1
0

convert_hf_to_gguf.py 271 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. VISION = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.VISION: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is VisionModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. try:
  346. # for security reason, we don't allow loading remote code by default
  347. # if a model need remote code, we will fallback to config.json
  348. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  349. except Exception as e:
  350. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  351. logger.warning("Trying to load config.json instead")
  352. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  353. return json.load(f)
  354. @classmethod
  355. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  356. assert names
  357. def func(modelcls: AnyModel) -> AnyModel:
  358. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  359. for name in names:
  360. cls._model_classes[model_type][name] = modelcls
  361. return modelcls
  362. return func
  363. @classmethod
  364. def print_registered_models(cls):
  365. for model_type, model_classes in cls._model_classes.items():
  366. logger.error(f"{model_type.name} models:")
  367. for name in sorted(model_classes.keys()):
  368. logger.error(f" - {name}")
  369. @classmethod
  370. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  371. try:
  372. return cls._model_classes[model_type][arch]
  373. except KeyError:
  374. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  375. class TextModel(ModelBase):
  376. def __init__(self, *args, **kwargs):
  377. super().__init__(*args, **kwargs)
  378. if "text_config" in self.hparams:
  379. # move the text_config to the root level
  380. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  381. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  382. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  383. @classmethod
  384. def __init_subclass__(cls):
  385. # can't use an abstract property, because overriding it without type errors
  386. # would require using decorated functions instead of simply defining the property
  387. if "model_arch" not in cls.__dict__:
  388. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  389. def set_vocab(self):
  390. self._set_vocab_gpt2()
  391. def prepare_metadata(self, vocab_only: bool):
  392. super().prepare_metadata(vocab_only=vocab_only)
  393. total_params = self.gguf_writer.get_total_parameter_count()[0]
  394. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  395. output_type: str = self.ftype.name.partition("_")[2]
  396. # Filename Output
  397. if self.fname_out.is_dir():
  398. # Generate default filename based on model specification and available metadata
  399. if not vocab_only:
  400. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  401. else:
  402. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  403. # Use the default filename
  404. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  405. else:
  406. # Output path is a custom defined templated filename
  407. # Note: `not is_dir()` is used because `.is_file()` will not detect
  408. # file template strings as it doesn't actually exist as a file
  409. # Process templated file name with the output ftype, useful with the "auto" ftype
  410. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  411. logger.info("Set model tokenizer")
  412. self.set_vocab()
  413. def set_gguf_parameters(self):
  414. self.gguf_writer.add_block_count(self.block_count)
  415. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  416. self.gguf_writer.add_context_length(n_ctx)
  417. logger.info(f"gguf: context length = {n_ctx}")
  418. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  419. self.gguf_writer.add_embedding_length(n_embd)
  420. logger.info(f"gguf: embedding length = {n_embd}")
  421. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  422. self.gguf_writer.add_feed_forward_length(n_ff)
  423. logger.info(f"gguf: feed forward length = {n_ff}")
  424. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  425. self.gguf_writer.add_head_count(n_head)
  426. logger.info(f"gguf: head count = {n_head}")
  427. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  428. self.gguf_writer.add_head_count_kv(n_head_kv)
  429. logger.info(f"gguf: key-value head count = {n_head_kv}")
  430. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  431. self.gguf_writer.add_rope_freq_base(rope_theta)
  432. logger.info(f"gguf: rope theta = {rope_theta}")
  433. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  434. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  435. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  436. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  437. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  438. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  439. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  440. self.gguf_writer.add_expert_count(n_experts)
  441. logger.info(f"gguf: expert count = {n_experts}")
  442. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  443. self.gguf_writer.add_expert_used_count(n_experts_used)
  444. logger.info(f"gguf: experts used count = {n_experts_used}")
  445. if (head_dim := self.hparams.get("head_dim")) is not None:
  446. self.gguf_writer.add_key_length(head_dim)
  447. self.gguf_writer.add_value_length(head_dim)
  448. self.gguf_writer.add_file_type(self.ftype)
  449. logger.info(f"gguf: file type = {self.ftype}")
  450. def write_vocab(self):
  451. if len(self.gguf_writer.tensors) != 1:
  452. raise ValueError('Splitting the vocabulary is not supported')
  453. self.prepare_metadata(vocab_only=True)
  454. self.gguf_writer.write_header_to_file(path=self.fname_out)
  455. self.gguf_writer.write_kv_data_to_file()
  456. self.gguf_writer.close()
  457. def does_token_look_special(self, token: str | bytes) -> bool:
  458. if isinstance(token, (bytes, bytearray)):
  459. token_text = token.decode(encoding="utf-8")
  460. elif isinstance(token, memoryview):
  461. token_text = token.tobytes().decode(encoding="utf-8")
  462. else:
  463. token_text = token
  464. # Some models mark some added tokens which ought to be control tokens as not special.
  465. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  466. seems_special = token_text in (
  467. "<pad>", # deepseek-coder
  468. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  469. )
  470. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  471. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  472. # TODO: should these be marked as UNUSED instead? (maybe not)
  473. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  474. return seems_special
  475. # used for GPT-2 BPE and WordPiece vocabs
  476. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  477. tokens: list[str] = []
  478. toktypes: list[int] = []
  479. from transformers import AutoTokenizer
  480. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  481. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  482. assert max(tokenizer.vocab.values()) < vocab_size
  483. tokpre = self.get_vocab_base_pre(tokenizer)
  484. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  485. added_vocab = tokenizer.get_added_vocab()
  486. added_tokens_decoder = tokenizer.added_tokens_decoder
  487. for i in range(vocab_size):
  488. if i not in reverse_vocab:
  489. tokens.append(f"[PAD{i}]")
  490. toktypes.append(gguf.TokenType.UNUSED)
  491. else:
  492. token: str = reverse_vocab[i]
  493. if token in added_vocab:
  494. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  495. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  496. if not added_tokens_decoder[i].normalized:
  497. previous_token = token
  498. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  499. if previous_token != token:
  500. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  501. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  502. toktypes.append(gguf.TokenType.CONTROL)
  503. else:
  504. # NOTE: this was added for Gemma.
  505. # Encoding and decoding the tokens above isn't sufficient for this case.
  506. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  507. toktypes.append(gguf.TokenType.USER_DEFINED)
  508. else:
  509. toktypes.append(gguf.TokenType.NORMAL)
  510. tokens.append(token)
  511. return tokens, toktypes, tokpre
  512. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  513. # do not modify it manually!
  514. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  515. # Marker: Start get_vocab_base_pre
  516. def get_vocab_base_pre(self, tokenizer) -> str:
  517. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  518. # is specific for the BPE pre-tokenizer used by the model
  519. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  520. # use in llama.cpp to implement the same pre-tokenizer
  521. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  522. chktok = tokenizer.encode(chktxt)
  523. chkhsh = sha256(str(chktok).encode()).hexdigest()
  524. logger.debug(f"chktok: {chktok}")
  525. logger.debug(f"chkhsh: {chkhsh}")
  526. res = None
  527. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  528. # or pull the latest version of the model from Huggingface
  529. # don't edit the hashes manually!
  530. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  531. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  532. res = "llama-bpe"
  533. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  534. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  535. res = "deepseek-llm"
  536. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  537. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  538. res = "deepseek-coder"
  539. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  540. # ref: https://huggingface.co/tiiuae/falcon-7b
  541. res = "falcon"
  542. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  543. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  544. res = "falcon3"
  545. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  546. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  547. res = "bert-bge"
  548. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  549. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  550. res = "bert-bge-large"
  551. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  552. # ref: https://huggingface.co/mosaicml/mpt-7b
  553. res = "mpt"
  554. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  555. # ref: https://huggingface.co/bigcode/starcoder2-3b
  556. res = "starcoder"
  557. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  558. # ref: https://huggingface.co/openai-community/gpt2
  559. res = "gpt-2"
  560. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  561. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  562. res = "stablelm2"
  563. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  564. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  565. res = "refact"
  566. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  567. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  568. res = "command-r"
  569. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  570. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  571. res = "qwen2"
  572. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  573. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  574. res = "olmo"
  575. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  576. # ref: https://huggingface.co/databricks/dbrx-base
  577. res = "dbrx"
  578. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  579. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  580. res = "jina-v1-en"
  581. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  582. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  583. res = "jina-v2-en"
  584. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  585. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  586. res = "jina-v2-es"
  587. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  588. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  589. res = "jina-v2-de"
  590. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  591. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  592. res = "smaug-bpe"
  593. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  594. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  595. res = "poro-chat"
  596. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  598. res = "jina-v2-code"
  599. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  600. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  601. res = "chatglm-bpe"
  602. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  603. # ref: https://huggingface.co/LumiOpen/Viking-7B
  604. res = "viking"
  605. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  606. # ref: https://huggingface.co/core42/jais-13b
  607. res = "jais"
  608. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  609. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  610. res = "codeshell"
  611. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  612. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  613. res = "tekken"
  614. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  615. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  616. res = "smollm"
  617. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  618. # ref: https://huggingface.co/bigscience/bloom
  619. res = "bloom"
  620. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  621. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  622. res = "gpt3-finnish"
  623. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  624. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  625. res = "exaone"
  626. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  627. # ref: https://huggingface.co/microsoft/phi-2
  628. res = "phi-2"
  629. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  630. # ref: https://huggingface.co/facebook/chameleon-7b
  631. res = "chameleon"
  632. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  633. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  634. res = "minerva-7b"
  635. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  636. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  637. res = "roberta-bpe"
  638. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  639. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  640. res = "gigachat"
  641. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  642. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  643. res = "megrez"
  644. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  645. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  646. res = "deepseek-v3"
  647. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  648. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  649. res = "deepseek-r1-qwen"
  650. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  651. # ref: https://huggingface.co/Xenova/gpt-4o
  652. res = "gpt-4o"
  653. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  654. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  655. res = "superbpe"
  656. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  657. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  658. res = "trillion"
  659. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  660. # ref: https://huggingface.co/inclusionAI/Ling-lite
  661. res = "bailingmoe"
  662. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  663. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  664. res = "llama4"
  665. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  666. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  667. res = "glm4"
  668. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  669. # ref: https://huggingface.co/mistral-community/pixtral-12b
  670. res = "pixtral"
  671. if res is None:
  672. logger.warning("\n")
  673. logger.warning("**************************************************************************************")
  674. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  675. logger.warning("** There are 2 possible reasons for this:")
  676. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  677. logger.warning("** - the pre-tokenization config has changed upstream")
  678. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  679. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  680. logger.warning("**")
  681. logger.warning(f"** chkhsh: {chkhsh}")
  682. logger.warning("**************************************************************************************")
  683. logger.warning("\n")
  684. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  685. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  686. logger.debug(f"chkhsh: {chkhsh}")
  687. return res
  688. # Marker: End get_vocab_base_pre
  689. def _set_vocab_none(self) -> None:
  690. self.gguf_writer.add_tokenizer_model("none")
  691. def _set_vocab_gpt2(self) -> None:
  692. tokens, toktypes, tokpre = self.get_vocab_base()
  693. self.gguf_writer.add_tokenizer_model("gpt2")
  694. self.gguf_writer.add_tokenizer_pre(tokpre)
  695. self.gguf_writer.add_token_list(tokens)
  696. self.gguf_writer.add_token_types(toktypes)
  697. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  698. special_vocab.add_to_gguf(self.gguf_writer)
  699. def _set_vocab_qwen(self):
  700. dir_model = self.dir_model
  701. hparams = self.hparams
  702. tokens: list[str] = []
  703. toktypes: list[int] = []
  704. from transformers import AutoTokenizer
  705. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  706. vocab_size = hparams["vocab_size"]
  707. assert max(tokenizer.get_vocab().values()) < vocab_size
  708. tokpre = self.get_vocab_base_pre(tokenizer)
  709. merges = []
  710. vocab = {}
  711. mergeable_ranks = tokenizer.mergeable_ranks
  712. for token, rank in mergeable_ranks.items():
  713. vocab[QwenModel.token_bytes_to_string(token)] = rank
  714. if len(token) == 1:
  715. continue
  716. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  717. assert len(merged) == 2
  718. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  719. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  720. added_vocab = tokenizer.special_tokens
  721. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  722. for i in range(vocab_size):
  723. if i not in reverse_vocab:
  724. tokens.append(f"[PAD{i}]")
  725. toktypes.append(gguf.TokenType.UNUSED)
  726. elif reverse_vocab[i] in added_vocab:
  727. tokens.append(reverse_vocab[i])
  728. toktypes.append(gguf.TokenType.CONTROL)
  729. else:
  730. tokens.append(reverse_vocab[i])
  731. toktypes.append(gguf.TokenType.NORMAL)
  732. self.gguf_writer.add_tokenizer_model("gpt2")
  733. self.gguf_writer.add_tokenizer_pre(tokpre)
  734. self.gguf_writer.add_token_list(tokens)
  735. self.gguf_writer.add_token_types(toktypes)
  736. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  737. special_vocab.merges = merges
  738. # only add special tokens when they were not already loaded from config.json
  739. if len(special_vocab.special_token_ids) == 0:
  740. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  741. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  742. # this one is usually not in config.json anyway
  743. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  744. special_vocab.add_to_gguf(self.gguf_writer)
  745. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  746. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  747. self.gguf_writer.add_tokenizer_model("llama")
  748. self.gguf_writer.add_tokenizer_pre("default")
  749. self.gguf_writer.add_token_list(tokens)
  750. self.gguf_writer.add_token_scores(scores)
  751. self.gguf_writer.add_token_types(toktypes)
  752. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  753. special_vocab.add_to_gguf(self.gguf_writer)
  754. def _create_vocab_sentencepiece(self):
  755. from sentencepiece import SentencePieceProcessor
  756. tokenizer_path = self.dir_model / 'tokenizer.model'
  757. if not tokenizer_path.is_file():
  758. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  759. tokenizer = SentencePieceProcessor()
  760. tokenizer.LoadFromFile(str(tokenizer_path))
  761. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  762. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  763. scores: list[float] = [-10000.0] * vocab_size
  764. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  765. for token_id in range(tokenizer.vocab_size()):
  766. piece = tokenizer.IdToPiece(token_id)
  767. text = piece.encode("utf-8")
  768. score = tokenizer.GetScore(token_id)
  769. toktype = SentencePieceTokenTypes.NORMAL
  770. if tokenizer.IsUnknown(token_id):
  771. toktype = SentencePieceTokenTypes.UNKNOWN
  772. elif tokenizer.IsControl(token_id):
  773. toktype = SentencePieceTokenTypes.CONTROL
  774. elif tokenizer.IsUnused(token_id):
  775. toktype = SentencePieceTokenTypes.UNUSED
  776. elif tokenizer.IsByte(token_id):
  777. toktype = SentencePieceTokenTypes.BYTE
  778. tokens[token_id] = text
  779. scores[token_id] = score
  780. toktypes[token_id] = toktype
  781. added_tokens_file = self.dir_model / 'added_tokens.json'
  782. if added_tokens_file.is_file():
  783. with open(added_tokens_file, "r", encoding="utf-8") as f:
  784. added_tokens_json = json.load(f)
  785. for key in added_tokens_json:
  786. token_id = added_tokens_json[key]
  787. if token_id >= vocab_size:
  788. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  789. continue
  790. tokens[token_id] = key.encode("utf-8")
  791. scores[token_id] = -1000.0
  792. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  793. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  794. if tokenizer_config_file.is_file():
  795. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  796. tokenizer_config_json = json.load(f)
  797. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  798. for token_id, token_data in added_tokens_decoder.items():
  799. token_id = int(token_id)
  800. token: str = token_data["content"]
  801. if token_id >= vocab_size:
  802. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  803. continue
  804. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  805. if tokens[token_id] != token.encode("utf-8"):
  806. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  807. if token_data.get("special") or self.does_token_look_special(token):
  808. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  809. else:
  810. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  811. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  812. scores[token_id] = -1000.0
  813. tokens[token_id] = token.encode("utf-8")
  814. if vocab_size > len(tokens):
  815. pad_count = vocab_size - len(tokens)
  816. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  817. for i in range(1, pad_count + 1):
  818. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  819. scores.append(-1000.0)
  820. toktypes.append(SentencePieceTokenTypes.UNUSED)
  821. return tokens, scores, toktypes
  822. def _set_vocab_llama_hf(self):
  823. vocab = gguf.LlamaHfVocab(self.dir_model)
  824. tokens = []
  825. scores = []
  826. toktypes = []
  827. for text, score, toktype in vocab.all_tokens():
  828. tokens.append(text)
  829. scores.append(score)
  830. toktypes.append(toktype)
  831. assert len(tokens) == vocab.vocab_size
  832. self.gguf_writer.add_tokenizer_model("llama")
  833. self.gguf_writer.add_tokenizer_pre("default")
  834. self.gguf_writer.add_token_list(tokens)
  835. self.gguf_writer.add_token_scores(scores)
  836. self.gguf_writer.add_token_types(toktypes)
  837. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  838. special_vocab.add_to_gguf(self.gguf_writer)
  839. def _set_vocab_rwkv_world(self):
  840. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  841. vocab_size = self.hparams.get("vocab_size", 65536)
  842. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  843. toktypes: list[int] = [gguf.TokenType.CONTROL]
  844. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  845. lines = f.readlines()
  846. for line in lines:
  847. parts = line.split(' ')
  848. assert len(parts) >= 3
  849. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  850. token = token.encode("utf-8") if isinstance(token, str) else token
  851. assert isinstance(token, bytes)
  852. assert len(token) == token_len
  853. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  854. tokens.append(token_text.encode("utf-8"))
  855. toktypes.append(gguf.TokenType.NORMAL)
  856. remainder = vocab_size - len(tokens)
  857. assert remainder >= 0
  858. for i in range(len(tokens), vocab_size):
  859. tokens.append(f"[PAD{i}]".encode("utf-8"))
  860. toktypes.append(gguf.TokenType.UNUSED)
  861. self.gguf_writer.add_tokenizer_model("rwkv")
  862. self.gguf_writer.add_token_list(tokens)
  863. self.gguf_writer.add_token_types(toktypes)
  864. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  865. special_vocab.chat_template = "rwkv-world"
  866. # hack: Add '\n\n' as the EOT token to make it chat normally
  867. special_vocab._set_special_token("eot", 261)
  868. special_vocab.add_to_gguf(self.gguf_writer)
  869. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  870. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  871. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  872. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  873. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  874. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  875. assert field # tokenizer model
  876. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  877. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  878. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  879. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  880. assert field # token list
  881. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  882. if model_name == "llama-spm":
  883. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  884. assert field # token scores
  885. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  886. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  887. assert field # token types
  888. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  889. if model_name != "llama-spm":
  890. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  891. assert field # token merges
  892. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  893. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  894. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  895. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  896. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  897. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  898. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  899. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  900. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  901. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  902. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  903. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  904. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  905. class VisionModel(ModelBase):
  906. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  907. n_text_embd = 0
  908. preprocessor_config: dict[str, Any]
  909. global_config: dict[str, Any]
  910. def __init__(self, *args, **kwargs):
  911. super().__init__(*args, **kwargs)
  912. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  913. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  914. # get n_embd of the text model
  915. text_config = {**self.hparams, **self.hparams["text_config"]}
  916. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  917. assert self.n_embd_text > 0, "n_embd not found in hparams"
  918. if "vision_config" not in self.hparams:
  919. raise ValueError("vision_config not found in hparams")
  920. # move vision config to the top level, while preserving the original hparams in global_config
  921. self.global_config = self.hparams
  922. self.hparams = self.hparams["vision_config"]
  923. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  924. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
  925. # load preprocessor config
  926. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  927. self.preprocessor_config = json.load(f)
  928. def set_type(self):
  929. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  930. def set_gguf_parameters(self):
  931. self.gguf_writer.add_file_type(self.ftype)
  932. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  933. self.gguf_writer.add_vision_has_vision_encoder(True)
  934. # vision config
  935. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  936. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  937. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  938. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  939. self.gguf_writer.add_vision_block_count(self.block_count)
  940. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  941. # preprocessor config
  942. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  943. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  944. def write_vocab(self):
  945. raise ValueError("VisionModel does not support vocab writing")
  946. @ModelBase.register("GPTNeoXForCausalLM")
  947. class GPTNeoXModel(TextModel):
  948. model_arch = gguf.MODEL_ARCH.GPTNEOX
  949. def set_gguf_parameters(self):
  950. block_count = self.hparams["num_hidden_layers"]
  951. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  952. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  953. self.gguf_writer.add_block_count(block_count)
  954. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  955. self.gguf_writer.add_rope_dimension_count(
  956. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  957. )
  958. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  959. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  960. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  962. del bid # unused
  963. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  964. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  965. tensors: list[tuple[str, Tensor]] = []
  966. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  967. # Map bloom-style qkv_linear to gpt-style qkv_linear
  968. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  969. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  970. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  971. data_torch = torch.cat(
  972. (
  973. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  974. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  975. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  976. ),
  977. dim=0,
  978. )
  979. logger.info("re-format attention.linear_qkv.weight")
  980. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  981. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  982. data_torch = torch.cat(
  983. (
  984. qkv_bias[:, 0, :].reshape((n_embed,)),
  985. qkv_bias[:, 1, :].reshape((n_embed,)),
  986. qkv_bias[:, 2, :].reshape((n_embed,)),
  987. ),
  988. dim=0,
  989. )
  990. logger.info("re-format attention.linear_qkv.bias")
  991. tensors.append((self.map_tensor_name(name), data_torch))
  992. return tensors
  993. @ModelBase.register("BloomForCausalLM", "BloomModel")
  994. class BloomModel(TextModel):
  995. model_arch = gguf.MODEL_ARCH.BLOOM
  996. def set_gguf_parameters(self):
  997. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  998. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  999. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1000. self.gguf_writer.add_embedding_length(n_embed)
  1001. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1002. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1003. self.gguf_writer.add_head_count(n_head)
  1004. self.gguf_writer.add_head_count_kv(n_head)
  1005. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1006. self.gguf_writer.add_file_type(self.ftype)
  1007. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1008. del bid # unused
  1009. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1010. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1011. name = re.sub(r'transformer\.', '', name)
  1012. tensors: list[tuple[str, Tensor]] = []
  1013. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1014. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1015. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1016. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1017. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1018. data_torch = torch.cat(
  1019. (
  1020. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1021. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1022. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1023. ),
  1024. dim=0,
  1025. )
  1026. logger.info("re-format attention.linear_qkv.weight")
  1027. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1028. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1029. data_torch = torch.cat(
  1030. (
  1031. qkv_bias[:, 0, :].reshape((n_embed,)),
  1032. qkv_bias[:, 1, :].reshape((n_embed,)),
  1033. qkv_bias[:, 2, :].reshape((n_embed,)),
  1034. ),
  1035. dim=0,
  1036. )
  1037. logger.info("re-format attention.linear_qkv.bias")
  1038. tensors.append((self.map_tensor_name(name), data_torch))
  1039. return tensors
  1040. @ModelBase.register("MPTForCausalLM")
  1041. class MPTModel(TextModel):
  1042. model_arch = gguf.MODEL_ARCH.MPT
  1043. def set_vocab(self):
  1044. try:
  1045. self._set_vocab_gpt2()
  1046. except Exception:
  1047. # Fallback for SEA-LION model
  1048. self._set_vocab_sentencepiece()
  1049. self.gguf_writer.add_add_bos_token(False)
  1050. self.gguf_writer.add_pad_token_id(3)
  1051. self.gguf_writer.add_eos_token_id(1)
  1052. self.gguf_writer.add_unk_token_id(0)
  1053. def set_gguf_parameters(self):
  1054. block_count = self.hparams["n_layers"]
  1055. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1056. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1057. self.gguf_writer.add_block_count(block_count)
  1058. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1059. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1060. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1061. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1062. self.gguf_writer.add_layer_norm_eps(1e-5)
  1063. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1064. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1065. if self.hparams["attn_config"]["alibi"]:
  1066. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1067. else:
  1068. self.gguf_writer.add_max_alibi_bias(0.0)
  1069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1070. del bid # unused
  1071. if "scales" in name:
  1072. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1073. new_name = new_name.replace("scales", "act.scales")
  1074. else:
  1075. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1076. return [(new_name, data_torch)]
  1077. @ModelBase.register("OrionForCausalLM")
  1078. class OrionModel(TextModel):
  1079. model_arch = gguf.MODEL_ARCH.ORION
  1080. def set_vocab(self):
  1081. self._set_vocab_sentencepiece()
  1082. def set_gguf_parameters(self):
  1083. block_count = self.hparams["num_hidden_layers"]
  1084. head_count = self.hparams["num_attention_heads"]
  1085. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1086. ctx_length = 0
  1087. if "max_sequence_length" in self.hparams:
  1088. ctx_length = self.hparams["max_sequence_length"]
  1089. elif "max_position_embeddings" in self.hparams:
  1090. ctx_length = self.hparams["max_position_embeddings"]
  1091. elif "model_max_length" in self.hparams:
  1092. ctx_length = self.hparams["model_max_length"]
  1093. else:
  1094. raise ValueError("gguf: can not find ctx length parameter.")
  1095. self.gguf_writer.add_file_type(self.ftype)
  1096. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1097. self.gguf_writer.add_context_length(ctx_length)
  1098. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1099. self.gguf_writer.add_block_count(block_count)
  1100. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1101. self.gguf_writer.add_head_count(head_count)
  1102. self.gguf_writer.add_head_count_kv(head_count_kv)
  1103. # note: config provides rms norm but it is actually layer norm
  1104. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1105. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1106. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1107. class BaichuanModel(TextModel):
  1108. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1109. def set_vocab(self):
  1110. self._set_vocab_sentencepiece()
  1111. def set_gguf_parameters(self):
  1112. block_count = self.hparams["num_hidden_layers"]
  1113. head_count = self.hparams["num_attention_heads"]
  1114. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1115. ctx_length = 0
  1116. if "max_sequence_length" in self.hparams:
  1117. ctx_length = self.hparams["max_sequence_length"]
  1118. elif "max_position_embeddings" in self.hparams:
  1119. ctx_length = self.hparams["max_position_embeddings"]
  1120. elif "model_max_length" in self.hparams:
  1121. ctx_length = self.hparams["model_max_length"]
  1122. else:
  1123. raise ValueError("gguf: can not find ctx length parameter.")
  1124. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1125. self.gguf_writer.add_context_length(ctx_length)
  1126. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1127. self.gguf_writer.add_block_count(block_count)
  1128. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1129. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1130. self.gguf_writer.add_head_count(head_count)
  1131. self.gguf_writer.add_head_count_kv(head_count_kv)
  1132. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1133. self.gguf_writer.add_file_type(self.ftype)
  1134. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1135. if self.hparams["rope_scaling"].get("type") == "linear":
  1136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1137. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1138. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1139. head_count = self.hparams["num_attention_heads"]
  1140. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1141. tensors: list[tuple[str, Tensor]] = []
  1142. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1143. logger.info(f"Unpacking and permuting layer {bid}")
  1144. tensors = [
  1145. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1146. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1147. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1148. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1149. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1150. self._reverse_hf_part(data_torch, 2)),
  1151. ]
  1152. else:
  1153. tensors = [(self.map_tensor_name(name), data_torch)]
  1154. return tensors
  1155. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1156. if n_kv_head is not None and n_head != n_kv_head:
  1157. n_head //= n_kv_head
  1158. return (
  1159. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1160. .swapaxes(1, 2)
  1161. .reshape(weights.shape)
  1162. )
  1163. def _reverse_hf_permute_part(
  1164. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1165. ) -> Tensor:
  1166. r = weights.shape[0] // 3
  1167. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1168. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1169. r = weights.shape[0] // 3
  1170. return weights[r * n_part:r * n_part + r, ...]
  1171. @ModelBase.register("XverseForCausalLM")
  1172. class XverseModel(TextModel):
  1173. model_arch = gguf.MODEL_ARCH.XVERSE
  1174. def set_vocab(self):
  1175. assert (self.dir_model / "tokenizer.json").is_file()
  1176. dir_model = self.dir_model
  1177. hparams = self.hparams
  1178. tokens: list[bytes] = []
  1179. toktypes: list[int] = []
  1180. from transformers import AutoTokenizer
  1181. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1182. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1183. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1184. # because vocab_size is the count of items, and indexes start at 0.
  1185. max_vocab_index = max(tokenizer.get_vocab().values())
  1186. if max_vocab_index >= vocab_size:
  1187. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1188. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1189. added_vocab = tokenizer.get_added_vocab()
  1190. for token_id in range(vocab_size):
  1191. token_text = reverse_vocab[token_id].encode('utf-8')
  1192. # replace "\x00" to string with length > 0
  1193. if token_text == b"\x00":
  1194. toktype = gguf.TokenType.BYTE # special
  1195. token_text = f"<{token_text}>".encode('utf-8')
  1196. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1197. toktype = gguf.TokenType.BYTE # special
  1198. elif reverse_vocab[token_id] in added_vocab:
  1199. if tokenizer.added_tokens_decoder[token_id].special:
  1200. toktype = gguf.TokenType.CONTROL
  1201. else:
  1202. toktype = gguf.TokenType.USER_DEFINED
  1203. else:
  1204. toktype = gguf.TokenType.NORMAL
  1205. tokens.append(token_text)
  1206. toktypes.append(toktype)
  1207. self.gguf_writer.add_tokenizer_model("llama")
  1208. self.gguf_writer.add_tokenizer_pre("default")
  1209. self.gguf_writer.add_token_list(tokens)
  1210. self.gguf_writer.add_token_types(toktypes)
  1211. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1212. special_vocab.add_to_gguf(self.gguf_writer)
  1213. def set_gguf_parameters(self):
  1214. block_count = self.hparams["num_hidden_layers"]
  1215. head_count = self.hparams["num_attention_heads"]
  1216. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1217. ctx_length = 0
  1218. if "max_sequence_length" in self.hparams:
  1219. ctx_length = self.hparams["max_sequence_length"]
  1220. elif "max_position_embeddings" in self.hparams:
  1221. ctx_length = self.hparams["max_position_embeddings"]
  1222. elif "model_max_length" in self.hparams:
  1223. ctx_length = self.hparams["model_max_length"]
  1224. else:
  1225. raise ValueError("gguf: can not find ctx length parameter.")
  1226. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1227. self.gguf_writer.add_context_length(ctx_length)
  1228. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1229. self.gguf_writer.add_block_count(block_count)
  1230. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1231. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1232. self.gguf_writer.add_head_count(head_count)
  1233. self.gguf_writer.add_head_count_kv(head_count_kv)
  1234. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1235. self.gguf_writer.add_file_type(self.ftype)
  1236. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1237. if self.hparams["rope_scaling"].get("type") == "linear":
  1238. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1239. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1241. del bid # unused
  1242. head_count = self.hparams["num_attention_heads"]
  1243. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1244. # HF models permute some of the tensors, so we need to undo that
  1245. if name.endswith("q_proj.weight"):
  1246. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1247. if name.endswith("k_proj.weight"):
  1248. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1249. return [(self.map_tensor_name(name), data_torch)]
  1250. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1251. if n_kv_head is not None and n_head != n_kv_head:
  1252. n_head //= n_kv_head
  1253. return (
  1254. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1255. .swapaxes(1, 2)
  1256. .reshape(weights.shape)
  1257. )
  1258. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1259. class FalconModel(TextModel):
  1260. model_arch = gguf.MODEL_ARCH.FALCON
  1261. def set_gguf_parameters(self):
  1262. block_count = self.hparams.get("num_hidden_layers")
  1263. if block_count is None:
  1264. block_count = self.hparams["n_layer"] # old name
  1265. n_head = self.hparams.get("num_attention_heads")
  1266. if n_head is None:
  1267. n_head = self.hparams["n_head"] # old name
  1268. n_head_kv = self.hparams.get("num_kv_heads")
  1269. if n_head_kv is None:
  1270. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1271. self.gguf_writer.add_context_length(2048) # not in config.json
  1272. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1273. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1274. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1275. self.gguf_writer.add_block_count(block_count)
  1276. self.gguf_writer.add_head_count(n_head)
  1277. self.gguf_writer.add_head_count_kv(n_head_kv)
  1278. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1279. self.gguf_writer.add_file_type(self.ftype)
  1280. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1281. del bid # unused
  1282. # QKV tensor transform
  1283. # The original query_key_value tensor contains n_head_kv "kv groups",
  1284. # each consisting of n_head/n_head_kv query weights followed by one key
  1285. # and one value weight (shared by all query heads in the kv group).
  1286. # This layout makes it a big pain to work with in GGML.
  1287. # So we rearrange them here,, so that we have n_head query weights
  1288. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1289. # in contiguous fashion.
  1290. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1291. if "query_key_value" in name:
  1292. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1293. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1294. head_dim = self.hparams["hidden_size"] // n_head
  1295. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1296. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1297. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1298. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1299. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1300. return [(self.map_tensor_name(name), data_torch)]
  1301. @ModelBase.register("GPTBigCodeForCausalLM")
  1302. class StarCoderModel(TextModel):
  1303. model_arch = gguf.MODEL_ARCH.STARCODER
  1304. def set_gguf_parameters(self):
  1305. block_count = self.hparams["n_layer"]
  1306. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1307. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1308. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1309. self.gguf_writer.add_block_count(block_count)
  1310. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1311. self.gguf_writer.add_head_count_kv(1)
  1312. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1313. self.gguf_writer.add_file_type(self.ftype)
  1314. @ModelBase.register("GPTRefactForCausalLM")
  1315. class RefactModel(TextModel):
  1316. model_arch = gguf.MODEL_ARCH.REFACT
  1317. def set_vocab(self):
  1318. super().set_vocab()
  1319. # TODO: how to determine special FIM tokens automatically?
  1320. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1321. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1322. special_vocab._set_special_token("prefix", 1)
  1323. special_vocab._set_special_token("suffix", 3)
  1324. special_vocab._set_special_token("middle", 2)
  1325. special_vocab.chat_template = None # do not add it twice
  1326. special_vocab.add_to_gguf(self.gguf_writer)
  1327. def set_gguf_parameters(self):
  1328. hidden_dim = self.hparams["n_embd"]
  1329. inner_dim = 4 * hidden_dim
  1330. hidden_dim = int(2 * inner_dim / 3)
  1331. multiple_of = 256
  1332. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1333. block_count = self.hparams["n_layer"]
  1334. # refact uses Alibi. So this is from config.json which might be used by training.
  1335. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1336. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1337. self.gguf_writer.add_feed_forward_length(ff_dim)
  1338. self.gguf_writer.add_block_count(block_count)
  1339. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1340. self.gguf_writer.add_head_count_kv(1)
  1341. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1342. self.gguf_writer.add_file_type(self.ftype)
  1343. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1344. hidden_dim = self.hparams["n_embd"]
  1345. inner_dim = 4 * hidden_dim
  1346. hidden_dim = int(2 * inner_dim / 3)
  1347. multiple_of = 256
  1348. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1349. n_head = self.hparams["n_head"]
  1350. n_head_kv = 1
  1351. head_dim = self.hparams["n_embd"] // n_head
  1352. tensors: list[tuple[str, Tensor]] = []
  1353. if bid is not None:
  1354. if name == f"transformer.h.{bid}.attn.kv.weight":
  1355. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1356. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1357. elif name == f"transformer.h.{bid}.attn.q.weight":
  1358. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1359. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1360. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1361. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1362. if len(tensors) == 0:
  1363. tensors.append((self.map_tensor_name(name), data_torch))
  1364. return tensors
  1365. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1366. class StableLMModel(TextModel):
  1367. model_arch = gguf.MODEL_ARCH.STABLELM
  1368. def set_vocab(self):
  1369. if (self.dir_model / "tokenizer.json").is_file():
  1370. self._set_vocab_gpt2()
  1371. else:
  1372. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1373. self._set_vocab_qwen()
  1374. def set_gguf_parameters(self):
  1375. hparams = self.hparams
  1376. block_count = hparams["num_hidden_layers"]
  1377. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1378. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1379. self.gguf_writer.add_block_count(block_count)
  1380. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1381. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1382. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1383. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1384. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1385. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1386. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1387. self.gguf_writer.add_file_type(self.ftype)
  1388. _q_norms: list[dict[str, Tensor]] | None = None
  1389. _k_norms: list[dict[str, Tensor]] | None = None
  1390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1391. n_head = self.hparams["num_attention_heads"]
  1392. n_kv_head = self.hparams["num_key_value_heads"]
  1393. if name.find("q_layernorm.norms") != -1:
  1394. assert bid is not None
  1395. if self._q_norms is None:
  1396. self._q_norms = [{} for _ in range(self.block_count)]
  1397. self._q_norms[bid][name] = data_torch
  1398. if len(self._q_norms[bid]) >= n_head:
  1399. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1400. else:
  1401. return []
  1402. if name.find("k_layernorm.norms") != -1:
  1403. assert bid is not None
  1404. if self._k_norms is None:
  1405. self._k_norms = [{} for _ in range(self.block_count)]
  1406. self._k_norms[bid][name] = data_torch
  1407. if len(self._k_norms[bid]) >= n_kv_head:
  1408. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1409. else:
  1410. return []
  1411. return [(self.map_tensor_name(name), data_torch)]
  1412. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1413. datas: list[Tensor] = []
  1414. # extract the norms in order
  1415. for xid in range(n_head):
  1416. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1417. datas.append(norms[ename])
  1418. del norms[ename]
  1419. data_torch = torch.stack(datas, dim=0)
  1420. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1421. new_name = self.map_tensor_name(merged_name)
  1422. return [(new_name, data_torch)]
  1423. def prepare_tensors(self):
  1424. super().prepare_tensors()
  1425. if self._q_norms is not None or self._k_norms is not None:
  1426. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1427. norms = (
  1428. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1429. ) + (
  1430. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1431. )
  1432. if len(norms) > 0:
  1433. raise ValueError(f"Unprocessed norms: {norms}")
  1434. @ModelBase.register(
  1435. "LLaMAForCausalLM",
  1436. "LlamaForCausalLM",
  1437. "MistralForCausalLM",
  1438. "MixtralForCausalLM",
  1439. "VLlama3ForCausalLM",
  1440. "LlavaForConditionalGeneration")
  1441. class LlamaModel(TextModel):
  1442. model_arch = gguf.MODEL_ARCH.LLAMA
  1443. undo_permute = True
  1444. def set_vocab(self):
  1445. try:
  1446. self._set_vocab_sentencepiece()
  1447. except FileNotFoundError:
  1448. try:
  1449. self._set_vocab_llama_hf()
  1450. except (FileNotFoundError, TypeError):
  1451. # Llama 3
  1452. self._set_vocab_gpt2()
  1453. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1454. if self.hparams.get("vocab_size", 32000) == 32016:
  1455. special_vocab = gguf.SpecialVocab(
  1456. self.dir_model, load_merges=False,
  1457. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1458. )
  1459. special_vocab._set_special_token("prefix", 32007)
  1460. special_vocab._set_special_token("suffix", 32008)
  1461. special_vocab._set_special_token("middle", 32009)
  1462. special_vocab._set_special_token("eot", 32010)
  1463. special_vocab.add_to_gguf(self.gguf_writer)
  1464. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1465. if tokenizer_config_file.is_file():
  1466. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1467. tokenizer_config_json = json.load(f)
  1468. if "add_prefix_space" in tokenizer_config_json:
  1469. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1470. # Apply to granite small models only
  1471. if self.hparams.get("vocab_size", 32000) == 49152:
  1472. self.gguf_writer.add_add_bos_token(False)
  1473. def set_gguf_parameters(self):
  1474. super().set_gguf_parameters()
  1475. hparams = self.hparams
  1476. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1477. if "head_dim" in hparams:
  1478. rope_dim = hparams["head_dim"]
  1479. else:
  1480. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1481. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1482. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1483. if self.hparams["rope_scaling"].get("type") == "linear":
  1484. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1485. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1486. @staticmethod
  1487. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1488. if n_head_kv is not None and n_head != n_head_kv:
  1489. n_head = n_head_kv
  1490. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1491. .swapaxes(1, 2)
  1492. .reshape(weights.shape))
  1493. _experts: list[dict[str, Tensor]] | None = None
  1494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1495. n_head = self.hparams["num_attention_heads"]
  1496. n_kv_head = self.hparams.get("num_key_value_heads")
  1497. is_vision_tensor = "vision_tower" in name \
  1498. or "vision_model" in name \
  1499. or "model.connector" in name \
  1500. or "multi_modal_projector" in name
  1501. if is_vision_tensor:
  1502. return [] # skip vision tensors
  1503. elif name.startswith("model.text_model"):
  1504. name = name.replace("text_model.", "") # for SmolVLM
  1505. elif name.startswith("language_model."):
  1506. name = name.replace("language_model.", "") # for the rest
  1507. if self.undo_permute:
  1508. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1509. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1510. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1511. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1512. # process the experts separately
  1513. if name.find("block_sparse_moe.experts") != -1:
  1514. n_experts = self.hparams["num_local_experts"]
  1515. assert bid is not None
  1516. if self._experts is None:
  1517. self._experts = [{} for _ in range(self.block_count)]
  1518. self._experts[bid][name] = data_torch
  1519. if len(self._experts[bid]) >= n_experts * 3:
  1520. tensors: list[tuple[str, Tensor]] = []
  1521. # merge the experts into a single 3d tensor
  1522. for wid in ["w1", "w2", "w3"]:
  1523. datas: list[Tensor] = []
  1524. for xid in range(n_experts):
  1525. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1526. datas.append(self._experts[bid][ename])
  1527. del self._experts[bid][ename]
  1528. data_torch = torch.stack(datas, dim=0)
  1529. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1530. new_name = self.map_tensor_name(merged_name)
  1531. tensors.append((new_name, data_torch))
  1532. return tensors
  1533. else:
  1534. return []
  1535. return [(self.map_tensor_name(name), data_torch)]
  1536. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1537. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1538. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1539. base = self.hparams.get("rope_theta", 10000.0)
  1540. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1541. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1542. factor = rope_scaling.get("factor", 8.0)
  1543. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1544. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1545. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1546. low_freq_wavelen = old_context_len / low_freq_factor
  1547. high_freq_wavelen = old_context_len / high_freq_factor
  1548. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1549. rope_factors = []
  1550. for freq in freqs:
  1551. wavelen = 2 * math.pi / freq
  1552. if wavelen < high_freq_wavelen:
  1553. rope_factors.append(1)
  1554. elif wavelen > low_freq_wavelen:
  1555. rope_factors.append(factor)
  1556. else:
  1557. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1558. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1559. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1560. def prepare_tensors(self):
  1561. super().prepare_tensors()
  1562. if self._experts is not None:
  1563. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1564. experts = [k for d in self._experts for k in d.keys()]
  1565. if len(experts) > 0:
  1566. raise ValueError(f"Unprocessed experts: {experts}")
  1567. @ModelBase.register(
  1568. "LlavaForConditionalGeneration", # pixtral
  1569. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1570. )
  1571. class LlavaVisionModel(VisionModel):
  1572. img_break_tok_id = -1
  1573. def __init__(self, *args, **kwargs):
  1574. super().__init__(*args, **kwargs)
  1575. if self.hparams["model_type"] == "pixtral":
  1576. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1577. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1578. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1579. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1580. else:
  1581. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1582. def get_token_id(self, token: str) -> int:
  1583. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1584. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1585. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1586. for id_, token_data in added_tokens_decoder.items():
  1587. if token_data["content"] == token:
  1588. return int(id_)
  1589. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1590. def set_gguf_parameters(self):
  1591. super().set_gguf_parameters()
  1592. hparams = self.hparams
  1593. if hparams["model_type"] == "pixtral":
  1594. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1595. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1596. # hidden_act
  1597. if hparams["hidden_act"] == "silu":
  1598. self.gguf_writer.add_vision_use_silu(True)
  1599. elif hparams["hidden_act"] == "gelu":
  1600. self.gguf_writer.add_vision_use_gelu(True)
  1601. else:
  1602. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1603. # spatial_merge_size
  1604. if "spatial_merge_size" in self.global_config:
  1605. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1607. del bid # unused
  1608. n_head = self.hparams["num_attention_heads"]
  1609. n_kv_head = n_head
  1610. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1611. # process vision tensors
  1612. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1613. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1614. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1615. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1616. return [(self.map_tensor_name(name), data_torch)]
  1617. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1618. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1619. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1620. img_break_embd = data_torch[self.img_break_tok_id]
  1621. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1622. return [(self.map_tensor_name(name), img_break_embd)]
  1623. return [] # skip other tensors
  1624. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1625. class SmolVLMModel(VisionModel):
  1626. def __init__(self, *args, **kwargs):
  1627. super().__init__(*args, **kwargs)
  1628. if self.hparams["model_type"] == "smolvlm_vision":
  1629. # fix for SmolVLM2, missing some keys in config.json
  1630. # default values are taken from transformers code
  1631. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1632. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1633. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1634. def set_gguf_parameters(self):
  1635. super().set_gguf_parameters()
  1636. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1637. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1638. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1639. self.gguf_writer.add_vision_use_gelu(True)
  1640. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1641. del bid, new_name, n_dims # unused
  1642. if ".embeddings." in name:
  1643. return gguf.GGMLQuantizationType.F32
  1644. return False
  1645. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1646. del bid # unused
  1647. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1648. if is_vision_tensor:
  1649. return [(self.map_tensor_name(name), data_torch)]
  1650. return [] # skip other tensors
  1651. @ModelBase.register("Llama4ForConditionalGeneration")
  1652. class Llama4Model(LlamaModel):
  1653. model_arch = gguf.MODEL_ARCH.LLAMA4
  1654. undo_permute = False
  1655. def __init__(self, *args, **kwargs):
  1656. super().__init__(*args, **kwargs)
  1657. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1658. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1659. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1660. def set_vocab(self):
  1661. self._set_vocab_gpt2()
  1662. self.gguf_writer.add_add_bos_token(True)
  1663. def set_gguf_parameters(self):
  1664. super().set_gguf_parameters()
  1665. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1666. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1668. # split the gate_up into gate and up
  1669. if "gate_up_proj" in name:
  1670. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1671. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1672. dim_half = data_torch.shape[-1] // 2
  1673. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1674. return [
  1675. (self.map_tensor_name(name_gate), gate_proj_weight),
  1676. (self.map_tensor_name(name_up), up_proj_weight)
  1677. ]
  1678. if name.endswith("down_proj"):
  1679. name += ".weight"
  1680. data_torch = data_torch.transpose(-1, -2)
  1681. if "multi_modal_projector" in name or "vision_model" in name:
  1682. return []
  1683. return super().modify_tensors(data_torch, name, bid)
  1684. @ModelBase.register("Mistral3ForConditionalGeneration")
  1685. class Mistral3Model(LlamaModel):
  1686. model_arch = gguf.MODEL_ARCH.LLAMA
  1687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1688. name = name.replace("language_model.", "")
  1689. if "multi_modal_projector" in name or "vision_tower" in name:
  1690. return []
  1691. return super().modify_tensors(data_torch, name, bid)
  1692. @ModelBase.register("DeciLMForCausalLM")
  1693. class DeciModel(TextModel):
  1694. model_arch = gguf.MODEL_ARCH.DECI
  1695. @staticmethod
  1696. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1697. # DeciLM-specific code
  1698. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1699. return DeciModel._find_multiple(intermediate_size, 256)
  1700. @staticmethod
  1701. def _find_multiple(n: int, k: int) -> int:
  1702. # DeciLM-specific code
  1703. if n % k == 0:
  1704. return n
  1705. return n + k - (n % k)
  1706. def __init__(self, *args, **kwargs):
  1707. super().__init__(*args, **kwargs)
  1708. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1709. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1710. assert self.block_count == len(_block_configs)
  1711. self._num_kv_heads = list()
  1712. self._num_heads = list()
  1713. _ffn_multipliers = list()
  1714. # ***linear attention layer***
  1715. # if n_heads_in_group is None and replace_with_linear is True
  1716. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1717. # ***attention-free layer***
  1718. # if n_heads_in_group is None and replace_with_linear is False
  1719. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1720. # ***normal attention-layer***
  1721. # if n_heads_in_group is not None, then
  1722. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1723. # _num_heads[il] is num_attention_head
  1724. for il in range(len(_block_configs)):
  1725. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1726. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1727. self._num_kv_heads.append(0)
  1728. self._num_heads.append(self.hparams["num_attention_heads"])
  1729. else:
  1730. self._num_kv_heads.append(0)
  1731. self._num_heads.append(0)
  1732. else:
  1733. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1734. self._num_heads.append(self.hparams["num_attention_heads"])
  1735. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1736. assert self.block_count == len(self._num_kv_heads)
  1737. assert self.block_count == len(self._num_heads)
  1738. assert self.block_count == len(_ffn_multipliers)
  1739. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1740. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1741. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1742. self._ffn_dims: list[int] = [
  1743. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1744. for multiplier in _ffn_multipliers
  1745. ]
  1746. def set_vocab(self):
  1747. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1748. # eos_token from '|eot_id|' to '|end_of_text|'
  1749. if self.hparams.get("vocab_size", 128256) == 128256:
  1750. tokens, toktypes, tokpre = self.get_vocab_base()
  1751. self.gguf_writer.add_tokenizer_model("gpt2")
  1752. self.gguf_writer.add_tokenizer_pre(tokpre)
  1753. self.gguf_writer.add_token_list(tokens)
  1754. self.gguf_writer.add_token_types(toktypes)
  1755. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1756. special_vocab.add_to_gguf(self.gguf_writer)
  1757. else:
  1758. # DeciLM-7B
  1759. self._set_vocab_llama_hf()
  1760. def set_gguf_parameters(self):
  1761. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1762. assert self.block_count == len(self._num_kv_heads)
  1763. assert self.block_count == len(self._num_heads)
  1764. assert self.block_count == len(self._ffn_dims)
  1765. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1766. self.gguf_writer.add_rope_freq_base(rope_theta)
  1767. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1768. self.gguf_writer.add_head_count(self._num_heads)
  1769. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1770. self.gguf_writer.add_block_count(self.block_count)
  1771. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1772. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1773. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1774. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1775. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1776. self.gguf_writer.add_file_type(self.ftype)
  1777. else: # DeciLM-7B
  1778. super().set_gguf_parameters()
  1779. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1780. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1781. assert self.block_count == len(self._num_kv_heads)
  1782. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1783. hparams = self.hparams
  1784. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1785. if "head_dim" in hparams:
  1786. rope_dim = hparams["head_dim"]
  1787. else:
  1788. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1789. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1790. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1791. if self.hparams["rope_scaling"].get("type") == "linear":
  1792. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1793. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1794. @staticmethod
  1795. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1796. if n_head_kv is not None and n_head != n_head_kv:
  1797. n_head = n_head_kv
  1798. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1799. .swapaxes(1, 2)
  1800. .reshape(weights.shape))
  1801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1802. n_head = self.hparams["num_attention_heads"]
  1803. if bid is not None:
  1804. if "num_key_value_heads_per_layer" in self.hparams:
  1805. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1806. elif "block_configs" in self.hparams:
  1807. n_kv_head = self._num_kv_heads[bid]
  1808. n_head = self._num_heads[bid]
  1809. else:
  1810. n_kv_head = self.hparams.get("num_key_value_heads")
  1811. else:
  1812. n_kv_head = self.hparams.get("num_key_value_heads")
  1813. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1814. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1815. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1816. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1817. return [(self.map_tensor_name(name), data_torch)]
  1818. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1819. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1820. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1821. base = self.hparams.get("rope_theta", 10000.0)
  1822. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1823. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1824. factor = rope_scaling.get("factor", 8.0)
  1825. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1826. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1827. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1828. low_freq_wavelen = old_context_len / low_freq_factor
  1829. high_freq_wavelen = old_context_len / high_freq_factor
  1830. assert low_freq_wavelen != high_freq_wavelen
  1831. rope_factors = []
  1832. for freq in freqs:
  1833. wavelen = 2 * math.pi / freq
  1834. if wavelen < high_freq_wavelen:
  1835. rope_factors.append(1)
  1836. elif wavelen > low_freq_wavelen:
  1837. rope_factors.append(factor)
  1838. else:
  1839. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1840. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1841. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1842. def prepare_tensors(self):
  1843. super().prepare_tensors()
  1844. @ModelBase.register("BitnetForCausalLM")
  1845. class BitnetModel(TextModel):
  1846. model_arch = gguf.MODEL_ARCH.BITNET
  1847. def set_vocab(self):
  1848. self._set_vocab_sentencepiece()
  1849. def set_gguf_parameters(self):
  1850. super().set_gguf_parameters()
  1851. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1852. self.gguf_writer.add_rope_scaling_factor(1.0)
  1853. def weight_quant(self, weight: Tensor) -> Tensor:
  1854. dtype = weight.dtype
  1855. weight = weight.float()
  1856. scale = weight.abs().mean().clamp(min=1e-5)
  1857. iscale = 1 / scale
  1858. # TODO: multiply by the scale directly instead of inverting it twice
  1859. # (this is also unnecessarily doubly inverted upstream)
  1860. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1861. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1862. return result.type(dtype)
  1863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1864. new_name = self.map_tensor_name(name)
  1865. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1866. gguf.MODEL_TENSOR.ATTN_Q,
  1867. gguf.MODEL_TENSOR.ATTN_K,
  1868. gguf.MODEL_TENSOR.ATTN_V,
  1869. gguf.MODEL_TENSOR.ATTN_OUT,
  1870. gguf.MODEL_TENSOR.FFN_UP,
  1871. gguf.MODEL_TENSOR.FFN_DOWN,
  1872. gguf.MODEL_TENSOR.FFN_GATE,
  1873. ]):
  1874. # transform weight into 1/0/-1 (in fp32)
  1875. data_torch = self.weight_quant(data_torch)
  1876. yield (new_name, data_torch)
  1877. @ModelBase.register("GrokForCausalLM")
  1878. class GrokModel(TextModel):
  1879. model_arch = gguf.MODEL_ARCH.GROK
  1880. def set_vocab(self):
  1881. self._set_vocab_sentencepiece()
  1882. def __init__(self, *args, **kwargs):
  1883. super().__init__(*args, **kwargs)
  1884. def set_gguf_parameters(self):
  1885. super().set_gguf_parameters()
  1886. _experts: list[dict[str, Tensor]] | None = None
  1887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1888. # process the experts separately
  1889. if name.find(".moe.") != -1:
  1890. n_experts = self.hparams["num_local_experts"]
  1891. assert bid is not None
  1892. if self._experts is None:
  1893. self._experts = [{} for _ in range(self.block_count)]
  1894. self._experts[bid][name] = data_torch
  1895. if len(self._experts[bid]) >= n_experts * 3:
  1896. tensors: list[tuple[str, Tensor]] = []
  1897. # merge the experts into a single 3d tensor
  1898. for wid in ["linear", "linear_1", "linear_v"]:
  1899. datas: list[Tensor] = []
  1900. for xid in range(n_experts):
  1901. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1902. datas.append(self._experts[bid][ename])
  1903. del self._experts[bid][ename]
  1904. data_torch = torch.stack(datas, dim=0)
  1905. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1906. new_name = self.map_tensor_name(merged_name)
  1907. tensors.append((new_name, data_torch))
  1908. return tensors
  1909. else:
  1910. return []
  1911. return [(self.map_tensor_name(name), data_torch)]
  1912. @ModelBase.register("DbrxForCausalLM")
  1913. class DbrxModel(TextModel):
  1914. model_arch = gguf.MODEL_ARCH.DBRX
  1915. def set_gguf_parameters(self):
  1916. ffn_config = self.hparams["ffn_config"]
  1917. attn_config = self.hparams["attn_config"]
  1918. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1919. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1920. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1921. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1922. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1923. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1924. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1925. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1926. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1927. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1928. self.gguf_writer.add_layer_norm_eps(1e-5)
  1929. self.gguf_writer.add_file_type(self.ftype)
  1930. logger.info(f"gguf: file type = {self.ftype}")
  1931. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1932. del bid # unused
  1933. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1934. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1935. n_embd = self.hparams["d_model"]
  1936. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1937. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1938. # But llama.cpp moe graph works differently
  1939. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1940. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1941. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1942. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1943. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1944. experts = False
  1945. for exp_tensor_name in exp_tensor_names.keys():
  1946. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1947. experts = True
  1948. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1949. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1950. data_torch = data_torch.permute(*permute_tensor)
  1951. break
  1952. # map tensor names
  1953. # In MoE models the ffn tensors are typically most of the model weights,
  1954. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1955. # Every other model has the weight names ending in .weight,
  1956. # let's assume that is the convention which is not the case for dbrx:
  1957. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1958. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1959. return [(new_name, data_torch)]
  1960. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1961. del name, new_name, bid # unused
  1962. return n_dims > 1
  1963. @ModelBase.register("MiniCPMForCausalLM")
  1964. class MiniCPMModel(TextModel):
  1965. model_arch = gguf.MODEL_ARCH.MINICPM
  1966. def set_gguf_parameters(self):
  1967. super().set_gguf_parameters()
  1968. embedding_scale = float(self.hparams["scale_emb"])
  1969. self.gguf_writer.add_embedding_scale(embedding_scale)
  1970. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1971. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1972. self.gguf_writer.add_residual_scale(residual_scale)
  1973. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1974. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1975. self.gguf_writer.add_logit_scale(logit_scale)
  1976. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1977. if self.hparams.get("rope_scaling") is not None:
  1978. if self.hparams["rope_scaling"].get("type") == "longrope":
  1979. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1980. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1981. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1982. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1983. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1984. if rope_scaling is not None:
  1985. long_factors = rope_scaling.get('long_factor', None)
  1986. short_factors = rope_scaling.get('short_factor', None)
  1987. if long_factors is None or short_factors is None:
  1988. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1989. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1990. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1991. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1992. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1993. def set_vocab(self):
  1994. self._set_vocab_sentencepiece()
  1995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1996. del bid # unused
  1997. n_head = self.hparams["num_attention_heads"]
  1998. n_kv_head = self.hparams.get("num_key_value_heads")
  1999. # HF models permute some of the tensors, so we need to undo that
  2000. if name.endswith(("q_proj.weight")):
  2001. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2002. if name.endswith(("k_proj.weight")):
  2003. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2004. return [(self.map_tensor_name(name), data_torch)]
  2005. @ModelBase.register("MiniCPM3ForCausalLM")
  2006. class MiniCPM3Model(TextModel):
  2007. model_arch = gguf.MODEL_ARCH.MINICPM3
  2008. def set_gguf_parameters(self):
  2009. hparams = self.hparams
  2010. self.gguf_writer.add_file_type(self.ftype)
  2011. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2012. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2013. self.gguf_writer.add_block_count(self.block_count)
  2014. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2015. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2016. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2017. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2018. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2019. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2020. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2021. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2022. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2023. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2024. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2025. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2026. if rope_scaling is not None:
  2027. rope_dims = self.hparams["qk_rope_head_dim"]
  2028. long_factors = rope_scaling.get('long_factor', None)
  2029. short_factors = rope_scaling.get('short_factor', None)
  2030. if long_factors is None or short_factors is None:
  2031. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2032. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2033. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2034. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2035. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2036. def set_vocab(self):
  2037. self._set_vocab_sentencepiece()
  2038. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2039. if n_kv_head is not None and n_head != n_kv_head:
  2040. n_head //= n_kv_head
  2041. return (
  2042. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2043. .swapaxes(1, 2)
  2044. .reshape(weights.shape)
  2045. )
  2046. @ModelBase.register("QWenLMHeadModel")
  2047. class QwenModel(TextModel):
  2048. model_arch = gguf.MODEL_ARCH.QWEN
  2049. @staticmethod
  2050. def token_bytes_to_string(b):
  2051. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2052. byte_encoder = bytes_to_unicode()
  2053. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2054. @staticmethod
  2055. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2056. parts = [bytes([b]) for b in token]
  2057. while True:
  2058. min_idx = None
  2059. min_rank = None
  2060. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2061. rank = mergeable_ranks.get(pair[0] + pair[1])
  2062. if rank is not None and (min_rank is None or rank < min_rank):
  2063. min_idx = i
  2064. min_rank = rank
  2065. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2066. break
  2067. assert min_idx is not None
  2068. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2069. return parts
  2070. def set_vocab(self):
  2071. self._set_vocab_qwen()
  2072. def set_gguf_parameters(self):
  2073. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2074. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2075. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2076. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2077. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2078. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2079. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2080. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2081. self.gguf_writer.add_file_type(self.ftype)
  2082. @ModelBase.register("Qwen2ForCausalLM")
  2083. class Qwen2Model(TextModel):
  2084. model_arch = gguf.MODEL_ARCH.QWEN2
  2085. def set_vocab(self):
  2086. try:
  2087. self._set_vocab_sentencepiece()
  2088. except FileNotFoundError:
  2089. self._set_vocab_gpt2()
  2090. def set_gguf_parameters(self):
  2091. super().set_gguf_parameters()
  2092. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2093. if self.hparams["rope_scaling"].get("type") == "yarn":
  2094. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2095. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2096. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2097. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2098. class Qwen2VLModel(TextModel):
  2099. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2100. def set_gguf_parameters(self):
  2101. super().set_gguf_parameters()
  2102. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2103. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2104. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2105. def set_vocab(self):
  2106. try:
  2107. self._set_vocab_sentencepiece()
  2108. except FileNotFoundError:
  2109. self._set_vocab_gpt2()
  2110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2111. del bid # unused
  2112. if name.startswith("visual."):
  2113. # skip visual tensors
  2114. return []
  2115. return [(self.map_tensor_name(name), data_torch)]
  2116. @ModelBase.register("WavTokenizerDec")
  2117. class WavTokenizerDecModel(TextModel):
  2118. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2119. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2120. del bid # unused
  2121. if \
  2122. name.endswith("codebook.cluster_size") or \
  2123. name.endswith("codebook.embed_avg") or \
  2124. name.endswith("codebook.inited"):
  2125. logger.debug(f"Skipping {name!r}")
  2126. return []
  2127. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2128. return [(self.map_tensor_name(name), data_torch)]
  2129. def set_vocab(self):
  2130. self._set_vocab_none()
  2131. def set_gguf_parameters(self):
  2132. super().set_gguf_parameters()
  2133. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2134. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2135. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2136. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2137. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2138. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2139. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2140. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2141. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2142. self.gguf_writer.add_causal_attention(False)
  2143. @ModelBase.register("Qwen2MoeForCausalLM")
  2144. class Qwen2MoeModel(TextModel):
  2145. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2146. def set_gguf_parameters(self):
  2147. super().set_gguf_parameters()
  2148. if (n_experts := self.hparams.get("num_experts")) is not None:
  2149. self.gguf_writer.add_expert_count(n_experts)
  2150. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2151. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2152. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2153. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2154. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2155. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2156. _experts: list[dict[str, Tensor]] | None = None
  2157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2158. # process the experts separately
  2159. if name.find("experts") != -1:
  2160. n_experts = self.hparams["num_experts"]
  2161. assert bid is not None
  2162. if self._experts is None:
  2163. self._experts = [{} for _ in range(self.block_count)]
  2164. self._experts[bid][name] = data_torch
  2165. if len(self._experts[bid]) >= n_experts * 3:
  2166. tensors: list[tuple[str, Tensor]] = []
  2167. # merge the experts into a single 3d tensor
  2168. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2169. datas: list[Tensor] = []
  2170. for xid in range(n_experts):
  2171. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2172. datas.append(self._experts[bid][ename])
  2173. del self._experts[bid][ename]
  2174. data_torch = torch.stack(datas, dim=0)
  2175. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2176. new_name = self.map_tensor_name(merged_name)
  2177. tensors.append((new_name, data_torch))
  2178. return tensors
  2179. else:
  2180. return []
  2181. return [(self.map_tensor_name(name), data_torch)]
  2182. def prepare_tensors(self):
  2183. super().prepare_tensors()
  2184. if self._experts is not None:
  2185. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2186. experts = [k for d in self._experts for k in d.keys()]
  2187. if len(experts) > 0:
  2188. raise ValueError(f"Unprocessed experts: {experts}")
  2189. @ModelBase.register("Qwen3ForCausalLM")
  2190. class Qwen3Model(Qwen2Model):
  2191. model_arch = gguf.MODEL_ARCH.QWEN3
  2192. @ModelBase.register("Qwen3MoeForCausalLM")
  2193. class Qwen3MoeModel(Qwen2MoeModel):
  2194. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2195. @ModelBase.register("GPT2LMHeadModel")
  2196. class GPT2Model(TextModel):
  2197. model_arch = gguf.MODEL_ARCH.GPT2
  2198. def set_gguf_parameters(self):
  2199. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2200. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2201. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2202. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2203. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2204. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2205. self.gguf_writer.add_file_type(self.ftype)
  2206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2207. del bid # unused
  2208. tensors: list[tuple[str, Tensor]] = []
  2209. # we don't need these
  2210. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2211. return tensors
  2212. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2213. data_torch = data_torch.transpose(1, 0)
  2214. new_name = self.map_tensor_name(name)
  2215. tensors.append((new_name, data_torch))
  2216. return tensors
  2217. @ModelBase.register("PhiForCausalLM")
  2218. class Phi2Model(TextModel):
  2219. model_arch = gguf.MODEL_ARCH.PHI2
  2220. def set_gguf_parameters(self):
  2221. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2222. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2223. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2224. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2225. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2226. self.gguf_writer.add_embedding_length(n_embd)
  2227. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2228. self.gguf_writer.add_block_count(block_count)
  2229. self.gguf_writer.add_head_count(n_head)
  2230. self.gguf_writer.add_head_count_kv(n_head)
  2231. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2232. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2233. self.gguf_writer.add_file_type(self.ftype)
  2234. self.gguf_writer.add_add_bos_token(False)
  2235. @ModelBase.register("Phi3ForCausalLM")
  2236. class Phi3MiniModel(TextModel):
  2237. model_arch = gguf.MODEL_ARCH.PHI3
  2238. def set_vocab(self):
  2239. # Phi-4 model uses GPT2Tokenizer
  2240. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2241. if tokenizer_config_file.is_file():
  2242. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2243. tokenizer_config_json = json.load(f)
  2244. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2245. if tokenizer_class == 'GPT2Tokenizer':
  2246. return self._set_vocab_gpt2()
  2247. from sentencepiece import SentencePieceProcessor
  2248. tokenizer_path = self.dir_model / 'tokenizer.model'
  2249. if not tokenizer_path.is_file():
  2250. raise ValueError(f'Error: Missing {tokenizer_path}')
  2251. tokenizer = SentencePieceProcessor()
  2252. tokenizer.LoadFromFile(str(tokenizer_path))
  2253. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2254. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2255. scores: list[float] = [-10000.0] * vocab_size
  2256. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2257. for token_id in range(tokenizer.vocab_size()):
  2258. piece = tokenizer.IdToPiece(token_id)
  2259. text = piece.encode("utf-8")
  2260. score = tokenizer.GetScore(token_id)
  2261. toktype = SentencePieceTokenTypes.NORMAL
  2262. if tokenizer.IsUnknown(token_id):
  2263. toktype = SentencePieceTokenTypes.UNKNOWN
  2264. elif tokenizer.IsControl(token_id):
  2265. toktype = SentencePieceTokenTypes.CONTROL
  2266. elif tokenizer.IsUnused(token_id):
  2267. toktype = SentencePieceTokenTypes.UNUSED
  2268. elif tokenizer.IsByte(token_id):
  2269. toktype = SentencePieceTokenTypes.BYTE
  2270. tokens[token_id] = text
  2271. scores[token_id] = score
  2272. toktypes[token_id] = toktype
  2273. added_tokens_file = self.dir_model / 'added_tokens.json'
  2274. if added_tokens_file.is_file():
  2275. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2276. added_tokens_json = json.load(f)
  2277. for key in added_tokens_json:
  2278. token_id = added_tokens_json[key]
  2279. if token_id >= vocab_size:
  2280. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2281. continue
  2282. tokens[token_id] = key.encode("utf-8")
  2283. scores[token_id] = -1000.0
  2284. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2285. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2286. if tokenizer_config_file.is_file():
  2287. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2288. tokenizer_config_json = json.load(f)
  2289. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2290. for token_id, foken_data in added_tokens_decoder.items():
  2291. token_id = int(token_id)
  2292. token = foken_data["content"].encode("utf-8")
  2293. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2294. if tokens[token_id] != token:
  2295. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2296. tokens[token_id] = token
  2297. scores[token_id] = -1000.0
  2298. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2299. if foken_data.get("special"):
  2300. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2301. tokenizer_file = self.dir_model / 'tokenizer.json'
  2302. if tokenizer_file.is_file():
  2303. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2304. tokenizer_json = json.load(f)
  2305. added_tokens = tokenizer_json.get("added_tokens", [])
  2306. for foken_data in added_tokens:
  2307. token_id = int(foken_data["id"])
  2308. token = foken_data["content"].encode("utf-8")
  2309. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2310. if tokens[token_id] != token:
  2311. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2312. tokens[token_id] = token
  2313. scores[token_id] = -1000.0
  2314. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2315. if foken_data.get("special"):
  2316. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2317. self.gguf_writer.add_tokenizer_model("llama")
  2318. self.gguf_writer.add_tokenizer_pre("default")
  2319. self.gguf_writer.add_token_list(tokens)
  2320. self.gguf_writer.add_token_scores(scores)
  2321. self.gguf_writer.add_token_types(toktypes)
  2322. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2323. special_vocab.add_to_gguf(self.gguf_writer)
  2324. def set_gguf_parameters(self):
  2325. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2326. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2327. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2328. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2329. rms_eps = self.find_hparam(["rms_norm_eps"])
  2330. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2331. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2332. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2333. rope_dims = int(rot_pct * n_embd) // n_head
  2334. self.gguf_writer.add_context_length(max_pos_embds)
  2335. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2336. self.gguf_writer.add_embedding_length(n_embd)
  2337. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2338. self.gguf_writer.add_block_count(block_count)
  2339. self.gguf_writer.add_head_count(n_head)
  2340. self.gguf_writer.add_head_count_kv(n_head_kv)
  2341. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2342. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2343. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2344. self.gguf_writer.add_file_type(self.ftype)
  2345. sliding_window = self.hparams.get("sliding_window")
  2346. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2347. if sliding_window is None:
  2348. sliding_window = 0
  2349. self.gguf_writer.add_sliding_window(sliding_window)
  2350. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2351. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2352. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2353. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2354. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2355. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2356. rope_dims = int(rot_pct * n_embd) // n_head
  2357. # write rope scaling for long context (128k) model
  2358. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2359. if rope_scaling is None:
  2360. return
  2361. scale = max_pos_embds / orig_max_pos_embds
  2362. rope_scaling_type = rope_scaling.get('type', '').lower()
  2363. if len(rope_scaling_type) == 0:
  2364. raise KeyError('Missing the required key rope_scaling.type')
  2365. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2366. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2367. elif rope_scaling_type == 'yarn':
  2368. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2369. else:
  2370. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2371. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2372. long_factors = rope_scaling.get('long_factor', None)
  2373. short_factors = rope_scaling.get('short_factor', None)
  2374. if long_factors is None or short_factors is None:
  2375. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2376. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2377. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2378. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2379. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2380. @ModelBase.register("PhiMoEForCausalLM")
  2381. class PhiMoeModel(Phi3MiniModel):
  2382. model_arch = gguf.MODEL_ARCH.PHIMOE
  2383. _experts: list[dict[str, Tensor]] | None = None
  2384. def set_gguf_parameters(self):
  2385. super().set_gguf_parameters()
  2386. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2387. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2389. # process the experts separately
  2390. if name.find("block_sparse_moe.experts") != -1:
  2391. n_experts = self.hparams["num_local_experts"]
  2392. assert bid is not None
  2393. if self._experts is None:
  2394. self._experts = [{} for _ in range(self.block_count)]
  2395. self._experts[bid][name] = data_torch
  2396. if len(self._experts[bid]) >= n_experts * 3:
  2397. tensors: list[tuple[str, Tensor]] = []
  2398. # merge the experts into a single 3d tensor
  2399. for w_name in ["w1", "w2", "w3"]:
  2400. datas: list[Tensor] = []
  2401. for xid in range(n_experts):
  2402. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2403. datas.append(self._experts[bid][ename])
  2404. del self._experts[bid][ename]
  2405. data_torch = torch.stack(datas, dim=0)
  2406. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2407. new_name = self.map_tensor_name(merged_name)
  2408. tensors.append((new_name, data_torch))
  2409. return tensors
  2410. else:
  2411. return []
  2412. return [(self.map_tensor_name(name), data_torch)]
  2413. def prepare_tensors(self):
  2414. super().prepare_tensors()
  2415. if self._experts is not None:
  2416. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2417. experts = [k for d in self._experts for k in d.keys()]
  2418. if len(experts) > 0:
  2419. raise ValueError(f"Unprocessed experts: {experts}")
  2420. @ModelBase.register("PlamoForCausalLM")
  2421. class PlamoModel(TextModel):
  2422. model_arch = gguf.MODEL_ARCH.PLAMO
  2423. def set_vocab(self):
  2424. self._set_vocab_sentencepiece()
  2425. def set_gguf_parameters(self):
  2426. hparams = self.hparams
  2427. block_count = hparams["num_hidden_layers"]
  2428. self.gguf_writer.add_context_length(4096) # not in config.json
  2429. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2430. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2431. self.gguf_writer.add_block_count(block_count)
  2432. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2433. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2434. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2435. self.gguf_writer.add_file_type(self.ftype)
  2436. def shuffle_attn_q_weight(self, data_torch):
  2437. assert data_torch.size() == (5120, 5120)
  2438. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2439. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2440. data_torch = torch.reshape(data_torch, (5120, 5120))
  2441. return data_torch
  2442. def shuffle_attn_output_weight(self, data_torch):
  2443. assert data_torch.size() == (5120, 5120)
  2444. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2445. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2446. data_torch = torch.reshape(data_torch, (5120, 5120))
  2447. return data_torch
  2448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2449. del bid # unused
  2450. new_name = self.map_tensor_name(name)
  2451. # shuffle for broadcasting of gqa in ggml_mul_mat
  2452. if new_name.endswith("attn_q.weight"):
  2453. data_torch = self.shuffle_attn_q_weight(data_torch)
  2454. elif new_name.endswith("attn_output.weight"):
  2455. data_torch = self.shuffle_attn_output_weight(data_torch)
  2456. return [(new_name, data_torch)]
  2457. @ModelBase.register("CodeShellForCausalLM")
  2458. class CodeShellModel(TextModel):
  2459. model_arch = gguf.MODEL_ARCH.CODESHELL
  2460. def set_gguf_parameters(self):
  2461. block_count = self.hparams["n_layer"]
  2462. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2463. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2464. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2465. self.gguf_writer.add_block_count(block_count)
  2466. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2467. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2468. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2469. self.gguf_writer.add_file_type(self.ftype)
  2470. self.gguf_writer.add_rope_freq_base(10000.0)
  2471. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2472. self.gguf_writer.add_rope_scaling_factor(1.0)
  2473. _has_tok_embd = False
  2474. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2475. del bid # unused
  2476. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2477. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2478. new_name = self.map_tensor_name(name)
  2479. # assuming token_embd.weight is seen before output.weight
  2480. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2481. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2482. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2483. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2484. self.tensor_names.remove("transformer.wte.weight")
  2485. elif new_name == tok_embd_name:
  2486. self._has_tok_embd = True
  2487. return [(new_name, data_torch)]
  2488. @ModelBase.register("InternLM2ForCausalLM")
  2489. class InternLM2Model(TextModel):
  2490. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2491. def set_vocab(self):
  2492. # (TODO): Is there a better way?
  2493. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2494. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2495. # recognized as an empty string in C++.
  2496. from sentencepiece import SentencePieceProcessor
  2497. from sentencepiece import sentencepiece_model_pb2 as model
  2498. tokenizer_path = self.dir_model / 'tokenizer.model'
  2499. tokens: list[bytes] = []
  2500. scores: list[float] = []
  2501. toktypes: list[int] = []
  2502. if not tokenizer_path.is_file():
  2503. logger.error(f'Error: Missing {tokenizer_path}')
  2504. sys.exit(1)
  2505. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2506. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2507. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2508. tokenizer = SentencePieceProcessor()
  2509. tokenizer.LoadFromFile(str(tokenizer_path))
  2510. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2511. for token_id in range(vocab_size):
  2512. piece = tokenizer.IdToPiece(token_id)
  2513. text = piece.encode("utf-8")
  2514. score = tokenizer.GetScore(token_id)
  2515. if text == b"\x00":
  2516. # (TODO): fixme
  2517. # Hack here and replace the \x00 characters.
  2518. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2519. text = "🐉".encode("utf-8")
  2520. toktype = SentencePieceTokenTypes.NORMAL
  2521. if tokenizer.IsUnknown(token_id):
  2522. toktype = SentencePieceTokenTypes.UNKNOWN
  2523. elif tokenizer.IsControl(token_id):
  2524. toktype = SentencePieceTokenTypes.CONTROL
  2525. elif tokenizer.IsUnused(token_id):
  2526. toktype = SentencePieceTokenTypes.UNUSED
  2527. elif tokenizer.IsByte(token_id):
  2528. toktype = SentencePieceTokenTypes.BYTE
  2529. # take care of ununsed raw token
  2530. if piece.startswith('[UNUSED'):
  2531. toktype = SentencePieceTokenTypes.UNUSED
  2532. tokens.append(text)
  2533. scores.append(score)
  2534. toktypes.append(toktype)
  2535. added_tokens_file = self.dir_model / 'added_tokens.json'
  2536. if added_tokens_file.is_file():
  2537. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2538. added_tokens_json = json.load(f)
  2539. for key in added_tokens_json:
  2540. tokens.append(key.encode("utf-8"))
  2541. scores.append(-1000.0)
  2542. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2543. chat_eos_token = '<|im_end|>'
  2544. chat_eos_token_id = None
  2545. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2546. if tokenizer_config_file.is_file():
  2547. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2548. tokenizer_config_json = json.load(f)
  2549. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2550. for token_id, foken_data in added_tokens_decoder.items():
  2551. token_id = int(token_id)
  2552. token = foken_data["content"]
  2553. if token == chat_eos_token:
  2554. chat_eos_token_id = token_id
  2555. token = token.encode("utf-8")
  2556. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2557. if tokens[token_id] != token:
  2558. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2559. tokens[token_id] = token
  2560. scores[token_id] = -1000.0
  2561. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2562. if foken_data.get("special"):
  2563. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2564. tokenizer_file = self.dir_model / 'tokenizer.json'
  2565. if tokenizer_file.is_file():
  2566. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2567. tokenizer_json = json.load(f)
  2568. added_tokens = tokenizer_json.get("added_tokens", [])
  2569. for foken_data in added_tokens:
  2570. token_id = int(foken_data["id"])
  2571. token = foken_data["content"]
  2572. if token == chat_eos_token:
  2573. chat_eos_token_id = token_id
  2574. token = token.encode("utf-8")
  2575. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2576. if tokens[token_id] != token:
  2577. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2578. tokens[token_id] = token
  2579. scores[token_id] = -1000.0
  2580. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2581. if foken_data.get("special"):
  2582. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2583. self.gguf_writer.add_tokenizer_model("llama")
  2584. self.gguf_writer.add_tokenizer_pre("default")
  2585. self.gguf_writer.add_token_list(tokens)
  2586. self.gguf_writer.add_token_scores(scores)
  2587. self.gguf_writer.add_token_types(toktypes)
  2588. self.gguf_writer.add_add_space_prefix(add_prefix)
  2589. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2590. old_eos = special_vocab.special_token_ids["eos"]
  2591. if chat_eos_token_id is not None:
  2592. # For the chat model, we replace the eos with '<|im_end|>'.
  2593. # TODO: this is a hack, should be fixed
  2594. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2595. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2596. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2597. " in chat mode so that the conversation can end normally.")
  2598. special_vocab.add_to_gguf(self.gguf_writer)
  2599. def set_gguf_parameters(self):
  2600. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2601. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2602. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2603. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2604. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2605. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2606. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2607. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2608. self.gguf_writer.add_file_type(self.ftype)
  2609. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2610. if self.hparams["rope_scaling"].get("type") == "linear":
  2611. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2612. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2614. num_heads = self.hparams["num_attention_heads"]
  2615. num_kv_heads = self.hparams["num_key_value_heads"]
  2616. n_embd = self.hparams["hidden_size"]
  2617. q_per_kv = num_heads // num_kv_heads
  2618. head_dim = n_embd // num_heads
  2619. num_groups = num_heads // q_per_kv
  2620. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2621. qkv = data_torch
  2622. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2623. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2624. # The model weights of q and k equire additional reshape.
  2625. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2626. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2627. v = v.reshape((-1, v.shape[-1]))
  2628. return [
  2629. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2630. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2631. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2632. ]
  2633. else:
  2634. return [(self.map_tensor_name(name), data_torch)]
  2635. @ModelBase.register("InternLM3ForCausalLM")
  2636. class InternLM3Model(TextModel):
  2637. model_arch = gguf.MODEL_ARCH.LLAMA
  2638. def set_vocab(self):
  2639. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2640. self.gguf_writer.add_tokenizer_model("llama")
  2641. self.gguf_writer.add_tokenizer_pre("default")
  2642. self.gguf_writer.add_token_list(tokens)
  2643. self.gguf_writer.add_token_scores(scores)
  2644. self.gguf_writer.add_token_types(toktypes)
  2645. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2646. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2647. if tokenizer_config_file.is_file():
  2648. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2649. tokenizer_config_json = json.load(f)
  2650. if "add_prefix_space" in tokenizer_config_json:
  2651. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2652. if "added_tokens_decoder" in tokenizer_config_json:
  2653. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2654. if token_data.get("special"):
  2655. token_id = int(token_id)
  2656. token = token_data["content"]
  2657. special_vocab._set_special_token(token, token_id)
  2658. # update eos token
  2659. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2660. special_vocab.special_token_ids["eos"] = token_id
  2661. special_vocab.add_to_gguf(self.gguf_writer)
  2662. def set_gguf_parameters(self):
  2663. super().set_gguf_parameters()
  2664. hparams = self.hparams
  2665. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2666. if "head_dim" in hparams:
  2667. rope_dim = hparams["head_dim"]
  2668. else:
  2669. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2670. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2671. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2672. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2673. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2674. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2675. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2676. n_head = self.hparams["num_attention_heads"]
  2677. n_kv_head = self.hparams.get("num_key_value_heads")
  2678. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2679. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2680. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2681. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2682. return [(self.map_tensor_name(name), data_torch)]
  2683. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2684. class BertModel(TextModel):
  2685. model_arch = gguf.MODEL_ARCH.BERT
  2686. def __init__(self, *args, **kwargs):
  2687. super().__init__(*args, **kwargs)
  2688. self.vocab_size = None
  2689. def set_gguf_parameters(self):
  2690. super().set_gguf_parameters()
  2691. self.gguf_writer.add_causal_attention(False)
  2692. # get pooling path
  2693. pooling_path = None
  2694. module_path = self.dir_model / "modules.json"
  2695. if module_path.is_file():
  2696. with open(module_path, encoding="utf-8") as f:
  2697. modules = json.load(f)
  2698. for mod in modules:
  2699. if mod["type"] == "sentence_transformers.models.Pooling":
  2700. pooling_path = mod["path"]
  2701. break
  2702. # get pooling type
  2703. if pooling_path is not None:
  2704. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2705. pooling = json.load(f)
  2706. if pooling["pooling_mode_mean_tokens"]:
  2707. pooling_type = gguf.PoolingType.MEAN
  2708. elif pooling["pooling_mode_cls_token"]:
  2709. pooling_type = gguf.PoolingType.CLS
  2710. else:
  2711. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2712. self.gguf_writer.add_pooling_type(pooling_type)
  2713. def set_vocab(self):
  2714. tokens, toktypes, tokpre = self.get_vocab_base()
  2715. self.vocab_size = len(tokens)
  2716. # we need this to validate the size of the token_type embeddings
  2717. # though currently we are passing all zeros to the token_type embeddings
  2718. # "Sequence A" or "Sequence B"
  2719. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2720. # convert to phantom space vocab
  2721. def phantom(tok):
  2722. if tok.startswith("[") and tok.endswith("]"):
  2723. return tok
  2724. if tok.startswith("##"):
  2725. return tok[2:]
  2726. return "\u2581" + tok
  2727. tokens = list(map(phantom, tokens))
  2728. # add vocab to gguf
  2729. self.gguf_writer.add_tokenizer_model("bert")
  2730. self.gguf_writer.add_tokenizer_pre(tokpre)
  2731. self.gguf_writer.add_token_list(tokens)
  2732. self.gguf_writer.add_token_types(toktypes)
  2733. # handle special tokens
  2734. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2735. special_vocab.add_to_gguf(self.gguf_writer)
  2736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2737. del bid # unused
  2738. if name.startswith("bert."):
  2739. name = name[5:]
  2740. if name.endswith(".gamma"):
  2741. name = name[:-6] + ".weight"
  2742. if name.endswith(".beta"):
  2743. name = name[:-5] + ".bias"
  2744. # we are only using BERT for embeddings so we don't need the pooling layer
  2745. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2746. return [] # we don't need these
  2747. if name.startswith("cls.predictions"):
  2748. return []
  2749. if name.startswith("cls.seq_relationship"):
  2750. return []
  2751. return [(self.map_tensor_name(name), data_torch)]
  2752. def _xlmroberta_tokenizer_init(self) -> None:
  2753. # we need the pad_token_id to know how to chop down position_embd matrix
  2754. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2755. self._position_offset = 1 + pad_token_id
  2756. if "max_position_embeddings" in self.hparams:
  2757. self.hparams["max_position_embeddings"] -= self._position_offset
  2758. else:
  2759. self._position_offset = None
  2760. def _xlmroberta_set_vocab(self) -> None:
  2761. # to avoid TypeError: Descriptors cannot be created directly
  2762. # exception when importing sentencepiece_model_pb2
  2763. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2764. from sentencepiece import SentencePieceProcessor
  2765. from sentencepiece import sentencepiece_model_pb2 as model
  2766. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2767. if not tokenizer_path.is_file():
  2768. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2769. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2770. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2771. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2772. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2773. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2774. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2775. tokenizer = SentencePieceProcessor()
  2776. tokenizer.LoadFromFile(str(tokenizer_path))
  2777. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2778. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2779. scores: list[float] = [-10000.0] * vocab_size
  2780. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2781. for token_id in range(tokenizer.vocab_size()):
  2782. piece = tokenizer.IdToPiece(token_id)
  2783. text = piece.encode("utf-8")
  2784. score = tokenizer.GetScore(token_id)
  2785. toktype = SentencePieceTokenTypes.NORMAL
  2786. if tokenizer.IsUnknown(token_id):
  2787. toktype = SentencePieceTokenTypes.UNKNOWN
  2788. elif tokenizer.IsControl(token_id):
  2789. toktype = SentencePieceTokenTypes.CONTROL
  2790. elif tokenizer.IsUnused(token_id):
  2791. toktype = SentencePieceTokenTypes.UNUSED
  2792. elif tokenizer.IsByte(token_id):
  2793. toktype = SentencePieceTokenTypes.BYTE
  2794. tokens[token_id] = text
  2795. scores[token_id] = score
  2796. toktypes[token_id] = toktype
  2797. if vocab_size > len(tokens):
  2798. pad_count = vocab_size - len(tokens)
  2799. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2800. for i in range(1, pad_count + 1):
  2801. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2802. scores.append(-1000.0)
  2803. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2804. # realign tokens (see HF tokenizer code)
  2805. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2806. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2807. toktypes = [
  2808. SentencePieceTokenTypes.CONTROL,
  2809. SentencePieceTokenTypes.CONTROL,
  2810. SentencePieceTokenTypes.CONTROL,
  2811. SentencePieceTokenTypes.UNKNOWN,
  2812. ] + toktypes[3:-1]
  2813. self.gguf_writer.add_tokenizer_model("t5")
  2814. self.gguf_writer.add_tokenizer_pre("default")
  2815. self.gguf_writer.add_token_list(tokens)
  2816. self.gguf_writer.add_token_scores(scores)
  2817. self.gguf_writer.add_token_types(toktypes)
  2818. self.gguf_writer.add_add_space_prefix(add_prefix)
  2819. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2820. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2821. if precompiled_charsmap:
  2822. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2823. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2824. special_vocab.add_to_gguf(self.gguf_writer)
  2825. self.gguf_writer.add_add_bos_token(True)
  2826. self.gguf_writer.add_add_eos_token(True)
  2827. @ModelBase.register("RobertaModel")
  2828. class RobertaModel(BertModel):
  2829. model_arch = gguf.MODEL_ARCH.BERT
  2830. def __init__(self, *args, **kwargs):
  2831. super().__init__(*args, **kwargs)
  2832. # we need the pad_token_id to know how to chop down position_embd matrix
  2833. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2834. self._position_offset = 1 + pad_token_id
  2835. if "max_position_embeddings" in self.hparams:
  2836. self.hparams["max_position_embeddings"] -= self._position_offset
  2837. else:
  2838. self._position_offset = None
  2839. def set_vocab(self):
  2840. """Support BPE tokenizers for roberta models"""
  2841. bpe_tok_path = self.dir_model / "tokenizer.json"
  2842. if bpe_tok_path.exists():
  2843. self._set_vocab_gpt2()
  2844. self.gguf_writer.add_add_bos_token(True)
  2845. self.gguf_writer.add_add_eos_token(True)
  2846. # we need this to validate the size of the token_type embeddings
  2847. # though currently we are passing all zeros to the token_type embeddings
  2848. # "Sequence A" or "Sequence B"
  2849. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2850. else:
  2851. return super().set_vocab()
  2852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2853. # if name starts with "roberta.", remove the prefix
  2854. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2855. if name.startswith("roberta."):
  2856. name = name[8:]
  2857. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2858. if name == "embeddings.position_embeddings.weight":
  2859. if self._position_offset is not None:
  2860. data_torch = data_torch[self._position_offset:,:]
  2861. return super().modify_tensors(data_torch, name, bid)
  2862. @ModelBase.register("NomicBertModel")
  2863. class NomicBertModel(BertModel):
  2864. model_arch = gguf.MODEL_ARCH.BERT
  2865. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  2866. hparams = kwargs.pop("hparams", None)
  2867. if hparams is None:
  2868. hparams = ModelBase.load_hparams(dir_model)
  2869. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  2870. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  2871. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  2872. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  2873. if self._tokenizer_is_xlmroberta:
  2874. self._xlmroberta_tokenizer_init()
  2875. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2876. self.hparams["n_ctx"] = 2048
  2877. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  2878. # this doesn't do anything in the HF version
  2879. assert self.hparams["causal"] is False
  2880. # no bias tensors unless MoE
  2881. assert self.hparams["qkv_proj_bias"] == self.is_moe
  2882. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  2883. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  2884. # norm at end of layer
  2885. assert self.hparams["prenorm"] is False
  2886. # standard RoPE
  2887. assert self.hparams["rotary_emb_fraction"] == 1.0
  2888. assert self.hparams["rotary_emb_interleaved"] is False
  2889. assert self.hparams["rotary_emb_scale_base"] is None
  2890. def set_vocab(self) -> None:
  2891. if self._tokenizer_is_xlmroberta:
  2892. return self._xlmroberta_set_vocab()
  2893. return super().set_vocab()
  2894. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  2895. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  2896. if "mlp.experts.bias" in name:
  2897. return [] # Explicitly return an empty list.
  2898. if "mlp.experts.mlp.w1" in name:
  2899. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2900. name += ".weight"
  2901. if "mlp.experts.mlp.w2" in name:
  2902. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2903. data_torch = data_torch.transpose(1, 2)
  2904. name += ".weight"
  2905. return [(self.map_tensor_name(name), data_torch)]
  2906. def set_gguf_parameters(self):
  2907. super().set_gguf_parameters()
  2908. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2909. if self.is_moe:
  2910. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  2911. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  2912. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  2913. def _is_tokenizer_xlmroberta(self) -> bool:
  2914. with open(self.dir_model / "tokenizer.json") as f:
  2915. tokenizer_json = json.load(f)
  2916. toktyp = tokenizer_json["model"]["type"]
  2917. if toktyp == "Unigram":
  2918. return True
  2919. if toktyp == "WordPiece":
  2920. return False
  2921. raise ValueError(f"unknown tokenizer: {toktyp}")
  2922. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2923. class XLMRobertaModel(BertModel):
  2924. model_arch = gguf.MODEL_ARCH.BERT
  2925. def __init__(self, *args, **kwargs):
  2926. super().__init__(*args, **kwargs)
  2927. self._xlmroberta_tokenizer_init()
  2928. def set_vocab(self):
  2929. self._xlmroberta_set_vocab()
  2930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2931. # if name starts with "roberta.", remove the prefix
  2932. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2933. if name.startswith("roberta."):
  2934. name = name[8:]
  2935. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2936. if name == "embeddings.position_embeddings.weight":
  2937. if self._position_offset is not None:
  2938. data_torch = data_torch[self._position_offset:,:]
  2939. return super().modify_tensors(data_torch, name, bid)
  2940. @ModelBase.register("GemmaForCausalLM")
  2941. class GemmaModel(TextModel):
  2942. model_arch = gguf.MODEL_ARCH.GEMMA
  2943. def set_vocab(self):
  2944. self._set_vocab_sentencepiece()
  2945. # TODO: these special tokens should be exported only for the CodeGemma family
  2946. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2947. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2948. special_vocab._set_special_token("prefix", 67)
  2949. special_vocab._set_special_token("suffix", 69)
  2950. special_vocab._set_special_token("middle", 68)
  2951. special_vocab._set_special_token("fsep", 70)
  2952. special_vocab._set_special_token("eot", 107)
  2953. special_vocab.chat_template = None # do not add it twice
  2954. special_vocab.add_to_gguf(self.gguf_writer)
  2955. self.gguf_writer.add_add_space_prefix(False)
  2956. def set_gguf_parameters(self):
  2957. hparams = self.hparams
  2958. block_count = hparams["num_hidden_layers"]
  2959. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2960. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2961. self.gguf_writer.add_block_count(block_count)
  2962. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2963. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2964. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2965. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2966. self.gguf_writer.add_key_length(hparams["head_dim"])
  2967. self.gguf_writer.add_value_length(hparams["head_dim"])
  2968. self.gguf_writer.add_file_type(self.ftype)
  2969. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2970. del bid # unused
  2971. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2972. # To prevent errors, skip loading lm_head.weight.
  2973. if name == "lm_head.weight":
  2974. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2975. return []
  2976. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2977. if name.endswith("norm.weight"):
  2978. data_torch = data_torch + 1
  2979. return [(self.map_tensor_name(name), data_torch)]
  2980. @ModelBase.register("Gemma2ForCausalLM")
  2981. class Gemma2Model(TextModel):
  2982. model_arch = gguf.MODEL_ARCH.GEMMA2
  2983. def set_vocab(self):
  2984. self._set_vocab_sentencepiece()
  2985. self.gguf_writer.add_add_space_prefix(False)
  2986. def set_gguf_parameters(self):
  2987. hparams = self.hparams
  2988. block_count = hparams["num_hidden_layers"]
  2989. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2990. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2991. self.gguf_writer.add_block_count(block_count)
  2992. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2993. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2994. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2995. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2996. self.gguf_writer.add_key_length(hparams["head_dim"])
  2997. self.gguf_writer.add_value_length(hparams["head_dim"])
  2998. self.gguf_writer.add_file_type(self.ftype)
  2999. self.gguf_writer.add_attn_logit_softcapping(
  3000. self.hparams["attn_logit_softcapping"]
  3001. )
  3002. self.gguf_writer.add_final_logit_softcapping(
  3003. self.hparams["final_logit_softcapping"]
  3004. )
  3005. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3006. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3007. del bid # unused
  3008. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3009. # To prevent errors, skip loading lm_head.weight.
  3010. if name == "lm_head.weight":
  3011. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3012. return []
  3013. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3014. if name.endswith("norm.weight"):
  3015. data_torch = data_torch + 1
  3016. return [(self.map_tensor_name(name), data_torch)]
  3017. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3018. class Gemma3Model(TextModel):
  3019. model_arch = gguf.MODEL_ARCH.GEMMA3
  3020. def set_vocab(self):
  3021. self._set_vocab_sentencepiece()
  3022. self.gguf_writer.add_add_space_prefix(False)
  3023. def set_gguf_parameters(self):
  3024. hparams = self.hparams
  3025. block_count = hparams["num_hidden_layers"]
  3026. # some default values are not specified in the hparams
  3027. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3028. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3029. self.gguf_writer.add_block_count(block_count)
  3030. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3031. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3032. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3033. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3034. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3035. self.gguf_writer.add_file_type(self.ftype)
  3036. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3037. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3038. assert hparams.get("attn_logit_softcapping") is None
  3039. assert hparams.get("final_logit_softcapping") is None
  3040. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3041. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3042. if hparams.get("rope_scaling") is not None:
  3043. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3044. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3045. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3046. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3048. del bid # unused
  3049. if name.startswith("language_model."):
  3050. name = name.replace("language_model.", "")
  3051. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3052. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3053. return [] # skip vision tensors
  3054. # remove OOV (out-of-vocabulary) rows in token_embd
  3055. if "embed_tokens.weight" in name:
  3056. vocab = self._create_vocab_sentencepiece()
  3057. tokens = vocab[0]
  3058. data_torch = data_torch[:len(tokens)]
  3059. # ref code in Gemma3RMSNorm
  3060. # output = output * (1.0 + self.weight.float())
  3061. if name.endswith("norm.weight"):
  3062. data_torch = data_torch + 1
  3063. return [(self.map_tensor_name(name), data_torch)]
  3064. @ModelBase.register("Gemma3ForConditionalGeneration")
  3065. class Gemma3VisionModel(VisionModel):
  3066. def set_gguf_parameters(self):
  3067. super().set_gguf_parameters()
  3068. hparams = self.hparams
  3069. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3070. # default values below are taken from HF tranformers code
  3071. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3072. self.gguf_writer.add_vision_use_gelu(True)
  3073. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3074. del bid, new_name, n_dims # unused
  3075. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3076. if "input_projection" in name:
  3077. return gguf.GGMLQuantizationType.F16
  3078. if ".embeddings." in name:
  3079. return gguf.GGMLQuantizationType.F32
  3080. return False
  3081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3082. del bid # unused
  3083. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3084. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3085. # process vision tensors
  3086. name = name.replace("_weight", ".weight")
  3087. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3088. # the other norm values are part of SigLIP model, and they are already correct
  3089. # ref code: Gemma3RMSNorm
  3090. if "soft_emb_norm.weight" in name:
  3091. logger.info(f"Correcting norm value for '{name}'")
  3092. data_torch = data_torch + 1
  3093. return [(self.map_tensor_name(name), data_torch)]
  3094. return [] # skip other tensors
  3095. @ModelBase.register("Starcoder2ForCausalLM")
  3096. class StarCoder2Model(TextModel):
  3097. model_arch = gguf.MODEL_ARCH.STARCODER2
  3098. @ModelBase.register("Rwkv6ForCausalLM")
  3099. class Rwkv6Model(TextModel):
  3100. model_arch = gguf.MODEL_ARCH.RWKV6
  3101. def set_vocab(self):
  3102. self._set_vocab_rwkv_world()
  3103. def set_gguf_parameters(self):
  3104. block_count = self.hparams["num_hidden_layers"]
  3105. head_size = self.hparams["head_size"]
  3106. hidden_size = self.hparams["hidden_size"]
  3107. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3108. rescale_every_n_layers = self.hparams["rescale_every"]
  3109. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3110. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3111. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3112. # RWKV isn't context limited
  3113. self.gguf_writer.add_context_length(1048576)
  3114. self.gguf_writer.add_embedding_length(hidden_size)
  3115. self.gguf_writer.add_block_count(block_count)
  3116. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3117. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3118. self.gguf_writer.add_wkv_head_size(head_size)
  3119. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3120. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3121. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3122. self.gguf_writer.add_file_type(self.ftype)
  3123. # required by llama.cpp, unused
  3124. self.gguf_writer.add_head_count(0)
  3125. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3126. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3127. new_name = self.map_tensor_name(name)
  3128. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3129. new_name += ".weight"
  3130. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3131. data_torch = data_torch.transpose(0, 1)
  3132. if new_name.endswith("time_mix_w2.weight"):
  3133. data_torch = data_torch.permute(0, 2, 1)
  3134. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3135. data_torch = data_torch.squeeze()
  3136. try:
  3137. rescale_every_n_layers = self.hparams["rescale_every"]
  3138. if rescale_every_n_layers > 0:
  3139. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3140. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3141. except KeyError:
  3142. pass
  3143. # concat time_mix_lerp weights to reduce some cpu overhead
  3144. # also reduces the number of tensors in the model
  3145. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3146. try:
  3147. self.lerp_weights[bid][new_name] = data_torch
  3148. except KeyError:
  3149. self.lerp_weights[bid] = {new_name: data_torch}
  3150. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3151. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3152. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3153. yield (new_name, data)
  3154. return
  3155. yield (new_name, data_torch)
  3156. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3157. class RWKV6Qwen2Model(Rwkv6Model):
  3158. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3159. def set_vocab(self):
  3160. try:
  3161. self._set_vocab_sentencepiece()
  3162. except FileNotFoundError:
  3163. self._set_vocab_gpt2()
  3164. def set_gguf_parameters(self):
  3165. block_count = self.hparams["num_hidden_layers"]
  3166. num_attention_heads = self.hparams["num_attention_heads"]
  3167. num_key_value_heads = self.hparams["num_key_value_heads"]
  3168. hidden_size = self.hparams["hidden_size"]
  3169. head_size = hidden_size // num_attention_heads
  3170. rms_norm_eps = self.hparams["rms_norm_eps"]
  3171. intermediate_size = self.hparams["intermediate_size"]
  3172. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3173. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3174. # RWKV isn't context limited
  3175. self.gguf_writer.add_context_length(1048576)
  3176. self.gguf_writer.add_embedding_length(hidden_size)
  3177. self.gguf_writer.add_block_count(block_count)
  3178. self.gguf_writer.add_wkv_head_size(head_size)
  3179. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3180. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3181. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3182. self.gguf_writer.add_file_type(self.ftype)
  3183. # special parameters for time_mixing in RWKV6QWEN2
  3184. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3185. self.gguf_writer.add_token_shift_count(1)
  3186. # RWKV6QWEN2 use grouped key/value like GQA
  3187. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3188. # required by llama.cpp, unused
  3189. self.gguf_writer.add_head_count(0)
  3190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3191. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3192. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3193. data = data.view(5, -1, data.shape[-1])
  3194. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3195. # permute them here to avoid code changes
  3196. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3197. if "w2" in new_name:
  3198. data = data.view(5, -1, data.shape[-1])
  3199. yield (new_name, data)
  3200. continue
  3201. yield (new_name, data)
  3202. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3203. class Rwkv7Model(TextModel):
  3204. model_arch = gguf.MODEL_ARCH.RWKV7
  3205. def set_vocab(self):
  3206. self._set_vocab_rwkv_world()
  3207. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3208. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3209. def set_gguf_parameters(self):
  3210. block_count = self.hparams["num_hidden_layers"]
  3211. try:
  3212. head_size = self.hparams["head_size"]
  3213. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3214. except KeyError:
  3215. head_size = self.hparams["head_dim"]
  3216. layer_norm_eps = self.hparams["norm_eps"]
  3217. hidden_size = self.hparams["hidden_size"]
  3218. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3219. # ICLR: In-Context-Learning-Rate
  3220. try:
  3221. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3222. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3223. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3224. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3225. except KeyError:
  3226. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3227. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3228. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3229. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3230. # RWKV isn't context limited
  3231. self.gguf_writer.add_context_length(1048576)
  3232. self.gguf_writer.add_embedding_length(hidden_size)
  3233. self.gguf_writer.add_block_count(block_count)
  3234. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3235. self.gguf_writer.add_wkv_head_size(head_size)
  3236. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3237. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3238. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3239. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3240. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3241. self.gguf_writer.add_file_type(self.ftype)
  3242. # required by llama.cpp, unused
  3243. self.gguf_writer.add_head_count(0)
  3244. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3245. lora_needs_transpose: bool = True
  3246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3247. # unify tensor names here to make life easier
  3248. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3249. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3250. name = name.replace("time_mixer.", "")
  3251. # lora layer names in fla-hub's impl
  3252. if "_lora.lora" in name:
  3253. self.lora_needs_transpose = False
  3254. name = name.replace("_lora.lora.0.weight", "1.weight")
  3255. name = name.replace("_lora.lora.2.weight", "2.weight")
  3256. name = name.replace("_lora.lora.2.bias", "0.weight")
  3257. name = name.replace("feed_forward_norm", "ln2")
  3258. name = name.replace("g_norm", "ln_x")
  3259. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3260. # some models have dummy v0/v1/v2 on first layer while others don't
  3261. # ignore them all since they are not used
  3262. return
  3263. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3264. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3265. if bid is not None and "attention.x_" in name:
  3266. if "attention.x_x" in name:
  3267. # already concatenated
  3268. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3269. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3270. yield (new_name, data)
  3271. else:
  3272. try:
  3273. self.lerp_weights[bid][name] = data_torch
  3274. except KeyError:
  3275. self.lerp_weights[bid] = {name: data_torch}
  3276. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3277. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3278. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3279. yield (new_name, data)
  3280. return
  3281. else:
  3282. data_torch = data_torch.squeeze()
  3283. new_name = self.map_tensor_name(name)
  3284. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3285. new_name += ".weight"
  3286. if self.lora_needs_transpose and any(
  3287. new_name.endswith(t) for t in [
  3288. "time_mix_w1.weight", "time_mix_w2.weight",
  3289. "time_mix_a1.weight", "time_mix_a2.weight",
  3290. "time_mix_v1.weight", "time_mix_v2.weight",
  3291. "time_mix_g1.weight", "time_mix_g2.weight",
  3292. ]
  3293. ):
  3294. data_torch = data_torch.transpose(0, 1)
  3295. if 'r_k' in new_name:
  3296. data_torch = data_torch.flatten()
  3297. if bid == 0 and "time_mix_a" in new_name:
  3298. # dummy v0/v1/v2 on first layer
  3299. # easist way to make llama happy
  3300. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3301. yield (new_name, data_torch)
  3302. @ModelBase.register("RwkvHybridForCausalLM")
  3303. class ARwkv7Model(Rwkv7Model):
  3304. model_arch = gguf.MODEL_ARCH.ARWKV7
  3305. def set_vocab(self):
  3306. try:
  3307. self._set_vocab_sentencepiece()
  3308. except FileNotFoundError:
  3309. self._set_vocab_gpt2()
  3310. def set_gguf_parameters(self):
  3311. block_count = self.hparams["num_hidden_layers"]
  3312. hidden_size = self.hparams["hidden_size"]
  3313. head_size = self.hparams["head_size"]
  3314. rms_norm_eps = self.hparams["rms_norm_eps"]
  3315. intermediate_size = self.hparams["intermediate_size"]
  3316. wkv_has_gate = self.hparams["wkv_has_gate"]
  3317. assert self.hparams["wkv_version"] == 7
  3318. # ICLR: In-Context-Learning-Rate
  3319. lora_rank_decay = 64
  3320. lora_rank_iclr = 64
  3321. lora_rank_value_residual_mix = 32
  3322. lora_rank_gate = 128 if wkv_has_gate else 0
  3323. # RWKV isn't context limited
  3324. self.gguf_writer.add_context_length(1048576)
  3325. self.gguf_writer.add_embedding_length(hidden_size)
  3326. self.gguf_writer.add_block_count(block_count)
  3327. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3328. self.gguf_writer.add_wkv_head_size(head_size)
  3329. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3330. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3331. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3332. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3333. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3334. self.gguf_writer.add_file_type(self.ftype)
  3335. self.gguf_writer.add_token_shift_count(1)
  3336. # required by llama.cpp, unused
  3337. self.gguf_writer.add_head_count(0)
  3338. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3339. class MambaModel(TextModel):
  3340. model_arch = gguf.MODEL_ARCH.MAMBA
  3341. def set_vocab(self):
  3342. vocab_size = self.hparams["vocab_size"]
  3343. # Round vocab size to next multiple of 8
  3344. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3345. # pad using ceiling division
  3346. # ref: https://stackoverflow.com/a/17511341/22827863
  3347. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3348. self.hparams["vocab_size"] = vocab_size
  3349. if (self.dir_model / "tokenizer.json").is_file():
  3350. self._set_vocab_gpt2()
  3351. elif (self.dir_model / "tokenizer.model").is_file():
  3352. self._set_vocab_sentencepiece()
  3353. else:
  3354. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3355. self._set_vocab_builtin("gpt-neox", vocab_size)
  3356. def set_gguf_parameters(self):
  3357. d_model = self.find_hparam(["hidden_size", "d_model"])
  3358. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3359. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3360. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3361. # ceiling division
  3362. # ref: https://stackoverflow.com/a/17511341/22827863
  3363. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3364. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3365. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3366. use_dt_b_c_norm = False
  3367. # For falconmamba we do apply RMS norm on B / DT and C layers
  3368. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3369. use_dt_b_c_norm = True
  3370. # Fail early for models which don't have a block expansion factor of 2
  3371. assert d_inner == 2 * d_model
  3372. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3373. self.gguf_writer.add_embedding_length(d_model)
  3374. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3375. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3376. self.gguf_writer.add_block_count(self.block_count)
  3377. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3378. self.gguf_writer.add_ssm_inner_size(d_inner)
  3379. self.gguf_writer.add_ssm_state_size(d_state)
  3380. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3381. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3382. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3383. self.gguf_writer.add_file_type(self.ftype)
  3384. _tok_embd = None
  3385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3386. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3387. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3388. new_name = self.map_tensor_name(name)
  3389. if name.endswith(".A_log"):
  3390. logger.debug("A_log --> A ==> " + new_name)
  3391. data_torch = -torch.exp(data_torch)
  3392. # [4 1 8192 1] -> [4 8192 1 1]
  3393. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3394. data_torch = data_torch.squeeze()
  3395. # assuming token_embd.weight is seen before output.weight
  3396. if self._tok_embd is not None and new_name == output_name:
  3397. if torch.equal(self._tok_embd, data_torch):
  3398. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3399. return []
  3400. elif new_name == tok_embd_name:
  3401. self._tok_embd = data_torch
  3402. return [(new_name, data_torch)]
  3403. @ModelBase.register("CohereForCausalLM")
  3404. class CommandR2Model(TextModel):
  3405. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3406. def __init__(self, *args, **kwargs):
  3407. super().__init__(*args, **kwargs)
  3408. # max_position_embeddings = 8192 in config.json but model was actually
  3409. # trained on 128k context length
  3410. # aya-23 models don't have model_max_length specified
  3411. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3412. def set_gguf_parameters(self):
  3413. super().set_gguf_parameters()
  3414. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3415. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3416. @ModelBase.register("Cohere2ForCausalLM")
  3417. class Cohere2Model(TextModel):
  3418. model_arch = gguf.MODEL_ARCH.COHERE2
  3419. def set_gguf_parameters(self):
  3420. super().set_gguf_parameters()
  3421. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3422. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3423. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3424. rotary_pct = self.hparams["rotary_pct"]
  3425. hidden_size = self.hparams["hidden_size"]
  3426. num_attention_heads = self.hparams["num_attention_heads"]
  3427. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3428. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3429. @ModelBase.register("OlmoForCausalLM")
  3430. @ModelBase.register("OLMoForCausalLM")
  3431. class OlmoModel(TextModel):
  3432. model_arch = gguf.MODEL_ARCH.OLMO
  3433. def set_gguf_parameters(self):
  3434. super().set_gguf_parameters()
  3435. self.gguf_writer.add_layer_norm_eps(1e-5)
  3436. clip_qkv = self.hparams.get("clip_qkv")
  3437. if clip_qkv is not None:
  3438. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3439. # Same as super class, but permuting q_proj, k_proj
  3440. # Copied from: LlamaModel
  3441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3442. del bid # unused
  3443. n_head = self.hparams["num_attention_heads"]
  3444. n_kv_head = self.hparams.get("num_key_value_heads")
  3445. if name.endswith("q_proj.weight"):
  3446. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3447. if name.endswith("k_proj.weight"):
  3448. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3449. return [(self.map_tensor_name(name), data_torch)]
  3450. @ModelBase.register("Olmo2ForCausalLM")
  3451. class Olmo2Model(TextModel):
  3452. model_arch = gguf.MODEL_ARCH.OLMO2
  3453. @ModelBase.register("OlmoeForCausalLM")
  3454. class OlmoeModel(TextModel):
  3455. model_arch = gguf.MODEL_ARCH.OLMOE
  3456. def set_gguf_parameters(self):
  3457. super().set_gguf_parameters()
  3458. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3459. if (n_experts := self.hparams.get("num_experts")) is not None:
  3460. self.gguf_writer.add_expert_count(n_experts)
  3461. _experts: list[dict[str, Tensor]] | None = None
  3462. # Copied from: Qwen2MoeModel
  3463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3464. # process the experts separately
  3465. if name.find("experts") != -1:
  3466. n_experts = self.hparams["num_experts"]
  3467. assert bid is not None
  3468. if self._experts is None:
  3469. self._experts = [{} for _ in range(self.block_count)]
  3470. self._experts[bid][name] = data_torch
  3471. if len(self._experts[bid]) >= n_experts * 3:
  3472. tensors: list[tuple[str, Tensor]] = []
  3473. # merge the experts into a single 3d tensor
  3474. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3475. datas: list[Tensor] = []
  3476. for xid in range(n_experts):
  3477. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3478. datas.append(self._experts[bid][ename])
  3479. del self._experts[bid][ename]
  3480. data_torch = torch.stack(datas, dim=0)
  3481. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3482. new_name = self.map_tensor_name(merged_name)
  3483. tensors.append((new_name, data_torch))
  3484. return tensors
  3485. else:
  3486. return []
  3487. return [(self.map_tensor_name(name), data_torch)]
  3488. # Copied from: Qwen2MoeModel
  3489. def prepare_tensors(self):
  3490. super().prepare_tensors()
  3491. if self._experts is not None:
  3492. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3493. experts = [k for d in self._experts for k in d.keys()]
  3494. if len(experts) > 0:
  3495. raise ValueError(f"Unprocessed experts: {experts}")
  3496. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3497. class JinaBertV2Model(BertModel):
  3498. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3499. def __init__(self, *args, **kwargs):
  3500. super().__init__(*args, **kwargs)
  3501. self.intermediate_size = self.hparams["intermediate_size"]
  3502. def get_tensors(self):
  3503. for name, data in super().get_tensors():
  3504. if 'gated_layer' in name:
  3505. d1 = data[:self.intermediate_size, :]
  3506. name1 = name.replace('gated_layers', 'gated_layers_w')
  3507. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3508. d2 = data[self.intermediate_size:, :]
  3509. name2 = name.replace('gated_layers', 'gated_layers_v')
  3510. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3511. yield name1, d1
  3512. yield name2, d2
  3513. continue
  3514. yield name, data
  3515. def set_vocab(self):
  3516. tokenizer_class = 'BertTokenizer'
  3517. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3518. tokenizer_class = json.load(f)['tokenizer_class']
  3519. if tokenizer_class == 'BertTokenizer':
  3520. super().set_vocab()
  3521. elif tokenizer_class == 'RobertaTokenizer':
  3522. self._set_vocab_gpt2()
  3523. self.gguf_writer.add_token_type_count(2)
  3524. else:
  3525. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3526. self.gguf_writer.add_add_bos_token(True)
  3527. self.gguf_writer.add_add_eos_token(True)
  3528. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3529. # if name starts with "bert.", remove the prefix
  3530. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3531. if name.startswith("bert."):
  3532. name = name[5:]
  3533. return super().modify_tensors(data_torch, name, bid)
  3534. @ModelBase.register("OpenELMForCausalLM")
  3535. class OpenELMModel(TextModel):
  3536. model_arch = gguf.MODEL_ARCH.OPENELM
  3537. @staticmethod
  3538. def _make_divisible(v: float | int, divisor: int) -> int:
  3539. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3540. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3541. # Make sure that round down does not go down by more than 10%.
  3542. if new_v < 0.9 * v:
  3543. new_v += divisor
  3544. return new_v
  3545. def __init__(self, *args, **kwargs):
  3546. super().__init__(*args, **kwargs)
  3547. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3548. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3549. self._n_embd: int = self.hparams["model_dim"]
  3550. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3551. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3552. self._ffn_dims: list[int] = [
  3553. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3554. for multiplier in ffn_multipliers
  3555. ]
  3556. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3557. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3558. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3559. def set_vocab(self):
  3560. try:
  3561. self._set_vocab_sentencepiece()
  3562. except FileNotFoundError:
  3563. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3564. def set_gguf_parameters(self):
  3565. n_embd = self._n_embd
  3566. head_dim = self.hparams["head_dim"]
  3567. rot_pct = 1.0
  3568. assert self.block_count == len(self._num_kv_heads)
  3569. assert self.block_count == len(self._num_query_heads)
  3570. assert self.block_count == len(self._ffn_dims)
  3571. self.gguf_writer.add_block_count(self.block_count)
  3572. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3573. self.gguf_writer.add_embedding_length(n_embd)
  3574. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3575. self.gguf_writer.add_head_count(self._num_query_heads)
  3576. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3577. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3578. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3579. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3580. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3581. self.gguf_writer.add_key_length(head_dim)
  3582. self.gguf_writer.add_value_length(head_dim)
  3583. self.gguf_writer.add_file_type(self.ftype)
  3584. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3585. if "n_layers" in keys:
  3586. return self.hparams["num_transformer_layers"]
  3587. return super().find_hparam(keys, optional)
  3588. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3589. # split ff
  3590. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3591. ff_dim = self._ffn_dims[bid]
  3592. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3593. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3594. return
  3595. yield (self.map_tensor_name(name), data_torch)
  3596. @ModelBase.register("ArcticForCausalLM")
  3597. class ArcticModel(TextModel):
  3598. model_arch = gguf.MODEL_ARCH.ARCTIC
  3599. def set_vocab(self):
  3600. # The reason for using a custom implementation here is that the
  3601. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3602. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3603. from sentencepiece import SentencePieceProcessor
  3604. tokenizer_path = self.dir_model / 'tokenizer.model'
  3605. if not tokenizer_path.is_file():
  3606. logger.error(f'Error: Missing {tokenizer_path}')
  3607. sys.exit(1)
  3608. # Read the whole vocabulary from the tokenizer.model file
  3609. tokenizer = SentencePieceProcessor()
  3610. tokenizer.LoadFromFile(str(tokenizer_path))
  3611. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3612. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3613. scores: list[float] = [-10000.0] * vocab_size
  3614. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3615. for token_id in range(tokenizer.vocab_size()):
  3616. piece = tokenizer.IdToPiece(token_id)
  3617. text = piece.encode("utf-8")
  3618. score = tokenizer.GetScore(token_id)
  3619. toktype = SentencePieceTokenTypes.NORMAL
  3620. if tokenizer.IsUnknown(token_id):
  3621. toktype = SentencePieceTokenTypes.UNKNOWN
  3622. elif tokenizer.IsControl(token_id):
  3623. toktype = SentencePieceTokenTypes.CONTROL
  3624. elif tokenizer.IsUnused(token_id):
  3625. toktype = SentencePieceTokenTypes.UNUSED
  3626. elif tokenizer.IsByte(token_id):
  3627. toktype = SentencePieceTokenTypes.BYTE
  3628. tokens[token_id] = text
  3629. scores[token_id] = score
  3630. toktypes[token_id] = toktype
  3631. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3632. # of information about added/redefined tokens and modify them accordingly.
  3633. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3634. if tokenizer_config_file.is_file():
  3635. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3636. tokenizer_config_json = json.load(f)
  3637. if "added_tokens_decoder" in tokenizer_config_json:
  3638. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3639. for token_id, token_json in added_tokens_decoder.items():
  3640. token_id = int(token_id)
  3641. if token_id >= vocab_size:
  3642. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3643. continue
  3644. token_content = token_json["content"]
  3645. token_type = SentencePieceTokenTypes.USER_DEFINED
  3646. token_score = -10000.0
  3647. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3648. # Set the score to 0.0 as in the original tokenizer.model
  3649. if ("special" in token_json) and token_json["special"]:
  3650. if token_content == tokenizer_config_json["unk_token"]:
  3651. token_type = SentencePieceTokenTypes.UNKNOWN
  3652. else:
  3653. token_type = SentencePieceTokenTypes.CONTROL
  3654. token_score = 0.0
  3655. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3656. tokens[token_id] = token_content.encode("utf-8")
  3657. toktypes[token_id] = token_type
  3658. scores[token_id] = token_score
  3659. self.gguf_writer.add_tokenizer_model("llama")
  3660. self.gguf_writer.add_tokenizer_pre("default")
  3661. self.gguf_writer.add_token_list(tokens)
  3662. self.gguf_writer.add_token_scores(scores)
  3663. self.gguf_writer.add_token_types(toktypes)
  3664. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3665. special_vocab.add_to_gguf(self.gguf_writer)
  3666. def set_gguf_parameters(self):
  3667. super().set_gguf_parameters()
  3668. hparams = self.hparams
  3669. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3670. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3671. _experts: list[dict[str, Tensor]] | None = None
  3672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3673. n_head = self.hparams["num_attention_heads"]
  3674. n_kv_head = self.hparams.get("num_key_value_heads")
  3675. if name.endswith("q_proj.weight"):
  3676. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3677. if name.endswith("k_proj.weight"):
  3678. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3679. # process the experts separately
  3680. if name.find("block_sparse_moe.experts") != -1:
  3681. n_experts = self.hparams["num_local_experts"]
  3682. assert bid is not None
  3683. if self._experts is None:
  3684. self._experts = [{} for _ in range(self.block_count)]
  3685. self._experts[bid][name] = data_torch
  3686. if len(self._experts[bid]) >= n_experts * 3:
  3687. tensors: list[tuple[str, Tensor]] = []
  3688. # merge the experts into a single 3d tensor
  3689. for wid in ["w1", "w2", "w3"]:
  3690. datas: list[Tensor] = []
  3691. for xid in range(n_experts):
  3692. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3693. datas.append(self._experts[bid][ename])
  3694. del self._experts[bid][ename]
  3695. data_torch = torch.stack(datas, dim=0)
  3696. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3697. new_name = self.map_tensor_name(merged_name)
  3698. tensors.append((new_name, data_torch))
  3699. return tensors
  3700. else:
  3701. return []
  3702. return [(self.map_tensor_name(name), data_torch)]
  3703. def prepare_tensors(self):
  3704. super().prepare_tensors()
  3705. if self._experts is not None:
  3706. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3707. experts = [k for d in self._experts for k in d.keys()]
  3708. if len(experts) > 0:
  3709. raise ValueError(f"Unprocessed experts: {experts}")
  3710. @ModelBase.register("DeepseekForCausalLM")
  3711. class DeepseekModel(TextModel):
  3712. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3713. def set_vocab(self):
  3714. try:
  3715. self._set_vocab_sentencepiece()
  3716. except FileNotFoundError:
  3717. self._set_vocab_gpt2()
  3718. def set_gguf_parameters(self):
  3719. super().set_gguf_parameters()
  3720. hparams = self.hparams
  3721. if "head_dim" in hparams:
  3722. rope_dim = hparams["head_dim"]
  3723. else:
  3724. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3725. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3726. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3727. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3728. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3729. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3730. self.gguf_writer.add_expert_weights_scale(1.0)
  3731. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3732. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3733. _experts: list[dict[str, Tensor]] | None = None
  3734. @staticmethod
  3735. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3736. if n_head_kv is not None and n_head != n_head_kv:
  3737. n_head = n_head_kv
  3738. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3739. .swapaxes(1, 2)
  3740. .reshape(weights.shape))
  3741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3742. n_head = self.hparams["num_attention_heads"]
  3743. n_kv_head = self.hparams.get("num_key_value_heads")
  3744. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3745. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3746. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3747. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3748. # process the experts separately
  3749. if name.find("mlp.experts") != -1:
  3750. n_experts = self.hparams["n_routed_experts"]
  3751. assert bid is not None
  3752. if self._experts is None:
  3753. self._experts = [{} for _ in range(self.block_count)]
  3754. self._experts[bid][name] = data_torch
  3755. if len(self._experts[bid]) >= n_experts * 3:
  3756. tensors: list[tuple[str, Tensor]] = []
  3757. # merge the experts into a single 3d tensor
  3758. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3759. datas: list[Tensor] = []
  3760. for xid in range(n_experts):
  3761. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3762. datas.append(self._experts[bid][ename])
  3763. del self._experts[bid][ename]
  3764. data_torch = torch.stack(datas, dim=0)
  3765. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3766. new_name = self.map_tensor_name(merged_name)
  3767. tensors.append((new_name, data_torch))
  3768. return tensors
  3769. else:
  3770. return []
  3771. return [(self.map_tensor_name(name), data_torch)]
  3772. def prepare_tensors(self):
  3773. super().prepare_tensors()
  3774. if self._experts is not None:
  3775. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3776. experts = [k for d in self._experts for k in d.keys()]
  3777. if len(experts) > 0:
  3778. raise ValueError(f"Unprocessed experts: {experts}")
  3779. @ModelBase.register("DeepseekV2ForCausalLM")
  3780. @ModelBase.register("DeepseekV3ForCausalLM")
  3781. class DeepseekV2Model(TextModel):
  3782. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3783. def set_vocab(self):
  3784. self._set_vocab_gpt2()
  3785. def set_gguf_parameters(self):
  3786. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3787. self.hparams["num_key_value_heads"] = 1
  3788. super().set_gguf_parameters()
  3789. hparams = self.hparams
  3790. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3791. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3792. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3793. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3794. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3795. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3796. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3797. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3798. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3799. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3800. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3801. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3802. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3803. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3804. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3805. if hparams["scoring_func"] == "sigmoid":
  3806. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3807. elif hparams["scoring_func"] == "softmax":
  3808. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3809. else:
  3810. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3811. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3812. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3813. if self.hparams["rope_scaling"].get("type") == "yarn":
  3814. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3815. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3816. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3817. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3818. _experts: list[dict[str, Tensor]] | None = None
  3819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3820. # rename e_score_correction_bias tensors
  3821. if name.endswith("e_score_correction_bias"):
  3822. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3823. # skip Multi-Token Prediction (MTP) layers
  3824. block_count = self.hparams["num_hidden_layers"]
  3825. match = re.match(r"model.layers.(\d+)", name)
  3826. if match and int(match.group(1)) >= block_count:
  3827. return []
  3828. # process the experts separately
  3829. if name.find("mlp.experts") != -1:
  3830. n_experts = self.hparams["n_routed_experts"]
  3831. assert bid is not None
  3832. if self._experts is None:
  3833. self._experts = [{} for _ in range(self.block_count)]
  3834. self._experts[bid][name] = data_torch
  3835. if len(self._experts[bid]) >= n_experts * 3:
  3836. tensors: list[tuple[str, Tensor]] = []
  3837. # merge the experts into a single 3d tensor
  3838. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3839. datas: list[Tensor] = []
  3840. for xid in range(n_experts):
  3841. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3842. datas.append(self._experts[bid][ename])
  3843. del self._experts[bid][ename]
  3844. data_torch = torch.stack(datas, dim=0)
  3845. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3846. new_name = self.map_tensor_name(merged_name)
  3847. tensors.append((new_name, data_torch))
  3848. return tensors
  3849. else:
  3850. return []
  3851. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3852. if name.endswith("kv_b_proj.weight"):
  3853. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3854. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3855. n_head_kv = self.hparams["num_key_value_heads"]
  3856. v_head_dim = self.hparams["v_head_dim"]
  3857. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3858. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3859. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3860. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3861. k_b = k_b.transpose(1, 2)
  3862. return [
  3863. (self.map_tensor_name(name_kb), k_b),
  3864. (self.map_tensor_name(name_vb), v_b)
  3865. ]
  3866. return [(self.map_tensor_name(name), data_torch)]
  3867. def prepare_tensors(self):
  3868. super().prepare_tensors()
  3869. if self._experts is not None:
  3870. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3871. experts = [k for d in self._experts for k in d.keys()]
  3872. if len(experts) > 0:
  3873. raise ValueError(f"Unprocessed experts: {experts}")
  3874. @ModelBase.register("PLMForCausalLM")
  3875. class PLMModel(TextModel):
  3876. model_arch = gguf.MODEL_ARCH.PLM
  3877. def set_vocab(self):
  3878. self._set_vocab_gpt2()
  3879. def set_gguf_parameters(self):
  3880. super().set_gguf_parameters()
  3881. hparams = self.hparams
  3882. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3883. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3884. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3885. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3886. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3888. return [(self.map_tensor_name(name), data_torch)]
  3889. def prepare_tensors(self):
  3890. super().prepare_tensors()
  3891. @ModelBase.register("T5WithLMHeadModel")
  3892. @ModelBase.register("T5ForConditionalGeneration")
  3893. @ModelBase.register("MT5ForConditionalGeneration")
  3894. @ModelBase.register("UMT5ForConditionalGeneration")
  3895. class T5Model(TextModel):
  3896. model_arch = gguf.MODEL_ARCH.T5
  3897. def __init__(self, *args, **kwargs):
  3898. super().__init__(*args, **kwargs)
  3899. self.shared_token_embeddings_found = False
  3900. def set_vocab(self):
  3901. # to avoid TypeError: Descriptors cannot be created directly
  3902. # exception when importing sentencepiece_model_pb2
  3903. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3904. from sentencepiece import SentencePieceProcessor
  3905. from sentencepiece import sentencepiece_model_pb2 as model
  3906. tokenizer_path = self.dir_model / 'tokenizer.model'
  3907. # many older models use spiece.model tokenizer model filename
  3908. if not tokenizer_path.is_file():
  3909. tokenizer_path = self.dir_model / 'spiece.model'
  3910. if not tokenizer_path.is_file():
  3911. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3912. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3913. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3914. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3915. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3916. # assure the tokenizer model file name is correct
  3917. assert tokenizer_path.name == 'tokenizer.model'
  3918. return self._set_vocab_sentencepiece()
  3919. else:
  3920. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3921. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3922. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3923. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3924. tokenizer = SentencePieceProcessor()
  3925. tokenizer.LoadFromFile(str(tokenizer_path))
  3926. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3927. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3928. scores: list[float] = [-10000.0] * vocab_size
  3929. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3930. for token_id in range(tokenizer.vocab_size()):
  3931. piece = tokenizer.IdToPiece(token_id)
  3932. text = piece.encode("utf-8")
  3933. score = tokenizer.GetScore(token_id)
  3934. toktype = SentencePieceTokenTypes.NORMAL
  3935. if tokenizer.IsUnknown(token_id):
  3936. toktype = SentencePieceTokenTypes.UNKNOWN
  3937. elif tokenizer.IsControl(token_id):
  3938. toktype = SentencePieceTokenTypes.CONTROL
  3939. elif tokenizer.IsUnused(token_id):
  3940. toktype = SentencePieceTokenTypes.UNUSED
  3941. elif tokenizer.IsByte(token_id):
  3942. toktype = SentencePieceTokenTypes.BYTE
  3943. tokens[token_id] = text
  3944. scores[token_id] = score
  3945. toktypes[token_id] = toktype
  3946. added_tokens_file = self.dir_model / 'added_tokens.json'
  3947. if added_tokens_file.is_file():
  3948. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3949. added_tokens_json = json.load(f)
  3950. for key in added_tokens_json:
  3951. token_id = added_tokens_json[key]
  3952. if token_id >= vocab_size:
  3953. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3954. continue
  3955. tokens[token_id] = key.encode("utf-8")
  3956. scores[token_id] = -1000.0
  3957. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3958. if vocab_size > len(tokens):
  3959. pad_count = vocab_size - len(tokens)
  3960. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3961. for i in range(1, pad_count + 1):
  3962. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3963. scores.append(-1000.0)
  3964. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3965. self.gguf_writer.add_tokenizer_model("t5")
  3966. self.gguf_writer.add_tokenizer_pre("default")
  3967. self.gguf_writer.add_token_list(tokens)
  3968. self.gguf_writer.add_token_scores(scores)
  3969. self.gguf_writer.add_token_types(toktypes)
  3970. self.gguf_writer.add_add_space_prefix(add_prefix)
  3971. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3972. if precompiled_charsmap:
  3973. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3974. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3975. special_vocab.add_to_gguf(self.gguf_writer)
  3976. self.gguf_writer.add_add_bos_token(False)
  3977. self.gguf_writer.add_add_eos_token(True)
  3978. def set_gguf_parameters(self):
  3979. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3980. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3981. n_ctx = 512
  3982. self.gguf_writer.add_context_length(n_ctx)
  3983. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3984. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3985. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3986. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3987. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3988. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3989. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3990. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3991. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3992. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3993. self.gguf_writer.add_file_type(self.ftype)
  3994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3995. del bid # unused
  3996. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3997. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3998. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3999. # and decoder and ignore the remaining ones.
  4000. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4001. if not self.shared_token_embeddings_found:
  4002. name = "shared.weight"
  4003. self.shared_token_embeddings_found = True
  4004. else:
  4005. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4006. return []
  4007. return [(self.map_tensor_name(name), data_torch)]
  4008. @ModelBase.register("T5EncoderModel")
  4009. class T5EncoderModel(TextModel):
  4010. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4011. def __init__(self, *args, **kwargs):
  4012. super().__init__(*args, **kwargs)
  4013. self.shared_token_embeddings_found = False
  4014. def set_vocab(self):
  4015. # to avoid TypeError: Descriptors cannot be created directly
  4016. # exception when importing sentencepiece_model_pb2
  4017. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4018. from sentencepiece import SentencePieceProcessor
  4019. from sentencepiece import sentencepiece_model_pb2 as model
  4020. tokenizer_path = self.dir_model / 'tokenizer.model'
  4021. # many older models use spiece.model tokenizer model filename
  4022. if not tokenizer_path.is_file():
  4023. tokenizer_path = self.dir_model / 'spiece.model'
  4024. if not tokenizer_path.is_file():
  4025. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4026. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4027. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4028. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4029. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4030. # assure the tokenizer model file name is correct
  4031. assert tokenizer_path.name == 'tokenizer.model'
  4032. return self._set_vocab_sentencepiece()
  4033. else:
  4034. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4035. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4036. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4037. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4038. tokenizer = SentencePieceProcessor()
  4039. tokenizer.LoadFromFile(str(tokenizer_path))
  4040. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4041. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4042. scores: list[float] = [-10000.0] * vocab_size
  4043. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4044. for token_id in range(tokenizer.vocab_size()):
  4045. piece = tokenizer.IdToPiece(token_id)
  4046. text = piece.encode("utf-8")
  4047. score = tokenizer.GetScore(token_id)
  4048. toktype = SentencePieceTokenTypes.NORMAL
  4049. if tokenizer.IsUnknown(token_id):
  4050. toktype = SentencePieceTokenTypes.UNKNOWN
  4051. elif tokenizer.IsControl(token_id):
  4052. toktype = SentencePieceTokenTypes.CONTROL
  4053. elif tokenizer.IsUnused(token_id):
  4054. toktype = SentencePieceTokenTypes.UNUSED
  4055. elif tokenizer.IsByte(token_id):
  4056. toktype = SentencePieceTokenTypes.BYTE
  4057. tokens[token_id] = text
  4058. scores[token_id] = score
  4059. toktypes[token_id] = toktype
  4060. added_tokens_file = self.dir_model / 'added_tokens.json'
  4061. if added_tokens_file.is_file():
  4062. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4063. added_tokens_json = json.load(f)
  4064. for key in added_tokens_json:
  4065. token_id = added_tokens_json[key]
  4066. if token_id >= vocab_size:
  4067. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4068. continue
  4069. tokens[token_id] = key.encode("utf-8")
  4070. scores[token_id] = -1000.0
  4071. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4072. if vocab_size > len(tokens):
  4073. pad_count = vocab_size - len(tokens)
  4074. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4075. for i in range(1, pad_count + 1):
  4076. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4077. scores.append(-1000.0)
  4078. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4079. self.gguf_writer.add_tokenizer_model("t5")
  4080. self.gguf_writer.add_tokenizer_pre("default")
  4081. self.gguf_writer.add_token_list(tokens)
  4082. self.gguf_writer.add_token_scores(scores)
  4083. self.gguf_writer.add_token_types(toktypes)
  4084. self.gguf_writer.add_add_space_prefix(add_prefix)
  4085. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4086. if precompiled_charsmap:
  4087. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4088. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4089. special_vocab.add_to_gguf(self.gguf_writer)
  4090. self.gguf_writer.add_add_bos_token(False)
  4091. self.gguf_writer.add_add_eos_token(True)
  4092. def set_gguf_parameters(self):
  4093. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4094. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4095. n_ctx = 512
  4096. self.gguf_writer.add_context_length(n_ctx)
  4097. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4098. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4099. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4100. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4101. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4102. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4103. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4104. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4105. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4106. self.gguf_writer.add_file_type(self.ftype)
  4107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4108. del bid # unused
  4109. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4110. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4111. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4112. # and decoder and ignore the remaining ones.
  4113. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4114. if not self.shared_token_embeddings_found:
  4115. name = "shared.weight"
  4116. self.shared_token_embeddings_found = True
  4117. else:
  4118. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4119. return []
  4120. return [(self.map_tensor_name(name), data_torch)]
  4121. @ModelBase.register("JAISLMHeadModel")
  4122. class JaisModel(TextModel):
  4123. model_arch = gguf.MODEL_ARCH.JAIS
  4124. def __init__(self, *args, **kwargs):
  4125. super().__init__(*args, **kwargs)
  4126. # SwigLU activation
  4127. assert self.hparams["activation_function"] == "swiglu"
  4128. # ALiBi position embedding
  4129. assert self.hparams["position_embedding_type"] == "alibi"
  4130. # Embeddings scale
  4131. self.embeddings_scale = 1.0
  4132. if 'mup_embeddings_scale' in self.hparams:
  4133. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4134. elif 'embeddings_scale' in self.hparams:
  4135. self.embeddings_scale = self.hparams['embeddings_scale']
  4136. else:
  4137. assert False
  4138. self.width_scale = 1.0
  4139. if 'mup_output_alpha' in self.hparams:
  4140. assert 'mup_width_scale' in self.hparams
  4141. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4142. elif 'width_scale' in self.hparams:
  4143. self.width_scale = self.hparams['width_scale']
  4144. else:
  4145. assert False
  4146. self.max_alibi_bias = 8.0
  4147. def set_vocab(self):
  4148. self._set_vocab_gpt2()
  4149. def set_gguf_parameters(self):
  4150. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4151. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4152. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4153. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4154. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4155. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4156. self.gguf_writer.add_file_type(self.ftype)
  4157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4158. del bid # unused
  4159. tensors: list[tuple[str, Tensor]] = []
  4160. # we don't need these
  4161. if name.endswith((".attn.bias")):
  4162. return tensors
  4163. if name.endswith(("relative_pe.slopes")):
  4164. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4165. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4166. # but Jais's PyTorch model simply precalculates the slope values and places them
  4167. # in relative_pes.slopes
  4168. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4169. first_val = float(data_torch[0].item())
  4170. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4171. return tensors
  4172. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4173. data_torch = data_torch.transpose(1, 0)
  4174. new_name = self.map_tensor_name(name)
  4175. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4176. tensors.append((new_name, data_torch * self.embeddings_scale))
  4177. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4178. tensors.append((new_name, data_torch * self.width_scale))
  4179. else:
  4180. tensors.append((new_name, data_torch))
  4181. return tensors
  4182. def prepare_tensors(self):
  4183. super().prepare_tensors()
  4184. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4185. @ModelBase.register("Glm4ForCausalLM")
  4186. class Glm4Model(TextModel):
  4187. model_arch = gguf.MODEL_ARCH.GLM4
  4188. def set_vocab(self):
  4189. from transformers import AutoTokenizer
  4190. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4191. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4192. tokens, toktypes, tokpre = self.get_vocab_base()
  4193. self.gguf_writer.add_tokenizer_model("gpt2")
  4194. self.gguf_writer.add_tokenizer_pre(tokpre)
  4195. self.gguf_writer.add_token_list(tokens)
  4196. self.gguf_writer.add_token_types(toktypes)
  4197. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4198. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4199. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4200. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4201. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4202. special_vocab.add_to_gguf(self.gguf_writer)
  4203. def set_gguf_parameters(self):
  4204. super().set_gguf_parameters()
  4205. rope_dim = self.hparams["head_dim"]
  4206. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4207. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4208. if self.hparams["rope_scaling"].get("type") == "yarn":
  4209. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4210. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4211. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4212. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4213. class ChatGLMModel(TextModel):
  4214. model_arch = gguf.MODEL_ARCH.CHATGLM
  4215. def set_vocab_chatglm3(self):
  4216. dir_model = self.dir_model
  4217. hparams = self.hparams
  4218. tokens: list[bytes] = []
  4219. toktypes: list[int] = []
  4220. scores: list[float] = []
  4221. from transformers import AutoTokenizer
  4222. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4223. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4224. assert max(tokenizer.get_vocab().values()) < vocab_size
  4225. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4226. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4227. for token_id in range(vocab_size):
  4228. piece = tokenizer._convert_id_to_token(token_id)
  4229. if token_id == 0:
  4230. piece = "<unk>"
  4231. elif token_id == 1:
  4232. piece = "<bos>"
  4233. elif token_id == 2:
  4234. piece = "<eos>"
  4235. text = piece.encode("utf-8")
  4236. score = 0.0
  4237. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4238. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4239. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4240. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4241. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4242. if piece in special_tokens:
  4243. toktype = SentencePieceTokenTypes.CONTROL
  4244. elif len(piece) == 0:
  4245. text = f"[PAD{token_id}]".encode("utf-8")
  4246. toktype = SentencePieceTokenTypes.UNUSED
  4247. else:
  4248. toktype = SentencePieceTokenTypes.USER_DEFINED
  4249. tokens.append(text)
  4250. scores.append(score)
  4251. toktypes.append(toktype)
  4252. continue
  4253. toktype = SentencePieceTokenTypes.NORMAL
  4254. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4255. toktype = SentencePieceTokenTypes.UNKNOWN
  4256. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4257. toktype = SentencePieceTokenTypes.CONTROL
  4258. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4259. toktype = SentencePieceTokenTypes.UNUSED
  4260. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4261. toktype = SentencePieceTokenTypes.BYTE
  4262. tokens.append(text)
  4263. scores.append(score)
  4264. toktypes.append(toktype)
  4265. self.gguf_writer.add_tokenizer_model("llama")
  4266. # glm3 needs prefix and suffix formatted as:
  4267. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4268. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4269. self.gguf_writer.add_token_list(tokens)
  4270. self.gguf_writer.add_token_scores(scores)
  4271. self.gguf_writer.add_token_types(toktypes)
  4272. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4273. special_vocab.add_to_gguf(self.gguf_writer)
  4274. @staticmethod
  4275. def token_bytes_to_string(b):
  4276. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4277. byte_encoder = bytes_to_unicode()
  4278. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4279. @staticmethod
  4280. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4281. parts = [bytes([b]) for b in token]
  4282. while True:
  4283. min_idx = None
  4284. min_rank = None
  4285. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4286. rank = mergeable_ranks.get(pair[0] + pair[1])
  4287. if rank is not None and (min_rank is None or rank < min_rank):
  4288. min_idx = i
  4289. min_rank = rank
  4290. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4291. break
  4292. assert min_idx is not None
  4293. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4294. return parts
  4295. def set_vocab(self):
  4296. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4297. self.set_vocab_chatglm3()
  4298. return
  4299. dir_model = self.dir_model
  4300. hparams = self.hparams
  4301. tokens: list[str] = []
  4302. toktypes: list[int] = []
  4303. from transformers import AutoTokenizer
  4304. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4305. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4306. assert max(tokenizer.get_vocab().values()) < vocab_size
  4307. tokens, toktypes, tokpre = self.get_vocab_base()
  4308. self.gguf_writer.add_tokenizer_model("gpt2")
  4309. self.gguf_writer.add_tokenizer_pre(tokpre)
  4310. self.gguf_writer.add_token_list(tokens)
  4311. self.gguf_writer.add_token_types(toktypes)
  4312. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4313. # only add special tokens when they were not already loaded from config.json
  4314. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4315. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4316. # this one is usually not in config.json anyway
  4317. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4318. special_vocab.add_to_gguf(self.gguf_writer)
  4319. def set_gguf_parameters(self):
  4320. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4321. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4322. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4323. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4324. self.gguf_writer.add_embedding_length(n_embed)
  4325. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4326. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4327. self.gguf_writer.add_head_count(n_head)
  4328. self.gguf_writer.add_head_count_kv(n_head_kv)
  4329. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4330. self.gguf_writer.add_file_type(self.ftype)
  4331. if "attention_dim" in self.hparams:
  4332. rope_dim = self.hparams["attention_dim"]
  4333. else:
  4334. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4335. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4336. self.gguf_writer.add_add_bos_token(False)
  4337. rope_freq = 10000
  4338. if "rope_ratio" in self.hparams:
  4339. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4340. self.gguf_writer.add_rope_freq_base(rope_freq)
  4341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4342. del bid # unused
  4343. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4344. return []
  4345. name = name.removeprefix("transformer.")
  4346. return [(self.map_tensor_name(name), data_torch)]
  4347. @ModelBase.register("NemotronForCausalLM")
  4348. class NemotronModel(TextModel):
  4349. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4350. def set_vocab(self):
  4351. self._set_vocab_sentencepiece()
  4352. self.gguf_writer.add_pad_token_id(0)
  4353. self.gguf_writer.add_unk_token_id(1)
  4354. def set_gguf_parameters(self):
  4355. super().set_gguf_parameters()
  4356. hparams = self.hparams
  4357. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4358. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4359. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4360. # * Partial RoPE
  4361. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4362. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4363. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4364. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4365. # * RopeScaling for Nemotron
  4366. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4367. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4368. else:
  4369. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4370. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4371. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4372. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4373. # model.layers.{l}.input_layernorm.weight
  4374. # model.layers.{l}.post_attention_layernorm.weight
  4375. # model.norm.weight
  4376. if name.endswith("norm.weight"):
  4377. data_torch = data_torch + 1
  4378. return [(self.map_tensor_name(name), data_torch)]
  4379. @ModelBase.register("ExaoneForCausalLM")
  4380. class ExaoneModel(TextModel):
  4381. model_arch = gguf.MODEL_ARCH.EXAONE
  4382. def set_gguf_parameters(self):
  4383. hparams = self.hparams
  4384. assert (hparams["activation_function"] == "silu")
  4385. max_position_embeddings = hparams["max_position_embeddings"]
  4386. embed_dim = hparams["hidden_size"]
  4387. num_heads = hparams["num_attention_heads"]
  4388. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4389. layer_norm_eps = hparams["layer_norm_epsilon"]
  4390. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4391. num_layers = hparams["num_layers"]
  4392. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4393. # attention_dropout_rate = hparams["attention_dropout"]
  4394. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4395. # embed_dropout_rate = hparams["embed_dropout"]
  4396. self.gguf_writer.add_embedding_length(embed_dim)
  4397. self.gguf_writer.add_head_count(num_heads)
  4398. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4399. self.gguf_writer.add_context_length(max_position_embeddings)
  4400. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4401. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4402. self.gguf_writer.add_block_count(num_layers)
  4403. self.gguf_writer.add_file_type(self.ftype)
  4404. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4405. self.gguf_writer.add_rope_freq_base(rope_theta)
  4406. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4407. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4408. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4409. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4410. if hparams["rope_scaling"].get("type") == "linear":
  4411. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4412. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4413. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4414. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4415. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4416. base = self.hparams.get("rope_theta", 10000.0)
  4417. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4418. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4419. factor = rope_scaling.get("factor", 8.0)
  4420. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4421. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4422. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4423. low_freq_wavelen = old_context_len / low_freq_factor
  4424. high_freq_wavelen = old_context_len / high_freq_factor
  4425. assert low_freq_wavelen != high_freq_wavelen
  4426. rope_factors = []
  4427. for freq in freqs:
  4428. wavelen = 2 * math.pi / freq
  4429. if wavelen < high_freq_wavelen:
  4430. rope_factors.append(1)
  4431. elif wavelen > low_freq_wavelen:
  4432. rope_factors.append(factor)
  4433. else:
  4434. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4435. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4436. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4437. @ModelBase.register("GraniteForCausalLM")
  4438. class GraniteModel(LlamaModel):
  4439. """Conversion for IBM's GraniteForCausalLM"""
  4440. model_arch = gguf.MODEL_ARCH.GRANITE
  4441. def set_gguf_parameters(self):
  4442. """Granite uses standard llama parameters with the following differences:
  4443. - No head_dim support
  4444. - New multiplier params:
  4445. - attention_scale
  4446. - embedding_scale
  4447. - residual_scale
  4448. - logits_scaling
  4449. """
  4450. if head_dim := self.hparams.pop("head_dim", None):
  4451. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4452. super().set_gguf_parameters()
  4453. # NOTE: Convert _multiplier params to _scale params for naming
  4454. # consistency
  4455. if attention_scale := self.hparams.get("attention_multiplier"):
  4456. self.gguf_writer.add_attention_scale(attention_scale)
  4457. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4458. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4459. self.gguf_writer.add_embedding_scale(embedding_scale)
  4460. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4461. if residual_scale := self.hparams.get("residual_multiplier"):
  4462. self.gguf_writer.add_residual_scale(residual_scale)
  4463. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4464. if logits_scale := self.hparams.get("logits_scaling"):
  4465. self.gguf_writer.add_logit_scale(logits_scale)
  4466. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4467. @ModelBase.register("GraniteMoeForCausalLM")
  4468. class GraniteMoeModel(GraniteModel):
  4469. """Conversion for IBM's GraniteMoeForCausalLM"""
  4470. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4472. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4473. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4474. the hidden size that is then split during forward. To keep compatibility
  4475. with existing mixtral support, we pull them apart here.
  4476. """
  4477. if name.endswith("block_sparse_moe.input_linear.weight"):
  4478. ffn_dim = self.hparams["intermediate_size"]
  4479. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4480. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4481. return [
  4482. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4483. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4484. ]
  4485. return super().modify_tensors(data_torch, name, bid)
  4486. @ModelBase.register("BailingMoeForCausalLM")
  4487. class BailingMoeModel(TextModel):
  4488. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4489. def set_vocab(self):
  4490. self._set_vocab_gpt2()
  4491. def set_gguf_parameters(self):
  4492. super().set_gguf_parameters()
  4493. hparams = self.hparams
  4494. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4495. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4496. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4497. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4498. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4499. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4500. self.gguf_writer.add_expert_weights_scale(1.0)
  4501. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4502. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4503. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4504. _experts: list[dict[str, Tensor]] | None = None
  4505. @staticmethod
  4506. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4507. if n_head_kv is not None and n_head != n_head_kv:
  4508. n_head = n_head_kv
  4509. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4510. .swapaxes(1, 2)
  4511. .reshape(weights.shape))
  4512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4513. n_head = self.hparams["num_attention_heads"]
  4514. n_kv_head = self.hparams.get("num_key_value_heads")
  4515. n_embd = self.hparams["hidden_size"]
  4516. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4517. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4518. if name.endswith("attention.dense.weight"):
  4519. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4520. elif name.endswith("query_key_value.weight"):
  4521. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4522. return [
  4523. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4524. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4525. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4526. ]
  4527. elif name.find("mlp.experts") != -1:
  4528. n_experts = self.hparams["num_experts"]
  4529. assert bid is not None
  4530. tensors: list[tuple[str, Tensor]] = []
  4531. if self._experts is None:
  4532. self._experts = [{} for _ in range(self.block_count)]
  4533. self._experts[bid][name] = data_torch
  4534. if len(self._experts[bid]) >= n_experts * 3:
  4535. # merge the experts into a single 3d tensor
  4536. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4537. datas: list[Tensor] = []
  4538. for xid in range(n_experts):
  4539. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4540. datas.append(self._experts[bid][ename])
  4541. del self._experts[bid][ename]
  4542. data_torch = torch.stack(datas, dim=0)
  4543. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4544. new_name = self.map_tensor_name(merged_name)
  4545. tensors.append((new_name, data_torch))
  4546. return tensors
  4547. new_name = self.map_tensor_name(name)
  4548. if new_name == output_name and self.hparams.get("norm_head"):
  4549. data_torch = data_torch.float()
  4550. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4551. return [(new_name, data_torch)]
  4552. def prepare_tensors(self):
  4553. super().prepare_tensors()
  4554. if self._experts is not None:
  4555. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4556. experts = [k for d in self._experts for k in d.keys()]
  4557. if len(experts) > 0:
  4558. raise ValueError(f"Unprocessed experts: {experts}")
  4559. @ModelBase.register("ChameleonForConditionalGeneration")
  4560. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4561. class ChameleonModel(TextModel):
  4562. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4563. def set_gguf_parameters(self):
  4564. super().set_gguf_parameters()
  4565. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4566. def set_vocab(self):
  4567. self._set_vocab_gpt2()
  4568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4569. # ignore image tokenizer for now
  4570. # TODO: remove this once image support is implemented for Chameleon
  4571. if name.startswith("model.vqmodel"):
  4572. return []
  4573. n_head = self.hparams["num_attention_heads"]
  4574. n_kv_head = self.hparams.get("num_key_value_heads")
  4575. hidden_dim = self.hparams.get("hidden_size")
  4576. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4577. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4578. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4579. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4580. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4581. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4582. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4583. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4584. return [(self.map_tensor_name(name), data_torch)]
  4585. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4586. @staticmethod
  4587. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4588. head_dim = hidden_dim // n_heads
  4589. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4590. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4591. return data_torch
  4592. ###### CONVERSION LOGIC ######
  4593. # tree of lazy tensors
  4594. class LazyTorchTensor(gguf.LazyBase):
  4595. _tensor_type = torch.Tensor
  4596. # to keep the type-checker happy
  4597. dtype: torch.dtype
  4598. shape: torch.Size
  4599. # only used when converting a torch.Tensor to a np.ndarray
  4600. _dtype_map: dict[torch.dtype, type] = {
  4601. torch.float16: np.float16,
  4602. torch.float32: np.float32,
  4603. }
  4604. # used for safetensors slices
  4605. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4606. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4607. _dtype_str_map: dict[str, torch.dtype] = {
  4608. "F64": torch.float64,
  4609. "F32": torch.float32,
  4610. "BF16": torch.bfloat16,
  4611. "F16": torch.float16,
  4612. # "U64": torch.uint64,
  4613. "I64": torch.int64,
  4614. # "U32": torch.uint32,
  4615. "I32": torch.int32,
  4616. # "U16": torch.uint16,
  4617. "I16": torch.int16,
  4618. "U8": torch.uint8,
  4619. "I8": torch.int8,
  4620. "BOOL": torch.bool,
  4621. "F8_E4M3": torch.float8_e4m3fn,
  4622. "F8_E5M2": torch.float8_e5m2,
  4623. }
  4624. def numpy(self) -> gguf.LazyNumpyTensor:
  4625. dtype = self._dtype_map[self.dtype]
  4626. return gguf.LazyNumpyTensor(
  4627. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4628. args=(self,),
  4629. func=(lambda s: s.numpy())
  4630. )
  4631. @classmethod
  4632. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4633. return torch.empty(size=shape, dtype=dtype, device="meta")
  4634. @classmethod
  4635. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4636. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4637. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4638. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4639. return cast(torch.Tensor, lazy)
  4640. @classmethod
  4641. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4642. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4643. shape = remote_tensor.shape
  4644. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4645. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4646. return cast(torch.Tensor, lazy)
  4647. @classmethod
  4648. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4649. del types # unused
  4650. if kwargs is None:
  4651. kwargs = {}
  4652. if func is torch.Tensor.numpy:
  4653. return args[0].numpy()
  4654. return cls._wrap_fn(func)(*args, **kwargs)
  4655. def parse_args() -> argparse.Namespace:
  4656. parser = argparse.ArgumentParser(
  4657. description="Convert a huggingface model to a GGML compatible file")
  4658. parser.add_argument(
  4659. "--vocab-only", action="store_true",
  4660. help="extract only the vocab",
  4661. )
  4662. parser.add_argument(
  4663. "--outfile", type=Path,
  4664. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4665. )
  4666. parser.add_argument(
  4667. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4668. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4669. )
  4670. parser.add_argument(
  4671. "--bigendian", action="store_true",
  4672. help="model is executed on big endian machine",
  4673. )
  4674. parser.add_argument(
  4675. "model", type=Path,
  4676. help="directory containing model file",
  4677. nargs="?",
  4678. )
  4679. parser.add_argument(
  4680. "--use-temp-file", action="store_true",
  4681. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4682. )
  4683. parser.add_argument(
  4684. "--no-lazy", action="store_true",
  4685. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4686. )
  4687. parser.add_argument(
  4688. "--model-name", type=str, default=None,
  4689. help="name of the model",
  4690. )
  4691. parser.add_argument(
  4692. "--verbose", action="store_true",
  4693. help="increase output verbosity",
  4694. )
  4695. parser.add_argument(
  4696. "--split-max-tensors", type=int, default=0,
  4697. help="max tensors in each split",
  4698. )
  4699. parser.add_argument(
  4700. "--split-max-size", type=str, default="0",
  4701. help="max size per split N(M|G)",
  4702. )
  4703. parser.add_argument(
  4704. "--dry-run", action="store_true",
  4705. help="only print out a split plan and exit, without writing any new files",
  4706. )
  4707. parser.add_argument(
  4708. "--no-tensor-first-split", action="store_true",
  4709. help="do not add tensors to the first split (disabled by default)"
  4710. )
  4711. parser.add_argument(
  4712. "--metadata", type=Path,
  4713. help="Specify the path for an authorship metadata override file"
  4714. )
  4715. parser.add_argument(
  4716. "--print-supported-models", action="store_true",
  4717. help="Print the supported models"
  4718. )
  4719. parser.add_argument(
  4720. "--remote", action="store_true",
  4721. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4722. )
  4723. parser.add_argument(
  4724. "--mmproj", action="store_true",
  4725. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4726. )
  4727. args = parser.parse_args()
  4728. if not args.print_supported_models and args.model is None:
  4729. parser.error("the following arguments are required: model")
  4730. return args
  4731. def split_str_to_n_bytes(split_str: str) -> int:
  4732. if split_str.endswith("K"):
  4733. n = int(split_str[:-1]) * 1000
  4734. elif split_str.endswith("M"):
  4735. n = int(split_str[:-1]) * 1000 * 1000
  4736. elif split_str.endswith("G"):
  4737. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4738. elif split_str.isnumeric():
  4739. n = int(split_str)
  4740. else:
  4741. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4742. if n < 0:
  4743. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4744. return n
  4745. def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
  4746. hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
  4747. text_config = hparams.get("text_config", {})
  4748. vision_config = hparams.get("vision_config", {})
  4749. arch = hparams["architectures"][0]
  4750. # if "architectures" is found in the sub-config, use that instead
  4751. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  4752. arch = text_config["architectures"][0]
  4753. elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
  4754. arch = vision_config["architectures"][0]
  4755. return arch
  4756. def main() -> None:
  4757. args = parse_args()
  4758. if args.print_supported_models:
  4759. logger.error("Supported models:")
  4760. ModelBase.print_registered_models()
  4761. sys.exit(0)
  4762. if args.verbose:
  4763. logging.basicConfig(level=logging.DEBUG)
  4764. else:
  4765. logging.basicConfig(level=logging.INFO)
  4766. dir_model = args.model
  4767. if args.remote:
  4768. from huggingface_hub import snapshot_download
  4769. local_dir = snapshot_download(
  4770. repo_id=str(dir_model),
  4771. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4772. dir_model = Path(local_dir)
  4773. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4774. if not dir_model.is_dir():
  4775. logger.error(f'Error: {args.model} is not a directory')
  4776. sys.exit(1)
  4777. ftype_map: dict[str, gguf.LlamaFileType] = {
  4778. "f32": gguf.LlamaFileType.ALL_F32,
  4779. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4780. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4781. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4782. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4783. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4784. "auto": gguf.LlamaFileType.GUESSED,
  4785. }
  4786. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4787. if args.use_temp_file and is_split:
  4788. logger.error("Error: Cannot use temp file when splitting")
  4789. sys.exit(1)
  4790. if args.outfile is not None:
  4791. fname_out = args.outfile
  4792. elif args.remote:
  4793. # if remote, use the model ID as the output file name
  4794. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4795. else:
  4796. fname_out = dir_model
  4797. logger.info(f"Loading model: {dir_model.name}")
  4798. if args.mmproj:
  4799. if "mmproj" not in fname_out.name:
  4800. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4801. with torch.inference_mode():
  4802. output_type = ftype_map[args.outtype]
  4803. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4804. model_architecture = get_model_architecture(dir_model, model_type)
  4805. logger.info(f"Model architecture: {model_architecture}")
  4806. try:
  4807. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4808. except NotImplementedError:
  4809. logger.error(f"Model {model_architecture} is not supported")
  4810. sys.exit(1)
  4811. model_instance = model_class(dir_model, output_type, fname_out,
  4812. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4813. eager=args.no_lazy,
  4814. metadata_override=args.metadata, model_name=args.model_name,
  4815. split_max_tensors=args.split_max_tensors,
  4816. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4817. small_first_shard=args.no_tensor_first_split,
  4818. remote_hf_model_id=str(args.model) if args.remote else None)
  4819. if args.vocab_only:
  4820. logger.info("Exporting model vocab...")
  4821. model_instance.write_vocab()
  4822. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4823. else:
  4824. logger.info("Exporting model...")
  4825. model_instance.write()
  4826. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4827. logger.info(f"Model successfully exported to {out_path}")
  4828. if __name__ == '__main__':
  4829. main()