| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- #pragma once
- #include "llama.h"
- #include <array>
- // bump if necessary
- #define LLAMA_MAX_LAYERS 512
- #define LLAMA_MAX_EXPERTS 384 // Kimi-K2
- enum llama_expert_gating_func_type {
- LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
- };
- enum llama_swa_type {
- LLAMA_SWA_TYPE_NONE = 0,
- LLAMA_SWA_TYPE_STANDARD = 1,
- LLAMA_SWA_TYPE_CHUNKED = 2,
- LLAMA_SWA_TYPE_SYMMETRIC = 3,
- };
- struct llama_hparams_posnet {
- uint32_t n_embd;
- uint32_t n_layer;
- };
- struct llama_hparams_convnext {
- uint32_t n_embd;
- uint32_t n_layer;
- };
- struct llama_hparams {
- bool vocab_only;
- bool rope_finetuned;
- bool use_par_res;
- bool swin_norm;
- uint32_t n_ctx_train; // context size the model was trained on
- uint32_t n_embd;
- uint32_t n_embd_features = 0;
- uint32_t n_layer;
- int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
- uint32_t n_rot;
- uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
- uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
- uint32_t n_expert = 0;
- uint32_t n_expert_used = 0;
- uint32_t n_rel_attn_bkts = 0;
- // note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
- uint32_t n_embd_head_k_mla = 0;
- uint32_t n_embd_head_v_mla = 0;
- // for WavTokenizer
- struct llama_hparams_posnet posnet;
- struct llama_hparams_convnext convnext;
- uint32_t n_shortconv_l_cache = 0;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
- uint32_t n_layer_dense_lead = 0;
- uint32_t n_lora_q = 0;
- uint32_t n_lora_kv = 0;
- uint32_t n_ff_exp = 0;
- uint32_t n_ff_shexp = 0;
- uint32_t n_expert_shared = 0;
- uint32_t n_norm_groups = 0;
- float expert_weights_scale = 0.0;
- bool expert_weights_norm = false;
- uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
- uint32_t moe_every_n_layers = 0;
- uint32_t nextn_predict_layers = 0;
- float f_norm_eps;
- float f_norm_rms_eps;
- float f_norm_group_eps;
- float f_attn_logit_softcapping = 50.0f;
- float f_final_logit_softcapping = 30.0f;
- // for RWKV
- uint32_t rescale_every_n_layers = 0;
- uint32_t time_mix_extra_dim = 0;
- uint32_t time_decay_extra_dim = 0;
- uint32_t wkv_head_size = 0;
- uint32_t token_shift_count = 2;
- uint32_t n_lora_decay = 0;
- uint32_t n_lora_iclr = 0;
- uint32_t n_lora_value_res_mix = 0;
- uint32_t n_lora_gate = 0;
- float rope_attn_factor = 1.0f;
- float rope_freq_base_train;
- float rope_freq_base_train_swa;
- float rope_freq_scale_train;
- float rope_freq_scale_train_swa;
- uint32_t n_ctx_orig_yarn;
- float rope_yarn_log_mul = 0.0f;
- std::array<int, 4> rope_sections;
- // Sliding Window Attention (SWA)
- llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
- // the size of the sliding window (0 - no SWA)
- uint32_t n_swa = 0;
- // if swa_layers[il] == true, then layer il is SWA
- // if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
- // by default, all layers are dense
- std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
- // for State Space Models
- uint32_t ssm_d_conv = 0;
- uint32_t ssm_d_inner = 0;
- uint32_t ssm_d_state = 0;
- uint32_t ssm_dt_rank = 0;
- uint32_t ssm_n_group = 0;
- // for hybrid state space models
- std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
- bool ssm_dt_b_c_rms = false;
- float f_clamp_kqv = 0.0f;
- float f_max_alibi_bias = 0.0f;
- float f_logit_scale = 0.0f;
- // Additional scale factors (Granite/Granite MoE)
- float f_residual_scale = 0.0f;
- float f_embedding_scale = 0.0f;
- float f_attention_scale = 0.0f;
- bool causal_attn = true;
- bool use_alibi = false;
- bool attn_soft_cap = false;
- bool use_kq_norm = true;
- // for Classifiers
- uint32_t n_cls_out = 1;
- // llama4 smallthinker
- uint32_t n_moe_layer_step = 0;
- uint32_t n_no_rope_layer_step = 4;
- uint32_t n_attn_temp_floor_scale = 8192;
- float f_attn_temp_scale = 0.1;
- // gemma3n altup
- uint32_t n_altup = 4; // altup_num_inputs
- uint32_t i_altup_act = 0; // altup_active_idx
- uint32_t laurel_rank = 64;
- uint32_t n_embd_altup = 256;
- // needed by encoder-decoder models (e.g. T5, FLAN-T5)
- // ref: https://github.com/ggerganov/llama.cpp/pull/8141
- llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
- enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
- enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
- enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
- // this value n_pattern means that every nth layer is dense (i.e. non-SWA)
- // dense_first means whether the pattern is start with a dense layer
- // note that if n_pattern == 0, all layers are SWA
- // if n_pattern == 1, all layers are dense
- // example 1: n_pattern = 3, dense_first = false
- // il == 0: swa
- // il == 1: swa
- // il == 2: dense
- // il == 3: swa
- // il == 4: swa
- // il == 5: dense
- // il == 6: swa
- // etc ...
- // example 2: n_pattern = 2, dense_first = true
- // il == 0: dense
- // il == 1: swa
- // il == 2: dense
- // il == 3: swa
- // etc ...
- void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
- // return true if one of the layers is SWA
- bool is_swa_any() const;
- uint32_t n_head(uint32_t il = 0) const;
- uint32_t n_head_kv(uint32_t il = 0) const;
- uint32_t n_ff(uint32_t il = 0) const;
- uint32_t n_gqa(uint32_t il = 0) const;
- // dimension of key embeddings across all k-v heads
- uint32_t n_embd_k_gqa(uint32_t il = 0) const;
- // dimension of value embeddings across all k-v heads
- uint32_t n_embd_v_gqa(uint32_t il = 0) const;
- // true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
- bool is_n_embd_k_gqa_variable() const;
- bool is_n_embd_v_gqa_variable() const;
- // return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
- uint32_t n_embd_k_gqa_max() const;
- uint32_t n_embd_v_gqa_max() const;
- // dimension of the rolling state embeddings
- // corresponds to Mamba's conv_states size or RWKV's token_shift states size
- uint32_t n_embd_r() const;
- // dimension of the recurrent state embeddings
- uint32_t n_embd_s() const;
- // whether or not the given layer is recurrent (for hybrid models)
- bool is_recurrent(uint32_t il) const;
- uint32_t n_pos_per_embd() const;
- bool is_swa(uint32_t il) const;
- bool has_kv(uint32_t il) const;
- // number of layers for which has_kv() returns true
- uint32_t n_layer_kv() const;
- bool is_masked_swa(llama_pos p0, llama_pos p1) const;
- };
- static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|