Georgi Gerganov 6262d13e0b common : reimplement logging (#9418) пре 1 година
..
CMakeLists.txt 1c641e6aac `build`: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809) пре 1 година
README.md 5b2c04f492 embedding : add --pooling option to README.md [no ci] (#8934) пре 1 година
embedding.cpp 6262d13e0b common : reimplement logging (#9418) пре 1 година

README.md

llama.cpp/example/embedding

This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.

Quick Start

To get started right away, run the following command, making sure to use the correct path for the model you have:

Unix-based systems (Linux, macOS, etc.):

./llama-embedding -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>/dev/null

Windows:

llama-embedding.exe -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>$null

The above command will output space-separated float values.

extra parameters

--embd-normalize $integer$

$integer$ description formula
$-1$ none
$0$ max absolute int16 $\Large{{32760 * x_i} \over\max \lvert x_i\rvert}$
$1$ taxicab $\Large{x_i \over\sum \lvert x_i\rvert}$
$2$ euclidean (default) $\Large{x_i \over\sqrt{\sum x_i^2}}$
$>2$ p-norm $\Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}}$

--embd-output-format $'string'$

| $'string'$ | description | | |------------|------------------------------|--| | '' | same as before | (default) | 'array' | single embeddings | $[[x_1,...,x_n]]$ | | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$ | 'json' | openai style | | 'json+' | add cosine similarity matrix |

--embd-separator $"string"$

| $"string"$ | | |--------------|-| | "\n" | (default) | "<#embSep#>" | for exemple | "<#sep#>" | other exemple

examples

Unix-based systems (Linux, macOS, etc.):

./llama-embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2  --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null

Windows:

llama-embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2  --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null