challenger;
  13154. }
  13155. }
  13156. // move to the next UTF code point
  13157. input_offset += n_utf8_code_units;
  13158. }
  13159. // now backtrack from the end to gather token ids of the best tokenization
  13160. // merge sequences of consecutive unknown tokens into single unknown tokens
  13161. bool is_prev_unknown = false;
  13162. for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
  13163. bool is_unknown = tokenization.token_id == vocab.special_unk_id;
  13164. if (!(is_prev_unknown && is_unknown)) {
  13165. output.push_back(tokenization.token_id);
  13166. }
  13167. if (tokenization.input_offset == 0) {
  13168. break;
  13169. }
  13170. is_prev_unknown = is_unknown;
  13171. }
  13172. // reverse the output since we added tokens starting from the end of the input
  13173. std::reverse(output.begin(), output.end());
  13174. }
  13175. private:
  13176. const llama_vocab & vocab;
  13177. // helper structure for returning normalization results
  13178. struct normalization_result {
  13179. const char * normalized;
  13180. size_t normalized_len;
  13181. size_t consumed_input;
  13182. };
  13183. void normalize(const std::string& input, std::string * normalized) {
  13184. normalized->clear();
  13185. normalized->reserve(input.size() * 3);
  13186. const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " ";
  13187. bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
  13188. bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
  13189. bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
  13190. bool is_space_prepended = false;
  13191. bool processing_non_ws = false;
  13192. size_t input_len = input.size();
  13193. for (size_t input_offset = 0; input_offset < input_len; ) {
  13194. auto norm_res = normalize_prefix(input, input_offset);
  13195. for (size_t i = 0; i < norm_res.normalized_len; i++) {
  13196. char c = norm_res.normalized[i];
  13197. if (c != ' ') {
  13198. if (!processing_non_ws) {
  13199. processing_non_ws = true;
  13200. if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
  13201. normalized->append(space);
  13202. is_space_prepended = true;
  13203. }
  13204. }
  13205. normalized->push_back(c);
  13206. } else {
  13207. if (processing_non_ws) {
  13208. processing_non_ws = false;
  13209. }
  13210. if (!shall_merge_spaces) {
  13211. normalized->append(space);
  13212. }
  13213. }
  13214. }
  13215. input_offset += norm_res.consumed_input;
  13216. }
  13217. if (shall_append_space) {
  13218. normalized->append(space);
  13219. }
  13220. }
  13221. /*
  13222. * This structure is a view wrapper for XOR-compressed double array (XCDA)
  13223. * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
  13224. * Eeach bit-packed entry contains:
  13225. * - BASE array value in bits 10-30
  13226. * - LCHECK array value in bits 0-7
  13227. * - LEAF array value in bit 9
  13228. * Entries containing indexes of replacement sequences have set bit 31
  13229. */
  13230. struct xcda_array_view {
  13231. public:
  13232. xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
  13233. }
  13234. uint32_t get_base(size_t index) {
  13235. uint32_t packed_node = get_node(index);
  13236. return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
  13237. }
  13238. uint32_t get_lcheck(size_t index) {
  13239. uint32_t packed_node = get_node(index);
  13240. return packed_node & ((1U << 31) | 0xff);
  13241. }
  13242. bool get_leaf(size_t index) {
  13243. uint32_t packed_node = get_node(index);
  13244. return (packed_node >> 8) & 1;
  13245. }
  13246. uint32_t get_value(size_t index) {
  13247. uint32_t packed_node = get_node(index);
  13248. return packed_node & ((1U << 31) - 1);
  13249. }
  13250. private:
  13251. uint32_t get_node(size_t index) {
  13252. if (index > xcda_array_size) {
  13253. throw std::runtime_error("Index out of array bounds in XCDA array!");
  13254. }
  13255. return xcda_array[index];
  13256. }
  13257. const uint32_t * xcda_array;
  13258. size_t xcda_array_size;
  13259. };
  13260. struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
  13261. if (input_offset == input.size()) {
  13262. return { &input[input_offset], 0, 0 };
  13263. }
  13264. // if input prefix matches some user-defined token return this token as normalization result
  13265. auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
  13266. if (user_defined_token_match.second > 0) {
  13267. return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
  13268. }
  13269. size_t longest_prefix_length = 0;
  13270. size_t longest_prefix_offset = 0;
  13271. if (xcda_array_size > 0) {
  13272. struct xcda_array_view xcda_view(xcda_array, xcda_array_size);
  13273. // Find the longest normalized sequence matching the input prefix by walking
  13274. // the XOR-compressed compact double array (XCDA) starting from the root node
  13275. // We find the index of the next node by calculating BASE[s] ^ c where s is
  13276. // the index of the previous node and c is a numerical character value
  13277. uint32_t node_index = 0;
  13278. // get BASE of the root node
  13279. node_index = xcda_view.get_base(node_index);
  13280. for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
  13281. unsigned char c = input[prefix_offset];
  13282. if (c == 0) {
  13283. break;
  13284. }
  13285. node_index ^= c;
  13286. // if value of LCHECK is not c it means that this is not a child of
  13287. // the previous node, so we stop matching
  13288. if (xcda_view.get_lcheck(node_index) != c) {
  13289. break;
  13290. }
  13291. bool is_leaf = xcda_view.get_leaf(node_index);
  13292. // get BASE of the current node
  13293. node_index ^= xcda_view.get_base(node_index);
  13294. // if LEAF of the current node is true, it means that its BASE points to the node
  13295. // containing index of replacement sequence for currently matched input prefix
  13296. if (is_leaf)
  13297. {
  13298. longest_prefix_length = prefix_offset - input_offset + 1;
  13299. // get index of replacement sequence for currently matched input prefix
  13300. longest_prefix_offset = xcda_view.get_value(node_index);
  13301. }
  13302. }
  13303. }
  13304. if (longest_prefix_length > 0) {
  13305. // we have a match, so return the replacement sequence
  13306. if (longest_prefix_offset >= prefix_replacements_size) {
  13307. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  13308. }
  13309. const char * prefix_replacement = &prefix_replacements[longest_prefix_offset];
  13310. return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
  13311. } else {
  13312. // check if the input prefix contains a valid sequence of UTF-8 code units
  13313. try {
  13314. // if yes, return this sequence unmodified
  13315. size_t prefix_offset = input_offset;
  13316. unicode_cpt_from_utf8(input, prefix_offset);
  13317. return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
  13318. } catch (std::invalid_argument & /*ex*/) {
  13319. // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
  13320. return { "\xEF\xBF\xBD", 3, 1 };
  13321. }
  13322. }
  13323. }
  13324. // escaped space symbol - U+2581 (Lower One Eighth Block)
  13325. const std::string escaped_space = "\xE2\x96\x81";
  13326. const char * prefix_replacements = NULL;
  13327. size_t prefix_replacements_size = 0;
  13328. const uint32_t * xcda_array = NULL;
  13329. size_t xcda_array_size = 0;
  13330. struct naive_trie user_defined_token_matcher;
  13331. // this structure stores the best tokenization so far at input_offset
  13332. struct best_tokenization {
  13333. llama_token token_id;
  13334. size_t input_offset;
  13335. float score_sum;
  13336. };
  13337. float min_score = FLT_MAX;
  13338. float max_score = -FLT_MAX;
  13339. float unknown_token_score_penalty = 10.0;
  13340. float unknown_token_score;
  13341. struct naive_trie token_matcher;
  13342. };
  13343. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  13344. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  13345. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  13346. } FRAGMENT_BUFFER_VARIANT_TYPE;
  13347. struct fragment_buffer_variant {
  13348. fragment_buffer_variant(llama_vocab::id _token)
  13349. :
  13350. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  13351. token(_token),
  13352. raw_text(_dummy),
  13353. offset(0),
  13354. length(0) {}
  13355. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  13356. :
  13357. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  13358. token((llama_vocab::id) - 1),
  13359. raw_text(_raw_text),
  13360. offset(_offset),
  13361. length(_length){
  13362. GGML_ASSERT(_offset >= 0);
  13363. GGML_ASSERT(_length >= 1);
  13364. GGML_ASSERT(offset + length <= raw_text.length());
  13365. }
  13366. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  13367. const llama_vocab::id token;
  13368. const std::string _dummy;
  13369. const std::string & raw_text;
  13370. const uint64_t offset;
  13371. const uint64_t length;
  13372. };
  13373. // #define PRETOKENIZERDEBUG
  13374. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
  13375. // for each special token
  13376. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  13377. const auto & data = vocab.id_to_token[special_id];
  13378. const auto & special_token = data.text;
  13379. if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
  13380. // Ignore control and unknown tokens when parse_special == false
  13381. continue;
  13382. // User-defined tokens are still pre-tokenized before everything else
  13383. // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
  13384. // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
  13385. }
  13386. // for each text fragment
  13387. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  13388. while (it != buffer.end()) {
  13389. auto & fragment = (*it);
  13390. // if a fragment is text ( not yet processed )
  13391. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  13392. auto & raw_text = fragment.raw_text;
  13393. auto raw_text_base_offset = fragment.offset;
  13394. auto raw_text_base_length = fragment.length;
  13395. // loop over the text
  13396. while (true) {
  13397. // find the first occurrence of a given special token in this fragment
  13398. // passing offset argument only limit the "search area" but match coordinates
  13399. // are still relative to the source full raw_text
  13400. auto match = raw_text.find(special_token, raw_text_base_offset);
  13401. // no occurrences found, stop processing this fragment for a given special token
  13402. if (match == std::string::npos) break;
  13403. // check if match is within bounds of offset <-> length
  13404. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  13405. #ifdef PRETOKENIZERDEBUG
  13406. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  13407. #endif
  13408. auto source = std::distance(buffer.begin(), it);
  13409. // if match is further than base offset
  13410. // then we have some text to the left of it
  13411. if (match > raw_text_base_offset) {
  13412. // left
  13413. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  13414. int64_t left_reminder_length = match - raw_text_base_offset;
  13415. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  13416. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  13417. left_reminder_length--;
  13418. }
  13419. }
  13420. if (left_reminder_length > 0) {
  13421. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  13422. it++;
  13423. }
  13424. #ifdef PRETOKENIZERDEBUG
  13425. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  13426. #endif
  13427. }
  13428. // special token
  13429. buffer.emplace_after(it, special_id);
  13430. it++;
  13431. // right
  13432. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  13433. int64_t right_reminder_offset = match + special_token.length();
  13434. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  13435. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  13436. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  13437. right_reminder_offset++;
  13438. right_reminder_length--;
  13439. }
  13440. }
  13441. if (right_reminder_length > 0) {
  13442. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  13443. it++;
  13444. }
  13445. #ifdef PRETOKENIZERDEBUG
  13446. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  13447. #endif
  13448. if (source == 0) {
  13449. buffer.erase_after(buffer.before_begin());
  13450. } else {
  13451. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  13452. }
  13453. // repeat for the right side
  13454. raw_text_base_offset = right_reminder_offset;
  13455. raw_text_base_length = right_reminder_length;
  13456. #ifdef PRETOKENIZERDEBUG
  13457. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  13458. #endif
  13459. } else {
  13460. if (source == 0) {
  13461. buffer.erase_after(buffer.before_begin());
  13462. } else {
  13463. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  13464. }
  13465. break;
  13466. }
  13467. }
  13468. }
  13469. it++;
  13470. }
  13471. }
  13472. }
  13473. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  13474. std::vector<llama_vocab::id> output;
  13475. std::forward_list<fragment_buffer_variant> fragment_buffer;
  13476. if (!raw_text.empty()) {
  13477. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  13478. tokenizer_st_partition(vocab, fragment_buffer, parse_special);
  13479. }
  13480. switch (vocab.type) {
  13481. case LLAMA_VOCAB_TYPE_SPM:
  13482. {
  13483. // OG tokenizer behavior:
  13484. //
  13485. // tokenizer.encode('', add_special_tokens=True) returns [1]
  13486. // tokenizer.encode('', add_special_tokens=False) returns []
  13487. bool is_prev_special = true; // prefix with space if first token
  13488. if (add_special && vocab.tokenizer_add_bos) {
  13489. GGML_ASSERT(vocab.special_bos_id != -1);
  13490. output.push_back(vocab.special_bos_id);
  13491. is_prev_special = true;
  13492. }
  13493. for (const auto & fragment : fragment_buffer) {
  13494. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  13495. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  13496. // prefix with space if previous is special
  13497. if (vocab.tokenizer_add_space_prefix && is_prev_special) {
  13498. raw_text = " " + raw_text;
  13499. }
  13500. #ifdef PRETOKENIZERDEBUG
  13501. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  13502. #endif
  13503. llm_tokenizer_spm tokenizer(vocab);
  13504. llama_escape_whitespace(raw_text);
  13505. tokenizer.tokenize(raw_text, output);
  13506. is_prev_special = false;
  13507. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  13508. output.push_back(fragment.token);
  13509. is_prev_special = true;
  13510. }
  13511. }
  13512. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  13513. LLAMA_LOG_WARN(
  13514. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  13515. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  13516. "Are you sure this is what you want?\n", __FUNCTION__);
  13517. }
  13518. if (add_special && vocab.tokenizer_add_eos) {
  13519. GGML_ASSERT(vocab.special_eos_id != -1);
  13520. output.push_back(vocab.special_eos_id);
  13521. }
  13522. } break;
  13523. case LLAMA_VOCAB_TYPE_BPE:
  13524. {
  13525. llm_tokenizer_bpe tokenizer(vocab);
  13526. if (add_special) {
  13527. tokenizer.append_bos(output);
  13528. }
  13529. for (const auto & fragment : fragment_buffer) {
  13530. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  13531. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  13532. #ifdef PRETOKENIZERDEBUG
  13533. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  13534. #endif
  13535. tokenizer.tokenize(raw_text, output);
  13536. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  13537. tokenizer.append(fragment.token, output);
  13538. }
  13539. }
  13540. if (add_special) {
  13541. tokenizer.append_eos(output);
  13542. tokenizer.check_double_bos_eos(output);
  13543. }
  13544. } break;
  13545. case LLAMA_VOCAB_TYPE_WPM:
  13546. {
  13547. if (add_special) {
  13548. GGML_ASSERT(vocab.special_cls_id != -1);
  13549. output.push_back(vocab.special_cls_id);
  13550. }
  13551. llm_tokenizer_wpm tokenizer(vocab);
  13552. for (const auto & fragment : fragment_buffer) {
  13553. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  13554. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  13555. #ifdef PRETOKENIZERDEBUG
  13556. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  13557. #endif
  13558. tokenizer.tokenize(raw_text, output);
  13559. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  13560. output.push_back(fragment.token);
  13561. }
  13562. }
  13563. if (add_special) {
  13564. GGML_ASSERT(vocab.special_sep_id != -1);
  13565. output.push_back(vocab.special_sep_id);
  13566. }
  13567. } break;
  13568. case LLAMA_VOCAB_TYPE_UGM:
  13569. {
  13570. llm_tokenizer_ugm tokenizer(vocab);
  13571. if (add_special && vocab.tokenizer_add_bos != 0) {
  13572. GGML_ASSERT(vocab.special_bos_id != -1);
  13573. output.push_back(vocab.special_bos_id);
  13574. }
  13575. for (const auto & fragment : fragment_buffer) {
  13576. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  13577. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  13578. #ifdef PRETOKENIZERDEBUG
  13579. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  13580. #endif
  13581. tokenizer.tokenize(raw_text, output);
  13582. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  13583. output.push_back(fragment.token);
  13584. }
  13585. }
  13586. if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  13587. LLAMA_LOG_WARN(
  13588. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  13589. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  13590. "Are you sure this is what you want?\n", __FUNCTION__);
  13591. }
  13592. if (add_special && vocab.tokenizer_add_eos == 1) {
  13593. GGML_ASSERT(vocab.special_eos_id != -1);
  13594. output.push_back(vocab.special_eos_id);
  13595. }
  13596. } break;
  13597. case LLAMA_VOCAB_TYPE_NONE:
  13598. GGML_ASSERT(false);
  13599. }
  13600. return output;
  13601. }
  13602. //
  13603. // grammar - internal
  13604. //
  13605. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  13606. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  13607. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  13608. const std::string & src,
  13609. llama_partial_utf8 partial_start) {
  13610. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  13611. const char * pos = src.c_str();
  13612. std::vector<uint32_t> code_points;
  13613. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  13614. code_points.reserve(src.size() + 1);
  13615. uint32_t value = partial_start.value;
  13616. int n_remain = partial_start.n_remain;
  13617. // continue previous decode, if applicable
  13618. while (*pos != 0 && n_remain > 0) {
  13619. uint8_t next_byte = static_cast<uint8_t>(*pos);
  13620. if ((next_byte >> 6) != 2) {
  13621. // invalid sequence, abort
  13622. code_points.push_back(0);
  13623. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  13624. }
  13625. value = (value << 6) + (next_byte & 0x3F);
  13626. ++pos;
  13627. --n_remain;
  13628. }
  13629. if (partial_start.n_remain > 0 && n_remain == 0) {
  13630. code_points.push_back(value);
  13631. }
  13632. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  13633. while (*pos != 0) {
  13634. uint8_t first_byte = static_cast<uint8_t>(*pos);
  13635. uint8_t highbits = first_byte >> 4;
  13636. n_remain = lookup[highbits] - 1;
  13637. if (n_remain < 0) {
  13638. // invalid sequence, abort
  13639. code_points.clear();
  13640. code_points.push_back(0);
  13641. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  13642. }
  13643. uint8_t mask = (1 << (7 - n_remain)) - 1;
  13644. value = first_byte & mask;
  13645. ++pos;
  13646. while (*pos != 0 && n_remain > 0) {
  13647. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  13648. ++pos;
  13649. --n_remain;
  13650. }
  13651. if (n_remain == 0) {
  13652. code_points.push_back(value);
  13653. }
  13654. }
  13655. code_points.push_back(0);
  13656. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  13657. }
  13658. // returns true iff pos points to the end of one of the definitions of a rule
  13659. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  13660. switch (pos->type) {
  13661. case LLAMA_GRETYPE_END: return true; // NOLINT
  13662. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  13663. default: return false;
  13664. }
  13665. }
  13666. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  13667. // asserts that pos is pointing to a char range element
  13668. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  13669. const llama_grammar_element * pos,
  13670. const uint32_t chr) {
  13671. bool found = false;
  13672. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  13673. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  13674. do {
  13675. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  13676. // inclusive range, e.g. [a-z]
  13677. found = found || (pos->value <= chr && chr <= pos[1].value);
  13678. pos += 2;
  13679. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  13680. // Any character matches "."
  13681. found = true;
  13682. pos += 1;
  13683. } else {
  13684. // exact char match, e.g. [a] or "a"
  13685. found = found || pos->value == chr;
  13686. pos += 1;
  13687. }
  13688. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  13689. return std::make_pair(found == is_positive_char, pos);
  13690. }
  13691. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  13692. // range at pos (regular or inverse range)
  13693. // asserts that pos is pointing to a char range element
  13694. static bool llama_grammar_match_partial_char(
  13695. const llama_grammar_element * pos,
  13696. const llama_partial_utf8 partial_utf8) {
  13697. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  13698. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  13699. uint32_t partial_value = partial_utf8.value;
  13700. int n_remain = partial_utf8.n_remain;
  13701. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  13702. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  13703. return false;
  13704. }
  13705. // range of possible code points this partial UTF-8 sequence could complete to
  13706. uint32_t low = partial_value << (n_remain * 6);
  13707. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  13708. if (low == 0) {
  13709. if (n_remain == 2) {
  13710. low = 1 << 11;
  13711. } else if (n_remain == 3) {
  13712. low = 1 << 16;
  13713. }
  13714. }
  13715. do {
  13716. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  13717. // inclusive range, e.g. [a-z]
  13718. if (pos->value <= high && low <= pos[1].value) {
  13719. return is_positive_char;
  13720. }
  13721. pos += 2;
  13722. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  13723. // Any character matches "."
  13724. return true;
  13725. } else {
  13726. // exact char match, e.g. [a] or "a"
  13727. if (low <= pos->value && pos->value <= high) {
  13728. return is_positive_char;
  13729. }
  13730. pos += 1;
  13731. }
  13732. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  13733. return !is_positive_char;
  13734. }
  13735. // transforms a grammar pushdown stack into N possible stacks, all ending
  13736. // at a character range (terminal element)
  13737. static void llama_grammar_advance_stack(
  13738. const std::vector<std::vector<llama_grammar_element>> & rules,
  13739. const std::vector<const llama_grammar_element *> & stack,
  13740. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  13741. if (stack.empty()) {
  13742. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  13743. new_stacks.emplace_back(stack);
  13744. }
  13745. return;
  13746. }
  13747. const llama_grammar_element * pos = stack.back();
  13748. switch (pos->type) {
  13749. case LLAMA_GRETYPE_RULE_REF: {
  13750. const size_t rule_id = static_cast<size_t>(pos->value);
  13751. const llama_grammar_element * subpos = rules[rule_id].data();
  13752. do {
  13753. // init new stack without the top (pos)
  13754. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  13755. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  13756. // if this rule ref is followed by another element, add that to stack
  13757. new_stack.push_back(pos + 1);
  13758. }
  13759. if (!llama_grammar_is_end_of_sequence(subpos)) {
  13760. // if alternate is nonempty, add to stack
  13761. new_stack.push_back(subpos);
  13762. }
  13763. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  13764. while (!llama_grammar_is_end_of_sequence(subpos)) {
  13765. // scan to end of alternate def
  13766. subpos++;
  13767. }
  13768. if (subpos->type == LLAMA_GRETYPE_ALT) {
  13769. // there's another alternate def of this rule to process
  13770. subpos++;
  13771. } else {
  13772. break;
  13773. }
  13774. } while (true);
  13775. break;
  13776. }
  13777. case LLAMA_GRETYPE_CHAR:
  13778. case LLAMA_GRETYPE_CHAR_NOT:
  13779. case LLAMA_GRETYPE_CHAR_ANY:
  13780. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  13781. // only add the stack if it's not a duplicate of one we already have
  13782. new_stacks.emplace_back(stack);
  13783. }
  13784. break;
  13785. default:
  13786. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  13787. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  13788. // those
  13789. GGML_ASSERT(false);
  13790. }
  13791. }
  13792. // takes a set of possible pushdown stacks on a grammar, which are required to
  13793. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  13794. // produces the N possible stacks if the given char is accepted at those
  13795. // positions
  13796. void llama_grammar_accept(
  13797. const std::vector<std::vector<llama_grammar_element>> & rules,
  13798. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  13799. const uint32_t chr,
  13800. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  13801. new_stacks.clear();
  13802. for (const auto & stack : stacks) {
  13803. if (stack.empty()) {
  13804. continue;
  13805. }
  13806. auto match = llama_grammar_match_char(stack.back(), chr);
  13807. if (match.first) {
  13808. const llama_grammar_element * pos = match.second;
  13809. // update top of stack to next element, if any
  13810. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  13811. if (!llama_grammar_is_end_of_sequence(pos)) {
  13812. new_stack.push_back(pos);
  13813. }
  13814. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  13815. }
  13816. }
  13817. }
  13818. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  13819. const std::vector<std::vector<llama_grammar_element>> & rules,
  13820. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  13821. const std::vector<llama_grammar_candidate> & candidates);
  13822. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  13823. const std::vector<std::vector<llama_grammar_element>> & rules,
  13824. const std::vector<const llama_grammar_element *> & stack,
  13825. const std::vector<llama_grammar_candidate> & candidates) {
  13826. std::vector<llama_grammar_candidate> rejects;
  13827. rejects.reserve(candidates.size());
  13828. if (stack.empty()) {
  13829. for (const auto & tok : candidates) {
  13830. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  13831. rejects.push_back(tok);
  13832. }
  13833. }
  13834. return rejects;
  13835. }
  13836. const llama_grammar_element * stack_pos = stack.back();
  13837. std::vector<llama_grammar_candidate> next_candidates;
  13838. next_candidates.reserve(candidates.size());
  13839. for (const auto & tok : candidates) {
  13840. if (*tok.code_points == 0) {
  13841. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  13842. // that cannot satisfy this position in grammar
  13843. if (tok.partial_utf8.n_remain != 0 &&
  13844. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  13845. rejects.push_back(tok);
  13846. }
  13847. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  13848. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  13849. } else {
  13850. rejects.push_back(tok);
  13851. }
  13852. }
  13853. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  13854. // update top of stack to next element, if any
  13855. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  13856. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  13857. stack_after.push_back(stack_pos_after);
  13858. }
  13859. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  13860. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  13861. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  13862. for (const auto & tok : next_rejects) {
  13863. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  13864. }
  13865. return rejects;
  13866. }
  13867. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  13868. const std::vector<std::vector<llama_grammar_element>> & rules,
  13869. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  13870. const std::vector<llama_grammar_candidate> & candidates) {
  13871. GGML_ASSERT(!stacks.empty()); // REVIEW
  13872. if (candidates.empty()) {
  13873. return std::vector<llama_grammar_candidate>();
  13874. }
  13875. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  13876. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  13877. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  13878. }
  13879. return rejects;
  13880. }
  13881. static bool llama_grammar_detect_left_recursion(
  13882. const std::vector<std::vector<llama_grammar_element>> & rules,
  13883. size_t rule_index,
  13884. std::vector<bool> * rules_visited,
  13885. std::vector<bool> * rules_in_progress,
  13886. std::vector<bool> * rules_may_be_empty) {
  13887. if ((*rules_in_progress)[rule_index]) {
  13888. return true;
  13889. }
  13890. (*rules_in_progress)[rule_index] = true;
  13891. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  13892. // First check if the rule might produce the empty string. This could be done combined with the second
  13893. // step but it's more readable as two steps.
  13894. bool at_rule_start = true;
  13895. for (size_t i = 0; i < rule.size(); i++) {
  13896. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  13897. if (at_rule_start) {
  13898. (*rules_may_be_empty)[rule_index] = true;
  13899. break;
  13900. }
  13901. at_rule_start = true;
  13902. } else {
  13903. at_rule_start = false;
  13904. }
  13905. }
  13906. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  13907. // be empty)
  13908. bool recurse_into_nonterminal = true;
  13909. for (size_t i = 0; i < rule.size(); i++) {
  13910. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  13911. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  13912. return true;
  13913. }
  13914. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  13915. recurse_into_nonterminal = false;
  13916. }
  13917. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  13918. recurse_into_nonterminal = true;
  13919. } else {
  13920. recurse_into_nonterminal = false;
  13921. }
  13922. }
  13923. (*rules_in_progress)[rule_index] = false;
  13924. (*rules_visited)[rule_index] = true;
  13925. return false;
  13926. }
  13927. //
  13928. // grammar - external
  13929. //
  13930. struct llama_grammar * llama_grammar_init(
  13931. const llama_grammar_element ** rules,
  13932. size_t n_rules,
  13933. size_t start_rule_index) {
  13934. const llama_grammar_element * pos;
  13935. // copy rule definitions into vectors
  13936. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  13937. for (size_t i = 0; i < n_rules; i++) {
  13938. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  13939. vec_rules[i].push_back(*pos);
  13940. }
  13941. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  13942. }
  13943. // Check for left recursion
  13944. std::vector<bool> rules_visited(n_rules);
  13945. std::vector<bool> rules_in_progress(n_rules);
  13946. std::vector<bool> rules_may_be_empty(n_rules);
  13947. for (size_t i = 0; i < n_rules; i++) {
  13948. if (rules_visited[i]) {
  13949. continue;
  13950. }
  13951. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  13952. LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i);
  13953. return nullptr;
  13954. }
  13955. }
  13956. // loop over alternates of start rule to build initial stacks
  13957. std::vector<std::vector<const llama_grammar_element *>> stacks;
  13958. pos = vec_rules[start_rule_index].data();
  13959. do {
  13960. std::vector<const llama_grammar_element *> stack;
  13961. if (!llama_grammar_is_end_of_sequence(pos)) {
  13962. // if alternate is nonempty, add to stack
  13963. stack.push_back(pos);
  13964. }
  13965. llama_grammar_advance_stack(vec_rules, stack, stacks);
  13966. while (!llama_grammar_is_end_of_sequence(pos)) {
  13967. // scan to end of alternate def
  13968. pos++;
  13969. }
  13970. if (pos->type == LLAMA_GRETYPE_ALT) {
  13971. // there's another alternate def of this rule to process
  13972. pos++;
  13973. } else {
  13974. break;
  13975. }
  13976. } while (true);
  13977. // Important: vec_rules has to be moved here, not copied, because stacks contains
  13978. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  13979. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  13980. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  13981. }
  13982. void llama_grammar_free(struct llama_grammar * grammar) {
  13983. delete grammar;
  13984. }
  13985. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  13986. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  13987. // redirect elements in stacks to point to new rules
  13988. for (size_t is = 0; is < result->stacks.size(); is++) {
  13989. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  13990. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  13991. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  13992. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  13993. result->stacks[is][ie] = &result->rules[ir0][ir1];
  13994. }
  13995. }
  13996. }
  13997. }
  13998. }
  13999. return result;
  14000. }
  14001. //
  14002. // sampling
  14003. //
  14004. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  14005. if (seed == LLAMA_DEFAULT_SEED) {
  14006. seed = time(NULL);
  14007. }
  14008. ctx->rng.seed(seed);
  14009. }
  14010. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  14011. GGML_ASSERT(candidates->size > 0);
  14012. const int64_t t_start_sample_us = ggml_time_us();
  14013. // Sort the logits in descending order
  14014. if (!candidates->sorted) {
  14015. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  14016. return a.logit > b.logit;
  14017. });
  14018. candidates->sorted = true;
  14019. }
  14020. float max_l = candidates->data[0].logit;
  14021. float cum_sum = 0.0f;
  14022. for (size_t i = 0; i < candidates->size; ++i) {
  14023. float p = expf(candidates->data[i].logit - max_l);
  14024. candidates->data[i].p = p;
  14025. cum_sum += p;
  14026. }
  14027. for (size_t i = 0; i < candidates->size; ++i) {
  14028. candidates->data[i].p /= cum_sum;
  14029. }
  14030. if (ctx) {
  14031. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14032. }
  14033. }
  14034. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  14035. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  14036. // if (k >= (int32_t)candidates->size) {
  14037. // return;
  14038. // }
  14039. const int64_t t_start_sample_us = ggml_time_us();
  14040. if (k <= 0) {
  14041. k = candidates->size;
  14042. }
  14043. k = std::max(k, (int) min_keep);
  14044. k = std::min(k, (int) candidates->size);
  14045. // Sort scores in descending order
  14046. if (!candidates->sorted) {
  14047. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  14048. return a.logit > b.logit;
  14049. };
  14050. if (k <= 128) {
  14051. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  14052. } else {
  14053. constexpr int nbuckets = 128;
  14054. constexpr float bucket_low = -10.0f;
  14055. constexpr float bucket_high = 10.0f;
  14056. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  14057. constexpr float bucker_inter = -bucket_low * bucket_scale;
  14058. std::vector<int> bucket_idx(candidates->size);
  14059. std::vector<int> histo(nbuckets, 0);
  14060. for (int i = 0; i < (int)candidates->size; ++i) {
  14061. const float val = candidates->data[i].logit;
  14062. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  14063. ib = std::max(0, std::min(nbuckets-1, ib));
  14064. bucket_idx[i] = ib;
  14065. ++histo[ib];
  14066. }
  14067. int nhave = 0;
  14068. int ib = nbuckets - 1;
  14069. for ( ; ib >= 0; --ib) {
  14070. nhave += histo[ib];
  14071. if (nhave >= k) break;
  14072. }
  14073. std::vector<llama_token_data> tmp_tokens(nhave);
  14074. auto ptr = tmp_tokens.data();
  14075. std::vector<llama_token_data*> bucket_ptrs;
  14076. bucket_ptrs.reserve(nbuckets - ib);
  14077. for (int j = nbuckets - 1; j >= ib; --j) {
  14078. bucket_ptrs.push_back(ptr);
  14079. ptr += histo[j];
  14080. }
  14081. for (int i = 0; i < (int)candidates->size; ++i) {
  14082. int j = bucket_idx[i];
  14083. if (j >= ib) {
  14084. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  14085. }
  14086. }
  14087. ptr = tmp_tokens.data();
  14088. int ndone = 0;
  14089. for (int j = nbuckets-1; j > ib; --j) {
  14090. std::sort(ptr, ptr + histo[j], comp);
  14091. ptr += histo[j];
  14092. ndone += histo[j];
  14093. }
  14094. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  14095. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  14096. }
  14097. candidates->sorted = true;
  14098. }
  14099. candidates->size = k;
  14100. if (ctx) {
  14101. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14102. }
  14103. }
  14104. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  14105. if (p >= 1.0f) {
  14106. return;
  14107. }
  14108. llama_sample_softmax(ctx, candidates);
  14109. const int64_t t_start_sample_us = ggml_time_us();
  14110. // Compute the cumulative probabilities
  14111. float cum_sum = 0.0f;
  14112. size_t last_idx = candidates->size;
  14113. for (size_t i = 0; i < candidates->size; ++i) {
  14114. cum_sum += candidates->data[i].p;
  14115. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  14116. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  14117. if (cum_sum >= p && i + 1 >= min_keep) {
  14118. last_idx = i + 1;
  14119. break;
  14120. }
  14121. }
  14122. // Resize the output vector to keep only the top-p tokens
  14123. candidates->size = last_idx;
  14124. if (ctx) {
  14125. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14126. }
  14127. }
  14128. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  14129. if (p <= 0.0f || !candidates->size) {
  14130. return;
  14131. }
  14132. const int64_t t_start_sample_us = ggml_time_us();
  14133. bool min_p_applied = false;
  14134. // if the candidates aren't sorted, try the unsorted implementation first
  14135. if (!candidates->sorted) {
  14136. std::vector<llama_token_data> filtered_tokens;
  14137. float max_logit = -FLT_MAX;
  14138. for (size_t i = 0; i < candidates->size; ++i) {
  14139. max_logit = std::max(max_logit, candidates->data[i].logit);
  14140. }
  14141. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  14142. for (size_t i = 0; i < candidates->size; ++i) {
  14143. if (candidates->data[i].logit >= min_logit) {
  14144. filtered_tokens.push_back(candidates->data[i]);
  14145. }
  14146. }
  14147. // if we have enough values the operation was a success
  14148. if (filtered_tokens.size() >= min_keep) {
  14149. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  14150. candidates->size = filtered_tokens.size();
  14151. min_p_applied = true;
  14152. }
  14153. }
  14154. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  14155. if (!min_p_applied) {
  14156. // Sort the logits in descending order
  14157. if (!candidates->sorted) {
  14158. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  14159. return a.logit > b.logit;
  14160. });
  14161. candidates->sorted = true;
  14162. }
  14163. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  14164. size_t i = 1; // first token always matches
  14165. for (; i < candidates->size; ++i) {
  14166. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  14167. break; // prob too small
  14168. }
  14169. }
  14170. // Resize the output vector to keep only the matching tokens
  14171. candidates->size = i;
  14172. }
  14173. if (ctx) {
  14174. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14175. }
  14176. }
  14177. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  14178. if (z >= 1.0f || candidates->size <= 2) {
  14179. return;
  14180. }
  14181. llama_sample_softmax(nullptr, candidates);
  14182. const int64_t t_start_sample_us = ggml_time_us();
  14183. // Compute the first and second derivatives
  14184. std::vector<float> first_derivatives(candidates->size - 1);
  14185. std::vector<float> second_derivatives(candidates->size - 2);
  14186. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  14187. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  14188. }
  14189. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  14190. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  14191. }
  14192. // Calculate absolute value of second derivatives
  14193. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  14194. second_derivatives[i] = std::abs(second_derivatives[i]);
  14195. }
  14196. // Normalize the second derivatives
  14197. {
  14198. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  14199. if (second_derivatives_sum > 1e-6f) {
  14200. for (float & value : second_derivatives) {
  14201. value /= second_derivatives_sum;
  14202. }
  14203. } else {
  14204. for (float & value : second_derivatives) {
  14205. value = 1.0f / second_derivatives.size();
  14206. }
  14207. }
  14208. }
  14209. float cum_sum = 0.0f;
  14210. size_t last_idx = candidates->size;
  14211. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  14212. cum_sum += second_derivatives[i];
  14213. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  14214. if (cum_sum > z && i >= min_keep) {
  14215. last_idx = i;
  14216. break;
  14217. }
  14218. }
  14219. // Resize the output vector to keep only the tokens above the tail location
  14220. candidates->size = last_idx;
  14221. if (ctx) {
  14222. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14223. }
  14224. }
  14225. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  14226. // Reference implementation:
  14227. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  14228. if (p >= 1.0f) {
  14229. return;
  14230. }
  14231. // Compute the softmax of logits and calculate entropy
  14232. llama_sample_softmax(nullptr, candidates);
  14233. const int64_t t_start_sample_us = ggml_time_us();
  14234. float entropy = 0.0f;
  14235. for (size_t i = 0; i < candidates->size; ++i) {
  14236. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  14237. }
  14238. // Compute the absolute difference between negative log probability and entropy for each candidate
  14239. std::vector<float> shifted_scores;
  14240. for (size_t i = 0; i < candidates->size; ++i) {
  14241. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  14242. shifted_scores.push_back(shifted_score);
  14243. }
  14244. // Sort tokens based on the shifted_scores and their corresponding indices
  14245. std::vector<size_t> indices(candidates->size);
  14246. std::iota(indices.begin(), indices.end(), 0);
  14247. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  14248. return shifted_scores[a] < shifted_scores[b];
  14249. });
  14250. // Compute the cumulative probabilities
  14251. float cum_sum = 0.0f;
  14252. size_t last_idx = indices.size();
  14253. for (size_t i = 0; i < indices.size(); ++i) {
  14254. size_t idx = indices[i];
  14255. cum_sum += candidates->data[idx].p;
  14256. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  14257. if (cum_sum > p && i >= min_keep - 1) {
  14258. last_idx = i + 1;
  14259. break;
  14260. }
  14261. }
  14262. // Resize the output vector to keep only the locally typical tokens
  14263. std::vector<llama_token_data> new_candidates;
  14264. for (size_t i = 0; i < last_idx; ++i) {
  14265. size_t idx = indices[i];
  14266. new_candidates.push_back(candidates->data[idx]);
  14267. }
  14268. // Replace the data in candidates with the new_candidates data
  14269. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  14270. candidates->size = new_candidates.size();
  14271. candidates->sorted = false;
  14272. if (ctx) {
  14273. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14274. }
  14275. }
  14276. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  14277. const int64_t t_start_sample_us = ggml_time_us();
  14278. // no need to do anything if there is only one (or zero) candidates
  14279. if(candidates_p->size <= 1) {
  14280. return;
  14281. }
  14282. // Calculate maximum possible entropy
  14283. float max_entropy = -logf(1.0f / candidates_p->size);
  14284. llama_sample_softmax(nullptr, candidates_p);
  14285. // Calculate entropy of the softmax probabilities
  14286. float entropy = 0.0f;
  14287. for (size_t i = 0; i < candidates_p->size; ++i) {
  14288. float prob = candidates_p->data[i].p;
  14289. if (prob > 0.0f) { // Ensure no log(0)
  14290. entropy -= prob * logf(prob);
  14291. }
  14292. }
  14293. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  14294. float normalized_entropy = entropy / max_entropy;
  14295. // Map the normalized entropy to the desired temperature range using the power function
  14296. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  14297. #ifdef DEBUG
  14298. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  14299. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  14300. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  14301. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  14302. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  14303. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  14304. #endif
  14305. // Apply the dynamically calculated temperature scaling
  14306. for (size_t i = 0; i < candidates_p->size; ++i) {
  14307. candidates_p->data[i].logit /= dyn_temp;
  14308. }
  14309. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  14310. double max_l_double = candidates_p->data[0].logit;
  14311. double cum_sum_double = 0.0;
  14312. for (size_t i = 0; i < candidates_p->size; ++i) {
  14313. double p = exp(candidates_p->data[i].logit - max_l_double);
  14314. candidates_p->data[i].p = p; // Store the scaled probability
  14315. cum_sum_double += p;
  14316. }
  14317. for (size_t i = 0; i < candidates_p->size; ++i) {
  14318. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  14319. }
  14320. #ifdef DEBUG
  14321. // Print the updated top 25 probabilities after temperature scaling
  14322. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  14323. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  14324. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  14325. }
  14326. #endif
  14327. if (ctx) {
  14328. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14329. }
  14330. }
  14331. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  14332. const int64_t t_start_sample_us = ggml_time_us();
  14333. for (size_t i = 0; i < candidates_p->size; ++i) {
  14334. candidates_p->data[i].logit /= temp;
  14335. }
  14336. if (ctx) {
  14337. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14338. }
  14339. }
  14340. void llama_sample_repetition_penalties(
  14341. struct llama_context * ctx,
  14342. llama_token_data_array * candidates,
  14343. const llama_token * last_tokens,
  14344. size_t penalty_last_n,
  14345. float penalty_repeat,
  14346. float penalty_freq,
  14347. float penalty_present) {
  14348. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  14349. return;
  14350. }
  14351. const int64_t t_start_sample_us = ggml_time_us();
  14352. // Create a frequency map to count occurrences of each token in last_tokens
  14353. std::unordered_map<llama_token, int> token_count;
  14354. for (size_t i = 0; i < penalty_last_n; ++i) {
  14355. token_count[last_tokens[i]]++;
  14356. }
  14357. // Apply frequency and presence penalties to the candidates
  14358. for (size_t i = 0; i < candidates->size; ++i) {
  14359. const auto token_iter = token_count.find(candidates->data[i].id);
  14360. if (token_iter == token_count.end()) {
  14361. continue;
  14362. }
  14363. const int count = token_iter->second;
  14364. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  14365. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  14366. if (candidates->data[i].logit <= 0) {
  14367. candidates->data[i].logit *= penalty_repeat;
  14368. } else {
  14369. candidates->data[i].logit /= penalty_repeat;
  14370. }
  14371. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  14372. }
  14373. candidates->sorted = false;
  14374. if (ctx) {
  14375. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14376. }
  14377. }
  14378. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  14379. GGML_ASSERT(ctx);
  14380. int64_t t_start_sample_us = ggml_time_us();
  14381. bool allow_eog = false;
  14382. for (const auto & stack : grammar->stacks) {
  14383. if (stack.empty()) {
  14384. allow_eog = true;
  14385. break;
  14386. }
  14387. }
  14388. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  14389. candidates_decoded.reserve(candidates->size);
  14390. std::vector<llama_grammar_candidate> candidates_grammar;
  14391. candidates_grammar.reserve(candidates->size);
  14392. for (size_t i = 0; i < candidates->size; ++i) {
  14393. const llama_token id = candidates->data[i].id;
  14394. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  14395. if (llama_token_is_eog(&ctx->model, id)) {
  14396. if (!allow_eog) {
  14397. candidates->data[i].logit = -INFINITY;
  14398. }
  14399. } else if (piece.empty() || piece[0] == 0) {
  14400. candidates->data[i].logit = -INFINITY;
  14401. } else {
  14402. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  14403. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  14404. }
  14405. }
  14406. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  14407. for (const auto & reject : rejects) {
  14408. candidates->data[reject.index].logit = -INFINITY;
  14409. }
  14410. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14411. }
  14412. static void llama_log_softmax(float * array, size_t size) {
  14413. float max_l = *std::max_element(array, array + size);
  14414. float sum = 0.f;
  14415. for (size_t i = 0; i < size; ++i) {
  14416. float p = expf(array[i] - max_l);
  14417. sum += p;
  14418. array[i] = p;
  14419. }
  14420. for (size_t i = 0; i < size; ++i) {
  14421. array[i] = logf(array[i] / sum);
  14422. }
  14423. }
  14424. void llama_sample_apply_guidance(
  14425. struct llama_context * ctx,
  14426. float * logits,
  14427. float * logits_guidance,
  14428. float scale) {
  14429. GGML_ASSERT(ctx);
  14430. const auto t_start_sample_us = ggml_time_us();
  14431. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  14432. llama_log_softmax(logits, n_vocab);
  14433. llama_log_softmax(logits_guidance, n_vocab);
  14434. for (int i = 0; i < n_vocab; ++i) {
  14435. auto & l = logits[i];
  14436. const auto & g = logits_guidance[i];
  14437. l = scale * (l - g) + g;
  14438. }
  14439. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14440. }
  14441. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  14442. GGML_ASSERT(ctx);
  14443. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  14444. int64_t t_start_sample_us;
  14445. t_start_sample_us = ggml_time_us();
  14446. llama_sample_softmax(nullptr, candidates);
  14447. // Estimate s_hat using the most probable m tokens
  14448. float s_hat = 0.0;
  14449. float sum_ti_bi = 0.0;
  14450. float sum_ti_sq = 0.0;
  14451. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  14452. float t_i = logf(float(i + 2) / float(i + 1));
  14453. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  14454. sum_ti_bi += t_i * b_i;
  14455. sum_ti_sq += t_i * t_i;
  14456. }
  14457. s_hat = sum_ti_bi / sum_ti_sq;
  14458. // Compute k from the estimated s_hat and target surprise value
  14459. float epsilon_hat = s_hat - 1;
  14460. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  14461. // Sample the next word X using top-k sampling
  14462. llama_sample_top_k(nullptr, candidates, int(k), 1);
  14463. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14464. llama_token X = llama_sample_token(ctx, candidates);
  14465. t_start_sample_us = ggml_time_us();
  14466. // Compute error as the difference between observed surprise and target surprise value
  14467. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  14468. return candidate.id == X;
  14469. }));
  14470. float observed_surprise = -log2f(candidates->data[X_idx].p);
  14471. float e = observed_surprise - tau;
  14472. // Update mu using the learning rate and error
  14473. *mu = *mu - eta * e;
  14474. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14475. return X;
  14476. }
  14477. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  14478. int64_t t_start_sample_us;
  14479. t_start_sample_us = ggml_time_us();
  14480. llama_sample_softmax(ctx, candidates);
  14481. // Truncate the words with surprise values greater than mu
  14482. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  14483. return -log2f(candidate.p) > *mu;
  14484. }));
  14485. if (candidates->size == 0) {
  14486. candidates->size = 1;
  14487. }
  14488. if (ctx) {
  14489. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14490. }
  14491. // Normalize the probabilities of the remaining words
  14492. llama_sample_softmax(ctx, candidates);
  14493. // Sample the next word X from the remaining words
  14494. llama_token X = llama_sample_token(ctx, candidates);
  14495. t_start_sample_us = ggml_time_us();
  14496. // Compute error as the difference between observed surprise and target surprise value
  14497. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  14498. return candidate.id == X;
  14499. }));
  14500. float observed_surprise = -log2f(candidates->data[X_idx].p);
  14501. float e = observed_surprise - tau;
  14502. // Update mu using the learning rate and error
  14503. *mu = *mu - eta * e;
  14504. if (ctx) {
  14505. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14506. }
  14507. return X;
  14508. }
  14509. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  14510. const int64_t t_start_sample_us = ggml_time_us();
  14511. // Find max element
  14512. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  14513. return a.logit < b.logit;
  14514. });
  14515. llama_token result = max_iter->id;
  14516. if (ctx) {
  14517. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14518. ctx->n_sample++;
  14519. }
  14520. return result;
  14521. }
  14522. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  14523. GGML_ASSERT(ctx);
  14524. const int64_t t_start_sample_us = ggml_time_us();
  14525. llama_sample_softmax(nullptr, candidates);
  14526. std::vector<float> probs;
  14527. probs.reserve(candidates->size);
  14528. for (size_t i = 0; i < candidates->size; ++i) {
  14529. probs.push_back(candidates->data[i].p);
  14530. }
  14531. std::discrete_distribution<> dist(probs.begin(), probs.end());
  14532. int idx = dist(rng);
  14533. llama_token result = candidates->data[idx].id;
  14534. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14535. ctx->n_sample++;
  14536. return result;
  14537. }
  14538. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  14539. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  14540. }
  14541. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  14542. const int64_t t_start_sample_us = ggml_time_us();
  14543. if (llama_token_is_eog(&ctx->model, token)) {
  14544. for (const auto & stack : grammar->stacks) {
  14545. if (stack.empty()) {
  14546. return;
  14547. }
  14548. }
  14549. GGML_ASSERT(false);
  14550. }
  14551. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  14552. // Note terminating 0 in decoded string
  14553. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  14554. const auto & code_points = decoded.first;
  14555. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  14556. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  14557. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  14558. grammar->stacks = tmp_new_stacks;
  14559. }
  14560. grammar->partial_utf8 = decoded.second;
  14561. GGML_ASSERT(!grammar->stacks.empty());
  14562. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  14563. }
  14564. //
  14565. // quantization
  14566. //
  14567. struct quantize_state_internal {
  14568. const llama_model & model;
  14569. const llama_model_quantize_params * params;
  14570. int n_attention_wv = 0;
  14571. int n_ffn_down = 0;
  14572. int n_ffn_gate = 0;
  14573. int n_ffn_up = 0;
  14574. int i_attention_wv = 0;
  14575. int i_ffn_down = 0;
  14576. int i_ffn_gate = 0;
  14577. int i_ffn_up = 0;
  14578. int n_k_quantized = 0;
  14579. int n_fallback = 0;
  14580. bool has_imatrix = false;
  14581. // used to figure out if a model shares tok_embd with the output weight
  14582. bool has_output = false;
  14583. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  14584. : model(model)
  14585. , params(params)
  14586. {}
  14587. };
  14588. static void llama_tensor_dequantize_internal(
  14589. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  14590. const size_t nelements, const int nthread
  14591. ) {
  14592. if (output.size() < nelements) {
  14593. output.resize(nelements);
  14594. }
  14595. float * f32_output = (float *) output.data();
  14596. ggml_type_traits_t qtype;
  14597. if (ggml_is_quantized(tensor->type)) {
  14598. qtype = ggml_internal_get_type_traits(tensor->type);
  14599. if (qtype.to_float == NULL) {
  14600. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  14601. }
  14602. } else if (tensor->type != GGML_TYPE_F16 &&
  14603. tensor->type != GGML_TYPE_BF16) {
  14604. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  14605. }
  14606. if (nthread < 2) {
  14607. if (tensor->type == GGML_TYPE_F16) {
  14608. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  14609. } else if (tensor->type == GGML_TYPE_BF16) {
  14610. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  14611. } else if (ggml_is_quantized(tensor->type)) {
  14612. qtype.to_float(tensor->data, f32_output, nelements);
  14613. } else {
  14614. GGML_ASSERT(false); // unreachable
  14615. }
  14616. return;
  14617. }
  14618. size_t block_size;
  14619. if (tensor->type == GGML_TYPE_F16 ||
  14620. tensor->type == GGML_TYPE_BF16) {
  14621. block_size = 1;
  14622. } else {
  14623. block_size = (size_t)ggml_blck_size(tensor->type);
  14624. }
  14625. size_t block_size_bytes = ggml_type_size(tensor->type);
  14626. GGML_ASSERT(nelements % block_size == 0);
  14627. size_t nblocks = nelements / block_size;
  14628. size_t blocks_per_thread = nblocks / nthread;
  14629. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  14630. size_t in_buff_offs = 0;
  14631. size_t out_buff_offs = 0;
  14632. for (int tnum = 0; tnum < nthread; tnum++) {
  14633. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  14634. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  14635. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  14636. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  14637. if (typ == GGML_TYPE_F16) {
  14638. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  14639. } else if (typ == GGML_TYPE_BF16) {
  14640. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  14641. } else {
  14642. qtype.to_float(inbuf, outbuf, nels);
  14643. }
  14644. };
  14645. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  14646. in_buff_offs += thr_block_bytes;
  14647. out_buff_offs += thr_elems;
  14648. }
  14649. for (auto & w : workers) { w.join(); }
  14650. workers.clear();
  14651. }
  14652. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  14653. const std::string name = ggml_get_name(tensor);
  14654. // TODO: avoid hardcoded tensor names - use the TN_* constants
  14655. const llm_arch arch = qs.model.arch;
  14656. const auto tn = LLM_TN(arch);
  14657. auto use_more_bits = [](int i_layer, int n_layers) -> bool {
  14658. return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
  14659. };
  14660. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  14661. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  14662. if (n_expert > 1) {
  14663. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  14664. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  14665. // for getting the current layer as I initially thought, and we need to resort to parsing the
  14666. // tensor name.
  14667. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  14668. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  14669. }
  14670. if (i_layer < 0 || i_layer >= n_layer) {
  14671. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  14672. }
  14673. }
  14674. return std::make_pair(i_layer, n_layer);
  14675. };
  14676. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  14677. // with the quantization of the output tensor
  14678. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  14679. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  14680. new_type = qs.params->output_tensor_type;
  14681. } else {
  14682. int nx = tensor->ne[0];
  14683. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  14684. new_type = GGML_TYPE_Q8_0;
  14685. }
  14686. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  14687. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  14688. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  14689. new_type = GGML_TYPE_Q5_K;
  14690. }
  14691. else if (new_type != GGML_TYPE_Q8_0) {
  14692. new_type = GGML_TYPE_Q6_K;
  14693. }
  14694. }
  14695. } else if (name == "token_embd.weight") {
  14696. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  14697. new_type = qs.params->token_embedding_type;
  14698. } else {
  14699. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  14700. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  14701. new_type = GGML_TYPE_Q2_K;
  14702. }
  14703. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  14704. new_type = GGML_TYPE_IQ3_S;
  14705. }
  14706. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14707. new_type = GGML_TYPE_IQ3_S;
  14708. }
  14709. else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
  14710. new_type == GGML_TYPE_Q4_0_8_8) {
  14711. new_type = GGML_TYPE_Q4_0;
  14712. }
  14713. }
  14714. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  14715. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  14716. if (name.find("attn_v.weight") != std::string::npos) {
  14717. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  14718. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  14719. ++qs.i_attention_wv;
  14720. }
  14721. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  14722. new_type = GGML_TYPE_Q4_K;
  14723. }
  14724. else if (name.find("ffn_down") != std::string::npos) {
  14725. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  14726. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  14727. }
  14728. ++qs.i_ffn_down;
  14729. }
  14730. else if (name.find("attn_output.weight") != std::string::npos) {
  14731. if (qs.model.hparams.n_expert == 8) {
  14732. new_type = GGML_TYPE_Q5_K;
  14733. } else {
  14734. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  14735. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  14736. }
  14737. }
  14738. } else if (name.find("attn_v.weight") != std::string::npos) {
  14739. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  14740. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  14741. }
  14742. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  14743. new_type = GGML_TYPE_Q4_K;
  14744. }
  14745. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14746. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  14747. }
  14748. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  14749. new_type = GGML_TYPE_Q4_K;
  14750. }
  14751. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  14752. new_type = GGML_TYPE_Q4_K;
  14753. }
  14754. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  14755. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  14756. }
  14757. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  14758. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  14759. new_type = GGML_TYPE_Q5_K;
  14760. }
  14761. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  14762. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  14763. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  14764. if (qs.model.type == MODEL_70B) {
  14765. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  14766. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  14767. // nearly negligible increase in model size by quantizing this tensor with more bits:
  14768. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  14769. }
  14770. if (qs.model.hparams.n_expert == 8) {
  14771. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  14772. // TODO: explore better strategies
  14773. new_type = GGML_TYPE_Q8_0;
  14774. }
  14775. ++qs.i_attention_wv;
  14776. } else if (name.find("attn_k.weight") != std::string::npos) {
  14777. if (qs.model.hparams.n_expert == 8) {
  14778. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  14779. // TODO: explore better strategies
  14780. new_type = GGML_TYPE_Q8_0;
  14781. }
  14782. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  14783. new_type = GGML_TYPE_IQ3_XXS;
  14784. }
  14785. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14786. new_type = GGML_TYPE_IQ2_S;
  14787. }
  14788. } else if (name.find("attn_q.weight") != std::string::npos) {
  14789. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  14790. new_type = GGML_TYPE_IQ3_XXS;
  14791. }
  14792. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  14793. new_type = GGML_TYPE_IQ2_S;
  14794. }
  14795. } else if (name.find("ffn_down") != std::string::npos) {
  14796. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  14797. int i_layer = info.first, n_layer = info.second;
  14798. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  14799. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  14800. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  14801. }
  14802. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  14803. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  14804. }
  14805. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  14806. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  14807. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  14808. : GGML_TYPE_Q3_K;
  14809. }
  14810. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  14811. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  14812. new_type = GGML_TYPE_Q4_K;
  14813. }
  14814. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  14815. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  14816. }
  14817. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  14818. if (arch == LLM_ARCH_FALCON) {
  14819. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  14820. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  14821. } else {
  14822. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  14823. }
  14824. }
  14825. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  14826. new_type = GGML_TYPE_Q5_K;
  14827. }
  14828. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  14829. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  14830. new_type = GGML_TYPE_Q5_K;
  14831. }
  14832. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  14833. && qs.has_imatrix && i_layer < n_layer/8) {
  14834. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  14835. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  14836. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  14837. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  14838. }
  14839. ++qs.i_ffn_down;
  14840. } else if (name.find("attn_output.weight") != std::string::npos) {
  14841. if (arch != LLM_ARCH_FALCON) {
  14842. if (qs.model.hparams.n_expert == 8) {
  14843. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  14844. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  14845. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  14846. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  14847. new_type = GGML_TYPE_Q5_K;
  14848. }
  14849. } else {
  14850. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  14851. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  14852. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  14853. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  14854. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  14855. }
  14856. } else {
  14857. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  14858. }
  14859. }
  14860. else if (name.find("attn_qkv.weight") != std::string::npos) {
  14861. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  14862. new_type = GGML_TYPE_Q4_K;
  14863. }
  14864. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  14865. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  14866. }
  14867. else if (name.find("ffn_gate") != std::string::npos) {
  14868. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  14869. int i_layer = info.first, n_layer = info.second;
  14870. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  14871. new_type = GGML_TYPE_IQ3_XXS;
  14872. }
  14873. ++qs.i_ffn_gate;
  14874. }
  14875. else if (name.find("ffn_up") != std::string::npos) {
  14876. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  14877. int i_layer = info.first, n_layer = info.second;
  14878. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  14879. new_type = GGML_TYPE_IQ3_XXS;
  14880. }
  14881. ++qs.i_ffn_up;
  14882. }
  14883. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  14884. //}
  14885. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  14886. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  14887. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  14888. //}
  14889. // This can be used to reduce the size of the Q5_K_S model.
  14890. // The associated PPL increase is fully in line with the size reduction
  14891. //else {
  14892. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  14893. //}
  14894. bool convert_incompatible_tensor = false;
  14895. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  14896. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  14897. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  14898. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  14899. new_type == GGML_TYPE_IQ1_M) {
  14900. int nx = tensor->ne[0];
  14901. int ny = tensor->ne[1];
  14902. if (nx % QK_K != 0) {
  14903. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  14904. convert_incompatible_tensor = true;
  14905. } else {
  14906. ++qs.n_k_quantized;
  14907. }
  14908. }
  14909. if (convert_incompatible_tensor) {
  14910. switch (new_type) {
  14911. case GGML_TYPE_IQ2_XXS:
  14912. case GGML_TYPE_IQ2_XS:
  14913. case GGML_TYPE_IQ2_S:
  14914. case GGML_TYPE_IQ3_XXS:
  14915. case GGML_TYPE_IQ3_S:
  14916. case GGML_TYPE_IQ1_S:
  14917. case GGML_TYPE_IQ1_M:
  14918. case GGML_TYPE_Q2_K:
  14919. case GGML_TYPE_Q3_K:
  14920. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  14921. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  14922. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  14923. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  14924. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  14925. }
  14926. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  14927. ++qs.n_fallback;
  14928. }
  14929. return new_type;
  14930. }
  14931. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  14932. if (nthread < 2) {
  14933. // single-thread
  14934. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  14935. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  14936. throw std::runtime_error("quantized data validation failed");
  14937. }
  14938. return new_size;
  14939. }
  14940. std::mutex mutex;
  14941. int64_t counter = 0;
  14942. size_t new_size = 0;
  14943. bool valid = true;
  14944. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  14945. nrows, n_per_row, imatrix]() {
  14946. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  14947. size_t local_size = 0;
  14948. while (true) {
  14949. std::unique_lock<std::mutex> lock(mutex);
  14950. int64_t first_row = counter; counter += nrows_per_chunk;
  14951. if (first_row >= nrows) {
  14952. if (local_size > 0) {
  14953. new_size += local_size;
  14954. }
  14955. break;
  14956. }
  14957. lock.unlock();
  14958. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  14959. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  14960. local_size += this_size;
  14961. // validate the quantized data
  14962. const size_t row_size = ggml_row_size(new_type, n_per_row);
  14963. void * this_data = (char *) new_data + first_row * row_size;
  14964. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  14965. std::unique_lock<std::mutex> lock(mutex);
  14966. valid = false;
  14967. break;
  14968. }
  14969. }
  14970. };
  14971. for (int it = 0; it < nthread - 1; ++it) {
  14972. workers.emplace_back(compute);
  14973. }
  14974. compute();
  14975. for (auto & w : workers) { w.join(); }
  14976. workers.clear();
  14977. if (!valid) {
  14978. throw std::runtime_error("quantized data validation failed");
  14979. }
  14980. return new_size;
  14981. }
  14982. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  14983. ggml_type default_type;
  14984. llama_ftype ftype = params->ftype;
  14985. switch (params->ftype) {
  14986. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  14987. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  14988. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  14989. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  14990. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  14991. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  14992. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  14993. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  14994. // K-quants
  14995. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  14996. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  14997. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  14998. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  14999. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  15000. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  15001. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  15002. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  15003. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  15004. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  15005. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  15006. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  15007. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  15008. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  15009. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  15010. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  15011. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  15012. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  15013. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  15014. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  15015. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  15016. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  15017. case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
  15018. case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
  15019. case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
  15020. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  15021. }
  15022. int nthread = params->nthread;
  15023. if (nthread <= 0) {
  15024. nthread = std::thread::hardware_concurrency();
  15025. }
  15026. // mmap consistently increases speed Linux, and also increases speed on Windows with
  15027. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  15028. #if defined(__linux__) || defined(_WIN32)
  15029. constexpr bool use_mmap = true;
  15030. #else
  15031. constexpr bool use_mmap = false;
  15032. #endif
  15033. llama_model_kv_override * kv_overrides = nullptr;
  15034. if (params->kv_overrides) {
  15035. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  15036. kv_overrides = v->data();
  15037. }
  15038. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  15039. ml.init_mappings(false); // no prefetching
  15040. llama_model model;
  15041. llm_load_arch(ml, model);
  15042. llm_load_hparams(ml, model);
  15043. struct quantize_state_internal qs(model, params);
  15044. if (params->only_copy) {
  15045. ftype = model.ftype;
  15046. }
  15047. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  15048. if (params->imatrix) {
  15049. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  15050. if (imatrix_data) {
  15051. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  15052. qs.has_imatrix = true;
  15053. // check imatrix for nans or infs
  15054. for (const auto & kv : *imatrix_data) {
  15055. for (float f : kv.second) {
  15056. if (!std::isfinite(f)) {
  15057. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  15058. }
  15059. }
  15060. }
  15061. }
  15062. }
  15063. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  15064. struct gguf_context * ctx_out = gguf_init_empty();
  15065. // copy the KV pairs from the input file
  15066. gguf_set_kv (ctx_out, ml.meta);
  15067. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  15068. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  15069. // Remove split metadata
  15070. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  15071. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  15072. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  15073. if (params->kv_overrides) {
  15074. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  15075. for (auto & o : overrides) {
  15076. if (o.key[0] == 0) break;
  15077. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  15078. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  15079. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  15080. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  15081. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  15082. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  15083. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  15084. gguf_set_val_str(ctx_out, o.key, o.val_str);
  15085. } else {
  15086. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  15087. }
  15088. }
  15089. }
  15090. for (int i = 0; i < ml.n_tensors; ++i) {
  15091. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  15092. const std::string name = ggml_get_name(meta);
  15093. // TODO: avoid hardcoded tensor names - use the TN_* constants
  15094. if (name.find("attn_v.weight") != std::string::npos ||
  15095. name.find("attn_qkv.weight") != std::string::npos) {
  15096. ++qs.n_attention_wv;
  15097. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  15098. qs.has_output = true;
  15099. }
  15100. }
  15101. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  15102. // sanity checks
  15103. //
  15104. // - qs.n_attention_wv == 0 for Mamba models
  15105. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  15106. // - qs.n_attention_wv == 3 * model.hparams.n_layer for Encoder-Decoder models
  15107. //
  15108. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer || qs.n_attention_wv == 3 * (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  15109. size_t total_size_org = 0;
  15110. size_t total_size_new = 0;
  15111. std::vector<std::thread> workers;
  15112. workers.reserve(nthread);
  15113. int idx = 0;
  15114. std::vector<no_init<uint8_t>> read_data;
  15115. std::vector<no_init<uint8_t>> work;
  15116. std::vector<no_init<float>> f32_conv_buf;
  15117. uint16_t n_split = 1;
  15118. // Assume split index is continuous
  15119. if (params->keep_split) {
  15120. for (int i = 0; i < ml.n_tensors; ++i) {
  15121. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  15122. }
  15123. }
  15124. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  15125. ctx_outs[0] = ctx_out;
  15126. // populate the original tensors so we get an initial meta data
  15127. for (int i = 0; i < ml.n_tensors; ++i) {
  15128. auto weight = ml.get_weight(i);
  15129. uint16_t i_split = params->keep_split ? weight->idx : 0;
  15130. struct ggml_tensor * tensor = weight->tensor;
  15131. if (ctx_outs[i_split] == NULL) {
  15132. ctx_outs[i_split] = gguf_init_empty();
  15133. }
  15134. gguf_add_tensor(ctx_outs[i_split], tensor);
  15135. }
  15136. // Set split info if needed
  15137. if (n_split > 1) {
  15138. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  15139. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  15140. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  15141. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  15142. }
  15143. }
  15144. int cur_split = -1;
  15145. std::ofstream fout;
  15146. auto close_ofstream = [&]() {
  15147. // Write metadata and close file handler
  15148. if (fout.is_open()) {
  15149. fout.seekp(0);
  15150. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  15151. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  15152. fout.write((const char *) data.data(), data.size());
  15153. fout.close();
  15154. }
  15155. };
  15156. auto new_ofstream = [&](int index) {
  15157. cur_split = index;
  15158. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  15159. std::string fname = fname_out;
  15160. if (params->keep_split) {
  15161. char split_path[PATH_MAX] = {0};
  15162. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  15163. fname = std::string(split_path);
  15164. }
  15165. fout = std::ofstream(fname, std::ios::binary);
  15166. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  15167. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  15168. // placeholder for the meta data
  15169. ::zeros(fout, meta_size);
  15170. };
  15171. const auto tn = LLM_TN(model.arch);
  15172. new_ofstream(0);
  15173. for (int i = 0; i < ml.n_tensors; ++i) {
  15174. auto weight = ml.get_weight(i);
  15175. struct ggml_tensor * tensor = weight->tensor;
  15176. if (weight->idx != cur_split && params->keep_split) {
  15177. close_ofstream();
  15178. new_ofstream(weight->idx);
  15179. }
  15180. const std::string name = ggml_get_name(tensor);
  15181. if (!ml.use_mmap) {
  15182. if (read_data.size() < ggml_nbytes(tensor)) {
  15183. read_data.resize(ggml_nbytes(tensor));
  15184. }
  15185. tensor->data = read_data.data();
  15186. }
  15187. ml.load_data_for(tensor);
  15188. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  15189. ++idx, ml.n_tensors,
  15190. ggml_get_name(tensor),
  15191. llama_format_tensor_shape(tensor).c_str(),
  15192. ggml_type_name(tensor->type));
  15193. // This used to be a regex, but <regex> has an extreme cost to compile times.
  15194. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  15195. // quantize only 2D and 3D tensors (experts)
  15196. quantize &= (ggml_n_dims(tensor) >= 2);
  15197. // do not quantize norm tensors
  15198. quantize &= name.find("_norm.weight") == std::string::npos;
  15199. quantize &= params->quantize_output_tensor || name != "output.weight";
  15200. quantize &= !params->only_copy;
  15201. // do not quantize expert gating tensors
  15202. // NOTE: can't use LLM_TN here because the layer number is not known
  15203. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  15204. // do not quantize positional embeddings and token types (BERT)
  15205. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  15206. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  15207. // do not quantize Mamba's small yet 2D weights
  15208. // NOTE: can't use LLM_TN here because the layer number is not known
  15209. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  15210. quantize &= name.find("ssm_x.weight") == std::string::npos;
  15211. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  15212. // do not quantize relative position bias (T5)
  15213. quantize &= name.find("attn_rel_b.weight") == std::string::npos;
  15214. enum ggml_type new_type;
  15215. void * new_data;
  15216. size_t new_size;
  15217. if (quantize) {
  15218. new_type = default_type;
  15219. // get more optimal quantization type based on the tensor shape, layer, etc.
  15220. if (!params->pure && ggml_is_quantized(default_type)) {
  15221. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  15222. }
  15223. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  15224. new_type = params->token_embedding_type;
  15225. }
  15226. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  15227. new_type = params->output_tensor_type;
  15228. }
  15229. // If we've decided to quantize to the same type the tensor is already
  15230. // in then there's nothing to do.
  15231. quantize = tensor->type != new_type;
  15232. }
  15233. if (!quantize) {
  15234. new_type = tensor->type;
  15235. new_data = tensor->data;
  15236. new_size = ggml_nbytes(tensor);
  15237. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  15238. } else {
  15239. const int64_t nelements = ggml_nelements(tensor);
  15240. const float * imatrix = nullptr;
  15241. if (imatrix_data) {
  15242. auto it = imatrix_data->find(tensor->name);
  15243. if (it == imatrix_data->end()) {
  15244. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  15245. } else {
  15246. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  15247. imatrix = it->second.data();
  15248. } else {
  15249. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  15250. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  15251. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  15252. // this is a significant error and it may be good idea to abort the process if this happens,
  15253. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  15254. // tok_embd should be ignored in this case, since it always causes this warning
  15255. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  15256. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  15257. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  15258. }
  15259. }
  15260. }
  15261. }
  15262. if ((new_type == GGML_TYPE_IQ2_XXS ||
  15263. new_type == GGML_TYPE_IQ2_XS ||
  15264. new_type == GGML_TYPE_IQ2_S ||
  15265. new_type == GGML_TYPE_IQ1_S ||
  15266. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  15267. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  15268. LLAMA_LOG_ERROR("\n\n============================================================\n");
  15269. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  15270. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  15271. LLAMA_LOG_ERROR("============================================================\n\n");
  15272. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  15273. }
  15274. float * f32_data;
  15275. if (tensor->type == GGML_TYPE_F32) {
  15276. f32_data = (float *) tensor->data;
  15277. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  15278. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  15279. } else {
  15280. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  15281. f32_data = (float *) f32_conv_buf.data();
  15282. }
  15283. int chunk_size_multiplier = 1;
  15284. if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
  15285. if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
  15286. else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
  15287. if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
  15288. else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
  15289. }
  15290. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  15291. fflush(stdout);
  15292. if (work.size() < (size_t)nelements * 4) {
  15293. work.resize(nelements * 4); // upper bound on size
  15294. }
  15295. new_data = work.data();
  15296. const int64_t n_per_row = tensor->ne[0];
  15297. const int64_t nrows = tensor->ne[1];
  15298. static const int64_t min_chunk_size = 32 * 512;
  15299. const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
  15300. chunk_size_multiplier;
  15301. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  15302. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  15303. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  15304. // quantize each expert separately since they have different importance matrices
  15305. new_size = 0;
  15306. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  15307. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  15308. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  15309. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  15310. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  15311. }
  15312. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  15313. }
  15314. total_size_org += ggml_nbytes(tensor);
  15315. total_size_new += new_size;
  15316. // update the gguf meta data as we go
  15317. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  15318. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  15319. // write tensor data + padding
  15320. fout.write((const char *) new_data, new_size);
  15321. zeros(fout, GGML_PAD(new_size, align) - new_size);
  15322. }
  15323. close_ofstream();
  15324. for (auto & c:ctx_outs) {
  15325. gguf_free(c);
  15326. }
  15327. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  15328. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  15329. if (qs.n_fallback > 0) {
  15330. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  15331. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  15332. }
  15333. }
  15334. static int llama_apply_lora_from_file_internal(
  15335. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  15336. ) {
  15337. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  15338. const int64_t t_start_lora_us = ggml_time_us();
  15339. llama_file fin(path_lora, "rb");
  15340. // verify magic and version
  15341. {
  15342. uint32_t magic = fin.read_u32();
  15343. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  15344. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  15345. return 1;
  15346. }
  15347. uint32_t format_version = fin.read_u32();
  15348. if (format_version != 1) {
  15349. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  15350. return 1;
  15351. }
  15352. }
  15353. int32_t lora_r = fin.read_u32();
  15354. int32_t lora_alpha = fin.read_u32();
  15355. float scaling = scale * (float)lora_alpha / (float)lora_r;
  15356. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  15357. // load base model
  15358. std::unique_ptr<llama_model_loader> ml;
  15359. if (path_base_model) {
  15360. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  15361. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  15362. ml->init_mappings(/*prefetch*/ false); // no prefetching
  15363. }
  15364. struct tensor_meta {
  15365. std::string name;
  15366. ggml_type type;
  15367. int32_t ne[2];
  15368. size_t offset;
  15369. };
  15370. std::map<std::string, tensor_meta> tensor_meta_map;
  15371. // load all tensor meta
  15372. while (true) {
  15373. if (fin.tell() == fin.size) {
  15374. // eof
  15375. break;
  15376. }
  15377. int32_t n_dims;
  15378. int32_t name_len;
  15379. int32_t ftype;
  15380. fin.read_raw(&n_dims, sizeof(n_dims));
  15381. fin.read_raw(&name_len, sizeof(name_len));
  15382. fin.read_raw(&ftype, sizeof(ftype));
  15383. if (n_dims != 1 && n_dims != 2) {
  15384. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  15385. return 1;
  15386. }
  15387. int32_t ne[2] = { 1, 1 };
  15388. for (int i = 0; i < n_dims; ++i) {
  15389. fin.read_raw(&ne[i], sizeof(ne[i]));
  15390. }
  15391. std::string name;
  15392. {
  15393. GGML_ASSERT(name_len < GGML_MAX_NAME);
  15394. char buf[GGML_MAX_NAME];
  15395. fin.read_raw(buf, name_len);
  15396. name = std::string(buf, name_len);
  15397. }
  15398. // check for lora suffix
  15399. std::string lora_suffix;
  15400. if (name.length() > 6) {
  15401. lora_suffix = name.substr(name.length() - 6);
  15402. }
  15403. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  15404. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  15405. return 1;
  15406. }
  15407. // tensor type
  15408. ggml_type wtype;
  15409. switch (ftype) {
  15410. case 0: wtype = GGML_TYPE_F32; break;
  15411. case 1: wtype = GGML_TYPE_F16; break;
  15412. default:
  15413. {
  15414. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  15415. __func__, ftype);
  15416. return 1;
  15417. }
  15418. }
  15419. // data offset
  15420. size_t offset = fin.tell();
  15421. offset = (offset + 31) & -32;
  15422. // skip tensor data
  15423. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  15424. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  15425. }
  15426. bool warned = false;
  15427. int n_tensors = 0;
  15428. // apply
  15429. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  15430. if (backend_cpu == nullptr) {
  15431. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  15432. return 1;
  15433. }
  15434. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  15435. std::vector<no_init<uint8_t>> read_buf;
  15436. for (const auto & it : model.tensors_by_name) {
  15437. const std::string & base_name = it.first;
  15438. ggml_tensor * model_t = it.second;
  15439. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  15440. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  15441. continue;
  15442. }
  15443. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  15444. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  15445. ggml_init_params lora_init_params = {
  15446. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  15447. /* .mem_buffer */ nullptr,
  15448. /* .no_alloc */ true,
  15449. };
  15450. ggml_context * lora_ctx = ggml_init(lora_init_params);
  15451. if (lora_ctx == nullptr) {
  15452. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  15453. ggml_backend_free(backend_cpu);
  15454. return 1;
  15455. }
  15456. // create tensors
  15457. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  15458. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  15459. ggml_set_name(loraA, metaA.name.c_str());
  15460. ggml_set_name(loraB, metaB.name.c_str());
  15461. ggml_tensor * base_t;
  15462. if (ml) {
  15463. if (!ml->get_tensor_meta(base_name.c_str())) {
  15464. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  15465. return 1;
  15466. }
  15467. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  15468. } else {
  15469. base_t = ggml_dup_tensor(lora_ctx, model_t);
  15470. }
  15471. ggml_set_name(base_t, base_name.c_str());
  15472. // allocate in backend buffer
  15473. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  15474. if (lora_buf == nullptr) {
  15475. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  15476. return 1;
  15477. }
  15478. // load tensor data
  15479. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  15480. read_buf.resize(ggml_nbytes(tensor));
  15481. fin.seek(tensor_meta.offset, SEEK_SET);
  15482. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  15483. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  15484. };
  15485. load_tensor(metaA, loraA);
  15486. load_tensor(metaB, loraB);
  15487. // load base model tensor data
  15488. if (ml) {
  15489. ml->load_data_for(base_t);
  15490. } else {
  15491. ggml_backend_tensor_copy(model_t, base_t);
  15492. }
  15493. if (ggml_is_quantized(base_t->type) && !warned) {
  15494. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  15495. "use a f16 or f32 base model with --lora-base\n", __func__);
  15496. warned = true;
  15497. }
  15498. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  15499. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  15500. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  15501. ggml_free(lora_ctx);
  15502. ggml_backend_buffer_free(lora_buf);
  15503. ggml_backend_free(backend_cpu);
  15504. return 1;
  15505. }
  15506. auto build_lora_graph = [&]() {
  15507. // w = w + BA*s
  15508. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  15509. ggml_set_name(BA, "BA");
  15510. if (scaling != 1.0f) {
  15511. BA = ggml_scale(lora_ctx, BA, scaling);
  15512. ggml_set_name(BA, "BA_scaled");
  15513. }
  15514. ggml_tensor * r;
  15515. r = ggml_add_inplace(lora_ctx, base_t, BA);
  15516. ggml_set_name(r, "r_add");
  15517. if (base_t->type != model_t->type) {
  15518. // convert the result to the model type
  15519. r = ggml_cast(lora_ctx, r, model_t->type);
  15520. ggml_set_name(r, "r_cast");
  15521. }
  15522. return r;
  15523. };
  15524. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  15525. ggml_tensor * r = build_lora_graph();
  15526. ggml_build_forward_expand(gf, r);
  15527. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  15528. if (graph_buf == nullptr) {
  15529. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  15530. ggml_free(lora_ctx);
  15531. ggml_backend_buffer_free(lora_buf);
  15532. ggml_backend_free(backend_cpu);
  15533. return 1;
  15534. }
  15535. ggml_backend_graph_compute(backend_cpu, gf);
  15536. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  15537. #if 0
  15538. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  15539. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  15540. // sched compute
  15541. ggml_build_forward_expand(gf, build_graph());
  15542. ggml_backend_sched_init_measure(sched, gf);
  15543. // create the graph again, since the previous one was destroyed by the measure
  15544. ggml_graph_clear(gf);
  15545. ggml_build_forward_expand(gf, build_graph());
  15546. ggml_backend_sched_graph_compute(sched, gf);
  15547. ggml_backend_sched_free(sched);
  15548. #endif
  15549. ggml_backend_buffer_free(lora_buf);
  15550. ggml_backend_buffer_free(graph_buf);
  15551. ggml_free(lora_ctx);
  15552. n_tensors++;
  15553. if (n_tensors % 4 == 0) {
  15554. LLAMA_LOG_INFO(".");
  15555. }
  15556. }
  15557. ggml_backend_free(backend_cpu);
  15558. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  15559. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  15560. return 0;
  15561. }
  15562. //
  15563. // interface implementation
  15564. //
  15565. struct llama_model_params llama_model_default_params() {
  15566. struct llama_model_params result = {
  15567. /*.n_gpu_layers =*/ 0,
  15568. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  15569. /*.main_gpu =*/ 0,
  15570. /*.tensor_split =*/ nullptr,
  15571. /*.rpc_servers =*/ nullptr,
  15572. /*.progress_callback =*/ nullptr,
  15573. /*.progress_callback_user_data =*/ nullptr,
  15574. /*.kv_overrides =*/ nullptr,
  15575. /*.vocab_only =*/ false,
  15576. /*.use_mmap =*/ true,
  15577. /*.use_mlock =*/ false,
  15578. /*.check_tensors =*/ false,
  15579. };
  15580. #ifdef GGML_USE_METAL
  15581. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  15582. result.n_gpu_layers = 999;
  15583. #endif
  15584. return result;
  15585. }
  15586. struct llama_context_params llama_context_default_params() {
  15587. struct llama_context_params result = {
  15588. /*.seed =*/ LLAMA_DEFAULT_SEED,
  15589. /*.n_ctx =*/ 512,
  15590. /*.n_batch =*/ 2048,
  15591. /*.n_ubatch =*/ 512,
  15592. /*.n_seq_max =*/ 1,
  15593. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  15594. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  15595. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  15596. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  15597. /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
  15598. /*.rope_freq_base =*/ 0.0f,
  15599. /*.rope_freq_scale =*/ 0.0f,
  15600. /*.yarn_ext_factor =*/ -1.0f,
  15601. /*.yarn_attn_factor =*/ 1.0f,
  15602. /*.yarn_beta_fast =*/ 32.0f,
  15603. /*.yarn_beta_slow =*/ 1.0f,
  15604. /*.yarn_orig_ctx =*/ 0,
  15605. /*.defrag_thold =*/ -1.0f,
  15606. /*.cb_eval =*/ nullptr,
  15607. /*.cb_eval_user_data =*/ nullptr,
  15608. /*.type_k =*/ GGML_TYPE_F16,
  15609. /*.type_v =*/ GGML_TYPE_F16,
  15610. /*.logits_all =*/ false,
  15611. /*.embeddings =*/ false,
  15612. /*.offload_kqv =*/ true,
  15613. /*.flash_attn =*/ false,
  15614. /*.abort_callback =*/ nullptr,
  15615. /*.abort_callback_data =*/ nullptr,
  15616. };
  15617. return result;
  15618. }
  15619. struct llama_model_quantize_params llama_model_quantize_default_params() {
  15620. struct llama_model_quantize_params result = {
  15621. /*.nthread =*/ 0,
  15622. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  15623. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  15624. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  15625. /*.allow_requantize =*/ false,
  15626. /*.quantize_output_tensor =*/ true,
  15627. /*.only_copy =*/ false,
  15628. /*.pure =*/ false,
  15629. /*.keep_split =*/ false,
  15630. /*.imatrix =*/ nullptr,
  15631. /*.kv_overrides =*/ nullptr,
  15632. };
  15633. return result;
  15634. }
  15635. size_t llama_max_devices(void) {
  15636. #if defined(GGML_USE_RPC)
  15637. return GGML_RPC_MAX_SERVERS;
  15638. #elif defined(GGML_USE_METAL)
  15639. return 1;
  15640. #elif defined(GGML_USE_CUDA)
  15641. return GGML_CUDA_MAX_DEVICES;
  15642. #elif defined(GGML_USE_SYCL)
  15643. return GGML_SYCL_MAX_DEVICES;
  15644. #elif defined(GGML_USE_VULKAN)
  15645. return GGML_VK_MAX_DEVICES;
  15646. #else
  15647. return 1;
  15648. #endif
  15649. }
  15650. bool llama_supports_mmap(void) {
  15651. return llama_mmap::SUPPORTED;
  15652. }
  15653. bool llama_supports_mlock(void) {
  15654. return llama_mlock::SUPPORTED;
  15655. }
  15656. bool llama_supports_gpu_offload(void) {
  15657. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  15658. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  15659. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  15660. return true;
  15661. #else
  15662. return false;
  15663. #endif
  15664. }
  15665. void llama_backend_init(void) {
  15666. ggml_time_init();
  15667. // needed to initialize f16 tables
  15668. {
  15669. struct ggml_init_params params = { 0, NULL, false };
  15670. struct ggml_context * ctx = ggml_init(params);
  15671. ggml_free(ctx);
  15672. }
  15673. }
  15674. void llama_numa_init(enum ggml_numa_strategy numa) {
  15675. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  15676. ggml_numa_init(numa);
  15677. }
  15678. }
  15679. void llama_backend_free(void) {
  15680. ggml_quantize_free();
  15681. }
  15682. int64_t llama_time_us(void) {
  15683. return ggml_time_us();
  15684. }
  15685. struct llama_model * llama_load_model_from_file(
  15686. const char * path_model,
  15687. struct llama_model_params params) {
  15688. ggml_time_init();
  15689. llama_model * model = new llama_model;
  15690. unsigned cur_percentage = 0;
  15691. if (params.progress_callback == NULL) {
  15692. params.progress_callback_user_data = &cur_percentage;
  15693. params.progress_callback = [](float progress, void * ctx) {
  15694. unsigned * cur_percentage_p = (unsigned *) ctx;
  15695. unsigned percentage = (unsigned) (100 * progress);
  15696. while (percentage > *cur_percentage_p) {
  15697. *cur_percentage_p = percentage;
  15698. LLAMA_LOG_INFO(".");
  15699. if (percentage >= 100) {
  15700. LLAMA_LOG_INFO("\n");
  15701. }
  15702. }
  15703. return true;
  15704. };
  15705. }
  15706. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  15707. // split the servers set them into model->rpc_servers
  15708. std::string servers(params.rpc_servers);
  15709. size_t pos = 0;
  15710. while ((pos = servers.find(",")) != std::string::npos) {
  15711. std::string server = servers.substr(0, pos);
  15712. model->rpc_servers.push_back(server);
  15713. servers.erase(0, pos + 1);
  15714. }
  15715. model->rpc_servers.push_back(servers);
  15716. }
  15717. int status = llama_model_load(path_model, *model, params);
  15718. GGML_ASSERT(status <= 0);
  15719. if (status < 0) {
  15720. if (status == -1) {
  15721. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  15722. } else if (status == -2) {
  15723. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  15724. }
  15725. delete model;
  15726. return nullptr;
  15727. }
  15728. return model;
  15729. }
  15730. void llama_free_model(struct llama_model * model) {
  15731. delete model;
  15732. }
  15733. struct llama_context * llama_new_context_with_model(
  15734. struct llama_model * model,
  15735. struct llama_context_params params) {
  15736. if (!model) {
  15737. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  15738. return nullptr;
  15739. }
  15740. if (params.n_batch == 0 && params.n_ubatch == 0) {
  15741. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  15742. return nullptr;
  15743. }
  15744. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  15745. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  15746. return nullptr;
  15747. }
  15748. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  15749. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  15750. params.flash_attn = false;
  15751. }
  15752. if (params.flash_attn && model->hparams.attn_soft_cap) {
  15753. LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__);
  15754. params.flash_attn = false;
  15755. }
  15756. if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
  15757. LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
  15758. params.flash_attn = false;
  15759. }
  15760. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  15761. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  15762. return nullptr;
  15763. }
  15764. llama_context * ctx = new llama_context(*model);
  15765. const auto & hparams = model->hparams;
  15766. auto & cparams = ctx->cparams;
  15767. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  15768. cparams.n_threads = params.n_threads;
  15769. cparams.n_threads_batch = params.n_threads_batch;
  15770. cparams.yarn_ext_factor = params.yarn_ext_factor;
  15771. cparams.yarn_attn_factor = params.yarn_attn_factor;
  15772. cparams.yarn_beta_fast = params.yarn_beta_fast;
  15773. cparams.yarn_beta_slow = params.yarn_beta_slow;
  15774. cparams.defrag_thold = params.defrag_thold;
  15775. cparams.embeddings = params.embeddings;
  15776. cparams.offload_kqv = params.offload_kqv;
  15777. cparams.flash_attn = params.flash_attn;
  15778. cparams.pooling_type = params.pooling_type;
  15779. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  15780. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  15781. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  15782. // this is necessary due to kv_self.n being padded later during inference
  15783. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  15784. // with causal attention, the batch size is limited by the context size
  15785. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  15786. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  15787. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  15788. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  15789. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  15790. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  15791. cparams.n_batch = GGML_KQ_MASK_PAD;
  15792. }
  15793. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  15794. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  15795. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  15796. hparams.n_ctx_train;
  15797. cparams.cb_eval = params.cb_eval;
  15798. cparams.cb_eval_user_data = params.cb_eval_user_data;
  15799. auto rope_scaling_type = params.rope_scaling_type;
  15800. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  15801. rope_scaling_type = hparams.rope_scaling_type_train;
  15802. }
  15803. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  15804. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  15805. }
  15806. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  15807. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  15808. }
  15809. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  15810. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  15811. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  15812. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  15813. } else {
  15814. cparams.pooling_type = hparams.pooling_type;
  15815. }
  15816. }
  15817. if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
  15818. cparams.causal_attn = hparams.causal_attn;
  15819. } else {
  15820. cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
  15821. }
  15822. if (params.seed == LLAMA_DEFAULT_SEED) {
  15823. params.seed = time(NULL);
  15824. }
  15825. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  15826. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  15827. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  15828. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  15829. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  15830. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  15831. ctx->abort_callback = params.abort_callback;
  15832. ctx->abort_callback_data = params.abort_callback_data;
  15833. ctx->rng = std::mt19937(params.seed);
  15834. ctx->logits_all = params.logits_all;
  15835. uint32_t kv_size = cparams.n_ctx;
  15836. ggml_type type_k = params.type_k;
  15837. ggml_type type_v = params.type_v;
  15838. // Mamba only needs a constant number of KV cache cells per sequence
  15839. if (model->arch == LLM_ARCH_MAMBA) {
  15840. // Mamba needs at least as many KV cells as there are sequences kept at any time
  15841. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  15842. // it's probably best to keep as much precision as possible for the states
  15843. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  15844. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  15845. }
  15846. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  15847. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  15848. if (!hparams.vocab_only) {
  15849. // initialize backends
  15850. #if defined(GGML_USE_METAL)
  15851. if (model->n_gpu_layers > 0) {
  15852. ctx->backend_metal = ggml_backend_metal_init();
  15853. if (ctx->backend_metal == nullptr) {
  15854. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  15855. llama_free(ctx);
  15856. return nullptr;
  15857. }
  15858. ctx->backends.push_back(ctx->backend_metal);
  15859. }
  15860. #elif defined(GGML_USE_CUDA)
  15861. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15862. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  15863. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  15864. if (backend == nullptr) {
  15865. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  15866. llama_free(ctx);
  15867. return nullptr;
  15868. }
  15869. ctx->backends.push_back(backend);
  15870. } else {
  15871. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  15872. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  15873. ggml_backend_t backend = ggml_backend_cuda_init(device);
  15874. if (backend == nullptr) {
  15875. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  15876. llama_free(ctx);
  15877. return nullptr;
  15878. }
  15879. ctx->backends.push_back(backend);
  15880. }
  15881. }
  15882. #elif defined(GGML_USE_VULKAN)
  15883. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15884. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  15885. llama_free(ctx);
  15886. return nullptr;
  15887. }
  15888. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  15889. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  15890. if (backend == nullptr) {
  15891. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  15892. llama_free(ctx);
  15893. return nullptr;
  15894. }
  15895. ctx->backends.push_back(backend);
  15896. } else {
  15897. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  15898. ggml_backend_t backend = ggml_backend_vk_init(device);
  15899. if (backend == nullptr) {
  15900. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  15901. llama_free(ctx);
  15902. return nullptr;
  15903. }
  15904. ctx->backends.push_back(backend);
  15905. }
  15906. }
  15907. #elif defined(GGML_USE_SYCL)
  15908. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  15909. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  15910. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  15911. if (backend == nullptr) {
  15912. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  15913. llama_free(ctx);
  15914. return nullptr;
  15915. }
  15916. ctx->backends.push_back(backend);
  15917. } else {
  15918. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  15919. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  15920. ggml_backend_t backend = ggml_backend_sycl_init(i);
  15921. if (backend == nullptr) {
  15922. int id_list[GGML_SYCL_MAX_DEVICES];
  15923. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  15924. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  15925. llama_free(ctx);
  15926. return nullptr;
  15927. }
  15928. ctx->backends.push_back(backend);
  15929. }
  15930. }
  15931. #elif defined(GGML_USE_KOMPUTE)
  15932. if (model->n_gpu_layers > 0) {
  15933. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  15934. if (backend == nullptr) {
  15935. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  15936. llama_free(ctx);
  15937. return nullptr;
  15938. }
  15939. ctx->backends.push_back(backend);
  15940. }
  15941. #endif
  15942. #ifdef GGML_USE_BLAS
  15943. ctx->backend_blas = ggml_backend_blas_init();
  15944. if (ctx->backend_blas == nullptr) {
  15945. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  15946. } else {
  15947. ctx->backends.push_back(ctx->backend_blas);
  15948. }
  15949. #endif
  15950. #if defined(GGML_USE_RPC)
  15951. if (model->n_gpu_layers > 0) {
  15952. for (const auto & endpoint : model->rpc_servers) {
  15953. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  15954. if (backend == nullptr) {
  15955. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  15956. llama_free(ctx);
  15957. return nullptr;
  15958. }
  15959. ctx->backends.push_back(backend);
  15960. }
  15961. }
  15962. #endif
  15963. ctx->backend_cpu = ggml_backend_cpu_init();
  15964. if (ctx->backend_cpu == nullptr) {
  15965. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  15966. llama_free(ctx);
  15967. return nullptr;
  15968. }
  15969. ctx->backends.push_back(ctx->backend_cpu);
  15970. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  15971. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  15972. llama_free(ctx);
  15973. return nullptr;
  15974. }
  15975. {
  15976. size_t memory_size_k = 0;
  15977. size_t memory_size_v = 0;
  15978. for (auto & k : ctx->kv_self.k_l) {
  15979. memory_size_k += ggml_nbytes(k);
  15980. }
  15981. for (auto & v : ctx->kv_self.v_l) {
  15982. memory_size_v += ggml_nbytes(v);
  15983. }
  15984. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  15985. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  15986. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  15987. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  15988. }
  15989. // graph outputs buffer
  15990. {
  15991. // resized during inference when a batch uses more outputs
  15992. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  15993. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  15994. llama_free(ctx);
  15995. return nullptr;
  15996. }
  15997. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  15998. ggml_backend_buffer_name(ctx->buf_output),
  15999. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  16000. }
  16001. // scheduler and compute buffers
  16002. {
  16003. // buffer types used for the compute buffer of each backend
  16004. std::vector<ggml_backend_buffer_type_t> backend_buft;
  16005. for (auto * backend : ctx->backends) {
  16006. if (ggml_backend_is_cpu(backend)) {
  16007. // use host buffers for the CPU backend compute buffer
  16008. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  16009. } else {
  16010. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  16011. }
  16012. }
  16013. // buffer used to store the computation graph and the tensor meta data
  16014. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  16015. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  16016. bool pipeline_parallel =
  16017. llama_get_device_count(*model) > 1 &&
  16018. model->n_gpu_layers > (int)model->hparams.n_layer &&
  16019. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  16020. params.offload_kqv;
  16021. #ifndef GGML_USE_CUDA
  16022. // pipeline parallelism requires support for async compute and events
  16023. // currently this is only implemented in the CUDA backend
  16024. pipeline_parallel = false;
  16025. #endif
  16026. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  16027. if (pipeline_parallel) {
  16028. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  16029. }
  16030. // build worst-case graph
  16031. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  16032. int n_past = cparams.n_ctx - n_tokens;
  16033. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  16034. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  16035. // initialize scheduler with the worst-case graph
  16036. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  16037. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  16038. llama_free(ctx);
  16039. return nullptr;
  16040. }
  16041. for (size_t i = 0; i < ctx->backends.size(); i++) {
  16042. ggml_backend_t backend = ctx->backends[i];
  16043. ggml_backend_buffer_type_t buft = backend_buft[i];
  16044. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  16045. if (size > 1) {
  16046. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  16047. ggml_backend_buft_name(buft),
  16048. size / 1024.0 / 1024.0);
  16049. }
  16050. }
  16051. // note: the number of splits during measure is higher than during inference due to the kv shift
  16052. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  16053. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  16054. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  16055. }
  16056. }
  16057. return ctx;
  16058. }
  16059. void llama_free(struct llama_context * ctx) {
  16060. delete ctx;
  16061. }
  16062. const llama_model * llama_get_model(const struct llama_context * ctx) {
  16063. return &ctx->model;
  16064. }
  16065. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  16066. return ctx->cparams.n_ctx;
  16067. }
  16068. uint32_t llama_n_batch(const struct llama_context * ctx) {
  16069. return ctx->cparams.n_batch;
  16070. }
  16071. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  16072. return ctx->cparams.n_ubatch;
  16073. }
  16074. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  16075. return ctx->kv_self.size;
  16076. }
  16077. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  16078. return model->vocab.type;
  16079. }
  16080. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  16081. switch (model->arch) {
  16082. // these models do not use RoPE
  16083. case LLM_ARCH_GPT2:
  16084. case LLM_ARCH_GPTJ:
  16085. case LLM_ARCH_MPT:
  16086. case LLM_ARCH_REFACT:
  16087. case LLM_ARCH_BLOOM:
  16088. case LLM_ARCH_MAMBA:
  16089. case LLM_ARCH_JINA_BERT_V2:
  16090. case LLM_ARCH_T5:
  16091. case LLM_ARCH_JAIS:
  16092. return LLAMA_ROPE_TYPE_NONE;
  16093. // use what we call a normal RoPE, operating on pairs of consecutive head values
  16094. case LLM_ARCH_LLAMA:
  16095. case LLM_ARCH_BAICHUAN:
  16096. case LLM_ARCH_STARCODER:
  16097. case LLM_ARCH_PLAMO:
  16098. case LLM_ARCH_CODESHELL:
  16099. case LLM_ARCH_ORION:
  16100. case LLM_ARCH_INTERNLM2:
  16101. case LLM_ARCH_MINICPM:
  16102. case LLM_ARCH_XVERSE:
  16103. case LLM_ARCH_COMMAND_R:
  16104. case LLM_ARCH_OLMO:
  16105. case LLM_ARCH_ARCTIC:
  16106. case LLM_ARCH_DEEPSEEK2:
  16107. case LLM_ARCH_CHATGLM:
  16108. return LLAMA_ROPE_TYPE_NORM;
  16109. // the pairs of head values are offset by n_rot/2
  16110. case LLM_ARCH_FALCON:
  16111. case LLM_ARCH_GROK:
  16112. case LLM_ARCH_DBRX:
  16113. case LLM_ARCH_BERT:
  16114. case LLM_ARCH_NOMIC_BERT:
  16115. case LLM_ARCH_STABLELM:
  16116. case LLM_ARCH_BITNET:
  16117. case LLM_ARCH_QWEN:
  16118. case LLM_ARCH_QWEN2:
  16119. case LLM_ARCH_QWEN2MOE:
  16120. case LLM_ARCH_PHI2:
  16121. case LLM_ARCH_PHI3:
  16122. case LLM_ARCH_GEMMA:
  16123. case LLM_ARCH_GEMMA2:
  16124. case LLM_ARCH_STARCODER2:
  16125. case LLM_ARCH_OPENELM:
  16126. case LLM_ARCH_GPTNEOX:
  16127. return LLAMA_ROPE_TYPE_NEOX;
  16128. // all model arches should be listed explicitly here
  16129. case LLM_ARCH_UNKNOWN:
  16130. GGML_ASSERT(false && "unknown architecture");
  16131. break;
  16132. }
  16133. return LLAMA_ROPE_TYPE_NONE;
  16134. }
  16135. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  16136. return ctx->cparams.pooling_type;
  16137. }
  16138. int32_t llama_n_vocab(const struct llama_model * model) {
  16139. return model->hparams.n_vocab;
  16140. }
  16141. int32_t llama_n_ctx_train(const struct llama_model * model) {
  16142. return model->hparams.n_ctx_train;
  16143. }
  16144. int32_t llama_n_embd(const struct llama_model * model) {
  16145. return model->hparams.n_embd;
  16146. }
  16147. int32_t llama_n_layer(const struct llama_model * model) {
  16148. return model->hparams.n_layer;
  16149. }
  16150. float llama_rope_freq_scale_train(const struct llama_model * model) {
  16151. return model->hparams.rope_freq_scale_train;
  16152. }
  16153. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  16154. const auto & it = model->gguf_kv.find(key);
  16155. if (it == model->gguf_kv.end()) {
  16156. if (buf_size > 0) {
  16157. buf[0] = '\0';
  16158. }
  16159. return -1;
  16160. }
  16161. return snprintf(buf, buf_size, "%s", it->second.c_str());
  16162. }
  16163. int32_t llama_model_meta_count(const struct llama_model * model) {
  16164. return (int)model->gguf_kv.size();
  16165. }
  16166. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  16167. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  16168. if (buf_size > 0) {
  16169. buf[0] = '\0';
  16170. }
  16171. return -1;
  16172. }
  16173. auto it = model->gguf_kv.begin();
  16174. std::advance(it, i);
  16175. return snprintf(buf, buf_size, "%s", it->first.c_str());
  16176. }
  16177. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  16178. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  16179. if (buf_size > 0) {
  16180. buf[0] = '\0';
  16181. }
  16182. return -1;
  16183. }
  16184. auto it = model->gguf_kv.begin();
  16185. std::advance(it, i);
  16186. return snprintf(buf, buf_size, "%s", it->second.c_str());
  16187. }
  16188. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  16189. return snprintf(buf, buf_size, "%s %s %s",
  16190. llama_model_arch_name(model->arch),
  16191. llama_model_type_name(model->type),
  16192. llama_model_ftype_name(model->ftype).c_str());
  16193. }
  16194. uint64_t llama_model_size(const struct llama_model * model) {
  16195. uint64_t size = 0;
  16196. for (const auto & it : model->tensors_by_name) {
  16197. size += ggml_nbytes(it.second);
  16198. }
  16199. return size;
  16200. }
  16201. uint64_t llama_model_n_params(const struct llama_model * model) {
  16202. uint64_t nparams = 0;
  16203. for (const auto & it : model->tensors_by_name) {
  16204. nparams += ggml_nelements(it.second);
  16205. }
  16206. return nparams;
  16207. }
  16208. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  16209. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  16210. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  16211. return it.first == name;
  16212. });
  16213. if (it == model->tensors_by_name.end()) {
  16214. return nullptr;
  16215. }
  16216. return it->second;
  16217. }
  16218. bool llama_model_has_encoder(const struct llama_model * model) {
  16219. switch (model->arch) {
  16220. case LLM_ARCH_T5: return true;
  16221. default: return false;
  16222. }
  16223. }
  16224. llama_token llama_model_decoder_start_token(const struct llama_model * model) {
  16225. return model->hparams.dec_start_token_id;
  16226. }
  16227. uint32_t llama_model_quantize(
  16228. const char * fname_inp,
  16229. const char * fname_out,
  16230. const llama_model_quantize_params * params) {
  16231. try {
  16232. llama_model_quantize_internal(fname_inp, fname_out, params);
  16233. return 0;
  16234. } catch (const std::exception & err) {
  16235. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  16236. return 1;
  16237. }
  16238. }
  16239. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  16240. try {
  16241. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  16242. } catch (const std::exception & err) {
  16243. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  16244. return 1;
  16245. }
  16246. }
  16247. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  16248. GGML_ASSERT(cvec.tensors.empty());
  16249. GGML_ASSERT(cvec.ctxs.empty());
  16250. GGML_ASSERT(cvec.bufs.empty());
  16251. // count layer buffer types
  16252. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  16253. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  16254. buft_layer_count[model.buft_layer[i].buft]++;
  16255. }
  16256. // allocate contexts
  16257. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  16258. for (auto & it : buft_layer_count) {
  16259. int n_layers = it.second;
  16260. struct ggml_init_params params = {
  16261. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  16262. /*.mem_buffer =*/ NULL,
  16263. /*.no_alloc =*/ true,
  16264. };
  16265. ggml_context * ctx = ggml_init(params);
  16266. if (!ctx) {
  16267. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  16268. return 1;
  16269. }
  16270. ctx_map[it.first] = ctx;
  16271. }
  16272. // make tensors
  16273. cvec.tensors.reserve(model.hparams.n_layer);
  16274. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  16275. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  16276. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  16277. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  16278. cvec.tensors.push_back(tensor);
  16279. }
  16280. // allocate tensors / buffers and zero
  16281. cvec.ctxs.reserve(ctx_map.size());
  16282. cvec.bufs.reserve(ctx_map.size());
  16283. for (auto it : ctx_map) {
  16284. ggml_backend_buffer_type_t buft = it.first;
  16285. ggml_context * ctx = it.second;
  16286. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  16287. if (!buf) {
  16288. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  16289. return false;
  16290. }
  16291. ggml_backend_buffer_clear(buf, 0);
  16292. cvec.ctxs.push_back(ctx);
  16293. cvec.bufs.push_back(buf);
  16294. }
  16295. return true;
  16296. }
  16297. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  16298. const llama_model & model = lctx->model;
  16299. llama_control_vector & cvec = lctx->cvec;
  16300. if (data == nullptr) {
  16301. // disable the current control vector (but leave allocated for later)
  16302. cvec.layer_start = -1;
  16303. cvec.layer_end = -1;
  16304. return 0;
  16305. }
  16306. if (n_embd != (int) model.hparams.n_embd) {
  16307. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  16308. return 1;
  16309. }
  16310. if (cvec.tensors.empty()) {
  16311. if (!llama_control_vector_init(cvec, model)) {
  16312. return 1;
  16313. }
  16314. }
  16315. cvec.layer_start = il_start;
  16316. cvec.layer_end = il_end;
  16317. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  16318. assert(cvec.tensors[il] != nullptr);
  16319. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  16320. if (off + n_embd <= len) {
  16321. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  16322. }
  16323. }
  16324. return 0;
  16325. }
  16326. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  16327. struct llama_kv_cache_view result = {
  16328. /*.n_cells = */ 0,
  16329. /*.n_seq_max = */ n_seq_max,
  16330. /*.token_count = */ 0,
  16331. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  16332. /*.max_contiguous = */ 0,
  16333. /*.max_contiguous_idx = */ -1,
  16334. /*.cells = */ nullptr,
  16335. /*.cells_sequences = */ nullptr,
  16336. };
  16337. return result;
  16338. }
  16339. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  16340. if (view->cells != nullptr) {
  16341. free(view->cells);
  16342. view->cells = nullptr;
  16343. }
  16344. if (view->cells_sequences != nullptr) {
  16345. free(view->cells_sequences);
  16346. view->cells_sequences = nullptr;
  16347. }
  16348. }
  16349. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  16350. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  16351. view->n_cells = int32_t(ctx->kv_self.size);
  16352. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  16353. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  16354. view->cells = (struct llama_kv_cache_view_cell *)p;
  16355. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  16356. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  16357. view->cells_sequences = (llama_seq_id *)p;
  16358. }
  16359. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  16360. llama_kv_cache_view_cell * c_curr = view->cells;
  16361. llama_seq_id * cs_curr = view->cells_sequences;
  16362. int32_t used_cells = 0;
  16363. int32_t token_count = 0;
  16364. int32_t curr_contig_idx = -1;
  16365. uint32_t max_contig = 0;
  16366. int32_t max_contig_idx = -1;
  16367. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  16368. const size_t curr_size = kv_cells[i].seq_id.size();
  16369. token_count += curr_size;
  16370. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  16371. if (curr_size > 0) {
  16372. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  16373. max_contig = i - curr_contig_idx;
  16374. max_contig_idx = curr_contig_idx;
  16375. }
  16376. curr_contig_idx = -1;
  16377. } else if (curr_contig_idx < 0) {
  16378. curr_contig_idx = i;
  16379. }
  16380. int seq_idx = 0;
  16381. for (const llama_seq_id it : kv_cells[i].seq_id) {
  16382. if (seq_idx >= view->n_seq_max) {
  16383. break;
  16384. }
  16385. cs_curr[seq_idx] = it;
  16386. seq_idx++;
  16387. }
  16388. if (seq_idx != 0) {
  16389. used_cells++;
  16390. }
  16391. for (; seq_idx < view->n_seq_max; seq_idx++) {
  16392. cs_curr[seq_idx] = -1;
  16393. }
  16394. }
  16395. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  16396. max_contig_idx = curr_contig_idx;
  16397. max_contig = kv_cells.size() - curr_contig_idx;
  16398. }
  16399. view->max_contiguous = max_contig;
  16400. view->max_contiguous_idx = max_contig_idx;
  16401. view->token_count = token_count;
  16402. view->used_cells = used_cells;
  16403. if (uint32_t(used_cells) != ctx->kv_self.used) {
  16404. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  16405. __func__, ctx->kv_self.used, used_cells);
  16406. }
  16407. }
  16408. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  16409. int result = 0;
  16410. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  16411. result += ctx->kv_self.cells[i].seq_id.size();
  16412. }
  16413. return result;
  16414. }
  16415. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  16416. return ctx->kv_self.used;
  16417. }
  16418. void llama_kv_cache_clear(struct llama_context * ctx) {
  16419. llama_kv_cache_clear(ctx->kv_self);
  16420. }
  16421. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  16422. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  16423. }
  16424. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  16425. if (seq_id_src == seq_id_dst) {
  16426. return;
  16427. }
  16428. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  16429. }
  16430. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  16431. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  16432. }
  16433. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  16434. if (delta == 0) {
  16435. return;
  16436. }
  16437. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  16438. }
  16439. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  16440. if (d == 1) {
  16441. return;
  16442. }
  16443. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  16444. }
  16445. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  16446. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  16447. }
  16448. void llama_kv_cache_defrag(struct llama_context * ctx) {
  16449. llama_kv_cache_defrag(ctx->kv_self);
  16450. }
  16451. void llama_kv_cache_update(struct llama_context * ctx) {
  16452. llama_kv_cache_update_internal(*ctx);
  16453. }
  16454. // deprecated
  16455. size_t llama_get_state_size(const struct llama_context * ctx) {
  16456. return llama_state_get_size(ctx);
  16457. }
  16458. // deprecated
  16459. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  16460. return llama_state_get_data(ctx, dst);
  16461. }
  16462. // deprecated
  16463. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  16464. return llama_state_set_data(ctx, src);
  16465. }
  16466. // deprecated
  16467. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16468. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  16469. }
  16470. // deprecated
  16471. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  16472. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  16473. }
  16474. // Returns the *maximum* size of the state
  16475. size_t llama_state_get_size(const struct llama_context * ctx) {
  16476. const auto & cparams = ctx->cparams;
  16477. const auto & hparams = ctx->model.hparams;
  16478. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  16479. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  16480. const size_t s_rng_size = sizeof(size_t);
  16481. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  16482. const size_t s_n_outputs = sizeof(size_t);
  16483. // assume worst case for outputs although only currently set ones are serialized
  16484. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  16485. const size_t s_logits_size = sizeof(size_t);
  16486. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  16487. const size_t s_embedding_size = sizeof(size_t);
  16488. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  16489. const size_t s_kv_buf_size = sizeof(size_t);
  16490. const size_t s_kv_head = sizeof(uint32_t);
  16491. const size_t s_kv_size = sizeof(uint32_t);
  16492. const size_t s_kv_used = sizeof(uint32_t);
  16493. const size_t s_v_trans = sizeof(uint32_t);
  16494. const size_t s_kv = ctx->kv_self.total_size();
  16495. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  16496. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  16497. const size_t s_total = (
  16498. + s_rng_size
  16499. + s_rng
  16500. + s_n_outputs
  16501. + s_output_pos
  16502. + s_logits_size
  16503. + s_logits
  16504. + s_embedding_size
  16505. + s_embedding
  16506. + s_kv_buf_size
  16507. + s_kv_head
  16508. + s_kv_size
  16509. + s_kv_used
  16510. + s_v_trans
  16511. + s_kv
  16512. + s_kv_cells
  16513. );
  16514. // on session change it is very likely that the state size has changed - so we need to update this function
  16515. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  16516. return s_total;
  16517. }
  16518. // llama_context_data
  16519. struct llama_data_context {
  16520. virtual void write(const void * src, size_t size) = 0;
  16521. virtual size_t get_size_written() = 0;
  16522. virtual ~llama_data_context() = default;
  16523. };
  16524. struct llama_data_buffer_context : llama_data_context {
  16525. uint8_t * ptr;
  16526. size_t size_written = 0;
  16527. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  16528. void write(const void * src, size_t size) override {
  16529. memcpy(ptr, src, size);
  16530. ptr += size;
  16531. size_written += size;
  16532. }
  16533. size_t get_size_written() override {
  16534. return size_written;
  16535. }
  16536. };
  16537. struct llama_data_file_context : llama_data_context {
  16538. llama_file * file;
  16539. size_t size_written = 0;
  16540. llama_data_file_context(llama_file * f) : file(f) {}
  16541. void write(const void * src, size_t size) override {
  16542. file->write_raw(src, size);
  16543. size_written += size;
  16544. }
  16545. size_t get_size_written() override {
  16546. return size_written;
  16547. }
  16548. };
  16549. /** copy state data into either a buffer or file depending on the passed in context
  16550. *
  16551. * file context:
  16552. * llama_file file("/path", "wb");
  16553. * llama_data_file_context data_ctx(&file);
  16554. * llama_state_get_data(ctx, &data_ctx);
  16555. *
  16556. * buffer context:
  16557. * std::vector<uint8_t> buf(max_size, 0);
  16558. * llama_data_buffer_context data_ctx(&buf.data());
  16559. * llama_state_get_data(ctx, &data_ctx);
  16560. *
  16561. */
  16562. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  16563. llama_synchronize(ctx);
  16564. // copy rng
  16565. {
  16566. std::ostringstream rng_ss;
  16567. rng_ss << ctx->rng;
  16568. const std::string & rng_str = rng_ss.str();
  16569. const size_t rng_size = rng_str.size();
  16570. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  16571. data_ctx->write(&rng_size, sizeof(rng_size));
  16572. data_ctx->write(rng_str.data(), rng_size);
  16573. }
  16574. // copy outputs
  16575. {
  16576. // Can't use ctx->n_outputs because it's not for the
  16577. // entire last batch when n_ubatch is smaller than n_batch
  16578. size_t n_outputs = 0;
  16579. // copy output ids
  16580. {
  16581. std::vector<int32_t> output_pos;
  16582. const size_t n_batch = ctx->cparams.n_batch;
  16583. const auto & output_ids = ctx->output_ids;
  16584. output_pos.resize(ctx->output_size);
  16585. // build a more compact representation of the output ids
  16586. for (size_t i = 0; i < n_batch; ++i) {
  16587. // map an output id to a position in the batch
  16588. int32_t pos = output_ids[i];
  16589. if (pos >= 0) {
  16590. if ((size_t) pos >= n_outputs) {
  16591. n_outputs = pos + 1;
  16592. }
  16593. GGML_ASSERT((size_t) pos < ctx->output_size);
  16594. output_pos[pos] = i;
  16595. }
  16596. }
  16597. data_ctx->write(&n_outputs, sizeof(n_outputs));
  16598. if (n_outputs) {
  16599. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  16600. }
  16601. }
  16602. // copy logits
  16603. {
  16604. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  16605. data_ctx->write(&logits_size, sizeof(logits_size));
  16606. if (logits_size) {
  16607. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  16608. }
  16609. }
  16610. // copy embeddings
  16611. {
  16612. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  16613. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  16614. if (embeddings_size) {
  16615. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  16616. }
  16617. }
  16618. }
  16619. // copy kv cache
  16620. {
  16621. const auto & kv_self = ctx->kv_self;
  16622. const auto & hparams = ctx->model.hparams;
  16623. const uint32_t n_layer = hparams.n_layer;
  16624. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  16625. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  16626. const uint32_t kv_size = kv_self.size;
  16627. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  16628. const uint32_t kv_used = kv_self.used;
  16629. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  16630. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  16631. data_ctx->write(&kv_head, sizeof(kv_head));
  16632. data_ctx->write(&kv_size, sizeof(kv_size));
  16633. data_ctx->write(&kv_used, sizeof(kv_used));
  16634. data_ctx->write(&v_trans, sizeof(v_trans));
  16635. if (kv_buf_size) {
  16636. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  16637. std::vector<uint8_t> tmp_buf;
  16638. for (int il = 0; il < (int) n_layer; ++il) {
  16639. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  16640. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16641. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  16642. tmp_buf.resize(k_size);
  16643. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  16644. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  16645. if (kv_self.recurrent || !kv_self.v_trans) {
  16646. // v is contiguous for recurrent models
  16647. // TODO: use other tensors for state models than k and v
  16648. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  16649. tmp_buf.resize(v_size);
  16650. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  16651. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  16652. continue;
  16653. }
  16654. // v is not contiguous, copy row by row
  16655. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  16656. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  16657. tmp_buf.resize(v_row_size);
  16658. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  16659. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  16660. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  16661. }
  16662. }
  16663. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  16664. }
  16665. for (uint32_t i = 0; i < kv_head; ++i) {
  16666. const auto & cell = kv_self.cells[i];
  16667. const llama_pos pos = cell.pos;
  16668. const size_t seq_id_size = cell.seq_id.size();
  16669. data_ctx->write(&pos, sizeof(pos));
  16670. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  16671. for (auto seq_id : cell.seq_id) {
  16672. data_ctx->write(&seq_id, sizeof(seq_id));
  16673. }
  16674. }
  16675. }
  16676. }
  16677. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  16678. llama_data_buffer_context data_ctx(dst);
  16679. llama_state_get_data_internal(ctx, &data_ctx);
  16680. return data_ctx.get_size_written();
  16681. }
  16682. // Sets the state reading from the specified source address
  16683. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  16684. llama_synchronize(ctx);
  16685. const uint8_t * inp = src;
  16686. // set rng
  16687. {
  16688. size_t rng_size;
  16689. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  16690. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  16691. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  16692. std::istringstream rng_ss(rng_str);
  16693. rng_ss >> ctx->rng;
  16694. GGML_ASSERT(!rng_ss.fail());
  16695. }
  16696. // set output ids
  16697. {
  16698. size_t n_outputs;
  16699. std::vector<int32_t> output_pos;
  16700. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  16701. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  16702. if (n_outputs) {
  16703. output_pos.resize(n_outputs);
  16704. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  16705. inp += n_outputs * sizeof(int32_t);
  16706. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  16707. int32_t id = output_pos[i];
  16708. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  16709. ctx->output_ids[id] = i;
  16710. }
  16711. ctx->n_outputs = n_outputs;
  16712. }
  16713. }
  16714. // set logits
  16715. {
  16716. size_t logits_size;
  16717. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  16718. GGML_ASSERT(ctx->logits_size >= logits_size);
  16719. if (logits_size) {
  16720. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  16721. inp += logits_size * sizeof(float);
  16722. }
  16723. }
  16724. // set embeddings
  16725. {
  16726. size_t embeddings_size;
  16727. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  16728. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  16729. if (embeddings_size) {
  16730. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  16731. inp += embeddings_size * sizeof(float);
  16732. }
  16733. }
  16734. // set kv cache
  16735. {
  16736. const auto & kv_self = ctx->kv_self;
  16737. const auto & hparams = ctx->model.hparams;
  16738. const uint32_t n_layer = hparams.n_layer;
  16739. size_t kv_buf_size;
  16740. uint32_t kv_head;
  16741. uint32_t kv_size;
  16742. uint32_t kv_used;
  16743. uint32_t v_trans;
  16744. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  16745. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  16746. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  16747. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  16748. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  16749. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  16750. if (kv_self.size != kv_size) {
  16751. // the KV cache needs to be big enough to load all the KV cells from the saved state
  16752. GGML_ASSERT(kv_self.size >= kv_head);
  16753. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  16754. __func__, kv_head, kv_size, kv_self.size);
  16755. }
  16756. llama_kv_cache_clear(ctx);
  16757. if (kv_buf_size) {
  16758. const size_t pre_kv_buf_size = inp - src;
  16759. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  16760. for (int il = 0; il < (int) n_layer; ++il) {
  16761. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  16762. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16763. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  16764. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  16765. inp += k_size;
  16766. if (kv_self.recurrent || !kv_self.v_trans) {
  16767. // v is contiguous for recurrent models
  16768. // TODO: use other tensors for state models than k and v
  16769. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  16770. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  16771. inp += v_size;
  16772. continue;
  16773. }
  16774. // v is not contiguous, copy row by row
  16775. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  16776. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  16777. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  16778. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  16779. inp += v_row_size;
  16780. }
  16781. }
  16782. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  16783. }
  16784. ctx->kv_self.head = kv_head;
  16785. ctx->kv_self.used = kv_used;
  16786. for (uint32_t i = 0; i < kv_head; ++i) {
  16787. llama_pos pos;
  16788. size_t seq_id_size;
  16789. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  16790. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  16791. ctx->kv_self.cells[i].pos = pos;
  16792. llama_seq_id seq_id;
  16793. for (size_t j = 0; j < seq_id_size; ++j) {
  16794. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  16795. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  16796. }
  16797. }
  16798. }
  16799. const size_t nread = inp - src;
  16800. const size_t max_size = llama_state_get_size(ctx);
  16801. GGML_ASSERT(nread <= max_size);
  16802. return nread;
  16803. }
  16804. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16805. llama_file file(path_session, "rb");
  16806. // sanity checks
  16807. {
  16808. const uint32_t magic = file.read_u32();
  16809. const uint32_t version = file.read_u32();
  16810. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  16811. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  16812. return false;
  16813. }
  16814. llama_hparams session_hparams;
  16815. file.read_raw(&session_hparams, sizeof(llama_hparams));
  16816. if (session_hparams != ctx->model.hparams) {
  16817. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  16818. return false;
  16819. }
  16820. }
  16821. // load the prompt
  16822. {
  16823. const uint32_t n_token_count = file.read_u32();
  16824. if (n_token_count > n_token_capacity) {
  16825. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  16826. return false;
  16827. }
  16828. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  16829. *n_token_count_out = n_token_count;
  16830. }
  16831. // restore the context state
  16832. {
  16833. const size_t n_state_size_cur = file.size - file.tell();
  16834. const size_t n_state_size_max = llama_state_get_size(ctx);
  16835. if (n_state_size_cur > n_state_size_max) {
  16836. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  16837. return false;
  16838. }
  16839. std::vector<uint8_t> state_data(n_state_size_max);
  16840. file.read_raw(state_data.data(), n_state_size_cur);
  16841. llama_state_set_data(ctx, state_data.data());
  16842. }
  16843. return true;
  16844. }
  16845. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  16846. try {
  16847. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  16848. } catch (const std::exception & err) {
  16849. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  16850. return false;
  16851. }
  16852. }
  16853. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  16854. llama_file file(path_session, "wb");
  16855. file.write_u32(LLAMA_SESSION_MAGIC);
  16856. file.write_u32(LLAMA_SESSION_VERSION);
  16857. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  16858. // save the prompt
  16859. file.write_u32((uint32_t) n_token_count);
  16860. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  16861. // save the context state using stream saving
  16862. llama_data_file_context data_ctx(&file);
  16863. llama_state_get_data_internal(ctx, &data_ctx);
  16864. return true;
  16865. }
  16866. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  16867. try {
  16868. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  16869. } catch (const std::exception & err) {
  16870. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  16871. return false;
  16872. }
  16873. }
  16874. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  16875. // save the size of size_t as a uint32_t for safety check
  16876. const size_t size_t_size_size = sizeof(uint32_t);
  16877. // other values
  16878. const size_t s_cell_count_size = sizeof(uint32_t);
  16879. const size_t s_layer_count_size = sizeof(uint32_t);
  16880. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  16881. size_t s_cell_count = 0;
  16882. size_t s_cell_data_size = 0;
  16883. const auto & kv_self = ctx->kv_self;
  16884. const auto & hparams = ctx->model.hparams;
  16885. const uint32_t n_layer = hparams.n_layer;
  16886. for (uint32_t i = 0; i < kv_self.size; ++i) {
  16887. const auto & cell = kv_self.cells[i];
  16888. if (cell.seq_id.count(seq_id) > 0) {
  16889. ++s_cell_count;
  16890. s_cell_data_size += sizeof(llama_pos);
  16891. }
  16892. }
  16893. for (int il = 0; il < (int)n_layer; ++il) {
  16894. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  16895. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16896. // types of keys and values
  16897. s_cell_data_size += sizeof(int32_t) * 2;
  16898. // k_size_row and v_size_el values of layer
  16899. s_cell_data_size += sizeof(size_t) * 2;
  16900. // keys
  16901. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  16902. s_cell_data_size += k_size_row * s_cell_count;
  16903. // values (transposed)
  16904. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  16905. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  16906. }
  16907. const size_t s_total = (
  16908. size_t_size_size +
  16909. s_cell_count_size +
  16910. s_layer_count_size +
  16911. n_embd_v_gqa_size +
  16912. s_cell_data_size
  16913. );
  16914. return s_total;
  16915. }
  16916. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  16917. llama_synchronize(ctx);
  16918. const auto & kv_self = ctx->kv_self;
  16919. GGML_ASSERT(!kv_self.recurrent); // not implemented
  16920. // Save the size of size_t as a uint32_t for safety check
  16921. const uint32_t size_t_size = sizeof(size_t);
  16922. data_ctx.write(&size_t_size, sizeof(size_t_size));
  16923. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  16924. uint32_t cell_count = 0;
  16925. // Count the number of cells with the specified seq_id
  16926. // Find all the ranges of cells with this seq id
  16927. {
  16928. uint32_t cell_range_begin = kv_self.size;
  16929. for (uint32_t i = 0; i < kv_self.size; ++i) {
  16930. const auto & cell = kv_self.cells[i];
  16931. if (cell.has_seq_id(seq_id)) {
  16932. ++cell_count;
  16933. if (cell_range_begin == kv_self.size) {
  16934. cell_range_begin = i;
  16935. }
  16936. }
  16937. else {
  16938. if (cell_range_begin != kv_self.size) {
  16939. cell_ranges.emplace_back(cell_range_begin, i);
  16940. cell_range_begin = kv_self.size;
  16941. }
  16942. }
  16943. }
  16944. if (cell_range_begin != kv_self.size) {
  16945. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  16946. }
  16947. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  16948. uint32_t cell_count_check = 0;
  16949. for (const auto & range : cell_ranges) {
  16950. cell_count_check += range.second - range.first;
  16951. }
  16952. GGML_ASSERT(cell_count == cell_count_check);
  16953. }
  16954. // Write the cell count
  16955. data_ctx.write(&cell_count, sizeof(cell_count));
  16956. const auto & hparams = ctx->model.hparams;
  16957. const uint32_t n_layer = hparams.n_layer;
  16958. // Write the layer count
  16959. data_ctx.write(&n_layer, sizeof(n_layer));
  16960. // Write n_embd_v_gqa (reference value)
  16961. {
  16962. const uint32_t n_embd_v_gqa_ref = hparams.n_embd_v_gqa() + hparams.n_embd_k_s();
  16963. data_ctx.write(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
  16964. }
  16965. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  16966. for (const auto & range : cell_ranges) {
  16967. for (uint32_t i = range.first; i < range.second; ++i) {
  16968. const auto & cell = kv_self.cells[i];
  16969. data_ctx.write(&cell.pos, sizeof(cell.pos));
  16970. }
  16971. }
  16972. // Iterate and write all the keys first, each row is a cell
  16973. // Get whole range at a time
  16974. std::vector<uint8_t> tmp_buf;
  16975. for (int il = 0; il < (int)n_layer; ++il) {
  16976. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  16977. // Write key type
  16978. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  16979. data_ctx.write(&k_type_i, sizeof(k_type_i));
  16980. // Write row size of key
  16981. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  16982. data_ctx.write(&k_size_row, sizeof(k_size_row));
  16983. // Read each range of cells of k_size length each into tmp_buf and write out
  16984. for (const auto & range : cell_ranges) {
  16985. const size_t range_size = range.second - range.first;
  16986. tmp_buf.resize(range_size * k_size_row);
  16987. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  16988. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  16989. }
  16990. }
  16991. // TODO: simplify, reduce copy-paste
  16992. if (!kv_self.v_trans) {
  16993. for (int il = 0; il < (int)n_layer; ++il) {
  16994. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  16995. // Write value type
  16996. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  16997. data_ctx.write(&v_type_i, sizeof(v_type_i));
  16998. // Write row size of value
  16999. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  17000. data_ctx.write(&v_size_row, sizeof(v_size_row));
  17001. // Read each range of cells of v_size length each into tmp_buf and write out
  17002. for (const auto & range : cell_ranges) {
  17003. const size_t range_size = range.second - range.first;
  17004. tmp_buf.resize(range_size * v_size_row);
  17005. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  17006. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  17007. }
  17008. }
  17009. } else {
  17010. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  17011. const uint32_t kv_size = kv_self.size;
  17012. for (int il = 0; il < (int)n_layer; ++il) {
  17013. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  17014. // Write value type
  17015. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  17016. data_ctx.write(&v_type_i, sizeof(v_type_i));
  17017. // Write element size
  17018. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  17019. data_ctx.write(&v_size_el, sizeof(v_size_el));
  17020. // For each row, we get the element values of each cell
  17021. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  17022. // Read each range of cells of v_size_el length each into tmp_buf and write out
  17023. for (const auto & range : cell_ranges) {
  17024. const size_t range_size = range.second - range.first;
  17025. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  17026. tmp_buf.resize(range_size * v_size_el);
  17027. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  17028. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  17029. }
  17030. }
  17031. }
  17032. }
  17033. return data_ctx.get_size_written();
  17034. }
  17035. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  17036. llama_data_buffer_context data_ctx(dst);
  17037. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  17038. }
  17039. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  17040. llama_synchronize(ctx);
  17041. auto & kv_self = ctx->kv_self;
  17042. GGML_ASSERT(!kv_self.recurrent); // not implemented
  17043. // Wipe the slot
  17044. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17045. const uint8_t * inp = src;
  17046. // Read size of size_t
  17047. uint32_t size_t_size;
  17048. memcpy(&size_t_size, inp, sizeof(size_t_size));
  17049. inp += sizeof(size_t_size);
  17050. if (size_t_size != sizeof(size_t)) {
  17051. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  17052. return 0;
  17053. }
  17054. // Read the cell count
  17055. uint32_t cell_count;
  17056. memcpy(&cell_count, inp, sizeof(cell_count));
  17057. inp += sizeof(cell_count);
  17058. // Read the layer count
  17059. uint32_t n_layer_ref;
  17060. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  17061. inp += sizeof(n_layer_ref);
  17062. // Read n_embd_v_gqa
  17063. uint32_t n_embd_v_gqa_ref;
  17064. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  17065. inp += sizeof(n_embd_v_gqa_ref);
  17066. // Sanity check model compatibility
  17067. const auto & hparams = ctx->model.hparams;
  17068. const uint32_t n_layer = hparams.n_layer;
  17069. if (n_layer != n_layer_ref) {
  17070. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  17071. return 0;
  17072. }
  17073. if (hparams.n_embd_v_gqa() != n_embd_v_gqa_ref) {
  17074. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, hparams.n_embd_v_gqa(), n_embd_v_gqa_ref);
  17075. return 0;
  17076. }
  17077. // Allocate the new cells for the slot
  17078. if (cell_count) {
  17079. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  17080. batch.n_tokens = cell_count;
  17081. for (uint32_t i = 0; i < cell_count; ++i) {
  17082. llama_pos pos;
  17083. memcpy(&pos, inp, sizeof(pos));
  17084. inp += sizeof(pos);
  17085. batch.pos[i] = pos;
  17086. batch.n_seq_id[i] = 1;
  17087. batch.seq_id[i][0] = dest_seq_id;
  17088. }
  17089. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  17090. llama_batch_free(batch);
  17091. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  17092. return 0;
  17093. }
  17094. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  17095. // Assume that this is one contiguous block of cells
  17096. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  17097. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  17098. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  17099. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  17100. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  17101. // Cleanup
  17102. llama_batch_free(batch);
  17103. }
  17104. const uint32_t kv_size = kv_self.size;
  17105. const uint32_t kv_head = kv_self.head;
  17106. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  17107. for (int il = 0; il < (int)n_layer; ++il) {
  17108. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
  17109. // Read type of key
  17110. int32_t k_type_i_ref;
  17111. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  17112. inp += sizeof(k_type_i_ref);
  17113. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  17114. if (k_type_i != k_type_i_ref) {
  17115. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17116. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  17117. return 0;
  17118. }
  17119. // Read row size of key
  17120. size_t k_size_row_ref;
  17121. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  17122. inp += sizeof(k_size_row_ref);
  17123. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  17124. if (k_size_row != k_size_row_ref) {
  17125. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17126. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  17127. return 0;
  17128. }
  17129. if (cell_count) {
  17130. // Read and set the keys for the whole cell range
  17131. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  17132. inp += cell_count * k_size_row;
  17133. }
  17134. }
  17135. // TODO: simplify, reduce copy-paste
  17136. if (!kv_self.v_trans) {
  17137. for (int il = 0; il < (int)n_layer; ++il) {
  17138. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  17139. // Read type of value
  17140. int32_t v_type_i_ref;
  17141. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  17142. inp += sizeof(v_type_i_ref);
  17143. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  17144. if (v_type_i != v_type_i_ref) {
  17145. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17146. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  17147. return 0;
  17148. }
  17149. // Read row size of value
  17150. size_t v_size_row_ref;
  17151. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  17152. inp += sizeof(v_size_row_ref);
  17153. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  17154. if (v_size_row != v_size_row_ref) {
  17155. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17156. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  17157. return 0;
  17158. }
  17159. if (cell_count) {
  17160. // Read and set the values for the whole cell range
  17161. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  17162. inp += cell_count * v_size_row;
  17163. }
  17164. }
  17165. } else {
  17166. // For each layer, read the values for each cell (transposed)
  17167. for (int il = 0; il < (int)n_layer; ++il) {
  17168. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
  17169. // Read type of value
  17170. int32_t v_type_i_ref;
  17171. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  17172. inp += sizeof(v_type_i_ref);
  17173. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  17174. if (v_type_i != v_type_i_ref) {
  17175. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17176. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  17177. return 0;
  17178. }
  17179. // Read element size of value
  17180. size_t v_size_el_ref;
  17181. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  17182. inp += sizeof(v_size_el_ref);
  17183. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  17184. if (v_size_el != v_size_el_ref) {
  17185. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  17186. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  17187. return 0;
  17188. }
  17189. if (cell_count) {
  17190. // For each row in the transposed matrix, read the values for the whole cell range
  17191. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  17192. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  17193. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  17194. inp += cell_count * v_size_el;
  17195. }
  17196. }
  17197. }
  17198. }
  17199. const size_t nread = inp - src;
  17200. return nread;
  17201. }
  17202. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  17203. llama_file file(filepath, "wb");
  17204. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  17205. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  17206. // save the prompt
  17207. file.write_u32((uint32_t)n_token_count);
  17208. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  17209. // save the context state using stream saving
  17210. llama_data_file_context data_ctx(&file);
  17211. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  17212. const size_t res = file.tell();
  17213. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  17214. return res;
  17215. }
  17216. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  17217. llama_file file(filepath, "rb");
  17218. // version checks
  17219. {
  17220. const uint32_t magic = file.read_u32();
  17221. const uint32_t version = file.read_u32();
  17222. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  17223. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  17224. return 0;
  17225. }
  17226. }
  17227. // load the prompt
  17228. {
  17229. const uint32_t n_token_count = file.read_u32();
  17230. if (n_token_count > n_token_capacity) {
  17231. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  17232. return 0;
  17233. }
  17234. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  17235. *n_token_count_out = n_token_count;
  17236. }
  17237. // restore the context state
  17238. {
  17239. const size_t state_size = file.size - file.tell();
  17240. std::vector<uint8_t> state_data(state_size);
  17241. file.read_raw(state_data.data(), state_size);
  17242. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  17243. if (!nread) {
  17244. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  17245. return 0;
  17246. }
  17247. GGML_ASSERT(nread <= state_size);
  17248. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  17249. }
  17250. return file.tell();
  17251. }
  17252. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  17253. try {
  17254. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  17255. } catch (const std::exception & err) {
  17256. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  17257. return 0;
  17258. }
  17259. }
  17260. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  17261. try {
  17262. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  17263. } catch (const std::exception & err) {
  17264. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  17265. return 0;
  17266. }
  17267. }
  17268. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  17269. ctx->cparams.n_threads = n_threads;
  17270. ctx->cparams.n_threads_batch = n_threads_batch;
  17271. }
  17272. uint32_t llama_n_threads(struct llama_context * ctx) {
  17273. return ctx->cparams.n_threads;
  17274. }
  17275. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  17276. return ctx->cparams.n_threads_batch;
  17277. }
  17278. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  17279. ctx->abort_callback = abort_callback;
  17280. ctx->abort_callback_data = abort_callback_data;
  17281. }
  17282. void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
  17283. ctx->cparams.embeddings = embeddings;
  17284. }
  17285. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  17286. ctx->cparams.causal_attn = causal_attn;
  17287. }
  17288. struct llama_batch llama_batch_get_one(
  17289. llama_token * tokens,
  17290. int32_t n_tokens,
  17291. llama_pos pos_0,
  17292. llama_seq_id seq_id) {
  17293. return {
  17294. /*n_tokens =*/ n_tokens,
  17295. /*tokens =*/ tokens,
  17296. /*embd =*/ nullptr,
  17297. /*pos =*/ nullptr,
  17298. /*n_seq_id =*/ nullptr,
  17299. /*seq_id =*/ nullptr,
  17300. /*logits =*/ nullptr,
  17301. /*all_pos_0 =*/ pos_0,
  17302. /*all_pos_1 =*/ 1,
  17303. /*all_seq_id =*/ seq_id,
  17304. };
  17305. }
  17306. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  17307. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  17308. if (embd) {
  17309. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  17310. } else {
  17311. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  17312. }
  17313. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  17314. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  17315. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  17316. for (int i = 0; i < n_tokens_alloc; ++i) {
  17317. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  17318. }
  17319. batch.seq_id[n_tokens_alloc] = nullptr;
  17320. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  17321. return batch;
  17322. }
  17323. void llama_batch_free(struct llama_batch batch) {
  17324. if (batch.token) free(batch.token);
  17325. if (batch.embd) free(batch.embd);
  17326. if (batch.pos) free(batch.pos);
  17327. if (batch.n_seq_id) free(batch.n_seq_id);
  17328. if (batch.seq_id) {
  17329. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  17330. free(batch.seq_id[i]);
  17331. }
  17332. free(batch.seq_id);
  17333. }
  17334. if (batch.logits) free(batch.logits);
  17335. }
  17336. int32_t llama_encode(
  17337. struct llama_context * ctx,
  17338. struct llama_batch batch) {
  17339. const int ret = llama_encode_internal(*ctx, batch);
  17340. if (ret < 0) {
  17341. LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
  17342. }
  17343. return ret;
  17344. }
  17345. int32_t llama_decode(
  17346. struct llama_context * ctx,
  17347. struct llama_batch batch) {
  17348. const int ret = llama_decode_internal(*ctx, batch);
  17349. if (ret < 0) {
  17350. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  17351. }
  17352. return ret;
  17353. }
  17354. void llama_synchronize(struct llama_context * ctx) {
  17355. ggml_backend_sched_synchronize(ctx->sched);
  17356. // FIXME: if multiple single tokens are evaluated without a synchronization,
  17357. // the stats will be added to the prompt evaluation stats
  17358. // this should only happen when using batch size 1 to evaluate a batch
  17359. // add the evaluation to the stats
  17360. if (ctx->n_queued_tokens == 1) {
  17361. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  17362. ctx->n_eval++;
  17363. } else if (ctx->n_queued_tokens > 1) {
  17364. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  17365. ctx->n_p_eval += ctx->n_queued_tokens;
  17366. }
  17367. // get a more accurate load time, upon first eval
  17368. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  17369. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  17370. ctx->has_evaluated_once = true;
  17371. }
  17372. ctx->n_queued_tokens = 0;
  17373. ctx->t_compute_start_us = 0;
  17374. }
  17375. float * llama_get_logits(struct llama_context * ctx) {
  17376. llama_synchronize(ctx);
  17377. return ctx->logits;
  17378. }
  17379. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  17380. int32_t j = -1;
  17381. llama_synchronize(ctx);
  17382. try {
  17383. if (ctx->logits == nullptr) {
  17384. throw std::runtime_error("no logits");
  17385. }
  17386. if (i < 0) {
  17387. j = ctx->n_outputs + i;
  17388. if (j < 0) {
  17389. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  17390. }
  17391. } else if ((size_t) i >= ctx->output_ids.size()) {
  17392. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  17393. } else {
  17394. j = ctx->output_ids[i];
  17395. }
  17396. if (j < 0) {
  17397. throw std::runtime_error(format("batch.logits[%d] != true", i));
  17398. }
  17399. if (j >= ctx->n_outputs) {
  17400. // This should not happen
  17401. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  17402. }
  17403. return ctx->logits + j*ctx->model.hparams.n_vocab;
  17404. } catch (const std::exception & err) {
  17405. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  17406. #ifndef NDEBUG
  17407. GGML_ASSERT(false);
  17408. #endif
  17409. return nullptr;
  17410. }
  17411. }
  17412. float * llama_get_embeddings(struct llama_context * ctx) {
  17413. llama_synchronize(ctx);
  17414. return ctx->embd;
  17415. }
  17416. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  17417. int32_t j = -1;
  17418. llama_synchronize(ctx);
  17419. try {
  17420. if (ctx->embd == nullptr) {
  17421. throw std::runtime_error("no embeddings");
  17422. }
  17423. if (i < 0) {
  17424. j = ctx->n_outputs + i;
  17425. if (j < 0) {
  17426. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  17427. }
  17428. } else if ((size_t) i >= ctx->output_ids.size()) {
  17429. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  17430. } else {
  17431. j = ctx->output_ids[i];
  17432. }
  17433. if (j < 0) {
  17434. throw std::runtime_error(format("batch.logits[%d] != true", i));
  17435. }
  17436. if (j >= ctx->n_outputs) {
  17437. // This should not happen
  17438. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  17439. }
  17440. return ctx->embd + j*ctx->model.hparams.n_embd;
  17441. } catch (const std::exception & err) {
  17442. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  17443. #ifndef NDEBUG
  17444. GGML_ASSERT(false);
  17445. #endif
  17446. return nullptr;
  17447. }
  17448. }
  17449. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  17450. llama_synchronize(ctx);
  17451. auto it = ctx->embd_seq.find(seq_id);
  17452. if (it == ctx->embd_seq.end()) {
  17453. return nullptr;
  17454. }
  17455. return it->second.data();
  17456. }
  17457. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  17458. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  17459. return model->vocab.id_to_token[token].text.c_str();
  17460. }
  17461. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  17462. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  17463. return model->vocab.id_to_token[token].score;
  17464. }
  17465. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  17466. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  17467. return model->vocab.id_to_token[token].attr;
  17468. }
  17469. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  17470. return token != -1 && (
  17471. token == llama_token_eos(model) ||
  17472. token == llama_token_eot(model)
  17473. );
  17474. }
  17475. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  17476. return llama_is_control_token(model->vocab, token);
  17477. }
  17478. llama_token llama_token_bos(const struct llama_model * model) {
  17479. return model->vocab.special_bos_id;
  17480. }
  17481. llama_token llama_token_eos(const struct llama_model * model) {
  17482. return model->vocab.special_eos_id;
  17483. }
  17484. llama_token llama_token_cls(const struct llama_model * model) {
  17485. return model->vocab.special_cls_id;
  17486. }
  17487. llama_token llama_token_sep(const struct llama_model * model) {
  17488. return model->vocab.special_sep_id;
  17489. }
  17490. llama_token llama_token_nl(const struct llama_model * model) {
  17491. return model->vocab.linefeed_id;
  17492. }
  17493. int32_t llama_add_bos_token(const struct llama_model * model) {
  17494. return model->vocab.tokenizer_add_bos;
  17495. }
  17496. int32_t llama_add_eos_token(const struct llama_model * model) {
  17497. return model->vocab.tokenizer_add_eos;
  17498. }
  17499. llama_token llama_token_prefix(const struct llama_model * model) {
  17500. return model->vocab.special_prefix_id;
  17501. }
  17502. llama_token llama_token_middle(const struct llama_model * model) {
  17503. return model->vocab.special_middle_id;
  17504. }
  17505. llama_token llama_token_suffix(const struct llama_model * model) {
  17506. return model->vocab.special_suffix_id;
  17507. }
  17508. llama_token llama_token_eot(const struct llama_model * model) {
  17509. return model->vocab.special_eot_id;
  17510. }
  17511. llama_token llama_token_pad(const struct llama_model * model) {
  17512. return model->vocab.special_pad_id;
  17513. }
  17514. int32_t llama_tokenize(
  17515. const struct llama_model * model,
  17516. const char * text,
  17517. int32_t text_len,
  17518. llama_token * tokens,
  17519. int32_t n_tokens_max,
  17520. bool add_special,
  17521. bool parse_special) {
  17522. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  17523. if (n_tokens_max < (int) res.size()) {
  17524. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  17525. return -((int) res.size());
  17526. }
  17527. for (size_t i = 0; i < res.size(); i++) {
  17528. tokens[i] = res[i];
  17529. }
  17530. return res.size();
  17531. }
  17532. static std::string llama_decode_text(const std::string & text) {
  17533. std::string decoded_text;
  17534. const auto cpts = unicode_cpts_from_utf8(text);
  17535. for (const auto cpt : cpts) {
  17536. const auto utf8 = unicode_cpt_to_utf8(cpt);
  17537. try {
  17538. decoded_text += unicode_utf8_to_byte(utf8);
  17539. } catch (const std::out_of_range & /*e*/) {
  17540. decoded_text += "[UNK_BYTE_0x";
  17541. for (const auto c : utf8) {
  17542. decoded_text += format("%02x", (uint8_t) c);
  17543. }
  17544. decoded_text += text + "]";
  17545. }
  17546. }
  17547. return decoded_text;
  17548. }
  17549. // does not write null-terminator to buf
  17550. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
  17551. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  17552. static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
  17553. const llama_token_attr attr = llama_token_get_attr(model, token);
  17554. if (!special && (attr & attr_special)) {
  17555. return 0;
  17556. }
  17557. // copy piece chars to output text buffer
  17558. // skip up to 'lstrip' leading spaces before copying
  17559. auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
  17560. for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
  17561. token++;
  17562. size--;
  17563. }
  17564. if (length < (int32_t)size) {
  17565. return -(int32_t) size;
  17566. }
  17567. memcpy(buf, token, size);
  17568. return (int32_t) size;
  17569. };
  17570. // if we have a cache - use it
  17571. {
  17572. const auto & cache = model->vocab.cache_token_to_piece;
  17573. if (!cache.empty()) {
  17574. const auto & result = cache.at(token);
  17575. return _try_copy(result.data(), result.size());
  17576. }
  17577. }
  17578. if (0 <= token && token < llama_n_vocab(model)) {
  17579. const std::string & token_text = model->vocab.id_to_token[token].text;
  17580. switch (llama_vocab_get_type(model->vocab)) {
  17581. case LLAMA_VOCAB_TYPE_WPM:
  17582. case LLAMA_VOCAB_TYPE_SPM:
  17583. case LLAMA_VOCAB_TYPE_UGM: {
  17584. // NOTE: we accept all unsupported token types,
  17585. // suppressing them like CONTROL tokens.
  17586. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  17587. return _try_copy(token_text.data(), token_text.size());
  17588. } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  17589. std::string result = token_text;
  17590. llama_unescape_whitespace(result);
  17591. return _try_copy(result.data(), result.size());
  17592. } else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
  17593. char byte = (char) llama_token_to_byte(model->vocab, token);
  17594. return _try_copy((char*) &byte, 1);
  17595. }
  17596. break;
  17597. }
  17598. case LLAMA_VOCAB_TYPE_BPE: {
  17599. // NOTE: we accept all unsupported token types,
  17600. // suppressing them like CONTROL tokens.
  17601. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  17602. return _try_copy(token_text.data(), token_text.size());
  17603. } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  17604. std::string result = llama_decode_text(token_text);
  17605. return _try_copy(result.data(), result.size());
  17606. }
  17607. break;
  17608. }
  17609. default:
  17610. GGML_ASSERT(false);
  17611. }
  17612. }
  17613. return 0;
  17614. }
  17615. int32_t llama_detokenize(
  17616. const struct llama_model * model,
  17617. const llama_token * tokens,
  17618. int32_t n_tokens,
  17619. char * text,
  17620. int32_t text_len_max,
  17621. bool remove_special,
  17622. bool unparse_special) {
  17623. int32_t avail = text_len_max;
  17624. int32_t total = 0;
  17625. // remove the leading space
  17626. bool remove_space = model->vocab.tokenizer_add_space_prefix;
  17627. if (remove_special && model->vocab.tokenizer_add_bos) {
  17628. if (n_tokens > 0 && tokens[0] == model->vocab.special_bos_id) {
  17629. remove_space = false;
  17630. n_tokens--;
  17631. tokens++;
  17632. }
  17633. }
  17634. if (remove_special && model->vocab.tokenizer_add_eos) {
  17635. if (n_tokens > 0 && tokens[n_tokens-1] == model->vocab.special_eos_id) {
  17636. n_tokens--;
  17637. }
  17638. }
  17639. for (int32_t i = 0; i < n_tokens; ++i) {
  17640. GGML_ASSERT(avail >= 0);
  17641. int32_t n_chars = llama_token_to_piece(model, tokens[i], text, avail, remove_space, unparse_special);
  17642. remove_space = false;
  17643. if (n_chars < 0) {
  17644. avail = 0;
  17645. total -= n_chars;
  17646. } else if (n_chars > 0) {
  17647. avail -= n_chars;
  17648. text += n_chars;
  17649. total += n_chars;
  17650. }
  17651. }
  17652. if (total > text_len_max) {
  17653. return -total;
  17654. }
  17655. if (model->vocab.tokenizer_clean_spaces) {
  17656. text -= total; // restart text
  17657. // first pass: characters ?!., //TODO: where do these characters come from?
  17658. const int32_t total1 = total;
  17659. total = total ? 1 : 0;
  17660. for (int32_t i = 1; i < total1; ++i) {
  17661. const char x = text[i];
  17662. if (text[i - 1] == ' ') {
  17663. if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
  17664. total--; // remove space
  17665. }
  17666. }
  17667. text[total++] = x;
  17668. }
  17669. // second pass: strip single apostrophe between spaces
  17670. const int32_t total2 = total;
  17671. total = total ? 1 : 0;
  17672. for (int32_t i = 1; i < total2; ++i) {
  17673. const char x = text[i];
  17674. if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
  17675. total--; // remove prev space
  17676. text[++i] = '\0'; // remove next space
  17677. }
  17678. text[total++] = x;
  17679. }
  17680. // third pass: apostrophe contractions //NOTE: this makes sense?
  17681. const int32_t total3 = total;
  17682. total = total ? 1 : 0;
  17683. for (int32_t i = 1; i < total3; ++i) {
  17684. const char x = text[i];
  17685. if (text[i - 1] == ' ') {
  17686. if (x == '\'' && i + 1 < total3) {
  17687. const char x1 = text[i + 1];
  17688. if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
  17689. //total--; // remove space
  17690. } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
  17691. total--; // remove space
  17692. } else if (i + 2 < total3) {
  17693. const char x2 = text[i + 2];
  17694. if ((x1 == 'l' && x2 == 'l')) { // " 'll"
  17695. //total--; // remove space
  17696. } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
  17697. total--; // remove space
  17698. } else {
  17699. //total--; // remove space
  17700. }
  17701. } else {
  17702. //total--; // remove space
  17703. }
  17704. }
  17705. }
  17706. text[total++] = x;
  17707. }
  17708. }
  17709. return total <= text_len_max ? total : -total;
  17710. }
  17711. // trim whitespace from the beginning and end of a string
  17712. static std::string trim(const std::string & str) {
  17713. size_t start = 0;
  17714. size_t end = str.size();
  17715. while (start < end && isspace(str[start])) {
  17716. start += 1;
  17717. }
  17718. while (end > start && isspace(str[end - 1])) {
  17719. end -= 1;
  17720. }
  17721. return str.substr(start, end - start);
  17722. }
  17723. // Simple version of "llama_apply_chat_template" that only works with strings
  17724. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  17725. static int32_t llama_chat_apply_template_internal(
  17726. const std::string & tmpl,
  17727. const std::vector<const llama_chat_message *> & chat,
  17728. std::string & dest, bool add_ass) {
  17729. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  17730. std::stringstream ss;
  17731. auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
  17732. return tmpl.find(haystack) != std::string::npos;
  17733. };
  17734. if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
  17735. // chatml template
  17736. for (auto message : chat) {
  17737. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  17738. }
  17739. if (add_ass) {
  17740. ss << "<|im_start|>assistant\n";
  17741. }
  17742. } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
  17743. // llama2 template and its variants
  17744. // [variant] support system message
  17745. bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
  17746. // [variant] space before + after response
  17747. bool space_around_response = tmpl_contains("' ' + eos_token");
  17748. // [variant] add BOS inside history
  17749. bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
  17750. // [variant] trim spaces from the input message
  17751. bool strip_message = tmpl_contains("content.strip()");
  17752. // construct the prompt
  17753. bool is_inside_turn = true; // skip BOS at the beginning
  17754. ss << "[INST] ";
  17755. for (auto message : chat) {
  17756. std::string content = strip_message ? trim(message->content) : message->content;
  17757. std::string role(message->role);
  17758. if (!is_inside_turn) {
  17759. is_inside_turn = true;
  17760. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  17761. }
  17762. if (role == "system") {
  17763. if (support_system_message) {
  17764. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  17765. } else {
  17766. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  17767. ss << content << "\n";
  17768. }
  17769. } else if (role == "user") {
  17770. ss << content << " [/INST]";
  17771. } else {
  17772. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  17773. is_inside_turn = false;
  17774. }
  17775. }
  17776. // llama2 templates seem to not care about "add_generation_prompt"
  17777. } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
  17778. // Phi 3
  17779. for (auto message : chat) {
  17780. std::string role(message->role);
  17781. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  17782. }
  17783. if (add_ass) {
  17784. ss << "<|assistant|>\n";
  17785. }
  17786. } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
  17787. // zephyr template
  17788. for (auto message : chat) {
  17789. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  17790. }
  17791. if (add_ass) {
  17792. ss << "<|assistant|>\n";
  17793. }
  17794. } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
  17795. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  17796. for (auto message : chat) {
  17797. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  17798. ss << bos << message->role << "\n" << message->content << "</s>\n";
  17799. }
  17800. if (add_ass) {
  17801. ss << "<s>assistant\n";
  17802. }
  17803. } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
  17804. // google/gemma-7b-it
  17805. std::string system_prompt = "";
  17806. for (auto message : chat) {
  17807. std::string role(message->role);
  17808. if (role == "system") {
  17809. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  17810. system_prompt = trim(message->content);
  17811. continue;
  17812. }
  17813. // in gemma, "assistant" is "model"
  17814. role = role == "assistant" ? "model" : message->role;
  17815. ss << "<start_of_turn>" << role << "\n";
  17816. if (!system_prompt.empty() && role != "model") {
  17817. ss << system_prompt << "\n\n";
  17818. system_prompt = "";
  17819. }
  17820. ss << trim(message->content) << "<end_of_turn>\n";
  17821. }
  17822. if (add_ass) {
  17823. ss << "<start_of_turn>model\n";
  17824. }
  17825. } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
  17826. // OrionStarAI/Orion-14B-Chat
  17827. std::string system_prompt = "";
  17828. for (auto message : chat) {
  17829. std::string role(message->role);
  17830. if (role == "system") {
  17831. // there is no system message support, we will merge it with user prompt
  17832. system_prompt = message->content;
  17833. continue;
  17834. } else if (role == "user") {
  17835. ss << "Human: ";
  17836. if (!system_prompt.empty()) {
  17837. ss << system_prompt << "\n\n";
  17838. system_prompt = "";
  17839. }
  17840. ss << message->content << "\n\nAssistant: </s>";
  17841. } else {
  17842. ss << message->content << "</s>";
  17843. }
  17844. }
  17845. } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
  17846. // openchat/openchat-3.5-0106,
  17847. for (auto message : chat) {
  17848. std::string role(message->role);
  17849. if (role == "system") {
  17850. ss << message->content << "<|end_of_turn|>";
  17851. } else {
  17852. role[0] = toupper(role[0]);
  17853. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  17854. }
  17855. }
  17856. if (add_ass) {
  17857. ss << "GPT4 Correct Assistant:";
  17858. }
  17859. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
  17860. // eachadea/vicuna-13b-1.1 (and Orca variant)
  17861. for (auto message : chat) {
  17862. std::string role(message->role);
  17863. if (role == "system") {
  17864. // Orca-Vicuna variant uses a system prefix
  17865. if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
  17866. ss << "SYSTEM: " << message->content << "\n";
  17867. } else {
  17868. ss << message->content << "\n\n";
  17869. }
  17870. } else if (role == "user") {
  17871. ss << "USER: " << message->content << "\n";
  17872. } else if (role == "assistant") {
  17873. ss << "ASSISTANT: " << message->content << "</s>\n";
  17874. }
  17875. }
  17876. if (add_ass) {
  17877. ss << "ASSISTANT:";
  17878. }
  17879. } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
  17880. // deepseek-ai/deepseek-coder-33b-instruct
  17881. for (auto message : chat) {
  17882. std::string role(message->role);
  17883. if (role == "system") {
  17884. ss << message->content;
  17885. } else if (role == "user") {
  17886. ss << "### Instruction:\n" << message->content << "\n";
  17887. } else if (role == "assistant") {
  17888. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  17889. }
  17890. }
  17891. if (add_ass) {
  17892. ss << "### Response:\n";
  17893. }
  17894. } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
  17895. // CohereForAI/c4ai-command-r-plus
  17896. for (auto message : chat) {
  17897. std::string role(message->role);
  17898. if (role == "system") {
  17899. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  17900. } else if (role == "user") {
  17901. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  17902. } else if (role == "assistant") {
  17903. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  17904. }
  17905. }
  17906. if (add_ass) {
  17907. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  17908. }
  17909. } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
  17910. // Llama 3
  17911. for (auto message : chat) {
  17912. std::string role(message->role);
  17913. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  17914. }
  17915. if (add_ass) {
  17916. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  17917. }
  17918. } else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
  17919. // chatglm3-6b
  17920. ss << "[gMASK]" << "sop";
  17921. for (auto message : chat) {
  17922. std::string role(message->role);
  17923. ss << "<|" << role << "|>" << "\n " << message->content;
  17924. }
  17925. if (add_ass) {
  17926. ss << "<|assistant|>";
  17927. }
  17928. } else if (tmpl == "chaglm4" || tmpl_contains("[gMASK]<sop>")) {
  17929. ss << "[gMASK]" << "<sop>";
  17930. for (auto message : chat) {
  17931. std::string role(message->role);
  17932. ss << "<|" << role << "|>" << "\n" << message->content;
  17933. }
  17934. if (add_ass) {
  17935. ss << "<|assistant|>";
  17936. }
  17937. } else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
  17938. // MiniCPM-3B-OpenHermes-2.5-v2-GGUF
  17939. for (auto message : chat) {
  17940. std::string role(message->role);
  17941. if (role == "user") {
  17942. ss << LU8("<用户>");
  17943. ss << trim(message->content);
  17944. ss << "<AI>";
  17945. } else {
  17946. ss << trim(message->content);
  17947. }
  17948. }
  17949. } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
  17950. // DeepSeek-V2
  17951. for (auto message : chat) {
  17952. std::string role(message->role);
  17953. if (role == "system") {
  17954. ss << message->content << "\n\n";
  17955. } else if (role == "user") {
  17956. ss << "User: " << message->content << "\n\n";
  17957. } else if (role == "assistant") {
  17958. ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
  17959. }
  17960. }
  17961. if (add_ass) {
  17962. ss << "Assistant:";
  17963. }
  17964. } else {
  17965. // template not supported
  17966. return -1;
  17967. }
  17968. dest = ss.str();
  17969. return dest.size();
  17970. }
  17971. LLAMA_API int32_t llama_chat_apply_template(
  17972. const struct llama_model * model,
  17973. const char * tmpl,
  17974. const struct llama_chat_message * chat,
  17975. size_t n_msg,
  17976. bool add_ass,
  17977. char * buf,
  17978. int32_t length) {
  17979. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  17980. if (tmpl == nullptr) {
  17981. GGML_ASSERT(model != nullptr);
  17982. // load template from model
  17983. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  17984. std::string template_key = "tokenizer.chat_template";
  17985. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  17986. if (res < 0) {
  17987. // worst case: there is no information about template, we will use chatml by default
  17988. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  17989. } else {
  17990. curr_tmpl = std::string(model_template.data(), model_template.size());
  17991. }
  17992. }
  17993. // format the chat to string
  17994. std::vector<const llama_chat_message *> chat_vec;
  17995. chat_vec.resize(n_msg);
  17996. for (size_t i = 0; i < n_msg; i++) {
  17997. chat_vec[i] = &chat[i];
  17998. }
  17999. std::string formatted_chat;
  18000. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  18001. if (res < 0) {
  18002. return res;
  18003. }
  18004. if (buf && length > 0) {
  18005. strncpy(buf, formatted_chat.c_str(), length);
  18006. }
  18007. return res;
  18008. }
  18009. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  18010. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  18011. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  18012. return strlen(split_path);
  18013. }
  18014. return 0;
  18015. }
  18016. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  18017. std::string str_split_path(split_path);
  18018. char postfix[32];
  18019. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  18020. std::string str_postfix(postfix);
  18021. // check if dest ends with postfix
  18022. int size_prefix = str_split_path.size() - str_postfix.size();
  18023. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  18024. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  18025. return size_prefix;
  18026. }
  18027. return 0;
  18028. }
  18029. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  18030. struct llama_timings result = {
  18031. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  18032. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  18033. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  18034. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  18035. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  18036. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  18037. /*.n_sample =*/ std::max(1, ctx->n_sample),
  18038. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  18039. /*.n_eval =*/ std::max(1, ctx->n_eval),
  18040. };
  18041. return result;
  18042. }
  18043. void llama_print_timings(struct llama_context * ctx) {
  18044. const llama_timings timings = llama_get_timings(ctx);
  18045. LLAMA_LOG_INFO("\n");
  18046. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  18047. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  18048. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  18049. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  18050. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  18051. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  18052. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  18053. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  18054. }
  18055. void llama_reset_timings(struct llama_context * ctx) {
  18056. ctx->t_start_us = ggml_time_us();
  18057. ctx->t_sample_us = ctx->n_sample = 0;
  18058. ctx->t_eval_us = ctx->n_eval = 0;
  18059. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  18060. }
  18061. const char * llama_print_system_info(void) {
  18062. static std::string s;
  18063. s = "";
  18064. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  18065. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  18066. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  18067. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  18068. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  18069. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  18070. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  18071. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  18072. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  18073. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  18074. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  18075. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  18076. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  18077. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  18078. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  18079. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  18080. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  18081. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  18082. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  18083. #ifdef GGML_USE_LLAMAFILE
  18084. s += "LLAMAFILE = 1 | ";
  18085. #else
  18086. s += "LLAMAFILE = 0 | ";
  18087. #endif
  18088. return s.c_str();
  18089. }
  18090. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  18091. fprintf(stream, "\n");
  18092. fprintf(stream, "###########\n");
  18093. fprintf(stream, "# Timings #\n");
  18094. fprintf(stream, "###########\n");
  18095. fprintf(stream, "\n");
  18096. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  18097. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  18098. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  18099. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  18100. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  18101. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  18102. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  18103. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  18104. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  18105. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  18106. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  18107. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  18108. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  18109. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  18110. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  18111. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  18112. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  18113. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  18114. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  18115. }
  18116. // For internal test use
  18117. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  18118. struct llama_context * ctx
  18119. ) {
  18120. return ctx->model.tensors_by_name;
  18121. }
  18122. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  18123. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  18124. g_state.log_callback_user_data = user_data;
  18125. #ifdef GGML_USE_METAL
  18126. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  18127. #elif defined(GGML_USE_CUDA)
  18128. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  18129. #endif
  18130. }
  18131. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  18132. va_list args_copy;
  18133. va_copy(args_copy, args);
  18134. char buffer[128];
  18135. int len = vsnprintf(buffer, 128, format, args);
  18136. if (len < 128) {
  18137. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  18138. } else {
  18139. char* buffer2 = new char[len+1];
  18140. vsnprintf(buffer2, len+1, format, args_copy);
  18141. buffer2[len] = 0;
  18142. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  18143. delete[] buffer2;
  18144. }
  18145. va_end(args_copy);
  18146. }
  18147. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  18148. va_list args;
  18149. va_start(args, format);
  18150. llama_log_internal_v(level, format, args);
  18151. va_end(args);
  18152. }
  18153. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  18154. (void) level;
  18155. (void) user_data;
  18156. fputs(text, stderr);
  18157. fflush(stderr);
  18158. }