tensor_mapping.py 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. # Output norm
  72. MODEL_TENSOR.OUTPUT_NORM: (
  73. "gpt_neox.final_layer_norm", # gptneox
  74. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  75. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  76. "norm", # llama-pth
  77. "transformer.norm_f", # mpt dbrx
  78. "ln_f", # refact bloom qwen gpt2
  79. "language_model.encoder.final_layernorm", # persimmon
  80. "model.final_layernorm", # persimmon
  81. "lm_head.ln", # phi2
  82. "model.norm_f", # mamba-qbert
  83. "backbone.norm_f", # mamba
  84. "transformer.rms_norm", # Grok
  85. "encoder.final_layernorm", # chatglm
  86. "transformer.norm", # openelm
  87. "model.norm", # nemotron
  88. "rwkv.ln_out", # rwkv6
  89. "model.ln_out", # rwkv7
  90. "backbone.final_layer_norm", # wavtokenizer
  91. "model.norm", # llama4
  92. "model.transformer.ln_f", # llada
  93. ),
  94. # Rope frequencies
  95. MODEL_TENSOR.ROPE_FREQS: (
  96. "rope.freqs", # llama-pth
  97. "rotary_pos_emb.inv_freq", # chatglm
  98. ),
  99. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  100. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  101. MODEL_TENSOR.CONV1D: (
  102. "backbone.embed", # roberta
  103. ),
  104. }
  105. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  106. # Attention norm
  107. MODEL_TENSOR.ATTN_NORM: (
  108. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  109. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  110. "transformer.blocks.{bid}.norm_1", # mpt
  111. "transformer.h.{bid}.input_layernorm", # falcon7b
  112. "h.{bid}.input_layernorm", # bloom
  113. "transformer.h.{bid}.ln_mlp", # falcon40b
  114. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  115. "layers.{bid}.attention_norm", # llama-pth
  116. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  117. "model.layers.{bid}.ln1", # yi
  118. "h.{bid}.ln_1", # gpt2
  119. "transformer.h.{bid}.ln", # phi2
  120. "model.layers.layers.{bid}.norm", # plamo
  121. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  122. "model.layers.{bid}.attention_norm", # internlm2
  123. "model.layers.{bid}.norm", # mamba-qbert
  124. "backbone.layers.{bid}.norm", # mamba
  125. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  126. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  127. "encoder.layers.{bid}.input_layernorm", # chatglm
  128. "transformer.layers.{bid}.attn_norm", # openelm
  129. "rwkv.blocks.{bid}.ln1", # rwkv6
  130. "model.layers.{bid}.ln1", # rwkv7
  131. "model.layers.{bid}.input_layernorm", # llama4
  132. "layers.{bid}.input_layernorm", # embeddinggemma
  133. "transformer_encoder.{bid}.attention_norm", # neobert
  134. "model.layers.{bid}.operator_norm", # lfm2
  135. "model.transformer.blocks.{bid}.attn_norm", # llada
  136. "layers.{bid}.input_layernorm", # qwen3-embedding
  137. ),
  138. # Attention norm 2
  139. MODEL_TENSOR.ATTN_NORM_2: (
  140. "transformer.h.{bid}.ln_attn", # falcon40b
  141. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  142. "rwkv.blocks.{bid}.ln2", # rwkv6
  143. "model.layers.{bid}.ln2", # rwkv7
  144. ),
  145. # Attention query-key-value
  146. MODEL_TENSOR.ATTN_QKV: (
  147. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  148. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  149. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  150. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  151. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  152. "h.{bid}.self_attention.query_key_value", # bloom
  153. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  154. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  155. "h.{bid}.attn.c_attn", # gpt2
  156. "transformer.h.{bid}.mixer.Wqkv", # phi2
  157. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  158. "encoder.layers.{bid}.mixer.Wqkv", # jina
  159. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  160. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  161. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  162. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  163. "transformer_encoder.{bid}.qkv", # neobert
  164. ),
  165. # Attention query
  166. MODEL_TENSOR.ATTN_Q: (
  167. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  168. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  169. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  170. "layers.{bid}.attention.wq", # llama-pth
  171. "encoder.layer.{bid}.attention.self.query", # bert
  172. "transformer.layer.{bid}.attention.q_lin", # distillbert
  173. "transformer.h.{bid}.attn.q_proj", # gpt-j
  174. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  175. "model.layers.{bid}.attention.wq", # internlm2
  176. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  177. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  178. "model.layers.{bid}.self_attn.q_proj", # llama4
  179. "model.transformer.blocks.{bid}.q_proj", # llada
  180. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  181. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  182. ),
  183. # Attention key
  184. MODEL_TENSOR.ATTN_K: (
  185. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  186. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  187. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  188. "layers.{bid}.attention.wk", # llama-pth
  189. "encoder.layer.{bid}.attention.self.key", # bert
  190. "transformer.layer.{bid}.attention.k_lin", # distillbert
  191. "transformer.h.{bid}.attn.k_proj", # gpt-j
  192. "transformer.h.{bid}.attn.k", # refact
  193. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  194. "model.layers.{bid}.attention.wk", # internlm2
  195. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  196. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  197. "model.layers.{bid}.self_attn.k_proj", # llama4
  198. "model.transformer.blocks.{bid}.k_proj", # llada
  199. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  200. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  201. ),
  202. # Attention value
  203. MODEL_TENSOR.ATTN_V: (
  204. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  205. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  206. "layers.{bid}.attention.wv", # llama-pth
  207. "encoder.layer.{bid}.attention.self.value", # bert
  208. "transformer.layer.{bid}.attention.v_lin", # distillbert
  209. "transformer.h.{bid}.attn.v_proj", # gpt-j
  210. "transformer.h.{bid}.attn.v", # refact
  211. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  212. "model.layers.{bid}.attention.wv", # internlm2
  213. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  214. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  215. "model.layers.{bid}.self_attn.v_proj", # llama4
  216. "model.transformer.blocks.{bid}.v_proj", # llada
  217. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  218. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  219. ),
  220. # Attention output
  221. MODEL_TENSOR.ATTN_OUT: (
  222. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  223. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  224. "transformer.blocks.{bid}.attn.out_proj", # mpt
  225. "transformer.h.{bid}.self_attention.dense", # falcon
  226. "h.{bid}.self_attention.dense", # bloom
  227. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  228. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  229. "model.layers.{bid}.self_attn.out_proj", # lfm2
  230. "model.layers.{bid}.self_attn.linear_attn", # deci
  231. "layers.{bid}.attention.wo", # llama-pth
  232. "encoder.layer.{bid}.attention.output.dense", # bert
  233. "transformer.layer.{bid}.attention.out_lin", # distillbert
  234. "transformer.h.{bid}.attn.out_proj", # gpt-j
  235. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  236. "model.layers.{bid}.self_attn.dense", # persimmon
  237. "h.{bid}.attn.c_proj", # gpt2
  238. "transformer.h.{bid}.mixer.out_proj", # phi2
  239. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  240. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  241. "model.layers.{bid}.attention.wo", # internlm2
  242. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  243. "encoder.layers.{bid}.mixer.out_proj", # jina
  244. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  245. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  246. "encoder.layers.{bid}.self_attention.dense", # chatglm
  247. "transformer.layers.{bid}.attn.out_proj", # openelm
  248. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  249. "model.layers.{bid}.self_attn.o_proj", # llama4
  250. "transformer_encoder.{bid}.wo", # neobert
  251. "model.transformer.blocks.{bid}.attn_out", # llada
  252. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  253. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  254. ),
  255. # Attention output norm
  256. MODEL_TENSOR.ATTN_OUT_NORM: (
  257. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  258. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  259. "encoder.layers.{bid}.norm1", # nomic-bert
  260. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  261. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  262. ),
  263. MODEL_TENSOR.ATTN_POST_NORM: (
  264. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  265. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  266. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  267. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  268. ),
  269. # Rotary embeddings
  270. MODEL_TENSOR.ATTN_ROT_EMBD: (
  271. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  272. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  273. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  274. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  275. ),
  276. MODEL_TENSOR.ATTN_SINKS: (
  277. "model.layers.{bid}.self_attn.sinks", # openai-moe
  278. ),
  279. # Feed-forward norm
  280. MODEL_TENSOR.FFN_NORM: (
  281. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  282. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  283. "h.{bid}.post_attention_layernorm", # bloom
  284. "transformer.blocks.{bid}.norm_2", # mpt
  285. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  286. "layers.{bid}.ffn_norm", # llama-pth
  287. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  288. "model.layers.{bid}.ln2", # yi
  289. "h.{bid}.ln_2", # gpt2
  290. "model.layers.{bid}.ffn_norm", # internlm2
  291. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  292. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  293. "transformer.layers.{bid}.ffn_norm", # openelm
  294. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  295. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  296. "model.layers.{bid}.post_attention_layernorm", # llama4
  297. "transformer_encoder.{bid}.ffn_norm", # neobert
  298. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  299. "model.transformer.blocks.{bid}.ff_norm", # llada
  300. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  301. ),
  302. # Post feed-forward norm
  303. MODEL_TENSOR.FFN_PRE_NORM: (
  304. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  305. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  306. "model.layers.{bid}.pre_ff_layernorm.weight",
  307. ),
  308. # Post feed-forward norm
  309. MODEL_TENSOR.FFN_POST_NORM: (
  310. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  311. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  312. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  313. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  314. "model.layers.{bid}.feed_forward.up_proj",
  315. ),
  316. MODEL_TENSOR.FFN_GATE_INP: (
  317. "layers.{bid}.feed_forward.gate", # mixtral
  318. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  319. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  320. "transformer.decoder_layer.{bid}.router", # Grok
  321. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  322. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  323. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  324. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  325. "model.layers.{bid}.mlp.router", # openai-moe
  326. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  327. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  328. ),
  329. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  330. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  331. ),
  332. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  333. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  334. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  335. ),
  336. # Feed-forward up
  337. MODEL_TENSOR.FFN_UP: (
  338. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  339. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  340. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  341. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  342. "h.{bid}.mlp.dense_h_to_4h", # bloom
  343. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  344. "layers.{bid}.mlp.up_proj", # embeddinggemma
  345. "layers.{bid}.feed_forward.w3", # llama-pth
  346. "encoder.layer.{bid}.intermediate.dense", # bert
  347. "transformer.layer.{bid}.ffn.lin1", # distillbert
  348. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  349. "transformer.h.{bid}.mlp.linear_3", # refact
  350. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  351. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  352. "transformer.h.{bid}.mlp.w1", # qwen
  353. "h.{bid}.mlp.c_fc", # gpt2
  354. "transformer.h.{bid}.mlp.fc1", # phi2
  355. "model.layers.{bid}.mlp.fc1", # phi2
  356. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  357. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  358. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  359. "model.layers.{bid}.feed_forward.w3", # internlm2
  360. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  361. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  362. "model.layers.{bid}.mlp.c_fc", # starcoder2
  363. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  364. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  365. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  366. "model.layers.{bid}.residual_mlp.w3", # arctic
  367. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  368. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  369. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  370. "transformer_encoder.{bid}.ffn.w12", # neobert
  371. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  372. "model.transformer.blocks.{bid}.up_proj", # llada
  373. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  374. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  375. ),
  376. MODEL_TENSOR.FFN_UP_EXP: (
  377. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  378. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  379. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  380. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  381. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  382. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  383. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  384. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  385. ),
  386. MODEL_TENSOR.FFN_UP_SHEXP: (
  387. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  388. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  389. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  390. "model.layers.{bid}.feed_forward.down_proj",
  391. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  392. ),
  393. # AWQ-activation gate
  394. MODEL_TENSOR.FFN_ACT: (
  395. "transformer.blocks.{bid}.ffn.act", # mpt
  396. ),
  397. # Feed-forward gate
  398. MODEL_TENSOR.FFN_GATE: (
  399. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  400. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  401. "layers.{bid}.feed_forward.w1", # llama-pth
  402. "transformer.h.{bid}.mlp.w2", # qwen
  403. "transformer.h.{bid}.mlp.c_fc2", # jais
  404. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  405. "model.layers.{bid}.feed_forward.w1", # internlm2
  406. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  407. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  408. "transformer.h.{bid}.mlp.linear_1", # refact
  409. "model.layers.{bid}.residual_mlp.w1", # arctic
  410. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  411. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  412. "model.transformer.blocks.{bid}.ff_proj", # llada
  413. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  414. ),
  415. MODEL_TENSOR.FFN_GATE_EXP: (
  416. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  417. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  418. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  419. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  420. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  421. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  422. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  423. ),
  424. MODEL_TENSOR.FFN_GATE_SHEXP: (
  425. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  426. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  427. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  428. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  429. ),
  430. # Feed-forward down
  431. MODEL_TENSOR.FFN_DOWN: (
  432. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  433. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  434. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  435. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  436. "h.{bid}.mlp.dense_4h_to_h", # bloom
  437. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  438. "layers.{bid}.mlp.down_proj", # embeddinggemma
  439. "layers.{bid}.feed_forward.w2", # llama-pth
  440. "encoder.layer.{bid}.output.dense", # bert
  441. "transformer.layer.{bid}.ffn.lin2", # distillbert
  442. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  443. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  444. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  445. "h.{bid}.mlp.c_proj", # gpt2
  446. "transformer.h.{bid}.mlp.fc2", # phi2
  447. "model.layers.{bid}.mlp.fc2", # phi2
  448. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  449. "model.layers.{bid}.feed_forward.w2", # internlm2
  450. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  451. "model.layers.{bid}.mlp.c_proj", # starcoder2
  452. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  453. "transformer.layers.{bid}.ffn.proj_2", # openelm
  454. "model.layers.{bid}.residual_mlp.w2", # arctic
  455. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  456. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  457. "model.layers.h.{bid}.mlp.c_proj", # exaone
  458. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  459. "transformer_encoder.{bid}.ffn.w3", # neobert
  460. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  461. "model.transformer.blocks.{bid}.ff_out", # llada
  462. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  463. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  464. ),
  465. MODEL_TENSOR.FFN_DOWN_EXP: (
  466. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  467. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  468. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  469. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  470. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  471. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  472. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  473. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  474. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  475. ),
  476. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  477. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  478. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  479. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  480. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  481. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  482. ),
  483. MODEL_TENSOR.ATTN_Q_NORM: (
  484. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  485. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  486. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  487. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  488. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  489. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  490. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  491. "transformer.layers.{bid}.attn.q_norm", # openelm
  492. "model.layers.layers.{bid}.mixer.q", # plamo2
  493. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  494. ),
  495. MODEL_TENSOR.ATTN_K_NORM: (
  496. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  497. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  498. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  499. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  500. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  501. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  502. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  503. "transformer.layers.{bid}.attn.k_norm", # openelm
  504. "model.layers.layers.{bid}.mixer.k", # plamo2
  505. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  506. ),
  507. MODEL_TENSOR.ROPE_FREQS: (
  508. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  509. ),
  510. MODEL_TENSOR.LAYER_OUT_NORM: (
  511. "encoder.layer.{bid}.output.LayerNorm", # bert
  512. "transformer.layer.{bid}.output_layer_norm", # distillbert
  513. "encoder.layers.{bid}.norm2", # nomic-bert
  514. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  515. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  516. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  517. ),
  518. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  519. "model.embed_tokens_per_layer", # gemma3n
  520. ),
  521. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  522. "model.per_layer_model_projection", # gemma3n
  523. ),
  524. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  525. "model.per_layer_projection_norm", # gemma3n
  526. ),
  527. MODEL_TENSOR.ALTUP_PROJ: (
  528. "model.altup_projections", # gemma3n
  529. ),
  530. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  531. "model.altup_unembed_projections", # gemma3n
  532. ),
  533. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  534. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  535. ),
  536. MODEL_TENSOR.PER_LAYER_PROJ: (
  537. "model.layers.{bid}.per_layer_projection", # gemma3n
  538. ),
  539. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  540. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  541. ),
  542. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  543. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  544. ),
  545. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  546. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  547. ),
  548. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  549. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  550. ),
  551. MODEL_TENSOR.ALTUP_ROUTER: (
  552. "model.layers.{bid}.altup.modality_router", # gemma3n
  553. ),
  554. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  555. "model.layers.{bid}.altup.router_norm", # gemma3n
  556. ),
  557. MODEL_TENSOR.LAUREL_L: (
  558. "model.layers.{bid}.laurel.linear_left", # gemma3n
  559. ),
  560. MODEL_TENSOR.LAUREL_R: (
  561. "model.layers.{bid}.laurel.linear_right", # gemma3n
  562. ),
  563. MODEL_TENSOR.LAUREL_POST_NORM: (
  564. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  565. ),
  566. MODEL_TENSOR.SSM_IN: (
  567. "model.layers.{bid}.in_proj", # mamba-hf
  568. "backbone.layers.{bid}.mixer.in_proj", # mamba
  569. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  570. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  571. ),
  572. MODEL_TENSOR.SSM_CONV1D: (
  573. "model.layers.{bid}.conv1d", # mamba-hf
  574. "backbone.layers.{bid}.mixer.conv1d", # mamba
  575. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  576. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  577. ),
  578. MODEL_TENSOR.SSM_X: (
  579. "model.layers.{bid}.x_proj", # mamba-hf
  580. "backbone.layers.{bid}.mixer.x_proj", # mamba
  581. "model.layers.{bid}.mamba.x_proj", # jamba
  582. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  583. ),
  584. MODEL_TENSOR.SSM_DT: (
  585. "model.layers.{bid}.dt_proj", # mamba-hf
  586. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  587. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  588. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  589. ),
  590. MODEL_TENSOR.SSM_DT_NORM: (
  591. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  592. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  593. ),
  594. MODEL_TENSOR.SSM_A: (
  595. "model.layers.{bid}.A_log", # mamba-hf
  596. "backbone.layers.{bid}.mixer.A_log", # mamba
  597. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  598. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  599. ),
  600. MODEL_TENSOR.SSM_B_NORM: (
  601. "model.layers.{bid}.mamba.b_layernorm", # jamba
  602. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  603. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  604. ),
  605. MODEL_TENSOR.SSM_C_NORM: (
  606. "model.layers.{bid}.mamba.c_layernorm", # jamba
  607. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  608. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  609. ),
  610. MODEL_TENSOR.SSM_D: (
  611. "model.layers.{bid}.D", # mamba-hf
  612. "backbone.layers.{bid}.mixer.D", # mamba
  613. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  614. "model.layers.layers.{bid}.mixer.D", # plamo2
  615. ),
  616. MODEL_TENSOR.SSM_NORM: (
  617. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  618. "backbone.layers.{bid}.mixer.norm", # mamba2
  619. ),
  620. MODEL_TENSOR.SSM_OUT: (
  621. "model.layers.{bid}.out_proj", # mamba-hf
  622. "backbone.layers.{bid}.mixer.out_proj", # mamba
  623. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  624. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  625. ),
  626. MODEL_TENSOR.TIME_MIX_W0: (
  627. "model.layers.{bid}.attention.w0", # rwkv7
  628. ),
  629. MODEL_TENSOR.TIME_MIX_W1: (
  630. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  631. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  632. "model.layers.{bid}.attention.w1", # rwkv7
  633. ),
  634. MODEL_TENSOR.TIME_MIX_W2: (
  635. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  636. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  637. "model.layers.{bid}.attention.w2", # rwkv7
  638. ),
  639. MODEL_TENSOR.TIME_MIX_A0: (
  640. "model.layers.{bid}.attention.a0", # rwkv7
  641. ),
  642. MODEL_TENSOR.TIME_MIX_A1: (
  643. "model.layers.{bid}.attention.a1", # rwkv7
  644. ),
  645. MODEL_TENSOR.TIME_MIX_A2: (
  646. "model.layers.{bid}.attention.a2", # rwkv7
  647. ),
  648. MODEL_TENSOR.TIME_MIX_V0: (
  649. "model.layers.{bid}.attention.v0", # rwkv7
  650. ),
  651. MODEL_TENSOR.TIME_MIX_V1: (
  652. "model.layers.{bid}.attention.v1", # rwkv7
  653. ),
  654. MODEL_TENSOR.TIME_MIX_V2: (
  655. "model.layers.{bid}.attention.v2", # rwkv7
  656. ),
  657. MODEL_TENSOR.TIME_MIX_G1: (
  658. "model.layers.{bid}.attention.g1", # rwkv7
  659. ),
  660. MODEL_TENSOR.TIME_MIX_G2: (
  661. "model.layers.{bid}.attention.g2", # rwkv7
  662. ),
  663. MODEL_TENSOR.TIME_MIX_K_K: (
  664. "model.layers.{bid}.attention.k_k", # rwkv7
  665. ),
  666. MODEL_TENSOR.TIME_MIX_K_A: (
  667. "model.layers.{bid}.attention.k_a", # rwkv7
  668. ),
  669. MODEL_TENSOR.TIME_MIX_R_K: (
  670. "model.layers.{bid}.attention.r_k", # rwkv7
  671. ),
  672. MODEL_TENSOR.TIME_MIX_LERP_X: (
  673. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  674. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  675. ),
  676. MODEL_TENSOR.TIME_MIX_LERP_K: (
  677. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  678. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  679. ),
  680. MODEL_TENSOR.TIME_MIX_LERP_V: (
  681. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  682. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  683. ),
  684. MODEL_TENSOR.TIME_MIX_LERP_R: (
  685. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  686. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  687. ),
  688. MODEL_TENSOR.TIME_MIX_LERP_G: (
  689. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  690. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  691. ),
  692. MODEL_TENSOR.TIME_MIX_LERP_W: (
  693. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  694. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  695. ),
  696. MODEL_TENSOR.TIME_MIX_FIRST: (
  697. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  698. ),
  699. MODEL_TENSOR.TIME_MIX_DECAY: (
  700. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  701. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  702. ),
  703. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  704. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  705. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  706. ),
  707. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  708. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  709. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  710. ),
  711. MODEL_TENSOR.TIME_MIX_KEY: (
  712. "rwkv.blocks.{bid}.attention.key", # rwkv6
  713. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  714. "model.layers.{bid}.attention.key", # rwkv7
  715. "model.layers.{bid}.attention.k_proj", # rwkv7
  716. ),
  717. MODEL_TENSOR.TIME_MIX_VALUE: (
  718. "rwkv.blocks.{bid}.attention.value", # rwkv6
  719. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  720. "model.layers.{bid}.attention.value", # rwkv7
  721. "model.layers.{bid}.attention.v_proj", # rwkv7
  722. ),
  723. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  724. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  725. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  726. "model.layers.{bid}.attention.receptance", # rwkv7
  727. "model.layers.{bid}.attention.r_proj", # rwkv7
  728. ),
  729. MODEL_TENSOR.TIME_MIX_GATE: (
  730. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  731. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  732. ),
  733. MODEL_TENSOR.TIME_MIX_LN: (
  734. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  735. "model.layers.{bid}.attention.ln_x" # rwkv7
  736. ),
  737. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  738. "rwkv.blocks.{bid}.attention.output", # rwkv6
  739. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  740. "model.layers.{bid}.attention.output", # rwkv7
  741. "model.layers.{bid}.attention.o_proj", # rwkv7
  742. ),
  743. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  744. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  745. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  746. ),
  747. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  748. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  749. ),
  750. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  751. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  752. "model.layers.{bid}.feed_forward.key", # rwkv7
  753. ),
  754. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  755. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  756. ),
  757. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  758. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  759. "model.layers.{bid}.feed_forward.value", # rwkv7
  760. ),
  761. MODEL_TENSOR.ATTN_Q_A: (
  762. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  763. ),
  764. MODEL_TENSOR.ATTN_Q_B: (
  765. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  766. ),
  767. MODEL_TENSOR.ATTN_KV_A_MQA: (
  768. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  769. ),
  770. MODEL_TENSOR.ATTN_KV_B: (
  771. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  772. ),
  773. MODEL_TENSOR.ATTN_K_B: (
  774. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  775. ),
  776. MODEL_TENSOR.ATTN_V_B: (
  777. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  778. ),
  779. MODEL_TENSOR.ATTN_Q_A_NORM: (
  780. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  781. ),
  782. MODEL_TENSOR.ATTN_KV_A_NORM: (
  783. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  784. ),
  785. MODEL_TENSOR.ATTN_SUB_NORM: (
  786. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  787. ),
  788. MODEL_TENSOR.FFN_SUB_NORM: (
  789. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  790. ),
  791. MODEL_TENSOR.DEC_ATTN_NORM: (
  792. "decoder.block.{bid}.layer.0.layer_norm", # t5
  793. ),
  794. MODEL_TENSOR.DEC_ATTN_Q: (
  795. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  796. ),
  797. MODEL_TENSOR.DEC_ATTN_K: (
  798. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  799. ),
  800. MODEL_TENSOR.DEC_ATTN_V: (
  801. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  802. ),
  803. MODEL_TENSOR.DEC_ATTN_OUT: (
  804. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  805. ),
  806. MODEL_TENSOR.DEC_ATTN_REL_B: (
  807. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  808. ),
  809. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  810. "decoder.block.{bid}.layer.1.layer_norm", # t5
  811. ),
  812. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  813. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  814. ),
  815. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  816. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  817. ),
  818. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  819. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  820. ),
  821. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  822. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  823. ),
  824. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  825. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  826. ),
  827. MODEL_TENSOR.DEC_FFN_NORM: (
  828. "decoder.block.{bid}.layer.2.layer_norm", # t5
  829. ),
  830. MODEL_TENSOR.DEC_FFN_GATE: (
  831. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  832. ),
  833. MODEL_TENSOR.DEC_FFN_UP: (
  834. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  835. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  836. ),
  837. MODEL_TENSOR.DEC_FFN_DOWN: (
  838. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  839. ),
  840. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  841. "decoder.final_layer_norm", # t5
  842. ),
  843. MODEL_TENSOR.ENC_ATTN_NORM: (
  844. "encoder.block.{bid}.layer.0.layer_norm", # t5
  845. ),
  846. MODEL_TENSOR.ENC_ATTN_Q: (
  847. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  848. ),
  849. MODEL_TENSOR.ENC_ATTN_K: (
  850. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  851. ),
  852. MODEL_TENSOR.ENC_ATTN_V: (
  853. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  854. ),
  855. MODEL_TENSOR.ENC_ATTN_OUT: (
  856. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  857. ),
  858. MODEL_TENSOR.ENC_ATTN_REL_B: (
  859. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  860. ),
  861. MODEL_TENSOR.ENC_FFN_NORM: (
  862. "encoder.block.{bid}.layer.1.layer_norm", # t5
  863. ),
  864. MODEL_TENSOR.ENC_FFN_GATE: (
  865. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  866. ),
  867. MODEL_TENSOR.ENC_FFN_UP: (
  868. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  869. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  870. ),
  871. MODEL_TENSOR.ENC_FFN_DOWN: (
  872. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  873. ),
  874. ############################################################################
  875. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  876. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  877. "encoder.final_layer_norm", # t5
  878. "layer_norm", # neobert
  879. ),
  880. MODEL_TENSOR.CLS: (
  881. "classifier", # jina
  882. "classifier.dense", # roberta
  883. "pre_classifier", # distillbert
  884. "dense", # neobert
  885. ),
  886. MODEL_TENSOR.CLS_OUT: (
  887. "classifier.out_proj", # roberta
  888. ),
  889. #############################################################################
  890. MODEL_TENSOR.CONVNEXT_DW: (
  891. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  892. ),
  893. MODEL_TENSOR.CONVNEXT_NORM: (
  894. "backbone.convnext.{bid}.norm", # wavtokenizer
  895. ),
  896. MODEL_TENSOR.CONVNEXT_PW1: (
  897. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  898. ),
  899. MODEL_TENSOR.CONVNEXT_PW2: (
  900. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  901. ),
  902. MODEL_TENSOR.CONVNEXT_GAMMA: (
  903. "backbone.convnext.{bid}.gamma", # wavtokenizer
  904. ),
  905. MODEL_TENSOR.POSNET_CONV1: (
  906. "backbone.posnet.{bid}.conv1", # wavtokenizer
  907. ),
  908. MODEL_TENSOR.POSNET_CONV2: (
  909. "backbone.posnet.{bid}.conv2", # wavtokenizer
  910. ),
  911. MODEL_TENSOR.POSNET_NORM: (
  912. "backbone.posnet.{bid}.norm", # wavtokenizer
  913. ),
  914. MODEL_TENSOR.POSNET_NORM1: (
  915. "backbone.posnet.{bid}.norm1", # wavtokenizer
  916. ),
  917. MODEL_TENSOR.POSNET_NORM2: (
  918. "backbone.posnet.{bid}.norm2", # wavtokenizer
  919. ),
  920. MODEL_TENSOR.POSNET_ATTN_NORM: (
  921. "backbone.posnet.{bid}.norm", # wavtokenizer
  922. ),
  923. MODEL_TENSOR.POSNET_ATTN_Q: (
  924. "backbone.posnet.{bid}.q", # wavtokenizer
  925. ),
  926. MODEL_TENSOR.POSNET_ATTN_K: (
  927. "backbone.posnet.{bid}.k", # wavtokenizer
  928. ),
  929. MODEL_TENSOR.POSNET_ATTN_V: (
  930. "backbone.posnet.{bid}.v", # wavtokenizer
  931. ),
  932. MODEL_TENSOR.POSNET_ATTN_OUT: (
  933. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  934. ),
  935. MODEL_TENSOR.SHORTCONV_CONV: (
  936. "model.layers.{bid}.conv.conv",
  937. ),
  938. MODEL_TENSOR.SHORTCONV_INPROJ: (
  939. "model.layers.{bid}.conv.in_proj",
  940. ),
  941. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  942. "model.layers.{bid}.conv.out_proj",
  943. ),
  944. #############################################################################
  945. ## Vision encoder
  946. MODEL_TENSOR.V_MMPROJ: (
  947. "multi_modal_projector.linear_{bid}",
  948. "visual.merger.mlp.{bid}", # qwen2vl
  949. ),
  950. MODEL_TENSOR.V_MMPROJ_FC: (
  951. "model.connector.modality_projection.proj", # SmolVLM
  952. ),
  953. MODEL_TENSOR.V_MMPROJ_MLP: (
  954. "model.mm_projector.mlp.mlp.{bid}",
  955. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  956. "mlp1.{bid}", # InternVL
  957. ),
  958. MODEL_TENSOR.V_MMPROJ_PEG: (
  959. "model.mm_projector.peg.peg.{bid}",
  960. ),
  961. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  962. "vision_tower.vision_model.embeddings.class_embedding",
  963. "model.vision_tower.embeddings.cls_token", # Intern-S1
  964. "vision_model.class_embedding", # llama 4
  965. ),
  966. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  967. "vision_tower.vision_model.embeddings.patch_embedding",
  968. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  969. "vpm.embeddings.patch_embedding",
  970. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  971. "vision_tower.patch_conv", # pixtral-hf
  972. "vision_encoder.patch_conv", # pixtral
  973. "vision_model.patch_embedding.linear", # llama 4
  974. "visual.patch_embed.proj", # qwen2vl
  975. "vision_tower.patch_embed.proj", # kimi-vl
  976. ),
  977. MODEL_TENSOR.V_ENC_EMBD_POS: (
  978. "vision_tower.vision_model.embeddings.position_embedding",
  979. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  980. "vpm.embeddings.position_embedding",
  981. "model.vision_model.embeddings.position_embedding", # SmolVLM
  982. "vision_model.positional_embedding_vlm", # llama 4
  983. "vision_tower.patch_embed.pos_emb", # kimi-vl
  984. ),
  985. MODEL_TENSOR.V_ENC_ATTN_Q: (
  986. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  987. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  988. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  989. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  990. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  991. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  992. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  993. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  994. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  995. ),
  996. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  997. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  998. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  999. ),
  1000. MODEL_TENSOR.V_ENC_ATTN_K: (
  1001. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1002. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1003. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1004. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1005. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1006. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1007. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1008. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1009. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1010. ),
  1011. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1012. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1013. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1014. ),
  1015. MODEL_TENSOR.V_ENC_ATTN_V: (
  1016. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1017. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1018. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1019. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1020. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1021. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1022. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1023. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1024. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1025. ),
  1026. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1027. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1028. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1029. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1030. "vpm.encoder.layers.{bid}.layer_norm1",
  1031. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1032. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1033. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1034. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1035. "visual.blocks.{bid}.norm1", # qwen2vl
  1036. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1037. ),
  1038. MODEL_TENSOR.V_ENC_ATTN_O: (
  1039. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1040. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1041. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1042. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1043. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1044. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1045. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1046. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1047. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1048. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1049. ),
  1050. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1051. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1052. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1053. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1054. "vpm.encoder.layers.{bid}.layer_norm2",
  1055. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1056. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1057. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1058. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1059. "visual.blocks.{bid}.norm2", # qwen2vl
  1060. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1061. ),
  1062. MODEL_TENSOR.V_ENC_FFN_UP: (
  1063. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1064. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1065. "vpm.encoder.layers.{bid}.mlp.fc1",
  1066. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1067. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1068. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1069. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1070. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1071. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1072. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1073. ),
  1074. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1075. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1076. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1077. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1078. ),
  1079. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1080. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1081. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1082. "vpm.encoder.layers.{bid}.mlp.fc2",
  1083. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1084. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1085. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1086. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1087. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1088. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1089. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1090. ),
  1091. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1092. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1093. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1094. ),
  1095. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1096. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1097. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1098. ),
  1099. MODEL_TENSOR.V_PRE_NORM: (
  1100. "vision_tower.vision_model.pre_layrnorm",
  1101. "vision_tower.ln_pre", # pixtral-hf
  1102. "vision_encoder.ln_pre", # pixtral
  1103. "vision_model.layernorm_pre", # llama4
  1104. ),
  1105. MODEL_TENSOR.V_POST_NORM: (
  1106. "vision_tower.vision_model.post_layernorm",
  1107. "model.vision_model.post_layernorm", # SmolVLM
  1108. "vision_model.layernorm_post", # llama4
  1109. "visual.merger.ln_q", # qwen2vl
  1110. "vision_tower.encoder.final_layernorm", # kimi-vl
  1111. ),
  1112. MODEL_TENSOR.V_MM_INP_PROJ: (
  1113. "multi_modal_projector.mm_input_projection",
  1114. ),
  1115. MODEL_TENSOR.V_MM_INP_NORM: (
  1116. "multi_modal_projector.norm",
  1117. "multi_modal_projector.layer_norm",
  1118. "multi_modal_projector.pre_norm",
  1119. "pre_mm_projector_norm",
  1120. ),
  1121. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1122. "multi_modal_projector.mm_soft_emb_norm",
  1123. ),
  1124. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1125. "resampler.pos_embed_k",
  1126. ),
  1127. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1128. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1129. ),
  1130. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1131. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1132. ),
  1133. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1134. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1135. ),
  1136. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1137. "resampler.attn.out_proj",
  1138. ),
  1139. MODEL_TENSOR.V_RESMPL_KV: (
  1140. "resampler.kv_proj",
  1141. ),
  1142. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1143. "resampler.ln_post",
  1144. ),
  1145. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1146. "resampler.ln_kv",
  1147. ),
  1148. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1149. "resampler.ln_q",
  1150. ),
  1151. MODEL_TENSOR.V_RESMPL_PROJ: (
  1152. "resampler.proj",
  1153. ),
  1154. MODEL_TENSOR.V_RESMPL_QUERY: (
  1155. "resampler.query",
  1156. ),
  1157. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1158. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1159. ),
  1160. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1161. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1162. "patch_merger.merging_layer", # mistral
  1163. ),
  1164. # audio (mtmd)
  1165. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1166. "audio_tower.embed_positions", # ultravox
  1167. ),
  1168. MODEL_TENSOR.A_ENC_CONV1D: (
  1169. "audio_tower.conv{bid}", # ultravox
  1170. ),
  1171. MODEL_TENSOR.A_PRE_NORM: (),
  1172. MODEL_TENSOR.A_POST_NORM: (
  1173. "audio_tower.layer_norm", # ultravox
  1174. "audio_tower.ln_post", # qwen2omni
  1175. ),
  1176. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1177. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1178. ),
  1179. MODEL_TENSOR.A_ENC_ATTN_K: (
  1180. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1181. ),
  1182. MODEL_TENSOR.A_ENC_ATTN_V: (
  1183. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1184. ),
  1185. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1186. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1187. ),
  1188. MODEL_TENSOR.A_ENC_OUTPUT: (
  1189. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1190. ),
  1191. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1192. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1193. ),
  1194. MODEL_TENSOR.A_ENC_FFN_UP: (
  1195. "audio_tower.layers.{bid}.fc1", # ultravox
  1196. ),
  1197. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1198. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1199. "audio_tower.layers.{bid}.fc2", # ultravox
  1200. ),
  1201. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1202. # this prefix is added in the conversion code in modify_tensors()
  1203. MODEL_TENSOR.A_MMPROJ: (
  1204. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1205. ),
  1206. MODEL_TENSOR.A_MMPROJ_FC: (
  1207. "audio.multi_modal_projector.linear", # qwen2audio
  1208. "audio_tower.proj", # qwen2omni
  1209. ),
  1210. MODEL_TENSOR.A_MM_NORM_PRE: (
  1211. "audio.multi_modal_projector.ln_pre", # ultravox
  1212. ),
  1213. MODEL_TENSOR.A_MM_NORM_MID: (
  1214. "audio.multi_modal_projector.ln_mid", # ultravox
  1215. ),
  1216. # NextN/MTP tensors for GLM4_MOE
  1217. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1218. "model.layers.{bid}.eh_proj",
  1219. ),
  1220. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1221. "model.layers.{bid}.embed_tokens",
  1222. ),
  1223. MODEL_TENSOR.NEXTN_ENORM: (
  1224. "model.layers.{bid}.enorm",
  1225. ),
  1226. MODEL_TENSOR.NEXTN_HNORM: (
  1227. "model.layers.{bid}.hnorm",
  1228. ),
  1229. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1230. "model.layers.{bid}.shared_head.head",
  1231. ),
  1232. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1233. "model.layers.{bid}.shared_head.norm",
  1234. ),
  1235. }
  1236. # architecture-specific block mappings
  1237. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1238. MODEL_ARCH.ARCTIC: {
  1239. MODEL_TENSOR.FFN_NORM: (
  1240. "model.layers.{bid}.residual_layernorm",
  1241. ),
  1242. MODEL_TENSOR.FFN_NORM_EXP: (
  1243. "model.layers.{bid}.post_attention_layernorm",
  1244. ),
  1245. },
  1246. }
  1247. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1248. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1249. self.mapping = {}
  1250. for tensor, keys in self.mappings_cfg.items():
  1251. if tensor not in MODEL_TENSORS[arch]:
  1252. continue
  1253. tensor_name = TENSOR_NAMES[tensor]
  1254. self.mapping[tensor_name] = (tensor, tensor_name)
  1255. for key in keys:
  1256. self.mapping[key] = (tensor, tensor_name)
  1257. if arch in self.arch_block_mappings_cfg:
  1258. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1259. for bid in range(n_blocks):
  1260. for tensor, keys in self.block_mappings_cfg.items():
  1261. if tensor not in MODEL_TENSORS[arch]:
  1262. continue
  1263. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1264. self.mapping[tensor_name] = (tensor, tensor_name)
  1265. for key in keys:
  1266. key = key.format(bid = bid)
  1267. self.mapping[key] = (tensor, tensor_name)
  1268. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1269. result = self.mapping.get(key)
  1270. if result is not None:
  1271. return result
  1272. for suffix in try_suffixes:
  1273. if key.endswith(suffix):
  1274. result = self.mapping.get(key[:-len(suffix)])
  1275. if result is not None:
  1276. return result[0], result[1] + suffix
  1277. return None
  1278. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1279. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1280. if result is None:
  1281. return None
  1282. return result[1]
  1283. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1284. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1285. if result is None:
  1286. return None
  1287. return result[0]
  1288. def __getitem__(self, key: str) -> str:
  1289. try:
  1290. return self.mapping[key][1]
  1291. except KeyError:
  1292. raise KeyError(key)
  1293. def __contains__(self, key: str) -> bool:
  1294. return key in self.mapping
  1295. def __repr__(self) -> str:
  1296. return repr(self.mapping)
  1297. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1298. return TensorNameMap(arch, n_blocks)