ggml.c 742 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. typedef atomic_int atomic_flag;
  53. #define ATOMIC_FLAG_INIT 0
  54. static void atomic_store(atomic_int * ptr, LONG val) {
  55. InterlockedExchange(ptr, val);
  56. }
  57. static LONG atomic_load(atomic_int * ptr) {
  58. return InterlockedCompareExchange(ptr, 0, 0);
  59. }
  60. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  61. return InterlockedExchangeAdd(ptr, inc);
  62. }
  63. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  64. return atomic_fetch_add(ptr, -(dec));
  65. }
  66. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  67. return InterlockedExchange(ptr, 1);
  68. }
  69. static void atomic_flag_clear(atomic_flag * ptr) {
  70. InterlockedExchange(ptr, 0);
  71. }
  72. typedef HANDLE pthread_t;
  73. typedef DWORD thread_ret_t;
  74. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  75. (void) unused;
  76. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  77. if (handle == NULL)
  78. {
  79. return EAGAIN;
  80. }
  81. *out = handle;
  82. return 0;
  83. }
  84. static int pthread_join(pthread_t thread, void * unused) {
  85. (void) unused;
  86. int ret = (int) WaitForSingleObject(thread, INFINITE);
  87. CloseHandle(thread);
  88. return ret;
  89. }
  90. static int sched_yield (void) {
  91. Sleep (0);
  92. return 0;
  93. }
  94. #else
  95. #include <pthread.h>
  96. #include <stdatomic.h>
  97. typedef void * thread_ret_t;
  98. #include <sys/types.h>
  99. #include <sys/stat.h>
  100. #include <unistd.h>
  101. #endif
  102. typedef pthread_t ggml_thread_t;
  103. #ifdef GGML_USE_CPU_HBM
  104. #include <hbwmalloc.h>
  105. #endif
  106. #if defined(__APPLE__)
  107. #include <TargetConditionals.h>
  108. #endif
  109. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  110. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  111. #include <sys/wait.h>
  112. void ggml_print_backtrace(void) {
  113. /*
  114. #include <execinfo.h>
  115. #include <dlfcn.h>
  116. void * trace[100];
  117. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  118. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  119. */
  120. // backtrack_symbols does not show line numbers, use gdb instead
  121. char attach[32];
  122. snprintf(attach, sizeof(attach), "attach %d", getpid());
  123. int pid = fork();
  124. if (pid == 0) {
  125. execlp("gdb", "gdb", "--batch",
  126. "-ex", "set style enabled on",
  127. "-ex", attach,
  128. "-ex", "bt -frame-info source-and-location",
  129. "-ex", "detach",
  130. "-ex", "quit",
  131. (char *) NULL);
  132. } else {
  133. waitpid(pid, NULL, 0);
  134. }
  135. }
  136. #else
  137. void ggml_print_backtrace(void) {
  138. // platform not supported
  139. }
  140. #endif
  141. /*#define GGML_PERF*/
  142. #define GGML_DEBUG 0
  143. #define GGML_GELU_FP16
  144. #define GGML_GELU_QUICK_FP16
  145. #define GGML_SOFT_MAX_UNROLL 4
  146. #define GGML_VEC_DOT_UNROLL 2
  147. #define GGML_VEC_MAD_UNROLL 32
  148. //
  149. // logging
  150. //
  151. #if (GGML_DEBUG >= 1)
  152. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  153. #else
  154. #define GGML_PRINT_DEBUG(...)
  155. #endif
  156. #if (GGML_DEBUG >= 5)
  157. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  158. #else
  159. #define GGML_PRINT_DEBUG_5(...)
  160. #endif
  161. #if (GGML_DEBUG >= 10)
  162. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  163. #else
  164. #define GGML_PRINT_DEBUG_10(...)
  165. #endif
  166. #define GGML_PRINT(...) printf(__VA_ARGS__)
  167. //
  168. // end of logging block
  169. //
  170. #ifdef GGML_USE_ACCELERATE
  171. // uncomment to use vDSP for soft max computation
  172. // note: not sure if it is actually faster
  173. //#define GGML_SOFT_MAX_ACCELERATE
  174. #endif
  175. #if defined(_MSC_VER) || defined(__MINGW32__)
  176. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  177. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  178. #else
  179. inline static void * ggml_aligned_malloc(size_t size) {
  180. if (size == 0) {
  181. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  182. return NULL;
  183. }
  184. void * aligned_memory = NULL;
  185. #ifdef GGML_USE_CPU_HBM
  186. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  187. #elif GGML_USE_METAL
  188. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  189. #else
  190. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  191. #endif
  192. if (result != 0) {
  193. // Handle allocation failure
  194. const char *error_desc = "unknown allocation error";
  195. switch (result) {
  196. case EINVAL:
  197. error_desc = "invalid alignment value";
  198. break;
  199. case ENOMEM:
  200. error_desc = "insufficient memory";
  201. break;
  202. }
  203. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. return NULL;
  206. }
  207. return aligned_memory;
  208. }
  209. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  210. #ifdef GGML_USE_CPU_HBM
  211. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  212. #else
  213. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  214. #endif
  215. #endif
  216. inline static void * ggml_malloc(size_t size) {
  217. if (size == 0) {
  218. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  219. return NULL;
  220. }
  221. void * result = malloc(size);
  222. if (result == NULL) {
  223. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  224. GGML_ASSERT(false);
  225. }
  226. return result;
  227. }
  228. // calloc
  229. inline static void * ggml_calloc(size_t num, size_t size) {
  230. if (num == 0 || size == 0) {
  231. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  232. return NULL;
  233. }
  234. void * result = calloc(num, size);
  235. if (result == NULL) {
  236. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  237. GGML_ASSERT(false);
  238. }
  239. return result;
  240. }
  241. #define GGML_MALLOC(size) ggml_malloc(size)
  242. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  243. #define GGML_FREE(ptr) free(ptr)
  244. #define UNUSED GGML_UNUSED
  245. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  246. #if defined(GGML_USE_ACCELERATE)
  247. #include <Accelerate/Accelerate.h>
  248. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  249. #include "ggml-opencl.h"
  250. #endif
  251. #elif defined(GGML_USE_OPENBLAS)
  252. #if defined(GGML_BLAS_USE_MKL)
  253. #include <mkl.h>
  254. #else
  255. #include <cblas.h>
  256. #endif
  257. #elif defined(GGML_USE_CLBLAST)
  258. #include "ggml-opencl.h"
  259. #endif
  260. // floating point type used to accumulate sums
  261. typedef double ggml_float;
  262. #undef MIN
  263. #undef MAX
  264. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  265. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  266. //
  267. // global data
  268. //
  269. // precomputed gelu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  271. // precomputed quick gelu table for f16 (128 KB)
  272. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  274. float ggml_table_f32_f16[1 << 16];
  275. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  276. switch (status) {
  277. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  278. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  279. case GGML_STATUS_SUCCESS: return "GGML status: success";
  280. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  281. }
  282. return "GGML status: unknown";
  283. }
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  286. return GGML_FP16_TO_FP32(x);
  287. }
  288. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  289. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  290. return GGML_FP32_TO_FP16(x);
  291. }
  292. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  293. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  294. return GGML_BF16_TO_FP32(x); // it just left shifts
  295. }
  296. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  297. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  298. return GGML_FP32_TO_BF16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  301. for (int64_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  306. int64_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  324. int64_t i = 0;
  325. #if defined(__AVX512F__)
  326. for (; i + 16 <= n; i += 16) {
  327. _mm512_storeu_ps(y + i,
  328. _mm512_castsi512_ps(
  329. _mm512_slli_epi32(
  330. _mm512_cvtepu16_epi32(
  331. _mm256_loadu_si256(
  332. (const __m256i *)(x + i))),
  333. 16)));
  334. }
  335. #elif defined(__AVX2__)
  336. for (; i + 8 <= n; i += 8) {
  337. _mm256_storeu_ps(y + i,
  338. _mm256_castsi256_ps(
  339. _mm256_slli_epi32(
  340. _mm256_cvtepu16_epi32(
  341. _mm_loadu_si128(
  342. (const __m128i *)(x + i))),
  343. 16)));
  344. }
  345. #endif
  346. for (; i < n; i++) {
  347. y[i] = GGML_BF16_TO_FP32(x[i]);
  348. }
  349. }
  350. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  351. int i = 0;
  352. #if defined(__AVX512BF16__)
  353. for (; i + 32 <= n; i += 32) {
  354. _mm512_storeu_si512(
  355. (__m512i *)(y + i),
  356. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  357. _mm512_loadu_ps(x + i))));
  358. }
  359. #endif
  360. for (; i < n; i++) {
  361. y[i] = GGML_FP32_TO_BF16(x[i]);
  362. }
  363. }
  364. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  365. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  366. }
  367. //
  368. // timing
  369. //
  370. #if defined(_MSC_VER) || defined(__MINGW32__)
  371. static int64_t timer_freq, timer_start;
  372. void ggml_time_init(void) {
  373. LARGE_INTEGER t;
  374. QueryPerformanceFrequency(&t);
  375. timer_freq = t.QuadPart;
  376. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  377. // and the uptime is high enough.
  378. // We subtract the program start time to reduce the likelihood of that happening.
  379. QueryPerformanceCounter(&t);
  380. timer_start = t.QuadPart;
  381. }
  382. int64_t ggml_time_ms(void) {
  383. LARGE_INTEGER t;
  384. QueryPerformanceCounter(&t);
  385. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  386. }
  387. int64_t ggml_time_us(void) {
  388. LARGE_INTEGER t;
  389. QueryPerformanceCounter(&t);
  390. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  391. }
  392. #else
  393. void ggml_time_init(void) {}
  394. int64_t ggml_time_ms(void) {
  395. struct timespec ts;
  396. clock_gettime(CLOCK_MONOTONIC, &ts);
  397. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  398. }
  399. int64_t ggml_time_us(void) {
  400. struct timespec ts;
  401. clock_gettime(CLOCK_MONOTONIC, &ts);
  402. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  403. }
  404. #endif
  405. int64_t ggml_cycles(void) {
  406. return clock();
  407. }
  408. int64_t ggml_cycles_per_ms(void) {
  409. return CLOCKS_PER_SEC/1000;
  410. }
  411. #ifdef GGML_PERF
  412. #define ggml_perf_time_ms() ggml_time_ms()
  413. #define ggml_perf_time_us() ggml_time_us()
  414. #define ggml_perf_cycles() ggml_cycles()
  415. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  416. #else
  417. #define ggml_perf_time_ms() 0
  418. #define ggml_perf_time_us() 0
  419. #define ggml_perf_cycles() 0
  420. #define ggml_perf_cycles_per_ms() 0
  421. #endif
  422. //
  423. // cross-platform UTF-8 file paths
  424. //
  425. #ifdef _WIN32
  426. static wchar_t * ggml_mbstowcs(const char * mbs) {
  427. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  428. if (!wlen) {
  429. errno = EINVAL;
  430. return NULL;
  431. }
  432. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  433. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  434. if (!wlen) {
  435. GGML_FREE(wbuf);
  436. errno = EINVAL;
  437. return NULL;
  438. }
  439. return wbuf;
  440. }
  441. #endif
  442. FILE * ggml_fopen(const char * fname, const char * mode) {
  443. #ifdef _WIN32
  444. FILE * file = NULL;
  445. // convert fname (UTF-8)
  446. wchar_t * wfname = ggml_mbstowcs(fname);
  447. if (wfname) {
  448. // convert mode (ANSI)
  449. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  450. wchar_t * wmode_p = wmode;
  451. do {
  452. *wmode_p++ = (wchar_t)*mode;
  453. } while (*mode++);
  454. // open file
  455. file = _wfopen(wfname, wmode);
  456. GGML_FREE(wfname);
  457. GGML_FREE(wmode);
  458. }
  459. return file;
  460. #else
  461. return fopen(fname, mode);
  462. #endif
  463. }
  464. //
  465. // cache line
  466. //
  467. #if defined(__cpp_lib_hardware_interference_size)
  468. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  469. #else
  470. #if defined(__POWER9_VECTOR__)
  471. #define CACHE_LINE_SIZE 128
  472. #else
  473. #define CACHE_LINE_SIZE 64
  474. #endif
  475. #endif
  476. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  477. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  478. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  479. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  480. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  481. [GGML_TYPE_I8] = {
  482. .type_name = "i8",
  483. .blck_size = 1,
  484. .type_size = sizeof(int8_t),
  485. .is_quantized = false,
  486. },
  487. [GGML_TYPE_I16] = {
  488. .type_name = "i16",
  489. .blck_size = 1,
  490. .type_size = sizeof(int16_t),
  491. .is_quantized = false,
  492. },
  493. [GGML_TYPE_I32] = {
  494. .type_name = "i32",
  495. .blck_size = 1,
  496. .type_size = sizeof(int32_t),
  497. .is_quantized = false,
  498. },
  499. [GGML_TYPE_I64] = {
  500. .type_name = "i64",
  501. .blck_size = 1,
  502. .type_size = sizeof(int64_t),
  503. .is_quantized = false,
  504. },
  505. [GGML_TYPE_F64] = {
  506. .type_name = "f64",
  507. .blck_size = 1,
  508. .type_size = sizeof(double),
  509. .is_quantized = false,
  510. .nrows = 1,
  511. },
  512. [GGML_TYPE_F32] = {
  513. .type_name = "f32",
  514. .blck_size = 1,
  515. .type_size = sizeof(float),
  516. .is_quantized = false,
  517. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  518. .vec_dot_type = GGML_TYPE_F32,
  519. .nrows = 1,
  520. },
  521. [GGML_TYPE_F16] = {
  522. .type_name = "f16",
  523. .blck_size = 1,
  524. .type_size = sizeof(ggml_fp16_t),
  525. .is_quantized = false,
  526. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  527. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  528. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  529. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  530. .vec_dot_type = GGML_TYPE_F16,
  531. .nrows = 1,
  532. },
  533. [GGML_TYPE_Q4_0] = {
  534. .type_name = "q4_0",
  535. .blck_size = QK4_0,
  536. .type_size = sizeof(block_q4_0),
  537. .is_quantized = true,
  538. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  539. .from_float = quantize_row_q4_0,
  540. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  541. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  542. .vec_dot_type = GGML_TYPE_Q8_0,
  543. #if defined (__ARM_FEATURE_MATMUL_INT8)
  544. .nrows = 2,
  545. #else
  546. .nrows = 1,
  547. #endif
  548. },
  549. [GGML_TYPE_Q4_1] = {
  550. .type_name = "q4_1",
  551. .blck_size = QK4_1,
  552. .type_size = sizeof(block_q4_1),
  553. .is_quantized = true,
  554. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  555. .from_float = quantize_row_q4_1,
  556. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  557. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  558. .vec_dot_type = GGML_TYPE_Q8_1,
  559. #if defined (__ARM_FEATURE_MATMUL_INT8)
  560. .nrows = 2,
  561. #else
  562. .nrows = 1,
  563. #endif
  564. },
  565. [4] = { // GGML_TYPE_Q4_2
  566. .type_name = "DEPRECATED",
  567. .blck_size = 0,
  568. .type_size = 0,
  569. .is_quantized = false,
  570. .to_float = NULL,
  571. .from_float = NULL,
  572. .from_float_reference = NULL,
  573. .vec_dot = NULL,
  574. .vec_dot_type = GGML_TYPE_COUNT,
  575. .nrows = 1,
  576. },
  577. [5] = { // GGML_TYPE_Q4_3
  578. .type_name = "DEPRECATED",
  579. .blck_size = 0,
  580. .type_size = 0,
  581. .is_quantized = false,
  582. .to_float = NULL,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = NULL,
  586. .vec_dot_type = GGML_TYPE_COUNT,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_Q5_0] = {
  590. .type_name = "q5_0",
  591. .blck_size = QK5_0,
  592. .type_size = sizeof(block_q5_0),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  595. .from_float = quantize_row_q5_0,
  596. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  597. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  598. .vec_dot_type = GGML_TYPE_Q8_0,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_Q5_1] = {
  602. .type_name = "q5_1",
  603. .blck_size = QK5_1,
  604. .type_size = sizeof(block_q5_1),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  607. .from_float = quantize_row_q5_1,
  608. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  609. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  610. .vec_dot_type = GGML_TYPE_Q8_1,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_Q8_0] = {
  614. .type_name = "q8_0",
  615. .blck_size = QK8_0,
  616. .type_size = sizeof(block_q8_0),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  619. .from_float = quantize_row_q8_0,
  620. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  621. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  622. .vec_dot_type = GGML_TYPE_Q8_0,
  623. #if defined (__ARM_FEATURE_MATMUL_INT8)
  624. .nrows = 2,
  625. #else
  626. .nrows = 1,
  627. #endif
  628. },
  629. [GGML_TYPE_Q8_1] = {
  630. .type_name = "q8_1",
  631. .blck_size = QK8_1,
  632. .type_size = sizeof(block_q8_1),
  633. .is_quantized = true,
  634. .from_float = quantize_row_q8_1,
  635. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  636. .vec_dot_type = GGML_TYPE_Q8_1,
  637. .nrows = 1,
  638. },
  639. [GGML_TYPE_Q2_K] = {
  640. .type_name = "q2_K",
  641. .blck_size = QK_K,
  642. .type_size = sizeof(block_q2_K),
  643. .is_quantized = true,
  644. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  645. .from_float = quantize_row_q2_K,
  646. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  647. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  648. .vec_dot_type = GGML_TYPE_Q8_K,
  649. .nrows = 1,
  650. },
  651. [GGML_TYPE_Q3_K] = {
  652. .type_name = "q3_K",
  653. .blck_size = QK_K,
  654. .type_size = sizeof(block_q3_K),
  655. .is_quantized = true,
  656. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  657. .from_float = quantize_row_q3_K,
  658. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  659. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  660. .vec_dot_type = GGML_TYPE_Q8_K,
  661. .nrows = 1,
  662. },
  663. [GGML_TYPE_Q4_K] = {
  664. .type_name = "q4_K",
  665. .blck_size = QK_K,
  666. .type_size = sizeof(block_q4_K),
  667. .is_quantized = true,
  668. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  669. .from_float = quantize_row_q4_K,
  670. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  671. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  672. .vec_dot_type = GGML_TYPE_Q8_K,
  673. .nrows = 1,
  674. },
  675. [GGML_TYPE_Q5_K] = {
  676. .type_name = "q5_K",
  677. .blck_size = QK_K,
  678. .type_size = sizeof(block_q5_K),
  679. .is_quantized = true,
  680. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  681. .from_float = quantize_row_q5_K,
  682. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  683. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  684. .vec_dot_type = GGML_TYPE_Q8_K,
  685. .nrows = 1,
  686. },
  687. [GGML_TYPE_Q6_K] = {
  688. .type_name = "q6_K",
  689. .blck_size = QK_K,
  690. .type_size = sizeof(block_q6_K),
  691. .is_quantized = true,
  692. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  693. .from_float = quantize_row_q6_K,
  694. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  695. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  696. .vec_dot_type = GGML_TYPE_Q8_K,
  697. .nrows = 1,
  698. },
  699. [GGML_TYPE_IQ2_XXS] = {
  700. .type_name = "iq2_xxs",
  701. .blck_size = QK_K,
  702. .type_size = sizeof(block_iq2_xxs),
  703. .is_quantized = true,
  704. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  705. .from_float = NULL,
  706. .from_float_reference = NULL,
  707. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  708. .vec_dot_type = GGML_TYPE_Q8_K,
  709. .nrows = 1,
  710. },
  711. [GGML_TYPE_IQ2_XS] = {
  712. .type_name = "iq2_xs",
  713. .blck_size = QK_K,
  714. .type_size = sizeof(block_iq2_xs),
  715. .is_quantized = true,
  716. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  717. .from_float = NULL,
  718. .from_float_reference = NULL,
  719. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  720. .vec_dot_type = GGML_TYPE_Q8_K,
  721. .nrows = 1,
  722. },
  723. [GGML_TYPE_IQ3_XXS] = {
  724. .type_name = "iq3_xxs",
  725. .blck_size = QK_K,
  726. .type_size = sizeof(block_iq3_xxs),
  727. .is_quantized = true,
  728. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  729. .from_float = quantize_row_iq3_xxs,
  730. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  731. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  732. .vec_dot_type = GGML_TYPE_Q8_K,
  733. .nrows = 1,
  734. },
  735. [GGML_TYPE_IQ3_S] = {
  736. .type_name = "iq3_s",
  737. .blck_size = QK_K,
  738. .type_size = sizeof(block_iq3_s),
  739. .is_quantized = true,
  740. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  741. .from_float = quantize_row_iq3_s,
  742. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  743. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  744. .vec_dot_type = GGML_TYPE_Q8_K,
  745. .nrows = 1,
  746. },
  747. [GGML_TYPE_IQ2_S] = {
  748. .type_name = "iq2_s",
  749. .blck_size = QK_K,
  750. .type_size = sizeof(block_iq2_s),
  751. .is_quantized = true,
  752. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  753. .from_float = quantize_row_iq2_s,
  754. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  755. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  756. .vec_dot_type = GGML_TYPE_Q8_K,
  757. .nrows = 1,
  758. },
  759. [GGML_TYPE_IQ1_S] = {
  760. .type_name = "iq1_s",
  761. .blck_size = QK_K,
  762. .type_size = sizeof(block_iq1_s),
  763. .is_quantized = true,
  764. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  765. .from_float = NULL,
  766. .from_float_reference = NULL,
  767. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  768. .vec_dot_type = GGML_TYPE_Q8_K,
  769. .nrows = 1,
  770. },
  771. [GGML_TYPE_IQ1_M] = {
  772. .type_name = "iq1_m",
  773. .blck_size = QK_K,
  774. .type_size = sizeof(block_iq1_m),
  775. .is_quantized = true,
  776. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  777. .from_float = NULL,
  778. .from_float_reference = NULL,
  779. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  780. .vec_dot_type = GGML_TYPE_Q8_K,
  781. .nrows = 1,
  782. },
  783. [GGML_TYPE_IQ4_NL] = {
  784. .type_name = "iq4_nl",
  785. .blck_size = QK4_NL,
  786. .type_size = sizeof(block_iq4_nl),
  787. .is_quantized = true,
  788. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  789. .from_float = quantize_row_iq4_nl,
  790. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  791. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  792. .vec_dot_type = GGML_TYPE_Q8_0,
  793. .nrows = 1,
  794. },
  795. [GGML_TYPE_IQ4_XS] = {
  796. .type_name = "iq4_xs",
  797. .blck_size = QK_K,
  798. .type_size = sizeof(block_iq4_xs),
  799. .is_quantized = true,
  800. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  801. .from_float = quantize_row_iq4_xs,
  802. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  803. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  804. .vec_dot_type = GGML_TYPE_Q8_K,
  805. .nrows = 1,
  806. },
  807. [GGML_TYPE_Q8_K] = {
  808. .type_name = "q8_K",
  809. .blck_size = QK_K,
  810. .type_size = sizeof(block_q8_K),
  811. .is_quantized = true,
  812. .from_float = quantize_row_q8_K,
  813. },
  814. [GGML_TYPE_BF16] = {
  815. .type_name = "bf16",
  816. .blck_size = 1,
  817. .type_size = sizeof(ggml_bf16_t),
  818. .is_quantized = false,
  819. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  820. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  821. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  822. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  823. .vec_dot_type = GGML_TYPE_BF16,
  824. .nrows = 1,
  825. }
  826. };
  827. // For internal test use
  828. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  829. GGML_ASSERT(type < GGML_TYPE_COUNT);
  830. return type_traits[type];
  831. }
  832. //
  833. // simd mappings
  834. //
  835. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  836. // we then implement the fundamental computation operations below using only these macros
  837. // adding support for new architectures requires to define the corresponding SIMD macros
  838. //
  839. // GGML_F32_STEP / GGML_F16_STEP
  840. // number of elements to process in a single step
  841. //
  842. // GGML_F32_EPR / GGML_F16_EPR
  843. // number of elements to fit in a single register
  844. //
  845. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  846. #define GGML_SIMD
  847. // F32 NEON
  848. #define GGML_F32_STEP 16
  849. #define GGML_F32_EPR 4
  850. #define GGML_F32x4 float32x4_t
  851. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  852. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  853. #define GGML_F32x4_LOAD vld1q_f32
  854. #define GGML_F32x4_STORE vst1q_f32
  855. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  856. #define GGML_F32x4_ADD vaddq_f32
  857. #define GGML_F32x4_MUL vmulq_f32
  858. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 NEON
  885. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  886. #define GGML_F16_STEP 32
  887. #define GGML_F16_EPR 8
  888. #define GGML_F16x8 float16x8_t
  889. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  890. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  891. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  892. #define GGML_F16x8_STORE vst1q_f16
  893. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  894. #define GGML_F16x8_ADD vaddq_f16
  895. #define GGML_F16x8_MUL vmulq_f16
  896. #define GGML_F16x8_REDUCE(res, x) \
  897. do { \
  898. int offset = GGML_F16_ARR >> 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. offset >>= 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  911. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  912. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  913. } while (0)
  914. #define GGML_F16_VEC GGML_F16x8
  915. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  916. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  917. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  918. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  919. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  920. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  921. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  922. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  923. #else
  924. // if FP16 vector arithmetic is not supported, we use FP32 instead
  925. // and take advantage of the vcvt_ functions to convert to/from FP16
  926. #define GGML_F16_STEP 16
  927. #define GGML_F16_EPR 4
  928. #define GGML_F32Cx4 float32x4_t
  929. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  930. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  931. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  932. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  933. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  934. #define GGML_F32Cx4_ADD vaddq_f32
  935. #define GGML_F32Cx4_MUL vmulq_f32
  936. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  937. #define GGML_F16_VEC GGML_F32Cx4
  938. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  939. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  940. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  941. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  942. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  943. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  944. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  945. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  946. #endif
  947. #elif defined(__AVX512F__)
  948. #define GGML_SIMD
  949. // F32 AVX512
  950. #define GGML_F32_STEP 64
  951. #define GGML_F32_EPR 16
  952. #define GGML_F32x16 __m512
  953. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  954. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  955. #define GGML_F32x16_LOAD _mm512_loadu_ps
  956. #define GGML_F32x16_STORE _mm512_storeu_ps
  957. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  958. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  959. #define GGML_F32x16_ADD _mm512_add_ps
  960. #define GGML_F32x16_MUL _mm512_mul_ps
  961. #define GGML_F32x16_REDUCE(res, x) \
  962. do { \
  963. int offset = GGML_F32_ARR >> 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. offset >>= 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. res = _mm512_reduce_add_ps(x[0]); \
  976. } while (0)
  977. // TODO: is this optimal ?
  978. #define GGML_F32_VEC GGML_F32x16
  979. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  980. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  981. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  982. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  983. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  984. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  985. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  986. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  987. // F16 AVX512
  988. // F16 AVX
  989. #define GGML_F16_STEP 64
  990. #define GGML_F16_EPR 16
  991. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  992. #define GGML_F32Cx16 __m512
  993. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  994. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  995. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  996. // so F16C guard isn't required
  997. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  998. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  999. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1000. #define GGML_F32Cx16_ADD _mm512_add_ps
  1001. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1002. #define GGML_F32Cx16_REDUCE(res, x) \
  1003. do { \
  1004. int offset = GGML_F32_ARR >> 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. res = _mm512_reduce_add_ps(x[0]); \
  1017. } while (0)
  1018. #define GGML_F16_VEC GGML_F32Cx16
  1019. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1027. #elif defined(__AVX__)
  1028. #define GGML_SIMD
  1029. // F32 AVX
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 8
  1032. #define GGML_F32x8 __m256
  1033. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1034. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1035. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1036. #define GGML_F32x8_STORE _mm256_storeu_ps
  1037. #if defined(__FMA__)
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1039. #else
  1040. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1041. #endif
  1042. #define GGML_F32x8_ADD _mm256_add_ps
  1043. #define GGML_F32x8_MUL _mm256_mul_ps
  1044. #define GGML_F32x8_REDUCE(res, x) \
  1045. do { \
  1046. int offset = GGML_F32_ARR >> 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. offset >>= 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1059. _mm256_extractf128_ps(x[0], 1)); \
  1060. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1061. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1062. } while (0)
  1063. // TODO: is this optimal ?
  1064. #define GGML_F32_VEC GGML_F32x8
  1065. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1066. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1067. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1068. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1069. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1070. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1071. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1072. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1073. // F16 AVX
  1074. #define GGML_F16_STEP 32
  1075. #define GGML_F16_EPR 8
  1076. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1077. #define GGML_F32Cx8 __m256
  1078. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1080. #if defined(__F16C__)
  1081. // the _mm256_cvt intrinsics require F16C
  1082. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1083. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1084. #else
  1085. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1086. float tmp[8];
  1087. for (int i = 0; i < 8; i++) {
  1088. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1089. }
  1090. return _mm256_loadu_ps(tmp);
  1091. }
  1092. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1093. float arr[8];
  1094. _mm256_storeu_ps(arr, y);
  1095. for (int i = 0; i < 8; i++)
  1096. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1097. }
  1098. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1099. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1100. #endif
  1101. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1102. #define GGML_F32Cx8_ADD _mm256_add_ps
  1103. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1104. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1105. #define GGML_F16_VEC GGML_F32Cx8
  1106. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1107. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1108. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1109. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1110. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1111. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1112. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1113. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1114. #elif defined(__POWER9_VECTOR__)
  1115. #define GGML_SIMD
  1116. // F32 POWER9
  1117. #define GGML_F32_STEP 32
  1118. #define GGML_F32_EPR 4
  1119. #define GGML_F32x4 vector float
  1120. #define GGML_F32x4_ZERO 0.0f
  1121. #define GGML_F32x4_SET1 vec_splats
  1122. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1123. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1124. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1125. #define GGML_F32x4_ADD vec_add
  1126. #define GGML_F32x4_MUL vec_mul
  1127. #define GGML_F32x4_REDUCE(res, x) \
  1128. { \
  1129. int offset = GGML_F32_ARR >> 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. offset >>= 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. res = vec_extract(x[0], 0) + \
  1142. vec_extract(x[0], 1) + \
  1143. vec_extract(x[0], 2) + \
  1144. vec_extract(x[0], 3); \
  1145. }
  1146. #define GGML_F32_VEC GGML_F32x4
  1147. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1148. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1149. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1150. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1151. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1152. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1153. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1154. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1155. // F16 POWER9
  1156. #define GGML_F16_STEP GGML_F32_STEP
  1157. #define GGML_F16_EPR GGML_F32_EPR
  1158. #define GGML_F16_VEC GGML_F32x4
  1159. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1161. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1166. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1167. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1168. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1169. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1170. #define GGML_F16_VEC_STORE(p, r, i) \
  1171. if (i & 0x1) \
  1172. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1173. r[i - GGML_ENDIAN_BYTE(0)]), \
  1174. 0, p - GGML_F16_EPR)
  1175. #elif defined(__wasm_simd128__)
  1176. #define GGML_SIMD
  1177. // F32 WASM
  1178. #define GGML_F32_STEP 16
  1179. #define GGML_F32_EPR 4
  1180. #define GGML_F32x4 v128_t
  1181. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1182. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1183. #define GGML_F32x4_LOAD wasm_v128_load
  1184. #define GGML_F32x4_STORE wasm_v128_store
  1185. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1186. #define GGML_F32x4_ADD wasm_f32x4_add
  1187. #define GGML_F32x4_MUL wasm_f32x4_mul
  1188. #define GGML_F32x4_REDUCE(res, x) \
  1189. { \
  1190. int offset = GGML_F32_ARR >> 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. offset >>= 1; \
  1195. for (int i = 0; i < offset; ++i) { \
  1196. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1197. } \
  1198. offset >>= 1; \
  1199. for (int i = 0; i < offset; ++i) { \
  1200. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1201. } \
  1202. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1203. wasm_f32x4_extract_lane(x[0], 1) + \
  1204. wasm_f32x4_extract_lane(x[0], 2) + \
  1205. wasm_f32x4_extract_lane(x[0], 3); \
  1206. }
  1207. #define GGML_F32_VEC GGML_F32x4
  1208. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1209. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1210. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1211. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1212. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1213. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1214. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1215. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1216. // F16 WASM
  1217. #define GGML_F16_STEP 16
  1218. #define GGML_F16_EPR 4
  1219. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1220. float tmp[4];
  1221. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1222. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1223. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1224. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1225. return wasm_v128_load(tmp);
  1226. }
  1227. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1228. float tmp[4];
  1229. wasm_v128_store(tmp, x);
  1230. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1231. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1232. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1233. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1234. }
  1235. #define GGML_F16x4 v128_t
  1236. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1237. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1238. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1239. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1240. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1241. #define GGML_F16x4_ADD wasm_f32x4_add
  1242. #define GGML_F16x4_MUL wasm_f32x4_mul
  1243. #define GGML_F16x4_REDUCE(res, x) \
  1244. { \
  1245. int offset = GGML_F16_ARR >> 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. offset >>= 1; \
  1250. for (int i = 0; i < offset; ++i) { \
  1251. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1252. } \
  1253. offset >>= 1; \
  1254. for (int i = 0; i < offset; ++i) { \
  1255. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1256. } \
  1257. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1258. wasm_f32x4_extract_lane(x[0], 1) + \
  1259. wasm_f32x4_extract_lane(x[0], 2) + \
  1260. wasm_f32x4_extract_lane(x[0], 3); \
  1261. }
  1262. #define GGML_F16_VEC GGML_F16x4
  1263. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1271. #elif defined(__SSE3__)
  1272. #define GGML_SIMD
  1273. // F32 SSE
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 __m128
  1277. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1278. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1279. #define GGML_F32x4_LOAD _mm_loadu_ps
  1280. #define GGML_F32x4_STORE _mm_storeu_ps
  1281. #if defined(__FMA__)
  1282. // TODO: Does this work?
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1284. #else
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1286. #endif
  1287. #define GGML_F32x4_ADD _mm_add_ps
  1288. #define GGML_F32x4_MUL _mm_mul_ps
  1289. #define GGML_F32x4_REDUCE(res, x) \
  1290. { \
  1291. int offset = GGML_F32_ARR >> 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. offset >>= 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1302. } \
  1303. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1305. }
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x4
  1308. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1316. // F16 SSE
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 4
  1319. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1320. float tmp[4];
  1321. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1322. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1323. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1324. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1325. return _mm_loadu_ps(tmp);
  1326. }
  1327. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1328. float arr[4];
  1329. _mm_storeu_ps(arr, y);
  1330. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1331. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1332. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1333. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1334. }
  1335. #define GGML_F32Cx4 __m128
  1336. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1337. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1338. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1339. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1340. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1341. #define GGML_F32Cx4_ADD _mm_add_ps
  1342. #define GGML_F32Cx4_MUL _mm_mul_ps
  1343. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1344. #define GGML_F16_VEC GGML_F32Cx4
  1345. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1346. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1347. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1348. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1349. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1350. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1351. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1352. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1353. #elif defined(__loongarch_asx)
  1354. #define GGML_SIMD
  1355. // F32 LASX
  1356. #define GGML_F32_STEP 32
  1357. #define GGML_F32_EPR 8
  1358. #define GGML_F32x8 __m256
  1359. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1360. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1361. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1362. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1363. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1364. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1365. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1366. #define GGML_F32x8_REDUCE(res, x) \
  1367. do { \
  1368. int offset = GGML_F32_ARR >> 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. offset >>= 1; \
  1373. for (int i = 0; i < offset; ++i) { \
  1374. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1375. } \
  1376. offset >>= 1; \
  1377. for (int i = 0; i < offset; ++i) { \
  1378. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1379. } \
  1380. float *tmp_p = (float *)&x[0]; \
  1381. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1382. } while (0)
  1383. // TODO: is this optimal ?
  1384. #define GGML_F32_VEC GGML_F32x8
  1385. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1386. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1387. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1388. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1389. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1390. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1391. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1392. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1393. // F16 LASX
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1397. #define GGML_F32Cx8 __m256
  1398. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1399. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1400. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1401. float tmp[8];
  1402. for (int i = 0; i < 8; i++) {
  1403. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1404. }
  1405. return (__m256)__lasx_xvld(tmp, 0);
  1406. }
  1407. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1408. float arr[8];
  1409. __lasx_xvst(y, arr, 0);
  1410. for (int i = 0; i < 8; i++)
  1411. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1412. }
  1413. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1414. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1415. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1416. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1417. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1418. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1419. #define GGML_F16_VEC GGML_F32Cx8
  1420. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1428. #elif defined(__loongarch_sx)
  1429. #define GGML_SIMD
  1430. // F32 LSX
  1431. #define GGML_F32_STEP 32
  1432. #define GGML_F32_EPR 4
  1433. #define GGML_F32x4 __m128
  1434. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1435. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1436. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1437. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1438. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1439. #define GGML_F32x4_ADD __lsx_vfadd_s
  1440. #define GGML_F32x4_MUL __lsx_vfmul_s
  1441. #define GGML_F32x4_REDUCE(res, x) \
  1442. { \
  1443. int offset = GGML_F32_ARR >> 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. offset >>= 1; \
  1448. for (int i = 0; i < offset; ++i) { \
  1449. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1450. } \
  1451. offset >>= 1; \
  1452. for (int i = 0; i < offset; ++i) { \
  1453. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1454. } \
  1455. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1456. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1457. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1458. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1459. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1460. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1461. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1462. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1463. }
  1464. #define GGML_F32_VEC GGML_F32x4
  1465. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1468. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1469. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1470. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1471. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1472. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1473. // F16 LSX
  1474. #define GGML_F16_STEP 32
  1475. #define GGML_F16_EPR 4
  1476. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1477. float tmp[4];
  1478. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1479. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1480. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1481. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1482. return __lsx_vld(tmp, 0);
  1483. }
  1484. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1485. float arr[4];
  1486. __lsx_vst(y, arr, 0);
  1487. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1488. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1489. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1490. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1491. }
  1492. #define GGML_F32Cx4 __m128
  1493. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1494. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1495. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1496. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1497. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1498. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1499. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1500. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1501. #define GGML_F16_VEC GGML_F32Cx4
  1502. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1503. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1504. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1505. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1506. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1507. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1508. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1509. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1510. #endif
  1511. // GGML_F32_ARR / GGML_F16_ARR
  1512. // number of registers to use per step
  1513. #ifdef GGML_SIMD
  1514. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1515. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1516. #endif
  1517. //
  1518. // ggml context
  1519. //
  1520. struct ggml_context {
  1521. size_t mem_size;
  1522. void* mem_buffer;
  1523. bool mem_buffer_owned;
  1524. bool no_alloc;
  1525. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1526. int n_objects;
  1527. struct ggml_object* objects_begin;
  1528. struct ggml_object* objects_end;
  1529. struct ggml_scratch scratch;
  1530. struct ggml_scratch scratch_save;
  1531. };
  1532. struct ggml_context_container {
  1533. bool used;
  1534. struct ggml_context context;
  1535. };
  1536. struct ggml_compute_state_shared {
  1537. const struct ggml_cgraph* cgraph;
  1538. const struct ggml_cplan* cplan;
  1539. int64_t perf_node_start_cycles;
  1540. int64_t perf_node_start_time_us;
  1541. const int n_threads;
  1542. // synchronization primitives
  1543. atomic_int n_active; // num active threads
  1544. atomic_int node_n; // active graph node
  1545. atomic_int node_task; // active graph node task phase
  1546. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1547. void* abort_callback_data;
  1548. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1549. };
  1550. struct ggml_compute_state {
  1551. ggml_thread_t thrd;
  1552. int ith;
  1553. struct ggml_compute_state_shared* shared;
  1554. enum ggml_status ec;
  1555. };
  1556. //
  1557. // fundamental operations
  1558. //
  1559. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1565. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1566. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1567. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1568. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1569. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1570. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1571. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1572. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1573. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1574. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1575. assert(nrc == 1);
  1576. UNUSED(nrc);
  1577. UNUSED(bx);
  1578. UNUSED(by);
  1579. UNUSED(bs);
  1580. #if defined(GGML_SIMD)
  1581. float sumf = 0.0f;
  1582. const int np = (n & ~(GGML_F32_STEP - 1));
  1583. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1584. GGML_F32_VEC ax[GGML_F32_ARR];
  1585. GGML_F32_VEC ay[GGML_F32_ARR];
  1586. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1587. for (int j = 0; j < GGML_F32_ARR; j++) {
  1588. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1589. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1590. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1591. }
  1592. }
  1593. // reduce sum0..sum3 to sum0
  1594. GGML_F32_VEC_REDUCE(sumf, sum);
  1595. // leftovers
  1596. for (int i = np; i < n; ++i) {
  1597. sumf += x[i]*y[i];
  1598. }
  1599. #else
  1600. // scalar
  1601. ggml_float sumf = 0.0;
  1602. for (int i = 0; i < n; ++i) {
  1603. sumf += (ggml_float)(x[i]*y[i]);
  1604. }
  1605. #endif
  1606. *s = sumf;
  1607. }
  1608. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1609. assert(nrc == 1);
  1610. UNUSED(nrc);
  1611. UNUSED(bx);
  1612. UNUSED(by);
  1613. UNUSED(bs);
  1614. int i = 0;
  1615. ggml_float sumf = 0;
  1616. #if defined(__AVX512BF16__)
  1617. __m512 c1 = _mm512_setzero_ps();
  1618. __m512 c2 = _mm512_setzero_ps();
  1619. for (; i + 64 <= n; i += 64) {
  1620. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1621. m512bh(_mm512_loadu_si512((y + i))));
  1622. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1623. m512bh(_mm512_loadu_si512((y + i + 32))));
  1624. }
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1626. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1627. #elif defined(__AVX512F__)
  1628. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1629. __m512 c1 = _mm512_setzero_ps();
  1630. __m512 c2 = _mm512_setzero_ps();
  1631. for (; i + 32 <= n; i += 32) {
  1632. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1633. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1634. }
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1636. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1637. #undef LOAD
  1638. #elif defined(__AVX2__)
  1639. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1640. __m256 c1 = _mm256_setzero_ps();
  1641. __m256 c2 = _mm256_setzero_ps();
  1642. __m256 c3 = _mm256_setzero_ps();
  1643. __m256 c4 = _mm256_setzero_ps();
  1644. for (; i + 32 <= n; i += 32) {
  1645. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1646. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1647. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1648. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1649. }
  1650. __m128 g;
  1651. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1652. _mm256_add_ps(c2, c4));
  1653. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1654. _mm256_castps256_ps128(c1));
  1655. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1656. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1657. sumf += (ggml_float)_mm_cvtss_f32(g);
  1658. #undef LOAD
  1659. #endif
  1660. for (; i < n; ++i) {
  1661. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1662. GGML_BF16_TO_FP32(y[i]));
  1663. }
  1664. *s = sumf;
  1665. }
  1666. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1667. assert(nrc == 1);
  1668. UNUSED(nrc);
  1669. UNUSED(bx);
  1670. UNUSED(by);
  1671. UNUSED(bs);
  1672. ggml_float sumf = 0.0;
  1673. #if defined(GGML_SIMD)
  1674. const int np = (n & ~(GGML_F16_STEP - 1));
  1675. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1676. GGML_F16_VEC ax[GGML_F16_ARR];
  1677. GGML_F16_VEC ay[GGML_F16_ARR];
  1678. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1679. for (int j = 0; j < GGML_F16_ARR; j++) {
  1680. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1681. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1682. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1683. }
  1684. }
  1685. // reduce sum0..sum3 to sum0
  1686. GGML_F16_VEC_REDUCE(sumf, sum);
  1687. // leftovers
  1688. for (int i = np; i < n; ++i) {
  1689. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1690. }
  1691. #else
  1692. for (int i = 0; i < n; ++i) {
  1693. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1694. }
  1695. #endif
  1696. *s = sumf;
  1697. }
  1698. // compute GGML_VEC_DOT_UNROLL dot products at once
  1699. // xs - x row stride in bytes
  1700. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1701. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1702. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1703. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1704. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1705. }
  1706. #if defined(GGML_SIMD)
  1707. const int np = (n & ~(GGML_F16_STEP - 1));
  1708. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1709. GGML_F16_VEC ax[GGML_F16_ARR];
  1710. GGML_F16_VEC ay[GGML_F16_ARR];
  1711. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1712. for (int j = 0; j < GGML_F16_ARR; j++) {
  1713. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1714. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1715. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1716. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1717. }
  1718. }
  1719. }
  1720. // reduce sum0..sum3 to sum0
  1721. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1722. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1723. }
  1724. // leftovers
  1725. for (int i = np; i < n; ++i) {
  1726. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1727. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1728. }
  1729. }
  1730. #else
  1731. for (int i = 0; i < n; ++i) {
  1732. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1733. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1734. }
  1735. }
  1736. #endif
  1737. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1738. s[i] = sumf[i];
  1739. }
  1740. }
  1741. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1742. #if defined(GGML_SIMD)
  1743. const int np = (n & ~(GGML_F32_STEP - 1));
  1744. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1745. GGML_F32_VEC ax[GGML_F32_ARR];
  1746. GGML_F32_VEC ay[GGML_F32_ARR];
  1747. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1748. for (int j = 0; j < GGML_F32_ARR; j++) {
  1749. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1751. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1752. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1753. }
  1754. }
  1755. // leftovers
  1756. for (int i = np; i < n; ++i) {
  1757. y[i] += x[i]*v;
  1758. }
  1759. #else
  1760. // scalar
  1761. for (int i = 0; i < n; ++i) {
  1762. y[i] += x[i]*v;
  1763. }
  1764. #endif
  1765. }
  1766. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1767. #if defined(GGML_SIMD)
  1768. const int np = (n & ~(GGML_F16_STEP - 1));
  1769. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1770. GGML_F16_VEC ax[GGML_F16_ARR];
  1771. GGML_F16_VEC ay[GGML_F16_ARR];
  1772. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1773. for (int j = 0; j < GGML_F16_ARR; j++) {
  1774. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1776. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1777. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1778. }
  1779. }
  1780. // leftovers
  1781. for (int i = np; i < n; ++i) {
  1782. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1783. }
  1784. #else
  1785. // scalar
  1786. for (int i = 0; i < n; ++i) {
  1787. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1788. }
  1789. #endif
  1790. }
  1791. // xs and vs are byte strides of x and v
  1792. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1793. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1794. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1795. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1796. x[i] = (const float *) ((const char *) xv + i*xs);
  1797. v[i] = (const float *) ((const char *) vv + i*vs);
  1798. }
  1799. #if defined(GGML_SIMD)
  1800. const int np = (n & ~(GGML_F32_STEP - 1));
  1801. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1804. }
  1805. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1806. GGML_F32_VEC ay[GGML_F32_ARR];
  1807. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1808. for (int j = 0; j < GGML_F32_ARR; j++) {
  1809. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1812. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1813. }
  1814. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1815. }
  1816. }
  1817. // leftovers
  1818. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1819. for (int i = np; i < n; ++i) {
  1820. y[i] += x[k][i]*v[k][0];
  1821. }
  1822. }
  1823. #else
  1824. // scalar
  1825. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1826. for (int i = 0; i < n; ++i) {
  1827. y[i] += x[k][i]*v[k][0];
  1828. }
  1829. }
  1830. #endif
  1831. }
  1832. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1833. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1834. #if defined(GGML_USE_ACCELERATE)
  1835. vDSP_vsmul(y, 1, &v, y, 1, n);
  1836. #elif defined(GGML_SIMD)
  1837. const int np = (n & ~(GGML_F32_STEP - 1));
  1838. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1839. GGML_F32_VEC ay[GGML_F32_ARR];
  1840. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1841. for (int j = 0; j < GGML_F32_ARR; j++) {
  1842. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1843. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1844. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1845. }
  1846. }
  1847. // leftovers
  1848. for (int i = np; i < n; ++i) {
  1849. y[i] *= v;
  1850. }
  1851. #else
  1852. // scalar
  1853. for (int i = 0; i < n; ++i) {
  1854. y[i] *= v;
  1855. }
  1856. #endif
  1857. }
  1858. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1859. #if defined(GGML_SIMD)
  1860. const int np = (n & ~(GGML_F16_STEP - 1));
  1861. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1862. GGML_F16_VEC ay[GGML_F16_ARR];
  1863. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1864. for (int j = 0; j < GGML_F16_ARR; j++) {
  1865. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1866. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1867. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1868. }
  1869. }
  1870. // leftovers
  1871. for (int i = np; i < n; ++i) {
  1872. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1873. }
  1874. #else
  1875. // scalar
  1876. for (int i = 0; i < n; ++i) {
  1877. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1878. }
  1879. #endif
  1880. }
  1881. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1882. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1883. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1884. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1885. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1886. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1887. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1888. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1889. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1890. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1891. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1892. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1893. // TODO: optimize performance
  1894. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1896. static const float GELU_COEF_A = 0.044715f;
  1897. static const float GELU_QUICK_COEF = -1.702f;
  1898. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1899. inline static float ggml_gelu_f32(float x) {
  1900. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1901. }
  1902. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1903. const uint16_t * i16 = (const uint16_t *) x;
  1904. for (int i = 0; i < n; ++i) {
  1905. y[i] = ggml_table_gelu_f16[i16[i]];
  1906. }
  1907. }
  1908. #ifdef GGML_GELU_FP16
  1909. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1910. uint16_t t;
  1911. for (int i = 0; i < n; ++i) {
  1912. if (x[i] <= -10.0f) {
  1913. y[i] = 0.0f;
  1914. } else if (x[i] >= 10.0f) {
  1915. y[i] = x[i];
  1916. } else {
  1917. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1918. memcpy(&t, &fp16, sizeof(uint16_t));
  1919. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1920. }
  1921. }
  1922. }
  1923. #else
  1924. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1925. for (int i = 0; i < n; ++i) {
  1926. y[i] = ggml_gelu_f32(x[i]);
  1927. }
  1928. }
  1929. #endif
  1930. inline static float ggml_gelu_quick_f32(float x) {
  1931. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1932. }
  1933. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1934. // const uint16_t * i16 = (const uint16_t *) x;
  1935. // for (int i = 0; i < n; ++i) {
  1936. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1937. // }
  1938. //}
  1939. #ifdef GGML_GELU_QUICK_FP16
  1940. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1941. uint16_t t;
  1942. for (int i = 0; i < n; ++i) {
  1943. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1944. memcpy(&t, &fp16, sizeof(uint16_t));
  1945. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1946. }
  1947. }
  1948. #else
  1949. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1950. for (int i = 0; i < n; ++i) {
  1951. y[i] = ggml_gelu_quick_f32(x[i]);
  1952. }
  1953. }
  1954. #endif
  1955. // Sigmoid Linear Unit (SiLU) function
  1956. inline static float ggml_silu_f32(float x) {
  1957. return x/(1.0f + expf(-x));
  1958. }
  1959. #if defined(__ARM_NEON) && defined(__aarch64__)
  1960. // adapted from arm limited optimized routine
  1961. // the maximum error is 1.45358 plus 0.5 ulps
  1962. // numbers above 88.38 will flush to infinity
  1963. // numbers beneath -103.97 will flush to zero
  1964. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1965. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1966. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1967. const float32x4_t n = vsubq_f32(z, r);
  1968. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1969. vdupq_n_f32(0x1.7f7d1cp-20f));
  1970. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1971. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1972. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1973. const float32x4_t u = vmulq_f32(b, b);
  1974. const float32x4_t j = vfmaq_f32(
  1975. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1976. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1977. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1978. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1979. return vfmaq_f32(k, j, k);
  1980. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1981. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1982. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1983. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1984. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1985. }
  1986. // computes silu x/(1+exp(-x)) in single precision vector
  1987. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1988. const float32x4_t one = vdupq_n_f32(1.0f);
  1989. const float32x4_t zero = vdupq_n_f32(0.0f);
  1990. const float32x4_t neg_x = vsubq_f32(zero, x);
  1991. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1992. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1993. return vdivq_f32(x, one_plus_exp_neg_x);
  1994. }
  1995. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1996. // adapted from arm limited optimized routine
  1997. // the maximum error is 1.45358 plus 0.5 ulps
  1998. // numbers above 88.38 will flush to infinity
  1999. // numbers beneath -103.97 will flush to zero
  2000. inline static __m512 ggml_v_expf(__m512 x) {
  2001. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2002. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2003. const __m512 n = _mm512_sub_ps(z, r);
  2004. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2005. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2006. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  2007. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2008. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2009. const __m512 u = _mm512_mul_ps(b, b);
  2010. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2011. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2012. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2013. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2014. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2015. if (_mm512_kortestz(c, c))
  2016. return _mm512_fmadd_ps(j, k, k);
  2017. const __m512i g = _mm512_and_si512(
  2018. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2019. _mm512_set1_epi32(0x82000000u));
  2020. const __m512 s1 =
  2021. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2022. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2023. const __mmask16 d =
  2024. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2025. return _mm512_mask_blend_ps(
  2026. d, _mm512_mask_blend_ps(
  2027. c, _mm512_fmadd_ps(k, j, k),
  2028. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2029. _mm512_mul_ps(s1, s1));
  2030. }
  2031. // computes silu x/(1+exp(-x)) in single precision vector
  2032. inline static __m512 ggml_v_silu(__m512 x) {
  2033. const __m512 one = _mm512_set1_ps(1);
  2034. const __m512 zero = _mm512_setzero_ps();
  2035. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2036. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2037. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2038. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2039. }
  2040. #elif defined(__AVX2__) && defined(__FMA__)
  2041. // adapted from arm limited optimized routine
  2042. // the maximum error is 1.45358 plus 0.5 ulps
  2043. // numbers above 88.38 will flush to infinity
  2044. // numbers beneath -103.97 will flush to zero
  2045. inline static __m256 ggml_v_expf(__m256 x) {
  2046. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2047. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2048. const __m256 n = _mm256_sub_ps(z, r);
  2049. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2050. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2051. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2052. const __m256 k = _mm256_castsi256_ps(
  2053. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2054. const __m256i c = _mm256_castps_si256(
  2055. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2056. _mm256_set1_ps(126), _CMP_GT_OQ));
  2057. const __m256 u = _mm256_mul_ps(b, b);
  2058. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2059. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2060. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2061. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2062. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2063. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2064. return _mm256_fmadd_ps(j, k, k);
  2065. const __m256i g = _mm256_and_si256(
  2066. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2067. _mm256_set1_epi32(0x82000000u));
  2068. const __m256 s1 =
  2069. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2070. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2071. const __m256i d = _mm256_castps_si256(
  2072. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2073. _mm256_set1_ps(192), _CMP_GT_OQ));
  2074. return _mm256_or_ps(
  2075. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2076. _mm256_andnot_ps(
  2077. _mm256_castsi256_ps(d),
  2078. _mm256_or_ps(
  2079. _mm256_and_ps(_mm256_castsi256_ps(c),
  2080. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2081. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2082. }
  2083. // computes silu x/(1+exp(-x)) in single precision vector
  2084. inline static __m256 ggml_v_silu(__m256 x) {
  2085. const __m256 one = _mm256_set1_ps(1);
  2086. const __m256 zero = _mm256_setzero_ps();
  2087. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2088. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2089. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2090. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2091. }
  2092. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2093. #if defined(__FMA__)
  2094. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2095. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2096. #else
  2097. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2098. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2099. #endif
  2100. // adapted from arm limited optimized routine
  2101. // the maximum error is 1.45358 plus 0.5 ulps
  2102. // numbers above 88.38 will flush to infinity
  2103. // numbers beneath -103.97 will flush to zero
  2104. inline static __m128 ggml_v_expf(__m128 x) {
  2105. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2106. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2107. const __m128 n = _mm_sub_ps(z, r);
  2108. const __m128 b =
  2109. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2110. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2111. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2112. const __m128i c =
  2113. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2114. const __m128 u = _mm_mul_ps(b, b);
  2115. const __m128 j =
  2116. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2117. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2118. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2119. if (!_mm_movemask_epi8(c))
  2120. return MADD128(j, k, k);
  2121. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2122. _mm_set1_epi32(0x82000000u));
  2123. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2124. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2125. const __m128i d =
  2126. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2127. return _mm_or_ps(
  2128. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(d),
  2130. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2131. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2132. }
  2133. // computes silu x/(1+exp(-x)) in single precision vector
  2134. inline static __m128 ggml_v_silu(__m128 x) {
  2135. const __m128 one = _mm_set1_ps(1);
  2136. const __m128 zero = _mm_setzero_ps();
  2137. const __m128 neg_x = _mm_sub_ps(zero, x);
  2138. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2139. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2140. return _mm_div_ps(x, one_plus_exp_neg_x);
  2141. }
  2142. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2143. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2144. int i = 0;
  2145. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2146. for (; i + 15 < n; i += 16) {
  2147. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__AVX2__) && defined(__FMA__)
  2150. for (; i + 7 < n; i += 8) {
  2151. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2152. }
  2153. #elif defined(__SSE2__)
  2154. for (; i + 3 < n; i += 4) {
  2155. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2156. }
  2157. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2158. for (; i + 3 < n; i += 4) {
  2159. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2160. }
  2161. #endif
  2162. for (; i < n; ++i) {
  2163. y[i] = ggml_silu_f32(x[i]);
  2164. }
  2165. }
  2166. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2167. int i = 0;
  2168. ggml_float sum = 0;
  2169. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2170. for (; i + 15 < n; i += 16) {
  2171. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2172. _mm512_set1_ps(max)));
  2173. _mm512_storeu_ps(y + i, val);
  2174. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2175. }
  2176. #elif defined(__AVX2__) && defined(__FMA__)
  2177. for (; i + 7 < n; i += 8) {
  2178. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2179. _mm256_set1_ps(max)));
  2180. _mm256_storeu_ps(y + i, val);
  2181. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2182. _mm256_castps256_ps128(val));
  2183. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2184. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2185. sum += (ggml_float)_mm_cvtss_f32(val2);
  2186. }
  2187. #elif defined(__SSE2__)
  2188. for (; i + 3 < n; i += 4) {
  2189. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2190. _mm_set1_ps(max)));
  2191. _mm_storeu_ps(y + i, val);
  2192. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2193. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2194. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2195. #else
  2196. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2197. val = _mm_add_ps(val, tmp);
  2198. tmp = _mm_movehl_ps(tmp, val);
  2199. val = _mm_add_ss(val, tmp);
  2200. #endif
  2201. sum += (ggml_float)_mm_cvtss_f32(val);
  2202. }
  2203. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2204. for (; i + 3 < n; i += 4) {
  2205. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2206. vdupq_n_f32(max)));
  2207. vst1q_f32(y + i, val);
  2208. sum += (ggml_float)vaddvq_f32(val);
  2209. }
  2210. #endif
  2211. for (; i < n; ++i) {
  2212. float val = expf(x[i] - max);
  2213. sum += (ggml_float)val;
  2214. y[i] = val;
  2215. }
  2216. return sum;
  2217. }
  2218. inline static float ggml_silu_backward_f32(float x, float dy) {
  2219. const float s = 1.0f/(1.0f + expf(-x));
  2220. return dy*s*(1.0f + x*(1.0f - s));
  2221. }
  2222. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2223. for (int i = 0; i < n; ++i) {
  2224. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2225. }
  2226. }
  2227. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2228. #ifndef GGML_USE_ACCELERATE
  2229. ggml_float sum = 0.0;
  2230. for (int i = 0; i < n; ++i) {
  2231. sum += (ggml_float)x[i];
  2232. }
  2233. *s = sum;
  2234. #else
  2235. vDSP_sve(x, 1, s, n);
  2236. #endif
  2237. }
  2238. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2239. ggml_float sum = 0.0;
  2240. for (int i = 0; i < n; ++i) {
  2241. sum += (ggml_float)x[i];
  2242. }
  2243. *s = sum;
  2244. }
  2245. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2246. float sum = 0.0f;
  2247. for (int i = 0; i < n; ++i) {
  2248. sum += GGML_FP16_TO_FP32(x[i]);
  2249. }
  2250. *s = sum;
  2251. }
  2252. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2253. float sum = 0.0f;
  2254. for (int i = 0; i < n; ++i) {
  2255. sum += GGML_BF16_TO_FP32(x[i]);
  2256. }
  2257. *s = sum;
  2258. }
  2259. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2260. #ifndef GGML_USE_ACCELERATE
  2261. float max = -INFINITY;
  2262. for (int i = 0; i < n; ++i) {
  2263. max = MAX(max, x[i]);
  2264. }
  2265. *s = max;
  2266. #else
  2267. vDSP_maxv(x, 1, s, n);
  2268. #endif
  2269. }
  2270. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2271. ggml_vec_norm_f32(n, s, x);
  2272. *s = 1.f/(*s);
  2273. }
  2274. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2275. float max = -INFINITY;
  2276. int idx = 0;
  2277. for (int i = 0; i < n; ++i) {
  2278. max = MAX(max, x[i]);
  2279. if (max == x[i]) { idx = i; }
  2280. }
  2281. *s = idx;
  2282. }
  2283. //
  2284. // data types
  2285. //
  2286. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2287. "NONE",
  2288. "DUP",
  2289. "ADD",
  2290. "ADD1",
  2291. "ACC",
  2292. "SUB",
  2293. "MUL",
  2294. "DIV",
  2295. "SQR",
  2296. "SQRT",
  2297. "LOG",
  2298. "SUM",
  2299. "SUM_ROWS",
  2300. "MEAN",
  2301. "ARGMAX",
  2302. "REPEAT",
  2303. "REPEAT_BACK",
  2304. "CONCAT",
  2305. "SILU_BACK",
  2306. "NORM",
  2307. "RMS_NORM",
  2308. "RMS_NORM_BACK",
  2309. "GROUP_NORM",
  2310. "MUL_MAT",
  2311. "MUL_MAT_ID",
  2312. "OUT_PROD",
  2313. "SCALE",
  2314. "SET",
  2315. "CPY",
  2316. "CONT",
  2317. "RESHAPE",
  2318. "VIEW",
  2319. "PERMUTE",
  2320. "TRANSPOSE",
  2321. "GET_ROWS",
  2322. "GET_ROWS_BACK",
  2323. "DIAG",
  2324. "DIAG_MASK_INF",
  2325. "DIAG_MASK_ZERO",
  2326. "SOFT_MAX",
  2327. "SOFT_MAX_BACK",
  2328. "ROPE",
  2329. "ROPE_BACK",
  2330. "CLAMP",
  2331. "CONV_TRANSPOSE_1D",
  2332. "IM2COL",
  2333. "CONV_TRANSPOSE_2D",
  2334. "POOL_1D",
  2335. "POOL_2D",
  2336. "UPSCALE",
  2337. "PAD",
  2338. "ARANGE",
  2339. "TIMESTEP_EMBEDDING",
  2340. "ARGSORT",
  2341. "LEAKY_RELU",
  2342. "FLASH_ATTN_EXT",
  2343. "FLASH_ATTN_BACK",
  2344. "SSM_CONV",
  2345. "SSM_SCAN",
  2346. "WIN_PART",
  2347. "WIN_UNPART",
  2348. "GET_REL_POS",
  2349. "ADD_REL_POS",
  2350. "UNARY",
  2351. "MAP_UNARY",
  2352. "MAP_BINARY",
  2353. "MAP_CUSTOM1_F32",
  2354. "MAP_CUSTOM2_F32",
  2355. "MAP_CUSTOM3_F32",
  2356. "MAP_CUSTOM1",
  2357. "MAP_CUSTOM2",
  2358. "MAP_CUSTOM3",
  2359. "CROSS_ENTROPY_LOSS",
  2360. "CROSS_ENTROPY_LOSS_BACK",
  2361. };
  2362. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2363. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2364. "none",
  2365. "x",
  2366. "x+y",
  2367. "x+y",
  2368. "view(x,nb,offset)+=y->x",
  2369. "x-y",
  2370. "x*y",
  2371. "x/y",
  2372. "x^2",
  2373. "√x",
  2374. "log(x)",
  2375. "Σx",
  2376. "Σx_k",
  2377. "Σx/n",
  2378. "argmax(x)",
  2379. "repeat(x)",
  2380. "repeat_back(x)",
  2381. "concat(x, y)",
  2382. "silu_back(x)",
  2383. "norm(x)",
  2384. "rms_norm(x)",
  2385. "rms_norm_back(x)",
  2386. "group_norm(x)",
  2387. "X*Y",
  2388. "X[i]*Y",
  2389. "X*Y",
  2390. "x*v",
  2391. "y-\\>view(x)",
  2392. "x-\\>y",
  2393. "cont(x)",
  2394. "reshape(x)",
  2395. "view(x)",
  2396. "permute(x)",
  2397. "transpose(x)",
  2398. "get_rows(x)",
  2399. "get_rows_back(x)",
  2400. "diag(x)",
  2401. "diag_mask_inf(x)",
  2402. "diag_mask_zero(x)",
  2403. "soft_max(x)",
  2404. "soft_max_back(x)",
  2405. "rope(x)",
  2406. "rope_back(x)",
  2407. "clamp(x)",
  2408. "conv_transpose_1d(x)",
  2409. "im2col(x)",
  2410. "conv_transpose_2d(x)",
  2411. "pool_1d(x)",
  2412. "pool_2d(x)",
  2413. "upscale(x)",
  2414. "pad(x)",
  2415. "arange(start, stop, step)",
  2416. "timestep_embedding(timesteps, dim, max_period)",
  2417. "argsort(x)",
  2418. "leaky_relu(x)",
  2419. "flash_attn_ext(x)",
  2420. "flash_attn_back(x)",
  2421. "ssm_conv(x)",
  2422. "ssm_scan(x)",
  2423. "win_part(x)",
  2424. "win_unpart(x)",
  2425. "get_rel_pos(x)",
  2426. "add_rel_pos(x)",
  2427. "unary(x)",
  2428. "f(x)",
  2429. "f(x,y)",
  2430. "custom_f32(x)",
  2431. "custom_f32(x,y)",
  2432. "custom_f32(x,y,z)",
  2433. "custom(x)",
  2434. "custom(x,y)",
  2435. "custom(x,y,z)",
  2436. "cross_entropy_loss(x,y)",
  2437. "cross_entropy_loss_back(x,y)",
  2438. };
  2439. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2440. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2441. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2442. "ABS",
  2443. "SGN",
  2444. "NEG",
  2445. "STEP",
  2446. "TANH",
  2447. "ELU",
  2448. "RELU",
  2449. "SIGMOID",
  2450. "GELU",
  2451. "GELU_QUICK",
  2452. "SILU",
  2453. "HARDSWISH",
  2454. "HARDSIGMOID",
  2455. };
  2456. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2457. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2458. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2459. // WARN:
  2460. // Mis-configuration can lead to problem that's hard to reason about:
  2461. // * At best it crash or talks nosense.
  2462. // * At worst it talks slightly difference but hard to perceive.
  2463. //
  2464. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2465. // Take care about compile options (e.g., GGML_USE_xxx).
  2466. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2467. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2468. static void ggml_setup_op_has_task_pass(void) {
  2469. { // INIT
  2470. bool * p = GGML_OP_HAS_INIT;
  2471. p[GGML_OP_ACC ] = true;
  2472. p[GGML_OP_MUL_MAT ] = true;
  2473. p[GGML_OP_MUL_MAT_ID ] = true;
  2474. p[GGML_OP_OUT_PROD ] = true;
  2475. p[GGML_OP_SET ] = true;
  2476. p[GGML_OP_GET_ROWS_BACK ] = true;
  2477. p[GGML_OP_DIAG_MASK_INF ] = true;
  2478. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2479. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2480. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2481. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2482. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2483. p[GGML_OP_ADD_REL_POS ] = true;
  2484. }
  2485. { // FINALIZE
  2486. bool * p = GGML_OP_HAS_FINALIZE;
  2487. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2488. }
  2489. }
  2490. //
  2491. // NUMA support
  2492. //
  2493. #define GGML_NUMA_MAX_NODES 8
  2494. #define GGML_NUMA_MAX_CPUS 512
  2495. struct ggml_numa_node {
  2496. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2497. uint32_t n_cpus;
  2498. };
  2499. struct ggml_numa_nodes {
  2500. enum ggml_numa_strategy numa_strategy;
  2501. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2502. uint32_t n_nodes;
  2503. uint32_t total_cpus; // hardware threads on system
  2504. uint32_t current_node; // node on which main process is execting
  2505. #if defined(__gnu_linux__)
  2506. cpu_set_t cpuset; // cpuset from numactl
  2507. #else
  2508. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2509. #endif
  2510. };
  2511. //
  2512. // ggml state
  2513. //
  2514. struct ggml_state {
  2515. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2516. struct ggml_numa_nodes numa;
  2517. };
  2518. // global state
  2519. static struct ggml_state g_state;
  2520. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2521. // barrier via spin lock
  2522. inline static void ggml_critical_section_start(void) {
  2523. while (atomic_flag_test_and_set(&g_state_critical)) {
  2524. // spin
  2525. sched_yield();
  2526. }
  2527. }
  2528. // TODO: make this somehow automatically executed
  2529. // some sort of "sentry" mechanism
  2530. inline static void ggml_critical_section_end(void) {
  2531. atomic_flag_clear(&g_state_critical);
  2532. }
  2533. #if defined(__gnu_linux__)
  2534. static cpu_set_t ggml_get_numa_affinity(void) {
  2535. cpu_set_t cpuset;
  2536. pthread_t thread;
  2537. thread = pthread_self();
  2538. CPU_ZERO(&cpuset);
  2539. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2540. return cpuset;
  2541. }
  2542. #else
  2543. static uint32_t ggml_get_numa_affinity(void) {
  2544. return 0; // no NUMA support
  2545. }
  2546. #endif
  2547. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2548. if (g_state.numa.n_nodes > 0) {
  2549. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2550. return;
  2551. }
  2552. #if defined(__gnu_linux__)
  2553. struct stat st;
  2554. char path[256];
  2555. int rv;
  2556. // set numa scheme
  2557. g_state.numa.numa_strategy = numa_flag;
  2558. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2559. g_state.numa.cpuset = ggml_get_numa_affinity();
  2560. // enumerate nodes
  2561. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2562. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2563. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2564. if (stat(path, &st) != 0) { break; }
  2565. ++g_state.numa.n_nodes;
  2566. }
  2567. // enumerate CPUs
  2568. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2569. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2570. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2571. if (stat(path, &st) != 0) { break; }
  2572. ++g_state.numa.total_cpus;
  2573. }
  2574. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2575. // figure out which node we're on
  2576. uint current_cpu;
  2577. int getcpu_ret = 0;
  2578. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2579. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2580. #else
  2581. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2582. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2583. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2584. # endif
  2585. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2586. #endif
  2587. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2588. g_state.numa.n_nodes = 0;
  2589. return;
  2590. }
  2591. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2592. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2593. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2594. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2595. node->n_cpus = 0;
  2596. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2597. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2598. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2599. if (stat(path, &st) == 0) {
  2600. node->cpus[node->n_cpus++] = c;
  2601. GGML_PRINT_DEBUG(" %u", c);
  2602. }
  2603. }
  2604. GGML_PRINT_DEBUG("\n");
  2605. }
  2606. if (ggml_is_numa()) {
  2607. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2608. if (fptr != NULL) {
  2609. char buf[42];
  2610. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2611. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2612. }
  2613. fclose(fptr);
  2614. }
  2615. }
  2616. #else
  2617. GGML_UNUSED(numa_flag);
  2618. // TODO
  2619. #endif
  2620. }
  2621. bool ggml_is_numa(void) {
  2622. return g_state.numa.n_nodes > 1;
  2623. }
  2624. ////////////////////////////////////////////////////////////////////////////////
  2625. void ggml_print_object(const struct ggml_object * obj) {
  2626. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2627. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2628. }
  2629. void ggml_print_objects(const struct ggml_context * ctx) {
  2630. struct ggml_object * obj = ctx->objects_begin;
  2631. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2632. while (obj != NULL) {
  2633. ggml_print_object(obj);
  2634. obj = obj->next;
  2635. }
  2636. GGML_PRINT("%s: --- end ---\n", __func__);
  2637. }
  2638. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2639. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2640. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2641. }
  2642. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2643. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2644. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2645. }
  2646. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2647. size_t nbytes;
  2648. size_t blck_size = ggml_blck_size(tensor->type);
  2649. if (blck_size == 1) {
  2650. nbytes = ggml_type_size(tensor->type);
  2651. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2652. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2653. }
  2654. }
  2655. else {
  2656. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2657. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2658. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2659. }
  2660. }
  2661. return nbytes;
  2662. }
  2663. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2664. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2665. }
  2666. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2667. return type_traits[type].blck_size;
  2668. }
  2669. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2670. return type_traits[type].type_size;
  2671. }
  2672. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2673. assert(ne % ggml_blck_size(type) == 0);
  2674. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2675. }
  2676. double ggml_type_sizef(enum ggml_type type) {
  2677. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2678. }
  2679. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2680. return type_traits[type].type_name;
  2681. }
  2682. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2683. return type_traits[type].is_quantized;
  2684. }
  2685. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2686. return GGML_OP_NAME[op];
  2687. }
  2688. const char * ggml_op_symbol(enum ggml_op op) {
  2689. return GGML_OP_SYMBOL[op];
  2690. }
  2691. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2692. return GGML_UNARY_OP_NAME[op];
  2693. }
  2694. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2695. if (t->op == GGML_OP_UNARY) {
  2696. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2697. return ggml_unary_op_name(uop);
  2698. }
  2699. else {
  2700. return ggml_op_name(t->op);
  2701. }
  2702. }
  2703. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2704. return ggml_type_size(tensor->type);
  2705. }
  2706. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2708. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2709. }
  2710. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2711. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2712. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2713. }
  2714. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2715. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2716. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2717. }
  2718. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2719. return tensor->ne[3] == 1;
  2720. }
  2721. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2722. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2723. if (tensor->ne[i] > 1) {
  2724. return i + 1;
  2725. }
  2726. }
  2727. return 1;
  2728. }
  2729. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2730. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2731. return (t0->ne[0] == t1->ne[0]) &&
  2732. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2733. (t1->ne[3]%t0->ne[3] == 0);
  2734. }
  2735. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2736. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2737. return (t0->ne[1] == t1->ne[1]) &&
  2738. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2739. (t1->ne[3]%t0->ne[3] == 0);
  2740. }
  2741. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2742. enum ggml_type wtype = GGML_TYPE_COUNT;
  2743. switch (ftype) {
  2744. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2745. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2746. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2747. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2748. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2749. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2750. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2751. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2752. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2755. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2756. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2757. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2759. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2760. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2761. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2762. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2763. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2764. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2765. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2766. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2767. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2768. }
  2769. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2770. return wtype;
  2771. }
  2772. size_t ggml_tensor_overhead(void) {
  2773. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2774. }
  2775. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2776. return tensor->nb[0] > tensor->nb[1];
  2777. }
  2778. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2779. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2780. return
  2781. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2782. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2783. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2784. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2785. }
  2786. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2787. return ggml_is_contiguous(tensor);
  2788. }
  2789. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2790. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2791. return
  2792. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2793. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2794. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2795. }
  2796. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2797. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2798. return
  2799. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2800. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2801. }
  2802. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2804. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2805. }
  2806. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2807. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2808. return
  2809. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2810. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2811. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2812. }
  2813. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2814. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2815. if (tensor->ne[i] == 0) {
  2816. // empty if any dimension has no elements
  2817. return true;
  2818. }
  2819. }
  2820. return false;
  2821. }
  2822. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2823. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2824. return
  2825. (t0->ne[0] == t1->ne[0] ) &&
  2826. (t0->ne[1] == t1->ne[1] ) &&
  2827. (t0->ne[2] == t1->ne[2] ) &&
  2828. (t0->ne[3] == t1->ne[3] );
  2829. }
  2830. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2831. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2832. return
  2833. (t0->nb[0] == t1->nb[0] ) &&
  2834. (t0->nb[1] == t1->nb[1] ) &&
  2835. (t0->nb[2] == t1->nb[2] ) &&
  2836. (t0->nb[3] == t1->nb[3] );
  2837. }
  2838. // check if t1 can be represented as a repeatition of t0
  2839. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2840. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2841. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2842. (t1->ne[0]%t0->ne[0] == 0) &&
  2843. (t1->ne[1]%t0->ne[1] == 0) &&
  2844. (t1->ne[2]%t0->ne[2] == 0) &&
  2845. (t1->ne[3]%t0->ne[3] == 0);
  2846. }
  2847. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2848. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2849. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2850. }
  2851. static inline int ggml_up32(int n) {
  2852. return (n + 31) & ~31;
  2853. }
  2854. //static inline int ggml_up64(int n) {
  2855. // return (n + 63) & ~63;
  2856. //}
  2857. static inline int ggml_up(int n, int m) {
  2858. // assert m is a power of 2
  2859. GGML_ASSERT((m & (m - 1)) == 0);
  2860. return (n + m - 1) & ~(m - 1);
  2861. }
  2862. // assert that pointer is aligned to GGML_MEM_ALIGN
  2863. #define ggml_assert_aligned(ptr) \
  2864. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2865. ////////////////////////////////////////////////////////////////////////////////
  2866. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2867. // make this function thread safe
  2868. ggml_critical_section_start();
  2869. static bool is_first_call = true;
  2870. if (is_first_call) {
  2871. // initialize time system (required on Windows)
  2872. ggml_time_init();
  2873. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2874. {
  2875. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2876. for (int i = 0; i < (1 << 16); ++i) {
  2877. union {
  2878. uint16_t u16;
  2879. ggml_fp16_t fp16;
  2880. } u = {i};
  2881. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2882. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2883. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2884. }
  2885. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2886. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2887. }
  2888. // initialize g_state
  2889. {
  2890. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2891. g_state = (struct ggml_state) {
  2892. /*.contexts =*/ { { 0 } },
  2893. /*.numa =*/ {
  2894. .n_nodes = 0,
  2895. .total_cpus = 0,
  2896. },
  2897. };
  2898. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2899. g_state.contexts[i].used = false;
  2900. }
  2901. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2902. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2903. }
  2904. #if defined(GGML_USE_CLBLAST)
  2905. ggml_cl_init();
  2906. #endif
  2907. ggml_setup_op_has_task_pass();
  2908. is_first_call = false;
  2909. }
  2910. // find non-used context in g_state
  2911. struct ggml_context * ctx = NULL;
  2912. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2913. if (!g_state.contexts[i].used) {
  2914. g_state.contexts[i].used = true;
  2915. ctx = &g_state.contexts[i].context;
  2916. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2917. break;
  2918. }
  2919. }
  2920. if (ctx == NULL) {
  2921. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2922. ggml_critical_section_end();
  2923. return NULL;
  2924. }
  2925. // allow to call ggml_init with 0 size
  2926. if (params.mem_size == 0) {
  2927. params.mem_size = GGML_MEM_ALIGN;
  2928. }
  2929. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2930. *ctx = (struct ggml_context) {
  2931. /*.mem_size =*/ mem_size,
  2932. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2933. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2934. /*.no_alloc =*/ params.no_alloc,
  2935. /*.no_alloc_save =*/ params.no_alloc,
  2936. /*.n_objects =*/ 0,
  2937. /*.objects_begin =*/ NULL,
  2938. /*.objects_end =*/ NULL,
  2939. /*.scratch =*/ { 0, 0, NULL, },
  2940. /*.scratch_save =*/ { 0, 0, NULL, },
  2941. };
  2942. GGML_ASSERT(ctx->mem_buffer != NULL);
  2943. ggml_assert_aligned(ctx->mem_buffer);
  2944. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2945. ggml_critical_section_end();
  2946. return ctx;
  2947. }
  2948. void ggml_free(struct ggml_context * ctx) {
  2949. if (ctx == NULL) {
  2950. return;
  2951. }
  2952. // make this function thread safe
  2953. ggml_critical_section_start();
  2954. bool found = false;
  2955. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2956. if (&g_state.contexts[i].context == ctx) {
  2957. g_state.contexts[i].used = false;
  2958. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2959. __func__, i, ggml_used_mem(ctx));
  2960. if (ctx->mem_buffer_owned) {
  2961. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2962. }
  2963. found = true;
  2964. break;
  2965. }
  2966. }
  2967. if (!found) {
  2968. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2969. }
  2970. ggml_critical_section_end();
  2971. }
  2972. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2973. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2974. }
  2975. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2976. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2977. ctx->scratch = scratch;
  2978. return result;
  2979. }
  2980. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2981. return ctx->no_alloc;
  2982. }
  2983. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2984. ctx->no_alloc = no_alloc;
  2985. }
  2986. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2987. return ctx->mem_buffer;
  2988. }
  2989. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2990. return ctx->mem_size;
  2991. }
  2992. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2993. size_t max_size = 0;
  2994. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2995. size_t bytes = ggml_nbytes(tensor);
  2996. max_size = MAX(max_size, bytes);
  2997. }
  2998. return max_size;
  2999. }
  3000. // IMPORTANT:
  3001. // when creating "opt" tensors, always save and load the scratch buffer
  3002. // this is an error prone process, but it is necessary to support inplace
  3003. // operators when using scratch buffers
  3004. // TODO: implement a better way
  3005. static void ggml_scratch_save(struct ggml_context * ctx) {
  3006. // this is needed to allow opt tensors to store their data
  3007. // TODO: again, need to find a better way
  3008. ctx->no_alloc_save = ctx->no_alloc;
  3009. ctx->no_alloc = false;
  3010. ctx->scratch_save = ctx->scratch;
  3011. ctx->scratch.data = NULL;
  3012. }
  3013. static void ggml_scratch_load(struct ggml_context * ctx) {
  3014. ctx->no_alloc = ctx->no_alloc_save;
  3015. ctx->scratch = ctx->scratch_save;
  3016. }
  3017. ////////////////////////////////////////////////////////////////////////////////
  3018. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3019. // always insert objects at the end of the context's memory pool
  3020. struct ggml_object * obj_cur = ctx->objects_end;
  3021. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3022. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3023. const size_t cur_end = cur_offs + cur_size;
  3024. // align to GGML_MEM_ALIGN
  3025. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3026. char * const mem_buffer = ctx->mem_buffer;
  3027. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3028. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3029. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3030. __func__, cur_end + size_needed, ctx->mem_size);
  3031. assert(false);
  3032. return NULL;
  3033. }
  3034. *obj_new = (struct ggml_object) {
  3035. .offs = cur_end + GGML_OBJECT_SIZE,
  3036. .size = size_needed,
  3037. .next = NULL,
  3038. .type = type,
  3039. };
  3040. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3041. if (obj_cur != NULL) {
  3042. obj_cur->next = obj_new;
  3043. } else {
  3044. // this is the first object in this context
  3045. ctx->objects_begin = obj_new;
  3046. }
  3047. ctx->objects_end = obj_new;
  3048. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3049. return obj_new;
  3050. }
  3051. static struct ggml_tensor * ggml_new_tensor_impl(
  3052. struct ggml_context * ctx,
  3053. enum ggml_type type,
  3054. int n_dims,
  3055. const int64_t * ne,
  3056. struct ggml_tensor * view_src,
  3057. size_t view_offs) {
  3058. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3059. // find the base tensor and absolute offset
  3060. if (view_src != NULL && view_src->view_src != NULL) {
  3061. view_offs += view_src->view_offs;
  3062. view_src = view_src->view_src;
  3063. }
  3064. size_t data_size = ggml_row_size(type, ne[0]);
  3065. for (int i = 1; i < n_dims; i++) {
  3066. data_size *= ne[i];
  3067. }
  3068. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3069. void * data = view_src != NULL ? view_src->data : NULL;
  3070. if (data != NULL) {
  3071. data = (char *) data + view_offs;
  3072. }
  3073. size_t obj_alloc_size = 0;
  3074. if (view_src == NULL && !ctx->no_alloc) {
  3075. if (ctx->scratch.data != NULL) {
  3076. // allocate tensor data in the scratch buffer
  3077. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3078. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3079. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3080. assert(false);
  3081. return NULL;
  3082. }
  3083. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3084. ctx->scratch.offs += data_size;
  3085. } else {
  3086. // allocate tensor data in the context's memory pool
  3087. obj_alloc_size = data_size;
  3088. }
  3089. }
  3090. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3091. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3092. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3093. #ifdef __clang__
  3094. // temporary until ggml_tensor::backend is removed
  3095. #pragma clang diagnostic push
  3096. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3097. #endif
  3098. *result = (struct ggml_tensor) {
  3099. /*.type =*/ type,
  3100. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3101. /*.buffer =*/ NULL,
  3102. /*.ne =*/ { 1, 1, 1, 1 },
  3103. /*.nb =*/ { 0, 0, 0, 0 },
  3104. /*.op =*/ GGML_OP_NONE,
  3105. /*.op_params =*/ { 0 },
  3106. /*.flags =*/ 0,
  3107. /*.grad =*/ NULL,
  3108. /*.src =*/ { NULL },
  3109. /*.perf_runs =*/ 0,
  3110. /*.perf_cycles =*/ 0,
  3111. /*.perf_time_us =*/ 0,
  3112. /*.view_src =*/ view_src,
  3113. /*.view_offs =*/ view_offs,
  3114. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3115. /*.name =*/ { 0 },
  3116. /*.extra =*/ NULL,
  3117. /*.padding =*/ { 0 },
  3118. };
  3119. #ifdef __clang__
  3120. #pragma clang diagnostic pop
  3121. #endif
  3122. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3123. //ggml_assert_aligned(result->data);
  3124. for (int i = 0; i < n_dims; i++) {
  3125. result->ne[i] = ne[i];
  3126. }
  3127. result->nb[0] = ggml_type_size(type);
  3128. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3129. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3130. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3131. }
  3132. ctx->n_objects++;
  3133. return result;
  3134. }
  3135. struct ggml_tensor * ggml_new_tensor(
  3136. struct ggml_context * ctx,
  3137. enum ggml_type type,
  3138. int n_dims,
  3139. const int64_t * ne) {
  3140. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3141. }
  3142. struct ggml_tensor * ggml_new_tensor_1d(
  3143. struct ggml_context * ctx,
  3144. enum ggml_type type,
  3145. int64_t ne0) {
  3146. return ggml_new_tensor(ctx, type, 1, &ne0);
  3147. }
  3148. struct ggml_tensor * ggml_new_tensor_2d(
  3149. struct ggml_context * ctx,
  3150. enum ggml_type type,
  3151. int64_t ne0,
  3152. int64_t ne1) {
  3153. const int64_t ne[2] = { ne0, ne1 };
  3154. return ggml_new_tensor(ctx, type, 2, ne);
  3155. }
  3156. struct ggml_tensor * ggml_new_tensor_3d(
  3157. struct ggml_context * ctx,
  3158. enum ggml_type type,
  3159. int64_t ne0,
  3160. int64_t ne1,
  3161. int64_t ne2) {
  3162. const int64_t ne[3] = { ne0, ne1, ne2 };
  3163. return ggml_new_tensor(ctx, type, 3, ne);
  3164. }
  3165. struct ggml_tensor * ggml_new_tensor_4d(
  3166. struct ggml_context * ctx,
  3167. enum ggml_type type,
  3168. int64_t ne0,
  3169. int64_t ne1,
  3170. int64_t ne2,
  3171. int64_t ne3) {
  3172. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3173. return ggml_new_tensor(ctx, type, 4, ne);
  3174. }
  3175. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3176. ggml_scratch_save(ctx);
  3177. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3178. ggml_scratch_load(ctx);
  3179. ggml_set_i32(result, value);
  3180. return result;
  3181. }
  3182. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3183. ggml_scratch_save(ctx);
  3184. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3185. ggml_scratch_load(ctx);
  3186. ggml_set_f32(result, value);
  3187. return result;
  3188. }
  3189. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3190. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3191. }
  3192. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3193. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3194. assert(params_size <= GGML_MAX_OP_PARAMS);
  3195. memcpy(tensor->op_params, params, params_size);
  3196. }
  3197. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3198. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3199. return ((const int32_t *)(tensor->op_params))[i];
  3200. }
  3201. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3202. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3203. return ((const float *)(tensor->op_params))[i];
  3204. }
  3205. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3206. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3207. ((int32_t *)(tensor->op_params))[i] = value;
  3208. }
  3209. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3210. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3211. ((float *)(tensor->op_params))[i] = value;
  3212. }
  3213. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3214. memset(tensor->data, 0, ggml_nbytes(tensor));
  3215. return tensor;
  3216. }
  3217. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3218. const int n = ggml_nrows(tensor);
  3219. const int nc = tensor->ne[0];
  3220. const size_t n1 = tensor->nb[1];
  3221. char * const data = tensor->data;
  3222. switch (tensor->type) {
  3223. case GGML_TYPE_I8:
  3224. {
  3225. assert(tensor->nb[0] == sizeof(int8_t));
  3226. for (int i = 0; i < n; i++) {
  3227. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3228. }
  3229. } break;
  3230. case GGML_TYPE_I16:
  3231. {
  3232. assert(tensor->nb[0] == sizeof(int16_t));
  3233. for (int i = 0; i < n; i++) {
  3234. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3235. }
  3236. } break;
  3237. case GGML_TYPE_I32:
  3238. {
  3239. assert(tensor->nb[0] == sizeof(int32_t));
  3240. for (int i = 0; i < n; i++) {
  3241. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3242. }
  3243. } break;
  3244. case GGML_TYPE_F16:
  3245. {
  3246. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3247. for (int i = 0; i < n; i++) {
  3248. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3249. }
  3250. } break;
  3251. case GGML_TYPE_BF16:
  3252. {
  3253. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3254. for (int i = 0; i < n; i++) {
  3255. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3256. }
  3257. } break;
  3258. case GGML_TYPE_F32:
  3259. {
  3260. assert(tensor->nb[0] == sizeof(float));
  3261. for (int i = 0; i < n; i++) {
  3262. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3263. }
  3264. } break;
  3265. default:
  3266. {
  3267. GGML_ASSERT(false);
  3268. } break;
  3269. }
  3270. return tensor;
  3271. }
  3272. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3273. const int n = ggml_nrows(tensor);
  3274. const int nc = tensor->ne[0];
  3275. const size_t n1 = tensor->nb[1];
  3276. char * const data = tensor->data;
  3277. switch (tensor->type) {
  3278. case GGML_TYPE_I8:
  3279. {
  3280. assert(tensor->nb[0] == sizeof(int8_t));
  3281. for (int i = 0; i < n; i++) {
  3282. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3283. }
  3284. } break;
  3285. case GGML_TYPE_I16:
  3286. {
  3287. assert(tensor->nb[0] == sizeof(int16_t));
  3288. for (int i = 0; i < n; i++) {
  3289. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3290. }
  3291. } break;
  3292. case GGML_TYPE_I32:
  3293. {
  3294. assert(tensor->nb[0] == sizeof(int32_t));
  3295. for (int i = 0; i < n; i++) {
  3296. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3297. }
  3298. } break;
  3299. case GGML_TYPE_F16:
  3300. {
  3301. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3302. for (int i = 0; i < n; i++) {
  3303. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3304. }
  3305. } break;
  3306. case GGML_TYPE_BF16:
  3307. {
  3308. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3309. for (int i = 0; i < n; i++) {
  3310. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3311. }
  3312. } break;
  3313. case GGML_TYPE_F32:
  3314. {
  3315. assert(tensor->nb[0] == sizeof(float));
  3316. for (int i = 0; i < n; i++) {
  3317. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3318. }
  3319. } break;
  3320. default:
  3321. {
  3322. GGML_ASSERT(false);
  3323. } break;
  3324. }
  3325. return tensor;
  3326. }
  3327. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3328. const int64_t ne2 = tensor->ne[2];
  3329. const int64_t ne1 = tensor->ne[1];
  3330. const int64_t ne0 = tensor->ne[0];
  3331. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3332. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3333. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3334. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3335. if (i0) {
  3336. * i0 = i0_;
  3337. }
  3338. if (i1) {
  3339. * i1 = i1_;
  3340. }
  3341. if (i2) {
  3342. * i2 = i2_;
  3343. }
  3344. if (i3) {
  3345. * i3 = i3_;
  3346. }
  3347. }
  3348. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3349. if (!ggml_is_contiguous(tensor)) {
  3350. int64_t id[4] = { 0, 0, 0, 0 };
  3351. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3352. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3353. }
  3354. switch (tensor->type) {
  3355. case GGML_TYPE_I8:
  3356. {
  3357. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3358. return ((int8_t *)(tensor->data))[i];
  3359. }
  3360. case GGML_TYPE_I16:
  3361. {
  3362. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3363. return ((int16_t *)(tensor->data))[i];
  3364. }
  3365. case GGML_TYPE_I32:
  3366. {
  3367. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3368. return ((int32_t *)(tensor->data))[i];
  3369. }
  3370. case GGML_TYPE_F16:
  3371. {
  3372. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3373. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3374. }
  3375. case GGML_TYPE_BF16:
  3376. {
  3377. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3378. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3379. }
  3380. case GGML_TYPE_F32:
  3381. {
  3382. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3383. return ((float *)(tensor->data))[i];
  3384. }
  3385. default:
  3386. {
  3387. GGML_ASSERT(false);
  3388. }
  3389. }
  3390. return 0.0f;
  3391. }
  3392. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3393. if (!ggml_is_contiguous(tensor)) {
  3394. int64_t id[4] = { 0, 0, 0, 0 };
  3395. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3396. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3397. return;
  3398. }
  3399. switch (tensor->type) {
  3400. case GGML_TYPE_I8:
  3401. {
  3402. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3403. ((int8_t *)(tensor->data))[i] = value;
  3404. } break;
  3405. case GGML_TYPE_I16:
  3406. {
  3407. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3408. ((int16_t *)(tensor->data))[i] = value;
  3409. } break;
  3410. case GGML_TYPE_I32:
  3411. {
  3412. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3413. ((int32_t *)(tensor->data))[i] = value;
  3414. } break;
  3415. case GGML_TYPE_F16:
  3416. {
  3417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3418. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3419. } break;
  3420. case GGML_TYPE_BF16:
  3421. {
  3422. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3423. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3424. } break;
  3425. case GGML_TYPE_F32:
  3426. {
  3427. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3428. ((float *)(tensor->data))[i] = value;
  3429. } break;
  3430. default:
  3431. {
  3432. GGML_ASSERT(false);
  3433. } break;
  3434. }
  3435. }
  3436. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3437. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3438. switch (tensor->type) {
  3439. case GGML_TYPE_I8:
  3440. return ((int8_t *) data)[0];
  3441. case GGML_TYPE_I16:
  3442. return ((int16_t *) data)[0];
  3443. case GGML_TYPE_I32:
  3444. return ((int32_t *) data)[0];
  3445. case GGML_TYPE_F16:
  3446. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3447. case GGML_TYPE_BF16:
  3448. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3449. case GGML_TYPE_F32:
  3450. return ((float *) data)[0];
  3451. default:
  3452. GGML_ASSERT(false);
  3453. }
  3454. return 0.0f;
  3455. }
  3456. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3457. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3458. switch (tensor->type) {
  3459. case GGML_TYPE_I8:
  3460. {
  3461. ((int8_t *)(data))[0] = value;
  3462. } break;
  3463. case GGML_TYPE_I16:
  3464. {
  3465. ((int16_t *)(data))[0] = value;
  3466. } break;
  3467. case GGML_TYPE_I32:
  3468. {
  3469. ((int32_t *)(data))[0] = value;
  3470. } break;
  3471. case GGML_TYPE_F16:
  3472. {
  3473. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3474. } break;
  3475. case GGML_TYPE_BF16:
  3476. {
  3477. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3478. } break;
  3479. case GGML_TYPE_F32:
  3480. {
  3481. ((float *)(data))[0] = value;
  3482. } break;
  3483. default:
  3484. {
  3485. GGML_ASSERT(false);
  3486. } break;
  3487. }
  3488. }
  3489. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3490. if (!ggml_is_contiguous(tensor)) {
  3491. int64_t id[4] = { 0, 0, 0, 0 };
  3492. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3493. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3494. }
  3495. switch (tensor->type) {
  3496. case GGML_TYPE_I8:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3499. return ((int8_t *)(tensor->data))[i];
  3500. }
  3501. case GGML_TYPE_I16:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3504. return ((int16_t *)(tensor->data))[i];
  3505. }
  3506. case GGML_TYPE_I32:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3509. return ((int32_t *)(tensor->data))[i];
  3510. }
  3511. case GGML_TYPE_F16:
  3512. {
  3513. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3514. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3515. }
  3516. case GGML_TYPE_BF16:
  3517. {
  3518. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3519. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3520. }
  3521. case GGML_TYPE_F32:
  3522. {
  3523. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3524. return ((float *)(tensor->data))[i];
  3525. }
  3526. default:
  3527. {
  3528. GGML_ASSERT(false);
  3529. }
  3530. }
  3531. return 0.0f;
  3532. }
  3533. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3534. if (!ggml_is_contiguous(tensor)) {
  3535. int64_t id[4] = { 0, 0, 0, 0 };
  3536. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3537. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3538. return;
  3539. }
  3540. switch (tensor->type) {
  3541. case GGML_TYPE_I8:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3544. ((int8_t *)(tensor->data))[i] = value;
  3545. } break;
  3546. case GGML_TYPE_I16:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3549. ((int16_t *)(tensor->data))[i] = value;
  3550. } break;
  3551. case GGML_TYPE_I32:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3554. ((int32_t *)(tensor->data))[i] = value;
  3555. } break;
  3556. case GGML_TYPE_F16:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3559. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3560. } break;
  3561. case GGML_TYPE_BF16:
  3562. {
  3563. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3564. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3565. } break;
  3566. case GGML_TYPE_F32:
  3567. {
  3568. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3569. ((float *)(tensor->data))[i] = value;
  3570. } break;
  3571. default:
  3572. {
  3573. GGML_ASSERT(false);
  3574. } break;
  3575. }
  3576. }
  3577. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3578. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3579. switch (tensor->type) {
  3580. case GGML_TYPE_I8:
  3581. return ((int8_t *) data)[0];
  3582. case GGML_TYPE_I16:
  3583. return ((int16_t *) data)[0];
  3584. case GGML_TYPE_I32:
  3585. return ((int32_t *) data)[0];
  3586. case GGML_TYPE_F16:
  3587. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3588. case GGML_TYPE_BF16:
  3589. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3590. case GGML_TYPE_F32:
  3591. return ((float *) data)[0];
  3592. default:
  3593. GGML_ASSERT(false);
  3594. }
  3595. return 0.0f;
  3596. }
  3597. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3598. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3599. switch (tensor->type) {
  3600. case GGML_TYPE_I8:
  3601. {
  3602. ((int8_t *)(data))[0] = value;
  3603. } break;
  3604. case GGML_TYPE_I16:
  3605. {
  3606. ((int16_t *)(data))[0] = value;
  3607. } break;
  3608. case GGML_TYPE_I32:
  3609. {
  3610. ((int32_t *)(data))[0] = value;
  3611. } break;
  3612. case GGML_TYPE_F16:
  3613. {
  3614. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3615. } break;
  3616. case GGML_TYPE_BF16:
  3617. {
  3618. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3619. } break;
  3620. case GGML_TYPE_F32:
  3621. {
  3622. ((float *)(data))[0] = value;
  3623. } break;
  3624. default:
  3625. {
  3626. GGML_ASSERT(false);
  3627. } break;
  3628. }
  3629. }
  3630. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3631. return tensor->data;
  3632. }
  3633. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3634. assert(tensor->type == GGML_TYPE_F32);
  3635. return (float *)(tensor->data);
  3636. }
  3637. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3638. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3639. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3640. }
  3641. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3642. return tensor->name;
  3643. }
  3644. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3645. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3646. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3647. return tensor;
  3648. }
  3649. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3650. va_list args;
  3651. va_start(args, fmt);
  3652. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3653. va_end(args);
  3654. return tensor;
  3655. }
  3656. struct ggml_tensor * ggml_view_tensor(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * src) {
  3659. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3660. ggml_format_name(result, "%s (view)", src->name);
  3661. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3662. result->nb[i] = src->nb[i];
  3663. }
  3664. return result;
  3665. }
  3666. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3667. struct ggml_object * obj = ctx->objects_begin;
  3668. char * const mem_buffer = ctx->mem_buffer;
  3669. while (obj != NULL) {
  3670. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3671. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3672. }
  3673. obj = obj->next;
  3674. }
  3675. return NULL;
  3676. }
  3677. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3678. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3679. obj = obj->next;
  3680. char * const mem_buffer = ctx->mem_buffer;
  3681. while (obj != NULL) {
  3682. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3683. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3684. }
  3685. obj = obj->next;
  3686. }
  3687. return NULL;
  3688. }
  3689. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3690. struct ggml_object * obj = ctx->objects_begin;
  3691. char * const mem_buffer = ctx->mem_buffer;
  3692. while (obj != NULL) {
  3693. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3694. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3695. if (strcmp(cur->name, name) == 0) {
  3696. return cur;
  3697. }
  3698. }
  3699. obj = obj->next;
  3700. }
  3701. return NULL;
  3702. }
  3703. ////////////////////////////////////////////////////////////////////////////////
  3704. // ggml_dup
  3705. static struct ggml_tensor * ggml_dup_impl(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. bool inplace) {
  3709. bool is_node = false;
  3710. if (!inplace && (a->grad)) {
  3711. is_node = true;
  3712. }
  3713. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3714. result->op = GGML_OP_DUP;
  3715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3716. result->src[0] = a;
  3717. return result;
  3718. }
  3719. struct ggml_tensor * ggml_dup(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a) {
  3722. return ggml_dup_impl(ctx, a, false);
  3723. }
  3724. struct ggml_tensor * ggml_dup_inplace(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a) {
  3727. return ggml_dup_impl(ctx, a, true);
  3728. }
  3729. // ggml_add
  3730. static struct ggml_tensor * ggml_add_impl(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a,
  3733. struct ggml_tensor * b,
  3734. bool inplace) {
  3735. GGML_ASSERT(ggml_can_repeat(b, a));
  3736. bool is_node = false;
  3737. if (!inplace && (a->grad || b->grad)) {
  3738. // TODO: support backward pass for broadcasting
  3739. GGML_ASSERT(ggml_are_same_shape(a, b));
  3740. is_node = true;
  3741. }
  3742. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3743. result->op = GGML_OP_ADD;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src[0] = a;
  3746. result->src[1] = b;
  3747. return result;
  3748. }
  3749. struct ggml_tensor * ggml_add(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a,
  3752. struct ggml_tensor * b) {
  3753. return ggml_add_impl(ctx, a, b, false);
  3754. }
  3755. struct ggml_tensor * ggml_add_inplace(
  3756. struct ggml_context * ctx,
  3757. struct ggml_tensor * a,
  3758. struct ggml_tensor * b) {
  3759. return ggml_add_impl(ctx, a, b, true);
  3760. }
  3761. // ggml_add_cast
  3762. static struct ggml_tensor * ggml_add_cast_impl(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b,
  3766. enum ggml_type type) {
  3767. // TODO: support less-strict constraint
  3768. // GGML_ASSERT(ggml_can_repeat(b, a));
  3769. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3770. // currently only supported for quantized input and f16
  3771. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3772. a->type == GGML_TYPE_F16 ||
  3773. a->type == GGML_TYPE_BF16);
  3774. bool is_node = false;
  3775. if (a->grad || b->grad) {
  3776. // TODO: support backward pass for broadcasting
  3777. GGML_ASSERT(ggml_are_same_shape(a, b));
  3778. is_node = true;
  3779. }
  3780. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3781. result->op = GGML_OP_ADD;
  3782. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3783. result->src[0] = a;
  3784. result->src[1] = b;
  3785. return result;
  3786. }
  3787. struct ggml_tensor * ggml_add_cast(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b,
  3791. enum ggml_type type) {
  3792. return ggml_add_cast_impl(ctx, a, b, type);
  3793. }
  3794. // ggml_add1
  3795. static struct ggml_tensor * ggml_add1_impl(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. struct ggml_tensor * b,
  3799. bool inplace) {
  3800. GGML_ASSERT(ggml_is_scalar(b));
  3801. GGML_ASSERT(ggml_is_padded_1d(a));
  3802. bool is_node = false;
  3803. if (a->grad || b->grad) {
  3804. is_node = true;
  3805. }
  3806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3807. result->op = GGML_OP_ADD1;
  3808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3809. result->src[0] = a;
  3810. result->src[1] = b;
  3811. return result;
  3812. }
  3813. struct ggml_tensor * ggml_add1(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a,
  3816. struct ggml_tensor * b) {
  3817. return ggml_add1_impl(ctx, a, b, false);
  3818. }
  3819. struct ggml_tensor * ggml_add1_inplace(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. struct ggml_tensor * b) {
  3823. return ggml_add1_impl(ctx, a, b, true);
  3824. }
  3825. // ggml_acc
  3826. static struct ggml_tensor * ggml_acc_impl(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a,
  3829. struct ggml_tensor * b,
  3830. size_t nb1,
  3831. size_t nb2,
  3832. size_t nb3,
  3833. size_t offset,
  3834. bool inplace) {
  3835. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3836. GGML_ASSERT(ggml_is_contiguous(a));
  3837. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3838. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3839. bool is_node = false;
  3840. if (!inplace && (a->grad || b->grad)) {
  3841. is_node = true;
  3842. }
  3843. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3844. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3845. ggml_set_op_params(result, params, sizeof(params));
  3846. result->op = GGML_OP_ACC;
  3847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3848. result->src[0] = a;
  3849. result->src[1] = b;
  3850. return result;
  3851. }
  3852. struct ggml_tensor * ggml_acc(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. struct ggml_tensor * b,
  3856. size_t nb1,
  3857. size_t nb2,
  3858. size_t nb3,
  3859. size_t offset) {
  3860. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3861. }
  3862. struct ggml_tensor * ggml_acc_inplace(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. struct ggml_tensor * b,
  3866. size_t nb1,
  3867. size_t nb2,
  3868. size_t nb3,
  3869. size_t offset) {
  3870. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3871. }
  3872. // ggml_sub
  3873. static struct ggml_tensor * ggml_sub_impl(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. struct ggml_tensor * b,
  3877. bool inplace) {
  3878. GGML_ASSERT(ggml_are_same_shape(a, b));
  3879. bool is_node = false;
  3880. if (!inplace && (a->grad || b->grad)) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. result->op = GGML_OP_SUB;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src[0] = a;
  3887. result->src[1] = b;
  3888. return result;
  3889. }
  3890. struct ggml_tensor * ggml_sub(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b) {
  3894. return ggml_sub_impl(ctx, a, b, false);
  3895. }
  3896. struct ggml_tensor * ggml_sub_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b) {
  3900. return ggml_sub_impl(ctx, a, b, true);
  3901. }
  3902. // ggml_mul
  3903. static struct ggml_tensor * ggml_mul_impl(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b,
  3907. bool inplace) {
  3908. GGML_ASSERT(ggml_can_repeat(b, a));
  3909. bool is_node = false;
  3910. if (!inplace && (a->grad || b->grad)) {
  3911. // TODO: support backward pass for broadcasting
  3912. GGML_ASSERT(ggml_are_same_shape(a, b));
  3913. is_node = true;
  3914. }
  3915. if (inplace) {
  3916. GGML_ASSERT(!is_node);
  3917. }
  3918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3919. result->op = GGML_OP_MUL;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src[0] = a;
  3922. result->src[1] = b;
  3923. return result;
  3924. }
  3925. struct ggml_tensor * ggml_mul(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. struct ggml_tensor * b) {
  3929. return ggml_mul_impl(ctx, a, b, false);
  3930. }
  3931. struct ggml_tensor * ggml_mul_inplace(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a,
  3934. struct ggml_tensor * b) {
  3935. return ggml_mul_impl(ctx, a, b, true);
  3936. }
  3937. // ggml_div
  3938. static struct ggml_tensor * ggml_div_impl(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b,
  3942. bool inplace) {
  3943. GGML_ASSERT(ggml_can_repeat(b, a));
  3944. bool is_node = false;
  3945. if (!inplace && (a->grad || b->grad)) {
  3946. is_node = true;
  3947. }
  3948. if (inplace) {
  3949. GGML_ASSERT(!is_node);
  3950. }
  3951. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3952. result->op = GGML_OP_DIV;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src[0] = a;
  3955. result->src[1] = b;
  3956. return result;
  3957. }
  3958. struct ggml_tensor * ggml_div(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a,
  3961. struct ggml_tensor * b) {
  3962. return ggml_div_impl(ctx, a, b, false);
  3963. }
  3964. struct ggml_tensor * ggml_div_inplace(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a,
  3967. struct ggml_tensor * b) {
  3968. return ggml_div_impl(ctx, a, b, true);
  3969. }
  3970. // ggml_sqr
  3971. static struct ggml_tensor * ggml_sqr_impl(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. bool inplace) {
  3975. bool is_node = false;
  3976. if (!inplace && (a->grad)) {
  3977. is_node = true;
  3978. }
  3979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3980. result->op = GGML_OP_SQR;
  3981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3982. result->src[0] = a;
  3983. return result;
  3984. }
  3985. struct ggml_tensor * ggml_sqr(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a) {
  3988. return ggml_sqr_impl(ctx, a, false);
  3989. }
  3990. struct ggml_tensor * ggml_sqr_inplace(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a) {
  3993. return ggml_sqr_impl(ctx, a, true);
  3994. }
  3995. // ggml_sqrt
  3996. static struct ggml_tensor * ggml_sqrt_impl(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. bool inplace) {
  4000. bool is_node = false;
  4001. if (!inplace && (a->grad)) {
  4002. is_node = true;
  4003. }
  4004. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4005. result->op = GGML_OP_SQRT;
  4006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4007. result->src[0] = a;
  4008. return result;
  4009. }
  4010. struct ggml_tensor * ggml_sqrt(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a) {
  4013. return ggml_sqrt_impl(ctx, a, false);
  4014. }
  4015. struct ggml_tensor * ggml_sqrt_inplace(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a) {
  4018. return ggml_sqrt_impl(ctx, a, true);
  4019. }
  4020. // ggml_log
  4021. static struct ggml_tensor * ggml_log_impl(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a,
  4024. bool inplace) {
  4025. bool is_node = false;
  4026. if (!inplace && (a->grad)) {
  4027. is_node = true;
  4028. }
  4029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4030. result->op = GGML_OP_LOG;
  4031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4032. result->src[0] = a;
  4033. return result;
  4034. }
  4035. struct ggml_tensor * ggml_log(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a) {
  4038. return ggml_log_impl(ctx, a, false);
  4039. }
  4040. struct ggml_tensor * ggml_log_inplace(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a) {
  4043. return ggml_log_impl(ctx, a, true);
  4044. }
  4045. // ggml_sum
  4046. struct ggml_tensor * ggml_sum(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. bool is_node = false;
  4050. if (a->grad) {
  4051. is_node = true;
  4052. }
  4053. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4054. result->op = GGML_OP_SUM;
  4055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4056. result->src[0] = a;
  4057. return result;
  4058. }
  4059. // ggml_sum_rows
  4060. struct ggml_tensor * ggml_sum_rows(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a) {
  4063. bool is_node = false;
  4064. if (a->grad) {
  4065. is_node = true;
  4066. }
  4067. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4068. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4069. ne[i] = a->ne[i];
  4070. }
  4071. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4072. result->op = GGML_OP_SUM_ROWS;
  4073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4074. result->src[0] = a;
  4075. return result;
  4076. }
  4077. // ggml_mean
  4078. struct ggml_tensor * ggml_mean(
  4079. struct ggml_context * ctx,
  4080. struct ggml_tensor * a) {
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. GGML_ASSERT(false); // TODO: implement
  4084. is_node = true;
  4085. }
  4086. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4087. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4088. result->op = GGML_OP_MEAN;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src[0] = a;
  4091. return result;
  4092. }
  4093. // ggml_argmax
  4094. struct ggml_tensor * ggml_argmax(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a) {
  4097. GGML_ASSERT(ggml_is_matrix(a));
  4098. bool is_node = false;
  4099. if (a->grad) {
  4100. GGML_ASSERT(false);
  4101. is_node = true;
  4102. }
  4103. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4104. result->op = GGML_OP_ARGMAX;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src[0] = a;
  4107. return result;
  4108. }
  4109. // ggml_repeat
  4110. struct ggml_tensor * ggml_repeat(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. struct ggml_tensor * b) {
  4114. GGML_ASSERT(ggml_can_repeat(a, b));
  4115. bool is_node = false;
  4116. if (a->grad) {
  4117. is_node = true;
  4118. }
  4119. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4120. result->op = GGML_OP_REPEAT;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. // ggml_repeat_back
  4126. struct ggml_tensor * ggml_repeat_back(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a,
  4129. struct ggml_tensor * b) {
  4130. GGML_ASSERT(ggml_can_repeat(b, a));
  4131. bool is_node = false;
  4132. if (a->grad) {
  4133. is_node = true;
  4134. }
  4135. if (ggml_are_same_shape(a, b) && !is_node) {
  4136. return a;
  4137. }
  4138. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4139. result->op = GGML_OP_REPEAT_BACK;
  4140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4141. result->src[0] = a;
  4142. return result;
  4143. }
  4144. // ggml_concat
  4145. struct ggml_tensor * ggml_concat(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b,
  4149. int dim) {
  4150. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4151. int64_t ne[GGML_MAX_DIMS];
  4152. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4153. if (d == dim) {
  4154. ne[d] = a->ne[d] + b->ne[d];
  4155. continue;
  4156. }
  4157. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4158. ne[d] = a->ne[d];
  4159. }
  4160. bool is_node = false;
  4161. if (a->grad || b->grad) {
  4162. is_node = true;
  4163. }
  4164. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4165. ggml_set_op_params_i32(result, 0, dim);
  4166. result->op = GGML_OP_CONCAT;
  4167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4168. result->src[0] = a;
  4169. result->src[1] = b;
  4170. return result;
  4171. }
  4172. // ggml_abs
  4173. struct ggml_tensor * ggml_abs(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a) {
  4176. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4177. }
  4178. struct ggml_tensor * ggml_abs_inplace(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a) {
  4181. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4182. }
  4183. // ggml_sgn
  4184. struct ggml_tensor * ggml_sgn(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a) {
  4187. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4188. }
  4189. struct ggml_tensor * ggml_sgn_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a) {
  4192. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4193. }
  4194. // ggml_neg
  4195. struct ggml_tensor * ggml_neg(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a) {
  4198. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4199. }
  4200. struct ggml_tensor * ggml_neg_inplace(
  4201. struct ggml_context * ctx,
  4202. struct ggml_tensor * a) {
  4203. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4204. }
  4205. // ggml_step
  4206. struct ggml_tensor * ggml_step(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a) {
  4209. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4210. }
  4211. struct ggml_tensor * ggml_step_inplace(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a) {
  4214. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4215. }
  4216. // ggml_tanh
  4217. struct ggml_tensor * ggml_tanh(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4221. }
  4222. struct ggml_tensor * ggml_tanh_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a) {
  4225. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4226. }
  4227. // ggml_elu
  4228. struct ggml_tensor * ggml_elu(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a) {
  4231. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4232. }
  4233. struct ggml_tensor * ggml_elu_inplace(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4237. }
  4238. // ggml_relu
  4239. struct ggml_tensor * ggml_relu(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4243. }
  4244. struct ggml_tensor * ggml_relu_inplace(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4248. }
  4249. // ggml_leaky_relu
  4250. struct ggml_tensor * ggml_leaky_relu(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4253. bool is_node = false;
  4254. if (!inplace && (a->grad)) {
  4255. is_node = true;
  4256. }
  4257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4258. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4259. result->op = GGML_OP_LEAKY_RELU;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src[0] = a;
  4262. return result;
  4263. }
  4264. // ggml_sigmoid
  4265. struct ggml_tensor * ggml_sigmoid(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4269. }
  4270. struct ggml_tensor * ggml_sigmoid_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4274. }
  4275. // ggml_gelu
  4276. struct ggml_tensor * ggml_gelu(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a) {
  4279. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4280. }
  4281. struct ggml_tensor * ggml_gelu_inplace(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a) {
  4284. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4285. }
  4286. // ggml_gelu_quick
  4287. struct ggml_tensor * ggml_gelu_quick(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a) {
  4290. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4291. }
  4292. struct ggml_tensor * ggml_gelu_quick_inplace(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a) {
  4295. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4296. }
  4297. // ggml_silu
  4298. struct ggml_tensor * ggml_silu(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4302. }
  4303. struct ggml_tensor * ggml_silu_inplace(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a) {
  4306. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4307. }
  4308. // ggml_silu_back
  4309. struct ggml_tensor * ggml_silu_back(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. bool is_node = false;
  4314. if (a->grad || b->grad) {
  4315. // TODO: implement backward
  4316. is_node = true;
  4317. }
  4318. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4319. result->op = GGML_OP_SILU_BACK;
  4320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4321. result->src[0] = a;
  4322. result->src[1] = b;
  4323. return result;
  4324. }
  4325. // ggml hardswish
  4326. struct ggml_tensor * ggml_hardswish(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a) {
  4329. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4330. }
  4331. // ggml hardsigmoid
  4332. struct ggml_tensor * ggml_hardsigmoid(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4336. }
  4337. // ggml_norm
  4338. static struct ggml_tensor * ggml_norm_impl(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. float eps,
  4342. bool inplace) {
  4343. bool is_node = false;
  4344. if (!inplace && (a->grad)) {
  4345. GGML_ASSERT(false); // TODO: implement backward
  4346. is_node = true;
  4347. }
  4348. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4349. ggml_set_op_params(result, &eps, sizeof(eps));
  4350. result->op = GGML_OP_NORM;
  4351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4352. result->src[0] = a;
  4353. return result;
  4354. }
  4355. struct ggml_tensor * ggml_norm(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. float eps) {
  4359. return ggml_norm_impl(ctx, a, eps, false);
  4360. }
  4361. struct ggml_tensor * ggml_norm_inplace(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. float eps) {
  4365. return ggml_norm_impl(ctx, a, eps, true);
  4366. }
  4367. // ggml_rms_norm
  4368. static struct ggml_tensor * ggml_rms_norm_impl(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a,
  4371. float eps,
  4372. bool inplace) {
  4373. bool is_node = false;
  4374. if (!inplace && (a->grad)) {
  4375. is_node = true;
  4376. }
  4377. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4378. ggml_set_op_params(result, &eps, sizeof(eps));
  4379. result->op = GGML_OP_RMS_NORM;
  4380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4381. result->src[0] = a;
  4382. return result;
  4383. }
  4384. struct ggml_tensor * ggml_rms_norm(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a,
  4387. float eps) {
  4388. return ggml_rms_norm_impl(ctx, a, eps, false);
  4389. }
  4390. struct ggml_tensor * ggml_rms_norm_inplace(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a,
  4393. float eps) {
  4394. return ggml_rms_norm_impl(ctx, a, eps, true);
  4395. }
  4396. // ggml_rms_norm_back
  4397. struct ggml_tensor * ggml_rms_norm_back(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. struct ggml_tensor * b,
  4401. float eps) {
  4402. bool is_node = false;
  4403. if (a->grad) {
  4404. // TODO: implement backward
  4405. is_node = true;
  4406. }
  4407. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4408. ggml_set_op_params(result, &eps, sizeof(eps));
  4409. result->op = GGML_OP_RMS_NORM_BACK;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. result->src[1] = b;
  4413. return result;
  4414. }
  4415. // ggml_group_norm
  4416. static struct ggml_tensor * ggml_group_norm_impl(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. int n_groups,
  4420. bool inplace) {
  4421. bool is_node = false;
  4422. if (!inplace && (a->grad)) {
  4423. GGML_ASSERT(false); // TODO: implement backward
  4424. is_node = true;
  4425. }
  4426. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4427. result->op_params[0] = n_groups;
  4428. result->op = GGML_OP_GROUP_NORM;
  4429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4430. result->src[0] = a;
  4431. return result;
  4432. }
  4433. struct ggml_tensor * ggml_group_norm(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. int n_groups) {
  4437. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4438. }
  4439. struct ggml_tensor * ggml_group_norm_inplace(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. int n_groups) {
  4443. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4444. }
  4445. // ggml_mul_mat
  4446. struct ggml_tensor * ggml_mul_mat(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a,
  4449. struct ggml_tensor * b) {
  4450. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4451. GGML_ASSERT(!ggml_is_transposed(a));
  4452. bool is_node = false;
  4453. if (a->grad || b->grad) {
  4454. is_node = true;
  4455. }
  4456. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4458. result->op = GGML_OP_MUL_MAT;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src[0] = a;
  4461. result->src[1] = b;
  4462. return result;
  4463. }
  4464. void ggml_mul_mat_set_prec(
  4465. struct ggml_tensor * a,
  4466. enum ggml_prec prec) {
  4467. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4468. const int32_t prec_i32 = (int32_t) prec;
  4469. ggml_set_op_params_i32(a, 0, prec_i32);
  4470. }
  4471. // ggml_mul_mat_id
  4472. /*
  4473. c = ggml_mul_mat_id(ctx, as, b, ids);
  4474. as -> [cols, rows, n_expert]
  4475. ids -> [n_experts_used, n_tokens] (i32)
  4476. b -> [cols, n_expert_used, n_tokens]
  4477. c -> [cols, n_expert_used, n_tokens]
  4478. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4479. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4480. */
  4481. struct ggml_tensor * ggml_mul_mat_id(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * as,
  4484. struct ggml_tensor * b,
  4485. struct ggml_tensor * ids) {
  4486. GGML_ASSERT(!ggml_is_transposed(as));
  4487. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4488. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4489. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4490. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4491. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4492. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4493. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4494. bool is_node = false;
  4495. if (as->grad || b->grad) {
  4496. is_node = true;
  4497. }
  4498. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4499. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4500. result->op = GGML_OP_MUL_MAT_ID;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src[0] = as;
  4503. result->src[1] = b;
  4504. result->src[2] = ids;
  4505. return result;
  4506. }
  4507. // ggml_out_prod
  4508. struct ggml_tensor * ggml_out_prod(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. GGML_ASSERT(ggml_can_out_prod(a, b));
  4513. GGML_ASSERT(!ggml_is_transposed(a));
  4514. bool is_node = false;
  4515. if (a->grad || b->grad) {
  4516. is_node = true;
  4517. }
  4518. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4519. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4520. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4521. result->op = GGML_OP_OUT_PROD;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src[0] = a;
  4524. result->src[1] = b;
  4525. return result;
  4526. }
  4527. // ggml_scale
  4528. static struct ggml_tensor * ggml_scale_impl(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a,
  4531. float s,
  4532. bool inplace) {
  4533. GGML_ASSERT(ggml_is_padded_1d(a));
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. is_node = true;
  4537. }
  4538. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4539. ggml_set_op_params(result, &s, sizeof(s));
  4540. result->op = GGML_OP_SCALE;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src[0] = a;
  4543. return result;
  4544. }
  4545. struct ggml_tensor * ggml_scale(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. float s) {
  4549. return ggml_scale_impl(ctx, a, s, false);
  4550. }
  4551. struct ggml_tensor * ggml_scale_inplace(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. float s) {
  4555. return ggml_scale_impl(ctx, a, s, true);
  4556. }
  4557. // ggml_set
  4558. static struct ggml_tensor * ggml_set_impl(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a,
  4561. struct ggml_tensor * b,
  4562. size_t nb1,
  4563. size_t nb2,
  4564. size_t nb3,
  4565. size_t offset,
  4566. bool inplace) {
  4567. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4568. bool is_node = false;
  4569. if (a->grad || b->grad) {
  4570. is_node = true;
  4571. }
  4572. // make a view of the destination
  4573. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4574. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4575. ggml_set_op_params(result, params, sizeof(params));
  4576. result->op = GGML_OP_SET;
  4577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4578. result->src[0] = a;
  4579. result->src[1] = b;
  4580. return result;
  4581. }
  4582. struct ggml_tensor * ggml_set(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. struct ggml_tensor * b,
  4586. size_t nb1,
  4587. size_t nb2,
  4588. size_t nb3,
  4589. size_t offset) {
  4590. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4591. }
  4592. struct ggml_tensor * ggml_set_inplace(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a,
  4595. struct ggml_tensor * b,
  4596. size_t nb1,
  4597. size_t nb2,
  4598. size_t nb3,
  4599. size_t offset) {
  4600. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4601. }
  4602. struct ggml_tensor * ggml_set_1d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. size_t offset) {
  4607. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4608. }
  4609. struct ggml_tensor * ggml_set_1d_inplace(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a,
  4612. struct ggml_tensor * b,
  4613. size_t offset) {
  4614. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4615. }
  4616. struct ggml_tensor * ggml_set_2d(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a,
  4619. struct ggml_tensor * b,
  4620. size_t nb1,
  4621. size_t offset) {
  4622. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4623. }
  4624. struct ggml_tensor * ggml_set_2d_inplace(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. struct ggml_tensor * b,
  4628. size_t nb1,
  4629. size_t offset) {
  4630. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4631. }
  4632. // ggml_cpy
  4633. static struct ggml_tensor * ggml_cpy_impl(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a,
  4636. struct ggml_tensor * b) {
  4637. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4638. bool is_node = false;
  4639. if (a->grad || b->grad) {
  4640. // inplace is false and either one have a grad
  4641. is_node = true;
  4642. }
  4643. // make a view of the destination
  4644. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4645. if (strlen(b->name) > 0) {
  4646. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4647. } else {
  4648. ggml_format_name(result, "%s (copy)", a->name);
  4649. }
  4650. result->op = GGML_OP_CPY;
  4651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4652. result->src[0] = a;
  4653. result->src[1] = b;
  4654. return result;
  4655. }
  4656. struct ggml_tensor * ggml_cpy(
  4657. struct ggml_context * ctx,
  4658. struct ggml_tensor * a,
  4659. struct ggml_tensor * b) {
  4660. return ggml_cpy_impl(ctx, a, b);
  4661. }
  4662. struct ggml_tensor * ggml_cast(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. enum ggml_type type) {
  4666. bool is_node = false;
  4667. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4668. ggml_format_name(result, "%s (copy)", a->name);
  4669. result->op = GGML_OP_CPY;
  4670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4671. result->src[0] = a;
  4672. result->src[1] = result;
  4673. return result;
  4674. }
  4675. // ggml_cont
  4676. static struct ggml_tensor * ggml_cont_impl(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. bool is_node = false;
  4680. if (a->grad) {
  4681. is_node = true;
  4682. }
  4683. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4684. ggml_format_name(result, "%s (cont)", a->name);
  4685. result->op = GGML_OP_CONT;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src[0] = a;
  4688. return result;
  4689. }
  4690. struct ggml_tensor * ggml_cont(
  4691. struct ggml_context * ctx,
  4692. struct ggml_tensor * a) {
  4693. return ggml_cont_impl(ctx, a);
  4694. }
  4695. // make contiguous, with new shape
  4696. GGML_API struct ggml_tensor * ggml_cont_1d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0) {
  4700. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4701. }
  4702. GGML_API struct ggml_tensor * ggml_cont_2d(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. int64_t ne0,
  4706. int64_t ne1) {
  4707. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4708. }
  4709. GGML_API struct ggml_tensor * ggml_cont_3d(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. int64_t ne0,
  4713. int64_t ne1,
  4714. int64_t ne2) {
  4715. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4716. }
  4717. struct ggml_tensor * ggml_cont_4d(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a,
  4720. int64_t ne0,
  4721. int64_t ne1,
  4722. int64_t ne2,
  4723. int64_t ne3) {
  4724. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4725. bool is_node = false;
  4726. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4727. ggml_format_name(result, "%s (cont)", a->name);
  4728. result->op = GGML_OP_CONT;
  4729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4730. result->src[0] = a;
  4731. return result;
  4732. }
  4733. // ggml_reshape
  4734. struct ggml_tensor * ggml_reshape(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b) {
  4738. GGML_ASSERT(ggml_is_contiguous(a));
  4739. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4740. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4741. bool is_node = false;
  4742. if (a->grad) {
  4743. is_node = true;
  4744. }
  4745. if (b->grad) {
  4746. // gradient propagation is not supported
  4747. //GGML_ASSERT(false);
  4748. }
  4749. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4750. ggml_format_name(result, "%s (reshaped)", a->name);
  4751. result->op = GGML_OP_RESHAPE;
  4752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4753. result->src[0] = a;
  4754. return result;
  4755. }
  4756. struct ggml_tensor * ggml_reshape_1d(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a,
  4759. int64_t ne0) {
  4760. GGML_ASSERT(ggml_is_contiguous(a));
  4761. GGML_ASSERT(ggml_nelements(a) == ne0);
  4762. bool is_node = false;
  4763. if (a->grad) {
  4764. is_node = true;
  4765. }
  4766. const int64_t ne[1] = { ne0 };
  4767. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4768. ggml_format_name(result, "%s (reshaped)", a->name);
  4769. result->op = GGML_OP_RESHAPE;
  4770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4771. result->src[0] = a;
  4772. return result;
  4773. }
  4774. struct ggml_tensor * ggml_reshape_2d(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. int64_t ne0,
  4778. int64_t ne1) {
  4779. GGML_ASSERT(ggml_is_contiguous(a));
  4780. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4781. bool is_node = false;
  4782. if (a->grad) {
  4783. is_node = true;
  4784. }
  4785. const int64_t ne[2] = { ne0, ne1 };
  4786. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4787. ggml_format_name(result, "%s (reshaped)", a->name);
  4788. result->op = GGML_OP_RESHAPE;
  4789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4790. result->src[0] = a;
  4791. return result;
  4792. }
  4793. struct ggml_tensor * ggml_reshape_3d(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. int64_t ne0,
  4797. int64_t ne1,
  4798. int64_t ne2) {
  4799. GGML_ASSERT(ggml_is_contiguous(a));
  4800. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4801. bool is_node = false;
  4802. if (a->grad) {
  4803. is_node = true;
  4804. }
  4805. const int64_t ne[3] = { ne0, ne1, ne2 };
  4806. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4807. ggml_format_name(result, "%s (reshaped)", a->name);
  4808. result->op = GGML_OP_RESHAPE;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src[0] = a;
  4811. return result;
  4812. }
  4813. struct ggml_tensor * ggml_reshape_4d(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. int64_t ne0,
  4817. int64_t ne1,
  4818. int64_t ne2,
  4819. int64_t ne3) {
  4820. GGML_ASSERT(ggml_is_contiguous(a));
  4821. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4822. bool is_node = false;
  4823. if (a->grad) {
  4824. is_node = true;
  4825. }
  4826. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4827. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4828. ggml_format_name(result, "%s (reshaped)", a->name);
  4829. result->op = GGML_OP_RESHAPE;
  4830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4831. result->src[0] = a;
  4832. return result;
  4833. }
  4834. static struct ggml_tensor * ggml_view_impl(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. int n_dims,
  4838. const int64_t * ne,
  4839. size_t offset) {
  4840. bool is_node = false;
  4841. if (a->grad) {
  4842. is_node = true;
  4843. }
  4844. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4845. ggml_format_name(result, "%s (view)", a->name);
  4846. ggml_set_op_params(result, &offset, sizeof(offset));
  4847. result->op = GGML_OP_VIEW;
  4848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4849. result->src[0] = a;
  4850. return result;
  4851. }
  4852. // ggml_view_1d
  4853. struct ggml_tensor * ggml_view_1d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. int64_t ne0,
  4857. size_t offset) {
  4858. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4859. return result;
  4860. }
  4861. // ggml_view_2d
  4862. struct ggml_tensor * ggml_view_2d(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * a,
  4865. int64_t ne0,
  4866. int64_t ne1,
  4867. size_t nb1,
  4868. size_t offset) {
  4869. const int64_t ne[2] = { ne0, ne1 };
  4870. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4871. result->nb[1] = nb1;
  4872. result->nb[2] = result->nb[1]*ne1;
  4873. result->nb[3] = result->nb[2];
  4874. return result;
  4875. }
  4876. // ggml_view_3d
  4877. struct ggml_tensor * ggml_view_3d(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. int64_t ne0,
  4881. int64_t ne1,
  4882. int64_t ne2,
  4883. size_t nb1,
  4884. size_t nb2,
  4885. size_t offset) {
  4886. const int64_t ne[3] = { ne0, ne1, ne2 };
  4887. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4888. result->nb[1] = nb1;
  4889. result->nb[2] = nb2;
  4890. result->nb[3] = result->nb[2]*ne2;
  4891. return result;
  4892. }
  4893. // ggml_view_4d
  4894. struct ggml_tensor * ggml_view_4d(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. int64_t ne0,
  4898. int64_t ne1,
  4899. int64_t ne2,
  4900. int64_t ne3,
  4901. size_t nb1,
  4902. size_t nb2,
  4903. size_t nb3,
  4904. size_t offset) {
  4905. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4906. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4907. result->nb[1] = nb1;
  4908. result->nb[2] = nb2;
  4909. result->nb[3] = nb3;
  4910. return result;
  4911. }
  4912. // ggml_permute
  4913. struct ggml_tensor * ggml_permute(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. int axis0,
  4917. int axis1,
  4918. int axis2,
  4919. int axis3) {
  4920. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4921. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4922. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4923. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4924. GGML_ASSERT(axis0 != axis1);
  4925. GGML_ASSERT(axis0 != axis2);
  4926. GGML_ASSERT(axis0 != axis3);
  4927. GGML_ASSERT(axis1 != axis2);
  4928. GGML_ASSERT(axis1 != axis3);
  4929. GGML_ASSERT(axis2 != axis3);
  4930. bool is_node = false;
  4931. if (a->grad) {
  4932. is_node = true;
  4933. }
  4934. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4935. ggml_format_name(result, "%s (permuted)", a->name);
  4936. int ne[GGML_MAX_DIMS];
  4937. int nb[GGML_MAX_DIMS];
  4938. ne[axis0] = a->ne[0];
  4939. ne[axis1] = a->ne[1];
  4940. ne[axis2] = a->ne[2];
  4941. ne[axis3] = a->ne[3];
  4942. nb[axis0] = a->nb[0];
  4943. nb[axis1] = a->nb[1];
  4944. nb[axis2] = a->nb[2];
  4945. nb[axis3] = a->nb[3];
  4946. result->ne[0] = ne[0];
  4947. result->ne[1] = ne[1];
  4948. result->ne[2] = ne[2];
  4949. result->ne[3] = ne[3];
  4950. result->nb[0] = nb[0];
  4951. result->nb[1] = nb[1];
  4952. result->nb[2] = nb[2];
  4953. result->nb[3] = nb[3];
  4954. result->op = GGML_OP_PERMUTE;
  4955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4956. result->src[0] = a;
  4957. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4958. ggml_set_op_params(result, params, sizeof(params));
  4959. return result;
  4960. }
  4961. // ggml_transpose
  4962. struct ggml_tensor * ggml_transpose(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a) {
  4965. bool is_node = false;
  4966. if (a->grad) {
  4967. is_node = true;
  4968. }
  4969. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4970. ggml_format_name(result, "%s (transposed)", a->name);
  4971. result->ne[0] = a->ne[1];
  4972. result->ne[1] = a->ne[0];
  4973. result->nb[0] = a->nb[1];
  4974. result->nb[1] = a->nb[0];
  4975. result->op = GGML_OP_TRANSPOSE;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src[0] = a;
  4978. return result;
  4979. }
  4980. // ggml_get_rows
  4981. struct ggml_tensor * ggml_get_rows(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. struct ggml_tensor * b) {
  4985. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4986. GGML_ASSERT(b->ne[3] == 1);
  4987. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4988. bool is_node = false;
  4989. if (a->grad || b->grad) {
  4990. is_node = true;
  4991. }
  4992. // TODO: implement non F32 return
  4993. enum ggml_type type = GGML_TYPE_F32;
  4994. if (a->type == GGML_TYPE_I32) {
  4995. type = a->type;
  4996. }
  4997. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4998. result->op = GGML_OP_GET_ROWS;
  4999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5000. result->src[0] = a;
  5001. result->src[1] = b;
  5002. return result;
  5003. }
  5004. // ggml_get_rows_back
  5005. struct ggml_tensor * ggml_get_rows_back(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a,
  5008. struct ggml_tensor * b,
  5009. struct ggml_tensor * c) {
  5010. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5011. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5012. bool is_node = false;
  5013. if (a->grad || b->grad) {
  5014. is_node = true;
  5015. }
  5016. // TODO: implement non F32 return
  5017. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5018. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5019. result->op = GGML_OP_GET_ROWS_BACK;
  5020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5021. result->src[0] = a;
  5022. result->src[1] = b;
  5023. return result;
  5024. }
  5025. // ggml_diag
  5026. struct ggml_tensor * ggml_diag(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * a) {
  5029. GGML_ASSERT(a->ne[1] == 1);
  5030. bool is_node = false;
  5031. if (a->grad) {
  5032. is_node = true;
  5033. }
  5034. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5035. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5036. result->op = GGML_OP_DIAG;
  5037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5038. result->src[0] = a;
  5039. return result;
  5040. }
  5041. // ggml_diag_mask_inf
  5042. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. int n_past,
  5046. bool inplace) {
  5047. bool is_node = false;
  5048. if (a->grad) {
  5049. is_node = true;
  5050. }
  5051. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5052. int32_t params[] = { n_past };
  5053. ggml_set_op_params(result, params, sizeof(params));
  5054. result->op = GGML_OP_DIAG_MASK_INF;
  5055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5056. result->src[0] = a;
  5057. return result;
  5058. }
  5059. struct ggml_tensor * ggml_diag_mask_inf(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. int n_past) {
  5063. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5064. }
  5065. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. int n_past) {
  5069. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5070. }
  5071. // ggml_diag_mask_zero
  5072. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a,
  5075. int n_past,
  5076. bool inplace) {
  5077. bool is_node = false;
  5078. if (a->grad) {
  5079. is_node = true;
  5080. }
  5081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5082. int32_t params[] = { n_past };
  5083. ggml_set_op_params(result, params, sizeof(params));
  5084. result->op = GGML_OP_DIAG_MASK_ZERO;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src[0] = a;
  5087. return result;
  5088. }
  5089. struct ggml_tensor * ggml_diag_mask_zero(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. int n_past) {
  5093. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5094. }
  5095. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. int n_past) {
  5099. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5100. }
  5101. // ggml_soft_max
  5102. static struct ggml_tensor * ggml_soft_max_impl(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * mask,
  5106. float scale,
  5107. float max_bias,
  5108. bool inplace) {
  5109. GGML_ASSERT(ggml_is_contiguous(a));
  5110. if (mask) {
  5111. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5112. GGML_ASSERT(ggml_is_contiguous(mask));
  5113. GGML_ASSERT(ggml_is_matrix(mask));
  5114. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5115. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5116. }
  5117. if (max_bias > 0.0f) {
  5118. GGML_ASSERT(mask);
  5119. }
  5120. bool is_node = false;
  5121. if (a->grad) {
  5122. is_node = true;
  5123. }
  5124. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5125. float params[] = { scale, max_bias };
  5126. ggml_set_op_params(result, params, sizeof(params));
  5127. result->op = GGML_OP_SOFT_MAX;
  5128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5129. result->src[0] = a;
  5130. result->src[1] = mask;
  5131. return result;
  5132. }
  5133. struct ggml_tensor * ggml_soft_max(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a) {
  5136. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5137. }
  5138. struct ggml_tensor * ggml_soft_max_inplace(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a) {
  5141. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5142. }
  5143. struct ggml_tensor * ggml_soft_max_ext(
  5144. struct ggml_context * ctx,
  5145. struct ggml_tensor * a,
  5146. struct ggml_tensor * mask,
  5147. float scale,
  5148. float max_bias) {
  5149. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5150. }
  5151. // ggml_soft_max_back
  5152. static struct ggml_tensor * ggml_soft_max_back_impl(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. struct ggml_tensor * b,
  5156. bool inplace) {
  5157. bool is_node = false;
  5158. if (a->grad || b->grad) {
  5159. is_node = true; // TODO : implement backward pass
  5160. }
  5161. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5162. result->op = GGML_OP_SOFT_MAX_BACK;
  5163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5164. result->src[0] = a;
  5165. result->src[1] = b;
  5166. return result;
  5167. }
  5168. struct ggml_tensor * ggml_soft_max_back(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * a,
  5171. struct ggml_tensor * b) {
  5172. return ggml_soft_max_back_impl(ctx, a, b, false);
  5173. }
  5174. struct ggml_tensor * ggml_soft_max_back_inplace(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a,
  5177. struct ggml_tensor * b) {
  5178. return ggml_soft_max_back_impl(ctx, a, b, true);
  5179. }
  5180. // ggml_rope
  5181. static struct ggml_tensor * ggml_rope_impl(
  5182. struct ggml_context * ctx,
  5183. struct ggml_tensor * a,
  5184. struct ggml_tensor * b,
  5185. struct ggml_tensor * c,
  5186. int n_dims,
  5187. int mode,
  5188. int n_ctx,
  5189. int n_orig_ctx,
  5190. float freq_base,
  5191. float freq_scale,
  5192. float ext_factor,
  5193. float attn_factor,
  5194. float beta_fast,
  5195. float beta_slow,
  5196. float xpos_base,
  5197. bool xpos_down,
  5198. bool inplace) {
  5199. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5200. GGML_ASSERT(ggml_is_vector(b));
  5201. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5202. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5203. if (c) {
  5204. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5205. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5206. }
  5207. bool is_node = false;
  5208. if (a->grad) {
  5209. is_node = true;
  5210. }
  5211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5212. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5213. memcpy(params + 5, &freq_base, sizeof(float));
  5214. memcpy(params + 6, &freq_scale, sizeof(float));
  5215. memcpy(params + 7, &ext_factor, sizeof(float));
  5216. memcpy(params + 8, &attn_factor, sizeof(float));
  5217. memcpy(params + 9, &beta_fast, sizeof(float));
  5218. memcpy(params + 10, &beta_slow, sizeof(float));
  5219. memcpy(params + 11, &xpos_base, sizeof(float));
  5220. memcpy(params + 12, &xpos_down, sizeof(bool));
  5221. ggml_set_op_params(result, params, sizeof(params));
  5222. result->op = GGML_OP_ROPE;
  5223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5224. result->src[0] = a;
  5225. result->src[1] = b;
  5226. result->src[2] = c;
  5227. return result;
  5228. }
  5229. struct ggml_tensor * ggml_rope(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. struct ggml_tensor * b,
  5233. int n_dims,
  5234. int mode,
  5235. int n_ctx) {
  5236. return ggml_rope_impl(
  5237. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5238. );
  5239. }
  5240. struct ggml_tensor * ggml_rope_inplace(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. struct ggml_tensor * b,
  5244. int n_dims,
  5245. int mode,
  5246. int n_ctx) {
  5247. return ggml_rope_impl(
  5248. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5249. );
  5250. }
  5251. struct ggml_tensor * ggml_rope_ext(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a,
  5254. struct ggml_tensor * b,
  5255. struct ggml_tensor * c,
  5256. int n_dims,
  5257. int mode,
  5258. int n_ctx,
  5259. int n_orig_ctx,
  5260. float freq_base,
  5261. float freq_scale,
  5262. float ext_factor,
  5263. float attn_factor,
  5264. float beta_fast,
  5265. float beta_slow) {
  5266. return ggml_rope_impl(
  5267. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5268. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5269. );
  5270. }
  5271. struct ggml_tensor * ggml_rope_ext_inplace(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. struct ggml_tensor * b,
  5275. struct ggml_tensor * c,
  5276. int n_dims,
  5277. int mode,
  5278. int n_ctx,
  5279. int n_orig_ctx,
  5280. float freq_base,
  5281. float freq_scale,
  5282. float ext_factor,
  5283. float attn_factor,
  5284. float beta_fast,
  5285. float beta_slow) {
  5286. return ggml_rope_impl(
  5287. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5288. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5289. );
  5290. }
  5291. struct ggml_tensor * ggml_rope_custom(
  5292. struct ggml_context * ctx,
  5293. struct ggml_tensor * a,
  5294. struct ggml_tensor * b,
  5295. int n_dims,
  5296. int mode,
  5297. int n_ctx,
  5298. int n_orig_ctx,
  5299. float freq_base,
  5300. float freq_scale,
  5301. float ext_factor,
  5302. float attn_factor,
  5303. float beta_fast,
  5304. float beta_slow) {
  5305. return ggml_rope_impl(
  5306. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5307. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5308. );
  5309. }
  5310. struct ggml_tensor * ggml_rope_custom_inplace(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. struct ggml_tensor * b,
  5314. int n_dims,
  5315. int mode,
  5316. int n_ctx,
  5317. int n_orig_ctx,
  5318. float freq_base,
  5319. float freq_scale,
  5320. float ext_factor,
  5321. float attn_factor,
  5322. float beta_fast,
  5323. float beta_slow) {
  5324. return ggml_rope_impl(
  5325. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5326. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5327. );
  5328. }
  5329. struct ggml_tensor * ggml_rope_xpos_inplace(
  5330. struct ggml_context * ctx,
  5331. struct ggml_tensor * a,
  5332. struct ggml_tensor * b,
  5333. int n_dims,
  5334. float base,
  5335. bool down) {
  5336. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5337. }
  5338. // ggml_rope_back
  5339. struct ggml_tensor * ggml_rope_back(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a,
  5342. struct ggml_tensor * b,
  5343. struct ggml_tensor * c,
  5344. int n_dims,
  5345. int mode,
  5346. int n_ctx,
  5347. int n_orig_ctx,
  5348. float freq_base,
  5349. float freq_scale,
  5350. float ext_factor,
  5351. float attn_factor,
  5352. float beta_fast,
  5353. float beta_slow,
  5354. float xpos_base,
  5355. bool xpos_down) {
  5356. GGML_ASSERT(ggml_is_vector(b));
  5357. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5358. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5359. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5360. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5361. bool is_node = false;
  5362. if (a->grad) {
  5363. is_node = false; // TODO: implement backward
  5364. }
  5365. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5366. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5367. memcpy(params + 5, &freq_base, sizeof(float));
  5368. memcpy(params + 6, &freq_scale, sizeof(float));
  5369. memcpy(params + 7, &ext_factor, sizeof(float));
  5370. memcpy(params + 8, &attn_factor, sizeof(float));
  5371. memcpy(params + 9, &beta_fast, sizeof(float));
  5372. memcpy(params + 10, &beta_slow, sizeof(float));
  5373. memcpy(params + 11, &xpos_base, sizeof(float));
  5374. memcpy(params + 12, &xpos_down, sizeof(bool));
  5375. ggml_set_op_params(result, params, sizeof(params));
  5376. result->op = GGML_OP_ROPE_BACK;
  5377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5378. result->src[0] = a;
  5379. result->src[1] = b;
  5380. return result;
  5381. }
  5382. // ggml_clamp
  5383. struct ggml_tensor * ggml_clamp(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. float min,
  5387. float max) {
  5388. bool is_node = false;
  5389. if (a->grad) {
  5390. GGML_ASSERT(false); // TODO: implement backward
  5391. is_node = true;
  5392. }
  5393. // TODO: when implement backward, fix this:
  5394. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5395. float params[] = { min, max };
  5396. ggml_set_op_params(result, params, sizeof(params));
  5397. result->op = GGML_OP_CLAMP;
  5398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5399. result->src[0] = a;
  5400. return result;
  5401. }
  5402. // ggml_conv_1d
  5403. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5404. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5405. }
  5406. GGML_API struct ggml_tensor * ggml_conv_1d(
  5407. struct ggml_context * ctx,
  5408. struct ggml_tensor * a,
  5409. struct ggml_tensor * b,
  5410. int s0,
  5411. int p0,
  5412. int d0) {
  5413. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5414. struct ggml_tensor * result =
  5415. ggml_mul_mat(ctx,
  5416. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5417. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5418. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5419. return result;
  5420. }
  5421. // ggml_conv_1d_ph
  5422. struct ggml_tensor* ggml_conv_1d_ph(
  5423. struct ggml_context * ctx,
  5424. struct ggml_tensor * a,
  5425. struct ggml_tensor * b,
  5426. int s,
  5427. int d) {
  5428. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5429. }
  5430. // ggml_conv_transpose_1d
  5431. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5432. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5433. }
  5434. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5435. struct ggml_context * ctx,
  5436. struct ggml_tensor * a,
  5437. struct ggml_tensor * b,
  5438. int s0,
  5439. int p0,
  5440. int d0) {
  5441. GGML_ASSERT(ggml_is_matrix(b));
  5442. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5443. GGML_ASSERT(a->ne[3] == 1);
  5444. GGML_ASSERT(p0 == 0);
  5445. GGML_ASSERT(d0 == 1);
  5446. bool is_node = false;
  5447. if (a->grad || b->grad) {
  5448. GGML_ASSERT(false); // TODO: implement backward
  5449. is_node = true;
  5450. }
  5451. const int64_t ne[4] = {
  5452. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5453. a->ne[1], b->ne[2], 1,
  5454. };
  5455. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5456. int32_t params[] = { s0, p0, d0 };
  5457. ggml_set_op_params(result, params, sizeof(params));
  5458. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src[0] = a;
  5461. result->src[1] = b;
  5462. return result;
  5463. }
  5464. // ggml_conv_depthwise
  5465. struct ggml_tensor * ggml_conv_depthwise_2d(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. struct ggml_tensor * b,
  5469. int s0,
  5470. int s1,
  5471. int p0,
  5472. int p1,
  5473. int d0,
  5474. int d1) {
  5475. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5476. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5477. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5478. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5479. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5480. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5481. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5482. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5483. return result;
  5484. }
  5485. // ggml_conv_2d
  5486. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5487. // a: [OC,IC, KH, KW]
  5488. // b: [N, IC, IH, IW]
  5489. // result: [N, OH, OW, IC*KH*KW]
  5490. struct ggml_tensor * ggml_im2col(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. struct ggml_tensor * b,
  5494. int s0,
  5495. int s1,
  5496. int p0,
  5497. int p1,
  5498. int d0,
  5499. int d1,
  5500. bool is_2D,
  5501. enum ggml_type dst_type) {
  5502. if(is_2D) {
  5503. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5504. } else {
  5505. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5506. }
  5507. bool is_node = false;
  5508. if (a->grad || b->grad) {
  5509. GGML_ASSERT(false); // TODO: implement backward
  5510. is_node = true;
  5511. }
  5512. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5513. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5514. const int64_t ne[4] = {
  5515. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5516. OW,
  5517. is_2D ? OH : b->ne[2],
  5518. is_2D ? b->ne[3] : 1,
  5519. };
  5520. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5521. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5522. ggml_set_op_params(result, params, sizeof(params));
  5523. result->op = GGML_OP_IM2COL;
  5524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5525. result->src[0] = a;
  5526. result->src[1] = b;
  5527. return result;
  5528. }
  5529. // a: [OC,IC, KH, KW]
  5530. // b: [N, IC, IH, IW]
  5531. // result: [N, OC, OH, OW]
  5532. struct ggml_tensor * ggml_conv_2d(
  5533. struct ggml_context * ctx,
  5534. struct ggml_tensor * a,
  5535. struct ggml_tensor * b,
  5536. int s0,
  5537. int s1,
  5538. int p0,
  5539. int p1,
  5540. int d0,
  5541. int d1) {
  5542. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5543. struct ggml_tensor * result =
  5544. ggml_mul_mat(ctx,
  5545. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5546. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5547. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5548. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5549. return result;
  5550. }
  5551. // ggml_conv_2d_sk_p0
  5552. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5553. struct ggml_context * ctx,
  5554. struct ggml_tensor * a,
  5555. struct ggml_tensor * b) {
  5556. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5557. }
  5558. // ggml_conv_2d_s1_ph
  5559. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5560. struct ggml_context * ctx,
  5561. struct ggml_tensor * a,
  5562. struct ggml_tensor * b) {
  5563. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5564. }
  5565. // ggml_conv_transpose_2d_p0
  5566. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5567. return (ins - 1) * s - 2 * p + ks;
  5568. }
  5569. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5570. struct ggml_context * ctx,
  5571. struct ggml_tensor * a,
  5572. struct ggml_tensor * b,
  5573. int stride) {
  5574. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5575. bool is_node = false;
  5576. if (a->grad || b->grad) {
  5577. GGML_ASSERT(false); // TODO: implement backward
  5578. is_node = true;
  5579. }
  5580. const int64_t ne[4] = {
  5581. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5582. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5583. a->ne[2], b->ne[3],
  5584. };
  5585. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5586. ggml_set_op_params_i32(result, 0, stride);
  5587. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5589. result->src[0] = a;
  5590. result->src[1] = b;
  5591. return result;
  5592. }
  5593. // ggml_pool_*
  5594. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5595. return (ins + 2 * p - ks) / s + 1;
  5596. }
  5597. // ggml_pool_1d
  5598. struct ggml_tensor * ggml_pool_1d(
  5599. struct ggml_context * ctx,
  5600. struct ggml_tensor * a,
  5601. enum ggml_op_pool op,
  5602. int k0,
  5603. int s0,
  5604. int p0) {
  5605. bool is_node = false;
  5606. if (a->grad) {
  5607. GGML_ASSERT(false); // TODO: implement backward
  5608. is_node = true;
  5609. }
  5610. const int64_t ne[4] = {
  5611. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5612. a->ne[1],
  5613. a->ne[2],
  5614. a->ne[3],
  5615. };
  5616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5617. int32_t params[] = { op, k0, s0, p0 };
  5618. ggml_set_op_params(result, params, sizeof(params));
  5619. result->op = GGML_OP_POOL_1D;
  5620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5621. result->src[0] = a;
  5622. return result;
  5623. }
  5624. // ggml_pool_2d
  5625. struct ggml_tensor * ggml_pool_2d(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * a,
  5628. enum ggml_op_pool op,
  5629. int k0,
  5630. int k1,
  5631. int s0,
  5632. int s1,
  5633. float p0,
  5634. float p1) {
  5635. bool is_node = false;
  5636. if (a->grad) {
  5637. GGML_ASSERT(false); // TODO: implement backward
  5638. is_node = true;
  5639. }
  5640. struct ggml_tensor * result;
  5641. const int64_t ne[3] = {
  5642. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5643. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5644. a->ne[2],
  5645. };
  5646. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5647. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5648. ggml_set_op_params(result, params, sizeof(params));
  5649. result->op = GGML_OP_POOL_2D;
  5650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5651. result->src[0] = a;
  5652. return result;
  5653. }
  5654. // ggml_upscale
  5655. static struct ggml_tensor * ggml_upscale_impl(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * a,
  5658. int ne0,
  5659. int ne1,
  5660. int ne2,
  5661. int ne3) {
  5662. bool is_node = false;
  5663. if (a->grad) {
  5664. GGML_ASSERT(false); // TODO: implement backward
  5665. is_node = true;
  5666. }
  5667. GGML_ASSERT(a->ne[0] <= ne0);
  5668. GGML_ASSERT(a->ne[1] <= ne1);
  5669. GGML_ASSERT(a->ne[2] <= ne2);
  5670. GGML_ASSERT(a->ne[3] <= ne3);
  5671. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5672. ne0,
  5673. ne1,
  5674. ne2,
  5675. ne3
  5676. );
  5677. result->op = GGML_OP_UPSCALE;
  5678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5679. result->src[0] = a;
  5680. return result;
  5681. }
  5682. struct ggml_tensor * ggml_upscale(
  5683. struct ggml_context * ctx,
  5684. struct ggml_tensor * a,
  5685. int scale_factor) {
  5686. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5687. }
  5688. struct ggml_tensor * ggml_upscale_ext(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. int ne0,
  5692. int ne1,
  5693. int ne2,
  5694. int ne3) {
  5695. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5696. }
  5697. // ggml_pad
  5698. struct ggml_tensor * ggml_pad(
  5699. struct ggml_context * ctx,
  5700. struct ggml_tensor * a,
  5701. int p0, int p1, int p2, int p3) {
  5702. bool is_node = false;
  5703. if (a->grad) {
  5704. GGML_ASSERT(false); // TODO: implement backward
  5705. is_node = true;
  5706. }
  5707. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5708. a->ne[0] + p0,
  5709. a->ne[1] + p1,
  5710. a->ne[2] + p2,
  5711. a->ne[3] + p3);
  5712. result->op = GGML_OP_PAD;
  5713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5714. result->src[0] = a;
  5715. return result;
  5716. }
  5717. // ggml_arange
  5718. struct ggml_tensor * ggml_arange(
  5719. struct ggml_context * ctx,
  5720. float start,
  5721. float stop,
  5722. float step) {
  5723. GGML_ASSERT(stop > start);
  5724. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5725. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5726. result->op = GGML_OP_ARANGE;
  5727. ggml_set_op_params_f32(result, 0, start);
  5728. ggml_set_op_params_f32(result, 1, stop);
  5729. ggml_set_op_params_f32(result, 2, step);
  5730. return result;
  5731. }
  5732. // ggml_timestep_embedding
  5733. struct ggml_tensor * ggml_timestep_embedding(
  5734. struct ggml_context * ctx,
  5735. struct ggml_tensor * timesteps,
  5736. int dim,
  5737. int max_period) {
  5738. bool is_node = false;
  5739. if (timesteps->grad) {
  5740. GGML_ASSERT(false); // TODO: implement backward
  5741. is_node = true;
  5742. }
  5743. int actual_dim = dim;
  5744. if (dim % 2 != 0) {
  5745. actual_dim = dim + 1;
  5746. }
  5747. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5748. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5749. ggml_set_op_params_i32(result, 0, dim);
  5750. ggml_set_op_params_i32(result, 1, max_period);
  5751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5752. result->src[0] = timesteps;
  5753. return result;
  5754. }
  5755. // ggml_argsort
  5756. struct ggml_tensor * ggml_argsort(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * a,
  5759. enum ggml_sort_order order) {
  5760. bool is_node = false;
  5761. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5762. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5763. result->op = GGML_OP_ARGSORT;
  5764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5765. result->src[0] = a;
  5766. return result;
  5767. }
  5768. // ggml_top_k
  5769. struct ggml_tensor * ggml_top_k(
  5770. struct ggml_context * ctx,
  5771. struct ggml_tensor * a,
  5772. int k) {
  5773. GGML_ASSERT(a->ne[0] >= k);
  5774. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5775. result = ggml_view_4d(ctx, result,
  5776. k, result->ne[1], result->ne[2], result->ne[3],
  5777. result->nb[1], result->nb[2], result->nb[3],
  5778. 0);
  5779. return result;
  5780. }
  5781. // ggml_flash_attn_ext
  5782. struct ggml_tensor * ggml_flash_attn_ext(
  5783. struct ggml_context * ctx,
  5784. struct ggml_tensor * q,
  5785. struct ggml_tensor * k,
  5786. struct ggml_tensor * v,
  5787. struct ggml_tensor * mask,
  5788. float scale,
  5789. float max_bias) {
  5790. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5791. // TODO: check if vT can be multiplied by (k*qT)
  5792. if (mask) {
  5793. GGML_ASSERT(ggml_is_contiguous(mask));
  5794. GGML_ASSERT(mask->ne[2] == 1);
  5795. GGML_ASSERT(mask->ne[3] == 1);
  5796. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5797. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5798. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5799. }
  5800. if (max_bias > 0.0f) {
  5801. GGML_ASSERT(mask);
  5802. }
  5803. bool is_node = false;
  5804. if (q->grad || k->grad || v->grad) {
  5805. is_node = true;
  5806. }
  5807. // permute(0, 2, 1, 3)
  5808. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5809. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5810. float params[] = { scale, max_bias };
  5811. ggml_set_op_params(result, params, sizeof(params));
  5812. result->op = GGML_OP_FLASH_ATTN_EXT;
  5813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5814. result->src[0] = q;
  5815. result->src[1] = k;
  5816. result->src[2] = v;
  5817. result->src[3] = mask;
  5818. return result;
  5819. }
  5820. void ggml_flash_attn_ext_set_prec(
  5821. struct ggml_tensor * a,
  5822. enum ggml_prec prec) {
  5823. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5824. const int32_t prec_i32 = (int32_t) prec;
  5825. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5826. }
  5827. // ggml_flash_attn_back
  5828. struct ggml_tensor * ggml_flash_attn_back(
  5829. struct ggml_context * ctx,
  5830. struct ggml_tensor * q,
  5831. struct ggml_tensor * k,
  5832. struct ggml_tensor * v,
  5833. struct ggml_tensor * d,
  5834. bool masked) {
  5835. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5836. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5837. // TODO: check if vT can be multiplied by (k*qT)
  5838. // d shape [D,N,ne2,ne3]
  5839. // q shape [D,N,ne2,ne3]
  5840. // k shape [D,M,kvne2,ne3]
  5841. // v shape [M,D,kvne2,ne3]
  5842. const int64_t D = q->ne[0];
  5843. const int64_t N = q->ne[1];
  5844. const int64_t M = k->ne[1];
  5845. const int64_t ne2 = q->ne[2];
  5846. const int64_t ne3 = q->ne[3];
  5847. const int64_t kvne2 = k->ne[2];
  5848. GGML_ASSERT(k->ne[0] == D);
  5849. GGML_ASSERT(v->ne[0] == M);
  5850. GGML_ASSERT(v->ne[1] == D);
  5851. GGML_ASSERT(d->ne[0] == D);
  5852. GGML_ASSERT(d->ne[1] == N);
  5853. GGML_ASSERT(k->ne[2] == kvne2);
  5854. GGML_ASSERT(k->ne[3] == ne3);
  5855. GGML_ASSERT(v->ne[2] == kvne2);
  5856. GGML_ASSERT(v->ne[3] == ne3);
  5857. GGML_ASSERT(d->ne[2] == ne2);
  5858. GGML_ASSERT(d->ne[3] == ne3);
  5859. GGML_ASSERT(ne2 % kvne2 == 0);
  5860. bool is_node = false;
  5861. if (q->grad || k->grad || v->grad) {
  5862. // when using this operation (in backwards pass) these grads are set.
  5863. // we don't want to create (big) grad of our result, so is_node is false.
  5864. is_node = false;
  5865. }
  5866. // store gradients of q, k and v as continuous tensors concatenated in result.
  5867. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5868. const int64_t elem_q = ggml_nelements(q);
  5869. const int64_t elem_k = ggml_nelements(k);
  5870. const int64_t elem_v = ggml_nelements(v);
  5871. enum ggml_type result_type = GGML_TYPE_F32;
  5872. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5873. const size_t tsize = ggml_type_size(result_type);
  5874. const size_t offs_q = 0;
  5875. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5876. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5877. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5878. const size_t nelements = (end + tsize - 1)/tsize;
  5879. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5880. int32_t masked_i = masked ? 1 : 0;
  5881. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5882. result->op = GGML_OP_FLASH_ATTN_BACK;
  5883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5884. result->src[0] = q;
  5885. result->src[1] = k;
  5886. result->src[2] = v;
  5887. result->src[3] = d;
  5888. return result;
  5889. }
  5890. // ggml_ssm_conv
  5891. struct ggml_tensor * ggml_ssm_conv(
  5892. struct ggml_context * ctx,
  5893. struct ggml_tensor * s,
  5894. struct ggml_tensor * x,
  5895. struct ggml_tensor * c,
  5896. struct ggml_tensor * sq) {
  5897. GGML_ASSERT(ggml_is_3d(s));
  5898. GGML_ASSERT(ggml_is_matrix(x));
  5899. GGML_ASSERT(ggml_is_matrix(c));
  5900. GGML_ASSERT(ggml_is_matrix(sq));
  5901. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5902. const int64_t d_conv = c->ne[0];
  5903. const int64_t d_inner = c->ne[1];
  5904. const int64_t n_tokens = x->ne[1];
  5905. const int64_t n_kv = s->ne[2];
  5906. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5907. GGML_ASSERT( s->ne[1] == d_inner);
  5908. GGML_ASSERT( x->ne[0] == d_inner);
  5909. GGML_ASSERT(sq->ne[0] == n_kv);
  5910. GGML_ASSERT(sq->ne[1] == n_tokens);
  5911. bool is_node = false;
  5912. if (s->grad || x->grad || c->grad || sq->grad) {
  5913. GGML_ASSERT(false); // TODO: implement
  5914. is_node = true;
  5915. }
  5916. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5917. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5918. result->op = GGML_OP_SSM_CONV;
  5919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5920. result->src[0] = s;
  5921. result->src[1] = x;
  5922. result->src[2] = c;
  5923. result->src[3] = sq;
  5924. return result;
  5925. }
  5926. // ggml_ssm_scan
  5927. struct ggml_tensor * ggml_ssm_scan(
  5928. struct ggml_context * ctx,
  5929. struct ggml_tensor * s,
  5930. struct ggml_tensor * x,
  5931. struct ggml_tensor * dt,
  5932. struct ggml_tensor * A,
  5933. struct ggml_tensor * B,
  5934. struct ggml_tensor * C,
  5935. struct ggml_tensor * sq) {
  5936. GGML_ASSERT(ggml_is_contiguous(s));
  5937. GGML_ASSERT(ggml_is_contiguous(x));
  5938. GGML_ASSERT(ggml_is_contiguous(dt));
  5939. GGML_ASSERT(ggml_is_contiguous(A));
  5940. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5941. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5942. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5943. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5944. {
  5945. const int64_t d_state = s->ne[0];
  5946. const int64_t d_inner = s->ne[1];
  5947. const int64_t n_tokens = x->ne[1];
  5948. GGML_ASSERT(x->ne[0] == d_inner);
  5949. GGML_ASSERT(A->ne[0] == d_state);
  5950. GGML_ASSERT(A->ne[1] == d_inner);
  5951. GGML_ASSERT(B->ne[0] == d_state);
  5952. GGML_ASSERT(B->ne[1] == n_tokens);
  5953. GGML_ASSERT(C->ne[0] == d_state);
  5954. GGML_ASSERT(C->ne[1] == n_tokens);
  5955. }
  5956. bool is_node = false;
  5957. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5958. GGML_ASSERT(false); // TODO: implement
  5959. is_node = true;
  5960. }
  5961. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5962. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5963. result->op = GGML_OP_SSM_SCAN;
  5964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5965. result->src[0] = s;
  5966. result->src[1] = x;
  5967. result->src[2] = dt;
  5968. result->src[3] = A;
  5969. result->src[4] = B;
  5970. result->src[5] = C;
  5971. result->src[6] = sq;
  5972. return result;
  5973. }
  5974. // ggml_win_part
  5975. struct ggml_tensor * ggml_win_part(
  5976. struct ggml_context * ctx,
  5977. struct ggml_tensor * a,
  5978. int w) {
  5979. GGML_ASSERT(a->ne[3] == 1);
  5980. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5981. bool is_node = false;
  5982. if (a->grad) {
  5983. GGML_ASSERT(false); // TODO: implement backward
  5984. is_node = true;
  5985. }
  5986. // padding
  5987. const int px = (w - a->ne[1]%w)%w;
  5988. const int py = (w - a->ne[2]%w)%w;
  5989. const int npx = (px + a->ne[1])/w;
  5990. const int npy = (py + a->ne[2])/w;
  5991. const int np = npx*npy;
  5992. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5993. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5994. int32_t params[] = { npx, npy, w };
  5995. ggml_set_op_params(result, params, sizeof(params));
  5996. result->op = GGML_OP_WIN_PART;
  5997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5998. result->src[0] = a;
  5999. return result;
  6000. }
  6001. // ggml_win_unpart
  6002. struct ggml_tensor * ggml_win_unpart(
  6003. struct ggml_context * ctx,
  6004. struct ggml_tensor * a,
  6005. int w0,
  6006. int h0,
  6007. int w) {
  6008. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6009. bool is_node = false;
  6010. if (a->grad) {
  6011. GGML_ASSERT(false); // TODO: implement backward
  6012. is_node = true;
  6013. }
  6014. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6015. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6016. int32_t params[] = { w };
  6017. ggml_set_op_params(result, params, sizeof(params));
  6018. result->op = GGML_OP_WIN_UNPART;
  6019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6020. result->src[0] = a;
  6021. return result;
  6022. }
  6023. // ggml_get_rel_pos
  6024. struct ggml_tensor * ggml_get_rel_pos(
  6025. struct ggml_context * ctx,
  6026. struct ggml_tensor * a,
  6027. int qh,
  6028. int kh) {
  6029. GGML_ASSERT(qh == kh);
  6030. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6031. bool is_node = false;
  6032. if (a->grad) {
  6033. GGML_ASSERT(false); // TODO: implement backward
  6034. is_node = true;
  6035. }
  6036. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6038. result->op = GGML_OP_GET_REL_POS;
  6039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6040. result->src[0] = a;
  6041. return result;
  6042. }
  6043. // ggml_add_rel_pos
  6044. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6045. struct ggml_context * ctx,
  6046. struct ggml_tensor * a,
  6047. struct ggml_tensor * pw,
  6048. struct ggml_tensor * ph,
  6049. bool inplace) {
  6050. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6051. GGML_ASSERT(ggml_is_contiguous(a));
  6052. GGML_ASSERT(ggml_is_contiguous(pw));
  6053. GGML_ASSERT(ggml_is_contiguous(ph));
  6054. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6055. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6056. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6057. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6058. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6059. bool is_node = false;
  6060. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6061. is_node = true;
  6062. }
  6063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6064. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6065. result->op = GGML_OP_ADD_REL_POS;
  6066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6067. result->src[0] = a;
  6068. result->src[1] = pw;
  6069. result->src[2] = ph;
  6070. return result;
  6071. }
  6072. struct ggml_tensor * ggml_add_rel_pos(
  6073. struct ggml_context * ctx,
  6074. struct ggml_tensor * a,
  6075. struct ggml_tensor * pw,
  6076. struct ggml_tensor * ph) {
  6077. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6078. }
  6079. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6080. struct ggml_context * ctx,
  6081. struct ggml_tensor * a,
  6082. struct ggml_tensor * pw,
  6083. struct ggml_tensor * ph) {
  6084. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6085. }
  6086. // gmml_unary
  6087. static struct ggml_tensor * ggml_unary_impl(
  6088. struct ggml_context * ctx,
  6089. struct ggml_tensor * a,
  6090. enum ggml_unary_op op,
  6091. bool inplace) {
  6092. bool is_node = false;
  6093. if (!inplace && (a->grad)) {
  6094. is_node = true;
  6095. }
  6096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6097. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6098. result->op = GGML_OP_UNARY;
  6099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6100. result->src[0] = a;
  6101. return result;
  6102. }
  6103. struct ggml_tensor * ggml_unary(
  6104. struct ggml_context * ctx,
  6105. struct ggml_tensor * a,
  6106. enum ggml_unary_op op) {
  6107. return ggml_unary_impl(ctx, a, op, false);
  6108. }
  6109. struct ggml_tensor * ggml_unary_inplace(
  6110. struct ggml_context * ctx,
  6111. struct ggml_tensor * a,
  6112. enum ggml_unary_op op) {
  6113. return ggml_unary_impl(ctx, a, op, true);
  6114. }
  6115. // ggml_map_unary
  6116. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6117. struct ggml_context * ctx,
  6118. struct ggml_tensor * a,
  6119. const ggml_unary_op_f32_t fun,
  6120. bool inplace) {
  6121. bool is_node = false;
  6122. if (!inplace && a->grad) {
  6123. is_node = true;
  6124. }
  6125. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6126. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6127. result->op = GGML_OP_MAP_UNARY;
  6128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6129. result->src[0] = a;
  6130. return result;
  6131. }
  6132. struct ggml_tensor * ggml_map_unary_f32(
  6133. struct ggml_context * ctx,
  6134. struct ggml_tensor * a,
  6135. const ggml_unary_op_f32_t fun) {
  6136. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6137. }
  6138. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6139. struct ggml_context * ctx,
  6140. struct ggml_tensor * a,
  6141. const ggml_unary_op_f32_t fun) {
  6142. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6143. }
  6144. // ggml_map_binary
  6145. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6146. struct ggml_context * ctx,
  6147. struct ggml_tensor * a,
  6148. struct ggml_tensor * b,
  6149. const ggml_binary_op_f32_t fun,
  6150. bool inplace) {
  6151. GGML_ASSERT(ggml_are_same_shape(a, b));
  6152. bool is_node = false;
  6153. if (!inplace && (a->grad || b->grad)) {
  6154. is_node = true;
  6155. }
  6156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6157. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6158. result->op = GGML_OP_MAP_BINARY;
  6159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6160. result->src[0] = a;
  6161. result->src[1] = b;
  6162. return result;
  6163. }
  6164. struct ggml_tensor * ggml_map_binary_f32(
  6165. struct ggml_context * ctx,
  6166. struct ggml_tensor * a,
  6167. struct ggml_tensor * b,
  6168. const ggml_binary_op_f32_t fun) {
  6169. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6170. }
  6171. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6172. struct ggml_context * ctx,
  6173. struct ggml_tensor * a,
  6174. struct ggml_tensor * b,
  6175. const ggml_binary_op_f32_t fun) {
  6176. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6177. }
  6178. // ggml_map_custom1_f32
  6179. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6180. struct ggml_context * ctx,
  6181. struct ggml_tensor * a,
  6182. const ggml_custom1_op_f32_t fun,
  6183. bool inplace) {
  6184. bool is_node = false;
  6185. if (!inplace && a->grad) {
  6186. is_node = true;
  6187. }
  6188. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6189. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6190. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6192. result->src[0] = a;
  6193. return result;
  6194. }
  6195. struct ggml_tensor * ggml_map_custom1_f32(
  6196. struct ggml_context * ctx,
  6197. struct ggml_tensor * a,
  6198. const ggml_custom1_op_f32_t fun) {
  6199. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6200. }
  6201. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6202. struct ggml_context * ctx,
  6203. struct ggml_tensor * a,
  6204. const ggml_custom1_op_f32_t fun) {
  6205. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6206. }
  6207. // ggml_map_custom2_f32
  6208. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6209. struct ggml_context * ctx,
  6210. struct ggml_tensor * a,
  6211. struct ggml_tensor * b,
  6212. const ggml_custom2_op_f32_t fun,
  6213. bool inplace) {
  6214. bool is_node = false;
  6215. if (!inplace && (a->grad || b->grad)) {
  6216. is_node = true;
  6217. }
  6218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6219. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6220. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6222. result->src[0] = a;
  6223. result->src[1] = b;
  6224. return result;
  6225. }
  6226. struct ggml_tensor * ggml_map_custom2_f32(
  6227. struct ggml_context * ctx,
  6228. struct ggml_tensor * a,
  6229. struct ggml_tensor * b,
  6230. const ggml_custom2_op_f32_t fun) {
  6231. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6232. }
  6233. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6234. struct ggml_context * ctx,
  6235. struct ggml_tensor * a,
  6236. struct ggml_tensor * b,
  6237. const ggml_custom2_op_f32_t fun) {
  6238. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6239. }
  6240. // ggml_map_custom3_f32
  6241. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6242. struct ggml_context * ctx,
  6243. struct ggml_tensor * a,
  6244. struct ggml_tensor * b,
  6245. struct ggml_tensor * c,
  6246. const ggml_custom3_op_f32_t fun,
  6247. bool inplace) {
  6248. bool is_node = false;
  6249. if (!inplace && (a->grad || b->grad || c->grad)) {
  6250. is_node = true;
  6251. }
  6252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6253. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6254. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6256. result->src[0] = a;
  6257. result->src[1] = b;
  6258. result->src[2] = c;
  6259. return result;
  6260. }
  6261. struct ggml_tensor * ggml_map_custom3_f32(
  6262. struct ggml_context * ctx,
  6263. struct ggml_tensor * a,
  6264. struct ggml_tensor * b,
  6265. struct ggml_tensor * c,
  6266. const ggml_custom3_op_f32_t fun) {
  6267. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6268. }
  6269. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6270. struct ggml_context * ctx,
  6271. struct ggml_tensor * a,
  6272. struct ggml_tensor * b,
  6273. struct ggml_tensor * c,
  6274. const ggml_custom3_op_f32_t fun) {
  6275. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6276. }
  6277. // ggml_map_custom1
  6278. struct ggml_map_custom1_op_params {
  6279. ggml_custom1_op_t fun;
  6280. int n_tasks;
  6281. void * userdata;
  6282. };
  6283. static struct ggml_tensor * ggml_map_custom1_impl(
  6284. struct ggml_context * ctx,
  6285. struct ggml_tensor * a,
  6286. const ggml_custom1_op_t fun,
  6287. int n_tasks,
  6288. void * userdata,
  6289. bool inplace) {
  6290. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6291. bool is_node = false;
  6292. if (!inplace && a->grad) {
  6293. is_node = true;
  6294. }
  6295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6296. struct ggml_map_custom1_op_params params = {
  6297. /*.fun =*/ fun,
  6298. /*.n_tasks =*/ n_tasks,
  6299. /*.userdata =*/ userdata
  6300. };
  6301. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6302. result->op = GGML_OP_MAP_CUSTOM1;
  6303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6304. result->src[0] = a;
  6305. return result;
  6306. }
  6307. struct ggml_tensor * ggml_map_custom1(
  6308. struct ggml_context * ctx,
  6309. struct ggml_tensor * a,
  6310. const ggml_custom1_op_t fun,
  6311. int n_tasks,
  6312. void * userdata) {
  6313. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6314. }
  6315. struct ggml_tensor * ggml_map_custom1_inplace(
  6316. struct ggml_context * ctx,
  6317. struct ggml_tensor * a,
  6318. const ggml_custom1_op_t fun,
  6319. int n_tasks,
  6320. void * userdata) {
  6321. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6322. }
  6323. // ggml_map_custom2
  6324. struct ggml_map_custom2_op_params {
  6325. ggml_custom2_op_t fun;
  6326. int n_tasks;
  6327. void * userdata;
  6328. };
  6329. static struct ggml_tensor * ggml_map_custom2_impl(
  6330. struct ggml_context * ctx,
  6331. struct ggml_tensor * a,
  6332. struct ggml_tensor * b,
  6333. const ggml_custom2_op_t fun,
  6334. int n_tasks,
  6335. void * userdata,
  6336. bool inplace) {
  6337. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6338. bool is_node = false;
  6339. if (!inplace && (a->grad || b->grad)) {
  6340. is_node = true;
  6341. }
  6342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6343. struct ggml_map_custom2_op_params params = {
  6344. /*.fun =*/ fun,
  6345. /*.n_tasks =*/ n_tasks,
  6346. /*.userdata =*/ userdata
  6347. };
  6348. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6349. result->op = GGML_OP_MAP_CUSTOM2;
  6350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6351. result->src[0] = a;
  6352. result->src[1] = b;
  6353. return result;
  6354. }
  6355. struct ggml_tensor * ggml_map_custom2(
  6356. struct ggml_context * ctx,
  6357. struct ggml_tensor * a,
  6358. struct ggml_tensor * b,
  6359. const ggml_custom2_op_t fun,
  6360. int n_tasks,
  6361. void * userdata) {
  6362. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6363. }
  6364. struct ggml_tensor * ggml_map_custom2_inplace(
  6365. struct ggml_context * ctx,
  6366. struct ggml_tensor * a,
  6367. struct ggml_tensor * b,
  6368. const ggml_custom2_op_t fun,
  6369. int n_tasks,
  6370. void * userdata) {
  6371. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6372. }
  6373. // ggml_map_custom3
  6374. struct ggml_map_custom3_op_params {
  6375. ggml_custom3_op_t fun;
  6376. int n_tasks;
  6377. void * userdata;
  6378. };
  6379. static struct ggml_tensor * ggml_map_custom3_impl(
  6380. struct ggml_context * ctx,
  6381. struct ggml_tensor * a,
  6382. struct ggml_tensor * b,
  6383. struct ggml_tensor * c,
  6384. const ggml_custom3_op_t fun,
  6385. int n_tasks,
  6386. void * userdata,
  6387. bool inplace) {
  6388. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6389. bool is_node = false;
  6390. if (!inplace && (a->grad || b->grad || c->grad)) {
  6391. is_node = true;
  6392. }
  6393. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6394. struct ggml_map_custom3_op_params params = {
  6395. /*.fun =*/ fun,
  6396. /*.n_tasks =*/ n_tasks,
  6397. /*.userdata =*/ userdata
  6398. };
  6399. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6400. result->op = GGML_OP_MAP_CUSTOM3;
  6401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6402. result->src[0] = a;
  6403. result->src[1] = b;
  6404. result->src[2] = c;
  6405. return result;
  6406. }
  6407. struct ggml_tensor * ggml_map_custom3(
  6408. struct ggml_context * ctx,
  6409. struct ggml_tensor * a,
  6410. struct ggml_tensor * b,
  6411. struct ggml_tensor * c,
  6412. const ggml_custom3_op_t fun,
  6413. int n_tasks,
  6414. void * userdata) {
  6415. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6416. }
  6417. struct ggml_tensor * ggml_map_custom3_inplace(
  6418. struct ggml_context * ctx,
  6419. struct ggml_tensor * a,
  6420. struct ggml_tensor * b,
  6421. struct ggml_tensor * c,
  6422. const ggml_custom3_op_t fun,
  6423. int n_tasks,
  6424. void * userdata) {
  6425. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6426. }
  6427. // ggml_cross_entropy_loss
  6428. struct ggml_tensor * ggml_cross_entropy_loss(
  6429. struct ggml_context * ctx,
  6430. struct ggml_tensor * a,
  6431. struct ggml_tensor * b) {
  6432. GGML_ASSERT(ggml_are_same_shape(a, b));
  6433. bool is_node = false;
  6434. if (a->grad || b->grad) {
  6435. is_node = true;
  6436. }
  6437. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6438. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6440. result->src[0] = a;
  6441. result->src[1] = b;
  6442. return result;
  6443. }
  6444. // ggml_cross_entropy_loss_back
  6445. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6446. struct ggml_context * ctx,
  6447. struct ggml_tensor * a,
  6448. struct ggml_tensor * b,
  6449. struct ggml_tensor * c) {
  6450. GGML_ASSERT(ggml_are_same_shape(a, b));
  6451. GGML_ASSERT(ggml_is_scalar(c));
  6452. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6453. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6454. result->grad = NULL;
  6455. result->src[0] = a;
  6456. result->src[1] = b;
  6457. result->src[2] = c;
  6458. return result;
  6459. }
  6460. ////////////////////////////////////////////////////////////////////////////////
  6461. void ggml_set_param(
  6462. struct ggml_context * ctx,
  6463. struct ggml_tensor * tensor) {
  6464. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6465. GGML_ASSERT(tensor->grad == NULL);
  6466. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6467. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6468. }
  6469. // ggml_compute_forward_dup
  6470. static void ggml_compute_forward_dup_same_cont(
  6471. const struct ggml_compute_params * params,
  6472. struct ggml_tensor * dst) {
  6473. const struct ggml_tensor * src0 = dst->src[0];
  6474. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6475. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6476. GGML_ASSERT(src0->type == dst->type);
  6477. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6478. return;
  6479. }
  6480. const size_t nb00 = src0->nb[0];
  6481. const size_t nb0 = dst->nb[0];
  6482. const int ith = params->ith; // thread index
  6483. const int nth = params->nth; // number of threads
  6484. // parallelize by elements
  6485. const int ne = ggml_nelements(dst);
  6486. const int dr = (ne + nth - 1) / nth;
  6487. const int ie0 = dr * ith;
  6488. const int ie1 = MIN(ie0 + dr, ne);
  6489. if (ie0 < ie1) {
  6490. memcpy(
  6491. ((char *) dst->data + ie0*nb0),
  6492. ((char *) src0->data + ie0*nb00),
  6493. (ie1 - ie0) * ggml_type_size(src0->type));
  6494. }
  6495. }
  6496. static void ggml_compute_forward_dup_f16(
  6497. const struct ggml_compute_params * params,
  6498. struct ggml_tensor * dst) {
  6499. const struct ggml_tensor * src0 = dst->src[0];
  6500. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6501. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6502. return;
  6503. }
  6504. GGML_TENSOR_UNARY_OP_LOCALS
  6505. const int ith = params->ith; // thread index
  6506. const int nth = params->nth; // number of threads
  6507. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6508. ggml_compute_forward_dup_same_cont(params, dst);
  6509. return;
  6510. }
  6511. // parallelize by rows
  6512. const int nr = ne01;
  6513. // number of rows per thread
  6514. const int dr = (nr + nth - 1) / nth;
  6515. // row range for this thread
  6516. const int ir0 = dr * ith;
  6517. const int ir1 = MIN(ir0 + dr, nr);
  6518. if (src0->type == dst->type &&
  6519. ne00 == ne0 &&
  6520. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6521. // copy by rows
  6522. const size_t rs = ne00*nb00;
  6523. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6524. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6525. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6526. memcpy(
  6527. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6528. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6529. rs);
  6530. }
  6531. }
  6532. }
  6533. return;
  6534. }
  6535. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6536. if (ggml_is_contiguous(dst)) {
  6537. if (nb00 == sizeof(ggml_fp16_t)) {
  6538. if (dst->type == GGML_TYPE_F16) {
  6539. size_t id = 0;
  6540. const size_t rs = ne00 * nb00;
  6541. char * dst_ptr = (char *) dst->data;
  6542. for (int i03 = 0; i03 < ne03; i03++) {
  6543. for (int i02 = 0; i02 < ne02; i02++) {
  6544. id += rs * ir0;
  6545. for (int i01 = ir0; i01 < ir1; i01++) {
  6546. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6547. memcpy(dst_ptr + id, src0_ptr, rs);
  6548. id += rs;
  6549. }
  6550. id += rs * (ne01 - ir1);
  6551. }
  6552. }
  6553. } else if (dst->type == GGML_TYPE_F32) {
  6554. size_t id = 0;
  6555. float * dst_ptr = (float *) dst->data;
  6556. for (int i03 = 0; i03 < ne03; i03++) {
  6557. for (int i02 = 0; i02 < ne02; i02++) {
  6558. id += ne00 * ir0;
  6559. for (int i01 = ir0; i01 < ir1; i01++) {
  6560. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6561. for (int i00 = 0; i00 < ne00; i00++) {
  6562. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6563. id++;
  6564. }
  6565. }
  6566. id += ne00 * (ne01 - ir1);
  6567. }
  6568. }
  6569. } else if (type_traits[dst->type].from_float) {
  6570. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6571. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6572. size_t id = 0;
  6573. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6574. char * dst_ptr = (char *) dst->data;
  6575. for (int i03 = 0; i03 < ne03; i03++) {
  6576. for (int i02 = 0; i02 < ne02; i02++) {
  6577. id += rs * ir0;
  6578. for (int i01 = ir0; i01 < ir1; i01++) {
  6579. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6580. for (int i00 = 0; i00 < ne00; i00++) {
  6581. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6582. }
  6583. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6584. id += rs;
  6585. }
  6586. id += rs * (ne01 - ir1);
  6587. }
  6588. }
  6589. } else {
  6590. GGML_ASSERT(false); // TODO: implement
  6591. }
  6592. } else {
  6593. //printf("%s: this is not optimal - fix me\n", __func__);
  6594. if (dst->type == GGML_TYPE_F32) {
  6595. size_t id = 0;
  6596. float * dst_ptr = (float *) dst->data;
  6597. for (int i03 = 0; i03 < ne03; i03++) {
  6598. for (int i02 = 0; i02 < ne02; i02++) {
  6599. id += ne00 * ir0;
  6600. for (int i01 = ir0; i01 < ir1; i01++) {
  6601. for (int i00 = 0; i00 < ne00; i00++) {
  6602. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6603. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6604. id++;
  6605. }
  6606. }
  6607. id += ne00 * (ne01 - ir1);
  6608. }
  6609. }
  6610. } else if (dst->type == GGML_TYPE_F16) {
  6611. size_t id = 0;
  6612. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6613. for (int i03 = 0; i03 < ne03; i03++) {
  6614. for (int i02 = 0; i02 < ne02; i02++) {
  6615. id += ne00 * ir0;
  6616. for (int i01 = ir0; i01 < ir1; i01++) {
  6617. for (int i00 = 0; i00 < ne00; i00++) {
  6618. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6619. dst_ptr[id] = *src0_ptr;
  6620. id++;
  6621. }
  6622. }
  6623. id += ne00 * (ne01 - ir1);
  6624. }
  6625. }
  6626. } else {
  6627. GGML_ASSERT(false); // TODO: implement
  6628. }
  6629. }
  6630. return;
  6631. }
  6632. // dst counters
  6633. int64_t i10 = 0;
  6634. int64_t i11 = 0;
  6635. int64_t i12 = 0;
  6636. int64_t i13 = 0;
  6637. if (dst->type == GGML_TYPE_F16) {
  6638. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6639. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6640. i10 += ne00 * ir0;
  6641. while (i10 >= ne0) {
  6642. i10 -= ne0;
  6643. if (++i11 == ne1) {
  6644. i11 = 0;
  6645. if (++i12 == ne2) {
  6646. i12 = 0;
  6647. if (++i13 == ne3) {
  6648. i13 = 0;
  6649. }
  6650. }
  6651. }
  6652. }
  6653. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6654. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6655. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6656. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6657. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6658. if (++i10 == ne00) {
  6659. i10 = 0;
  6660. if (++i11 == ne01) {
  6661. i11 = 0;
  6662. if (++i12 == ne02) {
  6663. i12 = 0;
  6664. if (++i13 == ne03) {
  6665. i13 = 0;
  6666. }
  6667. }
  6668. }
  6669. }
  6670. }
  6671. }
  6672. i10 += ne00 * (ne01 - ir1);
  6673. while (i10 >= ne0) {
  6674. i10 -= ne0;
  6675. if (++i11 == ne1) {
  6676. i11 = 0;
  6677. if (++i12 == ne2) {
  6678. i12 = 0;
  6679. if (++i13 == ne3) {
  6680. i13 = 0;
  6681. }
  6682. }
  6683. }
  6684. }
  6685. }
  6686. }
  6687. } else if (dst->type == GGML_TYPE_F32) {
  6688. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6689. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6690. i10 += ne00 * ir0;
  6691. while (i10 >= ne0) {
  6692. i10 -= ne0;
  6693. if (++i11 == ne1) {
  6694. i11 = 0;
  6695. if (++i12 == ne2) {
  6696. i12 = 0;
  6697. if (++i13 == ne3) {
  6698. i13 = 0;
  6699. }
  6700. }
  6701. }
  6702. }
  6703. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6704. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6705. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6706. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6707. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6708. if (++i10 == ne0) {
  6709. i10 = 0;
  6710. if (++i11 == ne1) {
  6711. i11 = 0;
  6712. if (++i12 == ne2) {
  6713. i12 = 0;
  6714. if (++i13 == ne3) {
  6715. i13 = 0;
  6716. }
  6717. }
  6718. }
  6719. }
  6720. }
  6721. }
  6722. i10 += ne00 * (ne01 - ir1);
  6723. while (i10 >= ne0) {
  6724. i10 -= ne0;
  6725. if (++i11 == ne1) {
  6726. i11 = 0;
  6727. if (++i12 == ne2) {
  6728. i12 = 0;
  6729. if (++i13 == ne3) {
  6730. i13 = 0;
  6731. }
  6732. }
  6733. }
  6734. }
  6735. }
  6736. }
  6737. } else {
  6738. GGML_ASSERT(false); // TODO: implement
  6739. }
  6740. }
  6741. static void ggml_compute_forward_dup_bf16(
  6742. const struct ggml_compute_params * params,
  6743. struct ggml_tensor * dst) {
  6744. const struct ggml_tensor * src0 = dst->src[0];
  6745. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6747. return;
  6748. }
  6749. GGML_TENSOR_UNARY_OP_LOCALS
  6750. const int ith = params->ith; // thread index
  6751. const int nth = params->nth; // number of threads
  6752. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6753. ggml_compute_forward_dup_same_cont(params, dst);
  6754. return;
  6755. }
  6756. // parallelize by rows
  6757. const int nr = ne01;
  6758. // number of rows per thread
  6759. const int dr = (nr + nth - 1) / nth;
  6760. // row range for this thread
  6761. const int ir0 = dr * ith;
  6762. const int ir1 = MIN(ir0 + dr, nr);
  6763. if (src0->type == dst->type &&
  6764. ne00 == ne0 &&
  6765. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6766. // copy by rows
  6767. const size_t rs = ne00*nb00;
  6768. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6769. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6770. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6771. memcpy(
  6772. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6773. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6774. rs);
  6775. }
  6776. }
  6777. }
  6778. return;
  6779. }
  6780. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6781. if (ggml_is_contiguous(dst)) {
  6782. if (nb00 == sizeof(ggml_bf16_t)) {
  6783. if (dst->type == GGML_TYPE_BF16) {
  6784. size_t id = 0;
  6785. const size_t rs = ne00 * nb00;
  6786. char * dst_ptr = (char *) dst->data;
  6787. for (int i03 = 0; i03 < ne03; i03++) {
  6788. for (int i02 = 0; i02 < ne02; i02++) {
  6789. id += rs * ir0;
  6790. for (int i01 = ir0; i01 < ir1; i01++) {
  6791. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6792. memcpy(dst_ptr + id, src0_ptr, rs);
  6793. id += rs;
  6794. }
  6795. id += rs * (ne01 - ir1);
  6796. }
  6797. }
  6798. } else if (dst->type == GGML_TYPE_F16) {
  6799. size_t id = 0;
  6800. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6801. for (int i03 = 0; i03 < ne03; i03++) {
  6802. for (int i02 = 0; i02 < ne02; i02++) {
  6803. id += ne00 * ir0;
  6804. for (int i01 = ir0; i01 < ir1; i01++) {
  6805. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6806. for (int i00 = 0; i00 < ne00; i00++) {
  6807. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6808. id++;
  6809. }
  6810. }
  6811. id += ne00 * (ne01 - ir1);
  6812. }
  6813. }
  6814. } else if (dst->type == GGML_TYPE_F32) {
  6815. size_t id = 0;
  6816. float * dst_ptr = (float *) dst->data;
  6817. for (int i03 = 0; i03 < ne03; i03++) {
  6818. for (int i02 = 0; i02 < ne02; i02++) {
  6819. id += ne00 * ir0;
  6820. for (int i01 = ir0; i01 < ir1; i01++) {
  6821. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6822. for (int i00 = 0; i00 < ne00; i00++) {
  6823. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6824. id++;
  6825. }
  6826. }
  6827. id += ne00 * (ne01 - ir1);
  6828. }
  6829. }
  6830. } else if (type_traits[dst->type].from_float) {
  6831. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6832. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6833. size_t id = 0;
  6834. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6835. char * dst_ptr = (char *) dst->data;
  6836. for (int i03 = 0; i03 < ne03; i03++) {
  6837. for (int i02 = 0; i02 < ne02; i02++) {
  6838. id += rs * ir0;
  6839. for (int i01 = ir0; i01 < ir1; i01++) {
  6840. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6841. for (int i00 = 0; i00 < ne00; i00++) {
  6842. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6843. }
  6844. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6845. id += rs;
  6846. }
  6847. id += rs * (ne01 - ir1);
  6848. }
  6849. }
  6850. } else {
  6851. GGML_ASSERT(false); // TODO: implement
  6852. }
  6853. } else {
  6854. //printf("%s: this is not optimal - fix me\n", __func__);
  6855. if (dst->type == GGML_TYPE_F32) {
  6856. size_t id = 0;
  6857. float * dst_ptr = (float *) dst->data;
  6858. for (int i03 = 0; i03 < ne03; i03++) {
  6859. for (int i02 = 0; i02 < ne02; i02++) {
  6860. id += ne00 * ir0;
  6861. for (int i01 = ir0; i01 < ir1; i01++) {
  6862. for (int i00 = 0; i00 < ne00; i00++) {
  6863. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6864. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6865. id++;
  6866. }
  6867. }
  6868. id += ne00 * (ne01 - ir1);
  6869. }
  6870. }
  6871. } else if (dst->type == GGML_TYPE_BF16) {
  6872. size_t id = 0;
  6873. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6874. for (int i03 = 0; i03 < ne03; i03++) {
  6875. for (int i02 = 0; i02 < ne02; i02++) {
  6876. id += ne00 * ir0;
  6877. for (int i01 = ir0; i01 < ir1; i01++) {
  6878. for (int i00 = 0; i00 < ne00; i00++) {
  6879. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6880. dst_ptr[id] = *src0_ptr;
  6881. id++;
  6882. }
  6883. }
  6884. id += ne00 * (ne01 - ir1);
  6885. }
  6886. }
  6887. } else if (dst->type == GGML_TYPE_F16) {
  6888. size_t id = 0;
  6889. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6890. for (int i03 = 0; i03 < ne03; i03++) {
  6891. for (int i02 = 0; i02 < ne02; i02++) {
  6892. id += ne00 * ir0;
  6893. for (int i01 = ir0; i01 < ir1; i01++) {
  6894. for (int i00 = 0; i00 < ne00; i00++) {
  6895. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6896. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6897. id++;
  6898. }
  6899. }
  6900. id += ne00 * (ne01 - ir1);
  6901. }
  6902. }
  6903. } else {
  6904. GGML_ASSERT(false); // TODO: implement
  6905. }
  6906. }
  6907. return;
  6908. }
  6909. // dst counters
  6910. int64_t i10 = 0;
  6911. int64_t i11 = 0;
  6912. int64_t i12 = 0;
  6913. int64_t i13 = 0;
  6914. if (dst->type == GGML_TYPE_BF16) {
  6915. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6916. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6917. i10 += ne00 * ir0;
  6918. while (i10 >= ne0) {
  6919. i10 -= ne0;
  6920. if (++i11 == ne1) {
  6921. i11 = 0;
  6922. if (++i12 == ne2) {
  6923. i12 = 0;
  6924. if (++i13 == ne3) {
  6925. i13 = 0;
  6926. }
  6927. }
  6928. }
  6929. }
  6930. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6931. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6932. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6933. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6934. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6935. if (++i10 == ne00) {
  6936. i10 = 0;
  6937. if (++i11 == ne01) {
  6938. i11 = 0;
  6939. if (++i12 == ne02) {
  6940. i12 = 0;
  6941. if (++i13 == ne03) {
  6942. i13 = 0;
  6943. }
  6944. }
  6945. }
  6946. }
  6947. }
  6948. }
  6949. i10 += ne00 * (ne01 - ir1);
  6950. while (i10 >= ne0) {
  6951. i10 -= ne0;
  6952. if (++i11 == ne1) {
  6953. i11 = 0;
  6954. if (++i12 == ne2) {
  6955. i12 = 0;
  6956. if (++i13 == ne3) {
  6957. i13 = 0;
  6958. }
  6959. }
  6960. }
  6961. }
  6962. }
  6963. }
  6964. } else if (dst->type == GGML_TYPE_F16) {
  6965. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6966. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6967. i10 += ne00 * ir0;
  6968. while (i10 >= ne0) {
  6969. i10 -= ne0;
  6970. if (++i11 == ne1) {
  6971. i11 = 0;
  6972. if (++i12 == ne2) {
  6973. i12 = 0;
  6974. if (++i13 == ne3) {
  6975. i13 = 0;
  6976. }
  6977. }
  6978. }
  6979. }
  6980. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6981. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6982. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6983. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6984. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6985. if (++i10 == ne0) {
  6986. i10 = 0;
  6987. if (++i11 == ne1) {
  6988. i11 = 0;
  6989. if (++i12 == ne2) {
  6990. i12 = 0;
  6991. if (++i13 == ne3) {
  6992. i13 = 0;
  6993. }
  6994. }
  6995. }
  6996. }
  6997. }
  6998. }
  6999. i10 += ne00 * (ne01 - ir1);
  7000. while (i10 >= ne0) {
  7001. i10 -= ne0;
  7002. if (++i11 == ne1) {
  7003. i11 = 0;
  7004. if (++i12 == ne2) {
  7005. i12 = 0;
  7006. if (++i13 == ne3) {
  7007. i13 = 0;
  7008. }
  7009. }
  7010. }
  7011. }
  7012. }
  7013. }
  7014. } else if (dst->type == GGML_TYPE_F32) {
  7015. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7016. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7017. i10 += ne00 * ir0;
  7018. while (i10 >= ne0) {
  7019. i10 -= ne0;
  7020. if (++i11 == ne1) {
  7021. i11 = 0;
  7022. if (++i12 == ne2) {
  7023. i12 = 0;
  7024. if (++i13 == ne3) {
  7025. i13 = 0;
  7026. }
  7027. }
  7028. }
  7029. }
  7030. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7031. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7032. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7033. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7034. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7035. if (++i10 == ne0) {
  7036. i10 = 0;
  7037. if (++i11 == ne1) {
  7038. i11 = 0;
  7039. if (++i12 == ne2) {
  7040. i12 = 0;
  7041. if (++i13 == ne3) {
  7042. i13 = 0;
  7043. }
  7044. }
  7045. }
  7046. }
  7047. }
  7048. }
  7049. i10 += ne00 * (ne01 - ir1);
  7050. while (i10 >= ne0) {
  7051. i10 -= ne0;
  7052. if (++i11 == ne1) {
  7053. i11 = 0;
  7054. if (++i12 == ne2) {
  7055. i12 = 0;
  7056. if (++i13 == ne3) {
  7057. i13 = 0;
  7058. }
  7059. }
  7060. }
  7061. }
  7062. }
  7063. }
  7064. } else {
  7065. GGML_ASSERT(false); // TODO: implement
  7066. }
  7067. }
  7068. static void ggml_compute_forward_dup_f32(
  7069. const struct ggml_compute_params * params,
  7070. struct ggml_tensor * dst) {
  7071. const struct ggml_tensor * src0 = dst->src[0];
  7072. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7074. return;
  7075. }
  7076. GGML_TENSOR_UNARY_OP_LOCALS
  7077. const int ith = params->ith; // thread index
  7078. const int nth = params->nth; // number of threads
  7079. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7080. ggml_compute_forward_dup_same_cont(params, dst);
  7081. return;
  7082. }
  7083. // parallelize by rows
  7084. const int nr = ne01;
  7085. // number of rows per thread
  7086. const int dr = (nr + nth - 1) / nth;
  7087. // row range for this thread
  7088. const int ir0 = dr * ith;
  7089. const int ir1 = MIN(ir0 + dr, nr);
  7090. if (src0->type == dst->type &&
  7091. ne00 == ne0 &&
  7092. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7093. // copy by rows
  7094. const size_t rs = ne00*nb00;
  7095. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7096. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7097. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7098. memcpy(
  7099. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7100. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7101. rs);
  7102. }
  7103. }
  7104. }
  7105. return;
  7106. }
  7107. if (ggml_is_contiguous(dst)) {
  7108. // TODO: simplify
  7109. if (nb00 == sizeof(float)) {
  7110. if (dst->type == GGML_TYPE_F32) {
  7111. size_t id = 0;
  7112. const size_t rs = ne00 * nb00;
  7113. char * dst_ptr = (char *) dst->data;
  7114. for (int i03 = 0; i03 < ne03; i03++) {
  7115. for (int i02 = 0; i02 < ne02; i02++) {
  7116. id += rs * ir0;
  7117. for (int i01 = ir0; i01 < ir1; i01++) {
  7118. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7119. memcpy(dst_ptr + id, src0_ptr, rs);
  7120. id += rs;
  7121. }
  7122. id += rs * (ne01 - ir1);
  7123. }
  7124. }
  7125. } else if (type_traits[dst->type].from_float) {
  7126. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7127. size_t id = 0;
  7128. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7129. char * dst_ptr = (char *) dst->data;
  7130. for (int i03 = 0; i03 < ne03; i03++) {
  7131. for (int i02 = 0; i02 < ne02; i02++) {
  7132. id += rs * ir0;
  7133. for (int i01 = ir0; i01 < ir1; i01++) {
  7134. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7135. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7136. id += rs;
  7137. }
  7138. id += rs * (ne01 - ir1);
  7139. }
  7140. }
  7141. } else {
  7142. GGML_ASSERT(false); // TODO: implement
  7143. }
  7144. } else {
  7145. //printf("%s: this is not optimal - fix me\n", __func__);
  7146. if (dst->type == GGML_TYPE_F32) {
  7147. size_t id = 0;
  7148. float * dst_ptr = (float *) dst->data;
  7149. for (int i03 = 0; i03 < ne03; i03++) {
  7150. for (int i02 = 0; i02 < ne02; i02++) {
  7151. id += ne00 * ir0;
  7152. for (int i01 = ir0; i01 < ir1; i01++) {
  7153. for (int i00 = 0; i00 < ne00; i00++) {
  7154. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7155. dst_ptr[id] = *src0_ptr;
  7156. id++;
  7157. }
  7158. }
  7159. id += ne00 * (ne01 - ir1);
  7160. }
  7161. }
  7162. } else if (dst->type == GGML_TYPE_F16) {
  7163. size_t id = 0;
  7164. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7165. for (int i03 = 0; i03 < ne03; i03++) {
  7166. for (int i02 = 0; i02 < ne02; i02++) {
  7167. id += ne00 * ir0;
  7168. for (int i01 = ir0; i01 < ir1; i01++) {
  7169. for (int i00 = 0; i00 < ne00; i00++) {
  7170. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7171. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7172. id++;
  7173. }
  7174. }
  7175. id += ne00 * (ne01 - ir1);
  7176. }
  7177. }
  7178. } else if (dst->type == GGML_TYPE_BF16) {
  7179. size_t id = 0;
  7180. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7181. for (int i03 = 0; i03 < ne03; i03++) {
  7182. for (int i02 = 0; i02 < ne02; i02++) {
  7183. id += ne00 * ir0;
  7184. for (int i01 = ir0; i01 < ir1; i01++) {
  7185. for (int i00 = 0; i00 < ne00; i00++) {
  7186. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7187. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7188. id++;
  7189. }
  7190. }
  7191. id += ne00 * (ne01 - ir1);
  7192. }
  7193. }
  7194. } else {
  7195. GGML_ASSERT(false); // TODO: implement
  7196. }
  7197. }
  7198. return;
  7199. }
  7200. // dst counters
  7201. int64_t i10 = 0;
  7202. int64_t i11 = 0;
  7203. int64_t i12 = 0;
  7204. int64_t i13 = 0;
  7205. if (dst->type == GGML_TYPE_F32) {
  7206. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7207. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7208. i10 += ne00 * ir0;
  7209. while (i10 >= ne0) {
  7210. i10 -= ne0;
  7211. if (++i11 == ne1) {
  7212. i11 = 0;
  7213. if (++i12 == ne2) {
  7214. i12 = 0;
  7215. if (++i13 == ne3) {
  7216. i13 = 0;
  7217. }
  7218. }
  7219. }
  7220. }
  7221. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7222. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7223. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7224. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7225. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7226. if (++i10 == ne0) {
  7227. i10 = 0;
  7228. if (++i11 == ne1) {
  7229. i11 = 0;
  7230. if (++i12 == ne2) {
  7231. i12 = 0;
  7232. if (++i13 == ne3) {
  7233. i13 = 0;
  7234. }
  7235. }
  7236. }
  7237. }
  7238. }
  7239. }
  7240. i10 += ne00 * (ne01 - ir1);
  7241. while (i10 >= ne0) {
  7242. i10 -= ne0;
  7243. if (++i11 == ne1) {
  7244. i11 = 0;
  7245. if (++i12 == ne2) {
  7246. i12 = 0;
  7247. if (++i13 == ne3) {
  7248. i13 = 0;
  7249. }
  7250. }
  7251. }
  7252. }
  7253. }
  7254. }
  7255. } else if (dst->type == GGML_TYPE_F16) {
  7256. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7257. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7258. i10 += ne00 * ir0;
  7259. while (i10 >= ne0) {
  7260. i10 -= ne0;
  7261. if (++i11 == ne1) {
  7262. i11 = 0;
  7263. if (++i12 == ne2) {
  7264. i12 = 0;
  7265. if (++i13 == ne3) {
  7266. i13 = 0;
  7267. }
  7268. }
  7269. }
  7270. }
  7271. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7272. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7273. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7274. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7275. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7276. if (++i10 == ne0) {
  7277. i10 = 0;
  7278. if (++i11 == ne1) {
  7279. i11 = 0;
  7280. if (++i12 == ne2) {
  7281. i12 = 0;
  7282. if (++i13 == ne3) {
  7283. i13 = 0;
  7284. }
  7285. }
  7286. }
  7287. }
  7288. }
  7289. }
  7290. i10 += ne00 * (ne01 - ir1);
  7291. while (i10 >= ne0) {
  7292. i10 -= ne0;
  7293. if (++i11 == ne1) {
  7294. i11 = 0;
  7295. if (++i12 == ne2) {
  7296. i12 = 0;
  7297. if (++i13 == ne3) {
  7298. i13 = 0;
  7299. }
  7300. }
  7301. }
  7302. }
  7303. }
  7304. }
  7305. } else if (dst->type == GGML_TYPE_BF16) {
  7306. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7307. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7308. i10 += ne00 * ir0;
  7309. while (i10 >= ne0) {
  7310. i10 -= ne0;
  7311. if (++i11 == ne1) {
  7312. i11 = 0;
  7313. if (++i12 == ne2) {
  7314. i12 = 0;
  7315. if (++i13 == ne3) {
  7316. i13 = 0;
  7317. }
  7318. }
  7319. }
  7320. }
  7321. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7322. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7323. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7324. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7325. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7326. if (++i10 == ne0) {
  7327. i10 = 0;
  7328. if (++i11 == ne1) {
  7329. i11 = 0;
  7330. if (++i12 == ne2) {
  7331. i12 = 0;
  7332. if (++i13 == ne3) {
  7333. i13 = 0;
  7334. }
  7335. }
  7336. }
  7337. }
  7338. }
  7339. }
  7340. i10 += ne00 * (ne01 - ir1);
  7341. while (i10 >= ne0) {
  7342. i10 -= ne0;
  7343. if (++i11 == ne1) {
  7344. i11 = 0;
  7345. if (++i12 == ne2) {
  7346. i12 = 0;
  7347. if (++i13 == ne3) {
  7348. i13 = 0;
  7349. }
  7350. }
  7351. }
  7352. }
  7353. }
  7354. }
  7355. } else {
  7356. GGML_ASSERT(false); // TODO: implement
  7357. }
  7358. }
  7359. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7360. static void ggml_compute_forward_dup_bytes(
  7361. const struct ggml_compute_params * params,
  7362. struct ggml_tensor * dst) {
  7363. const struct ggml_tensor * src0 = dst->src[0];
  7364. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7365. GGML_ASSERT(src0->type == dst->type);
  7366. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7367. return;
  7368. }
  7369. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7370. ggml_compute_forward_dup_same_cont(params, dst);
  7371. return;
  7372. }
  7373. GGML_TENSOR_UNARY_OP_LOCALS;
  7374. const size_t type_size = ggml_type_size(src0->type);
  7375. const int ith = params->ith; // thread index
  7376. const int nth = params->nth; // number of threads
  7377. // parallelize by rows
  7378. const int nr = ne01;
  7379. // number of rows per thread
  7380. const int dr = (nr + nth - 1) / nth;
  7381. // row range for this thread
  7382. const int ir0 = dr * ith;
  7383. const int ir1 = MIN(ir0 + dr, nr);
  7384. if (src0->type == dst->type &&
  7385. ne00 == ne0 &&
  7386. nb00 == type_size && nb0 == type_size) {
  7387. // copy by rows
  7388. const size_t rs = ne00 * type_size;
  7389. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7391. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7392. memcpy(
  7393. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7394. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7395. rs);
  7396. }
  7397. }
  7398. }
  7399. return;
  7400. }
  7401. if (ggml_is_contiguous(dst)) {
  7402. size_t id = 0;
  7403. char * dst_ptr = (char *) dst->data;
  7404. const size_t rs = ne00 * type_size;
  7405. if (nb00 == type_size) {
  7406. // src0 is contigous on first dimension, copy by rows
  7407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7409. id += rs * ir0;
  7410. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7411. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7412. memcpy(dst_ptr + id, src0_ptr, rs);
  7413. id += rs;
  7414. }
  7415. id += rs * (ne01 - ir1);
  7416. }
  7417. }
  7418. } else {
  7419. //printf("%s: this is not optimal - fix me\n", __func__);
  7420. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7421. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7422. id += rs * ir0;
  7423. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7424. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7425. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7426. memcpy(dst_ptr + id, src0_ptr, type_size);
  7427. id += type_size;
  7428. }
  7429. }
  7430. id += rs * (ne01 - ir1);
  7431. }
  7432. }
  7433. }
  7434. return;
  7435. }
  7436. // dst counters
  7437. int64_t i10 = 0;
  7438. int64_t i11 = 0;
  7439. int64_t i12 = 0;
  7440. int64_t i13 = 0;
  7441. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7442. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7443. i10 += ne00 * ir0;
  7444. while (i10 >= ne0) {
  7445. i10 -= ne0;
  7446. if (++i11 == ne1) {
  7447. i11 = 0;
  7448. if (++i12 == ne2) {
  7449. i12 = 0;
  7450. if (++i13 == ne3) {
  7451. i13 = 0;
  7452. }
  7453. }
  7454. }
  7455. }
  7456. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7457. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7458. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7459. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7460. memcpy(dst_ptr, src0_ptr, type_size);
  7461. if (++i10 == ne0) {
  7462. i10 = 0;
  7463. if (++i11 == ne1) {
  7464. i11 = 0;
  7465. if (++i12 == ne2) {
  7466. i12 = 0;
  7467. if (++i13 == ne3) {
  7468. i13 = 0;
  7469. }
  7470. }
  7471. }
  7472. }
  7473. }
  7474. }
  7475. i10 += ne00 * (ne01 - ir1);
  7476. while (i10 >= ne0) {
  7477. i10 -= ne0;
  7478. if (++i11 == ne1) {
  7479. i11 = 0;
  7480. if (++i12 == ne2) {
  7481. i12 = 0;
  7482. if (++i13 == ne3) {
  7483. i13 = 0;
  7484. }
  7485. }
  7486. }
  7487. }
  7488. }
  7489. }
  7490. }
  7491. static void ggml_compute_forward_dup(
  7492. const struct ggml_compute_params * params,
  7493. struct ggml_tensor * dst) {
  7494. const struct ggml_tensor * src0 = dst->src[0];
  7495. if (src0->type == dst->type) {
  7496. ggml_compute_forward_dup_bytes(params, dst);
  7497. return;
  7498. }
  7499. switch (src0->type) {
  7500. case GGML_TYPE_F16:
  7501. {
  7502. ggml_compute_forward_dup_f16(params, dst);
  7503. } break;
  7504. case GGML_TYPE_BF16:
  7505. {
  7506. ggml_compute_forward_dup_bf16(params, dst);
  7507. } break;
  7508. case GGML_TYPE_F32:
  7509. {
  7510. ggml_compute_forward_dup_f32(params, dst);
  7511. } break;
  7512. default:
  7513. {
  7514. GGML_ASSERT(false);
  7515. } break;
  7516. }
  7517. }
  7518. // ggml_compute_forward_add
  7519. static void ggml_compute_forward_add_f32(
  7520. const struct ggml_compute_params * params,
  7521. struct ggml_tensor * dst) {
  7522. const struct ggml_tensor * src0 = dst->src[0];
  7523. const struct ggml_tensor * src1 = dst->src[1];
  7524. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7525. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7526. return;
  7527. }
  7528. const int ith = params->ith;
  7529. const int nth = params->nth;
  7530. #ifdef GGML_USE_CLBLAST
  7531. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7532. // TODO: OpenCL kernel support full broadcast
  7533. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7534. if (ith == 0) {
  7535. ggml_cl_add(src0, src1, dst);
  7536. }
  7537. return;
  7538. }
  7539. #endif
  7540. const int nr = ggml_nrows(src0);
  7541. GGML_TENSOR_BINARY_OP_LOCALS
  7542. GGML_ASSERT( nb0 == sizeof(float));
  7543. GGML_ASSERT(nb00 == sizeof(float));
  7544. // rows per thread
  7545. const int dr = (nr + nth - 1)/nth;
  7546. // row range for this thread
  7547. const int ir0 = dr*ith;
  7548. const int ir1 = MIN(ir0 + dr, nr);
  7549. if (nb10 == sizeof(float)) {
  7550. for (int ir = ir0; ir < ir1; ++ir) {
  7551. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7552. const int64_t i03 = ir/(ne02*ne01);
  7553. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7554. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7555. const int64_t i13 = i03 % ne13;
  7556. const int64_t i12 = i02 % ne12;
  7557. const int64_t i11 = i01 % ne11;
  7558. const int64_t nr0 = ne00 / ne10;
  7559. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7560. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7561. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7562. for (int64_t r = 0; r < nr0; ++r) {
  7563. #ifdef GGML_USE_ACCELERATE
  7564. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7565. #else
  7566. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7567. #endif
  7568. }
  7569. }
  7570. } else {
  7571. // src1 is not contiguous
  7572. for (int ir = ir0; ir < ir1; ++ir) {
  7573. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7574. const int64_t i03 = ir/(ne02*ne01);
  7575. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7576. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7577. const int64_t i13 = i03 % ne13;
  7578. const int64_t i12 = i02 % ne12;
  7579. const int64_t i11 = i01 % ne11;
  7580. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7581. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7582. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7583. const int64_t i10 = i0 % ne10;
  7584. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7585. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7586. }
  7587. }
  7588. }
  7589. }
  7590. static void ggml_compute_forward_add_f16_f32(
  7591. const struct ggml_compute_params * params,
  7592. struct ggml_tensor * dst) {
  7593. const struct ggml_tensor * src0 = dst->src[0];
  7594. const struct ggml_tensor * src1 = dst->src[1];
  7595. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7596. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7597. return;
  7598. }
  7599. const int ith = params->ith;
  7600. const int nth = params->nth;
  7601. const int nr = ggml_nrows(src0);
  7602. GGML_TENSOR_BINARY_OP_LOCALS
  7603. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7604. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7605. if (dst->type == GGML_TYPE_F32) {
  7606. GGML_ASSERT( nb0 == sizeof(float));
  7607. }
  7608. else {
  7609. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7610. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7611. }
  7612. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7613. // rows per thread
  7614. const int dr = (nr + nth - 1)/nth;
  7615. // row range for this thread
  7616. const int ir0 = dr*ith;
  7617. const int ir1 = MIN(ir0 + dr, nr);
  7618. if (nb10 == sizeof(float)) {
  7619. if (dst->type == GGML_TYPE_F16) {
  7620. for (int ir = ir0; ir < ir1; ++ir) {
  7621. // src0, src1 and dst are same shape => same indices
  7622. const int i3 = ir/(ne2*ne1);
  7623. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7624. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7625. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7626. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7627. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7628. for (int i = 0; i < ne0; i++) {
  7629. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7630. }
  7631. }
  7632. } else {
  7633. for (int ir = ir0; ir < ir1; ++ir) {
  7634. // src0, src1 and dst are same shape => same indices
  7635. const int i3 = ir/(ne2*ne1);
  7636. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7637. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7638. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7639. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7640. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7641. for (int i = 0; i < ne0; i++) {
  7642. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7643. }
  7644. }
  7645. }
  7646. }
  7647. else {
  7648. // src1 is not contiguous
  7649. GGML_ASSERT(false);
  7650. }
  7651. }
  7652. static void ggml_compute_forward_add_bf16_f32(
  7653. const struct ggml_compute_params * params,
  7654. struct ggml_tensor * dst) {
  7655. const struct ggml_tensor * src0 = dst->src[0];
  7656. const struct ggml_tensor * src1 = dst->src[1];
  7657. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7658. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7659. return;
  7660. }
  7661. const int ith = params->ith;
  7662. const int nth = params->nth;
  7663. const int nr = ggml_nrows(src0);
  7664. GGML_TENSOR_BINARY_OP_LOCALS
  7665. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7666. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7667. if (dst->type == GGML_TYPE_F32) {
  7668. GGML_ASSERT( nb0 == sizeof(float));
  7669. }
  7670. else {
  7671. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7672. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7673. }
  7674. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7675. // rows per thread
  7676. const int dr = (nr + nth - 1)/nth;
  7677. // row range for this thread
  7678. const int ir0 = dr*ith;
  7679. const int ir1 = MIN(ir0 + dr, nr);
  7680. if (nb10 == sizeof(float)) {
  7681. if (dst->type == GGML_TYPE_BF16) {
  7682. for (int ir = ir0; ir < ir1; ++ir) {
  7683. // src0, src1 and dst are same shape => same indices
  7684. const int i3 = ir/(ne2*ne1);
  7685. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7686. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7687. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7688. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7689. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7690. for (int i = 0; i < ne0; i++) {
  7691. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7692. }
  7693. }
  7694. } else {
  7695. for (int ir = ir0; ir < ir1; ++ir) {
  7696. // src0, src1 and dst are same shape => same indices
  7697. const int i3 = ir/(ne2*ne1);
  7698. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7699. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7700. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7701. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7702. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7703. for (int i = 0; i < ne0; i++) {
  7704. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7705. }
  7706. }
  7707. }
  7708. }
  7709. else {
  7710. // src1 is not contiguous
  7711. GGML_ASSERT(false);
  7712. }
  7713. }
  7714. static void ggml_compute_forward_add_f16_f16(
  7715. const struct ggml_compute_params * params,
  7716. struct ggml_tensor * dst) {
  7717. const struct ggml_tensor * src0 = dst->src[0];
  7718. const struct ggml_tensor * src1 = dst->src[1];
  7719. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7721. return;
  7722. }
  7723. const int ith = params->ith;
  7724. const int nth = params->nth;
  7725. const int nr = ggml_nrows(src0);
  7726. GGML_TENSOR_BINARY_OP_LOCALS
  7727. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7728. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7729. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7730. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7731. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7732. // rows per thread
  7733. const int dr = (nr + nth - 1)/nth;
  7734. // row range for this thread
  7735. const int ir0 = dr*ith;
  7736. const int ir1 = MIN(ir0 + dr, nr);
  7737. if (nb10 == sizeof(ggml_fp16_t)) {
  7738. for (int ir = ir0; ir < ir1; ++ir) {
  7739. // src0, src1 and dst are same shape => same indices
  7740. const int i3 = ir/(ne2*ne1);
  7741. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7742. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7743. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7744. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7745. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7746. for (int i = 0; i < ne0; i++) {
  7747. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7748. }
  7749. }
  7750. }
  7751. else {
  7752. // src1 is not contiguous
  7753. GGML_ASSERT(false);
  7754. }
  7755. }
  7756. static void ggml_compute_forward_add_bf16_bf16(
  7757. const struct ggml_compute_params * params,
  7758. struct ggml_tensor * dst) {
  7759. const struct ggml_tensor * src0 = dst->src[0];
  7760. const struct ggml_tensor * src1 = dst->src[1];
  7761. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7762. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7763. return;
  7764. }
  7765. const int ith = params->ith;
  7766. const int nth = params->nth;
  7767. const int nr = ggml_nrows(src0);
  7768. GGML_TENSOR_BINARY_OP_LOCALS
  7769. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7770. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7771. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7772. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7773. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7774. // rows per thread
  7775. const int dr = (nr + nth - 1)/nth;
  7776. // row range for this thread
  7777. const int ir0 = dr*ith;
  7778. const int ir1 = MIN(ir0 + dr, nr);
  7779. if (nb10 == sizeof(ggml_bf16_t)) {
  7780. for (int ir = ir0; ir < ir1; ++ir) {
  7781. // src0, src1 and dst are same shape => same indices
  7782. const int i3 = ir/(ne2*ne1);
  7783. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7784. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7785. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7786. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7787. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7788. for (int i = 0; i < ne0; i++) {
  7789. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7790. }
  7791. }
  7792. }
  7793. else {
  7794. // src1 is not contiguous
  7795. GGML_ASSERT(false);
  7796. }
  7797. }
  7798. static void ggml_compute_forward_add_q_f32(
  7799. const struct ggml_compute_params * params,
  7800. struct ggml_tensor * dst) {
  7801. const struct ggml_tensor * src0 = dst->src[0];
  7802. const struct ggml_tensor * src1 = dst->src[1];
  7803. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7805. return;
  7806. }
  7807. const int nr = ggml_nrows(src0);
  7808. GGML_TENSOR_BINARY_OP_LOCALS
  7809. const int ith = params->ith;
  7810. const int nth = params->nth;
  7811. const enum ggml_type type = src0->type;
  7812. const enum ggml_type dtype = dst->type;
  7813. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7814. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7815. // we don't support permuted src0 or src1
  7816. GGML_ASSERT(nb00 == ggml_type_size(type));
  7817. GGML_ASSERT(nb10 == sizeof(float));
  7818. // dst cannot be transposed or permuted
  7819. GGML_ASSERT(nb0 <= nb1);
  7820. GGML_ASSERT(nb1 <= nb2);
  7821. GGML_ASSERT(nb2 <= nb3);
  7822. GGML_ASSERT(ggml_is_quantized(src0->type));
  7823. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7824. // rows per thread
  7825. const int dr = (nr + nth - 1)/nth;
  7826. // row range for this thread
  7827. const int ir0 = dr*ith;
  7828. const int ir1 = MIN(ir0 + dr, nr);
  7829. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7830. for (int ir = ir0; ir < ir1; ++ir) {
  7831. // src0 indices
  7832. const int i03 = ir/(ne02*ne01);
  7833. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7834. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7835. // src1 and dst are same shape as src0 => same indices
  7836. const int i13 = i03;
  7837. const int i12 = i02;
  7838. const int i11 = i01;
  7839. const int i3 = i03;
  7840. const int i2 = i02;
  7841. const int i1 = i01;
  7842. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7843. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7844. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7845. assert(ne00 % 32 == 0);
  7846. // unquantize row from src0 to temp buffer
  7847. dequantize_row_q(src0_row, wdata, ne00);
  7848. // add src1
  7849. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7850. // quantize row to dst
  7851. if (quantize_row_q != NULL) {
  7852. quantize_row_q(wdata, dst_row, ne00);
  7853. } else {
  7854. memcpy(dst_row, wdata, ne0*nb0);
  7855. }
  7856. }
  7857. }
  7858. static void ggml_compute_forward_add(
  7859. const struct ggml_compute_params * params,
  7860. struct ggml_tensor * dst) {
  7861. const struct ggml_tensor * src0 = dst->src[0];
  7862. const struct ggml_tensor * src1 = dst->src[1];
  7863. switch (src0->type) {
  7864. case GGML_TYPE_F32:
  7865. {
  7866. if (src1->type == GGML_TYPE_F32) {
  7867. ggml_compute_forward_add_f32(params, dst);
  7868. }
  7869. else {
  7870. GGML_ASSERT(false);
  7871. }
  7872. } break;
  7873. case GGML_TYPE_F16:
  7874. {
  7875. if (src1->type == GGML_TYPE_F16) {
  7876. ggml_compute_forward_add_f16_f16(params, dst);
  7877. }
  7878. else if (src1->type == GGML_TYPE_F32) {
  7879. ggml_compute_forward_add_f16_f32(params, dst);
  7880. }
  7881. else {
  7882. GGML_ASSERT(false);
  7883. }
  7884. } break;
  7885. case GGML_TYPE_BF16:
  7886. {
  7887. if (src1->type == GGML_TYPE_BF16) {
  7888. ggml_compute_forward_add_bf16_bf16(params, dst);
  7889. }
  7890. else if (src1->type == GGML_TYPE_F32) {
  7891. ggml_compute_forward_add_bf16_f32(params, dst);
  7892. }
  7893. else {
  7894. GGML_ASSERT(false);
  7895. }
  7896. } break;
  7897. case GGML_TYPE_Q4_0:
  7898. case GGML_TYPE_Q4_1:
  7899. case GGML_TYPE_Q5_0:
  7900. case GGML_TYPE_Q5_1:
  7901. case GGML_TYPE_Q8_0:
  7902. case GGML_TYPE_Q2_K:
  7903. case GGML_TYPE_Q3_K:
  7904. case GGML_TYPE_Q4_K:
  7905. case GGML_TYPE_Q5_K:
  7906. case GGML_TYPE_Q6_K:
  7907. case GGML_TYPE_IQ2_XXS:
  7908. case GGML_TYPE_IQ2_XS:
  7909. case GGML_TYPE_IQ3_XXS:
  7910. case GGML_TYPE_IQ1_S:
  7911. case GGML_TYPE_IQ1_M:
  7912. case GGML_TYPE_IQ4_NL:
  7913. case GGML_TYPE_IQ4_XS:
  7914. case GGML_TYPE_IQ3_S:
  7915. case GGML_TYPE_IQ2_S:
  7916. {
  7917. ggml_compute_forward_add_q_f32(params, dst);
  7918. } break;
  7919. default:
  7920. {
  7921. GGML_ASSERT(false);
  7922. } break;
  7923. }
  7924. }
  7925. // ggml_compute_forward_add1
  7926. static void ggml_compute_forward_add1_f32(
  7927. const struct ggml_compute_params * params,
  7928. struct ggml_tensor * dst) {
  7929. const struct ggml_tensor * src0 = dst->src[0];
  7930. const struct ggml_tensor * src1 = dst->src[1];
  7931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7932. GGML_ASSERT(ggml_is_scalar(src1));
  7933. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7934. return;
  7935. }
  7936. const int ith = params->ith;
  7937. const int nth = params->nth;
  7938. const int nr = ggml_nrows(src0);
  7939. GGML_TENSOR_UNARY_OP_LOCALS
  7940. GGML_ASSERT( nb0 == sizeof(float));
  7941. GGML_ASSERT(nb00 == sizeof(float));
  7942. // rows per thread
  7943. const int dr = (nr + nth - 1)/nth;
  7944. // row range for this thread
  7945. const int ir0 = dr*ith;
  7946. const int ir1 = MIN(ir0 + dr, nr);
  7947. for (int ir = ir0; ir < ir1; ++ir) {
  7948. // src0 and dst are same shape => same indices
  7949. const int i3 = ir/(ne2*ne1);
  7950. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7951. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7952. #ifdef GGML_USE_ACCELERATE
  7953. UNUSED(ggml_vec_add1_f32);
  7954. vDSP_vadd(
  7955. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7956. (float *) ((char *) src1->data), 0,
  7957. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7958. ne0);
  7959. #else
  7960. ggml_vec_add1_f32(ne0,
  7961. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7962. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7963. *(float *) src1->data);
  7964. #endif
  7965. }
  7966. }
  7967. static void ggml_compute_forward_add1_f16_f32(
  7968. const struct ggml_compute_params * params,
  7969. struct ggml_tensor * dst) {
  7970. const struct ggml_tensor * src0 = dst->src[0];
  7971. const struct ggml_tensor * src1 = dst->src[1];
  7972. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7973. GGML_ASSERT(ggml_is_scalar(src1));
  7974. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7975. return;
  7976. }
  7977. // scalar to add
  7978. const float v = *(float *) src1->data;
  7979. const int ith = params->ith;
  7980. const int nth = params->nth;
  7981. const int nr = ggml_nrows(src0);
  7982. GGML_TENSOR_UNARY_OP_LOCALS
  7983. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7984. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7985. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7986. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7987. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7988. // rows per thread
  7989. const int dr = (nr + nth - 1)/nth;
  7990. // row range for this thread
  7991. const int ir0 = dr*ith;
  7992. const int ir1 = MIN(ir0 + dr, nr);
  7993. for (int ir = ir0; ir < ir1; ++ir) {
  7994. // src0 and dst are same shape => same indices
  7995. const int i3 = ir/(ne2*ne1);
  7996. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7997. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7998. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7999. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8000. for (int i = 0; i < ne0; i++) {
  8001. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8002. }
  8003. }
  8004. }
  8005. static void ggml_compute_forward_add1_f16_f16(
  8006. const struct ggml_compute_params * params,
  8007. struct ggml_tensor * dst) {
  8008. const struct ggml_tensor * src0 = dst->src[0];
  8009. const struct ggml_tensor * src1 = dst->src[1];
  8010. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8011. GGML_ASSERT(ggml_is_scalar(src1));
  8012. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8013. return;
  8014. }
  8015. // scalar to add
  8016. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8017. const int ith = params->ith;
  8018. const int nth = params->nth;
  8019. const int nr = ggml_nrows(src0);
  8020. GGML_TENSOR_UNARY_OP_LOCALS
  8021. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8022. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8023. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8024. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8025. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8026. // rows per thread
  8027. const int dr = (nr + nth - 1)/nth;
  8028. // row range for this thread
  8029. const int ir0 = dr*ith;
  8030. const int ir1 = MIN(ir0 + dr, nr);
  8031. for (int ir = ir0; ir < ir1; ++ir) {
  8032. // src0 and dst are same shape => same indices
  8033. const int i3 = ir/(ne2*ne1);
  8034. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8035. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8036. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8037. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8038. for (int i = 0; i < ne0; i++) {
  8039. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8040. }
  8041. }
  8042. }
  8043. static void ggml_compute_forward_add1_q_f32(
  8044. const struct ggml_compute_params * params,
  8045. struct ggml_tensor * dst) {
  8046. const struct ggml_tensor * src0 = dst->src[0];
  8047. const struct ggml_tensor * src1 = dst->src[1];
  8048. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8049. GGML_ASSERT(ggml_is_scalar(src1));
  8050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8051. return;
  8052. }
  8053. // scalar to add
  8054. const float v = *(float *) src1->data;
  8055. const int ith = params->ith;
  8056. const int nth = params->nth;
  8057. const int nr = ggml_nrows(src0);
  8058. GGML_TENSOR_UNARY_OP_LOCALS
  8059. const enum ggml_type type = src0->type;
  8060. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8061. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8062. // we don't support permuted src0
  8063. GGML_ASSERT(nb00 == ggml_type_size(type));
  8064. // dst cannot be transposed or permuted
  8065. GGML_ASSERT(nb0 <= nb1);
  8066. GGML_ASSERT(nb1 <= nb2);
  8067. GGML_ASSERT(nb2 <= nb3);
  8068. GGML_ASSERT(ggml_is_quantized(src0->type));
  8069. GGML_ASSERT(dst->type == src0->type);
  8070. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8071. // rows per thread
  8072. const int dr = (nr + nth - 1)/nth;
  8073. // row range for this thread
  8074. const int ir0 = dr*ith;
  8075. const int ir1 = MIN(ir0 + dr, nr);
  8076. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8077. for (int ir = ir0; ir < ir1; ++ir) {
  8078. // src0 and dst are same shape => same indices
  8079. const int i3 = ir/(ne2*ne1);
  8080. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8081. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8082. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8083. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8084. assert(ne0 % 32 == 0);
  8085. // unquantize row from src0 to temp buffer
  8086. dequantize_row_q(src0_row, wdata, ne0);
  8087. // add src1
  8088. ggml_vec_acc1_f32(ne0, wdata, v);
  8089. // quantize row to dst
  8090. quantize_row_q(wdata, dst_row, ne0);
  8091. }
  8092. }
  8093. static void ggml_compute_forward_add1_bf16_f32(
  8094. const struct ggml_compute_params * params,
  8095. struct ggml_tensor * dst) {
  8096. const struct ggml_tensor * src0 = dst->src[0];
  8097. const struct ggml_tensor * src1 = dst->src[1];
  8098. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8099. GGML_ASSERT(ggml_is_scalar(src1));
  8100. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8101. return;
  8102. }
  8103. // scalar to add
  8104. const float v = *(float *) src1->data;
  8105. const int ith = params->ith;
  8106. const int nth = params->nth;
  8107. const int nr = ggml_nrows(src0);
  8108. GGML_TENSOR_UNARY_OP_LOCALS
  8109. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8110. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8111. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8112. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8113. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8114. // rows per thread
  8115. const int dr = (nr + nth - 1)/nth;
  8116. // row range for this thread
  8117. const int ir0 = dr*ith;
  8118. const int ir1 = MIN(ir0 + dr, nr);
  8119. for (int ir = ir0; ir < ir1; ++ir) {
  8120. // src0 and dst are same shape => same indices
  8121. const int i3 = ir/(ne2*ne1);
  8122. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8123. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8124. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8125. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8126. for (int i = 0; i < ne0; i++) {
  8127. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8128. }
  8129. }
  8130. }
  8131. static void ggml_compute_forward_add1_bf16_bf16(
  8132. const struct ggml_compute_params * params,
  8133. struct ggml_tensor * dst) {
  8134. const struct ggml_tensor * src0 = dst->src[0];
  8135. const struct ggml_tensor * src1 = dst->src[1];
  8136. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8137. GGML_ASSERT(ggml_is_scalar(src1));
  8138. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8139. return;
  8140. }
  8141. // scalar to add
  8142. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8143. const int ith = params->ith;
  8144. const int nth = params->nth;
  8145. const int nr = ggml_nrows(src0);
  8146. GGML_TENSOR_UNARY_OP_LOCALS
  8147. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8148. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8149. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8150. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8151. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8152. // rows per thread
  8153. const int dr = (nr + nth - 1)/nth;
  8154. // row range for this thread
  8155. const int ir0 = dr*ith;
  8156. const int ir1 = MIN(ir0 + dr, nr);
  8157. for (int ir = ir0; ir < ir1; ++ir) {
  8158. // src0 and dst are same shape => same indices
  8159. const int i3 = ir/(ne2*ne1);
  8160. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8161. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8162. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8163. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8164. for (int i = 0; i < ne0; i++) {
  8165. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8166. }
  8167. }
  8168. }
  8169. static void ggml_compute_forward_add1(
  8170. const struct ggml_compute_params * params,
  8171. struct ggml_tensor * dst) {
  8172. const struct ggml_tensor * src0 = dst->src[0];
  8173. const struct ggml_tensor * src1 = dst->src[1];
  8174. switch (src0->type) {
  8175. case GGML_TYPE_F32:
  8176. {
  8177. ggml_compute_forward_add1_f32(params, dst);
  8178. } break;
  8179. case GGML_TYPE_F16:
  8180. {
  8181. if (src1->type == GGML_TYPE_F16) {
  8182. ggml_compute_forward_add1_f16_f16(params, dst);
  8183. }
  8184. else if (src1->type == GGML_TYPE_F32) {
  8185. ggml_compute_forward_add1_f16_f32(params, dst);
  8186. }
  8187. else {
  8188. GGML_ASSERT(false);
  8189. }
  8190. } break;
  8191. case GGML_TYPE_BF16:
  8192. {
  8193. if (src1->type == GGML_TYPE_BF16) {
  8194. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8195. }
  8196. else if (src1->type == GGML_TYPE_F32) {
  8197. ggml_compute_forward_add1_bf16_f32(params, dst);
  8198. }
  8199. else {
  8200. GGML_ASSERT(false);
  8201. }
  8202. } break;
  8203. case GGML_TYPE_Q4_0:
  8204. case GGML_TYPE_Q4_1:
  8205. case GGML_TYPE_Q5_0:
  8206. case GGML_TYPE_Q5_1:
  8207. case GGML_TYPE_Q8_0:
  8208. case GGML_TYPE_Q8_1:
  8209. case GGML_TYPE_Q2_K:
  8210. case GGML_TYPE_Q3_K:
  8211. case GGML_TYPE_Q4_K:
  8212. case GGML_TYPE_Q5_K:
  8213. case GGML_TYPE_Q6_K:
  8214. case GGML_TYPE_IQ2_XXS:
  8215. case GGML_TYPE_IQ2_XS:
  8216. case GGML_TYPE_IQ3_XXS:
  8217. case GGML_TYPE_IQ1_S:
  8218. case GGML_TYPE_IQ1_M:
  8219. case GGML_TYPE_IQ4_NL:
  8220. case GGML_TYPE_IQ4_XS:
  8221. case GGML_TYPE_IQ3_S:
  8222. case GGML_TYPE_IQ2_S:
  8223. {
  8224. ggml_compute_forward_add1_q_f32(params, dst);
  8225. } break;
  8226. default:
  8227. {
  8228. GGML_ASSERT(false);
  8229. } break;
  8230. }
  8231. }
  8232. // ggml_compute_forward_acc
  8233. static void ggml_compute_forward_acc_f32(
  8234. const struct ggml_compute_params * params,
  8235. struct ggml_tensor * dst) {
  8236. const struct ggml_tensor * src0 = dst->src[0];
  8237. const struct ggml_tensor * src1 = dst->src[1];
  8238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8239. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8240. // view src0 and dst with these strides and data offset inbytes during acc
  8241. // nb0 is implicitly element_size because src0 and dst are contiguous
  8242. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8243. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8244. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8245. size_t offset = ((int32_t *) dst->op_params)[3];
  8246. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8247. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8248. if (params->ith != 0) {
  8249. return;
  8250. }
  8251. // memcpy needs to be synchronized across threads to avoid race conditions.
  8252. // => do it in INIT phase
  8253. memcpy(
  8254. ((char *) dst->data),
  8255. ((char *) src0->data),
  8256. ggml_nbytes(dst));
  8257. }
  8258. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8259. return;
  8260. }
  8261. const int ith = params->ith;
  8262. const int nth = params->nth;
  8263. const int nr = ggml_nrows(src1);
  8264. const int nc = src1->ne[0];
  8265. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8266. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8267. // src0 and dst as viewed during acc
  8268. const size_t nb0 = ggml_element_size(src0);
  8269. const size_t nb00 = nb0;
  8270. const size_t nb01 = nb1;
  8271. const size_t nb02 = nb2;
  8272. const size_t nb03 = nb3;
  8273. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8274. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8275. GGML_ASSERT(nb10 == sizeof(float));
  8276. // rows per thread
  8277. const int dr = (nr + nth - 1)/nth;
  8278. // row range for this thread
  8279. const int ir0 = dr*ith;
  8280. const int ir1 = MIN(ir0 + dr, nr);
  8281. for (int ir = ir0; ir < ir1; ++ir) {
  8282. // src0 and dst are viewed with shape of src1 and offset
  8283. // => same indices
  8284. const int i3 = ir/(ne12*ne11);
  8285. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8286. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8287. #ifdef GGML_USE_ACCELERATE
  8288. vDSP_vadd(
  8289. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8290. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8291. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8292. #else
  8293. ggml_vec_add_f32(nc,
  8294. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8295. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8296. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8297. #endif
  8298. }
  8299. }
  8300. static void ggml_compute_forward_acc(
  8301. const struct ggml_compute_params * params,
  8302. struct ggml_tensor * dst) {
  8303. const struct ggml_tensor * src0 = dst->src[0];
  8304. switch (src0->type) {
  8305. case GGML_TYPE_F32:
  8306. {
  8307. ggml_compute_forward_acc_f32(params, dst);
  8308. } break;
  8309. case GGML_TYPE_F16:
  8310. case GGML_TYPE_BF16:
  8311. case GGML_TYPE_Q4_0:
  8312. case GGML_TYPE_Q4_1:
  8313. case GGML_TYPE_Q5_0:
  8314. case GGML_TYPE_Q5_1:
  8315. case GGML_TYPE_Q8_0:
  8316. case GGML_TYPE_Q8_1:
  8317. case GGML_TYPE_Q2_K:
  8318. case GGML_TYPE_Q3_K:
  8319. case GGML_TYPE_Q4_K:
  8320. case GGML_TYPE_Q5_K:
  8321. case GGML_TYPE_Q6_K:
  8322. case GGML_TYPE_IQ2_XXS:
  8323. case GGML_TYPE_IQ2_XS:
  8324. case GGML_TYPE_IQ3_XXS:
  8325. case GGML_TYPE_IQ1_S:
  8326. case GGML_TYPE_IQ1_M:
  8327. case GGML_TYPE_IQ4_NL:
  8328. case GGML_TYPE_IQ4_XS:
  8329. case GGML_TYPE_IQ3_S:
  8330. case GGML_TYPE_IQ2_S:
  8331. default:
  8332. {
  8333. GGML_ASSERT(false);
  8334. } break;
  8335. }
  8336. }
  8337. // ggml_compute_forward_sub
  8338. static void ggml_compute_forward_sub_f32(
  8339. const struct ggml_compute_params * params,
  8340. struct ggml_tensor * dst) {
  8341. const struct ggml_tensor * src0 = dst->src[0];
  8342. const struct ggml_tensor * src1 = dst->src[1];
  8343. assert(params->ith == 0);
  8344. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8345. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8346. return;
  8347. }
  8348. const int nr = ggml_nrows(src0);
  8349. GGML_TENSOR_BINARY_OP_LOCALS
  8350. GGML_ASSERT( nb0 == sizeof(float));
  8351. GGML_ASSERT(nb00 == sizeof(float));
  8352. if (nb10 == sizeof(float)) {
  8353. for (int ir = 0; ir < nr; ++ir) {
  8354. // src0, src1 and dst are same shape => same indices
  8355. const int i3 = ir/(ne2*ne1);
  8356. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8357. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8358. #ifdef GGML_USE_ACCELERATE
  8359. vDSP_vsub(
  8360. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8361. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8362. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8363. ne0);
  8364. #else
  8365. ggml_vec_sub_f32(ne0,
  8366. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8367. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8368. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8369. #endif
  8370. // }
  8371. // }
  8372. }
  8373. } else {
  8374. // src1 is not contiguous
  8375. for (int ir = 0; ir < nr; ++ir) {
  8376. // src0, src1 and dst are same shape => same indices
  8377. const int i3 = ir/(ne2*ne1);
  8378. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8379. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8380. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8381. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8382. for (int i0 = 0; i0 < ne0; i0++) {
  8383. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8384. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8385. }
  8386. }
  8387. }
  8388. }
  8389. static void ggml_compute_forward_sub(
  8390. const struct ggml_compute_params * params,
  8391. struct ggml_tensor * dst) {
  8392. const struct ggml_tensor * src0 = dst->src[0];
  8393. switch (src0->type) {
  8394. case GGML_TYPE_F32:
  8395. {
  8396. ggml_compute_forward_sub_f32(params, dst);
  8397. } break;
  8398. default:
  8399. {
  8400. GGML_ASSERT(false);
  8401. } break;
  8402. }
  8403. }
  8404. // ggml_compute_forward_mul
  8405. static void ggml_compute_forward_mul_f32(
  8406. const struct ggml_compute_params * params,
  8407. struct ggml_tensor * dst) {
  8408. const struct ggml_tensor * src0 = dst->src[0];
  8409. const struct ggml_tensor * src1 = dst->src[1];
  8410. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8411. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8412. return;
  8413. }
  8414. const int ith = params->ith;
  8415. const int nth = params->nth;
  8416. #if defined(GGML_USE_CLBLAST)
  8417. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8418. // TODO: OpenCL kernel support full broadcast
  8419. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8420. if (ith == 0) {
  8421. ggml_cl_mul(src0, src1, dst);
  8422. }
  8423. return;
  8424. }
  8425. #endif
  8426. const int64_t nr = ggml_nrows(src0);
  8427. GGML_TENSOR_BINARY_OP_LOCALS
  8428. GGML_ASSERT( nb0 == sizeof(float));
  8429. GGML_ASSERT(nb00 == sizeof(float));
  8430. if (nb10 == sizeof(float)) {
  8431. for (int64_t ir = ith; ir < nr; ir += nth) {
  8432. // src0 and dst are same shape => same indices
  8433. const int64_t i03 = ir/(ne02*ne01);
  8434. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8435. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8436. const int64_t i13 = i03 % ne13;
  8437. const int64_t i12 = i02 % ne12;
  8438. const int64_t i11 = i01 % ne11;
  8439. const int64_t nr0 = ne00 / ne10;
  8440. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8441. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8442. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8443. for (int64_t r = 0 ; r < nr0; ++r) {
  8444. #ifdef GGML_USE_ACCELERATE
  8445. UNUSED(ggml_vec_mul_f32);
  8446. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8447. #else
  8448. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8449. #endif
  8450. }
  8451. }
  8452. } else {
  8453. // src1 is not contiguous
  8454. for (int64_t ir = ith; ir < nr; ir += nth) {
  8455. // src0 and dst are same shape => same indices
  8456. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8457. const int64_t i03 = ir/(ne02*ne01);
  8458. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8459. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8460. const int64_t i13 = i03 % ne13;
  8461. const int64_t i12 = i02 % ne12;
  8462. const int64_t i11 = i01 % ne11;
  8463. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8464. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8465. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8466. const int64_t i10 = i0 % ne10;
  8467. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8468. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8469. }
  8470. }
  8471. }
  8472. }
  8473. static void ggml_compute_forward_mul(
  8474. const struct ggml_compute_params * params,
  8475. struct ggml_tensor * dst) {
  8476. const struct ggml_tensor * src0 = dst->src[0];
  8477. const struct ggml_tensor * src1 = dst->src[1];
  8478. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8479. switch (src0->type) {
  8480. case GGML_TYPE_F32:
  8481. {
  8482. ggml_compute_forward_mul_f32(params, dst);
  8483. } break;
  8484. default:
  8485. {
  8486. GGML_ASSERT(false);
  8487. } break;
  8488. }
  8489. }
  8490. // ggml_compute_forward_div
  8491. static void ggml_compute_forward_div_f32(
  8492. const struct ggml_compute_params * params,
  8493. struct ggml_tensor * dst) {
  8494. const struct ggml_tensor * src0 = dst->src[0];
  8495. const struct ggml_tensor * src1 = dst->src[1];
  8496. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8498. return;
  8499. }
  8500. const int ith = params->ith;
  8501. const int nth = params->nth;
  8502. const int64_t nr = ggml_nrows(src0);
  8503. GGML_TENSOR_BINARY_OP_LOCALS
  8504. GGML_ASSERT( nb0 == sizeof(float));
  8505. GGML_ASSERT(nb00 == sizeof(float));
  8506. if (nb10 == sizeof(float)) {
  8507. for (int64_t ir = ith; ir < nr; ir += nth) {
  8508. // src0 and dst are same shape => same indices
  8509. const int64_t i03 = ir/(ne02*ne01);
  8510. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8511. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8512. const int64_t i13 = i03 % ne13;
  8513. const int64_t i12 = i02 % ne12;
  8514. const int64_t i11 = i01 % ne11;
  8515. const int64_t nr0 = ne00 / ne10;
  8516. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8517. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8518. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8519. for (int64_t r = 0; r < nr0; ++r) {
  8520. #ifdef GGML_USE_ACCELERATE
  8521. UNUSED(ggml_vec_div_f32);
  8522. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8523. #else
  8524. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8525. #endif
  8526. }
  8527. }
  8528. } else {
  8529. // src1 is not contiguous
  8530. for (int64_t ir = ith; ir < nr; ir += nth) {
  8531. // src0 and dst are same shape => same indices
  8532. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8533. const int64_t i03 = ir/(ne02*ne01);
  8534. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8535. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8536. const int64_t i13 = i03 % ne13;
  8537. const int64_t i12 = i02 % ne12;
  8538. const int64_t i11 = i01 % ne11;
  8539. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8540. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8541. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8542. const int64_t i10 = i0 % ne10;
  8543. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8544. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8545. }
  8546. }
  8547. }
  8548. }
  8549. static void ggml_compute_forward_div(
  8550. const struct ggml_compute_params * params,
  8551. struct ggml_tensor * dst) {
  8552. const struct ggml_tensor * src0 = dst->src[0];
  8553. switch (src0->type) {
  8554. case GGML_TYPE_F32:
  8555. {
  8556. ggml_compute_forward_div_f32(params, dst);
  8557. } break;
  8558. default:
  8559. {
  8560. GGML_ASSERT(false);
  8561. } break;
  8562. }
  8563. }
  8564. // ggml_compute_forward_sqr
  8565. static void ggml_compute_forward_sqr_f32(
  8566. const struct ggml_compute_params * params,
  8567. struct ggml_tensor * dst) {
  8568. const struct ggml_tensor * src0 = dst->src[0];
  8569. assert(params->ith == 0);
  8570. assert(ggml_are_same_shape(src0, dst));
  8571. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8572. return;
  8573. }
  8574. const int n = ggml_nrows(src0);
  8575. const int nc = src0->ne[0];
  8576. assert( dst->nb[0] == sizeof(float));
  8577. assert(src0->nb[0] == sizeof(float));
  8578. for (int i = 0; i < n; i++) {
  8579. ggml_vec_sqr_f32(nc,
  8580. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8581. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8582. }
  8583. }
  8584. static void ggml_compute_forward_sqr(
  8585. const struct ggml_compute_params * params,
  8586. struct ggml_tensor * dst) {
  8587. const struct ggml_tensor * src0 = dst->src[0];
  8588. switch (src0->type) {
  8589. case GGML_TYPE_F32:
  8590. {
  8591. ggml_compute_forward_sqr_f32(params, dst);
  8592. } break;
  8593. default:
  8594. {
  8595. GGML_ASSERT(false);
  8596. } break;
  8597. }
  8598. }
  8599. // ggml_compute_forward_sqrt
  8600. static void ggml_compute_forward_sqrt_f32(
  8601. const struct ggml_compute_params * params,
  8602. struct ggml_tensor * dst) {
  8603. const struct ggml_tensor * src0 = dst->src[0];
  8604. assert(params->ith == 0);
  8605. assert(ggml_are_same_shape(src0, dst));
  8606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8607. return;
  8608. }
  8609. const int n = ggml_nrows(src0);
  8610. const int nc = src0->ne[0];
  8611. assert( dst->nb[0] == sizeof(float));
  8612. assert(src0->nb[0] == sizeof(float));
  8613. for (int i = 0; i < n; i++) {
  8614. ggml_vec_sqrt_f32(nc,
  8615. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8616. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8617. }
  8618. }
  8619. static void ggml_compute_forward_sqrt(
  8620. const struct ggml_compute_params * params,
  8621. struct ggml_tensor * dst) {
  8622. const struct ggml_tensor * src0 = dst->src[0];
  8623. switch (src0->type) {
  8624. case GGML_TYPE_F32:
  8625. {
  8626. ggml_compute_forward_sqrt_f32(params, dst);
  8627. } break;
  8628. default:
  8629. {
  8630. GGML_ASSERT(false);
  8631. } break;
  8632. }
  8633. }
  8634. // ggml_compute_forward_log
  8635. static void ggml_compute_forward_log_f32(
  8636. const struct ggml_compute_params * params,
  8637. struct ggml_tensor * dst) {
  8638. const struct ggml_tensor * src0 = dst->src[0];
  8639. GGML_ASSERT(params->ith == 0);
  8640. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8641. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8642. return;
  8643. }
  8644. const int n = ggml_nrows(src0);
  8645. const int nc = src0->ne[0];
  8646. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8647. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8648. for (int i = 0; i < n; i++) {
  8649. ggml_vec_log_f32(nc,
  8650. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8651. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8652. }
  8653. }
  8654. static void ggml_compute_forward_log(
  8655. const struct ggml_compute_params * params,
  8656. struct ggml_tensor * dst) {
  8657. const struct ggml_tensor * src0 = dst->src[0];
  8658. switch (src0->type) {
  8659. case GGML_TYPE_F32:
  8660. {
  8661. ggml_compute_forward_log_f32(params, dst);
  8662. } break;
  8663. default:
  8664. {
  8665. GGML_ASSERT(false);
  8666. } break;
  8667. }
  8668. }
  8669. // ggml_compute_forward_sum
  8670. static void ggml_compute_forward_sum_f32(
  8671. const struct ggml_compute_params * params,
  8672. struct ggml_tensor * dst) {
  8673. const struct ggml_tensor * src0 = dst->src[0];
  8674. assert(params->ith == 0);
  8675. assert(ggml_is_scalar(dst));
  8676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8677. return;
  8678. }
  8679. assert(ggml_is_scalar(dst));
  8680. assert(src0->nb[0] == sizeof(float));
  8681. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8682. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8683. ggml_float sum = 0;
  8684. ggml_float row_sum = 0;
  8685. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8686. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8687. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8688. ggml_vec_sum_f32_ggf(ne00,
  8689. &row_sum,
  8690. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8691. sum += row_sum;
  8692. }
  8693. }
  8694. }
  8695. ((float *) dst->data)[0] = sum;
  8696. }
  8697. static void ggml_compute_forward_sum_f16(
  8698. const struct ggml_compute_params * params,
  8699. struct ggml_tensor * dst) {
  8700. const struct ggml_tensor * src0 = dst->src[0];
  8701. assert(params->ith == 0);
  8702. assert(ggml_is_scalar(dst));
  8703. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8704. return;
  8705. }
  8706. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8707. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8708. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8709. float sum = 0;
  8710. float row_sum = 0;
  8711. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8712. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8713. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8714. ggml_vec_sum_f16_ggf(ne00,
  8715. &row_sum,
  8716. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8717. sum += row_sum;
  8718. }
  8719. }
  8720. }
  8721. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8722. }
  8723. static void ggml_compute_forward_sum_bf16(
  8724. const struct ggml_compute_params * params,
  8725. struct ggml_tensor * dst) {
  8726. const struct ggml_tensor * src0 = dst->src[0];
  8727. assert(params->ith == 0);
  8728. assert(ggml_is_scalar(dst));
  8729. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8730. return;
  8731. }
  8732. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8733. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8734. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8735. float sum = 0;
  8736. float row_sum = 0;
  8737. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8738. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8739. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8740. ggml_vec_sum_bf16_ggf(ne00,
  8741. &row_sum,
  8742. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8743. sum += row_sum;
  8744. }
  8745. }
  8746. }
  8747. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8748. }
  8749. static void ggml_compute_forward_sum(
  8750. const struct ggml_compute_params * params,
  8751. struct ggml_tensor * dst) {
  8752. const struct ggml_tensor * src0 = dst->src[0];
  8753. switch (src0->type) {
  8754. case GGML_TYPE_F32:
  8755. {
  8756. ggml_compute_forward_sum_f32(params, dst);
  8757. } break;
  8758. case GGML_TYPE_F16:
  8759. {
  8760. ggml_compute_forward_sum_f16(params, dst);
  8761. } break;
  8762. case GGML_TYPE_BF16:
  8763. {
  8764. ggml_compute_forward_sum_bf16(params, dst);
  8765. } break;
  8766. default:
  8767. {
  8768. GGML_ASSERT(false);
  8769. } break;
  8770. }
  8771. }
  8772. // ggml_compute_forward_sum_rows
  8773. static void ggml_compute_forward_sum_rows_f32(
  8774. const struct ggml_compute_params * params,
  8775. struct ggml_tensor * dst) {
  8776. const struct ggml_tensor * src0 = dst->src[0];
  8777. GGML_ASSERT(params->ith == 0);
  8778. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8779. return;
  8780. }
  8781. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8782. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8783. GGML_TENSOR_UNARY_OP_LOCALS
  8784. GGML_ASSERT(ne0 == 1);
  8785. GGML_ASSERT(ne1 == ne01);
  8786. GGML_ASSERT(ne2 == ne02);
  8787. GGML_ASSERT(ne3 == ne03);
  8788. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8789. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8790. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8791. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8792. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8793. float row_sum = 0;
  8794. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8795. dst_row[0] = row_sum;
  8796. }
  8797. }
  8798. }
  8799. }
  8800. static void ggml_compute_forward_sum_rows(
  8801. const struct ggml_compute_params * params,
  8802. struct ggml_tensor * dst) {
  8803. const struct ggml_tensor * src0 = dst->src[0];
  8804. switch (src0->type) {
  8805. case GGML_TYPE_F32:
  8806. {
  8807. ggml_compute_forward_sum_rows_f32(params, dst);
  8808. } break;
  8809. default:
  8810. {
  8811. GGML_ASSERT(false);
  8812. } break;
  8813. }
  8814. }
  8815. // ggml_compute_forward_mean
  8816. static void ggml_compute_forward_mean_f32(
  8817. const struct ggml_compute_params * params,
  8818. struct ggml_tensor * dst) {
  8819. const struct ggml_tensor * src0 = dst->src[0];
  8820. assert(params->ith == 0);
  8821. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8822. return;
  8823. }
  8824. assert(src0->nb[0] == sizeof(float));
  8825. GGML_TENSOR_UNARY_OP_LOCALS
  8826. assert(ne0 == 1);
  8827. assert(ne1 == ne01);
  8828. assert(ne2 == ne02);
  8829. assert(ne3 == ne03);
  8830. UNUSED(ne0);
  8831. UNUSED(ne1);
  8832. UNUSED(ne2);
  8833. UNUSED(ne3);
  8834. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8835. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8836. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8837. ggml_vec_sum_f32(ne00,
  8838. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8839. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8840. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8841. }
  8842. }
  8843. }
  8844. }
  8845. static void ggml_compute_forward_mean(
  8846. const struct ggml_compute_params * params,
  8847. struct ggml_tensor * dst) {
  8848. const struct ggml_tensor * src0 = dst->src[0];
  8849. switch (src0->type) {
  8850. case GGML_TYPE_F32:
  8851. {
  8852. ggml_compute_forward_mean_f32(params, dst);
  8853. } break;
  8854. default:
  8855. {
  8856. GGML_ASSERT(false);
  8857. } break;
  8858. }
  8859. }
  8860. // ggml_compute_forward_argmax
  8861. static void ggml_compute_forward_argmax_f32(
  8862. const struct ggml_compute_params * params,
  8863. struct ggml_tensor * dst) {
  8864. const struct ggml_tensor * src0 = dst->src[0];
  8865. assert(params->ith == 0);
  8866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8867. return;
  8868. }
  8869. assert(src0->nb[0] == sizeof(float));
  8870. assert(dst->nb[0] == sizeof(float));
  8871. const int64_t ne00 = src0->ne[0];
  8872. const int64_t ne01 = src0->ne[1];
  8873. const size_t nb01 = src0->nb[1];
  8874. const size_t nb0 = dst->nb[0];
  8875. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8876. float * src = (float *) ((char *) src0->data + i1*nb01);
  8877. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8878. int v = 0;
  8879. ggml_vec_argmax_f32(ne00, &v, src);
  8880. dst_[0] = v;
  8881. }
  8882. }
  8883. static void ggml_compute_forward_argmax(
  8884. const struct ggml_compute_params * params,
  8885. struct ggml_tensor * dst) {
  8886. const struct ggml_tensor * src0 = dst->src[0];
  8887. switch (src0->type) {
  8888. case GGML_TYPE_F32:
  8889. {
  8890. ggml_compute_forward_argmax_f32(params, dst);
  8891. } break;
  8892. default:
  8893. {
  8894. GGML_ASSERT(false);
  8895. } break;
  8896. }
  8897. }
  8898. // ggml_compute_forward_repeat
  8899. static void ggml_compute_forward_repeat_f32(
  8900. const struct ggml_compute_params * params,
  8901. struct ggml_tensor * dst) {
  8902. const struct ggml_tensor * src0 = dst->src[0];
  8903. GGML_ASSERT(params->ith == 0);
  8904. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8905. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8906. return;
  8907. }
  8908. GGML_TENSOR_UNARY_OP_LOCALS
  8909. // guaranteed to be an integer due to the check in ggml_can_repeat
  8910. const int nr0 = (int)(ne0/ne00);
  8911. const int nr1 = (int)(ne1/ne01);
  8912. const int nr2 = (int)(ne2/ne02);
  8913. const int nr3 = (int)(ne3/ne03);
  8914. // TODO: support for transposed / permuted tensors
  8915. GGML_ASSERT(nb0 == sizeof(float));
  8916. GGML_ASSERT(nb00 == sizeof(float));
  8917. // TODO: maybe this is not optimal?
  8918. for (int i3 = 0; i3 < nr3; i3++) {
  8919. for (int k3 = 0; k3 < ne03; k3++) {
  8920. for (int i2 = 0; i2 < nr2; i2++) {
  8921. for (int k2 = 0; k2 < ne02; k2++) {
  8922. for (int i1 = 0; i1 < nr1; i1++) {
  8923. for (int k1 = 0; k1 < ne01; k1++) {
  8924. for (int i0 = 0; i0 < nr0; i0++) {
  8925. ggml_vec_cpy_f32(ne00,
  8926. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8927. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8928. }
  8929. }
  8930. }
  8931. }
  8932. }
  8933. }
  8934. }
  8935. }
  8936. static void ggml_compute_forward_repeat_f16(
  8937. const struct ggml_compute_params * params,
  8938. struct ggml_tensor * dst) {
  8939. const struct ggml_tensor * src0 = dst->src[0];
  8940. GGML_ASSERT(params->ith == 0);
  8941. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8942. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8943. return;
  8944. }
  8945. GGML_TENSOR_UNARY_OP_LOCALS
  8946. // guaranteed to be an integer due to the check in ggml_can_repeat
  8947. const int nr0 = (int)(ne0/ne00);
  8948. const int nr1 = (int)(ne1/ne01);
  8949. const int nr2 = (int)(ne2/ne02);
  8950. const int nr3 = (int)(ne3/ne03);
  8951. // TODO: support for transposed / permuted tensors
  8952. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8953. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8954. // TODO: maybe this is not optimal?
  8955. for (int i3 = 0; i3 < nr3; i3++) {
  8956. for (int k3 = 0; k3 < ne03; k3++) {
  8957. for (int i2 = 0; i2 < nr2; i2++) {
  8958. for (int k2 = 0; k2 < ne02; k2++) {
  8959. for (int i1 = 0; i1 < nr1; i1++) {
  8960. for (int k1 = 0; k1 < ne01; k1++) {
  8961. for (int i0 = 0; i0 < nr0; i0++) {
  8962. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8963. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8964. // ggml_vec_cpy_f16(ne00, y, x)
  8965. for (int i = 0; i < ne00; ++i) {
  8966. y[i] = x[i];
  8967. }
  8968. }
  8969. }
  8970. }
  8971. }
  8972. }
  8973. }
  8974. }
  8975. }
  8976. static void ggml_compute_forward_repeat(
  8977. const struct ggml_compute_params * params,
  8978. struct ggml_tensor * dst) {
  8979. const struct ggml_tensor * src0 = dst->src[0];
  8980. switch (src0->type) {
  8981. case GGML_TYPE_F16:
  8982. case GGML_TYPE_BF16:
  8983. case GGML_TYPE_I16:
  8984. {
  8985. ggml_compute_forward_repeat_f16(params, dst);
  8986. } break;
  8987. case GGML_TYPE_F32:
  8988. case GGML_TYPE_I32:
  8989. {
  8990. ggml_compute_forward_repeat_f32(params, dst);
  8991. } break;
  8992. default:
  8993. {
  8994. GGML_ASSERT(false);
  8995. } break;
  8996. }
  8997. }
  8998. // ggml_compute_forward_repeat_back
  8999. static void ggml_compute_forward_repeat_back_f32(
  9000. const struct ggml_compute_params * params,
  9001. struct ggml_tensor * dst) {
  9002. const struct ggml_tensor * src0 = dst->src[0];
  9003. GGML_ASSERT(params->ith == 0);
  9004. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9005. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9006. return;
  9007. }
  9008. GGML_TENSOR_UNARY_OP_LOCALS
  9009. // guaranteed to be an integer due to the check in ggml_can_repeat
  9010. const int nr0 = (int)(ne00/ne0);
  9011. const int nr1 = (int)(ne01/ne1);
  9012. const int nr2 = (int)(ne02/ne2);
  9013. const int nr3 = (int)(ne03/ne3);
  9014. // TODO: support for transposed / permuted tensors
  9015. GGML_ASSERT(nb0 == sizeof(float));
  9016. GGML_ASSERT(nb00 == sizeof(float));
  9017. if (ggml_is_contiguous(dst)) {
  9018. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9019. } else {
  9020. for (int k3 = 0; k3 < ne3; k3++) {
  9021. for (int k2 = 0; k2 < ne2; k2++) {
  9022. for (int k1 = 0; k1 < ne1; k1++) {
  9023. ggml_vec_set_f32(ne0,
  9024. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9025. 0);
  9026. }
  9027. }
  9028. }
  9029. }
  9030. // TODO: maybe this is not optimal?
  9031. for (int i3 = 0; i3 < nr3; i3++) {
  9032. for (int k3 = 0; k3 < ne3; k3++) {
  9033. for (int i2 = 0; i2 < nr2; i2++) {
  9034. for (int k2 = 0; k2 < ne2; k2++) {
  9035. for (int i1 = 0; i1 < nr1; i1++) {
  9036. for (int k1 = 0; k1 < ne1; k1++) {
  9037. for (int i0 = 0; i0 < nr0; i0++) {
  9038. ggml_vec_acc_f32(ne0,
  9039. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9040. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9041. }
  9042. }
  9043. }
  9044. }
  9045. }
  9046. }
  9047. }
  9048. }
  9049. static void ggml_compute_forward_repeat_back(
  9050. const struct ggml_compute_params * params,
  9051. struct ggml_tensor * dst) {
  9052. const struct ggml_tensor * src0 = dst->src[0];
  9053. switch (src0->type) {
  9054. case GGML_TYPE_F32:
  9055. {
  9056. ggml_compute_forward_repeat_back_f32(params, dst);
  9057. } break;
  9058. default:
  9059. {
  9060. GGML_ASSERT(false);
  9061. } break;
  9062. }
  9063. }
  9064. // ggml_compute_forward_concat
  9065. static void ggml_compute_forward_concat_f32(
  9066. const struct ggml_compute_params * params,
  9067. struct ggml_tensor * dst) {
  9068. const struct ggml_tensor * src0 = dst->src[0];
  9069. const struct ggml_tensor * src1 = dst->src[1];
  9070. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9071. return;
  9072. }
  9073. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9074. const int ith = params->ith;
  9075. const int nth = params->nth;
  9076. GGML_TENSOR_BINARY_OP_LOCALS
  9077. // TODO: support for transposed / permuted tensors
  9078. GGML_ASSERT(nb0 == sizeof(float));
  9079. GGML_ASSERT(nb00 == sizeof(float));
  9080. GGML_ASSERT(nb10 == sizeof(float));
  9081. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9082. GGML_ASSERT(dim >= 0 && dim < 4);
  9083. int64_t o[4] = {0, 0, 0, 0};
  9084. o[dim] = src0->ne[dim];
  9085. const float * x;
  9086. // TODO: smarter multi-theading
  9087. for (int i3 = 0; i3 < ne3; i3++) {
  9088. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9089. for (int i1 = 0; i1 < ne1; i1++) {
  9090. for (int i0 = 0; i0 < ne0; i0++) {
  9091. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9092. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9093. } else {
  9094. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9095. }
  9096. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9097. *y = *x;
  9098. }
  9099. }
  9100. }
  9101. }
  9102. }
  9103. static void ggml_compute_forward_concat(
  9104. const struct ggml_compute_params * params,
  9105. struct ggml_tensor * dst) {
  9106. const struct ggml_tensor * src0 = dst->src[0];
  9107. switch (src0->type) {
  9108. case GGML_TYPE_F32:
  9109. case GGML_TYPE_I32:
  9110. {
  9111. ggml_compute_forward_concat_f32(params, dst);
  9112. } break;
  9113. default:
  9114. {
  9115. GGML_ASSERT(false);
  9116. } break;
  9117. }
  9118. }
  9119. // ggml_compute_forward_abs
  9120. static void ggml_compute_forward_abs_f32(
  9121. const struct ggml_compute_params * params,
  9122. struct ggml_tensor * dst) {
  9123. const struct ggml_tensor * src0 = dst->src[0];
  9124. assert(params->ith == 0);
  9125. assert(ggml_are_same_shape(src0, dst));
  9126. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9127. return;
  9128. }
  9129. const int n = ggml_nrows(src0);
  9130. const int nc = src0->ne[0];
  9131. assert(dst->nb[0] == sizeof(float));
  9132. assert(src0->nb[0] == sizeof(float));
  9133. for (int i = 0; i < n; i++) {
  9134. ggml_vec_abs_f32(nc,
  9135. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9136. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9137. }
  9138. }
  9139. static void ggml_compute_forward_abs(
  9140. const struct ggml_compute_params * params,
  9141. struct ggml_tensor * dst) {
  9142. const struct ggml_tensor * src0 = dst->src[0];
  9143. switch (src0->type) {
  9144. case GGML_TYPE_F32:
  9145. {
  9146. ggml_compute_forward_abs_f32(params, dst);
  9147. } break;
  9148. default:
  9149. {
  9150. GGML_ASSERT(false);
  9151. } break;
  9152. }
  9153. }
  9154. // ggml_compute_forward_sgn
  9155. static void ggml_compute_forward_sgn_f32(
  9156. const struct ggml_compute_params * params,
  9157. struct ggml_tensor * dst) {
  9158. const struct ggml_tensor * src0 = dst->src[0];
  9159. assert(params->ith == 0);
  9160. assert(ggml_are_same_shape(src0, dst));
  9161. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9162. return;
  9163. }
  9164. const int n = ggml_nrows(src0);
  9165. const int nc = src0->ne[0];
  9166. assert(dst->nb[0] == sizeof(float));
  9167. assert(src0->nb[0] == sizeof(float));
  9168. for (int i = 0; i < n; i++) {
  9169. ggml_vec_sgn_f32(nc,
  9170. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9171. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9172. }
  9173. }
  9174. static void ggml_compute_forward_sgn(
  9175. const struct ggml_compute_params * params,
  9176. struct ggml_tensor * dst) {
  9177. const struct ggml_tensor * src0 = dst->src[0];
  9178. switch (src0->type) {
  9179. case GGML_TYPE_F32:
  9180. {
  9181. ggml_compute_forward_sgn_f32(params, dst);
  9182. } break;
  9183. default:
  9184. {
  9185. GGML_ASSERT(false);
  9186. } break;
  9187. }
  9188. }
  9189. // ggml_compute_forward_neg
  9190. static void ggml_compute_forward_neg_f32(
  9191. const struct ggml_compute_params * params,
  9192. struct ggml_tensor * dst) {
  9193. const struct ggml_tensor * src0 = dst->src[0];
  9194. assert(params->ith == 0);
  9195. assert(ggml_are_same_shape(src0, dst));
  9196. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9197. return;
  9198. }
  9199. const int n = ggml_nrows(src0);
  9200. const int nc = src0->ne[0];
  9201. assert(dst->nb[0] == sizeof(float));
  9202. assert(src0->nb[0] == sizeof(float));
  9203. for (int i = 0; i < n; i++) {
  9204. ggml_vec_neg_f32(nc,
  9205. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9206. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9207. }
  9208. }
  9209. static void ggml_compute_forward_neg(
  9210. const struct ggml_compute_params * params,
  9211. struct ggml_tensor * dst) {
  9212. const struct ggml_tensor * src0 = dst->src[0];
  9213. switch (src0->type) {
  9214. case GGML_TYPE_F32:
  9215. {
  9216. ggml_compute_forward_neg_f32(params, dst);
  9217. } break;
  9218. default:
  9219. {
  9220. GGML_ASSERT(false);
  9221. } break;
  9222. }
  9223. }
  9224. // ggml_compute_forward_step
  9225. static void ggml_compute_forward_step_f32(
  9226. const struct ggml_compute_params * params,
  9227. struct ggml_tensor * dst) {
  9228. const struct ggml_tensor * src0 = dst->src[0];
  9229. assert(params->ith == 0);
  9230. assert(ggml_are_same_shape(src0, dst));
  9231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9232. return;
  9233. }
  9234. const int n = ggml_nrows(src0);
  9235. const int nc = src0->ne[0];
  9236. assert(dst->nb[0] == sizeof(float));
  9237. assert(src0->nb[0] == sizeof(float));
  9238. for (int i = 0; i < n; i++) {
  9239. ggml_vec_step_f32(nc,
  9240. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9241. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9242. }
  9243. }
  9244. static void ggml_compute_forward_step(
  9245. const struct ggml_compute_params * params,
  9246. struct ggml_tensor * dst) {
  9247. const struct ggml_tensor * src0 = dst->src[0];
  9248. switch (src0->type) {
  9249. case GGML_TYPE_F32:
  9250. {
  9251. ggml_compute_forward_step_f32(params, dst);
  9252. } break;
  9253. default:
  9254. {
  9255. GGML_ASSERT(false);
  9256. } break;
  9257. }
  9258. }
  9259. // ggml_compute_forward_tanh
  9260. static void ggml_compute_forward_tanh_f32(
  9261. const struct ggml_compute_params * params,
  9262. struct ggml_tensor * dst) {
  9263. const struct ggml_tensor * src0 = dst->src[0];
  9264. assert(params->ith == 0);
  9265. assert(ggml_are_same_shape(src0, dst));
  9266. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9267. return;
  9268. }
  9269. const int n = ggml_nrows(src0);
  9270. const int nc = src0->ne[0];
  9271. assert(dst->nb[0] == sizeof(float));
  9272. assert(src0->nb[0] == sizeof(float));
  9273. for (int i = 0; i < n; i++) {
  9274. ggml_vec_tanh_f32(nc,
  9275. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9276. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9277. }
  9278. }
  9279. static void ggml_compute_forward_tanh(
  9280. const struct ggml_compute_params * params,
  9281. struct ggml_tensor * dst) {
  9282. const struct ggml_tensor * src0 = dst->src[0];
  9283. switch (src0->type) {
  9284. case GGML_TYPE_F32:
  9285. {
  9286. ggml_compute_forward_tanh_f32(params, dst);
  9287. } break;
  9288. default:
  9289. {
  9290. GGML_ASSERT(false);
  9291. } break;
  9292. }
  9293. }
  9294. // ggml_compute_forward_elu
  9295. static void ggml_compute_forward_elu_f32(
  9296. const struct ggml_compute_params * params,
  9297. struct ggml_tensor * dst) {
  9298. const struct ggml_tensor * src0 = dst->src[0];
  9299. assert(params->ith == 0);
  9300. assert(ggml_are_same_shape(src0, dst));
  9301. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9302. return;
  9303. }
  9304. const int n = ggml_nrows(src0);
  9305. const int nc = src0->ne[0];
  9306. assert(dst->nb[0] == sizeof(float));
  9307. assert(src0->nb[0] == sizeof(float));
  9308. for (int i = 0; i < n; i++) {
  9309. ggml_vec_elu_f32(nc,
  9310. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9311. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9312. }
  9313. }
  9314. static void ggml_compute_forward_elu(
  9315. const struct ggml_compute_params * params,
  9316. struct ggml_tensor * dst) {
  9317. const struct ggml_tensor * src0 = dst->src[0];
  9318. switch (src0->type) {
  9319. case GGML_TYPE_F32:
  9320. {
  9321. ggml_compute_forward_elu_f32(params, dst);
  9322. } break;
  9323. default:
  9324. {
  9325. GGML_ASSERT(false);
  9326. } break;
  9327. }
  9328. }
  9329. // ggml_compute_forward_relu
  9330. static void ggml_compute_forward_relu_f32(
  9331. const struct ggml_compute_params * params,
  9332. struct ggml_tensor * dst) {
  9333. const struct ggml_tensor * src0 = dst->src[0];
  9334. assert(params->ith == 0);
  9335. assert(ggml_are_same_shape(src0, dst));
  9336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9337. return;
  9338. }
  9339. const int n = ggml_nrows(src0);
  9340. const int nc = src0->ne[0];
  9341. assert(dst->nb[0] == sizeof(float));
  9342. assert(src0->nb[0] == sizeof(float));
  9343. for (int i = 0; i < n; i++) {
  9344. ggml_vec_relu_f32(nc,
  9345. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9346. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9347. }
  9348. }
  9349. static void ggml_compute_forward_relu(
  9350. const struct ggml_compute_params * params,
  9351. struct ggml_tensor * dst) {
  9352. const struct ggml_tensor * src0 = dst->src[0];
  9353. switch (src0->type) {
  9354. case GGML_TYPE_F32:
  9355. {
  9356. ggml_compute_forward_relu_f32(params, dst);
  9357. } break;
  9358. default:
  9359. {
  9360. GGML_ASSERT(false);
  9361. } break;
  9362. }
  9363. }
  9364. // ggml_compute_forward_sigmoid
  9365. static void ggml_compute_forward_sigmoid_f32(
  9366. const struct ggml_compute_params * params,
  9367. struct ggml_tensor * dst) {
  9368. const struct ggml_tensor * src0 = dst->src[0];
  9369. assert(params->ith == 0);
  9370. assert(ggml_are_same_shape(src0, dst));
  9371. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9372. return;
  9373. }
  9374. const int n = ggml_nrows(src0);
  9375. const int nc = src0->ne[0];
  9376. assert(dst->nb[0] == sizeof(float));
  9377. assert(src0->nb[0] == sizeof(float));
  9378. for (int i = 0; i < n; i++) {
  9379. ggml_vec_sigmoid_f32(nc,
  9380. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9381. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9382. }
  9383. }
  9384. static void ggml_compute_forward_sigmoid(
  9385. const struct ggml_compute_params * params,
  9386. struct ggml_tensor * dst) {
  9387. const struct ggml_tensor * src0 = dst->src[0];
  9388. switch (src0->type) {
  9389. case GGML_TYPE_F32:
  9390. {
  9391. ggml_compute_forward_sigmoid_f32(params, dst);
  9392. } break;
  9393. default:
  9394. {
  9395. GGML_ASSERT(false);
  9396. } break;
  9397. }
  9398. }
  9399. // ggml_compute_forward_gelu
  9400. static void ggml_compute_forward_gelu_f32(
  9401. const struct ggml_compute_params * params,
  9402. struct ggml_tensor * dst) {
  9403. const struct ggml_tensor * src0 = dst->src[0];
  9404. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9405. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9406. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9407. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9408. return;
  9409. }
  9410. const int ith = params->ith;
  9411. const int nth = params->nth;
  9412. const int nc = src0->ne[0];
  9413. const int nr = ggml_nrows(src0);
  9414. // rows per thread
  9415. const int dr = (nr + nth - 1)/nth;
  9416. // row range for this thread
  9417. const int ir0 = dr*ith;
  9418. const int ir1 = MIN(ir0 + dr, nr);
  9419. for (int i1 = ir0; i1 < ir1; i1++) {
  9420. ggml_vec_gelu_f32(nc,
  9421. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9422. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9423. #ifndef NDEBUG
  9424. for (int k = 0; k < nc; k++) {
  9425. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9426. UNUSED(x);
  9427. assert(!isnan(x));
  9428. assert(!isinf(x));
  9429. }
  9430. #endif
  9431. }
  9432. }
  9433. static void ggml_compute_forward_gelu(
  9434. const struct ggml_compute_params * params,
  9435. struct ggml_tensor * dst) {
  9436. const struct ggml_tensor * src0 = dst->src[0];
  9437. switch (src0->type) {
  9438. case GGML_TYPE_F32:
  9439. {
  9440. ggml_compute_forward_gelu_f32(params, dst);
  9441. } break;
  9442. default:
  9443. {
  9444. GGML_ASSERT(false);
  9445. } break;
  9446. }
  9447. }
  9448. // ggml_compute_forward_gelu_quick
  9449. static void ggml_compute_forward_gelu_quick_f32(
  9450. const struct ggml_compute_params * params,
  9451. struct ggml_tensor * dst) {
  9452. const struct ggml_tensor * src0 = dst->src[0];
  9453. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9454. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9455. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9456. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9457. return;
  9458. }
  9459. const int ith = params->ith;
  9460. const int nth = params->nth;
  9461. const int nc = src0->ne[0];
  9462. const int nr = ggml_nrows(src0);
  9463. // rows per thread
  9464. const int dr = (nr + nth - 1)/nth;
  9465. // row range for this thread
  9466. const int ir0 = dr*ith;
  9467. const int ir1 = MIN(ir0 + dr, nr);
  9468. for (int i1 = ir0; i1 < ir1; i1++) {
  9469. ggml_vec_gelu_quick_f32(nc,
  9470. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9471. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9472. #ifndef NDEBUG
  9473. for (int k = 0; k < nc; k++) {
  9474. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9475. UNUSED(x);
  9476. assert(!isnan(x));
  9477. assert(!isinf(x));
  9478. }
  9479. #endif
  9480. }
  9481. }
  9482. static void ggml_compute_forward_gelu_quick(
  9483. const struct ggml_compute_params * params,
  9484. struct ggml_tensor * dst) {
  9485. const struct ggml_tensor * src0 = dst->src[0];
  9486. switch (src0->type) {
  9487. case GGML_TYPE_F32:
  9488. {
  9489. ggml_compute_forward_gelu_quick_f32(params, dst);
  9490. } break;
  9491. default:
  9492. {
  9493. GGML_ASSERT(false);
  9494. } break;
  9495. }
  9496. }
  9497. // ggml_compute_forward_silu
  9498. static void ggml_compute_forward_silu_f32(
  9499. const struct ggml_compute_params * params,
  9500. struct ggml_tensor * dst) {
  9501. const struct ggml_tensor * src0 = dst->src[0];
  9502. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9503. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9504. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9505. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9506. return;
  9507. }
  9508. const int ith = params->ith;
  9509. const int nth = params->nth;
  9510. const int nc = src0->ne[0];
  9511. const int nr = ggml_nrows(src0);
  9512. // rows per thread
  9513. const int dr = (nr + nth - 1)/nth;
  9514. // row range for this thread
  9515. const int ir0 = dr*ith;
  9516. const int ir1 = MIN(ir0 + dr, nr);
  9517. for (int i1 = ir0; i1 < ir1; i1++) {
  9518. ggml_vec_silu_f32(nc,
  9519. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9520. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9521. #ifndef NDEBUG
  9522. for (int k = 0; k < nc; k++) {
  9523. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9524. UNUSED(x);
  9525. assert(!isnan(x));
  9526. assert(!isinf(x));
  9527. }
  9528. #endif
  9529. }
  9530. }
  9531. static void ggml_compute_forward_silu(
  9532. const struct ggml_compute_params * params,
  9533. struct ggml_tensor * dst) {
  9534. const struct ggml_tensor * src0 = dst->src[0];
  9535. switch (src0->type) {
  9536. case GGML_TYPE_F32:
  9537. {
  9538. ggml_compute_forward_silu_f32(params, dst);
  9539. } break;
  9540. default:
  9541. {
  9542. GGML_ASSERT(false);
  9543. } break;
  9544. }
  9545. }
  9546. // ggml_compute_forward_leaky_relu
  9547. static void ggml_compute_forward_leaky_relu_f32(
  9548. const struct ggml_compute_params * params,
  9549. struct ggml_tensor * dst) {
  9550. const struct ggml_tensor * src0 = dst->src[0];
  9551. assert(params->ith == 0);
  9552. assert(ggml_are_same_shape(src0, dst));
  9553. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9554. return;
  9555. }
  9556. const int n = ggml_nrows(src0);
  9557. const int nc = src0->ne[0];
  9558. float negative_slope;
  9559. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9560. assert(dst->nb[0] == sizeof(float));
  9561. assert(src0->nb[0] == sizeof(float));
  9562. for (int i = 0; i < n; i++) {
  9563. ggml_vec_leaky_relu_f32(nc,
  9564. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9565. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9566. }
  9567. }
  9568. static void ggml_compute_forward_leaky_relu(
  9569. const struct ggml_compute_params * params,
  9570. struct ggml_tensor * dst) {
  9571. const struct ggml_tensor * src0 = dst->src[0];
  9572. switch (src0->type) {
  9573. case GGML_TYPE_F32:
  9574. {
  9575. ggml_compute_forward_leaky_relu_f32(params, dst);
  9576. } break;
  9577. default:
  9578. {
  9579. GGML_ASSERT(false);
  9580. } break;
  9581. }
  9582. }
  9583. // ggml_compute_forward_silu_back
  9584. static void ggml_compute_forward_silu_back_f32(
  9585. const struct ggml_compute_params * params,
  9586. struct ggml_tensor * dst) {
  9587. const struct ggml_tensor * src0 = dst->src[0];
  9588. const struct ggml_tensor * grad = dst->src[1];
  9589. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9590. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9591. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9592. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9593. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9594. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9595. return;
  9596. }
  9597. const int ith = params->ith;
  9598. const int nth = params->nth;
  9599. const int nc = src0->ne[0];
  9600. const int nr = ggml_nrows(src0);
  9601. // rows per thread
  9602. const int dr = (nr + nth - 1)/nth;
  9603. // row range for this thread
  9604. const int ir0 = dr*ith;
  9605. const int ir1 = MIN(ir0 + dr, nr);
  9606. for (int i1 = ir0; i1 < ir1; i1++) {
  9607. ggml_vec_silu_backward_f32(nc,
  9608. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9609. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9610. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9611. #ifndef NDEBUG
  9612. for (int k = 0; k < nc; k++) {
  9613. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9614. UNUSED(x);
  9615. assert(!isnan(x));
  9616. assert(!isinf(x));
  9617. }
  9618. #endif
  9619. }
  9620. }
  9621. static void ggml_compute_forward_silu_back(
  9622. const struct ggml_compute_params * params,
  9623. struct ggml_tensor * dst) {
  9624. const struct ggml_tensor * src0 = dst->src[0];
  9625. switch (src0->type) {
  9626. case GGML_TYPE_F32:
  9627. {
  9628. ggml_compute_forward_silu_back_f32(params, dst);
  9629. } break;
  9630. default:
  9631. {
  9632. GGML_ASSERT(false);
  9633. } break;
  9634. }
  9635. }
  9636. static void ggml_compute_forward_hardswish_f32(
  9637. const struct ggml_compute_params * params,
  9638. struct ggml_tensor * dst) {
  9639. const struct ggml_tensor * src0 = dst->src[0];
  9640. assert(params->ith == 0);
  9641. assert(ggml_are_same_shape(src0, dst));
  9642. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9643. return;
  9644. }
  9645. const int n = ggml_nrows(src0);
  9646. const int nc = src0->ne[0];
  9647. assert(dst->nb[0] == sizeof(float));
  9648. assert(src0->nb[0] == sizeof(float));
  9649. for (int i = 0; i < n; i++) {
  9650. ggml_vec_hardswish_f32(nc,
  9651. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9652. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9653. }
  9654. }
  9655. static void ggml_compute_forward_hardswish(
  9656. const struct ggml_compute_params * params,
  9657. struct ggml_tensor * dst) {
  9658. const struct ggml_tensor * src0 = dst->src[0];
  9659. switch (src0->type) {
  9660. case GGML_TYPE_F32:
  9661. {
  9662. ggml_compute_forward_hardswish_f32(params, dst);
  9663. } break;
  9664. default:
  9665. {
  9666. GGML_ASSERT(false);
  9667. } break;
  9668. }
  9669. }
  9670. static void ggml_compute_forward_hardsigmoid_f32(
  9671. const struct ggml_compute_params * params,
  9672. struct ggml_tensor * dst) {
  9673. const struct ggml_tensor * src0 = dst->src[0];
  9674. assert(params->ith == 0);
  9675. assert(ggml_are_same_shape(src0, dst));
  9676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9677. return;
  9678. }
  9679. const int n = ggml_nrows(src0);
  9680. const int nc = src0->ne[0];
  9681. assert(dst->nb[0] == sizeof(float));
  9682. assert(src0->nb[0] == sizeof(float));
  9683. for (int i = 0; i < n; i++) {
  9684. ggml_vec_hardsigmoid_f32(nc,
  9685. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9686. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9687. }
  9688. }
  9689. static void ggml_compute_forward_hardsigmoid(
  9690. const struct ggml_compute_params * params,
  9691. struct ggml_tensor * dst) {
  9692. const struct ggml_tensor * src0 = dst->src[0];
  9693. switch (src0->type) {
  9694. case GGML_TYPE_F32:
  9695. {
  9696. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9697. } break;
  9698. default:
  9699. {
  9700. GGML_ASSERT(false);
  9701. } break;
  9702. }
  9703. }
  9704. // ggml_compute_forward_norm
  9705. static void ggml_compute_forward_norm_f32(
  9706. const struct ggml_compute_params * params,
  9707. struct ggml_tensor * dst) {
  9708. const struct ggml_tensor * src0 = dst->src[0];
  9709. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9710. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9711. return;
  9712. }
  9713. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9714. const int ith = params->ith;
  9715. const int nth = params->nth;
  9716. GGML_TENSOR_UNARY_OP_LOCALS
  9717. float eps;
  9718. memcpy(&eps, dst->op_params, sizeof(float));
  9719. GGML_ASSERT(eps > 0.0f);
  9720. // TODO: optimize
  9721. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9722. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9723. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9724. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9725. ggml_float sum = 0.0;
  9726. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9727. sum += (ggml_float)x[i00];
  9728. }
  9729. float mean = sum/ne00;
  9730. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9731. ggml_float sum2 = 0.0;
  9732. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9733. float v = x[i00] - mean;
  9734. y[i00] = v;
  9735. sum2 += (ggml_float)(v*v);
  9736. }
  9737. float variance = sum2/ne00;
  9738. const float scale = 1.0f/sqrtf(variance + eps);
  9739. ggml_vec_scale_f32(ne00, y, scale);
  9740. }
  9741. }
  9742. }
  9743. }
  9744. static void ggml_compute_forward_norm(
  9745. const struct ggml_compute_params * params,
  9746. struct ggml_tensor * dst) {
  9747. const struct ggml_tensor * src0 = dst->src[0];
  9748. switch (src0->type) {
  9749. case GGML_TYPE_F32:
  9750. {
  9751. ggml_compute_forward_norm_f32(params, dst);
  9752. } break;
  9753. default:
  9754. {
  9755. GGML_ASSERT(false);
  9756. } break;
  9757. }
  9758. }
  9759. // ggml_compute_forward_group_rms_norm
  9760. static void ggml_compute_forward_rms_norm_f32(
  9761. const struct ggml_compute_params * params,
  9762. struct ggml_tensor * dst) {
  9763. const struct ggml_tensor * src0 = dst->src[0];
  9764. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9765. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9766. return;
  9767. }
  9768. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9769. const int ith = params->ith;
  9770. const int nth = params->nth;
  9771. GGML_TENSOR_UNARY_OP_LOCALS
  9772. float eps;
  9773. memcpy(&eps, dst->op_params, sizeof(float));
  9774. GGML_ASSERT(eps > 0.0f);
  9775. // TODO: optimize
  9776. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9778. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9779. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9780. ggml_float sum = 0.0;
  9781. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9782. sum += (ggml_float)(x[i00] * x[i00]);
  9783. }
  9784. const float mean = sum/ne00;
  9785. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9786. memcpy(y, x, ne00 * sizeof(float));
  9787. // for (int i00 = 0; i00 < ne00; i00++) {
  9788. // y[i00] = x[i00];
  9789. // }
  9790. const float scale = 1.0f/sqrtf(mean + eps);
  9791. ggml_vec_scale_f32(ne00, y, scale);
  9792. }
  9793. }
  9794. }
  9795. }
  9796. static void ggml_compute_forward_rms_norm(
  9797. const struct ggml_compute_params * params,
  9798. struct ggml_tensor * dst) {
  9799. const struct ggml_tensor * src0 = dst->src[0];
  9800. switch (src0->type) {
  9801. case GGML_TYPE_F32:
  9802. {
  9803. ggml_compute_forward_rms_norm_f32(params, dst);
  9804. } break;
  9805. default:
  9806. {
  9807. GGML_ASSERT(false);
  9808. } break;
  9809. }
  9810. }
  9811. static void ggml_compute_forward_rms_norm_back_f32(
  9812. const struct ggml_compute_params * params,
  9813. struct ggml_tensor * dst) {
  9814. const struct ggml_tensor * src0 = dst->src[0];
  9815. const struct ggml_tensor * src1 = dst->src[1];
  9816. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9817. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9818. return;
  9819. }
  9820. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9821. const int ith = params->ith;
  9822. const int nth = params->nth;
  9823. GGML_TENSOR_BINARY_OP_LOCALS
  9824. float eps;
  9825. memcpy(&eps, dst->op_params, sizeof(float));
  9826. // TODO: optimize
  9827. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9828. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9829. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9830. // src1 is same shape as src0 => same indices
  9831. const int64_t i11 = i01;
  9832. const int64_t i12 = i02;
  9833. const int64_t i13 = i03;
  9834. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9835. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9836. ggml_float sum_xx = 0.0;
  9837. ggml_float sum_xdz = 0.0;
  9838. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9839. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9840. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9841. }
  9842. //const float mean = (float)(sum_xx)/ne00;
  9843. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9844. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9845. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9846. // we could cache rms from forward pass to improve performance.
  9847. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9848. //const float rms = sqrtf(mean_eps);
  9849. const float rrms = 1.0f / sqrtf(mean_eps);
  9850. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9851. {
  9852. // z = rms_norm(x)
  9853. //
  9854. // rms_norm(src0) =
  9855. // scale(
  9856. // src0,
  9857. // div(
  9858. // 1,
  9859. // sqrt(
  9860. // add(
  9861. // scale(
  9862. // sum(
  9863. // sqr(
  9864. // src0)),
  9865. // (1.0/N)),
  9866. // eps))));
  9867. // postorder:
  9868. // ## op args grad
  9869. // 00 param src0 grad[#00]
  9870. // 01 const 1
  9871. // 02 sqr (#00) grad[#02]
  9872. // 03 sum (#02) grad[#03]
  9873. // 04 const 1/N
  9874. // 05 scale (#03, #04) grad[#05]
  9875. // 06 const eps
  9876. // 07 add (#05, #06) grad[#07]
  9877. // 08 sqrt (#07) grad[#08]
  9878. // 09 div (#01,#08) grad[#09]
  9879. // 10 scale (#00,#09) grad[#10]
  9880. //
  9881. // backward pass, given grad[#10]
  9882. // #10: scale
  9883. // grad[#00] += scale(grad[#10],#09)
  9884. // grad[#09] += sum(mul(grad[#10],#00))
  9885. // #09: div
  9886. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9887. // #08: sqrt
  9888. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9889. // #07: add
  9890. // grad[#05] += grad[#07]
  9891. // #05: scale
  9892. // grad[#03] += scale(grad[#05],#04)
  9893. // #03: sum
  9894. // grad[#02] += repeat(grad[#03], #02)
  9895. // #02:
  9896. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9897. //
  9898. // substitute and simplify:
  9899. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9900. // grad[#02] = repeat(grad[#03], #02)
  9901. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9902. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9903. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9904. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9905. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9906. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9907. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9908. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9909. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9910. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9911. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9912. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9913. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9914. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9915. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9916. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9917. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9918. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9919. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9920. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9921. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9922. // a = b*c + d*e
  9923. // a = b*c*f/f + d*e*f/f
  9924. // a = (b*c*f + d*e*f)*(1/f)
  9925. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9926. // a = (b + d*e/c)*c
  9927. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9928. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9929. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9930. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9931. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9932. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9933. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9934. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9935. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9936. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9937. }
  9938. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9939. // post-order:
  9940. // dx := x
  9941. // dx := scale(dx,-mean_xdz/mean_eps)
  9942. // dx := add(dx, dz)
  9943. // dx := scale(dx, rrms)
  9944. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9945. ggml_vec_cpy_f32 (ne00, dx, x);
  9946. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9947. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9948. ggml_vec_acc_f32 (ne00, dx, dz);
  9949. ggml_vec_scale_f32(ne00, dx, rrms);
  9950. }
  9951. }
  9952. }
  9953. }
  9954. static void ggml_compute_forward_rms_norm_back(
  9955. const struct ggml_compute_params * params,
  9956. struct ggml_tensor * dst) {
  9957. const struct ggml_tensor * src0 = dst->src[0];
  9958. switch (src0->type) {
  9959. case GGML_TYPE_F32:
  9960. {
  9961. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9962. } break;
  9963. default:
  9964. {
  9965. GGML_ASSERT(false);
  9966. } break;
  9967. }
  9968. }
  9969. // ggml_compute_forward_group_norm
  9970. static void ggml_compute_forward_group_norm_f32(
  9971. const struct ggml_compute_params * params,
  9972. struct ggml_tensor * dst) {
  9973. const struct ggml_tensor * src0 = dst->src[0];
  9974. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9975. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9976. return;
  9977. }
  9978. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9979. const int ith = params->ith;
  9980. const int nth = params->nth;
  9981. GGML_TENSOR_UNARY_OP_LOCALS
  9982. const float eps = 1e-6f; // TODO: make this a parameter
  9983. // TODO: optimize
  9984. int n_channels = src0->ne[2];
  9985. int n_groups = dst->op_params[0];
  9986. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9987. for (int i = ith; i < n_groups; i += nth) {
  9988. int start = i * n_channels_per_group;
  9989. int end = start + n_channels_per_group;
  9990. if (end > n_channels) {
  9991. end = n_channels;
  9992. }
  9993. int step = end - start;
  9994. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9995. ggml_float sum = 0.0;
  9996. for (int64_t i02 = start; i02 < end; i02++) {
  9997. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9998. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9999. ggml_float sumr = 0.0;
  10000. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10001. sumr += (ggml_float)x[i00];
  10002. }
  10003. sum += sumr;
  10004. }
  10005. }
  10006. const float mean = sum / (ne00 * ne01 * step);
  10007. ggml_float sum2 = 0.0;
  10008. for (int64_t i02 = start; i02 < end; i02++) {
  10009. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10010. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10011. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10012. ggml_float sumr = 0.0;
  10013. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10014. float v = x[i00] - mean;
  10015. y[i00] = v;
  10016. sumr += (ggml_float)(v * v);
  10017. }
  10018. sum2 += sumr;
  10019. }
  10020. }
  10021. const float variance = sum2 / (ne00 * ne01 * step);
  10022. const float scale = 1.0f / sqrtf(variance + eps);
  10023. for (int64_t i02 = start; i02 < end; i02++) {
  10024. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10025. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10026. ggml_vec_scale_f32(ne00, y, scale);
  10027. }
  10028. }
  10029. }
  10030. }
  10031. }
  10032. static void ggml_compute_forward_group_norm(
  10033. const struct ggml_compute_params * params,
  10034. struct ggml_tensor * dst) {
  10035. const struct ggml_tensor * src0 = dst->src[0];
  10036. switch (src0->type) {
  10037. case GGML_TYPE_F32:
  10038. {
  10039. ggml_compute_forward_group_norm_f32(params, dst);
  10040. } break;
  10041. default:
  10042. {
  10043. GGML_ASSERT(false);
  10044. } break;
  10045. }
  10046. }
  10047. // ggml_compute_forward_mul_mat
  10048. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10049. // helper function to determine if it is better to use BLAS or not
  10050. // for large matrices, BLAS is faster
  10051. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10052. const struct ggml_tensor * src0 = dst->src[0];
  10053. const struct ggml_tensor * src1 = dst->src[1];
  10054. //const int64_t ne00 = src0->ne[0];
  10055. //const int64_t ne01 = src0->ne[1];
  10056. const int64_t ne10 = src1->ne[0];
  10057. const int64_t ne0 = dst->ne[0];
  10058. const int64_t ne1 = dst->ne[1];
  10059. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10060. // all the experts for each batch element and the processing would become incredibly slow
  10061. // TODO: find the optimal values for these
  10062. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10063. ggml_is_contiguous(src0) &&
  10064. ggml_is_contiguous(src1) &&
  10065. //src0->type == GGML_TYPE_F32 &&
  10066. src1->type == GGML_TYPE_F32 &&
  10067. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10068. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10069. return true;
  10070. }
  10071. return false;
  10072. }
  10073. #endif
  10074. static void ggml_compute_forward_mul_mat_one_chunk(
  10075. const struct ggml_compute_params * params,
  10076. struct ggml_tensor * dst,
  10077. const int64_t num_rows_per_vec_dot,
  10078. const int64_t ir0_start,
  10079. const int64_t ir0_end,
  10080. const int64_t ir1_start,
  10081. const int64_t ir1_end) {
  10082. const struct ggml_tensor * src0 = dst->src[0];
  10083. const struct ggml_tensor * src1 = dst->src[1];
  10084. GGML_TENSOR_BINARY_OP_LOCALS
  10085. const enum ggml_type type = src0->type;
  10086. const bool src1_cont = ggml_is_contiguous(src1);
  10087. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10088. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10089. // broadcast factors
  10090. const int64_t r2 = ne12 / ne02;
  10091. const int64_t r3 = ne13 / ne03;
  10092. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10093. // threads with no work simply yield (not sure if it helps)
  10094. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10095. return;
  10096. }
  10097. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10098. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10099. assert(ne12 % ne02 == 0);
  10100. assert(ne13 % ne03 == 0);
  10101. // block-tiling attempt
  10102. const int64_t blck_0 = 16;
  10103. const int64_t blck_1 = 16;
  10104. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10105. // attempt to reduce false-sharing (does not seem to make a difference)
  10106. // 16 * 2, accounting for mmla kernels
  10107. float tmp[32];
  10108. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10109. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10110. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10111. const int64_t i13 = (ir1 / (ne12 * ne1));
  10112. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10113. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10114. // broadcast src0 into src1
  10115. const int64_t i03 = i13 / r3;
  10116. const int64_t i02 = i12 / r2;
  10117. const int64_t i1 = i11;
  10118. const int64_t i2 = i12;
  10119. const int64_t i3 = i13;
  10120. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10121. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10122. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10123. // the original src1 data pointer, so we should index using the indices directly
  10124. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10125. const char * src1_col = (const char*)wdata +
  10126. (src1_cont || src1->type != vec_dot_type
  10127. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10128. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10129. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10130. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10131. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10132. //}
  10133. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10134. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10135. }
  10136. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10137. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10138. }
  10139. }
  10140. }
  10141. }
  10142. }
  10143. static void ggml_compute_forward_mul_mat(
  10144. const struct ggml_compute_params * params,
  10145. struct ggml_tensor * dst,
  10146. struct ggml_compute_state * state) {
  10147. const struct ggml_tensor * src0 = dst->src[0];
  10148. const struct ggml_tensor * src1 = dst->src[1];
  10149. int64_t t0 = ggml_perf_time_us();
  10150. UNUSED(t0);
  10151. GGML_TENSOR_BINARY_OP_LOCALS
  10152. const int ith = params->ith;
  10153. const int nth = params->nth;
  10154. const enum ggml_type type = src0->type;
  10155. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10156. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10157. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10158. GGML_ASSERT(ne0 == ne01);
  10159. GGML_ASSERT(ne1 == ne11);
  10160. GGML_ASSERT(ne2 == ne12);
  10161. GGML_ASSERT(ne3 == ne13);
  10162. // we don't support permuted src0 or src1
  10163. GGML_ASSERT(nb00 == ggml_type_size(type));
  10164. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10165. // dst cannot be transposed or permuted
  10166. GGML_ASSERT(nb0 == sizeof(float));
  10167. GGML_ASSERT(nb0 <= nb1);
  10168. GGML_ASSERT(nb1 <= nb2);
  10169. GGML_ASSERT(nb2 <= nb3);
  10170. // broadcast factors
  10171. const int64_t r2 = ne12 / ne02;
  10172. const int64_t r3 = ne13 / ne03;
  10173. UNUSED(r2);
  10174. UNUSED(r3);
  10175. // nb01 >= nb00 - src0 is not transposed
  10176. // compute by src0 rows
  10177. #if defined(GGML_USE_CLBLAST)
  10178. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10179. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10180. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10181. }
  10182. return;
  10183. }
  10184. #endif
  10185. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10186. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10187. const int64_t ne_plane = ne01*ne00;
  10188. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10189. UNUSED(desired_wsize);
  10190. if (params->type == GGML_TASK_TYPE_INIT) {
  10191. if (type != GGML_TYPE_F32) {
  10192. assert(params->wsize >= desired_wsize);
  10193. // parallelize by src0 rows
  10194. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10195. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10196. // broadcast src0 into src1 across 2nd,3rd dimension
  10197. const int64_t i03 = i13/r3;
  10198. const int64_t i02 = i12/r2;
  10199. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10200. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10201. ggml_to_float_t const to_float = type_traits[type].to_float;
  10202. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10203. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10204. }
  10205. }
  10206. }
  10207. }
  10208. return;
  10209. }
  10210. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10211. return;
  10212. }
  10213. // perform sgemm, parallelization controlled by blas lib
  10214. if (ith != 0) {
  10215. return;
  10216. }
  10217. //const int64_t tgemm0 = ggml_perf_time_us();
  10218. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10219. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10220. const int64_t i03 = i13/r3;
  10221. const int64_t i02 = i12/r2;
  10222. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10223. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10224. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10225. if (type != GGML_TYPE_F32) {
  10226. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10227. }
  10228. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10229. ne1, ne01, ne10,
  10230. 1.0f, y, ne10,
  10231. x, ne00,
  10232. 0.0f, d, ne01);
  10233. }
  10234. }
  10235. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10236. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10237. return;
  10238. }
  10239. #endif
  10240. #if GGML_USE_LLAMAFILE
  10241. const bool src1_cont = ggml_is_contiguous(src1);
  10242. if (src1_cont) {
  10243. for (int64_t i13 = 0; i13 < ne13; i13++)
  10244. for (int64_t i12 = 0; i12 < ne12; i12++)
  10245. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10246. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10247. nb01/ggml_type_size(src0->type),
  10248. (const char *)src1->data + i12*nb12 + i13*nb13,
  10249. nb11/ggml_type_size(src1->type),
  10250. (char *)dst->data + i12*nb2 + i13*nb3,
  10251. nb1/ggml_type_size(dst->type),
  10252. ith, nth,
  10253. params->type,
  10254. src0->type,
  10255. src1->type,
  10256. dst->type))
  10257. goto UseGgmlGemm1;
  10258. return;
  10259. }
  10260. UseGgmlGemm1:;
  10261. #endif
  10262. if (params->type == GGML_TASK_TYPE_INIT) {
  10263. if (ith != 0) {
  10264. return;
  10265. }
  10266. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10267. atomic_store(&state->shared->current_chunk, nth);
  10268. if (src1->type != vec_dot_type) {
  10269. char * wdata = params->wdata;
  10270. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10271. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10272. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10273. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10274. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10275. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10276. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10277. wdata += row_size;
  10278. }
  10279. }
  10280. }
  10281. }
  10282. return;
  10283. }
  10284. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10285. return;
  10286. }
  10287. #if GGML_USE_LLAMAFILE
  10288. if (src1->type != vec_dot_type) {
  10289. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10290. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10291. for (int64_t i13 = 0; i13 < ne13; i13++)
  10292. for (int64_t i12 = 0; i12 < ne12; i12++)
  10293. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10294. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10295. nb01/ggml_type_size(src0->type),
  10296. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10297. row_size/ggml_type_size(vec_dot_type),
  10298. (char *)dst->data + i12*nb2 + i13*nb3,
  10299. nb1/ggml_type_size(dst->type),
  10300. ith, nth,
  10301. params->type,
  10302. src0->type,
  10303. vec_dot_type,
  10304. dst->type))
  10305. goto UseGgmlGemm2;
  10306. return;
  10307. }
  10308. UseGgmlGemm2:;
  10309. #endif
  10310. #ifdef GGML_PERF
  10311. int chunks_executed = 0;
  10312. UNUSED(chunks_executed);
  10313. #endif
  10314. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10315. const int64_t nr0 = ne0;
  10316. // This is the size of the rest of the dimensions of the result
  10317. const int64_t nr1 = ne1 * ne2 * ne3;
  10318. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10319. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10320. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10321. // this check can be removed once they are extended to support odd numbered rows/cols too
  10322. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10323. num_rows_per_vec_dot = 1;
  10324. }
  10325. // Now select a reasonable chunk size.
  10326. int chunk_size = 16;
  10327. // We need to step up the size if it's small
  10328. if (nr0 == 1 || nr1 == 1) {
  10329. chunk_size = 64;
  10330. }
  10331. // distribute the work across the inner or outer loop based on which one is larger
  10332. // The number of chunks in the 0/1 dim.
  10333. // CEIL(nr0/chunk_size)
  10334. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10335. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10336. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10337. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10338. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10339. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10340. // distribute the thread work across the inner or outer loop based on which one is larger
  10341. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10342. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10343. }
  10344. // The number of elements in each chunk
  10345. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10346. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10347. //if (ith == 0)
  10348. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10349. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10350. int current_chunk = ith;
  10351. while (current_chunk < nchunk0 * nchunk1) {
  10352. const int64_t ith0 = current_chunk % nchunk0;
  10353. const int64_t ith1 = current_chunk / nchunk0;
  10354. const int64_t ir0_start = dr0 * ith0;
  10355. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10356. const int64_t ir1_start = dr1 * ith1;
  10357. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10358. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10359. #ifdef GGML_PERF
  10360. chunks_executed++;
  10361. #endif
  10362. if (nth >= nchunk0 * nchunk1) {
  10363. break;
  10364. }
  10365. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10366. }
  10367. #ifdef GGML_PERF
  10368. // These numbers are useful when trying to measure how well the threading scheduling works.
  10369. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10370. //float time = (ggml_perf_time_us() - t0);
  10371. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10372. #endif
  10373. }
  10374. // ggml_compute_forward_mul_mat_id
  10375. static void ggml_compute_forward_mul_mat_id(
  10376. const struct ggml_compute_params * params,
  10377. struct ggml_tensor * dst) {
  10378. const struct ggml_tensor * src0 = dst->src[0];
  10379. const struct ggml_tensor * src1 = dst->src[1];
  10380. const struct ggml_tensor * ids = dst->src[2];
  10381. GGML_TENSOR_BINARY_OP_LOCALS
  10382. const int ith = params->ith;
  10383. const int nth = params->nth;
  10384. const enum ggml_type type = src0->type;
  10385. const bool src1_cont = ggml_is_contiguous(src1);
  10386. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10387. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10388. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10389. // we don't support permuted src0 or src1
  10390. GGML_ASSERT(nb00 == ggml_type_size(type));
  10391. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10392. // dst cannot be transposed or permuted
  10393. GGML_ASSERT(nb0 == sizeof(float));
  10394. GGML_ASSERT(nb0 <= nb1);
  10395. GGML_ASSERT(nb1 <= nb2);
  10396. GGML_ASSERT(nb2 <= nb3);
  10397. // row groups
  10398. const int n_ids = ids->ne[0]; // n_expert_used
  10399. const int n_as = ne02; // n_expert
  10400. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10401. (char *) params->wdata :
  10402. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10403. struct mmid_row_mapping {
  10404. int32_t i1;
  10405. int32_t i2;
  10406. };
  10407. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10408. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10409. if (params->type == GGML_TASK_TYPE_INIT) {
  10410. if (ith != 0) {
  10411. return;
  10412. }
  10413. char * wdata = params->wdata;
  10414. if (src1->type != vec_dot_type) {
  10415. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10416. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10417. assert(src1->type == GGML_TYPE_F32);
  10418. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10419. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10420. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10421. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10422. wdata += row_size;
  10423. }
  10424. }
  10425. }
  10426. }
  10427. // initialize matrix_row_counts
  10428. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10429. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10430. // group rows by src0 matrix
  10431. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10432. for (int id = 0; id < n_ids; ++id) {
  10433. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10434. assert(i02 >= 0 && i02 < n_as);
  10435. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10436. matrix_row_counts[i02] += 1;
  10437. }
  10438. }
  10439. return;
  10440. }
  10441. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10442. return;
  10443. }
  10444. // compute each matrix multiplication in sequence
  10445. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10446. const int64_t cne1 = matrix_row_counts[cur_a];
  10447. if (cne1 == 0) {
  10448. continue;
  10449. }
  10450. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10451. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10452. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10453. const int64_t nr0 = ne01; // src0 rows
  10454. const int64_t nr1 = cne1; // src1 rows
  10455. // distribute the thread work across the inner or outer loop based on which one is larger
  10456. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10457. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10458. const int64_t ith0 = ith % nth0;
  10459. const int64_t ith1 = ith / nth0;
  10460. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10461. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10462. const int64_t ir010 = dr0*ith0;
  10463. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10464. const int64_t ir110 = dr1*ith1;
  10465. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10466. // threads with no work simply yield (not sure if it helps)
  10467. //if (ir010 >= ir011 || ir110 >= ir111) {
  10468. // sched_yield();
  10469. // continue;
  10470. //}
  10471. // block-tiling attempt
  10472. const int64_t blck_0 = 16;
  10473. const int64_t blck_1 = 16;
  10474. // attempt to reduce false-sharing (does not seem to make a difference)
  10475. float tmp[16];
  10476. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10477. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10478. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10479. const int64_t _i12 = ir1; // logical row index for this expert
  10480. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10481. const int id = row_mapping.i1; // selected expert index
  10482. const int64_t i11 = id % ne11;
  10483. const int64_t i12 = row_mapping.i2; // row index in src1
  10484. const int64_t i1 = id; // selected expert index
  10485. const int64_t i2 = i12; // row
  10486. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10487. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10488. // the original src1 data pointer, so we should index using the indices directly
  10489. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10490. const char * src1_col = (const char *) wdata +
  10491. (src1_cont || src1->type != vec_dot_type
  10492. ? (i11 + i12*ne11)*row_size
  10493. : (i11*nb11 + i12*nb12));
  10494. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10495. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10496. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10497. //}
  10498. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10499. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10500. }
  10501. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10502. }
  10503. }
  10504. }
  10505. }
  10506. #undef MMID_MATRIX_ROW
  10507. }
  10508. // ggml_compute_forward_out_prod
  10509. static void ggml_compute_forward_out_prod_f32(
  10510. const struct ggml_compute_params * params,
  10511. struct ggml_tensor * dst) {
  10512. const struct ggml_tensor * src0 = dst->src[0];
  10513. const struct ggml_tensor * src1 = dst->src[1];
  10514. // int64_t t0 = ggml_perf_time_us();
  10515. // UNUSED(t0);
  10516. GGML_TENSOR_BINARY_OP_LOCALS
  10517. const int ith = params->ith;
  10518. const int nth = params->nth;
  10519. GGML_ASSERT(ne0 == ne00);
  10520. GGML_ASSERT(ne1 == ne10);
  10521. GGML_ASSERT(ne2 == ne02);
  10522. GGML_ASSERT(ne02 == ne12);
  10523. GGML_ASSERT(ne3 == ne13);
  10524. GGML_ASSERT(ne03 == ne13);
  10525. // we don't support permuted src0 or src1
  10526. GGML_ASSERT(nb00 == sizeof(float));
  10527. // dst cannot be transposed or permuted
  10528. GGML_ASSERT(nb0 == sizeof(float));
  10529. // GGML_ASSERT(nb0 <= nb1);
  10530. // GGML_ASSERT(nb1 <= nb2);
  10531. // GGML_ASSERT(nb2 <= nb3);
  10532. // nb01 >= nb00 - src0 is not transposed
  10533. // compute by src0 rows
  10534. // TODO: #if defined(GGML_USE_CLBLAST)
  10535. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10536. bool use_blas = ggml_is_matrix(src0) &&
  10537. ggml_is_matrix(src1) &&
  10538. ggml_is_contiguous(src0) &&
  10539. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10540. #endif
  10541. if (params->type == GGML_TASK_TYPE_INIT) {
  10542. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10543. if (use_blas) {
  10544. return;
  10545. }
  10546. #endif
  10547. if (ith != 0) {
  10548. return;
  10549. }
  10550. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10551. return;
  10552. }
  10553. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10554. return;
  10555. }
  10556. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10557. if (use_blas) {
  10558. if (params->ith != 0) { // All threads other than the first do no work.
  10559. return;
  10560. }
  10561. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10562. // src0: (k,n)
  10563. // src1: (k,m)
  10564. // dst: (m,n)
  10565. //
  10566. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10567. // Also expressed as (major,minor)
  10568. // a: (m,k): so src1 transposed
  10569. // b: (k,n): so src0
  10570. // c: (m,n)
  10571. //
  10572. // However, if ggml_is_transposed(src1) is true, then
  10573. // src1->data already contains a transposed version, so sgemm mustn't
  10574. // transpose it further.
  10575. int n = src0->ne[0];
  10576. int k = src0->ne[1];
  10577. int m = src1->ne[0];
  10578. int transposeA, lda;
  10579. if (!ggml_is_transposed(src1)) {
  10580. transposeA = CblasTrans;
  10581. lda = m;
  10582. } else {
  10583. transposeA = CblasNoTrans;
  10584. lda = k;
  10585. }
  10586. float * a = (float *) ((char *) src1->data);
  10587. float * b = (float *) ((char *) src0->data);
  10588. float * c = (float *) ((char *) dst->data);
  10589. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10590. return;
  10591. }
  10592. #endif
  10593. // dst[:,:,:,:] = 0
  10594. // for i2,i3:
  10595. // for i1:
  10596. // for i01:
  10597. // for i0:
  10598. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10599. // parallelize by last three dimensions
  10600. // total rows in dst
  10601. const int64_t nr = ne1*ne2*ne3;
  10602. // rows per thread
  10603. const int64_t dr = (nr + nth - 1)/nth;
  10604. // row range for this thread
  10605. const int64_t ir0 = dr*ith;
  10606. const int64_t ir1 = MIN(ir0 + dr, nr);
  10607. // block-tiling attempt
  10608. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10609. const int64_t blck_1 = 16;
  10610. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10611. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10612. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10613. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10614. for (int64_t ir = bir; ir < bir1; ++ir) {
  10615. // dst indices
  10616. const int64_t i3 = ir/(ne2*ne1);
  10617. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10618. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10619. const int64_t i02 = i2;
  10620. const int64_t i03 = i3;
  10621. //const int64_t i10 = i1;
  10622. const int64_t i12 = i2;
  10623. const int64_t i13 = i3;
  10624. #if GGML_VEC_MAD_UNROLL > 2
  10625. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10626. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10627. const int64_t i11 = i01;
  10628. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10629. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10630. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10631. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10632. }
  10633. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10634. const int64_t i11 = i01;
  10635. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10636. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10637. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10638. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10639. }
  10640. #else
  10641. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10642. const int64_t i11 = i01;
  10643. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10644. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10645. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10646. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10647. }
  10648. #endif
  10649. }
  10650. }
  10651. }
  10652. //int64_t t1 = ggml_perf_time_us();
  10653. //static int64_t acc = 0;
  10654. //acc += t1 - t0;
  10655. //if (t1 - t0 > 10) {
  10656. // printf("\n");
  10657. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10658. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10659. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10660. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10661. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10662. //}
  10663. }
  10664. static void ggml_compute_forward_out_prod_q_f32(
  10665. const struct ggml_compute_params * params,
  10666. struct ggml_tensor * dst) {
  10667. const struct ggml_tensor * src0 = dst->src[0];
  10668. const struct ggml_tensor * src1 = dst->src[1];
  10669. // int64_t t0 = ggml_perf_time_us();
  10670. // UNUSED(t0);
  10671. GGML_TENSOR_BINARY_OP_LOCALS;
  10672. const int ith = params->ith;
  10673. const int nth = params->nth;
  10674. const enum ggml_type type = src0->type;
  10675. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10676. GGML_ASSERT(ne02 == ne12);
  10677. GGML_ASSERT(ne03 == ne13);
  10678. GGML_ASSERT(ne2 == ne12);
  10679. GGML_ASSERT(ne3 == ne13);
  10680. // we don't support permuted src0 dim0
  10681. GGML_ASSERT(nb00 == ggml_type_size(type));
  10682. // dst dim0 cannot be transposed or permuted
  10683. GGML_ASSERT(nb0 == sizeof(float));
  10684. // GGML_ASSERT(nb0 <= nb1);
  10685. // GGML_ASSERT(nb1 <= nb2);
  10686. // GGML_ASSERT(nb2 <= nb3);
  10687. GGML_ASSERT(ne0 == ne00);
  10688. GGML_ASSERT(ne1 == ne10);
  10689. GGML_ASSERT(ne2 == ne02);
  10690. GGML_ASSERT(ne3 == ne03);
  10691. // nb01 >= nb00 - src0 is not transposed
  10692. // compute by src0 rows
  10693. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10694. if (params->type == GGML_TASK_TYPE_INIT) {
  10695. if (ith != 0) {
  10696. return;
  10697. }
  10698. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10699. return;
  10700. }
  10701. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10702. return;
  10703. }
  10704. // parallelize by last three dimensions
  10705. // total rows in dst
  10706. const int64_t nr = ne1*ne2*ne3;
  10707. // rows per thread
  10708. const int64_t dr = (nr + nth - 1)/nth;
  10709. // row range for this thread
  10710. const int64_t ir0 = dr*ith;
  10711. const int64_t ir1 = MIN(ir0 + dr, nr);
  10712. // dst[:,:,:,:] = 0
  10713. // for i2,i3:
  10714. // for i1:
  10715. // for i01:
  10716. // for i0:
  10717. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10718. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10719. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10720. // dst indices
  10721. const int64_t i3 = ir/(ne2*ne1);
  10722. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10723. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10724. const int64_t i02 = i2;
  10725. const int64_t i03 = i3;
  10726. //const int64_t i10 = i1;
  10727. const int64_t i12 = i2;
  10728. const int64_t i13 = i3;
  10729. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10730. const int64_t i11 = i01;
  10731. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10732. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10733. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10734. dequantize_row_q(s0, wdata, ne0);
  10735. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10736. }
  10737. }
  10738. //int64_t t1 = ggml_perf_time_us();
  10739. //static int64_t acc = 0;
  10740. //acc += t1 - t0;
  10741. //if (t1 - t0 > 10) {
  10742. // printf("\n");
  10743. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10744. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10745. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10746. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10747. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10748. //}
  10749. }
  10750. static void ggml_compute_forward_out_prod(
  10751. const struct ggml_compute_params * params,
  10752. struct ggml_tensor * dst) {
  10753. const struct ggml_tensor * src0 = dst->src[0];
  10754. switch (src0->type) {
  10755. case GGML_TYPE_Q4_0:
  10756. case GGML_TYPE_Q4_1:
  10757. case GGML_TYPE_Q5_0:
  10758. case GGML_TYPE_Q5_1:
  10759. case GGML_TYPE_Q8_0:
  10760. case GGML_TYPE_Q2_K:
  10761. case GGML_TYPE_Q3_K:
  10762. case GGML_TYPE_Q4_K:
  10763. case GGML_TYPE_Q5_K:
  10764. case GGML_TYPE_Q6_K:
  10765. case GGML_TYPE_IQ2_XXS:
  10766. case GGML_TYPE_IQ2_XS:
  10767. case GGML_TYPE_IQ3_XXS:
  10768. case GGML_TYPE_IQ1_S:
  10769. case GGML_TYPE_IQ1_M:
  10770. case GGML_TYPE_IQ4_NL:
  10771. case GGML_TYPE_IQ4_XS:
  10772. case GGML_TYPE_IQ3_S:
  10773. case GGML_TYPE_IQ2_S:
  10774. {
  10775. ggml_compute_forward_out_prod_q_f32(params, dst);
  10776. } break;
  10777. case GGML_TYPE_F16:
  10778. {
  10779. GGML_ASSERT(false); // todo
  10780. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10781. } break;
  10782. case GGML_TYPE_F32:
  10783. {
  10784. ggml_compute_forward_out_prod_f32(params, dst);
  10785. } break;
  10786. default:
  10787. {
  10788. GGML_ASSERT(false);
  10789. } break;
  10790. }
  10791. }
  10792. // ggml_compute_forward_scale
  10793. static void ggml_compute_forward_scale_f32(
  10794. const struct ggml_compute_params * params,
  10795. struct ggml_tensor * dst) {
  10796. const struct ggml_tensor * src0 = dst->src[0];
  10797. GGML_ASSERT(ggml_is_contiguous(src0));
  10798. GGML_ASSERT(ggml_is_contiguous(dst));
  10799. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10800. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10801. return;
  10802. }
  10803. // scale factor
  10804. float v;
  10805. memcpy(&v, dst->op_params, sizeof(float));
  10806. const int ith = params->ith;
  10807. const int nth = params->nth;
  10808. const int nc = src0->ne[0];
  10809. const int nr = ggml_nrows(src0);
  10810. // rows per thread
  10811. const int dr = (nr + nth - 1)/nth;
  10812. // row range for this thread
  10813. const int ir0 = dr*ith;
  10814. const int ir1 = MIN(ir0 + dr, nr);
  10815. const size_t nb01 = src0->nb[1];
  10816. const size_t nb1 = dst->nb[1];
  10817. for (int i1 = ir0; i1 < ir1; i1++) {
  10818. if (dst->data != src0->data) {
  10819. // src0 is same shape as dst => same indices
  10820. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10821. }
  10822. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10823. }
  10824. }
  10825. static void ggml_compute_forward_scale(
  10826. const struct ggml_compute_params * params,
  10827. struct ggml_tensor * dst) {
  10828. const struct ggml_tensor * src0 = dst->src[0];
  10829. switch (src0->type) {
  10830. case GGML_TYPE_F32:
  10831. {
  10832. ggml_compute_forward_scale_f32(params, dst);
  10833. } break;
  10834. default:
  10835. {
  10836. GGML_ASSERT(false);
  10837. } break;
  10838. }
  10839. }
  10840. // ggml_compute_forward_set
  10841. static void ggml_compute_forward_set_f32(
  10842. const struct ggml_compute_params * params,
  10843. struct ggml_tensor * dst) {
  10844. const struct ggml_tensor * src0 = dst->src[0];
  10845. const struct ggml_tensor * src1 = dst->src[1];
  10846. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10847. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10848. // view src0 and dst with these strides and data offset inbytes during set
  10849. // nb0 is implicitly element_size because src0 and dst are contiguous
  10850. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10851. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10852. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10853. size_t offset = ((int32_t *) dst->op_params)[3];
  10854. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10855. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10856. if (params->ith != 0) {
  10857. return;
  10858. }
  10859. // memcpy needs to be synchronized across threads to avoid race conditions.
  10860. // => do it in INIT phase
  10861. memcpy(
  10862. ((char *) dst->data),
  10863. ((char *) src0->data),
  10864. ggml_nbytes(dst));
  10865. }
  10866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10867. return;
  10868. }
  10869. const int ith = params->ith;
  10870. const int nth = params->nth;
  10871. const int nr = ggml_nrows(src1);
  10872. const int nc = src1->ne[0];
  10873. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10874. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10875. // src0 and dst as viewed during set
  10876. const size_t nb0 = ggml_element_size(src0);
  10877. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10878. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10879. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10880. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10881. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10882. GGML_ASSERT(nb10 == sizeof(float));
  10883. // rows per thread
  10884. const int dr = (nr + nth - 1)/nth;
  10885. // row range for this thread
  10886. const int ir0 = dr*ith;
  10887. const int ir1 = MIN(ir0 + dr, nr);
  10888. for (int ir = ir0; ir < ir1; ++ir) {
  10889. // src0 and dst are viewed with shape of src1 and offset
  10890. // => same indices
  10891. const int i3 = ir/(ne12*ne11);
  10892. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10893. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10894. ggml_vec_cpy_f32(nc,
  10895. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10896. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10897. }
  10898. }
  10899. static void ggml_compute_forward_set(
  10900. const struct ggml_compute_params * params,
  10901. struct ggml_tensor * dst) {
  10902. const struct ggml_tensor * src0 = dst->src[0];
  10903. switch (src0->type) {
  10904. case GGML_TYPE_F32:
  10905. {
  10906. ggml_compute_forward_set_f32(params, dst);
  10907. } break;
  10908. case GGML_TYPE_F16:
  10909. case GGML_TYPE_BF16:
  10910. case GGML_TYPE_Q4_0:
  10911. case GGML_TYPE_Q4_1:
  10912. case GGML_TYPE_Q5_0:
  10913. case GGML_TYPE_Q5_1:
  10914. case GGML_TYPE_Q8_0:
  10915. case GGML_TYPE_Q8_1:
  10916. case GGML_TYPE_Q2_K:
  10917. case GGML_TYPE_Q3_K:
  10918. case GGML_TYPE_Q4_K:
  10919. case GGML_TYPE_Q5_K:
  10920. case GGML_TYPE_Q6_K:
  10921. case GGML_TYPE_IQ2_XXS:
  10922. case GGML_TYPE_IQ2_XS:
  10923. case GGML_TYPE_IQ3_XXS:
  10924. case GGML_TYPE_IQ1_S:
  10925. case GGML_TYPE_IQ1_M:
  10926. case GGML_TYPE_IQ4_NL:
  10927. case GGML_TYPE_IQ4_XS:
  10928. case GGML_TYPE_IQ3_S:
  10929. case GGML_TYPE_IQ2_S:
  10930. default:
  10931. {
  10932. GGML_ASSERT(false);
  10933. } break;
  10934. }
  10935. }
  10936. // ggml_compute_forward_cpy
  10937. static void ggml_compute_forward_cpy(
  10938. const struct ggml_compute_params * params,
  10939. struct ggml_tensor * dst) {
  10940. ggml_compute_forward_dup(params, dst);
  10941. }
  10942. // ggml_compute_forward_cont
  10943. static void ggml_compute_forward_cont(
  10944. const struct ggml_compute_params * params,
  10945. struct ggml_tensor * dst) {
  10946. ggml_compute_forward_dup(params, dst);
  10947. }
  10948. // ggml_compute_forward_reshape
  10949. static void ggml_compute_forward_reshape(
  10950. const struct ggml_compute_params * params,
  10951. struct ggml_tensor * dst) {
  10952. // NOP
  10953. UNUSED(params);
  10954. UNUSED(dst);
  10955. }
  10956. // ggml_compute_forward_view
  10957. static void ggml_compute_forward_view(
  10958. const struct ggml_compute_params * params,
  10959. const struct ggml_tensor * dst) {
  10960. // NOP
  10961. UNUSED(params);
  10962. UNUSED(dst);
  10963. }
  10964. // ggml_compute_forward_permute
  10965. static void ggml_compute_forward_permute(
  10966. const struct ggml_compute_params * params,
  10967. const struct ggml_tensor * dst) {
  10968. // NOP
  10969. UNUSED(params);
  10970. UNUSED(dst);
  10971. }
  10972. // ggml_compute_forward_transpose
  10973. static void ggml_compute_forward_transpose(
  10974. const struct ggml_compute_params * params,
  10975. const struct ggml_tensor * dst) {
  10976. // NOP
  10977. UNUSED(params);
  10978. UNUSED(dst);
  10979. }
  10980. // ggml_compute_forward_get_rows
  10981. static void ggml_compute_forward_get_rows_q(
  10982. const struct ggml_compute_params * params,
  10983. struct ggml_tensor * dst) {
  10984. const struct ggml_tensor * src0 = dst->src[0];
  10985. const struct ggml_tensor * src1 = dst->src[1];
  10986. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10987. return;
  10988. }
  10989. GGML_TENSOR_BINARY_OP_LOCALS
  10990. const int64_t nc = ne00;
  10991. const int64_t nr = ggml_nelements(src1);
  10992. const enum ggml_type type = src0->type;
  10993. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10994. assert(ne0 == nc);
  10995. assert(ne02 == ne11);
  10996. assert(nb00 == ggml_type_size(type));
  10997. assert(ggml_nrows(dst) == nr);
  10998. const int ith = params->ith;
  10999. const int nth = params->nth;
  11000. // rows per thread
  11001. const int dr = (nr + nth - 1)/nth;
  11002. // row range for this thread
  11003. const int ir0 = dr*ith;
  11004. const int ir1 = MIN(ir0 + dr, nr);
  11005. for (int64_t i = ir0; i < ir1; ++i) {
  11006. const int64_t i12 = i/(ne11*ne10);
  11007. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11008. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11009. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11010. dequantize_row_q(
  11011. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11012. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11013. }
  11014. }
  11015. static void ggml_compute_forward_get_rows_f16(
  11016. const struct ggml_compute_params * params,
  11017. struct ggml_tensor * dst) {
  11018. const struct ggml_tensor * src0 = dst->src[0];
  11019. const struct ggml_tensor * src1 = dst->src[1];
  11020. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11021. return;
  11022. }
  11023. GGML_TENSOR_BINARY_OP_LOCALS
  11024. const int64_t nc = ne00;
  11025. const int64_t nr = ggml_nelements(src1);
  11026. assert(ne0 == nc);
  11027. assert(ne02 == ne11);
  11028. assert(nb00 == sizeof(ggml_fp16_t));
  11029. assert(ggml_nrows(dst) == nr);
  11030. const int ith = params->ith;
  11031. const int nth = params->nth;
  11032. // rows per thread
  11033. const int dr = (nr + nth - 1)/nth;
  11034. // row range for this thread
  11035. const int ir0 = dr*ith;
  11036. const int ir1 = MIN(ir0 + dr, nr);
  11037. for (int64_t i = ir0; i < ir1; ++i) {
  11038. const int64_t i12 = i/(ne11*ne10);
  11039. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11040. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11041. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11042. ggml_fp16_to_fp32_row(
  11043. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11044. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11045. }
  11046. }
  11047. static void ggml_compute_forward_get_rows_bf16(
  11048. const struct ggml_compute_params * params,
  11049. struct ggml_tensor * dst) {
  11050. const struct ggml_tensor * src0 = dst->src[0];
  11051. const struct ggml_tensor * src1 = dst->src[1];
  11052. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11053. return;
  11054. }
  11055. GGML_TENSOR_BINARY_OP_LOCALS
  11056. const int64_t nc = ne00;
  11057. const int64_t nr = ggml_nelements(src1);
  11058. assert(ne0 == nc);
  11059. assert(ne02 == ne11);
  11060. assert(nb00 == sizeof(ggml_bf16_t));
  11061. assert(ggml_nrows(dst) == nr);
  11062. const int ith = params->ith;
  11063. const int nth = params->nth;
  11064. // rows per thread
  11065. const int dr = (nr + nth - 1)/nth;
  11066. // row range for this thread
  11067. const int ir0 = dr*ith;
  11068. const int ir1 = MIN(ir0 + dr, nr);
  11069. for (int64_t i = ir0; i < ir1; ++i) {
  11070. const int64_t i12 = i/(ne11*ne10);
  11071. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11072. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11073. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11074. ggml_bf16_to_fp32_row(
  11075. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11076. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11077. }
  11078. }
  11079. static void ggml_compute_forward_get_rows_f32(
  11080. const struct ggml_compute_params * params,
  11081. struct ggml_tensor * dst) {
  11082. const struct ggml_tensor * src0 = dst->src[0];
  11083. const struct ggml_tensor * src1 = dst->src[1];
  11084. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11085. return;
  11086. }
  11087. GGML_TENSOR_BINARY_OP_LOCALS
  11088. const int64_t nc = ne00;
  11089. const int64_t nr = ggml_nelements(src1);
  11090. assert(ne0 == nc);
  11091. assert(ne02 == ne11);
  11092. assert(nb00 == sizeof(float));
  11093. assert(ggml_nrows(dst) == nr);
  11094. const int ith = params->ith;
  11095. const int nth = params->nth;
  11096. // rows per thread
  11097. const int dr = (nr + nth - 1)/nth;
  11098. // row range for this thread
  11099. const int ir0 = dr*ith;
  11100. const int ir1 = MIN(ir0 + dr, nr);
  11101. for (int64_t i = ir0; i < ir1; ++i) {
  11102. const int64_t i12 = i/(ne11*ne10);
  11103. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11104. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11105. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11106. ggml_vec_cpy_f32(nc,
  11107. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11108. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11109. }
  11110. }
  11111. static void ggml_compute_forward_get_rows(
  11112. const struct ggml_compute_params * params,
  11113. struct ggml_tensor * dst) {
  11114. const struct ggml_tensor * src0 = dst->src[0];
  11115. switch (src0->type) {
  11116. case GGML_TYPE_Q4_0:
  11117. case GGML_TYPE_Q4_1:
  11118. case GGML_TYPE_Q5_0:
  11119. case GGML_TYPE_Q5_1:
  11120. case GGML_TYPE_Q8_0:
  11121. case GGML_TYPE_Q8_1:
  11122. case GGML_TYPE_Q2_K:
  11123. case GGML_TYPE_Q3_K:
  11124. case GGML_TYPE_Q4_K:
  11125. case GGML_TYPE_Q5_K:
  11126. case GGML_TYPE_Q6_K:
  11127. case GGML_TYPE_IQ2_XXS:
  11128. case GGML_TYPE_IQ2_XS:
  11129. case GGML_TYPE_IQ3_XXS:
  11130. case GGML_TYPE_IQ1_S:
  11131. case GGML_TYPE_IQ1_M:
  11132. case GGML_TYPE_IQ4_NL:
  11133. case GGML_TYPE_IQ4_XS:
  11134. case GGML_TYPE_IQ3_S:
  11135. case GGML_TYPE_IQ2_S:
  11136. {
  11137. ggml_compute_forward_get_rows_q(params, dst);
  11138. } break;
  11139. case GGML_TYPE_F16:
  11140. {
  11141. ggml_compute_forward_get_rows_f16(params, dst);
  11142. } break;
  11143. case GGML_TYPE_BF16:
  11144. {
  11145. ggml_compute_forward_get_rows_bf16(params, dst);
  11146. } break;
  11147. case GGML_TYPE_F32:
  11148. case GGML_TYPE_I32:
  11149. {
  11150. ggml_compute_forward_get_rows_f32(params, dst);
  11151. } break;
  11152. default:
  11153. {
  11154. GGML_ASSERT(false);
  11155. } break;
  11156. }
  11157. //static bool first = true;
  11158. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11159. //if (first) {
  11160. // first = false;
  11161. //} else {
  11162. // for (int k = 0; k < dst->ne[1]; ++k) {
  11163. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11164. // for (int i = 0; i < 16; ++i) {
  11165. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11166. // }
  11167. // printf("\n");
  11168. // }
  11169. // printf("\n");
  11170. // }
  11171. // printf("\n");
  11172. // exit(0);
  11173. //}
  11174. }
  11175. // ggml_compute_forward_get_rows_back
  11176. static void ggml_compute_forward_get_rows_back_f32_f16(
  11177. const struct ggml_compute_params * params,
  11178. struct ggml_tensor * dst) {
  11179. const struct ggml_tensor * src0 = dst->src[0];
  11180. const struct ggml_tensor * src1 = dst->src[1];
  11181. GGML_ASSERT(params->ith == 0);
  11182. GGML_ASSERT(ggml_is_contiguous(dst));
  11183. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11184. if (params->type == GGML_TASK_TYPE_INIT) {
  11185. if (params->ith != 0) {
  11186. return;
  11187. }
  11188. memset(dst->data, 0, ggml_nbytes(dst));
  11189. }
  11190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11191. return;
  11192. }
  11193. const int nc = src0->ne[0];
  11194. const int nr = ggml_nelements(src1);
  11195. GGML_ASSERT( dst->ne[0] == nc);
  11196. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11197. for (int i = 0; i < nr; ++i) {
  11198. const int r = ((int32_t *) src1->data)[i];
  11199. for (int j = 0; j < nc; ++j) {
  11200. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11201. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11202. }
  11203. }
  11204. }
  11205. static void ggml_compute_forward_get_rows_back_f32(
  11206. const struct ggml_compute_params * params,
  11207. struct ggml_tensor * dst) {
  11208. const struct ggml_tensor * src0 = dst->src[0];
  11209. const struct ggml_tensor * src1 = dst->src[1];
  11210. GGML_ASSERT(params->ith == 0);
  11211. GGML_ASSERT(ggml_is_contiguous(dst));
  11212. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11213. if (params->type == GGML_TASK_TYPE_INIT) {
  11214. if (params->ith != 0) {
  11215. return;
  11216. }
  11217. memset(dst->data, 0, ggml_nbytes(dst));
  11218. }
  11219. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11220. return;
  11221. }
  11222. const int nc = src0->ne[0];
  11223. const int nr = ggml_nelements(src1);
  11224. GGML_ASSERT( dst->ne[0] == nc);
  11225. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11226. for (int i = 0; i < nr; ++i) {
  11227. const int r = ((int32_t *) src1->data)[i];
  11228. ggml_vec_add_f32(nc,
  11229. (float *) ((char *) dst->data + r*dst->nb[1]),
  11230. (float *) ((char *) dst->data + r*dst->nb[1]),
  11231. (float *) ((char *) src0->data + i*src0->nb[1]));
  11232. }
  11233. }
  11234. static void ggml_compute_forward_get_rows_back(
  11235. const struct ggml_compute_params * params,
  11236. struct ggml_tensor * dst) {
  11237. const struct ggml_tensor * src0 = dst->src[0];
  11238. switch (src0->type) {
  11239. case GGML_TYPE_F16:
  11240. {
  11241. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11242. } break;
  11243. case GGML_TYPE_F32:
  11244. {
  11245. ggml_compute_forward_get_rows_back_f32(params, dst);
  11246. } break;
  11247. default:
  11248. {
  11249. GGML_ASSERT(false);
  11250. } break;
  11251. }
  11252. //static bool first = true;
  11253. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11254. //if (first) {
  11255. // first = false;
  11256. //} else {
  11257. // for (int k = 0; k < dst->ne[1]; ++k) {
  11258. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11259. // for (int i = 0; i < 16; ++i) {
  11260. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11261. // }
  11262. // printf("\n");
  11263. // }
  11264. // printf("\n");
  11265. // }
  11266. // printf("\n");
  11267. // exit(0);
  11268. //}
  11269. }
  11270. // ggml_compute_forward_diag
  11271. static void ggml_compute_forward_diag_f32(
  11272. const struct ggml_compute_params * params,
  11273. struct ggml_tensor * dst) {
  11274. const struct ggml_tensor * src0 = dst->src[0];
  11275. GGML_ASSERT(params->ith == 0);
  11276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11277. return;
  11278. }
  11279. // TODO: handle transposed/permuted matrices
  11280. GGML_TENSOR_UNARY_OP_LOCALS
  11281. GGML_ASSERT(ne00 == ne0);
  11282. GGML_ASSERT(ne00 == ne1);
  11283. GGML_ASSERT(ne01 == 1);
  11284. GGML_ASSERT(ne02 == ne2);
  11285. GGML_ASSERT(ne03 == ne3);
  11286. GGML_ASSERT(nb00 == sizeof(float));
  11287. GGML_ASSERT(nb0 == sizeof(float));
  11288. for (int i3 = 0; i3 < ne3; i3++) {
  11289. for (int i2 = 0; i2 < ne2; i2++) {
  11290. for (int i1 = 0; i1 < ne1; i1++) {
  11291. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11292. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11293. for (int i0 = 0; i0 < i1; i0++) {
  11294. d[i0] = 0;
  11295. }
  11296. d[i1] = s[i1];
  11297. for (int i0 = i1+1; i0 < ne0; i0++) {
  11298. d[i0] = 0;
  11299. }
  11300. }
  11301. }
  11302. }
  11303. }
  11304. static void ggml_compute_forward_diag(
  11305. const struct ggml_compute_params * params,
  11306. struct ggml_tensor * dst) {
  11307. const struct ggml_tensor * src0 = dst->src[0];
  11308. switch (src0->type) {
  11309. case GGML_TYPE_F32:
  11310. {
  11311. ggml_compute_forward_diag_f32(params, dst);
  11312. } break;
  11313. default:
  11314. {
  11315. GGML_ASSERT(false);
  11316. } break;
  11317. }
  11318. }
  11319. // ggml_compute_forward_diag_mask_inf
  11320. static void ggml_compute_forward_diag_mask_f32(
  11321. const struct ggml_compute_params * params,
  11322. struct ggml_tensor * dst,
  11323. const float value) {
  11324. const struct ggml_tensor * src0 = dst->src[0];
  11325. const int ith = params->ith;
  11326. const int nth = params->nth;
  11327. const int n_past = ((int32_t *) dst->op_params)[0];
  11328. const bool inplace = src0->data == dst->data;
  11329. GGML_ASSERT(n_past >= 0);
  11330. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11331. if (ith != 0) {
  11332. return;
  11333. }
  11334. // memcpy needs to be synchronized across threads to avoid race conditions.
  11335. // => do it in INIT phase
  11336. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11337. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11338. memcpy(
  11339. ((char *) dst->data),
  11340. ((char *) src0->data),
  11341. ggml_nbytes(dst));
  11342. }
  11343. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11344. return;
  11345. }
  11346. // TODO: handle transposed/permuted matrices
  11347. const int n = ggml_nrows(src0);
  11348. const int nc = src0->ne[0];
  11349. const int nr = src0->ne[1];
  11350. const int nz = n/nr;
  11351. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11352. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11353. for (int k = 0; k < nz; k++) {
  11354. for (int j = ith; j < nr; j += nth) {
  11355. for (int i = n_past; i < nc; i++) {
  11356. if (i > n_past + j) {
  11357. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11358. }
  11359. }
  11360. }
  11361. }
  11362. }
  11363. static void ggml_compute_forward_diag_mask_inf(
  11364. const struct ggml_compute_params * params,
  11365. struct ggml_tensor * dst) {
  11366. const struct ggml_tensor * src0 = dst->src[0];
  11367. switch (src0->type) {
  11368. case GGML_TYPE_F32:
  11369. {
  11370. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11371. } break;
  11372. default:
  11373. {
  11374. GGML_ASSERT(false);
  11375. } break;
  11376. }
  11377. }
  11378. static void ggml_compute_forward_diag_mask_zero(
  11379. const struct ggml_compute_params * params,
  11380. struct ggml_tensor * dst) {
  11381. const struct ggml_tensor * src0 = dst->src[0];
  11382. switch (src0->type) {
  11383. case GGML_TYPE_F32:
  11384. {
  11385. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11386. } break;
  11387. default:
  11388. {
  11389. GGML_ASSERT(false);
  11390. } break;
  11391. }
  11392. }
  11393. // ggml_compute_forward_soft_max
  11394. static void ggml_compute_forward_soft_max_f32(
  11395. const struct ggml_compute_params * params,
  11396. struct ggml_tensor * dst) {
  11397. const struct ggml_tensor * src0 = dst->src[0];
  11398. const struct ggml_tensor * src1 = dst->src[1];
  11399. assert(ggml_is_contiguous(dst));
  11400. assert(ggml_are_same_shape(src0, dst));
  11401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11402. return;
  11403. }
  11404. float scale = 1.0f;
  11405. float max_bias = 0.0f;
  11406. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11407. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11408. // TODO: handle transposed/permuted matrices
  11409. const int ith = params->ith;
  11410. const int nth = params->nth;
  11411. GGML_TENSOR_UNARY_OP_LOCALS
  11412. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11413. // TODO: is this supposed to be ceil instead of floor?
  11414. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11415. const uint32_t n_head = ne02;
  11416. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11417. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11418. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11419. const int nc = src0->ne[0];
  11420. const int nr = ggml_nrows(src0);
  11421. // rows per thread
  11422. const int dr = (nr + nth - 1)/nth;
  11423. // row range for this thread
  11424. const int ir0 = dr*ith;
  11425. const int ir1 = MIN(ir0 + dr, nr);
  11426. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11427. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11428. for (int i1 = ir0; i1 < ir1; i1++) {
  11429. // ALiBi
  11430. const uint32_t h = (i1/ne01)%ne02; // head
  11431. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11432. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11433. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11434. // broadcast the mask across rows
  11435. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11436. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11437. ggml_vec_cpy_f32 (nc, wp, sp);
  11438. ggml_vec_scale_f32(nc, wp, scale);
  11439. if (mp_f32) {
  11440. if (use_f16) {
  11441. for (int i = 0; i < nc; ++i) {
  11442. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11443. }
  11444. } else {
  11445. for (int i = 0; i < nc; ++i) {
  11446. wp[i] += slope*mp_f32[i];
  11447. }
  11448. }
  11449. }
  11450. #ifndef NDEBUG
  11451. for (int i = 0; i < nc; ++i) {
  11452. //printf("p[%d] = %f\n", i, p[i]);
  11453. assert(!isnan(wp[i]));
  11454. }
  11455. #endif
  11456. float max = -INFINITY;
  11457. ggml_vec_max_f32(nc, &max, wp);
  11458. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11459. assert(sum > 0.0);
  11460. sum = 1.0/sum;
  11461. ggml_vec_scale_f32(nc, dp, sum);
  11462. #ifndef NDEBUG
  11463. for (int i = 0; i < nc; ++i) {
  11464. assert(!isnan(dp[i]));
  11465. assert(!isinf(dp[i]));
  11466. }
  11467. #endif
  11468. }
  11469. }
  11470. static void ggml_compute_forward_soft_max(
  11471. const struct ggml_compute_params * params,
  11472. struct ggml_tensor * dst) {
  11473. const struct ggml_tensor * src0 = dst->src[0];
  11474. switch (src0->type) {
  11475. case GGML_TYPE_F32:
  11476. {
  11477. ggml_compute_forward_soft_max_f32(params, dst);
  11478. } break;
  11479. default:
  11480. {
  11481. GGML_ASSERT(false);
  11482. } break;
  11483. }
  11484. }
  11485. // ggml_compute_forward_soft_max_back
  11486. static void ggml_compute_forward_soft_max_back_f32(
  11487. const struct ggml_compute_params * params,
  11488. struct ggml_tensor * dst) {
  11489. const struct ggml_tensor * src0 = dst->src[0];
  11490. const struct ggml_tensor * src1 = dst->src[1];
  11491. GGML_ASSERT(ggml_is_contiguous(src0));
  11492. GGML_ASSERT(ggml_is_contiguous(src1));
  11493. GGML_ASSERT(ggml_is_contiguous(dst));
  11494. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11495. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11496. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11497. return;
  11498. }
  11499. // TODO: handle transposed/permuted matrices
  11500. const int ith = params->ith;
  11501. const int nth = params->nth;
  11502. const int nc = src0->ne[0];
  11503. const int nr = ggml_nrows(src0);
  11504. // rows per thread
  11505. const int dr = (nr + nth - 1)/nth;
  11506. // row range for this thread
  11507. const int ir0 = dr*ith;
  11508. const int ir1 = MIN(ir0 + dr, nr);
  11509. for (int i1 = ir0; i1 < ir1; i1++) {
  11510. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11511. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11512. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11513. #ifndef NDEBUG
  11514. for (int i = 0; i < nc; ++i) {
  11515. //printf("p[%d] = %f\n", i, p[i]);
  11516. assert(!isnan(dy[i]));
  11517. assert(!isnan(y[i]));
  11518. }
  11519. #endif
  11520. // Jii = yi - yi*yi
  11521. // Jij = -yi*yj
  11522. // J = diag(y)-y.T*y
  11523. // dx = J * dy
  11524. // dxk = sum_i(Jki * dyi)
  11525. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11526. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11527. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11528. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11529. // dxk = -yk * dot(y, dy) + yk*dyk
  11530. // dxk = yk * (- dot(y, dy) + dyk)
  11531. // dxk = yk * (dyk - dot(y, dy))
  11532. //
  11533. // post-order:
  11534. // dot_y_dy := dot(y, dy)
  11535. // dx := dy
  11536. // dx := dx - dot_y_dy
  11537. // dx := dx * y
  11538. // linear runtime, no additional memory
  11539. float dot_y_dy = 0;
  11540. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11541. ggml_vec_cpy_f32 (nc, dx, dy);
  11542. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11543. ggml_vec_mul_f32 (nc, dx, dx, y);
  11544. #ifndef NDEBUG
  11545. for (int i = 0; i < nc; ++i) {
  11546. assert(!isnan(dx[i]));
  11547. assert(!isinf(dx[i]));
  11548. }
  11549. #endif
  11550. }
  11551. }
  11552. static void ggml_compute_forward_soft_max_back(
  11553. const struct ggml_compute_params * params,
  11554. struct ggml_tensor * dst) {
  11555. const struct ggml_tensor * src0 = dst->src[0];
  11556. switch (src0->type) {
  11557. case GGML_TYPE_F32:
  11558. {
  11559. ggml_compute_forward_soft_max_back_f32(params, dst);
  11560. } break;
  11561. default:
  11562. {
  11563. GGML_ASSERT(false);
  11564. } break;
  11565. }
  11566. }
  11567. // ggml_compute_forward_clamp
  11568. static void ggml_compute_forward_clamp_f32(
  11569. const struct ggml_compute_params * params,
  11570. struct ggml_tensor * dst) {
  11571. const struct ggml_tensor * src0 = dst->src[0];
  11572. assert(params->ith == 0);
  11573. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11574. return;
  11575. }
  11576. float min;
  11577. float max;
  11578. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11579. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11580. const int ith = params->ith;
  11581. const int nth = params->nth;
  11582. const int n = ggml_nrows(src0);
  11583. const int nc = src0->ne[0];
  11584. const size_t nb00 = src0->nb[0];
  11585. const size_t nb01 = src0->nb[1];
  11586. const size_t nb0 = dst->nb[0];
  11587. const size_t nb1 = dst->nb[1];
  11588. GGML_ASSERT( nb0 == sizeof(float));
  11589. GGML_ASSERT(nb00 == sizeof(float));
  11590. for (int j = ith; j < n; j += nth) {
  11591. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11592. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11593. for (int i = 0; i < nc; i++) {
  11594. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11595. }
  11596. }
  11597. }
  11598. static void ggml_compute_forward_clamp(
  11599. const struct ggml_compute_params * params,
  11600. struct ggml_tensor * dst) {
  11601. const struct ggml_tensor * src0 = dst->src[0];
  11602. switch (src0->type) {
  11603. case GGML_TYPE_F32:
  11604. {
  11605. ggml_compute_forward_clamp_f32(params, dst);
  11606. } break;
  11607. case GGML_TYPE_F16:
  11608. case GGML_TYPE_BF16:
  11609. case GGML_TYPE_Q4_0:
  11610. case GGML_TYPE_Q4_1:
  11611. case GGML_TYPE_Q5_0:
  11612. case GGML_TYPE_Q5_1:
  11613. case GGML_TYPE_Q8_0:
  11614. case GGML_TYPE_Q8_1:
  11615. case GGML_TYPE_Q2_K:
  11616. case GGML_TYPE_Q3_K:
  11617. case GGML_TYPE_Q4_K:
  11618. case GGML_TYPE_Q5_K:
  11619. case GGML_TYPE_Q6_K:
  11620. case GGML_TYPE_IQ2_XXS:
  11621. case GGML_TYPE_IQ2_XS:
  11622. case GGML_TYPE_IQ3_XXS:
  11623. case GGML_TYPE_IQ1_S:
  11624. case GGML_TYPE_IQ1_M:
  11625. case GGML_TYPE_IQ4_NL:
  11626. case GGML_TYPE_IQ4_XS:
  11627. case GGML_TYPE_IQ3_S:
  11628. case GGML_TYPE_IQ2_S:
  11629. case GGML_TYPE_Q8_K:
  11630. case GGML_TYPE_I8:
  11631. case GGML_TYPE_I16:
  11632. case GGML_TYPE_I32:
  11633. case GGML_TYPE_I64:
  11634. case GGML_TYPE_F64:
  11635. case GGML_TYPE_COUNT:
  11636. {
  11637. GGML_ASSERT(false);
  11638. } break;
  11639. }
  11640. }
  11641. // ggml_compute_forward_rope
  11642. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11643. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11644. return 1 - MIN(1, MAX(0, y));
  11645. }
  11646. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11647. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11648. static void rope_yarn(
  11649. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11650. float * cos_theta, float * sin_theta
  11651. ) {
  11652. // Get n-d rotational scaling corrected for extrapolation
  11653. float theta_interp = freq_scale * theta_extrap;
  11654. float theta = theta_interp;
  11655. if (ext_factor != 0.0f) {
  11656. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11657. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11658. // Get n-d magnitude scaling corrected for interpolation
  11659. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11660. }
  11661. *cos_theta = cosf(theta) * mscale;
  11662. *sin_theta = sinf(theta) * mscale;
  11663. }
  11664. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11665. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11666. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11667. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11668. }
  11669. static void ggml_rope_cache_init(
  11670. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11671. float * cache, float sin_sign, float theta_scale
  11672. ) {
  11673. float theta = theta_base;
  11674. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11675. rope_yarn(
  11676. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11677. );
  11678. cache[i0 + 1] *= sin_sign;
  11679. theta *= theta_scale;
  11680. }
  11681. }
  11682. GGML_CALL void ggml_rope_yarn_corr_dims(
  11683. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11684. ) {
  11685. // start and end correction dims
  11686. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11687. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11688. dims[0] = MAX(0, start);
  11689. dims[1] = MIN(n_dims - 1, end);
  11690. }
  11691. static void ggml_compute_forward_rope_f32(
  11692. const struct ggml_compute_params * params,
  11693. struct ggml_tensor * dst,
  11694. const bool forward) {
  11695. const struct ggml_tensor * src0 = dst->src[0];
  11696. const struct ggml_tensor * src1 = dst->src[1];
  11697. const struct ggml_tensor * src2 = dst->src[2];
  11698. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11699. return;
  11700. }
  11701. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11702. // these two only relevant for xPos RoPE:
  11703. float xpos_base;
  11704. bool xpos_down;
  11705. //const int n_past = ((int32_t *) dst->op_params)[0];
  11706. const int n_dims = ((int32_t *) dst->op_params)[1];
  11707. const int mode = ((int32_t *) dst->op_params)[2];
  11708. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11709. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11710. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11711. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11712. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11713. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11714. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11715. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11716. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11717. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11718. GGML_TENSOR_UNARY_OP_LOCALS
  11719. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11720. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11721. GGML_ASSERT(nb00 == sizeof(float));
  11722. const int ith = params->ith;
  11723. const int nth = params->nth;
  11724. const int nr = ggml_nrows(dst);
  11725. GGML_ASSERT(n_dims <= ne0);
  11726. GGML_ASSERT(n_dims % 2 == 0);
  11727. // rows per thread
  11728. const int dr = (nr + nth - 1)/nth;
  11729. // row range for this thread
  11730. const int ir0 = dr*ith;
  11731. const int ir1 = MIN(ir0 + dr, nr);
  11732. // row index used to determine which thread to use
  11733. int ir = 0;
  11734. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11735. float corr_dims[2];
  11736. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11737. const bool is_neox = mode & 2;
  11738. const bool is_glm = mode & 4;
  11739. const float * freq_factors = NULL;
  11740. if (is_neox) {
  11741. if (src2 != NULL) {
  11742. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11743. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11744. freq_factors = (const float *) src2->data;
  11745. }
  11746. } else {
  11747. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11748. }
  11749. // backward process uses inverse rotation by cos and sin.
  11750. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11751. // this essentially just switches the sign of sin.
  11752. const float sin_sign = forward ? 1.0f : -1.0f;
  11753. const int32_t * pos = (const int32_t *) src1->data;
  11754. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11755. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11756. const int64_t p = pos[i2];
  11757. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11758. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11759. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11760. }
  11761. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11762. if (ir++ < ir0) continue;
  11763. if (ir > ir1) break;
  11764. float theta_base = (float)p;
  11765. if (is_glm) {
  11766. theta_base = MIN(p, n_ctx - 2);
  11767. float block_theta = MAX(p - (n_ctx - 2), 0);
  11768. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11769. const float cos_theta = cosf(theta_base);
  11770. const float sin_theta = sinf(theta_base) * sin_sign;
  11771. const float cos_block_theta = cosf(block_theta);
  11772. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11773. theta_base *= theta_scale;
  11774. block_theta *= theta_scale;
  11775. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11776. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11777. const float x0 = src[0];
  11778. const float x1 = src[n_dims/2];
  11779. const float x2 = src[n_dims];
  11780. const float x3 = src[n_dims/2*3];
  11781. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11782. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11783. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11784. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11785. }
  11786. } else if (!is_neox) {
  11787. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11788. const float cos_theta = cache[i0 + 0];
  11789. const float sin_theta = cache[i0 + 1];
  11790. // zeta scaling for xPos only:
  11791. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11792. if (xpos_down) zeta = 1.0f / zeta;
  11793. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11794. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11795. const float x0 = src[0];
  11796. const float x1 = src[1];
  11797. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11798. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11799. }
  11800. } else {
  11801. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11802. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11803. if (ic < n_dims) {
  11804. const int64_t i0 = ic/2;
  11805. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11806. float cos_theta, sin_theta;
  11807. rope_yarn(
  11808. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11809. &cos_theta, &sin_theta
  11810. );
  11811. sin_theta *= sin_sign;
  11812. theta_base *= theta_scale;
  11813. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11814. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11815. const float x0 = src[0];
  11816. const float x1 = src[n_dims/2];
  11817. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11818. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11819. } else {
  11820. const int64_t i0 = ic;
  11821. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11822. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11823. dst_data[0] = src[0];
  11824. dst_data[1] = src[1];
  11825. }
  11826. }
  11827. }
  11828. }
  11829. }
  11830. }
  11831. }
  11832. // TODO: deduplicate f16/f32 code
  11833. static void ggml_compute_forward_rope_f16(
  11834. const struct ggml_compute_params * params,
  11835. struct ggml_tensor * dst,
  11836. const bool forward) {
  11837. const struct ggml_tensor * src0 = dst->src[0];
  11838. const struct ggml_tensor * src1 = dst->src[1];
  11839. const struct ggml_tensor * src2 = dst->src[2];
  11840. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11841. return;
  11842. }
  11843. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11844. //const int n_past = ((int32_t *) dst->op_params)[0];
  11845. const int n_dims = ((int32_t *) dst->op_params)[1];
  11846. const int mode = ((int32_t *) dst->op_params)[2];
  11847. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11848. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11849. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11850. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11851. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11852. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11853. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11854. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11855. GGML_TENSOR_UNARY_OP_LOCALS
  11856. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11857. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11858. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11859. const int ith = params->ith;
  11860. const int nth = params->nth;
  11861. const int nr = ggml_nrows(dst);
  11862. GGML_ASSERT(n_dims <= ne0);
  11863. GGML_ASSERT(n_dims % 2 == 0);
  11864. // rows per thread
  11865. const int dr = (nr + nth - 1)/nth;
  11866. // row range for this thread
  11867. const int ir0 = dr*ith;
  11868. const int ir1 = MIN(ir0 + dr, nr);
  11869. // row index used to determine which thread to use
  11870. int ir = 0;
  11871. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11872. float corr_dims[2];
  11873. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11874. const bool is_neox = mode & 2;
  11875. const bool is_glm = mode & 4;
  11876. const float * freq_factors = NULL;
  11877. if (is_neox) {
  11878. if (src2 != NULL) {
  11879. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11880. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11881. freq_factors = (const float *) src2->data;
  11882. }
  11883. } else {
  11884. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11885. }
  11886. // backward process uses inverse rotation by cos and sin.
  11887. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11888. // this essentially just switches the sign of sin.
  11889. const float sin_sign = forward ? 1.0f : -1.0f;
  11890. const int32_t * pos = (const int32_t *) src1->data;
  11891. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11892. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11893. const int64_t p = pos[i2];
  11894. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11895. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11896. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11897. }
  11898. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11899. if (ir++ < ir0) continue;
  11900. if (ir > ir1) break;
  11901. float theta_base = (float)p;
  11902. if (is_glm) {
  11903. theta_base = MIN(p, n_ctx - 2);
  11904. float block_theta = MAX(p - (n_ctx - 2), 0);
  11905. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11906. const float cos_theta = cosf(theta_base);
  11907. const float sin_theta = sinf(theta_base) * sin_sign;
  11908. const float cos_block_theta = cosf(block_theta);
  11909. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11910. theta_base *= theta_scale;
  11911. block_theta *= theta_scale;
  11912. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11913. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11914. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11915. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11916. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11917. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11918. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11919. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11920. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11921. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11922. }
  11923. } else if (!is_neox) {
  11924. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11925. const float cos_theta = cache[i0 + 0];
  11926. const float sin_theta = cache[i0 + 1];
  11927. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11928. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11929. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11930. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11931. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11932. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11933. }
  11934. } else {
  11935. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11936. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11937. if (ic < n_dims) {
  11938. const int64_t i0 = ic/2;
  11939. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11940. float cos_theta, sin_theta;
  11941. rope_yarn(
  11942. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11943. &cos_theta, &sin_theta
  11944. );
  11945. sin_theta *= sin_sign;
  11946. theta_base *= theta_scale;
  11947. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11948. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11949. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11950. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11951. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11952. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11953. } else {
  11954. const int64_t i0 = ic;
  11955. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11956. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11957. dst_data[0] = src[0];
  11958. dst_data[1] = src[1];
  11959. }
  11960. }
  11961. }
  11962. }
  11963. }
  11964. }
  11965. }
  11966. static void ggml_compute_forward_rope(
  11967. const struct ggml_compute_params * params,
  11968. struct ggml_tensor * dst) {
  11969. const struct ggml_tensor * src0 = dst->src[0];
  11970. switch (src0->type) {
  11971. case GGML_TYPE_F16:
  11972. {
  11973. ggml_compute_forward_rope_f16(params, dst, true);
  11974. } break;
  11975. case GGML_TYPE_F32:
  11976. {
  11977. ggml_compute_forward_rope_f32(params, dst, true);
  11978. } break;
  11979. default:
  11980. {
  11981. GGML_ASSERT(false);
  11982. } break;
  11983. }
  11984. }
  11985. // ggml_compute_forward_rope_back
  11986. static void ggml_compute_forward_rope_back(
  11987. const struct ggml_compute_params * params,
  11988. struct ggml_tensor * dst) {
  11989. const struct ggml_tensor * src0 = dst->src[0];
  11990. switch (src0->type) {
  11991. case GGML_TYPE_F16:
  11992. {
  11993. ggml_compute_forward_rope_f16(params, dst, false);
  11994. } break;
  11995. case GGML_TYPE_F32:
  11996. {
  11997. ggml_compute_forward_rope_f32(params, dst, false);
  11998. } break;
  11999. default:
  12000. {
  12001. GGML_ASSERT(false);
  12002. } break;
  12003. }
  12004. }
  12005. // ggml_compute_forward_conv_transpose_1d
  12006. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12007. const struct ggml_compute_params * params,
  12008. struct ggml_tensor * dst) {
  12009. const struct ggml_tensor * src0 = dst->src[0];
  12010. const struct ggml_tensor * src1 = dst->src[1];
  12011. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12012. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12013. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12014. int64_t t0 = ggml_perf_time_us();
  12015. UNUSED(t0);
  12016. GGML_TENSOR_BINARY_OP_LOCALS
  12017. const int ith = params->ith;
  12018. const int nth = params->nth;
  12019. const int nk = ne00*ne01*ne02;
  12020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12021. GGML_ASSERT(nb10 == sizeof(float));
  12022. if (params->type == GGML_TASK_TYPE_INIT) {
  12023. if (ith != 0) {
  12024. return;
  12025. }
  12026. memset(params->wdata, 0, params->wsize);
  12027. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12028. {
  12029. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12030. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12031. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12032. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12033. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12035. dst_data[i00*ne02 + i02] = src[i00];
  12036. }
  12037. }
  12038. }
  12039. }
  12040. // permute source data (src1) from (L x Cin) to (Cin x L)
  12041. {
  12042. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12043. ggml_fp16_t * dst_data = wdata;
  12044. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12045. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12046. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12047. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12048. }
  12049. }
  12050. }
  12051. // need to zero dst since we are accumulating into it
  12052. memset(dst->data, 0, ggml_nbytes(dst));
  12053. return;
  12054. }
  12055. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12056. return;
  12057. }
  12058. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12059. // total rows in dst
  12060. const int nr = ne1;
  12061. // rows per thread
  12062. const int dr = (nr + nth - 1)/nth;
  12063. // row range for this thread
  12064. const int ir0 = dr*ith;
  12065. const int ir1 = MIN(ir0 + dr, nr);
  12066. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12067. ggml_fp16_t * const wdata_src = wdata + nk;
  12068. for (int i1 = ir0; i1 < ir1; i1++) {
  12069. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12070. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12071. for (int i10 = 0; i10 < ne10; i10++) {
  12072. const int i1n = i10*ne11;
  12073. for (int i00 = 0; i00 < ne00; i00++) {
  12074. float v = 0;
  12075. ggml_vec_dot_f16(ne02, &v, 0,
  12076. (ggml_fp16_t *) wdata_src + i1n, 0,
  12077. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12078. dst_data[i10*s0 + i00] += v;
  12079. }
  12080. }
  12081. }
  12082. }
  12083. static void ggml_compute_forward_conv_transpose_1d_f32(
  12084. const struct ggml_compute_params * params,
  12085. struct ggml_tensor * dst) {
  12086. const struct ggml_tensor * src0 = dst->src[0];
  12087. const struct ggml_tensor * src1 = dst->src[1];
  12088. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12089. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12090. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12091. int64_t t0 = ggml_perf_time_us();
  12092. UNUSED(t0);
  12093. GGML_TENSOR_BINARY_OP_LOCALS
  12094. const int ith = params->ith;
  12095. const int nth = params->nth;
  12096. const int nk = ne00*ne01*ne02;
  12097. GGML_ASSERT(nb00 == sizeof(float));
  12098. GGML_ASSERT(nb10 == sizeof(float));
  12099. if (params->type == GGML_TASK_TYPE_INIT) {
  12100. if (ith != 0) {
  12101. return;
  12102. }
  12103. memset(params->wdata, 0, params->wsize);
  12104. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12105. {
  12106. float * const wdata = (float *) params->wdata + 0;
  12107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12108. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12109. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12110. float * dst_data = wdata + i01*ne00*ne02;
  12111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12112. dst_data[i00*ne02 + i02] = src[i00];
  12113. }
  12114. }
  12115. }
  12116. }
  12117. // prepare source data (src1)
  12118. {
  12119. float * const wdata = (float *) params->wdata + nk;
  12120. float * dst_data = wdata;
  12121. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12122. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12123. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12124. dst_data[i10*ne11 + i11] = src[i10];
  12125. }
  12126. }
  12127. }
  12128. // need to zero dst since we are accumulating into it
  12129. memset(dst->data, 0, ggml_nbytes(dst));
  12130. return;
  12131. }
  12132. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12133. return;
  12134. }
  12135. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12136. // total rows in dst
  12137. const int nr = ne1;
  12138. // rows per thread
  12139. const int dr = (nr + nth - 1)/nth;
  12140. // row range for this thread
  12141. const int ir0 = dr*ith;
  12142. const int ir1 = MIN(ir0 + dr, nr);
  12143. float * const wdata = (float *) params->wdata + 0;
  12144. float * const wdata_src = wdata + nk;
  12145. for (int i1 = ir0; i1 < ir1; i1++) {
  12146. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12147. float * wdata_kernel = wdata + i1*ne02*ne00;
  12148. for (int i10 = 0; i10 < ne10; i10++) {
  12149. const int i1n = i10*ne11;
  12150. for (int i00 = 0; i00 < ne00; i00++) {
  12151. float v = 0;
  12152. ggml_vec_dot_f32(ne02, &v, 0,
  12153. wdata_src + i1n, 0,
  12154. wdata_kernel + i00*ne02, 0, 1);
  12155. dst_data[i10*s0 + i00] += v;
  12156. }
  12157. }
  12158. }
  12159. }
  12160. static void ggml_compute_forward_conv_transpose_1d(
  12161. const struct ggml_compute_params * params,
  12162. struct ggml_tensor * dst) {
  12163. const struct ggml_tensor * src0 = dst->src[0];
  12164. switch (src0->type) {
  12165. case GGML_TYPE_F16:
  12166. {
  12167. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12168. } break;
  12169. case GGML_TYPE_F32:
  12170. {
  12171. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12172. } break;
  12173. default:
  12174. {
  12175. GGML_ASSERT(false);
  12176. } break;
  12177. }
  12178. }
  12179. // src0: kernel [OC, IC, KH, KW]
  12180. // src1: image [N, IC, IH, IW]
  12181. // dst: result [N, OH, OW, IC*KH*KW]
  12182. static void ggml_compute_forward_im2col_f32(
  12183. const struct ggml_compute_params * params,
  12184. struct ggml_tensor * dst) {
  12185. const struct ggml_tensor * src0 = dst->src[0];
  12186. const struct ggml_tensor * src1 = dst->src[1];
  12187. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12188. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12189. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12190. int64_t t0 = ggml_perf_time_us();
  12191. UNUSED(t0);
  12192. GGML_TENSOR_BINARY_OP_LOCALS;
  12193. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12194. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12195. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12196. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12197. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12198. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12199. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12200. const int ith = params->ith;
  12201. const int nth = params->nth;
  12202. const int64_t N = is_2D ? ne13 : ne12;
  12203. const int64_t IC = is_2D ? ne12 : ne11;
  12204. const int64_t IH = is_2D ? ne11 : 1;
  12205. const int64_t IW = ne10;
  12206. const int64_t KH = is_2D ? ne01 : 1;
  12207. const int64_t KW = ne00;
  12208. const int64_t OH = is_2D ? ne2 : 1;
  12209. const int64_t OW = ne1;
  12210. int ofs0 = is_2D ? nb13 : nb12;
  12211. int ofs1 = is_2D ? nb12 : nb11;
  12212. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12213. GGML_ASSERT(nb10 == sizeof(float));
  12214. if (params->type == GGML_TASK_TYPE_INIT) {
  12215. return;
  12216. }
  12217. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12218. return;
  12219. }
  12220. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12221. {
  12222. float * const wdata = (float *) dst->data;
  12223. for (int64_t in = 0; in < N; in++) {
  12224. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12225. for (int64_t iow = 0; iow < OW; iow++) {
  12226. for (int64_t iic = ith; iic < IC; iic += nth) {
  12227. // micro kernel
  12228. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12229. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12230. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12231. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12232. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12233. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12234. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12235. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12236. } else {
  12237. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12238. }
  12239. }
  12240. }
  12241. }
  12242. }
  12243. }
  12244. }
  12245. }
  12246. }
  12247. // src0: kernel [OC, IC, KH, KW]
  12248. // src1: image [N, IC, IH, IW]
  12249. // dst: result [N, OH, OW, IC*KH*KW]
  12250. static void ggml_compute_forward_im2col_f16(
  12251. const struct ggml_compute_params * params,
  12252. struct ggml_tensor * dst) {
  12253. const struct ggml_tensor * src0 = dst->src[0];
  12254. const struct ggml_tensor * src1 = dst->src[1];
  12255. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12256. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12257. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12258. int64_t t0 = ggml_perf_time_us();
  12259. UNUSED(t0);
  12260. GGML_TENSOR_BINARY_OP_LOCALS;
  12261. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12262. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12263. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12264. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12265. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12266. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12267. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12268. const int ith = params->ith;
  12269. const int nth = params->nth;
  12270. const int64_t N = is_2D ? ne13 : ne12;
  12271. const int64_t IC = is_2D ? ne12 : ne11;
  12272. const int64_t IH = is_2D ? ne11 : 1;
  12273. const int64_t IW = ne10;
  12274. const int64_t KH = is_2D ? ne01 : 1;
  12275. const int64_t KW = ne00;
  12276. const int64_t OH = is_2D ? ne2 : 1;
  12277. const int64_t OW = ne1;
  12278. int ofs0 = is_2D ? nb13 : nb12;
  12279. int ofs1 = is_2D ? nb12 : nb11;
  12280. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12281. GGML_ASSERT(nb10 == sizeof(float));
  12282. if (params->type == GGML_TASK_TYPE_INIT) {
  12283. return;
  12284. }
  12285. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12286. return;
  12287. }
  12288. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12289. {
  12290. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12291. for (int64_t in = 0; in < N; in++) {
  12292. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12293. for (int64_t iow = 0; iow < OW; iow++) {
  12294. for (int64_t iic = ith; iic < IC; iic += nth) {
  12295. // micro kernel
  12296. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12297. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12298. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12299. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12300. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12301. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12302. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12303. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12304. } else {
  12305. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12306. }
  12307. }
  12308. }
  12309. }
  12310. }
  12311. }
  12312. }
  12313. }
  12314. }
  12315. static void ggml_compute_forward_im2col(
  12316. const struct ggml_compute_params * params,
  12317. struct ggml_tensor * dst) {
  12318. switch (dst->type) {
  12319. case GGML_TYPE_F16:
  12320. {
  12321. ggml_compute_forward_im2col_f16(params, dst);
  12322. } break;
  12323. case GGML_TYPE_F32:
  12324. {
  12325. ggml_compute_forward_im2col_f32(params, dst);
  12326. } break;
  12327. default:
  12328. {
  12329. GGML_ASSERT(false);
  12330. } break;
  12331. }
  12332. }
  12333. // ggml_compute_forward_conv_transpose_2d
  12334. static void ggml_compute_forward_conv_transpose_2d(
  12335. const struct ggml_compute_params * params,
  12336. struct ggml_tensor * dst) {
  12337. const struct ggml_tensor * src0 = dst->src[0];
  12338. const struct ggml_tensor * src1 = dst->src[1];
  12339. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12340. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12341. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12342. int64_t t0 = ggml_perf_time_us();
  12343. UNUSED(t0);
  12344. GGML_TENSOR_BINARY_OP_LOCALS
  12345. const int ith = params->ith;
  12346. const int nth = params->nth;
  12347. const int nk = ne00*ne01*ne02*ne03;
  12348. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12349. GGML_ASSERT(nb10 == sizeof(float));
  12350. if (params->type == GGML_TASK_TYPE_INIT) {
  12351. if (ith != 0) {
  12352. return;
  12353. }
  12354. memset(params->wdata, 0, params->wsize);
  12355. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12356. {
  12357. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12358. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12359. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12360. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12361. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12362. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12363. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12364. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12365. }
  12366. }
  12367. }
  12368. }
  12369. }
  12370. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12371. {
  12372. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12373. for (int i12 = 0; i12 < ne12; i12++) {
  12374. for (int i11 = 0; i11 < ne11; i11++) {
  12375. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12376. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12377. for (int i10 = 0; i10 < ne10; i10++) {
  12378. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12379. }
  12380. }
  12381. }
  12382. }
  12383. memset(dst->data, 0, ggml_nbytes(dst));
  12384. return;
  12385. }
  12386. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12387. return;
  12388. }
  12389. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12390. // total patches in dst
  12391. const int np = ne2;
  12392. // patches per thread
  12393. const int dp = (np + nth - 1)/nth;
  12394. // patch range for this thread
  12395. const int ip0 = dp*ith;
  12396. const int ip1 = MIN(ip0 + dp, np);
  12397. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12398. ggml_fp16_t * const wdata_src = wdata + nk;
  12399. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12400. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12401. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12402. for (int i11 = 0; i11 < ne11; i11++) {
  12403. for (int i10 = 0; i10 < ne10; i10++) {
  12404. const int i1n = i11*ne10*ne12 + i10*ne12;
  12405. for (int i01 = 0; i01 < ne01; i01++) {
  12406. for (int i00 = 0; i00 < ne00; i00++) {
  12407. float v = 0;
  12408. ggml_vec_dot_f16(ne03, &v, 0,
  12409. wdata_src + i1n, 0,
  12410. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12411. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12412. }
  12413. }
  12414. }
  12415. }
  12416. }
  12417. }
  12418. // ggml_compute_forward_pool_1d_sk_p0
  12419. static void ggml_compute_forward_pool_1d_sk_p0(
  12420. const struct ggml_compute_params * params,
  12421. const enum ggml_op_pool op,
  12422. const int k,
  12423. struct ggml_tensor * dst) {
  12424. const struct ggml_tensor * src = dst->src[0];
  12425. assert(src->type == GGML_TYPE_F32);
  12426. assert(params->ith == 0);
  12427. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12428. return;
  12429. }
  12430. const char * cdata = (const char *)src->data;
  12431. const char * const data_end = cdata + ggml_nbytes(src);
  12432. float * drow = (float *)dst->data;
  12433. const int64_t rs = dst->ne[0];
  12434. while (cdata < data_end) {
  12435. const float * const srow = (const float *)cdata;
  12436. int j = 0;
  12437. for (int64_t i = 0; i < rs; ++i) {
  12438. switch (op) {
  12439. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12440. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12441. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12442. }
  12443. for (int ki = 0; ki < k; ++ki) {
  12444. switch (op) {
  12445. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12446. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12447. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12448. }
  12449. ++j;
  12450. }
  12451. switch (op) {
  12452. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12453. case GGML_OP_POOL_MAX: break;
  12454. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12455. }
  12456. }
  12457. cdata += src->nb[1];
  12458. drow += rs;
  12459. }
  12460. }
  12461. // ggml_compute_forward_pool_1d
  12462. static void ggml_compute_forward_pool_1d(
  12463. const struct ggml_compute_params * params,
  12464. struct ggml_tensor * dst) {
  12465. const int32_t * opts = (const int32_t *)dst->op_params;
  12466. enum ggml_op_pool op = opts[0];
  12467. const int k0 = opts[1];
  12468. const int s0 = opts[2];
  12469. const int p0 = opts[3];
  12470. GGML_ASSERT(p0 == 0); // padding not supported
  12471. GGML_ASSERT(k0 == s0); // only s = k supported
  12472. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12473. }
  12474. // ggml_compute_forward_pool_2d
  12475. static void ggml_compute_forward_pool_2d(
  12476. const struct ggml_compute_params * params,
  12477. struct ggml_tensor * dst) {
  12478. const struct ggml_tensor * src = dst->src[0];
  12479. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12480. GGML_ASSERT(params->ith == 0);
  12481. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12482. return;
  12483. }
  12484. const int32_t * opts = (const int32_t *)dst->op_params;
  12485. enum ggml_op_pool op = opts[0];
  12486. const int k0 = opts[1];
  12487. const int k1 = opts[2];
  12488. const int s0 = opts[3];
  12489. const int s1 = opts[4];
  12490. const int p0 = opts[5];
  12491. const int p1 = opts[6];
  12492. const char * cdata = (const char*)src->data;
  12493. const char * const data_end = cdata + ggml_nbytes(src);
  12494. const int64_t px = dst->ne[0];
  12495. const int64_t py = dst->ne[1];
  12496. const int64_t pa = px * py;
  12497. float * dplane = (float *)dst->data;
  12498. const int ka = k0 * k1;
  12499. const int offset0 = -p0;
  12500. const int offset1 = -p1;
  12501. while (cdata < data_end) {
  12502. for (int oy = 0; oy < py; ++oy) {
  12503. float * const drow = dplane + oy * px;
  12504. for (int ox = 0; ox < px; ++ox) {
  12505. float * const out = drow + ox;
  12506. switch (op) {
  12507. case GGML_OP_POOL_AVG: *out = 0; break;
  12508. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12509. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12510. }
  12511. const int ix = offset0 + ox * s0;
  12512. const int iy = offset1 + oy * s1;
  12513. for (int ky = 0; ky < k1; ++ky) {
  12514. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12515. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12516. for (int kx = 0; kx < k0; ++kx) {
  12517. int j = ix + kx;
  12518. if (j < 0 || j >= src->ne[0]) continue;
  12519. switch (op) {
  12520. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12521. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12522. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12523. }
  12524. }
  12525. }
  12526. switch (op) {
  12527. case GGML_OP_POOL_AVG: *out /= ka; break;
  12528. case GGML_OP_POOL_MAX: break;
  12529. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12530. }
  12531. }
  12532. }
  12533. cdata += src->nb[2];
  12534. dplane += pa;
  12535. }
  12536. }
  12537. // ggml_compute_forward_upscale
  12538. static void ggml_compute_forward_upscale_f32(
  12539. const struct ggml_compute_params * params,
  12540. struct ggml_tensor * dst) {
  12541. const struct ggml_tensor * src0 = dst->src[0];
  12542. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12543. return;
  12544. }
  12545. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12546. const int ith = params->ith;
  12547. const int nth = params->nth;
  12548. GGML_TENSOR_UNARY_OP_LOCALS
  12549. const float sf0 = (float)ne0/src0->ne[0];
  12550. const float sf1 = (float)ne1/src0->ne[1];
  12551. const float sf2 = (float)ne2/src0->ne[2];
  12552. const float sf3 = (float)ne3/src0->ne[3];
  12553. // TODO: optimize
  12554. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12555. const int64_t i03 = i3 / sf3;
  12556. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12557. const int64_t i02 = i2 / sf2;
  12558. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12559. const int64_t i01 = i1 / sf1;
  12560. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12561. const int64_t i00 = i0 / sf0;
  12562. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12563. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12564. *y = *x;
  12565. }
  12566. }
  12567. }
  12568. }
  12569. }
  12570. static void ggml_compute_forward_upscale(
  12571. const struct ggml_compute_params * params,
  12572. struct ggml_tensor * dst) {
  12573. const struct ggml_tensor * src0 = dst->src[0];
  12574. switch (src0->type) {
  12575. case GGML_TYPE_F32:
  12576. {
  12577. ggml_compute_forward_upscale_f32(params, dst);
  12578. } break;
  12579. default:
  12580. {
  12581. GGML_ASSERT(false);
  12582. } break;
  12583. }
  12584. }
  12585. // ggml_compute_forward_pad
  12586. static void ggml_compute_forward_pad_f32(
  12587. const struct ggml_compute_params * params,
  12588. struct ggml_tensor * dst) {
  12589. const struct ggml_tensor * src0 = dst->src[0];
  12590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12591. return;
  12592. }
  12593. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12594. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12595. const int ith = params->ith;
  12596. const int nth = params->nth;
  12597. GGML_TENSOR_UNARY_OP_LOCALS
  12598. float * dst_ptr = (float *) dst->data;
  12599. // TODO: optimize
  12600. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12601. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12602. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12603. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12604. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12605. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12606. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12607. dst_ptr[dst_idx] = *src_ptr;
  12608. } else {
  12609. dst_ptr[dst_idx] = 0;
  12610. }
  12611. }
  12612. }
  12613. }
  12614. }
  12615. }
  12616. static void ggml_compute_forward_pad(
  12617. const struct ggml_compute_params * params,
  12618. struct ggml_tensor * dst) {
  12619. const struct ggml_tensor * src0 = dst->src[0];
  12620. switch (src0->type) {
  12621. case GGML_TYPE_F32:
  12622. {
  12623. ggml_compute_forward_pad_f32(params, dst);
  12624. } break;
  12625. default:
  12626. {
  12627. GGML_ASSERT(false);
  12628. } break;
  12629. }
  12630. }
  12631. // ggml_compute_forward_arange
  12632. static void ggml_compute_forward_arange_f32(
  12633. const struct ggml_compute_params * params,
  12634. struct ggml_tensor * dst) {
  12635. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12636. return;
  12637. }
  12638. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12639. const int ith = params->ith;
  12640. const int nth = params->nth;
  12641. const float start = ggml_get_op_params_f32(dst, 0);
  12642. const float stop = ggml_get_op_params_f32(dst, 1);
  12643. const float step = ggml_get_op_params_f32(dst, 2);
  12644. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12645. GGML_ASSERT(ggml_nelements(dst) == steps);
  12646. for (int64_t i = ith; i < steps; i+= nth) {
  12647. float value = start + step * i;
  12648. ((float *)dst->data)[i] = value;
  12649. }
  12650. }
  12651. static void ggml_compute_forward_arange(
  12652. const struct ggml_compute_params * params,
  12653. struct ggml_tensor * dst) {
  12654. switch (dst->type) {
  12655. case GGML_TYPE_F32:
  12656. {
  12657. ggml_compute_forward_arange_f32(params, dst);
  12658. } break;
  12659. default:
  12660. {
  12661. GGML_ASSERT(false);
  12662. } break;
  12663. }
  12664. }
  12665. static void ggml_compute_forward_timestep_embedding_f32(
  12666. const struct ggml_compute_params * params,
  12667. struct ggml_tensor * dst) {
  12668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12669. return;
  12670. }
  12671. const struct ggml_tensor * src0 = dst->src[0];
  12672. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12673. const int ith = params->ith;
  12674. const int nth = params->nth;
  12675. GGML_TENSOR_UNARY_OP_LOCALS
  12676. const int dim = ggml_get_op_params_i32(dst, 0);
  12677. const int max_period = ggml_get_op_params_i32(dst, 1);
  12678. int half = dim / 2;
  12679. for (int64_t i = 0; i < ne00; i++) {
  12680. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12681. for (int64_t j = ith; j < half; j += nth) {
  12682. float timestep = ((float *)src0->data)[i];
  12683. float freq = (float)expf(-logf(max_period) * j / half);
  12684. float arg = timestep * freq;
  12685. embed_data[j] = cosf(arg);
  12686. embed_data[j + half] = sinf(arg);
  12687. }
  12688. if (dim % 2 != 0 && ith == 0) {
  12689. embed_data[dim] = 0.f;
  12690. }
  12691. }
  12692. }
  12693. static void ggml_compute_forward_timestep_embedding(
  12694. const struct ggml_compute_params * params,
  12695. struct ggml_tensor * dst) {
  12696. const struct ggml_tensor * src0 = dst->src[0];
  12697. switch (src0->type) {
  12698. case GGML_TYPE_F32:
  12699. {
  12700. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12701. } break;
  12702. default:
  12703. {
  12704. GGML_ASSERT(false);
  12705. } break;
  12706. }
  12707. }
  12708. // ggml_compute_forward_argsort
  12709. static void ggml_compute_forward_argsort_f32(
  12710. const struct ggml_compute_params * params,
  12711. struct ggml_tensor * dst) {
  12712. const struct ggml_tensor * src0 = dst->src[0];
  12713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12714. return;
  12715. }
  12716. GGML_TENSOR_UNARY_OP_LOCALS
  12717. GGML_ASSERT(nb0 == sizeof(float));
  12718. const int ith = params->ith;
  12719. const int nth = params->nth;
  12720. const int64_t nr = ggml_nrows(src0);
  12721. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12722. for (int64_t i = ith; i < nr; i += nth) {
  12723. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12724. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12725. for (int64_t j = 0; j < ne0; j++) {
  12726. dst_data[j] = j;
  12727. }
  12728. // C doesn't have a functional sort, so we do a bubble sort instead
  12729. for (int64_t j = 0; j < ne0; j++) {
  12730. for (int64_t k = j + 1; k < ne0; k++) {
  12731. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12732. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12733. int32_t tmp = dst_data[j];
  12734. dst_data[j] = dst_data[k];
  12735. dst_data[k] = tmp;
  12736. }
  12737. }
  12738. }
  12739. }
  12740. }
  12741. static void ggml_compute_forward_argsort(
  12742. const struct ggml_compute_params * params,
  12743. struct ggml_tensor * dst) {
  12744. const struct ggml_tensor * src0 = dst->src[0];
  12745. switch (src0->type) {
  12746. case GGML_TYPE_F32:
  12747. {
  12748. ggml_compute_forward_argsort_f32(params, dst);
  12749. } break;
  12750. default:
  12751. {
  12752. GGML_ASSERT(false);
  12753. } break;
  12754. }
  12755. }
  12756. // ggml_compute_forward_flash_attn_ext
  12757. static void ggml_compute_forward_flash_attn_ext_f16(
  12758. const struct ggml_compute_params * params,
  12759. const struct ggml_tensor * q,
  12760. const struct ggml_tensor * k,
  12761. const struct ggml_tensor * v,
  12762. const struct ggml_tensor * mask,
  12763. struct ggml_tensor * dst) {
  12764. int64_t t0 = ggml_perf_time_us();
  12765. UNUSED(t0);
  12766. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12767. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12768. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12769. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12770. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12771. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12772. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12773. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12774. const int ith = params->ith;
  12775. const int nth = params->nth;
  12776. const int64_t D = neq0;
  12777. const int64_t N = neq1;
  12778. GGML_ASSERT(ne0 == D);
  12779. GGML_ASSERT(ne2 == N);
  12780. // input tensor rows must be contiguous
  12781. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12782. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12783. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12784. GGML_ASSERT(neq0 == D);
  12785. GGML_ASSERT(nek0 == D);
  12786. GGML_ASSERT(nev0 == D);
  12787. GGML_ASSERT(neq1 == N);
  12788. GGML_ASSERT(nev0 == D);
  12789. // dst cannot be transposed or permuted
  12790. GGML_ASSERT(nb0 == sizeof(float));
  12791. GGML_ASSERT(nb0 <= nb1);
  12792. GGML_ASSERT(nb1 <= nb2);
  12793. GGML_ASSERT(nb2 <= nb3);
  12794. // broadcast factors
  12795. const int64_t rk2 = neq2/nek2;
  12796. const int64_t rk3 = neq3/nek3;
  12797. const int64_t rv2 = neq2/nev2;
  12798. const int64_t rv3 = neq3/nev3;
  12799. if (params->type == GGML_TASK_TYPE_INIT) {
  12800. return;
  12801. }
  12802. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12803. return;
  12804. }
  12805. // parallelize by q rows using ggml_vec_dot_f32
  12806. // total rows in q
  12807. const int nr = neq1*neq2*neq3;
  12808. // rows per thread
  12809. const int dr = (nr + nth - 1)/nth;
  12810. // row range for this thread
  12811. const int ir0 = dr*ith;
  12812. const int ir1 = MIN(ir0 + dr, nr);
  12813. float scale = 1.0f;
  12814. float max_bias = 0.0f;
  12815. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12816. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12817. const uint32_t n_head = neq2;
  12818. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12819. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12820. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12821. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12822. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12823. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12824. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12825. // loop over n_batch and n_head
  12826. for (int ir = ir0; ir < ir1; ++ir) {
  12827. // q indices
  12828. const int iq3 = ir/(neq2*neq1);
  12829. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12830. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12831. const uint32_t h = iq2; // head index
  12832. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12833. float S = 0.0f; // sum
  12834. float M = -INFINITY; // maximum KQ value
  12835. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12836. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12837. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12838. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12839. if (v->type == GGML_TYPE_F16) {
  12840. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12841. } else {
  12842. memset(VKQ32, 0, D*sizeof(float));
  12843. }
  12844. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12845. // k indices
  12846. const int ik3 = iq3 / rk3;
  12847. const int ik2 = iq2 / rk2;
  12848. // v indices
  12849. const int iv3 = iq3 / rv3;
  12850. const int iv2 = iq2 / rv2;
  12851. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12852. q_to_vec_dot(pq, Q_q, D);
  12853. // online softmax / attention
  12854. // loop over n_kv and n_head_kv
  12855. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12856. for (int64_t ic = 0; ic < nek1; ++ic) {
  12857. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12858. if (mv == -INFINITY) {
  12859. continue;
  12860. }
  12861. float s; // KQ value
  12862. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12863. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12864. s = s*scale + mv; // scale KQ value and apply mask
  12865. const float Mold = M;
  12866. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12867. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12868. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12869. if (v->type== GGML_TYPE_F16) {
  12870. if (s > M) {
  12871. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12872. M = s;
  12873. ms = expf(Mold - M);
  12874. // V = V*expf(Mold - M)
  12875. ggml_vec_scale_f16(D, VKQ16, ms);
  12876. } else {
  12877. // no new maximum, ms == 1.0f, vs != 1.0f
  12878. vs = expf(s - M);
  12879. }
  12880. // V += v*expf(s - M)
  12881. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12882. } else {
  12883. if (s > M) {
  12884. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12885. M = s;
  12886. ms = expf(Mold - M);
  12887. // V = V*expf(Mold - M)
  12888. ggml_vec_scale_f32(D, VKQ32, ms);
  12889. } else {
  12890. // no new maximum, ms == 1.0f, vs != 1.0f
  12891. vs = expf(s - M);
  12892. }
  12893. v_to_float(v_data, V32, D);
  12894. // V += v*expf(s - M)
  12895. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12896. }
  12897. S = S*ms + vs; // scale and increment sum with partial sum
  12898. }
  12899. if (v->type == GGML_TYPE_F16) {
  12900. for (int64_t d = 0; d < D; ++d) {
  12901. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12902. }
  12903. }
  12904. // V /= S
  12905. const float S_inv = 1.0f/S;
  12906. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12907. // dst indices
  12908. const int i1 = iq1;
  12909. const int i2 = iq2;
  12910. const int i3 = iq3;
  12911. // original
  12912. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12913. // permute(0, 2, 1, 3)
  12914. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12915. }
  12916. }
  12917. static void ggml_compute_forward_flash_attn_ext(
  12918. const struct ggml_compute_params * params,
  12919. const struct ggml_tensor * q,
  12920. const struct ggml_tensor * k,
  12921. const struct ggml_tensor * v,
  12922. const struct ggml_tensor * mask,
  12923. struct ggml_tensor * dst) {
  12924. switch (dst->op_params[2]) {
  12925. case GGML_PREC_DEFAULT:
  12926. case GGML_PREC_F32:
  12927. {
  12928. // uses F32 accumulators
  12929. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12930. } break;
  12931. default:
  12932. {
  12933. GGML_ASSERT(false);
  12934. } break;
  12935. }
  12936. }
  12937. // ggml_compute_forward_flash_attn_back
  12938. static void ggml_compute_forward_flash_attn_back_f32(
  12939. const struct ggml_compute_params * params,
  12940. const bool masked,
  12941. struct ggml_tensor * dst) {
  12942. const struct ggml_tensor * q = dst->src[0];
  12943. const struct ggml_tensor * k = dst->src[1];
  12944. const struct ggml_tensor * v = dst->src[2];
  12945. const struct ggml_tensor * d = dst->src[3];
  12946. int64_t t0 = ggml_perf_time_us();
  12947. UNUSED(t0);
  12948. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12949. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12950. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12951. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12952. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12953. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12954. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12955. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12956. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12957. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12958. const int ith = params->ith;
  12959. const int nth = params->nth;
  12960. const int64_t D = neq0;
  12961. const int64_t N = neq1;
  12962. const int64_t P = nek1 - N;
  12963. const int64_t M = P + N;
  12964. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12965. const int mxDM = MAX(D, Mup);
  12966. // GGML_ASSERT(ne0 == D);
  12967. // GGML_ASSERT(ne1 == N);
  12968. GGML_ASSERT(P >= 0);
  12969. GGML_ASSERT(nbq0 == sizeof(float));
  12970. GGML_ASSERT(nbk0 == sizeof(float));
  12971. GGML_ASSERT(nbv0 == sizeof(float));
  12972. GGML_ASSERT(neq0 == D);
  12973. GGML_ASSERT(nek0 == D);
  12974. GGML_ASSERT(nev1 == D);
  12975. GGML_ASSERT(ned0 == D);
  12976. GGML_ASSERT(neq1 == N);
  12977. GGML_ASSERT(nek1 == N + P);
  12978. GGML_ASSERT(nev1 == D);
  12979. GGML_ASSERT(ned1 == N);
  12980. // dst cannot be transposed or permuted
  12981. GGML_ASSERT(nb0 == sizeof(float));
  12982. GGML_ASSERT(nb0 <= nb1);
  12983. GGML_ASSERT(nb1 <= nb2);
  12984. GGML_ASSERT(nb2 <= nb3);
  12985. if (params->type == GGML_TASK_TYPE_INIT) {
  12986. if (ith == 0) {
  12987. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12988. }
  12989. return;
  12990. }
  12991. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12992. return;
  12993. }
  12994. const int64_t elem_q = ggml_nelements(q);
  12995. const int64_t elem_k = ggml_nelements(k);
  12996. enum ggml_type result_type = dst->type;
  12997. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12998. const size_t tsize = ggml_type_size(result_type);
  12999. const size_t offs_q = 0;
  13000. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13001. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13002. void * grad_q = (char *) dst->data;
  13003. void * grad_k = (char *) dst->data + offs_k;
  13004. void * grad_v = (char *) dst->data + offs_v;
  13005. const size_t nbgq1 = nb0*neq0;
  13006. const size_t nbgq2 = nb0*neq0*neq1;
  13007. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13008. const size_t nbgk1 = nb0*nek0;
  13009. const size_t nbgk2 = nb0*nek0*nek1;
  13010. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13011. const size_t nbgv1 = nb0*nev0;
  13012. const size_t nbgv2 = nb0*nev0*nev1;
  13013. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13014. // parallelize by k rows using ggml_vec_dot_f32
  13015. // total rows in k
  13016. const int nr = nek2*nek3;
  13017. // rows per thread
  13018. const int dr = (nr + nth - 1)/nth;
  13019. // row range for this thread
  13020. const int ir0 = dr*ith;
  13021. const int ir1 = MIN(ir0 + dr, nr);
  13022. const float scale = 1.0f/sqrtf(D);
  13023. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13024. // how often k2 (and v2) is repeated in q2
  13025. int nrep = neq2/nek2;
  13026. for (int ir = ir0; ir < ir1; ++ir) {
  13027. // q indices
  13028. const int ik3 = ir/(nek2);
  13029. const int ik2 = ir - ik3*nek2;
  13030. const int iq3 = ik3;
  13031. const int id3 = ik3;
  13032. const int iv3 = ik3;
  13033. const int iv2 = ik2;
  13034. for (int irep = 0; irep < nrep; ++irep) {
  13035. const int iq2 = ik2 + irep*nek2;
  13036. const int id2 = iq2;
  13037. // (ik2 + irep*nek2) % nek2 == ik2
  13038. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13039. const int id1 = iq1;
  13040. // not sure about CACHE_LINE_SIZE_F32..
  13041. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13042. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13043. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13044. for (int i = M; i < Mup; ++i) {
  13045. S[i] = -INFINITY;
  13046. }
  13047. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13048. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13049. // k indices
  13050. const int ik1 = ic;
  13051. // S indices
  13052. const int i1 = ik1;
  13053. ggml_vec_dot_f32(neq0,
  13054. S + i1, 0,
  13055. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13056. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13057. }
  13058. // scale
  13059. ggml_vec_scale_f32(masked_begin, S, scale);
  13060. for (int64_t i = masked_begin; i < M; i++) {
  13061. S[i] = -INFINITY;
  13062. }
  13063. // softmax
  13064. // exclude known -INF S[..] values from max and loop
  13065. // dont forget to set their SM values to zero
  13066. {
  13067. float max = -INFINITY;
  13068. ggml_vec_max_f32(masked_begin, &max, S);
  13069. ggml_float sum = 0.0;
  13070. {
  13071. #ifdef GGML_SOFT_MAX_ACCELERATE
  13072. max = -max;
  13073. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13074. vvexpf(SM, SM, &Mup);
  13075. ggml_vec_sum_f32(Mup, &sum, SM);
  13076. #else
  13077. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13078. #endif
  13079. }
  13080. assert(sum > 0.0);
  13081. sum = 1.0/sum;
  13082. ggml_vec_scale_f32(masked_begin, SM, sum);
  13083. }
  13084. // step-by-step explanation
  13085. {
  13086. // forward-process shape grads from backward process
  13087. // parallel_for ik2,ik3:
  13088. // for irep:
  13089. // iq2 = ik2 + irep*nek2
  13090. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13091. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13092. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13093. // for iq1:
  13094. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13095. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13096. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13097. // S0 = -Inf [D,1,1,1]
  13098. // ~S1[i] = dot(kcur[:D,i], qcur)
  13099. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13100. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13101. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13102. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13103. // ~S5[i] = dot(vcur[:,i], S4)
  13104. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13105. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13106. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13107. // dst backward-/ grad[dst] = d
  13108. //
  13109. // output gradients with their dependencies:
  13110. //
  13111. // grad[kcur] = grad[S1].T @ qcur
  13112. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13113. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13114. // grad[S4] = grad[S5] @ vcur
  13115. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13116. // grad[qcur] = grad[S1] @ kcur
  13117. // grad[vcur] = grad[S5].T @ S4
  13118. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13119. //
  13120. // in post-order:
  13121. //
  13122. // S1 = qcur @ kcur.T
  13123. // S2 = S1 * scale
  13124. // S3 = diag_mask_inf(S2, P)
  13125. // S4 = softmax(S3)
  13126. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13127. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13128. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13129. // grad[qcur] = grad[S1] @ kcur
  13130. // grad[kcur] = grad[S1].T @ qcur
  13131. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13132. //
  13133. // using less variables (SM=S4):
  13134. //
  13135. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13136. // SM = softmax(S)
  13137. // S = d[:D,iq1,iq2,iq3] @ vcur
  13138. // dot_SM_gradSM = dot(SM, S)
  13139. // S = SM * (S - dot(SM, S))
  13140. // S = diag_mask_zero(S, P) * scale
  13141. //
  13142. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13143. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13144. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13145. }
  13146. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13147. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13148. // for ic:
  13149. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13150. // exclude known future zero S[..] values from operation
  13151. ggml_vec_set_f32(masked_begin, S, 0);
  13152. for (int64_t ic = 0; ic < D; ++ic) {
  13153. ggml_vec_mad_f32(masked_begin,
  13154. S,
  13155. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13156. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13157. }
  13158. // S = SM * (S - dot(SM, S))
  13159. float dot_SM_gradSM = 0;
  13160. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13161. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13162. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13163. // S = diag_mask_zero(S, P) * scale
  13164. // already done by above ggml_vec_set_f32
  13165. // exclude known zero S[..] values from operation
  13166. ggml_vec_scale_f32(masked_begin, S, scale);
  13167. // S shape [M,1]
  13168. // SM shape [M,1]
  13169. // kcur shape [D,M]
  13170. // qcur shape [D,1]
  13171. // vcur shape [M,D]
  13172. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13173. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13174. // for ic:
  13175. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13176. // exclude known zero S[..] values from loop
  13177. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13178. ggml_vec_mad_f32(D,
  13179. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13180. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13181. S[ic]);
  13182. }
  13183. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13184. // for ic:
  13185. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13186. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13187. // exclude known zero S[..] values from loop
  13188. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13189. ggml_vec_mad_f32(D,
  13190. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13191. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13192. S[ic]);
  13193. }
  13194. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13195. // for ic:
  13196. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13197. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13198. // exclude known zero SM[..] values from mad
  13199. for (int64_t ic = 0; ic < D; ++ic) {
  13200. ggml_vec_mad_f32(masked_begin,
  13201. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13202. SM,
  13203. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13204. }
  13205. }
  13206. }
  13207. }
  13208. }
  13209. static void ggml_compute_forward_flash_attn_back(
  13210. const struct ggml_compute_params * params,
  13211. const bool masked,
  13212. struct ggml_tensor * dst) {
  13213. const struct ggml_tensor * q = dst->src[0];
  13214. switch (q->type) {
  13215. case GGML_TYPE_F32:
  13216. {
  13217. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13218. } break;
  13219. default:
  13220. {
  13221. GGML_ASSERT(false);
  13222. } break;
  13223. }
  13224. }
  13225. // ggml_compute_forward_ssm_conv
  13226. static void ggml_compute_forward_ssm_conv_f32(
  13227. const struct ggml_compute_params * params,
  13228. struct ggml_tensor * dst) {
  13229. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13230. return;
  13231. }
  13232. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13233. const struct ggml_tensor * src1 = dst->src[1]; // x
  13234. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13235. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13236. const int ith = params->ith;
  13237. const int nth = params->nth;
  13238. const int nc = src2->ne[0]; // d_conv
  13239. const int nr = src0->ne[1]; // d_inner
  13240. const int n_t = src1->ne[1]; // n_tokens
  13241. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13242. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13243. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13244. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13245. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13246. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13247. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13248. // for use with the destination state offset between sequences
  13249. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13250. // rows per thread
  13251. const int dr = (nr + nth - 1)/nth;
  13252. // row range for this thread
  13253. const int ir0 = dr*ith;
  13254. const int ir1 = MIN(ir0 + dr, nr);
  13255. const int ir = ir1 - ir0;
  13256. if (n_kv > 1) {
  13257. // multiple sequences means it's hard to know when it's the first time a state is read,
  13258. // so copy them all over to the destination, just to be sure.
  13259. for (int i3 = 0; i3 < n_kv; ++i3) {
  13260. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13261. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13262. // can't use memcpy because of d_conv vs d_conv - 1
  13263. for (int i1 = 0; i1 < ir; ++i1) {
  13264. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13265. // copy s0 to last (d_conv - 1) columns of s
  13266. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13267. }
  13268. }
  13269. }
  13270. }
  13271. for (int i2 = 0; i2 < n_t; ++i2) {
  13272. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13273. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13274. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13275. float * s0; // {d_conv - 1, d_inner, n_kv}
  13276. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13277. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13278. int ne0s0;
  13279. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13280. // avoid needing to copy the state for the first token
  13281. if (i2 == 0) {
  13282. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13283. ne0s0 = src0->ne[0];
  13284. } else {
  13285. // the source is the last (d_conv - 1) columns of the destination
  13286. s0 = s + 1;
  13287. ne0s0 = nc;
  13288. }
  13289. // d_inner
  13290. for (int i1 = 0; i1 < ir; ++i1) {
  13291. // shift state left
  13292. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13293. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13294. }
  13295. // insert x on the last column
  13296. s[(nc - 1) + i1*nc] = x0[i1];
  13297. }
  13298. // handle copies when there are multiple output states
  13299. for (int i3 = 1; i3 < n_kv; ++i3) {
  13300. int32_t seq = sq[i3];
  13301. if (0 <= seq && seq < n_kv) {
  13302. float * s1 = s + (seq - sq[0])*nc*nr;
  13303. memcpy(s1, s, nc*ir*sizeof(float));
  13304. } else {
  13305. // stop at negative or too big seq_ids
  13306. break;
  13307. }
  13308. }
  13309. // it seems a little faster when this is separate from the state shift
  13310. for (int i1 = 0; i1 < ir; ++i1) {
  13311. // rowwise dot product
  13312. float sumf = 0.0f;
  13313. for (int i0 = 0; i0 < nc; ++i0) {
  13314. int i = i0 + i1*nc;
  13315. sumf += s[i] * c[i];
  13316. }
  13317. x[i1] = sumf;
  13318. }
  13319. }
  13320. }
  13321. static void ggml_compute_forward_ssm_conv(
  13322. const struct ggml_compute_params * params,
  13323. struct ggml_tensor * dst) {
  13324. switch (dst->src[0]->type) {
  13325. case GGML_TYPE_F32:
  13326. {
  13327. ggml_compute_forward_ssm_conv_f32(params, dst);
  13328. } break;
  13329. default:
  13330. {
  13331. GGML_ASSERT(false);
  13332. } break;
  13333. }
  13334. }
  13335. // ggml_compute_forward_ssm_scan
  13336. static void ggml_compute_forward_ssm_scan_f32(
  13337. const struct ggml_compute_params * params,
  13338. struct ggml_tensor * dst) {
  13339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13340. return;
  13341. }
  13342. const struct ggml_tensor * src0 = dst->src[0]; // s
  13343. const struct ggml_tensor * src1 = dst->src[1]; // x
  13344. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13345. const struct ggml_tensor * src3 = dst->src[3]; // A
  13346. const struct ggml_tensor * src4 = dst->src[4]; // B
  13347. const struct ggml_tensor * src5 = dst->src[5]; // C
  13348. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13349. const int ith = params->ith;
  13350. const int nth = params->nth;
  13351. const int64_t nc = src0->ne[0]; // d_state
  13352. const int64_t nr = src0->ne[1]; // d_inner
  13353. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13354. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13355. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13356. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13357. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13358. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13359. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13360. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13361. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13362. // required for the dot product between s and C, and when copying the states
  13363. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13364. // required for per-sequence offsets for states
  13365. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13366. // required to get correct offset for state destination (i.e. src1->nb[2])
  13367. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13368. // rows per thread
  13369. const int dr = (nr + nth - 1)/nth;
  13370. // row range for this thread
  13371. const int ir0 = dr*ith;
  13372. const int ir1 = MIN(ir0 + dr, nr);
  13373. const int ir = ir1 - ir0;
  13374. if (n_kv > 1) {
  13375. // it's hard to know if the source states have already been copied
  13376. // when there are multiple, so copy them already.
  13377. for (int i3 = 0; i3 < n_kv; ++i3) {
  13378. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13379. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13380. memcpy(s, s0, nc*ir*sizeof(float));
  13381. }
  13382. }
  13383. for (int i2 = 0; i2 < n_t; ++i2) {
  13384. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13385. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13386. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13387. float * s0;
  13388. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13389. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13390. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13391. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13392. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13393. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13394. // avoid needing to copy the state for the first token
  13395. if (i2 == 0) {
  13396. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13397. } else {
  13398. // otherwise the source is the same as the destination
  13399. s0 = s;
  13400. }
  13401. // d_inner
  13402. for (int i1 = 0; i1 < ir; ++i1) {
  13403. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13404. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13405. float x_dt = x[i1] * dt_soft_plus;
  13406. float sumf = 0.0f;
  13407. // d_state
  13408. for (int i0 = 0; i0 < nc; ++i0) {
  13409. int i = i0 + i1*nc;
  13410. // state = prev_state * dA + dB * x
  13411. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13412. // y = rowwise_dotprod(state, C)
  13413. sumf += state * C[i0];
  13414. s[i] = state;
  13415. }
  13416. y[i1] = sumf;
  13417. }
  13418. // handle copies when there are multiple output states
  13419. for (int i3 = 1; i3 < n_kv; ++i3) {
  13420. int32_t seq = sq[i3];
  13421. if (0 <= seq && seq < n_kv) {
  13422. float * s1 = s + (seq - sq[0])*nc*nr;
  13423. memcpy(s1, s, nc*ir*sizeof(float));
  13424. } else {
  13425. // stop at negative or too big seq_ids
  13426. break;
  13427. }
  13428. }
  13429. }
  13430. }
  13431. static void ggml_compute_forward_ssm_scan(
  13432. const struct ggml_compute_params * params,
  13433. struct ggml_tensor * dst) {
  13434. switch (dst->src[0]->type) {
  13435. case GGML_TYPE_F32:
  13436. {
  13437. ggml_compute_forward_ssm_scan_f32(params, dst);
  13438. } break;
  13439. default:
  13440. {
  13441. GGML_ASSERT(false);
  13442. } break;
  13443. }
  13444. }
  13445. // ggml_compute_forward_win_part
  13446. static void ggml_compute_forward_win_part_f32(
  13447. const struct ggml_compute_params * params,
  13448. struct ggml_tensor * dst) {
  13449. const struct ggml_tensor * src0 = dst->src[0];
  13450. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13451. return;
  13452. }
  13453. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13454. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13455. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13456. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13457. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13458. assert(ne00 == ne0);
  13459. assert(ne3 == nep0*nep1);
  13460. // TODO: optimize / multi-thread
  13461. for (int py = 0; py < nep1; ++py) {
  13462. for (int px = 0; px < nep0; ++px) {
  13463. const int64_t i3 = py*nep0 + px;
  13464. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13465. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13466. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13467. const int64_t i02 = py*w + i2;
  13468. const int64_t i01 = px*w + i1;
  13469. const int64_t i00 = i0;
  13470. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13471. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13472. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13473. ((float *) dst->data)[i] = 0.0f;
  13474. } else {
  13475. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13476. }
  13477. }
  13478. }
  13479. }
  13480. }
  13481. }
  13482. }
  13483. static void ggml_compute_forward_win_part(
  13484. const struct ggml_compute_params * params,
  13485. struct ggml_tensor * dst) {
  13486. const struct ggml_tensor * src0 = dst->src[0];
  13487. switch (src0->type) {
  13488. case GGML_TYPE_F32:
  13489. {
  13490. ggml_compute_forward_win_part_f32(params, dst);
  13491. } break;
  13492. default:
  13493. {
  13494. GGML_ASSERT(false);
  13495. } break;
  13496. }
  13497. }
  13498. // ggml_compute_forward_win_unpart
  13499. static void ggml_compute_forward_win_unpart_f32(
  13500. const struct ggml_compute_params * params,
  13501. struct ggml_tensor * dst) {
  13502. const struct ggml_tensor * src0 = dst->src[0];
  13503. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13504. return;
  13505. }
  13506. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13507. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13508. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13509. // padding
  13510. const int px = (w - ne1%w)%w;
  13511. //const int py = (w - ne2%w)%w;
  13512. const int npx = (px + ne1)/w;
  13513. //const int npy = (py + ne2)/w;
  13514. assert(ne0 == ne00);
  13515. // TODO: optimize / multi-thread
  13516. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13517. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13518. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13519. const int ip2 = i2/w;
  13520. const int ip1 = i1/w;
  13521. const int64_t i02 = i2%w;
  13522. const int64_t i01 = i1%w;
  13523. const int64_t i00 = i0;
  13524. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13525. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13526. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13527. }
  13528. }
  13529. }
  13530. }
  13531. static void ggml_compute_forward_win_unpart(
  13532. const struct ggml_compute_params * params,
  13533. struct ggml_tensor * dst) {
  13534. const struct ggml_tensor * src0 = dst->src[0];
  13535. switch (src0->type) {
  13536. case GGML_TYPE_F32:
  13537. {
  13538. ggml_compute_forward_win_unpart_f32(params, dst);
  13539. } break;
  13540. default:
  13541. {
  13542. GGML_ASSERT(false);
  13543. } break;
  13544. }
  13545. }
  13546. //gmml_compute_forward_unary
  13547. static void ggml_compute_forward_unary(
  13548. const struct ggml_compute_params * params,
  13549. struct ggml_tensor * dst) {
  13550. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13551. switch (op) {
  13552. case GGML_UNARY_OP_ABS:
  13553. {
  13554. ggml_compute_forward_abs(params, dst);
  13555. } break;
  13556. case GGML_UNARY_OP_SGN:
  13557. {
  13558. ggml_compute_forward_sgn(params, dst);
  13559. } break;
  13560. case GGML_UNARY_OP_NEG:
  13561. {
  13562. ggml_compute_forward_neg(params, dst);
  13563. } break;
  13564. case GGML_UNARY_OP_STEP:
  13565. {
  13566. ggml_compute_forward_step(params, dst);
  13567. } break;
  13568. case GGML_UNARY_OP_TANH:
  13569. {
  13570. ggml_compute_forward_tanh(params, dst);
  13571. } break;
  13572. case GGML_UNARY_OP_ELU:
  13573. {
  13574. ggml_compute_forward_elu(params, dst);
  13575. } break;
  13576. case GGML_UNARY_OP_RELU:
  13577. {
  13578. ggml_compute_forward_relu(params, dst);
  13579. } break;
  13580. case GGML_UNARY_OP_SIGMOID:
  13581. {
  13582. ggml_compute_forward_sigmoid(params, dst);
  13583. } break;
  13584. case GGML_UNARY_OP_GELU:
  13585. {
  13586. ggml_compute_forward_gelu(params, dst);
  13587. } break;
  13588. case GGML_UNARY_OP_GELU_QUICK:
  13589. {
  13590. ggml_compute_forward_gelu_quick(params, dst);
  13591. } break;
  13592. case GGML_UNARY_OP_SILU:
  13593. {
  13594. ggml_compute_forward_silu(params, dst);
  13595. } break;
  13596. case GGML_UNARY_OP_HARDSWISH:
  13597. {
  13598. ggml_compute_forward_hardswish(params, dst);
  13599. } break;
  13600. case GGML_UNARY_OP_HARDSIGMOID:
  13601. {
  13602. ggml_compute_forward_hardsigmoid(params, dst);
  13603. } break;
  13604. default:
  13605. {
  13606. GGML_ASSERT(false);
  13607. } break;
  13608. }
  13609. }
  13610. // ggml_compute_forward_get_rel_pos
  13611. static void ggml_compute_forward_get_rel_pos_f16(
  13612. const struct ggml_compute_params * params,
  13613. struct ggml_tensor * dst) {
  13614. const struct ggml_tensor * src0 = dst->src[0];
  13615. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13616. return;
  13617. }
  13618. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13619. GGML_TENSOR_UNARY_OP_LOCALS
  13620. const int64_t w = ne1;
  13621. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13622. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13623. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13624. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13625. const int64_t pos = (w - i1 - 1) + i2;
  13626. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13627. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13628. }
  13629. }
  13630. }
  13631. }
  13632. static void ggml_compute_forward_get_rel_pos(
  13633. const struct ggml_compute_params * params,
  13634. struct ggml_tensor * dst) {
  13635. const struct ggml_tensor * src0 = dst->src[0];
  13636. switch (src0->type) {
  13637. case GGML_TYPE_F16:
  13638. case GGML_TYPE_BF16:
  13639. {
  13640. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13641. } break;
  13642. default:
  13643. {
  13644. GGML_ASSERT(false);
  13645. } break;
  13646. }
  13647. }
  13648. // ggml_compute_forward_add_rel_pos
  13649. static void ggml_compute_forward_add_rel_pos_f32(
  13650. const struct ggml_compute_params * params,
  13651. struct ggml_tensor * dst) {
  13652. const struct ggml_tensor * src0 = dst->src[0];
  13653. const struct ggml_tensor * src1 = dst->src[1];
  13654. const struct ggml_tensor * src2 = dst->src[2];
  13655. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13656. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13657. if (params->ith != 0) {
  13658. return;
  13659. }
  13660. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13661. return;
  13662. }
  13663. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13664. return;
  13665. }
  13666. int64_t t0 = ggml_perf_time_us();
  13667. UNUSED(t0);
  13668. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13669. float * src1_data = (float *) src1->data;
  13670. float * src2_data = (float *) src2->data;
  13671. float * dst_data = (float *) dst->data;
  13672. const int64_t ne10 = src1->ne[0];
  13673. const int64_t ne11 = src1->ne[1];
  13674. const int64_t ne12 = src1->ne[2];
  13675. const int64_t ne13 = src1->ne[3];
  13676. const int ith = params->ith;
  13677. const int nth = params->nth;
  13678. // total patches in dst
  13679. const int np = ne13;
  13680. // patches per thread
  13681. const int dp = (np + nth - 1)/nth;
  13682. // patch range for this thread
  13683. const int ip0 = dp*ith;
  13684. const int ip1 = MIN(ip0 + dp, np);
  13685. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13686. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13687. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13688. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13689. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13690. const int64_t jp0 = jp1 + i10;
  13691. const float src1_e = src1_data[jp0];
  13692. const float src2_e = src2_data[jp0];
  13693. const int64_t jdh = jp0 * ne10;
  13694. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13695. for (int64_t j = 0; j < ne10; ++j) {
  13696. dst_data[jdh + j ] += src2_e;
  13697. dst_data[jdw + j*ne10] += src1_e;
  13698. }
  13699. }
  13700. }
  13701. }
  13702. }
  13703. }
  13704. static void ggml_compute_forward_add_rel_pos(
  13705. const struct ggml_compute_params * params,
  13706. struct ggml_tensor * dst) {
  13707. const struct ggml_tensor * src0 = dst->src[0];
  13708. switch (src0->type) {
  13709. case GGML_TYPE_F32:
  13710. {
  13711. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13712. } break;
  13713. default:
  13714. {
  13715. GGML_ASSERT(false);
  13716. } break;
  13717. }
  13718. }
  13719. // ggml_compute_forward_map_unary
  13720. static void ggml_compute_forward_map_unary_f32(
  13721. const struct ggml_compute_params * params,
  13722. struct ggml_tensor * dst,
  13723. const ggml_unary_op_f32_t fun) {
  13724. const struct ggml_tensor * src0 = dst->src[0];
  13725. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13726. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13727. return;
  13728. }
  13729. const int n = ggml_nrows(src0);
  13730. const int nc = src0->ne[0];
  13731. assert( dst->nb[0] == sizeof(float));
  13732. assert(src0->nb[0] == sizeof(float));
  13733. for (int i = 0; i < n; i++) {
  13734. fun(nc,
  13735. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13736. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13737. }
  13738. }
  13739. static void ggml_compute_forward_map_unary(
  13740. const struct ggml_compute_params * params,
  13741. struct ggml_tensor * dst,
  13742. const ggml_unary_op_f32_t fun) {
  13743. const struct ggml_tensor * src0 = dst->src[0];
  13744. switch (src0->type) {
  13745. case GGML_TYPE_F32:
  13746. {
  13747. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13748. } break;
  13749. default:
  13750. {
  13751. GGML_ASSERT(false);
  13752. } break;
  13753. }
  13754. }
  13755. // ggml_compute_forward_map_binary
  13756. static void ggml_compute_forward_map_binary_f32(
  13757. const struct ggml_compute_params * params,
  13758. struct ggml_tensor * dst,
  13759. const ggml_binary_op_f32_t fun) {
  13760. const struct ggml_tensor * src0 = dst->src[0];
  13761. const struct ggml_tensor * src1 = dst->src[1];
  13762. assert(params->ith == 0);
  13763. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13765. return;
  13766. }
  13767. const int n = ggml_nrows(src0);
  13768. const int nc = src0->ne[0];
  13769. assert( dst->nb[0] == sizeof(float));
  13770. assert(src0->nb[0] == sizeof(float));
  13771. assert(src1->nb[0] == sizeof(float));
  13772. for (int i = 0; i < n; i++) {
  13773. fun(nc,
  13774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13775. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13776. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13777. }
  13778. }
  13779. static void ggml_compute_forward_map_binary(
  13780. const struct ggml_compute_params * params,
  13781. struct ggml_tensor * dst,
  13782. const ggml_binary_op_f32_t fun) {
  13783. const struct ggml_tensor * src0 = dst->src[0];
  13784. switch (src0->type) {
  13785. case GGML_TYPE_F32:
  13786. {
  13787. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13788. } break;
  13789. default:
  13790. {
  13791. GGML_ASSERT(false);
  13792. } break;
  13793. }
  13794. }
  13795. // ggml_compute_forward_map_custom1
  13796. static void ggml_compute_forward_map_custom1_f32(
  13797. const struct ggml_compute_params * params,
  13798. struct ggml_tensor * dst,
  13799. const ggml_custom1_op_f32_t fun) {
  13800. const struct ggml_tensor * a = dst->src[0];
  13801. assert(params->ith == 0);
  13802. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13803. return;
  13804. }
  13805. fun(dst, a);
  13806. }
  13807. // ggml_compute_forward_map_custom2
  13808. static void ggml_compute_forward_map_custom2_f32(
  13809. const struct ggml_compute_params * params,
  13810. struct ggml_tensor * dst,
  13811. const ggml_custom2_op_f32_t fun) {
  13812. const struct ggml_tensor * a = dst->src[0];
  13813. const struct ggml_tensor * b = dst->src[1];
  13814. assert(params->ith == 0);
  13815. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13816. return;
  13817. }
  13818. fun(dst, a, b);
  13819. }
  13820. // ggml_compute_forward_map_custom3
  13821. static void ggml_compute_forward_map_custom3_f32(
  13822. const struct ggml_compute_params * params,
  13823. struct ggml_tensor * dst,
  13824. const ggml_custom3_op_f32_t fun) {
  13825. const struct ggml_tensor * a = dst->src[0];
  13826. const struct ggml_tensor * b = dst->src[1];
  13827. const struct ggml_tensor * c = dst->src[1];
  13828. assert(params->ith == 0);
  13829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13830. return;
  13831. }
  13832. fun(dst, a, b, c);
  13833. }
  13834. // ggml_compute_forward_map_custom1
  13835. static void ggml_compute_forward_map_custom1(
  13836. const struct ggml_compute_params * params,
  13837. struct ggml_tensor * dst) {
  13838. const struct ggml_tensor * a = dst->src[0];
  13839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13840. return;
  13841. }
  13842. struct ggml_map_custom1_op_params p;
  13843. memcpy(&p, dst->op_params, sizeof(p));
  13844. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13845. }
  13846. // ggml_compute_forward_map_custom2
  13847. static void ggml_compute_forward_map_custom2(
  13848. const struct ggml_compute_params * params,
  13849. struct ggml_tensor * dst) {
  13850. const struct ggml_tensor * a = dst->src[0];
  13851. const struct ggml_tensor * b = dst->src[1];
  13852. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13853. return;
  13854. }
  13855. struct ggml_map_custom2_op_params p;
  13856. memcpy(&p, dst->op_params, sizeof(p));
  13857. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13858. }
  13859. // ggml_compute_forward_map_custom3
  13860. static void ggml_compute_forward_map_custom3(
  13861. const struct ggml_compute_params * params,
  13862. struct ggml_tensor * dst) {
  13863. const struct ggml_tensor * a = dst->src[0];
  13864. const struct ggml_tensor * b = dst->src[1];
  13865. const struct ggml_tensor * c = dst->src[2];
  13866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13867. return;
  13868. }
  13869. struct ggml_map_custom3_op_params p;
  13870. memcpy(&p, dst->op_params, sizeof(p));
  13871. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13872. }
  13873. // ggml_compute_forward_cross_entropy_loss
  13874. static void ggml_compute_forward_cross_entropy_loss_f32(
  13875. const struct ggml_compute_params * params,
  13876. struct ggml_tensor * dst) {
  13877. const struct ggml_tensor * src0 = dst->src[0];
  13878. const struct ggml_tensor * src1 = dst->src[1];
  13879. GGML_ASSERT(ggml_is_contiguous(src0));
  13880. GGML_ASSERT(ggml_is_contiguous(src1));
  13881. GGML_ASSERT(ggml_is_scalar(dst));
  13882. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13883. const int ith = params->ith;
  13884. const int nth = params->nth;
  13885. float * sums = (float *) params->wdata;
  13886. // TODO: handle transposed/permuted matrices
  13887. const int nc = src0->ne[0];
  13888. const int nr = ggml_nrows(src0);
  13889. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13890. if (params->type == GGML_TASK_TYPE_INIT) {
  13891. if (ith == 0) {
  13892. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13893. }
  13894. return;
  13895. }
  13896. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13897. if (ith == 0) {
  13898. float * dp = (float *) dst->data;
  13899. ggml_vec_sum_f32(nth, dp, sums);
  13900. dp[0] *= -1.0f / (float) nr;
  13901. }
  13902. return;
  13903. }
  13904. const double eps = 1e-9;
  13905. // rows per thread
  13906. const int dr = (nr + nth - 1)/nth;
  13907. // row range for this thread
  13908. const int ir0 = dr*ith;
  13909. const int ir1 = MIN(ir0 + dr, nr);
  13910. for (int i1 = ir0; i1 < ir1; i1++) {
  13911. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13912. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13913. float * st = ((float *) params->wdata) + nth + ith*nc;
  13914. #ifndef NDEBUG
  13915. for (int i = 0; i < nc; ++i) {
  13916. //printf("p[%d] = %f\n", i, p[i]);
  13917. assert(!isnan(s0[i]));
  13918. assert(!isnan(s1[i]));
  13919. }
  13920. #endif
  13921. // soft_max
  13922. float max = -INFINITY;
  13923. ggml_vec_max_f32(nc, &max, s0);
  13924. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13925. assert(sum > 0.0);
  13926. sum = (1.0 - eps) / sum;
  13927. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13928. ggml_vec_scale_f32(nc, st, sum);
  13929. ggml_vec_add1_f32(nc, st, st, eps);
  13930. ggml_vec_log_f32(nc, st, st);
  13931. ggml_vec_mul_f32(nc, st, st, s1);
  13932. float st_sum = 0;
  13933. ggml_vec_sum_f32(nc, &st_sum, st);
  13934. sums[ith] += st_sum;
  13935. #ifndef NDEBUG
  13936. for (int i = 0; i < nc; ++i) {
  13937. assert(!isnan(st[i]));
  13938. assert(!isinf(st[i]));
  13939. }
  13940. #endif
  13941. }
  13942. }
  13943. static void ggml_compute_forward_cross_entropy_loss(
  13944. const struct ggml_compute_params * params,
  13945. struct ggml_tensor * dst) {
  13946. const struct ggml_tensor * src0 = dst->src[0];
  13947. switch (src0->type) {
  13948. case GGML_TYPE_F32:
  13949. {
  13950. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13951. } break;
  13952. default:
  13953. {
  13954. GGML_ASSERT(false);
  13955. } break;
  13956. }
  13957. }
  13958. // ggml_compute_forward_cross_entropy_loss_back
  13959. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13960. const struct ggml_compute_params * params,
  13961. struct ggml_tensor * dst) {
  13962. const struct ggml_tensor * src0 = dst->src[0];
  13963. const struct ggml_tensor * src1 = dst->src[1];
  13964. const struct ggml_tensor * opt0 = dst->src[2];
  13965. GGML_ASSERT(ggml_is_contiguous(dst));
  13966. GGML_ASSERT(ggml_is_contiguous(src0));
  13967. GGML_ASSERT(ggml_is_contiguous(src1));
  13968. GGML_ASSERT(ggml_is_contiguous(opt0));
  13969. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13970. const int64_t ith = params->ith;
  13971. const int64_t nth = params->nth;
  13972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13973. return;
  13974. }
  13975. const double eps = 1e-9;
  13976. // TODO: handle transposed/permuted matrices
  13977. const int64_t nc = src0->ne[0];
  13978. const int64_t nr = ggml_nrows(src0);
  13979. // rows per thread
  13980. const int64_t dr = (nr + nth - 1)/nth;
  13981. // row range for this thread
  13982. const int64_t ir0 = dr*ith;
  13983. const int64_t ir1 = MIN(ir0 + dr, nr);
  13984. float * d = (float *) opt0->data;
  13985. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13986. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13987. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13988. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13989. #ifndef NDEBUG
  13990. for (int i = 0; i < nc; ++i) {
  13991. //printf("p[%d] = %f\n", i, p[i]);
  13992. assert(!isnan(s0[i]));
  13993. assert(!isnan(s1[i]));
  13994. }
  13995. #endif
  13996. // soft_max
  13997. float max = -INFINITY;
  13998. ggml_vec_max_f32(nc, &max, s0);
  13999. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14000. assert(sum > 0.0);
  14001. sum = (1.0 - eps) / sum;
  14002. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14003. ggml_vec_scale_f32(nc, ds0, sum);
  14004. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14005. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14006. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14007. #ifndef NDEBUG
  14008. for (int i = 0; i < nc; ++i) {
  14009. assert(!isnan(ds0[i]));
  14010. assert(!isinf(ds0[i]));
  14011. }
  14012. #endif
  14013. }
  14014. }
  14015. static void ggml_compute_forward_cross_entropy_loss_back(
  14016. const struct ggml_compute_params * params,
  14017. struct ggml_tensor * dst) {
  14018. const struct ggml_tensor * src0 = dst->src[0];
  14019. switch (src0->type) {
  14020. case GGML_TYPE_F32:
  14021. {
  14022. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14023. } break;
  14024. default:
  14025. {
  14026. GGML_ASSERT(false);
  14027. } break;
  14028. }
  14029. }
  14030. /////////////////////////////////
  14031. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14032. GGML_ASSERT(params);
  14033. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14034. return;
  14035. }
  14036. switch (tensor->op) {
  14037. case GGML_OP_DUP:
  14038. {
  14039. ggml_compute_forward_dup(params, tensor);
  14040. } break;
  14041. case GGML_OP_ADD:
  14042. {
  14043. ggml_compute_forward_add(params, tensor);
  14044. } break;
  14045. case GGML_OP_ADD1:
  14046. {
  14047. ggml_compute_forward_add1(params, tensor);
  14048. } break;
  14049. case GGML_OP_ACC:
  14050. {
  14051. ggml_compute_forward_acc(params, tensor);
  14052. } break;
  14053. case GGML_OP_SUB:
  14054. {
  14055. ggml_compute_forward_sub(params, tensor);
  14056. } break;
  14057. case GGML_OP_MUL:
  14058. {
  14059. ggml_compute_forward_mul(params, tensor);
  14060. } break;
  14061. case GGML_OP_DIV:
  14062. {
  14063. ggml_compute_forward_div(params, tensor);
  14064. } break;
  14065. case GGML_OP_SQR:
  14066. {
  14067. ggml_compute_forward_sqr(params, tensor);
  14068. } break;
  14069. case GGML_OP_SQRT:
  14070. {
  14071. ggml_compute_forward_sqrt(params, tensor);
  14072. } break;
  14073. case GGML_OP_LOG:
  14074. {
  14075. ggml_compute_forward_log(params, tensor);
  14076. } break;
  14077. case GGML_OP_SUM:
  14078. {
  14079. ggml_compute_forward_sum(params, tensor);
  14080. } break;
  14081. case GGML_OP_SUM_ROWS:
  14082. {
  14083. ggml_compute_forward_sum_rows(params, tensor);
  14084. } break;
  14085. case GGML_OP_MEAN:
  14086. {
  14087. ggml_compute_forward_mean(params, tensor);
  14088. } break;
  14089. case GGML_OP_ARGMAX:
  14090. {
  14091. ggml_compute_forward_argmax(params, tensor);
  14092. } break;
  14093. case GGML_OP_REPEAT:
  14094. {
  14095. ggml_compute_forward_repeat(params, tensor);
  14096. } break;
  14097. case GGML_OP_REPEAT_BACK:
  14098. {
  14099. ggml_compute_forward_repeat_back(params, tensor);
  14100. } break;
  14101. case GGML_OP_CONCAT:
  14102. {
  14103. ggml_compute_forward_concat(params, tensor);
  14104. } break;
  14105. case GGML_OP_SILU_BACK:
  14106. {
  14107. ggml_compute_forward_silu_back(params, tensor);
  14108. } break;
  14109. case GGML_OP_NORM:
  14110. {
  14111. ggml_compute_forward_norm(params, tensor);
  14112. } break;
  14113. case GGML_OP_RMS_NORM:
  14114. {
  14115. ggml_compute_forward_rms_norm(params, tensor);
  14116. } break;
  14117. case GGML_OP_RMS_NORM_BACK:
  14118. {
  14119. ggml_compute_forward_rms_norm_back(params, tensor);
  14120. } break;
  14121. case GGML_OP_GROUP_NORM:
  14122. {
  14123. ggml_compute_forward_group_norm(params, tensor);
  14124. } break;
  14125. case GGML_OP_MUL_MAT:
  14126. {
  14127. ggml_compute_forward_mul_mat(params, tensor, state);
  14128. } break;
  14129. case GGML_OP_MUL_MAT_ID:
  14130. {
  14131. ggml_compute_forward_mul_mat_id(params, tensor);
  14132. } break;
  14133. case GGML_OP_OUT_PROD:
  14134. {
  14135. ggml_compute_forward_out_prod(params, tensor);
  14136. } break;
  14137. case GGML_OP_SCALE:
  14138. {
  14139. ggml_compute_forward_scale(params, tensor);
  14140. } break;
  14141. case GGML_OP_SET:
  14142. {
  14143. ggml_compute_forward_set(params, tensor);
  14144. } break;
  14145. case GGML_OP_CPY:
  14146. {
  14147. ggml_compute_forward_cpy(params, tensor);
  14148. } break;
  14149. case GGML_OP_CONT:
  14150. {
  14151. ggml_compute_forward_cont(params, tensor);
  14152. } break;
  14153. case GGML_OP_RESHAPE:
  14154. {
  14155. ggml_compute_forward_reshape(params, tensor);
  14156. } break;
  14157. case GGML_OP_VIEW:
  14158. {
  14159. ggml_compute_forward_view(params, tensor);
  14160. } break;
  14161. case GGML_OP_PERMUTE:
  14162. {
  14163. ggml_compute_forward_permute(params, tensor);
  14164. } break;
  14165. case GGML_OP_TRANSPOSE:
  14166. {
  14167. ggml_compute_forward_transpose(params, tensor);
  14168. } break;
  14169. case GGML_OP_GET_ROWS:
  14170. {
  14171. ggml_compute_forward_get_rows(params, tensor);
  14172. } break;
  14173. case GGML_OP_GET_ROWS_BACK:
  14174. {
  14175. ggml_compute_forward_get_rows_back(params, tensor);
  14176. } break;
  14177. case GGML_OP_DIAG:
  14178. {
  14179. ggml_compute_forward_diag(params, tensor);
  14180. } break;
  14181. case GGML_OP_DIAG_MASK_INF:
  14182. {
  14183. ggml_compute_forward_diag_mask_inf(params, tensor);
  14184. } break;
  14185. case GGML_OP_DIAG_MASK_ZERO:
  14186. {
  14187. ggml_compute_forward_diag_mask_zero(params, tensor);
  14188. } break;
  14189. case GGML_OP_SOFT_MAX:
  14190. {
  14191. ggml_compute_forward_soft_max(params, tensor);
  14192. } break;
  14193. case GGML_OP_SOFT_MAX_BACK:
  14194. {
  14195. ggml_compute_forward_soft_max_back(params, tensor);
  14196. } break;
  14197. case GGML_OP_ROPE:
  14198. {
  14199. ggml_compute_forward_rope(params, tensor);
  14200. } break;
  14201. case GGML_OP_ROPE_BACK:
  14202. {
  14203. ggml_compute_forward_rope_back(params, tensor);
  14204. } break;
  14205. case GGML_OP_CLAMP:
  14206. {
  14207. ggml_compute_forward_clamp(params, tensor);
  14208. } break;
  14209. case GGML_OP_CONV_TRANSPOSE_1D:
  14210. {
  14211. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14212. } break;
  14213. case GGML_OP_IM2COL:
  14214. {
  14215. ggml_compute_forward_im2col(params, tensor);
  14216. } break;
  14217. case GGML_OP_CONV_TRANSPOSE_2D:
  14218. {
  14219. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14220. } break;
  14221. case GGML_OP_POOL_1D:
  14222. {
  14223. ggml_compute_forward_pool_1d(params, tensor);
  14224. } break;
  14225. case GGML_OP_POOL_2D:
  14226. {
  14227. ggml_compute_forward_pool_2d(params, tensor);
  14228. } break;
  14229. case GGML_OP_UPSCALE:
  14230. {
  14231. ggml_compute_forward_upscale(params, tensor);
  14232. } break;
  14233. case GGML_OP_PAD:
  14234. {
  14235. ggml_compute_forward_pad(params, tensor);
  14236. } break;
  14237. case GGML_OP_ARANGE:
  14238. {
  14239. ggml_compute_forward_arange(params, tensor);
  14240. } break;
  14241. case GGML_OP_TIMESTEP_EMBEDDING:
  14242. {
  14243. ggml_compute_forward_timestep_embedding(params, tensor);
  14244. } break;
  14245. case GGML_OP_ARGSORT:
  14246. {
  14247. ggml_compute_forward_argsort(params, tensor);
  14248. } break;
  14249. case GGML_OP_LEAKY_RELU:
  14250. {
  14251. ggml_compute_forward_leaky_relu(params, tensor);
  14252. } break;
  14253. case GGML_OP_FLASH_ATTN_EXT:
  14254. {
  14255. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14256. } break;
  14257. case GGML_OP_FLASH_ATTN_BACK:
  14258. {
  14259. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14260. GGML_ASSERT(t == 0 || t == 1);
  14261. bool masked = t != 0;
  14262. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14263. } break;
  14264. case GGML_OP_SSM_CONV:
  14265. {
  14266. ggml_compute_forward_ssm_conv(params, tensor);
  14267. } break;
  14268. case GGML_OP_SSM_SCAN:
  14269. {
  14270. ggml_compute_forward_ssm_scan(params, tensor);
  14271. } break;
  14272. case GGML_OP_WIN_PART:
  14273. {
  14274. ggml_compute_forward_win_part(params, tensor);
  14275. } break;
  14276. case GGML_OP_WIN_UNPART:
  14277. {
  14278. ggml_compute_forward_win_unpart(params, tensor);
  14279. } break;
  14280. case GGML_OP_UNARY:
  14281. {
  14282. ggml_compute_forward_unary(params, tensor);
  14283. } break;
  14284. case GGML_OP_GET_REL_POS:
  14285. {
  14286. ggml_compute_forward_get_rel_pos(params, tensor);
  14287. } break;
  14288. case GGML_OP_ADD_REL_POS:
  14289. {
  14290. ggml_compute_forward_add_rel_pos(params, tensor);
  14291. } break;
  14292. case GGML_OP_MAP_UNARY:
  14293. {
  14294. ggml_unary_op_f32_t fun;
  14295. memcpy(&fun, tensor->op_params, sizeof(fun));
  14296. ggml_compute_forward_map_unary(params, tensor, fun);
  14297. }
  14298. break;
  14299. case GGML_OP_MAP_BINARY:
  14300. {
  14301. ggml_binary_op_f32_t fun;
  14302. memcpy(&fun, tensor->op_params, sizeof(fun));
  14303. ggml_compute_forward_map_binary(params, tensor, fun);
  14304. }
  14305. break;
  14306. case GGML_OP_MAP_CUSTOM1_F32:
  14307. {
  14308. ggml_custom1_op_f32_t fun;
  14309. memcpy(&fun, tensor->op_params, sizeof(fun));
  14310. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14311. }
  14312. break;
  14313. case GGML_OP_MAP_CUSTOM2_F32:
  14314. {
  14315. ggml_custom2_op_f32_t fun;
  14316. memcpy(&fun, tensor->op_params, sizeof(fun));
  14317. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14318. }
  14319. break;
  14320. case GGML_OP_MAP_CUSTOM3_F32:
  14321. {
  14322. ggml_custom3_op_f32_t fun;
  14323. memcpy(&fun, tensor->op_params, sizeof(fun));
  14324. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14325. }
  14326. break;
  14327. case GGML_OP_MAP_CUSTOM1:
  14328. {
  14329. ggml_compute_forward_map_custom1(params, tensor);
  14330. }
  14331. break;
  14332. case GGML_OP_MAP_CUSTOM2:
  14333. {
  14334. ggml_compute_forward_map_custom2(params, tensor);
  14335. }
  14336. break;
  14337. case GGML_OP_MAP_CUSTOM3:
  14338. {
  14339. ggml_compute_forward_map_custom3(params, tensor);
  14340. }
  14341. break;
  14342. case GGML_OP_CROSS_ENTROPY_LOSS:
  14343. {
  14344. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14345. }
  14346. break;
  14347. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14348. {
  14349. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14350. }
  14351. break;
  14352. case GGML_OP_NONE:
  14353. {
  14354. // nop
  14355. } break;
  14356. case GGML_OP_COUNT:
  14357. {
  14358. GGML_ASSERT(false);
  14359. } break;
  14360. }
  14361. }
  14362. ////////////////////////////////////////////////////////////////////////////////
  14363. static size_t ggml_hash_size(size_t min_sz) {
  14364. // next primes after powers of two
  14365. static const size_t primes[] = {
  14366. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14367. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14368. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14369. 16777259, 33554467, 67108879, 134217757, 268435459,
  14370. 536870923, 1073741827, 2147483659
  14371. };
  14372. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14373. // find the smallest prime that is larger or equal to min_sz
  14374. size_t l = 0;
  14375. size_t r = n_primes;
  14376. while (l < r) {
  14377. size_t m = (l + r)/2;
  14378. if (primes[m] < min_sz) {
  14379. l = m + 1;
  14380. } else {
  14381. r = m;
  14382. }
  14383. }
  14384. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14385. return sz;
  14386. }
  14387. static size_t ggml_hash(const void * p) {
  14388. return (size_t)p;
  14389. }
  14390. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14391. size_t h = ggml_hash(key) % hash_set.size;
  14392. // linear probing
  14393. size_t i = h;
  14394. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14395. i = (i + 1) % hash_set.size;
  14396. if (i == h) {
  14397. // visited all hash table entries -> not found
  14398. return GGML_HASHTABLE_FULL;
  14399. }
  14400. }
  14401. return i;
  14402. }
  14403. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14404. size_t i = ggml_hash_find(hash_set, key);
  14405. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14406. }
  14407. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14408. size_t i = ggml_hash_find(hash_set, key);
  14409. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14410. if (hash_set.keys[i] == key) {
  14411. return GGML_HASHTABLE_ALREADY_EXISTS;
  14412. }
  14413. // insert
  14414. GGML_ASSERT(hash_set.keys[i] == NULL);
  14415. hash_set.keys[i] = key;
  14416. return i;
  14417. }
  14418. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14419. size_t i = ggml_hash_find(hash_set, key);
  14420. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14421. hash_set.keys[i] = key;
  14422. return i;
  14423. }
  14424. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14425. size = ggml_hash_size(size);
  14426. struct ggml_hash_set result;
  14427. result.size = size;
  14428. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14429. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14430. return result;
  14431. }
  14432. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14433. GGML_FREE(hash_set.keys);
  14434. }
  14435. struct hash_map {
  14436. struct ggml_hash_set set;
  14437. struct ggml_tensor ** vals;
  14438. };
  14439. static struct hash_map * ggml_new_hash_map(size_t size) {
  14440. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14441. result->set = ggml_hash_set_new(size);
  14442. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14443. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14444. return result;
  14445. }
  14446. static void ggml_hash_map_free(struct hash_map * map) {
  14447. ggml_hash_set_free(map->set);
  14448. GGML_FREE(map->vals);
  14449. GGML_FREE(map);
  14450. }
  14451. // gradient checkpointing
  14452. static struct ggml_tensor * ggml_recompute_graph_node(
  14453. struct ggml_context * ctx,
  14454. struct ggml_cgraph * graph,
  14455. struct hash_map * replacements,
  14456. struct ggml_tensor * node) {
  14457. if (node == NULL) {
  14458. return NULL;
  14459. }
  14460. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14461. return node;
  14462. }
  14463. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14464. return node;
  14465. }
  14466. int count_children = 0;
  14467. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14468. if (node->src[k]) {
  14469. ++count_children;
  14470. }
  14471. }
  14472. if (count_children == 0) {
  14473. return node;
  14474. }
  14475. size_t i = ggml_hash_find(replacements->set, node);
  14476. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14477. if (replacements->set.keys[i] == node) {
  14478. return replacements->vals[i];
  14479. }
  14480. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14481. // insert clone into replacements
  14482. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14483. replacements->set.keys[i] = node;
  14484. replacements->vals[i] = clone;
  14485. clone->op = node->op;
  14486. clone->grad = node->grad;
  14487. clone->flags = node->flags;
  14488. clone->extra = node->extra;
  14489. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14490. clone->nb[k] = node->nb[k];
  14491. }
  14492. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14493. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14494. }
  14495. if (node->view_src != NULL) {
  14496. clone->data = (node->view_src->data == NULL)
  14497. ? NULL // view_src not yet allocated
  14498. : (char *) node->view_src->data // view_src already allocated
  14499. + node->view_offs;
  14500. clone->view_src = node->view_src;
  14501. clone->view_offs = node->view_offs;
  14502. }
  14503. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14504. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14505. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14506. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14507. return clone;
  14508. }
  14509. void ggml_build_backward_gradient_checkpointing(
  14510. struct ggml_context * ctx,
  14511. struct ggml_cgraph * gf,
  14512. struct ggml_cgraph * gb,
  14513. struct ggml_cgraph * gb_tmp,
  14514. struct ggml_tensor * * checkpoints,
  14515. int n_checkpoints) {
  14516. ggml_graph_cpy(gf, gb_tmp);
  14517. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14518. if (n_checkpoints <= 0) {
  14519. ggml_graph_cpy(gb_tmp, gb);
  14520. return;
  14521. }
  14522. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14523. // insert checkpoints in replacements
  14524. for (int i = 0; i < n_checkpoints; ++i) {
  14525. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14526. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14527. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14528. replacements->set.keys[k] = checkpoints[i];
  14529. replacements->vals[k] = checkpoints[i];
  14530. }
  14531. ggml_graph_cpy(gf, gb);
  14532. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14533. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14534. // by recomputing them from checkpoints
  14535. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14536. struct ggml_tensor * node = gb_tmp->nodes[i];
  14537. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14538. // insert new tensors recomputing src, reusing already made replacements,
  14539. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14540. // recurse for input tensors,
  14541. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14542. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14543. }
  14544. // insert rewritten backward node with replacements made into resulting backward graph gb
  14545. ggml_build_forward_expand(gb, node);
  14546. }
  14547. ggml_hash_map_free(replacements);
  14548. }
  14549. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14550. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14551. if (ggml_hash_contains(zero_table, a)) {
  14552. return b;
  14553. } else {
  14554. return ggml_add_impl(ctx, a, b, false);
  14555. }
  14556. }
  14557. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14558. if (ggml_hash_contains(zero_table, a)) {
  14559. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14560. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14561. } else {
  14562. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14563. }
  14564. }
  14565. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14566. if (ggml_hash_contains(zero_table, a)) {
  14567. return ggml_repeat(ctx, b, a);
  14568. } else {
  14569. return ggml_add1_impl(ctx, a, b, false);
  14570. }
  14571. }
  14572. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14573. if (ggml_hash_contains(zero_table, a)) {
  14574. return ggml_neg(ctx, b);
  14575. } else {
  14576. return ggml_sub_impl(ctx, a, b, false);
  14577. }
  14578. }
  14579. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14580. struct ggml_tensor * src0 = tensor->src[0];
  14581. struct ggml_tensor * src1 = tensor->src[1];
  14582. struct ggml_tensor * src2 = tensor->src[2];
  14583. switch (tensor->op) {
  14584. case GGML_OP_DUP:
  14585. {
  14586. if (src0->grad) {
  14587. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14588. }
  14589. } break;
  14590. case GGML_OP_ADD:
  14591. {
  14592. if (src0->grad) {
  14593. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14594. }
  14595. if (src1->grad) {
  14596. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14597. }
  14598. } break;
  14599. case GGML_OP_ADD1:
  14600. {
  14601. if (src0->grad) {
  14602. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14603. }
  14604. if (src1->grad) {
  14605. src1->grad = ggml_add_or_set(ctx,
  14606. src1->grad,
  14607. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14608. zero_table);
  14609. }
  14610. } break;
  14611. case GGML_OP_ACC:
  14612. {
  14613. if (src0->grad) {
  14614. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14615. }
  14616. if (src1->grad) {
  14617. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14618. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14619. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14620. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14621. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14622. tensor->grad,
  14623. src1->grad->ne[0],
  14624. src1->grad->ne[1],
  14625. src1->grad->ne[2],
  14626. src1->grad->ne[3],
  14627. nb1, nb2, nb3, offset);
  14628. src1->grad =
  14629. ggml_add_or_set(ctx,
  14630. src1->grad,
  14631. ggml_reshape(ctx,
  14632. ggml_cont(ctx, tensor_grad_view),
  14633. src1->grad),
  14634. zero_table);
  14635. }
  14636. } break;
  14637. case GGML_OP_SUB:
  14638. {
  14639. if (src0->grad) {
  14640. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14641. }
  14642. if (src1->grad) {
  14643. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14644. }
  14645. } break;
  14646. case GGML_OP_MUL:
  14647. {
  14648. if (src0->grad) {
  14649. src0->grad =
  14650. ggml_add_or_set(ctx,
  14651. src0->grad,
  14652. ggml_mul(ctx, src1, tensor->grad),
  14653. zero_table);
  14654. }
  14655. if (src1->grad) {
  14656. src1->grad =
  14657. ggml_add_or_set(ctx,
  14658. src1->grad,
  14659. ggml_mul(ctx, src0, tensor->grad),
  14660. zero_table);
  14661. }
  14662. } break;
  14663. case GGML_OP_DIV:
  14664. {
  14665. if (src0->grad) {
  14666. src0->grad =
  14667. ggml_add_or_set(ctx,
  14668. src0->grad,
  14669. ggml_div(ctx, tensor->grad, src1),
  14670. zero_table);
  14671. }
  14672. if (src1->grad) {
  14673. src1->grad =
  14674. ggml_sub_or_set(ctx,
  14675. src1->grad,
  14676. ggml_mul(ctx,
  14677. tensor->grad,
  14678. ggml_div(ctx, tensor, src1)),
  14679. zero_table);
  14680. }
  14681. } break;
  14682. case GGML_OP_SQR:
  14683. {
  14684. if (src0->grad) {
  14685. src0->grad =
  14686. ggml_add_or_set(ctx,
  14687. src0->grad,
  14688. ggml_scale(ctx,
  14689. ggml_mul(ctx, src0, tensor->grad),
  14690. 2.0f),
  14691. zero_table);
  14692. }
  14693. } break;
  14694. case GGML_OP_SQRT:
  14695. {
  14696. if (src0->grad) {
  14697. src0->grad =
  14698. ggml_add_or_set(ctx,
  14699. src0->grad,
  14700. ggml_scale(ctx,
  14701. ggml_div(ctx,
  14702. tensor->grad,
  14703. tensor),
  14704. 0.5f),
  14705. zero_table);
  14706. }
  14707. } break;
  14708. case GGML_OP_LOG:
  14709. {
  14710. if (src0->grad) {
  14711. src0->grad =
  14712. ggml_add_or_set(ctx,
  14713. src0->grad,
  14714. ggml_div(ctx,
  14715. tensor->grad,
  14716. src0),
  14717. zero_table);
  14718. }
  14719. } break;
  14720. case GGML_OP_SUM:
  14721. {
  14722. if (src0->grad) {
  14723. src0->grad =
  14724. ggml_add1_or_set(ctx,
  14725. src0->grad,
  14726. tensor->grad,
  14727. zero_table);
  14728. }
  14729. } break;
  14730. case GGML_OP_SUM_ROWS:
  14731. {
  14732. if (src0->grad) {
  14733. src0->grad =
  14734. ggml_add_or_set(ctx,
  14735. src0->grad,
  14736. ggml_repeat(ctx,
  14737. tensor->grad,
  14738. src0->grad),
  14739. zero_table);
  14740. }
  14741. } break;
  14742. case GGML_OP_MEAN:
  14743. case GGML_OP_ARGMAX:
  14744. {
  14745. GGML_ASSERT(false); // TODO: implement
  14746. } break;
  14747. case GGML_OP_REPEAT:
  14748. {
  14749. // necessary for llama
  14750. if (src0->grad) {
  14751. src0->grad = ggml_add_or_set(ctx,
  14752. src0->grad,
  14753. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14754. zero_table);
  14755. }
  14756. } break;
  14757. case GGML_OP_REPEAT_BACK:
  14758. {
  14759. if (src0->grad) {
  14760. // TODO: test this
  14761. src0->grad = ggml_add_or_set(ctx,
  14762. src0->grad,
  14763. ggml_repeat(ctx, tensor->grad, src0->grad),
  14764. zero_table);
  14765. }
  14766. } break;
  14767. case GGML_OP_CONCAT:
  14768. {
  14769. GGML_ASSERT(false); // TODO: implement
  14770. } break;
  14771. case GGML_OP_SILU_BACK:
  14772. {
  14773. GGML_ASSERT(false); // TODO: not implemented
  14774. } break;
  14775. case GGML_OP_NORM:
  14776. {
  14777. GGML_ASSERT(false); // TODO: not implemented
  14778. } break;
  14779. case GGML_OP_RMS_NORM:
  14780. {
  14781. // necessary for llama
  14782. if (src0->grad) {
  14783. float eps;
  14784. memcpy(&eps, tensor->op_params, sizeof(float));
  14785. src0->grad = ggml_add_or_set(ctx,
  14786. src0->grad,
  14787. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14788. zero_table);
  14789. }
  14790. } break;
  14791. case GGML_OP_RMS_NORM_BACK:
  14792. {
  14793. GGML_ASSERT(false); // TODO: not implemented
  14794. } break;
  14795. case GGML_OP_GROUP_NORM:
  14796. {
  14797. GGML_ASSERT(false); // TODO: not implemented
  14798. } break;
  14799. case GGML_OP_MUL_MAT:
  14800. {
  14801. // https://cs231n.github.io/optimization-2/#staged
  14802. // # forward pass
  14803. // s0 = np.random.randn(5, 10)
  14804. // s1 = np.random.randn(10, 3)
  14805. // t = s0.dot(s1)
  14806. // # now suppose we had the gradient on t from above in the circuit
  14807. // dt = np.random.randn(*t.shape) # same shape as t
  14808. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14809. // ds1 = t.T.dot(dt)
  14810. // tensor.shape [m,p,qq,rr]
  14811. // src0.shape [n,m,q1,r1]
  14812. // src1.shape [n,p,qq,rr]
  14813. // necessary for llama
  14814. if (src0->grad) {
  14815. struct ggml_tensor * s1_tg =
  14816. ggml_out_prod(ctx, // [n,m,qq,rr]
  14817. src1, // [n,p,qq,rr]
  14818. tensor->grad); // [m,p,qq,rr]
  14819. const int64_t qq = s1_tg->ne[2];
  14820. const int64_t rr = s1_tg->ne[3];
  14821. const int64_t q1 = src0->ne[2];
  14822. const int64_t r1 = src0->ne[3];
  14823. const bool ne2_broadcasted = qq > q1;
  14824. const bool ne3_broadcasted = rr > r1;
  14825. if (ne2_broadcasted || ne3_broadcasted) {
  14826. // sum broadcast repetitions of s1_tg into shape of src0
  14827. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14828. }
  14829. src0->grad =
  14830. ggml_add_or_set(ctx,
  14831. src0->grad, // [n,m,q1,r1]
  14832. s1_tg, // [n,m,q1,r1]
  14833. zero_table);
  14834. }
  14835. if (src1->grad) {
  14836. src1->grad =
  14837. ggml_add_or_set(ctx,
  14838. src1->grad, // [n,p,qq,rr]
  14839. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14840. // ggml_cont(ctx, // [m,n,q1,r1]
  14841. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14842. // tensor->grad), // [m,p,qq,rr]
  14843. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14844. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14845. // // and then use ggml_out_prod
  14846. ggml_out_prod(ctx, // [n,p,qq,rr]
  14847. src0, // [n,m,q1,r1]
  14848. ggml_transpose(ctx, // [p,m,qq,rr]
  14849. tensor->grad)), // [m,p,qq,rr]
  14850. zero_table);
  14851. }
  14852. } break;
  14853. case GGML_OP_MUL_MAT_ID:
  14854. {
  14855. GGML_ASSERT(false); // TODO: not implemented
  14856. } break;
  14857. case GGML_OP_OUT_PROD:
  14858. {
  14859. GGML_ASSERT(false); // TODO: not implemented
  14860. } break;
  14861. case GGML_OP_SCALE:
  14862. {
  14863. // necessary for llama
  14864. if (src0->grad) {
  14865. float s;
  14866. memcpy(&s, tensor->op_params, sizeof(float));
  14867. src0->grad =
  14868. ggml_add_or_set(ctx,
  14869. src0->grad,
  14870. ggml_scale_impl(ctx, tensor->grad, s, false),
  14871. zero_table);
  14872. }
  14873. } break;
  14874. case GGML_OP_SET:
  14875. {
  14876. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14877. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14878. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14879. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14880. struct ggml_tensor * tensor_grad_view = NULL;
  14881. if (src0->grad || src1->grad) {
  14882. GGML_ASSERT(src0->type == tensor->type);
  14883. GGML_ASSERT(tensor->grad->type == tensor->type);
  14884. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14885. tensor_grad_view = ggml_view_4d(ctx,
  14886. tensor->grad,
  14887. src1->grad->ne[0],
  14888. src1->grad->ne[1],
  14889. src1->grad->ne[2],
  14890. src1->grad->ne[3],
  14891. nb1, nb2, nb3, offset);
  14892. }
  14893. if (src0->grad) {
  14894. src0->grad = ggml_add_or_set(ctx,
  14895. src0->grad,
  14896. ggml_acc_impl(ctx,
  14897. tensor->grad,
  14898. ggml_neg(ctx, tensor_grad_view),
  14899. nb1, nb2, nb3, offset, false),
  14900. zero_table);
  14901. }
  14902. if (src1->grad) {
  14903. src1->grad =
  14904. ggml_add_or_set(ctx,
  14905. src1->grad,
  14906. ggml_reshape(ctx,
  14907. ggml_cont(ctx, tensor_grad_view),
  14908. src1->grad),
  14909. zero_table);
  14910. }
  14911. } break;
  14912. case GGML_OP_CPY:
  14913. {
  14914. // necessary for llama
  14915. // cpy overwrites value of src1 by src0 and returns view(src1)
  14916. // the overwriting is mathematically equivalent to:
  14917. // tensor = src0 * 1 + src1 * 0
  14918. if (src0->grad) {
  14919. // dsrc0 = dtensor * 1
  14920. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14921. }
  14922. if (src1->grad) {
  14923. // dsrc1 = dtensor * 0 -> noop
  14924. }
  14925. } break;
  14926. case GGML_OP_CONT:
  14927. {
  14928. // same as cpy
  14929. if (src0->grad) {
  14930. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14931. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14932. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14933. }
  14934. } break;
  14935. case GGML_OP_RESHAPE:
  14936. {
  14937. // necessary for llama
  14938. if (src0->grad) {
  14939. src0->grad =
  14940. ggml_add_or_set(ctx, src0->grad,
  14941. ggml_reshape(ctx,
  14942. ggml_is_contiguous(tensor->grad)
  14943. ? tensor->grad
  14944. : ggml_cont(ctx, tensor->grad),
  14945. src0->grad),
  14946. zero_table);
  14947. }
  14948. } break;
  14949. case GGML_OP_VIEW:
  14950. {
  14951. // necessary for llama
  14952. if (src0->grad) {
  14953. size_t offset;
  14954. memcpy(&offset, tensor->op_params, sizeof(offset));
  14955. size_t nb1 = tensor->nb[1];
  14956. size_t nb2 = tensor->nb[2];
  14957. size_t nb3 = tensor->nb[3];
  14958. if (src0->type != src0->grad->type) {
  14959. // gradient is typically F32, but src0 could be other type
  14960. size_t ng = ggml_element_size(src0->grad);
  14961. size_t n0 = ggml_element_size(src0);
  14962. GGML_ASSERT(offset % n0 == 0);
  14963. GGML_ASSERT(nb1 % n0 == 0);
  14964. GGML_ASSERT(nb2 % n0 == 0);
  14965. GGML_ASSERT(nb3 % n0 == 0);
  14966. offset = (offset / n0) * ng;
  14967. nb1 = (nb1 / n0) * ng;
  14968. nb2 = (nb2 / n0) * ng;
  14969. nb3 = (nb3 / n0) * ng;
  14970. }
  14971. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14972. }
  14973. } break;
  14974. case GGML_OP_PERMUTE:
  14975. {
  14976. // necessary for llama
  14977. if (src0->grad) {
  14978. int32_t * axes = (int32_t *) tensor->op_params;
  14979. int axis0 = axes[0] & 0x3;
  14980. int axis1 = axes[1] & 0x3;
  14981. int axis2 = axes[2] & 0x3;
  14982. int axis3 = axes[3] & 0x3;
  14983. int axes_backward[4] = {0,0,0,0};
  14984. axes_backward[axis0] = 0;
  14985. axes_backward[axis1] = 1;
  14986. axes_backward[axis2] = 2;
  14987. axes_backward[axis3] = 3;
  14988. src0->grad =
  14989. ggml_add_or_set(ctx, src0->grad,
  14990. ggml_permute(ctx,
  14991. tensor->grad,
  14992. axes_backward[0],
  14993. axes_backward[1],
  14994. axes_backward[2],
  14995. axes_backward[3]),
  14996. zero_table);
  14997. }
  14998. } break;
  14999. case GGML_OP_TRANSPOSE:
  15000. {
  15001. // necessary for llama
  15002. if (src0->grad) {
  15003. src0->grad =
  15004. ggml_add_or_set(ctx, src0->grad,
  15005. ggml_transpose(ctx, tensor->grad),
  15006. zero_table);
  15007. }
  15008. } break;
  15009. case GGML_OP_GET_ROWS:
  15010. {
  15011. // necessary for llama (only for tokenizer)
  15012. if (src0->grad) {
  15013. src0->grad =
  15014. ggml_add_or_set(ctx, src0->grad,
  15015. // last ggml_get_rows_back argument src0->grad is only
  15016. // necessary to setup correct output shape
  15017. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15018. zero_table);
  15019. }
  15020. if (src1->grad) {
  15021. // noop
  15022. }
  15023. } break;
  15024. case GGML_OP_GET_ROWS_BACK:
  15025. {
  15026. GGML_ASSERT(false); // TODO: not implemented
  15027. } break;
  15028. case GGML_OP_DIAG:
  15029. {
  15030. GGML_ASSERT(false); // TODO: not implemented
  15031. } break;
  15032. case GGML_OP_DIAG_MASK_INF:
  15033. {
  15034. // necessary for llama
  15035. if (src0->grad) {
  15036. const int n_past = ((int32_t *) tensor->op_params)[0];
  15037. src0->grad =
  15038. ggml_add_or_set(ctx, src0->grad,
  15039. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15040. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15041. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15042. zero_table);
  15043. }
  15044. } break;
  15045. case GGML_OP_DIAG_MASK_ZERO:
  15046. {
  15047. // necessary for llama
  15048. if (src0->grad) {
  15049. const int n_past = ((int32_t *) tensor->op_params)[0];
  15050. src0->grad =
  15051. ggml_add_or_set(ctx, src0->grad,
  15052. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15053. zero_table);
  15054. }
  15055. } break;
  15056. case GGML_OP_SOFT_MAX:
  15057. {
  15058. // necessary for llama
  15059. if (src0->grad) {
  15060. src0->grad =
  15061. ggml_add_or_set(ctx, src0->grad,
  15062. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15063. zero_table);
  15064. }
  15065. } break;
  15066. case GGML_OP_SOFT_MAX_BACK:
  15067. {
  15068. GGML_ASSERT(false); // TODO: not implemented
  15069. } break;
  15070. case GGML_OP_ROPE:
  15071. {
  15072. // necessary for llama
  15073. if (src0->grad) {
  15074. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15075. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15076. const int mode = ((int32_t *) tensor->op_params)[2];
  15077. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15078. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15079. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15080. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15081. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15082. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15083. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15084. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15085. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15086. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15087. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15088. src0->grad = ggml_add_or_set(ctx,
  15089. src0->grad,
  15090. ggml_rope_back(ctx,
  15091. tensor->grad,
  15092. src1,
  15093. src2,
  15094. n_dims,
  15095. mode,
  15096. n_ctx,
  15097. n_orig_ctx,
  15098. freq_base,
  15099. freq_scale,
  15100. ext_factor,
  15101. attn_factor,
  15102. beta_fast,
  15103. beta_slow,
  15104. xpos_base,
  15105. xpos_down),
  15106. zero_table);
  15107. }
  15108. } break;
  15109. case GGML_OP_ROPE_BACK:
  15110. {
  15111. if (src0->grad) {
  15112. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15113. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15114. const int mode = ((int32_t *) tensor->op_params)[2];
  15115. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15116. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15117. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15118. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15119. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15120. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15121. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15122. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15123. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15124. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15125. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15126. src0->grad = ggml_add_or_set(ctx,
  15127. src0->grad,
  15128. ggml_rope_impl(ctx,
  15129. tensor->grad,
  15130. src1,
  15131. src2,
  15132. n_dims,
  15133. mode,
  15134. n_ctx,
  15135. n_orig_ctx,
  15136. freq_base,
  15137. freq_scale,
  15138. ext_factor,
  15139. attn_factor,
  15140. beta_fast,
  15141. beta_slow,
  15142. xpos_base,
  15143. xpos_down,
  15144. false),
  15145. zero_table);
  15146. }
  15147. } break;
  15148. case GGML_OP_CLAMP:
  15149. {
  15150. GGML_ASSERT(false); // TODO: not implemented
  15151. } break;
  15152. case GGML_OP_CONV_TRANSPOSE_1D:
  15153. {
  15154. GGML_ASSERT(false); // TODO: not implemented
  15155. } break;
  15156. case GGML_OP_IM2COL:
  15157. {
  15158. GGML_ASSERT(false); // TODO: not implemented
  15159. } break;
  15160. case GGML_OP_CONV_TRANSPOSE_2D:
  15161. {
  15162. GGML_ASSERT(false); // TODO: not implemented
  15163. } break;
  15164. case GGML_OP_POOL_1D:
  15165. {
  15166. GGML_ASSERT(false); // TODO: not implemented
  15167. } break;
  15168. case GGML_OP_POOL_2D:
  15169. {
  15170. GGML_ASSERT(false); // TODO: not implemented
  15171. } break;
  15172. case GGML_OP_UPSCALE:
  15173. {
  15174. GGML_ASSERT(false); // TODO: not implemented
  15175. } break;
  15176. case GGML_OP_PAD:
  15177. {
  15178. GGML_ASSERT(false); // TODO: not implemented
  15179. } break;
  15180. case GGML_OP_ARANGE:
  15181. {
  15182. GGML_ASSERT(false); // TODO: not implemented
  15183. } break;
  15184. case GGML_OP_TIMESTEP_EMBEDDING:
  15185. {
  15186. GGML_ASSERT(false); // TODO: not implemented
  15187. } break;
  15188. case GGML_OP_ARGSORT:
  15189. {
  15190. GGML_ASSERT(false); // TODO: not implemented
  15191. } break;
  15192. case GGML_OP_LEAKY_RELU:
  15193. {
  15194. GGML_ASSERT(false); // TODO: not implemented
  15195. } break;
  15196. case GGML_OP_FLASH_ATTN_EXT:
  15197. {
  15198. struct ggml_tensor * flash_grad = NULL;
  15199. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15200. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15201. GGML_ASSERT(t == 0 || t == 1);
  15202. bool masked = t != 0;
  15203. flash_grad =
  15204. ggml_flash_attn_back(ctx,
  15205. src0,
  15206. src1,
  15207. tensor->src[2],
  15208. tensor->grad,
  15209. masked);
  15210. }
  15211. const int64_t elem_q = ggml_nelements(src0);
  15212. const int64_t elem_k = ggml_nelements(src1);
  15213. const int64_t elem_v = ggml_nelements(src2);
  15214. enum ggml_type result_type = flash_grad->type;
  15215. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15216. const size_t tsize = ggml_type_size(result_type);
  15217. const size_t offs_q = 0;
  15218. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15219. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15220. if (src0->grad) {
  15221. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15222. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15223. src0->grad = ggml_add_or_set(ctx,
  15224. src0->grad,
  15225. grad_q,
  15226. zero_table);
  15227. }
  15228. if (src1->grad) {
  15229. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15230. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15231. src1->grad = ggml_add_or_set(ctx,
  15232. src1->grad,
  15233. grad_k,
  15234. zero_table);
  15235. }
  15236. if (src2->grad) {
  15237. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15238. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15239. src2->grad = ggml_add_or_set(ctx,
  15240. src2->grad,
  15241. grad_v,
  15242. zero_table);
  15243. }
  15244. } break;
  15245. case GGML_OP_FLASH_ATTN_BACK:
  15246. {
  15247. GGML_ASSERT(false); // not supported
  15248. } break;
  15249. case GGML_OP_SSM_CONV:
  15250. case GGML_OP_SSM_SCAN:
  15251. {
  15252. GGML_ASSERT(false); // TODO: not implemented
  15253. } break;
  15254. case GGML_OP_WIN_PART:
  15255. case GGML_OP_WIN_UNPART:
  15256. case GGML_OP_UNARY:
  15257. {
  15258. switch (ggml_get_unary_op(tensor)) {
  15259. case GGML_UNARY_OP_ABS:
  15260. {
  15261. if (src0->grad) {
  15262. src0->grad =
  15263. ggml_add_or_set(ctx,
  15264. src0->grad,
  15265. ggml_mul(ctx,
  15266. ggml_sgn(ctx, src0),
  15267. tensor->grad),
  15268. zero_table);
  15269. }
  15270. } break;
  15271. case GGML_UNARY_OP_SGN:
  15272. {
  15273. if (src0->grad) {
  15274. // noop
  15275. }
  15276. } break;
  15277. case GGML_UNARY_OP_NEG:
  15278. {
  15279. if (src0->grad) {
  15280. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15281. }
  15282. } break;
  15283. case GGML_UNARY_OP_STEP:
  15284. {
  15285. if (src0->grad) {
  15286. // noop
  15287. }
  15288. } break;
  15289. case GGML_UNARY_OP_TANH:
  15290. {
  15291. GGML_ASSERT(false); // TODO: not implemented
  15292. } break;
  15293. case GGML_UNARY_OP_ELU:
  15294. {
  15295. GGML_ASSERT(false); // TODO: not implemented
  15296. } break;
  15297. case GGML_UNARY_OP_RELU:
  15298. {
  15299. if (src0->grad) {
  15300. src0->grad = ggml_add_or_set(ctx,
  15301. src0->grad,
  15302. ggml_mul(ctx,
  15303. ggml_step(ctx, src0),
  15304. tensor->grad),
  15305. zero_table);
  15306. }
  15307. } break;
  15308. case GGML_UNARY_OP_SIGMOID:
  15309. {
  15310. GGML_ASSERT(false); // TODO: not implemented
  15311. } break;
  15312. case GGML_UNARY_OP_GELU:
  15313. {
  15314. GGML_ASSERT(false); // TODO: not implemented
  15315. } break;
  15316. case GGML_UNARY_OP_GELU_QUICK:
  15317. {
  15318. GGML_ASSERT(false); // TODO: not implemented
  15319. } break;
  15320. case GGML_UNARY_OP_SILU:
  15321. {
  15322. // necessary for llama
  15323. if (src0->grad) {
  15324. src0->grad = ggml_add_or_set(ctx,
  15325. src0->grad,
  15326. ggml_silu_back(ctx, src0, tensor->grad),
  15327. zero_table);
  15328. }
  15329. } break;
  15330. default:
  15331. GGML_ASSERT(false);
  15332. }
  15333. } break;
  15334. case GGML_OP_GET_REL_POS:
  15335. case GGML_OP_ADD_REL_POS:
  15336. case GGML_OP_MAP_UNARY:
  15337. case GGML_OP_MAP_BINARY:
  15338. case GGML_OP_MAP_CUSTOM1_F32:
  15339. case GGML_OP_MAP_CUSTOM2_F32:
  15340. case GGML_OP_MAP_CUSTOM3_F32:
  15341. case GGML_OP_MAP_CUSTOM1:
  15342. case GGML_OP_MAP_CUSTOM2:
  15343. case GGML_OP_MAP_CUSTOM3:
  15344. {
  15345. GGML_ASSERT(false); // not supported
  15346. } break;
  15347. case GGML_OP_CROSS_ENTROPY_LOSS:
  15348. {
  15349. if (src0->grad) {
  15350. src0->grad = ggml_add_or_set(ctx,
  15351. src0->grad,
  15352. ggml_cross_entropy_loss_back(ctx,
  15353. src0,
  15354. src1,
  15355. tensor->grad),
  15356. zero_table);
  15357. }
  15358. } break;
  15359. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15360. {
  15361. GGML_ASSERT(false); // not supported
  15362. } break;
  15363. case GGML_OP_NONE:
  15364. {
  15365. // nop
  15366. } break;
  15367. case GGML_OP_COUNT:
  15368. {
  15369. GGML_ASSERT(false);
  15370. } break;
  15371. }
  15372. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15373. if (tensor->src[i] && tensor->src[i]->grad) {
  15374. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15375. }
  15376. }
  15377. }
  15378. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15379. if (node->grad == NULL) {
  15380. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15381. // it can also happen during forward pass, if the user performs computations with constants
  15382. if (node->op != GGML_OP_NONE) {
  15383. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15384. }
  15385. }
  15386. // check if already visited
  15387. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15388. return;
  15389. }
  15390. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15391. const int k =
  15392. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15393. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15394. /* unknown order, just fall back to using i*/ i;
  15395. if (node->src[k]) {
  15396. ggml_visit_parents(cgraph, node->src[k]);
  15397. }
  15398. }
  15399. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15400. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15401. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15402. if (strlen(node->name) == 0) {
  15403. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15404. }
  15405. cgraph->leafs[cgraph->n_leafs] = node;
  15406. cgraph->n_leafs++;
  15407. } else {
  15408. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15409. if (strlen(node->name) == 0) {
  15410. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15411. }
  15412. cgraph->nodes[cgraph->n_nodes] = node;
  15413. if (cgraph->grads) {
  15414. cgraph->grads[cgraph->n_nodes] = node->grad;
  15415. }
  15416. cgraph->n_nodes++;
  15417. }
  15418. }
  15419. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15420. if (!expand) {
  15421. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15422. ggml_graph_clear(cgraph);
  15423. }
  15424. const int n0 = cgraph->n_nodes;
  15425. UNUSED(n0);
  15426. ggml_visit_parents(cgraph, tensor);
  15427. const int n_new = cgraph->n_nodes - n0;
  15428. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15429. if (n_new > 0) {
  15430. // the last added node should always be starting point
  15431. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15432. }
  15433. }
  15434. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15435. ggml_build_forward_impl(cgraph, tensor, true);
  15436. }
  15437. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15438. GGML_ASSERT(gf->n_nodes > 0);
  15439. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15440. if (keep) {
  15441. for (int i = 0; i < gf->n_nodes; i++) {
  15442. struct ggml_tensor * node = gf->nodes[i];
  15443. if (node->grad) {
  15444. node->grad = ggml_dup_tensor(ctx, node);
  15445. gf->grads[i] = node->grad;
  15446. }
  15447. }
  15448. }
  15449. // remember original gradients which start with zero values
  15450. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15451. for (int i = 0; i < gf->n_nodes; i++) {
  15452. if (gf->grads[i]) {
  15453. ggml_hash_insert(zero_table, gf->grads[i]);
  15454. }
  15455. }
  15456. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15457. struct ggml_tensor * node = gf->nodes[i];
  15458. // inplace operations to add gradients are not created by ggml_compute_backward
  15459. // use allocator to automatically make inplace operations
  15460. if (node->grad) {
  15461. ggml_compute_backward(ctx, node, zero_table);
  15462. }
  15463. }
  15464. for (int i = 0; i < gf->n_nodes; i++) {
  15465. struct ggml_tensor * node = gf->nodes[i];
  15466. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15467. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15468. ggml_build_forward_expand(gb, node->grad);
  15469. }
  15470. }
  15471. ggml_hash_set_free(zero_table);
  15472. }
  15473. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15474. size_t nbytes = sizeof(struct ggml_cgraph);
  15475. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15476. if (grads) {
  15477. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15478. }
  15479. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15480. return nbytes;
  15481. }
  15482. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15483. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15484. }
  15485. size_t ggml_graph_overhead(void) {
  15486. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15487. }
  15488. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15489. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15490. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15491. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15492. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15493. size_t hash_size = ggml_hash_size(size * 2);
  15494. struct ggml_tensor ** nodes_ptr = data_start;
  15495. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15496. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15497. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15498. // check that we allocated the correct amount of memory
  15499. assert(obj_size == (size_t) (
  15500. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15501. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15502. *cgraph = (struct ggml_cgraph) {
  15503. /*.size =*/ size,
  15504. /*.n_nodes =*/ 0,
  15505. /*.n_leafs =*/ 0,
  15506. /*.nodes =*/ nodes_ptr,
  15507. /*.grads =*/ grads_ptr,
  15508. /*.leafs =*/ leafs_ptr,
  15509. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15510. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15511. /*.perf_runs =*/ 0,
  15512. /*.perf_cycles =*/ 0,
  15513. /*.perf_time_us =*/ 0,
  15514. };
  15515. return cgraph;
  15516. }
  15517. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15518. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15519. }
  15520. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15521. struct ggml_cgraph cgraph = {
  15522. /*.size =*/ 0,
  15523. /*.n_nodes =*/ i1 - i0,
  15524. /*.n_leafs =*/ 0,
  15525. /*.nodes =*/ cgraph0->nodes + i0,
  15526. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15527. /*.leafs =*/ NULL,
  15528. /*.hash_table =*/ { 0, NULL },
  15529. /*.order =*/ cgraph0->order,
  15530. /*.perf_runs =*/ 0,
  15531. /*.perf_cycles =*/ 0,
  15532. /*.perf_time_us =*/ 0,
  15533. };
  15534. return cgraph;
  15535. }
  15536. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15537. GGML_ASSERT(dst->size >= src->n_leafs);
  15538. GGML_ASSERT(dst->size >= src->n_nodes);
  15539. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15540. dst->n_leafs = src->n_leafs;
  15541. dst->n_nodes = src->n_nodes;
  15542. dst->order = src->order;
  15543. for (int i = 0; i < src->n_leafs; ++i) {
  15544. dst->leafs[i] = src->leafs[i];
  15545. }
  15546. for (int i = 0; i < src->n_nodes; ++i) {
  15547. dst->nodes[i] = src->nodes[i];
  15548. }
  15549. if (src->grads) {
  15550. GGML_ASSERT(dst->grads != NULL);
  15551. for (int i = 0; i < src->n_nodes; ++i) {
  15552. dst->grads[i] = src->grads[i];
  15553. }
  15554. }
  15555. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15556. if (src->visited_hash_table.keys[i]) {
  15557. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15558. }
  15559. }
  15560. }
  15561. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15562. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15563. ggml_graph_cpy(cgraph, result);
  15564. return result;
  15565. }
  15566. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15567. GGML_ASSERT(cgraph->grads != NULL);
  15568. for (int i = 0; i < cgraph->n_nodes; i++) {
  15569. struct ggml_tensor * grad = cgraph->grads[i];
  15570. if (grad) {
  15571. ggml_set_zero(grad);
  15572. }
  15573. }
  15574. }
  15575. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15576. cgraph->n_leafs = 0;
  15577. cgraph->n_nodes = 0;
  15578. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15579. }
  15580. //
  15581. // thread data
  15582. //
  15583. // synchronization is done via busy loops
  15584. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15585. //
  15586. #ifdef __APPLE__
  15587. //#include <os/lock.h>
  15588. //
  15589. //typedef os_unfair_lock ggml_lock_t;
  15590. //
  15591. //#define ggml_lock_init(x) UNUSED(x)
  15592. //#define ggml_lock_destroy(x) UNUSED(x)
  15593. //#define ggml_lock_lock os_unfair_lock_lock
  15594. //#define ggml_lock_unlock os_unfair_lock_unlock
  15595. //
  15596. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15597. typedef int ggml_lock_t;
  15598. #define ggml_lock_init(x) UNUSED(x)
  15599. #define ggml_lock_destroy(x) UNUSED(x)
  15600. #define ggml_lock_lock(x) UNUSED(x)
  15601. #define ggml_lock_unlock(x) UNUSED(x)
  15602. #define GGML_LOCK_INITIALIZER 0
  15603. #define ggml_thread_create pthread_create
  15604. #define ggml_thread_join pthread_join
  15605. #else
  15606. //typedef pthread_spinlock_t ggml_lock_t;
  15607. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15608. //#define ggml_lock_destroy pthread_spin_destroy
  15609. //#define ggml_lock_lock pthread_spin_lock
  15610. //#define ggml_lock_unlock pthread_spin_unlock
  15611. typedef int ggml_lock_t;
  15612. #define ggml_lock_init(x) UNUSED(x)
  15613. #define ggml_lock_destroy(x) UNUSED(x)
  15614. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15615. #define ggml_lock_lock(x) _mm_pause()
  15616. #else
  15617. #define ggml_lock_lock(x) UNUSED(x)
  15618. #endif
  15619. #define ggml_lock_unlock(x) UNUSED(x)
  15620. #define GGML_LOCK_INITIALIZER 0
  15621. #define ggml_thread_create pthread_create
  15622. #define ggml_thread_join pthread_join
  15623. #endif
  15624. // Android's libc implementation "bionic" does not support setting affinity
  15625. #if defined(__gnu_linux__)
  15626. static void set_numa_thread_affinity(int thread_n) {
  15627. if (!ggml_is_numa()) {
  15628. return;
  15629. }
  15630. int node_num;
  15631. int rv;
  15632. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15633. switch(g_state.numa.numa_strategy) {
  15634. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15635. // run thread on node_num thread_n / (threads per node)
  15636. node_num = thread_n % g_state.numa.n_nodes;
  15637. break;
  15638. case GGML_NUMA_STRATEGY_ISOLATE:
  15639. // run thread on current_node
  15640. node_num = g_state.numa.current_node;
  15641. break;
  15642. case GGML_NUMA_STRATEGY_NUMACTL:
  15643. // use the cpuset that numactl gave us
  15644. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15645. if (rv) {
  15646. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15647. }
  15648. return;
  15649. default:
  15650. return;
  15651. }
  15652. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15653. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15654. CPU_ZERO_S(setsize, cpus);
  15655. for (size_t i = 0; i < node->n_cpus; ++i) {
  15656. CPU_SET_S(node->cpus[i], setsize, cpus);
  15657. }
  15658. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15659. if (rv) {
  15660. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15661. }
  15662. CPU_FREE(cpus);
  15663. }
  15664. static void clear_numa_thread_affinity(void) {
  15665. if (!ggml_is_numa()) {
  15666. return;
  15667. }
  15668. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15669. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15670. CPU_ZERO_S(setsize, cpus);
  15671. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15672. CPU_SET_S(i, setsize, cpus);
  15673. }
  15674. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15675. if (rv) {
  15676. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15677. }
  15678. CPU_FREE(cpus);
  15679. }
  15680. #else
  15681. // TODO: Windows etc.
  15682. // (the linux implementation may also work on BSD, someone should test)
  15683. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15684. static void clear_numa_thread_affinity(void) {}
  15685. #endif
  15686. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15687. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15688. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15689. node->perf_runs++;
  15690. node->perf_cycles += cycles_cur;
  15691. node->perf_time_us += time_us_cur;
  15692. }
  15693. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15694. int n_tasks = 0;
  15695. if (ggml_is_empty(node)) {
  15696. // no need to multi-thread a no-op
  15697. n_tasks = 1;
  15698. return n_tasks;
  15699. }
  15700. switch (node->op) {
  15701. case GGML_OP_CPY:
  15702. case GGML_OP_DUP:
  15703. case GGML_OP_ADD:
  15704. case GGML_OP_ADD1:
  15705. case GGML_OP_ACC:
  15706. {
  15707. n_tasks = n_threads;
  15708. } break;
  15709. case GGML_OP_SUB:
  15710. case GGML_OP_SQR:
  15711. case GGML_OP_SQRT:
  15712. case GGML_OP_LOG:
  15713. case GGML_OP_SUM:
  15714. case GGML_OP_SUM_ROWS:
  15715. case GGML_OP_MEAN:
  15716. case GGML_OP_ARGMAX:
  15717. case GGML_OP_REPEAT:
  15718. case GGML_OP_REPEAT_BACK:
  15719. case GGML_OP_LEAKY_RELU:
  15720. {
  15721. n_tasks = 1;
  15722. } break;
  15723. case GGML_OP_UNARY:
  15724. switch (ggml_get_unary_op(node)) {
  15725. case GGML_UNARY_OP_ABS:
  15726. case GGML_UNARY_OP_SGN:
  15727. case GGML_UNARY_OP_NEG:
  15728. case GGML_UNARY_OP_STEP:
  15729. case GGML_UNARY_OP_TANH:
  15730. case GGML_UNARY_OP_ELU:
  15731. case GGML_UNARY_OP_RELU:
  15732. case GGML_UNARY_OP_SIGMOID:
  15733. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15734. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15735. {
  15736. n_tasks = 1;
  15737. } break;
  15738. case GGML_UNARY_OP_GELU:
  15739. case GGML_UNARY_OP_GELU_QUICK:
  15740. case GGML_UNARY_OP_SILU:
  15741. {
  15742. n_tasks = n_threads;
  15743. } break;
  15744. default:
  15745. GGML_ASSERT(false);
  15746. }
  15747. break;
  15748. case GGML_OP_SILU_BACK:
  15749. case GGML_OP_MUL:
  15750. case GGML_OP_DIV:
  15751. case GGML_OP_NORM:
  15752. case GGML_OP_RMS_NORM:
  15753. case GGML_OP_RMS_NORM_BACK:
  15754. case GGML_OP_GROUP_NORM:
  15755. case GGML_OP_CONCAT:
  15756. {
  15757. n_tasks = n_threads;
  15758. } break;
  15759. case GGML_OP_MUL_MAT:
  15760. {
  15761. n_tasks = n_threads;
  15762. // TODO: use different scheduling for different matrix sizes
  15763. //const int nr0 = ggml_nrows(node->src[0]);
  15764. //const int nr1 = ggml_nrows(node->src[1]);
  15765. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15766. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15767. } break;
  15768. case GGML_OP_MUL_MAT_ID:
  15769. {
  15770. n_tasks = n_threads;
  15771. } break;
  15772. case GGML_OP_OUT_PROD:
  15773. {
  15774. n_tasks = n_threads;
  15775. } break;
  15776. case GGML_OP_GET_ROWS:
  15777. {
  15778. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15779. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15780. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15781. } break;
  15782. case GGML_OP_SCALE:
  15783. case GGML_OP_SET:
  15784. case GGML_OP_CONT:
  15785. case GGML_OP_RESHAPE:
  15786. case GGML_OP_VIEW:
  15787. case GGML_OP_PERMUTE:
  15788. case GGML_OP_TRANSPOSE:
  15789. case GGML_OP_GET_ROWS_BACK:
  15790. case GGML_OP_DIAG:
  15791. {
  15792. n_tasks = 1;
  15793. } break;
  15794. case GGML_OP_DIAG_MASK_ZERO:
  15795. case GGML_OP_DIAG_MASK_INF:
  15796. case GGML_OP_SOFT_MAX_BACK:
  15797. case GGML_OP_ROPE:
  15798. case GGML_OP_ROPE_BACK:
  15799. case GGML_OP_ADD_REL_POS:
  15800. {
  15801. n_tasks = n_threads;
  15802. } break;
  15803. case GGML_OP_CLAMP:
  15804. {
  15805. n_tasks = 1; //TODO
  15806. } break;
  15807. case GGML_OP_SOFT_MAX:
  15808. {
  15809. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15810. } break;
  15811. case GGML_OP_CONV_TRANSPOSE_1D:
  15812. {
  15813. n_tasks = n_threads;
  15814. } break;
  15815. case GGML_OP_IM2COL:
  15816. {
  15817. n_tasks = n_threads;
  15818. } break;
  15819. case GGML_OP_CONV_TRANSPOSE_2D:
  15820. {
  15821. n_tasks = n_threads;
  15822. } break;
  15823. case GGML_OP_POOL_1D:
  15824. case GGML_OP_POOL_2D:
  15825. {
  15826. n_tasks = 1;
  15827. } break;
  15828. case GGML_OP_UPSCALE:
  15829. {
  15830. n_tasks = n_threads;
  15831. } break;
  15832. case GGML_OP_PAD:
  15833. {
  15834. n_tasks = n_threads;
  15835. } break;
  15836. case GGML_OP_ARANGE:
  15837. {
  15838. n_tasks = n_threads;
  15839. } break;
  15840. case GGML_OP_TIMESTEP_EMBEDDING:
  15841. {
  15842. n_tasks = n_threads;
  15843. } break;
  15844. case GGML_OP_ARGSORT:
  15845. {
  15846. n_tasks = n_threads;
  15847. } break;
  15848. case GGML_OP_FLASH_ATTN_EXT:
  15849. {
  15850. n_tasks = n_threads;
  15851. } break;
  15852. case GGML_OP_FLASH_ATTN_BACK:
  15853. {
  15854. n_tasks = n_threads;
  15855. } break;
  15856. case GGML_OP_SSM_CONV:
  15857. case GGML_OP_SSM_SCAN:
  15858. {
  15859. n_tasks = n_threads;
  15860. } break;
  15861. case GGML_OP_WIN_PART:
  15862. case GGML_OP_WIN_UNPART:
  15863. case GGML_OP_GET_REL_POS:
  15864. case GGML_OP_MAP_UNARY:
  15865. case GGML_OP_MAP_BINARY:
  15866. case GGML_OP_MAP_CUSTOM1_F32:
  15867. case GGML_OP_MAP_CUSTOM2_F32:
  15868. case GGML_OP_MAP_CUSTOM3_F32:
  15869. {
  15870. n_tasks = 1;
  15871. } break;
  15872. case GGML_OP_MAP_CUSTOM1:
  15873. {
  15874. struct ggml_map_custom1_op_params p;
  15875. memcpy(&p, node->op_params, sizeof(p));
  15876. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15877. n_tasks = n_threads;
  15878. } else {
  15879. n_tasks = MIN(p.n_tasks, n_threads);
  15880. }
  15881. } break;
  15882. case GGML_OP_MAP_CUSTOM2:
  15883. {
  15884. struct ggml_map_custom2_op_params p;
  15885. memcpy(&p, node->op_params, sizeof(p));
  15886. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15887. n_tasks = n_threads;
  15888. } else {
  15889. n_tasks = MIN(p.n_tasks, n_threads);
  15890. }
  15891. } break;
  15892. case GGML_OP_MAP_CUSTOM3:
  15893. {
  15894. struct ggml_map_custom3_op_params p;
  15895. memcpy(&p, node->op_params, sizeof(p));
  15896. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15897. n_tasks = n_threads;
  15898. } else {
  15899. n_tasks = MIN(p.n_tasks, n_threads);
  15900. }
  15901. } break;
  15902. case GGML_OP_CROSS_ENTROPY_LOSS:
  15903. {
  15904. n_tasks = n_threads;
  15905. } break;
  15906. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15907. {
  15908. n_tasks = n_threads;
  15909. } break;
  15910. case GGML_OP_NONE:
  15911. {
  15912. n_tasks = 1;
  15913. } break;
  15914. case GGML_OP_COUNT:
  15915. {
  15916. GGML_ASSERT(false);
  15917. } break;
  15918. default:
  15919. {
  15920. fprintf(stderr, "%s: op not implemented: ", __func__);
  15921. if (node->op < GGML_OP_COUNT) {
  15922. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15923. } else {
  15924. fprintf(stderr, "%d\n", node->op);
  15925. }
  15926. GGML_ASSERT(false);
  15927. } break;
  15928. }
  15929. assert(n_tasks > 0);
  15930. return n_tasks;
  15931. }
  15932. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15933. // wait for other threads to finish
  15934. const int last_node_n = * node_n;
  15935. while (true) {
  15936. if (do_yield) {
  15937. sched_yield();
  15938. }
  15939. * node_n = atomic_load(&state->shared->node_n);
  15940. if (* node_n != last_node_n) break;
  15941. #if defined(__SSE3__)
  15942. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15943. _mm_pause();
  15944. #endif
  15945. }
  15946. }
  15947. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15948. // wait for other threads to finish
  15949. const int last_task_phase = * task_phase;
  15950. while (true) {
  15951. if (do_yield) {
  15952. sched_yield();
  15953. }
  15954. * task_phase = atomic_load(&state->shared->node_task);
  15955. if (* task_phase != last_task_phase) break;
  15956. #if defined(__SSE3__)
  15957. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15958. _mm_pause();
  15959. #endif
  15960. }
  15961. }
  15962. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15963. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15964. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15965. const struct ggml_cplan * cplan = state->shared->cplan;
  15966. const int n_threads = state->shared->n_threads;
  15967. set_numa_thread_affinity(state->ith);
  15968. int node_n = -1;
  15969. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15970. while (true) {
  15971. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15972. state->shared->node_n += 1;
  15973. state->ec = GGML_STATUS_ABORTED;
  15974. return 0;
  15975. }
  15976. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15977. // all other threads are finished and spinning
  15978. // do finalize and init here so we don't have synchronize again
  15979. struct ggml_compute_params params = {
  15980. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15981. /*.ith =*/ 0,
  15982. /*.nth =*/ 0,
  15983. /*.wsize =*/ cplan->work_size,
  15984. /*.wdata =*/ cplan->work_data,
  15985. };
  15986. if (node_n != -1) {
  15987. /* FINALIZE */
  15988. struct ggml_tensor * node = cgraph->nodes[node_n];
  15989. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15990. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15991. ggml_compute_forward(&params, node, state);
  15992. }
  15993. ggml_graph_compute_perf_stats_node(node, state->shared);
  15994. }
  15995. // distribute new work or execute it direct if 1T
  15996. while (++node_n < cgraph->n_nodes) {
  15997. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15998. struct ggml_tensor * node = cgraph->nodes[node_n];
  15999. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16000. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16001. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16002. params.nth = n_tasks;
  16003. if (n_tasks == 1) {
  16004. /* INIT */
  16005. if (GGML_OP_HAS_INIT[node->op]) {
  16006. params.type = GGML_TASK_TYPE_INIT;
  16007. ggml_compute_forward(&params, node, state);
  16008. }
  16009. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16010. // they do something more efficient than spinning (?)
  16011. params.type = GGML_TASK_TYPE_COMPUTE;
  16012. ggml_compute_forward(&params, node, state);
  16013. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16014. params.type = GGML_TASK_TYPE_FINALIZE;
  16015. ggml_compute_forward(&params, node, state);
  16016. }
  16017. ggml_graph_compute_perf_stats_node(node, state->shared);
  16018. } else {
  16019. break;
  16020. }
  16021. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16022. break;
  16023. }
  16024. }
  16025. task_phase = GGML_TASK_TYPE_INIT;
  16026. atomic_store(&state->shared->n_active, n_threads);
  16027. atomic_store(&state->shared->node_n, node_n);
  16028. atomic_store(&state->shared->node_task, task_phase);
  16029. } else {
  16030. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16031. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16032. }
  16033. // check if we should stop
  16034. if (node_n >= cgraph->n_nodes) break;
  16035. /* INIT & COMPUTE */
  16036. struct ggml_tensor * node = cgraph->nodes[node_n];
  16037. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16038. struct ggml_compute_params params = {
  16039. /*.type =*/ GGML_TASK_TYPE_INIT,
  16040. /*.ith =*/ state->ith,
  16041. /*.nth =*/ n_tasks,
  16042. /*.wsize =*/ cplan->work_size,
  16043. /*.wdata =*/ cplan->work_data,
  16044. };
  16045. if (state->ith < n_tasks) {
  16046. if (GGML_OP_HAS_INIT[node->op]) {
  16047. ggml_compute_forward(&params, node, state);
  16048. }
  16049. }
  16050. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16051. task_phase = GGML_TASK_TYPE_COMPUTE;
  16052. atomic_store(&state->shared->n_active, n_threads);
  16053. atomic_store(&state->shared->node_task, task_phase);
  16054. }
  16055. else {
  16056. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16057. // depending on the workload and the operating system.
  16058. // since it is not clear what is the best approach, it should potentially become user-configurable
  16059. // ref: https://github.com/ggerganov/ggml/issues/291
  16060. // UPD: adding the do_yield flag seems to resolve the issue universally
  16061. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16062. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16063. }
  16064. if (state->ith < n_tasks) {
  16065. params.type = GGML_TASK_TYPE_COMPUTE;
  16066. ggml_compute_forward(&params, node, state);
  16067. }
  16068. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16069. task_phase = GGML_TASK_TYPE_FINALIZE;
  16070. atomic_store(&state->shared->n_active, n_threads);
  16071. atomic_store(&state->shared->node_task, task_phase);
  16072. }
  16073. else {
  16074. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16075. }
  16076. }
  16077. return 0;
  16078. }
  16079. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16080. if (n_threads <= 0) {
  16081. n_threads = GGML_DEFAULT_N_THREADS;
  16082. }
  16083. size_t work_size = 0;
  16084. struct ggml_cplan cplan;
  16085. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16086. int max_tasks = 1;
  16087. // thread scheduling for the different operations + work buffer size estimation
  16088. for (int i = 0; i < cgraph->n_nodes; i++) {
  16089. struct ggml_tensor * node = cgraph->nodes[i];
  16090. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16091. max_tasks = MAX(max_tasks, n_tasks);
  16092. size_t cur = 0;
  16093. switch (node->op) {
  16094. case GGML_OP_CPY:
  16095. case GGML_OP_DUP:
  16096. {
  16097. if (ggml_is_quantized(node->type) ||
  16098. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16099. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16100. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16101. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16102. }
  16103. } break;
  16104. case GGML_OP_ADD:
  16105. case GGML_OP_ADD1:
  16106. {
  16107. if (ggml_is_quantized(node->src[0]->type)) {
  16108. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16109. }
  16110. } break;
  16111. case GGML_OP_ACC:
  16112. {
  16113. if (ggml_is_quantized(node->src[0]->type)) {
  16114. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16115. }
  16116. } break;
  16117. case GGML_OP_MUL_MAT:
  16118. {
  16119. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16120. #if defined(GGML_USE_CLBLAST)
  16121. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16122. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16123. } else
  16124. #endif
  16125. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16126. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16127. if (node->src[0]->type != GGML_TYPE_F32) {
  16128. // here we need memory for fully dequantized matrix from src0
  16129. // take into account that src0 can be broadcasted into src1[2,3]
  16130. cur = ggml_type_size(GGML_TYPE_F32)
  16131. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16132. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16133. }
  16134. } else
  16135. #endif
  16136. if (node->src[1]->type != vec_dot_type) {
  16137. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16138. }
  16139. } break;
  16140. case GGML_OP_MUL_MAT_ID:
  16141. {
  16142. cur = 0;
  16143. const struct ggml_tensor * src0 = node->src[0];
  16144. const struct ggml_tensor * src1 = node->src[1];
  16145. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16146. if (src1->type != vec_dot_type) {
  16147. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16148. }
  16149. const int n_as = src0->ne[2];
  16150. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16151. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16152. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16153. } break;
  16154. case GGML_OP_OUT_PROD:
  16155. {
  16156. if (ggml_is_quantized(node->src[0]->type)) {
  16157. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16158. }
  16159. } break;
  16160. case GGML_OP_SOFT_MAX:
  16161. case GGML_OP_ROPE:
  16162. {
  16163. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16164. } break;
  16165. case GGML_OP_CONV_TRANSPOSE_1D:
  16166. {
  16167. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16168. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16169. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16170. const int64_t ne00 = node->src[0]->ne[0]; // K
  16171. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16172. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16173. const int64_t ne10 = node->src[1]->ne[0]; // L
  16174. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16175. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16176. node->src[0]->type == GGML_TYPE_BF16) &&
  16177. node->src[1]->type == GGML_TYPE_F32) {
  16178. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16179. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16180. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16181. node->src[1]->type == GGML_TYPE_F32) {
  16182. cur += sizeof(float)*ne00*ne01*ne02;
  16183. cur += sizeof(float)*ne10*ne11;
  16184. } else {
  16185. GGML_ASSERT(false);
  16186. }
  16187. } break;
  16188. case GGML_OP_CONV_TRANSPOSE_2D:
  16189. {
  16190. const int64_t ne00 = node->src[0]->ne[0]; // W
  16191. const int64_t ne01 = node->src[0]->ne[1]; // H
  16192. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16193. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16194. const int64_t ne10 = node->src[1]->ne[0]; // W
  16195. const int64_t ne11 = node->src[1]->ne[1]; // H
  16196. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16197. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16198. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16199. } break;
  16200. case GGML_OP_FLASH_ATTN_EXT:
  16201. {
  16202. const int64_t ne00 = node->src[0]->ne[0]; // D
  16203. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16204. } break;
  16205. case GGML_OP_FLASH_ATTN_BACK:
  16206. {
  16207. const int64_t D = node->src[0]->ne[0];
  16208. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16209. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16210. if (node->src[1]->type == GGML_TYPE_F32) {
  16211. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16212. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16213. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16214. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16215. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16216. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16217. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16218. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16219. }
  16220. } break;
  16221. case GGML_OP_CROSS_ENTROPY_LOSS:
  16222. {
  16223. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16224. } break;
  16225. case GGML_OP_COUNT:
  16226. {
  16227. GGML_ASSERT(false);
  16228. } break;
  16229. default:
  16230. break;
  16231. }
  16232. work_size = MAX(work_size, cur);
  16233. }
  16234. if (work_size > 0) {
  16235. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16236. }
  16237. cplan.n_threads = MIN(max_tasks, n_threads);
  16238. cplan.work_size = work_size;
  16239. cplan.work_data = NULL;
  16240. return cplan;
  16241. }
  16242. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16243. {
  16244. GGML_ASSERT(cplan);
  16245. GGML_ASSERT(cplan->n_threads > 0);
  16246. if (cplan->work_size > 0) {
  16247. GGML_ASSERT(cplan->work_data);
  16248. }
  16249. }
  16250. const int n_threads = cplan->n_threads;
  16251. struct ggml_compute_state_shared state_shared = {
  16252. /*.cgraph =*/ cgraph,
  16253. /*.cgraph_plan =*/ cplan,
  16254. /*.perf_node_start_cycles =*/ 0,
  16255. /*.perf_node_start_time_us =*/ 0,
  16256. /*.n_threads =*/ n_threads,
  16257. /*.n_active =*/ n_threads,
  16258. /*.node_n =*/ -1,
  16259. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16260. /*.abort_callback =*/ NULL,
  16261. /*.abort_callback_data =*/ NULL,
  16262. /*.current_chunk; =*/ 0,
  16263. };
  16264. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16265. // create thread pool
  16266. if (n_threads > 1) {
  16267. for (int j = 1; j < n_threads; ++j) {
  16268. workers[j] = (struct ggml_compute_state) {
  16269. .thrd = 0,
  16270. .ith = j,
  16271. .shared = &state_shared,
  16272. .ec = GGML_STATUS_SUCCESS,
  16273. };
  16274. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16275. GGML_ASSERT(rc == 0);
  16276. UNUSED(rc);
  16277. }
  16278. }
  16279. workers[0].ith = 0;
  16280. workers[0].shared = &state_shared;
  16281. workers[0].ec = GGML_STATUS_SUCCESS;
  16282. const int64_t perf_start_cycles = ggml_perf_cycles();
  16283. const int64_t perf_start_time_us = ggml_perf_time_us();
  16284. // this is a work thread too
  16285. ggml_graph_compute_thread(&workers[0]);
  16286. enum ggml_status compute_status = workers[0].ec;
  16287. // don't leave affinity set on the main thread
  16288. clear_numa_thread_affinity();
  16289. // join or kill thread pool
  16290. if (n_threads > 1) {
  16291. for (int j = 1; j < n_threads; j++) {
  16292. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16293. GGML_ASSERT(rc == 0);
  16294. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16295. compute_status = workers[j].ec;
  16296. }
  16297. }
  16298. // performance stats (graph)
  16299. {
  16300. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16301. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16302. cgraph->perf_runs++;
  16303. cgraph->perf_cycles += perf_cycles_cur;
  16304. cgraph->perf_time_us += perf_time_us_cur;
  16305. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16306. __func__, cgraph->perf_runs,
  16307. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16308. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16309. (double) perf_time_us_cur / 1000.0,
  16310. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16311. }
  16312. return compute_status;
  16313. }
  16314. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16315. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16316. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16317. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16318. return ggml_graph_compute(cgraph, &cplan);
  16319. }
  16320. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16321. for (int i = 0; i < cgraph->n_leafs; i++) {
  16322. struct ggml_tensor * leaf = cgraph->leafs[i];
  16323. if (strcmp(leaf->name, name) == 0) {
  16324. return leaf;
  16325. }
  16326. }
  16327. for (int i = 0; i < cgraph->n_nodes; i++) {
  16328. struct ggml_tensor * node = cgraph->nodes[i];
  16329. if (strcmp(node->name, name) == 0) {
  16330. return node;
  16331. }
  16332. }
  16333. return NULL;
  16334. }
  16335. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16336. const int64_t * ne = tensor->ne;
  16337. const size_t * nb = tensor->nb;
  16338. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16339. ggml_type_name(tensor->type),
  16340. ggml_op_name (tensor->op),
  16341. ggml_n_dims(tensor),
  16342. ne[0], ne[1], ne[2], ne[3],
  16343. nb[0], nb[1], nb[2], nb[3],
  16344. tensor->data,
  16345. tensor->name);
  16346. }
  16347. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16348. const int64_t * ne = tensor->ne;
  16349. const size_t * nb = tensor->nb;
  16350. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16351. arg,
  16352. ggml_type_name(tensor->type),
  16353. ggml_op_name (tensor->op),
  16354. ggml_n_dims(tensor),
  16355. ne[0], ne[1], ne[2], ne[3],
  16356. nb[0], nb[1], nb[2], nb[3],
  16357. tensor->data,
  16358. tensor->name);
  16359. }
  16360. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16361. uint64_t size_eval = 0;
  16362. // compute size of intermediate results
  16363. // TODO: does not take into account scratch buffers !!!!
  16364. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16365. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16366. }
  16367. // print
  16368. {
  16369. FILE * fout = stdout;
  16370. fprintf(fout, "\n");
  16371. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16372. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16373. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16374. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16375. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16376. // header
  16377. fprintf(fout, "\n");
  16378. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16379. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16380. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16381. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16382. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16383. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16384. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16385. }
  16386. // header
  16387. fprintf(fout, "\n");
  16388. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16389. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16390. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16391. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16392. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16393. if (cgraph->nodes[i]->src[j]) {
  16394. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16395. }
  16396. }
  16397. fprintf(fout, "\n");
  16398. }
  16399. fprintf(fout, "\n");
  16400. }
  16401. // write binary data
  16402. {
  16403. FILE * fout = ggml_fopen(fname, "wb");
  16404. if (!fout) {
  16405. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16406. return;
  16407. }
  16408. // header
  16409. {
  16410. const uint32_t magic = GGML_FILE_MAGIC;
  16411. const uint32_t version = GGML_FILE_VERSION;
  16412. const uint32_t n_leafs = cgraph->n_leafs;
  16413. const uint32_t n_nodes = cgraph->n_nodes;
  16414. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16415. fwrite(&version, sizeof(uint32_t), 1, fout);
  16416. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16417. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16418. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16419. }
  16420. // leafs
  16421. {
  16422. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16423. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16424. const uint32_t type = tensor->type;
  16425. const uint32_t op = tensor->op;
  16426. fwrite(&type, sizeof(uint32_t), 1, fout);
  16427. fwrite(&op, sizeof(uint32_t), 1, fout);
  16428. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16429. const uint64_t ne = tensor->ne[j];
  16430. const uint64_t nb = tensor->nb[j];
  16431. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16432. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16433. }
  16434. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16435. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16436. // dump the data
  16437. // TODO: pad this to 32 byte boundary
  16438. {
  16439. const size_t size = ggml_nbytes(tensor);
  16440. fwrite(tensor->data, sizeof(char), size, fout);
  16441. }
  16442. }
  16443. }
  16444. // nodes
  16445. {
  16446. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16447. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16448. const uint32_t type = tensor->type;
  16449. const uint32_t op = tensor->op;
  16450. fwrite(&type, sizeof(uint32_t), 1, fout);
  16451. fwrite(&op, sizeof(uint32_t), 1, fout);
  16452. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16453. const uint64_t ne = tensor->ne[j];
  16454. const uint64_t nb = tensor->nb[j];
  16455. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16456. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16457. }
  16458. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16459. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16460. // output the op arguments
  16461. {
  16462. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16463. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16464. args[j] = tensor->src[j];
  16465. }
  16466. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16467. if (args[j]) {
  16468. int32_t idx = -1;
  16469. // check if leaf
  16470. {
  16471. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16472. if (args[j] == cgraph->leafs[k]) {
  16473. idx = k;
  16474. break;
  16475. }
  16476. }
  16477. }
  16478. // check if node
  16479. if (idx == -1) {
  16480. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16481. if (args[j] == cgraph->nodes[k]) {
  16482. idx = cgraph->n_leafs + k;
  16483. break;
  16484. }
  16485. }
  16486. }
  16487. if (idx == -1) {
  16488. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16489. fclose(fout);
  16490. return;
  16491. }
  16492. fwrite(&idx, sizeof(int32_t), 1, fout);
  16493. } else {
  16494. const int32_t nul = -1;
  16495. fwrite(&nul, sizeof(int32_t), 1, fout);
  16496. }
  16497. }
  16498. }
  16499. }
  16500. }
  16501. fclose(fout);
  16502. }
  16503. }
  16504. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16505. assert(*ctx_data == NULL);
  16506. assert(*ctx_eval == NULL);
  16507. struct ggml_cgraph * result = NULL;
  16508. struct ggml_tensor * data = NULL;
  16509. // read file into data
  16510. {
  16511. FILE * fin = ggml_fopen(fname, "rb");
  16512. if (!fin) {
  16513. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16514. return result;
  16515. }
  16516. size_t fsize = 0;
  16517. fseek(fin, 0, SEEK_END);
  16518. fsize = ftell(fin);
  16519. fseek(fin, 0, SEEK_SET);
  16520. // create the data context
  16521. {
  16522. const size_t overhead = 1*ggml_tensor_overhead();
  16523. struct ggml_init_params params = {
  16524. .mem_size = fsize + overhead,
  16525. .mem_buffer = NULL,
  16526. .no_alloc = false,
  16527. };
  16528. *ctx_data = ggml_init(params);
  16529. if (!*ctx_data) {
  16530. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16531. fclose(fin);
  16532. return result;
  16533. }
  16534. }
  16535. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16536. {
  16537. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16538. if (ret != fsize) {
  16539. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16540. fclose(fin);
  16541. return result;
  16542. }
  16543. }
  16544. fclose(fin);
  16545. }
  16546. // populate result
  16547. {
  16548. char * ptr = (char *) data->data;
  16549. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16550. if (magic != GGML_FILE_MAGIC) {
  16551. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16552. return result;
  16553. }
  16554. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16555. if (version != GGML_FILE_VERSION) {
  16556. fprintf(stderr, "%s: invalid version number\n", __func__);
  16557. return result;
  16558. }
  16559. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16560. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16561. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16562. const int graph_size = MAX(n_leafs, n_nodes);
  16563. // create the data context
  16564. {
  16565. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16566. struct ggml_init_params params = {
  16567. .mem_size = size_eval + overhead,
  16568. .mem_buffer = NULL,
  16569. .no_alloc = true,
  16570. };
  16571. *ctx_eval = ggml_init(params);
  16572. if (!*ctx_eval) {
  16573. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16574. return result;
  16575. }
  16576. }
  16577. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16578. result->n_leafs = n_leafs;
  16579. result->n_nodes = n_nodes;
  16580. // leafs
  16581. {
  16582. uint32_t type;
  16583. uint32_t op;
  16584. for (uint32_t i = 0; i < n_leafs; ++i) {
  16585. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16586. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16587. int64_t ne[GGML_MAX_DIMS];
  16588. size_t nb[GGML_MAX_DIMS];
  16589. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16590. uint64_t ne_cur;
  16591. uint64_t nb_cur;
  16592. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16593. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16594. ne[j] = ne_cur;
  16595. nb[j] = nb_cur;
  16596. }
  16597. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16598. tensor->op = (enum ggml_op) op;
  16599. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16600. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16601. tensor->data = (void *) ptr;
  16602. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16603. tensor->nb[j] = nb[j];
  16604. }
  16605. result->leafs[i] = tensor;
  16606. ptr += ggml_nbytes(tensor);
  16607. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16608. }
  16609. }
  16610. ggml_set_no_alloc(*ctx_eval, false);
  16611. // nodes
  16612. {
  16613. uint32_t type;
  16614. uint32_t op;
  16615. for (uint32_t i = 0; i < n_nodes; ++i) {
  16616. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16617. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16618. enum ggml_op eop = (enum ggml_op) op;
  16619. int64_t ne[GGML_MAX_DIMS];
  16620. size_t nb[GGML_MAX_DIMS];
  16621. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16622. uint64_t ne_cur;
  16623. uint64_t nb_cur;
  16624. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16625. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16626. ne[j] = ne_cur;
  16627. nb[j] = nb_cur;
  16628. }
  16629. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16630. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16631. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16632. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16633. // parse args
  16634. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16635. const int32_t arg_idx = ptr_arg_idx[j];
  16636. if (arg_idx == -1) {
  16637. continue;
  16638. }
  16639. if (arg_idx < result->n_leafs) {
  16640. args[j] = result->leafs[arg_idx];
  16641. } else {
  16642. args[j] = result->nodes[arg_idx - result->n_leafs];
  16643. }
  16644. }
  16645. // create the tensor
  16646. // "view" operations are handled differently
  16647. // TODO: handle inplace ops - currently a copy is always made
  16648. struct ggml_tensor * tensor = NULL;
  16649. switch (eop) {
  16650. // TODO: implement other view ops
  16651. case GGML_OP_RESHAPE:
  16652. {
  16653. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16654. } break;
  16655. case GGML_OP_VIEW:
  16656. {
  16657. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16658. size_t offs;
  16659. memcpy(&offs, ptr_op_params, sizeof(offs));
  16660. tensor->data = ((char *) tensor->data) + offs;
  16661. } break;
  16662. case GGML_OP_TRANSPOSE:
  16663. {
  16664. tensor = ggml_transpose(*ctx_eval, args[0]);
  16665. } break;
  16666. case GGML_OP_PERMUTE:
  16667. {
  16668. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16669. } break;
  16670. default:
  16671. {
  16672. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16673. tensor->op = eop;
  16674. } break;
  16675. }
  16676. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16677. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16678. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16679. tensor->nb[j] = nb[j];
  16680. }
  16681. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16682. tensor->src[j] = args[j];
  16683. }
  16684. result->nodes[i] = tensor;
  16685. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16686. }
  16687. }
  16688. }
  16689. return result;
  16690. }
  16691. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16692. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16693. GGML_PRINT("=== GRAPH ===\n");
  16694. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16695. for (int i = 0; i < cgraph->n_nodes; i++) {
  16696. struct ggml_tensor * node = cgraph->nodes[i];
  16697. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16698. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16699. i,
  16700. node->ne[0], node->ne[1], node->ne[2],
  16701. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16702. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16703. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16704. (double) node->perf_time_us / 1000.0,
  16705. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16706. }
  16707. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16708. for (int i = 0; i < cgraph->n_leafs; i++) {
  16709. struct ggml_tensor * node = cgraph->leafs[i];
  16710. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16711. i,
  16712. node->ne[0], node->ne[1],
  16713. ggml_op_name(node->op),
  16714. ggml_get_name(node));
  16715. }
  16716. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16717. if (perf_total_per_op_us[i] == 0) {
  16718. continue;
  16719. }
  16720. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16721. }
  16722. GGML_PRINT("========================================\n");
  16723. }
  16724. // check if node is part of the graph
  16725. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16726. if (cgraph == NULL) {
  16727. return true;
  16728. }
  16729. for (int i = 0; i < cgraph->n_nodes; i++) {
  16730. if (cgraph->nodes[i] == node) {
  16731. return true;
  16732. }
  16733. }
  16734. return false;
  16735. }
  16736. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16737. for (int i = 0; i < cgraph->n_nodes; i++) {
  16738. struct ggml_tensor * parent = cgraph->nodes[i];
  16739. if (parent->grad == node) {
  16740. return parent;
  16741. }
  16742. }
  16743. return NULL;
  16744. }
  16745. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16746. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16747. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16748. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16749. gparent0 ? (void *) gparent0 : (void *) parent,
  16750. gparent0 ? "g" : "x",
  16751. gparent ? (void *) gparent : (void *) node,
  16752. gparent ? "g" : "x",
  16753. gparent ? "empty" : "vee",
  16754. gparent ? "dashed" : "solid",
  16755. label);
  16756. }
  16757. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16758. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16759. (void *) parent, "x",
  16760. (void *) node, "x",
  16761. label);
  16762. }
  16763. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16764. char color[16];
  16765. FILE * fp = ggml_fopen(filename, "w");
  16766. GGML_ASSERT(fp);
  16767. fprintf(fp, "digraph G {\n");
  16768. fprintf(fp, " newrank = true;\n");
  16769. fprintf(fp, " rankdir = LR;\n");
  16770. for (int i = 0; i < gb->n_nodes; i++) {
  16771. struct ggml_tensor * node = gb->nodes[i];
  16772. if (ggml_graph_get_parent(gb, node) != NULL) {
  16773. continue;
  16774. }
  16775. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16776. snprintf(color, sizeof(color), "yellow");
  16777. } else if (node->grad) {
  16778. if (ggml_graph_find(gf, node)) {
  16779. snprintf(color, sizeof(color), "green");
  16780. } else {
  16781. snprintf(color, sizeof(color), "lightblue");
  16782. }
  16783. } else {
  16784. snprintf(color, sizeof(color), "white");
  16785. }
  16786. fprintf(fp, " \"%p\" [ "
  16787. "style = filled; fillcolor = %s; shape = record; "
  16788. "label=\"",
  16789. (void *) node, color);
  16790. if (strlen(node->name) > 0) {
  16791. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16792. } else {
  16793. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16794. }
  16795. if (ggml_is_matrix(node)) {
  16796. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16797. } else {
  16798. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16799. }
  16800. if (node->grad) {
  16801. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16802. } else {
  16803. fprintf(fp, "\"; ]\n");
  16804. }
  16805. }
  16806. for (int i = 0; i < gb->n_leafs; i++) {
  16807. struct ggml_tensor * node = gb->leafs[i];
  16808. snprintf(color, sizeof(color), "pink");
  16809. fprintf(fp, " \"%p\" [ "
  16810. "style = filled; fillcolor = %s; shape = record; "
  16811. "label=\"<x>",
  16812. (void *) node, color);
  16813. if (strlen(node->name) > 0) {
  16814. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16815. } else {
  16816. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16817. }
  16818. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16819. if (ggml_nelements(node) < 5) {
  16820. fprintf(fp, " | (");
  16821. for (int j = 0; j < ggml_nelements(node); j++) {
  16822. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16823. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16824. }
  16825. else if (node->type == GGML_TYPE_F32 ||
  16826. node->type == GGML_TYPE_F16 ||
  16827. node->type == GGML_TYPE_BF16) {
  16828. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16829. }
  16830. else {
  16831. fprintf(fp, "#");
  16832. }
  16833. if (j < ggml_nelements(node) - 1) {
  16834. fprintf(fp, ", ");
  16835. }
  16836. }
  16837. fprintf(fp, ")");
  16838. }
  16839. fprintf(fp, "\"; ]\n");
  16840. }
  16841. for (int i = 0; i < gb->n_nodes; i++) {
  16842. struct ggml_tensor * node = gb->nodes[i];
  16843. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16844. if (node->src[j]) {
  16845. char label[16];
  16846. snprintf(label, sizeof(label), "src %d", j);
  16847. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16848. }
  16849. }
  16850. }
  16851. for (int i = 0; i < gb->n_leafs; i++) {
  16852. struct ggml_tensor * node = gb->leafs[i];
  16853. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16854. if (node->src[j]) {
  16855. char label[16];
  16856. snprintf(label, sizeof(label), "src %d", j);
  16857. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16858. }
  16859. }
  16860. }
  16861. fprintf(fp, "}\n");
  16862. fclose(fp);
  16863. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16864. }
  16865. ////////////////////////////////////////////////////////////////////////////////
  16866. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16867. int i = 0;
  16868. for (int p = 0; p < np; ++p) {
  16869. const int64_t ne = ggml_nelements(ps[p]) ;
  16870. // TODO: add function to set tensor from array
  16871. for (int64_t j = 0; j < ne; ++j) {
  16872. ggml_set_f32_1d(ps[p], j, x[i++]);
  16873. }
  16874. }
  16875. }
  16876. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16877. int i = 0;
  16878. for (int p = 0; p < np; ++p) {
  16879. const int64_t ne = ggml_nelements(ps[p]) ;
  16880. // TODO: add function to get all elements at once
  16881. for (int64_t j = 0; j < ne; ++j) {
  16882. x[i++] = ggml_get_f32_1d(ps[p], j);
  16883. }
  16884. }
  16885. }
  16886. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16887. int64_t i = 0;
  16888. for (int p = 0; p < np; ++p) {
  16889. const int64_t ne = ggml_nelements(ps[p]) ;
  16890. // TODO: add function to get all elements at once
  16891. for (int64_t j = 0; j < ne; ++j) {
  16892. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16893. }
  16894. }
  16895. }
  16896. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16897. int64_t i = 0;
  16898. for (int p = 0; p < np; ++p) {
  16899. const int64_t ne = ggml_nelements(ps[p]) ;
  16900. // TODO: add function to get all elements at once
  16901. for (int64_t j = 0; j < ne; ++j) {
  16902. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16903. }
  16904. }
  16905. }
  16906. //
  16907. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16908. //
  16909. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16910. //
  16911. static enum ggml_opt_result ggml_opt_adam(
  16912. struct ggml_context * ctx,
  16913. struct ggml_opt_context * opt,
  16914. struct ggml_opt_params params,
  16915. struct ggml_tensor * f,
  16916. struct ggml_cgraph * gf,
  16917. struct ggml_cgraph * gb,
  16918. ggml_opt_callback callback,
  16919. void * callback_data) {
  16920. GGML_ASSERT(ggml_is_scalar(f));
  16921. // these will store the parameters we want to optimize
  16922. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16923. int np = 0;
  16924. int64_t nx = 0;
  16925. for (int i = 0; i < gf->n_nodes; ++i) {
  16926. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16927. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16928. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16929. ps[np++] = gf->nodes[i];
  16930. nx += ggml_nelements(gf->nodes[i]);
  16931. }
  16932. }
  16933. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16934. int iter = opt->iter;
  16935. ggml_opt_init(opt->ctx, opt, params, nx);
  16936. opt->iter = iter;
  16937. }
  16938. // constants
  16939. float sched = params.adam.sched;
  16940. const float alpha = params.adam.alpha;
  16941. const float decay = params.adam.decay * alpha;
  16942. const float beta1 = params.adam.beta1;
  16943. const float beta2 = params.adam.beta2;
  16944. const float eps = params.adam.eps;
  16945. const float gclip = params.adam.gclip;
  16946. const int decay_min_ndim = params.adam.decay_min_ndim;
  16947. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16948. const float accum_norm = 1.0f / (float) n_accum;
  16949. float * g = opt->adam.g->data; // gradients
  16950. float * m = opt->adam.m->data; // first moment
  16951. float * v = opt->adam.v->data; // second moment
  16952. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16953. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16954. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16955. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16956. bool cancel = false;
  16957. // compute the function value
  16958. float fx = 0;
  16959. ggml_set_zero(opt->adam.g);
  16960. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16961. if (callback) {
  16962. callback(callback_data, accum_step, &sched, &cancel);
  16963. if (cancel) {
  16964. return GGML_OPT_RESULT_CANCEL;
  16965. }
  16966. }
  16967. // ggml_graph_reset (gf);
  16968. ggml_set_f32 (f->grad, 1.0f);
  16969. ggml_graph_compute(gb, &cplan);
  16970. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16971. fx += ggml_get_f32_1d(f, 0);
  16972. }
  16973. fx *= accum_norm;
  16974. opt->adam.fx_prev = fx;
  16975. opt->adam.fx_best = opt->adam.fx_prev;
  16976. if (pf) {
  16977. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16978. }
  16979. opt->loss_before = opt->adam.fx_prev;
  16980. opt->loss_after = opt->adam.fx_prev;
  16981. // initialize
  16982. if (opt->just_initialized) {
  16983. opt->adam.n_no_improvement = 0;
  16984. opt->just_initialized = false;
  16985. }
  16986. float * fx_best = &opt->adam.fx_best;
  16987. float * fx_prev = &opt->adam.fx_prev;
  16988. int * n_no_improvement = &opt->adam.n_no_improvement;
  16989. int iter0 = opt->iter;
  16990. // run the optimizer
  16991. for (int t = 0; t < params.adam.n_iter; ++t) {
  16992. opt->iter = iter0 + t + 1;
  16993. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16994. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16995. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16996. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16997. for (int i = 0; i < np; ++i) {
  16998. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16999. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17000. }
  17001. const int64_t t_start_wall = ggml_time_us();
  17002. const int64_t t_start_cpu = ggml_cycles();
  17003. UNUSED(t_start_wall);
  17004. UNUSED(t_start_cpu);
  17005. {
  17006. float gnorm = 1.0f;
  17007. if (gclip > 0.0f) {
  17008. // gradient clipping
  17009. ggml_float sum = 0.0;
  17010. for (int64_t i = 0; i < nx; ++i) {
  17011. sum += (ggml_float)(g[i]*g[i]);
  17012. }
  17013. ggml_float norm = sqrt(sum);
  17014. if (norm > (ggml_float) gclip) {
  17015. gnorm = (float) ((ggml_float) gclip / norm);
  17016. }
  17017. }
  17018. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17019. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17020. int64_t i = 0;
  17021. for (int p = 0; p < np; ++p) {
  17022. const int64_t ne = ggml_nelements(ps[p]);
  17023. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17024. for (int64_t j = 0; j < ne; ++j) {
  17025. float x = ggml_get_f32_1d(ps[p], j);
  17026. float g_ = g[i]*gnorm;
  17027. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17028. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17029. float mh = m[i]*beta1h;
  17030. float vh = v[i]*beta2h;
  17031. vh = sqrtf(vh) + eps;
  17032. x = x*(1.0f - p_decay) - mh/vh;
  17033. ggml_set_f32_1d(ps[p], j, x);
  17034. ++i;
  17035. }
  17036. }
  17037. }
  17038. fx = 0;
  17039. ggml_set_zero(opt->adam.g);
  17040. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17041. if (callback) {
  17042. callback(callback_data, accum_step, &sched, &cancel);
  17043. if (cancel) {
  17044. return GGML_OPT_RESULT_CANCEL;;
  17045. }
  17046. }
  17047. // ggml_graph_reset (gf);
  17048. ggml_set_f32 (f->grad, 1.0f);
  17049. ggml_graph_compute(gb, &cplan);
  17050. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17051. fx += ggml_get_f32_1d(f, 0);
  17052. }
  17053. fx *= accum_norm;
  17054. opt->loss_after = fx;
  17055. // check convergence
  17056. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17057. GGML_PRINT_DEBUG("converged\n");
  17058. return GGML_OPT_RESULT_OK;
  17059. }
  17060. // delta-based convergence test
  17061. if (pf != NULL) {
  17062. // need at least params.past iterations to start checking for convergence
  17063. if (params.past <= iter0 + t) {
  17064. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17065. if (fabsf(rate) < params.delta) {
  17066. return GGML_OPT_RESULT_OK;
  17067. }
  17068. }
  17069. pf[(iter0 + t)%params.past] = fx;
  17070. }
  17071. // check for improvement
  17072. if (params.max_no_improvement > 0) {
  17073. if (fx_best[0] > fx) {
  17074. fx_best[0] = fx;
  17075. n_no_improvement[0] = 0;
  17076. } else {
  17077. ++n_no_improvement[0];
  17078. if (n_no_improvement[0] >= params.max_no_improvement) {
  17079. return GGML_OPT_RESULT_OK;
  17080. }
  17081. }
  17082. }
  17083. fx_prev[0] = fx;
  17084. {
  17085. const int64_t t_end_cpu = ggml_cycles();
  17086. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17087. UNUSED(t_end_cpu);
  17088. const int64_t t_end_wall = ggml_time_us();
  17089. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17090. UNUSED(t_end_wall);
  17091. }
  17092. }
  17093. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17094. }
  17095. //
  17096. // L-BFGS
  17097. //
  17098. // the L-BFGS implementation below is based on the following implementation:
  17099. //
  17100. // https://github.com/chokkan/liblbfgs
  17101. //
  17102. struct ggml_lbfgs_iteration_data {
  17103. float alpha;
  17104. float ys;
  17105. float * s;
  17106. float * y;
  17107. };
  17108. static enum ggml_opt_result linesearch_backtracking(
  17109. const struct ggml_opt_params * params,
  17110. int nx,
  17111. float * x,
  17112. float * fx,
  17113. float * g,
  17114. float * d,
  17115. float * step,
  17116. const float * xp,
  17117. struct ggml_tensor * f,
  17118. struct ggml_cgraph * gb,
  17119. struct ggml_cplan * cplan,
  17120. const int np,
  17121. struct ggml_tensor * ps[],
  17122. bool * cancel,
  17123. ggml_opt_callback callback,
  17124. void * callback_data) {
  17125. int count = 0;
  17126. float width = 0.0f;
  17127. float dg = 0.0f;
  17128. float finit = 0.0f;
  17129. float dginit = 0.0f;
  17130. float dgtest = 0.0f;
  17131. const float dec = 0.5f;
  17132. const float inc = 2.1f;
  17133. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17134. const float accum_norm = 1.0f / (float) n_accum;
  17135. if (*step <= 0.f) {
  17136. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17137. }
  17138. // compute the initial gradient in the search direction
  17139. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17140. // make sure that d points to a descent direction
  17141. if (0 < dginit) {
  17142. return GGML_LINESEARCH_FAIL;
  17143. }
  17144. // initialize local variables
  17145. finit = *fx;
  17146. dgtest = params->lbfgs.ftol*dginit;
  17147. while (true) {
  17148. ggml_vec_cpy_f32(nx, x, xp);
  17149. ggml_vec_mad_f32(nx, x, d, *step);
  17150. // evaluate the function and gradient values
  17151. {
  17152. ggml_opt_set_params(np, ps, x);
  17153. *fx = 0;
  17154. memset(g, 0, sizeof(float)*nx);
  17155. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17156. if (callback) {
  17157. // LBFG-S does not support learning rate -> ignore learning schedule
  17158. float sched = 0;
  17159. callback(callback_data, accum_step, &sched, cancel);
  17160. if (*cancel) {
  17161. return GGML_OPT_RESULT_CANCEL;
  17162. }
  17163. }
  17164. // ggml_graph_reset (gf);
  17165. ggml_set_f32 (f->grad, 1.0f);
  17166. ggml_graph_compute(gb, cplan);
  17167. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17168. *fx += ggml_get_f32_1d(f, 0);
  17169. }
  17170. *fx *= accum_norm;
  17171. }
  17172. ++count;
  17173. if (*fx > finit + (*step)*dgtest) {
  17174. width = dec;
  17175. } else {
  17176. // Armijo condition is satisfied
  17177. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17178. return count;
  17179. }
  17180. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17181. // check the Wolfe condition
  17182. if (dg < params->lbfgs.wolfe * dginit) {
  17183. width = inc;
  17184. } else {
  17185. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17186. // regular Wolfe conditions
  17187. return count;
  17188. }
  17189. if(dg > -params->lbfgs.wolfe*dginit) {
  17190. width = dec;
  17191. } else {
  17192. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17193. return count;
  17194. }
  17195. }
  17196. }
  17197. if (*step < params->lbfgs.min_step) {
  17198. return GGML_LINESEARCH_MINIMUM_STEP;
  17199. }
  17200. if (*step > params->lbfgs.max_step) {
  17201. return GGML_LINESEARCH_MAXIMUM_STEP;
  17202. }
  17203. if (params->lbfgs.max_linesearch <= count) {
  17204. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17205. }
  17206. (*step) *= width;
  17207. }
  17208. GGML_ASSERT(false && "line search failed");
  17209. return GGML_LINESEARCH_FAIL;
  17210. }
  17211. static enum ggml_opt_result ggml_opt_lbfgs(
  17212. struct ggml_context * ctx,
  17213. struct ggml_opt_context * opt,
  17214. struct ggml_opt_params params,
  17215. struct ggml_tensor * f,
  17216. struct ggml_cgraph * gf,
  17217. struct ggml_cgraph * gb,
  17218. ggml_opt_callback callback,
  17219. void * callback_data) {
  17220. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17221. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17222. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17223. return GGML_OPT_RESULT_INVALID_WOLFE;
  17224. }
  17225. }
  17226. const int m = params.lbfgs.m;
  17227. // these will store the parameters we want to optimize
  17228. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17229. int np = 0;
  17230. int nx = 0;
  17231. for (int i = 0; i < gf->n_nodes; ++i) {
  17232. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17233. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17234. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17235. ps[np++] = gf->nodes[i];
  17236. nx += ggml_nelements(gf->nodes[i]);
  17237. }
  17238. }
  17239. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17240. int iter = opt->iter;
  17241. ggml_opt_init(ctx, opt, params, nx);
  17242. opt->iter = iter;
  17243. }
  17244. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17245. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17246. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17247. float * x = opt->lbfgs.x->data; // current parameters
  17248. float * xp = opt->lbfgs.xp->data; // previous parameters
  17249. float * g = opt->lbfgs.g->data; // current gradient
  17250. float * gp = opt->lbfgs.gp->data; // previous gradient
  17251. float * d = opt->lbfgs.d->data; // search direction
  17252. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17253. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17254. const float accum_norm = 1.0f / (float) n_accum;
  17255. float fx = 0.0f; // cost function value
  17256. float xnorm = 0.0f; // ||x||
  17257. float gnorm = 0.0f; // ||g||
  17258. // initialize x from the graph nodes
  17259. ggml_opt_get_params(np, ps, x);
  17260. // the L-BFGS memory
  17261. float * lm_alpha = opt->lbfgs.lmal->data;
  17262. float * lm_ys = opt->lbfgs.lmys->data;
  17263. float * lm_s = opt->lbfgs.lms->data;
  17264. float * lm_y = opt->lbfgs.lmy->data;
  17265. bool cancel = false;
  17266. // evaluate the function value and its gradient
  17267. {
  17268. ggml_opt_set_params(np, ps, x);
  17269. fx = 0;
  17270. memset(g, 0, sizeof(float)*nx);
  17271. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17272. if (callback) {
  17273. // LBFG-S does not support learning rate -> ignore learning schedule
  17274. float sched = 0;
  17275. callback(callback_data, accum_step, &sched, &cancel);
  17276. if (cancel) {
  17277. return GGML_OPT_RESULT_CANCEL;
  17278. }
  17279. }
  17280. // ggml_graph_reset (gf);
  17281. ggml_set_f32 (f->grad, 1.0f);
  17282. ggml_graph_compute(gb, &cplan);
  17283. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17284. fx += ggml_get_f32_1d(f, 0);
  17285. }
  17286. fx *= accum_norm;
  17287. opt->loss_before = fx;
  17288. opt->loss_after = fx;
  17289. }
  17290. // search direction = -gradient
  17291. ggml_vec_neg_f32(nx, d, g);
  17292. // ||x||, ||g||
  17293. ggml_vec_norm_f32(nx, &xnorm, x);
  17294. ggml_vec_norm_f32(nx, &gnorm, g);
  17295. if (xnorm < 1.0f) {
  17296. xnorm = 1.0f;
  17297. }
  17298. // already optimized
  17299. if (gnorm/xnorm <= params.lbfgs.eps) {
  17300. return GGML_OPT_RESULT_OK;
  17301. }
  17302. if (opt->just_initialized) {
  17303. if (pf) {
  17304. pf[0] = fx;
  17305. }
  17306. opt->lbfgs.fx_best = fx;
  17307. // initial step
  17308. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17309. opt->lbfgs.j = 0;
  17310. opt->lbfgs.k = 1;
  17311. opt->lbfgs.end = 0;
  17312. opt->lbfgs.n_no_improvement = 0;
  17313. opt->just_initialized = false;
  17314. }
  17315. float * fx_best = &opt->lbfgs.fx_best;
  17316. float * step = &opt->lbfgs.step;
  17317. int * j = &opt->lbfgs.j;
  17318. int * k = &opt->lbfgs.k;
  17319. int * end = &opt->lbfgs.end;
  17320. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17321. int ls = 0;
  17322. int bound = 0;
  17323. float ys = 0.0f;
  17324. float yy = 0.0f;
  17325. float beta = 0.0f;
  17326. int it = 0;
  17327. while (true) {
  17328. // store the current position and gradient vectors
  17329. ggml_vec_cpy_f32(nx, xp, x);
  17330. ggml_vec_cpy_f32(nx, gp, g);
  17331. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17332. // to determine if the optimization should be cancelled
  17333. // this is a simple change, but not doing this atm, since I don't have a nice
  17334. // way to test and don't want to break something with so many changes lined up
  17335. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17336. if (cancel) {
  17337. return GGML_OPT_RESULT_CANCEL;
  17338. }
  17339. if (ls < 0) {
  17340. // linesearch failed - go back to the previous point and return
  17341. ggml_vec_cpy_f32(nx, x, xp);
  17342. ggml_vec_cpy_f32(nx, g, gp);
  17343. return ls;
  17344. }
  17345. opt->loss_after = fx;
  17346. ggml_vec_norm_f32(nx, &xnorm, x);
  17347. ggml_vec_norm_f32(nx, &gnorm, g);
  17348. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17349. if (xnorm < 1.0f) {
  17350. xnorm = 1.0f;
  17351. }
  17352. if (gnorm/xnorm <= params.lbfgs.eps) {
  17353. // converged
  17354. return GGML_OPT_RESULT_OK;
  17355. }
  17356. // delta-based convergence test
  17357. if (pf != NULL) {
  17358. // need at least params.past iterations to start checking for convergence
  17359. if (params.past <= k[0]) {
  17360. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17361. if (fabsf(rate) < params.delta) {
  17362. return GGML_OPT_RESULT_OK;
  17363. }
  17364. }
  17365. pf[k[0]%params.past] = fx;
  17366. }
  17367. // check for improvement
  17368. if (params.max_no_improvement > 0) {
  17369. if (fx < fx_best[0]) {
  17370. fx_best[0] = fx;
  17371. n_no_improvement[0] = 0;
  17372. } else {
  17373. n_no_improvement[0]++;
  17374. if (n_no_improvement[0] >= params.max_no_improvement) {
  17375. return GGML_OPT_RESULT_OK;
  17376. }
  17377. }
  17378. }
  17379. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17380. // reached the maximum number of iterations
  17381. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17382. }
  17383. // update vectors s and y:
  17384. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17385. // y_{k+1} = g_{k+1} - g_{k}.
  17386. //
  17387. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17388. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17389. // compute scalars ys and yy:
  17390. // ys = y^t \cdot s -> 1 / \rho.
  17391. // yy = y^t \cdot y.
  17392. //
  17393. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17394. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17395. lm_ys[end[0]] = ys;
  17396. // find new search direction
  17397. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17398. bound = (m <= k[0]) ? m : k[0];
  17399. k[0]++;
  17400. it++;
  17401. end[0] = (end[0] + 1)%m;
  17402. // initialize search direction with -g
  17403. ggml_vec_neg_f32(nx, d, g);
  17404. j[0] = end[0];
  17405. for (int i = 0; i < bound; ++i) {
  17406. j[0] = (j[0] + m - 1) % m;
  17407. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17408. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17409. lm_alpha[j[0]] /= lm_ys[j[0]];
  17410. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17411. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17412. }
  17413. ggml_vec_scale_f32(nx, d, ys/yy);
  17414. for (int i = 0; i < bound; ++i) {
  17415. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17416. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17417. beta /= lm_ys[j[0]];
  17418. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17419. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17420. j[0] = (j[0] + 1)%m;
  17421. }
  17422. step[0] = 1.0;
  17423. }
  17424. GGML_ASSERT(false && "lbfgs failed");
  17425. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17426. }
  17427. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17428. struct ggml_opt_params result;
  17429. switch (type) {
  17430. case GGML_OPT_TYPE_ADAM:
  17431. {
  17432. result = (struct ggml_opt_params) {
  17433. .type = GGML_OPT_TYPE_ADAM,
  17434. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17435. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17436. .past = 0,
  17437. .delta = 1e-5f,
  17438. .max_no_improvement = 100,
  17439. .print_forward_graph = true,
  17440. .print_backward_graph = true,
  17441. .n_gradient_accumulation = 1,
  17442. .adam = {
  17443. .n_iter = 10000,
  17444. .sched = 1.000f,
  17445. .decay = 0.0f,
  17446. .decay_min_ndim = 2,
  17447. .alpha = 0.001f,
  17448. .beta1 = 0.9f,
  17449. .beta2 = 0.999f,
  17450. .eps = 1e-8f,
  17451. .eps_f = 1e-5f,
  17452. .eps_g = 1e-3f,
  17453. .gclip = 0.0f,
  17454. },
  17455. };
  17456. } break;
  17457. case GGML_OPT_TYPE_LBFGS:
  17458. {
  17459. result = (struct ggml_opt_params) {
  17460. .type = GGML_OPT_TYPE_LBFGS,
  17461. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17462. .n_threads = 1,
  17463. .past = 0,
  17464. .delta = 1e-5f,
  17465. .max_no_improvement = 0,
  17466. .print_forward_graph = true,
  17467. .print_backward_graph = true,
  17468. .n_gradient_accumulation = 1,
  17469. .lbfgs = {
  17470. .m = 6,
  17471. .n_iter = 100,
  17472. .max_linesearch = 20,
  17473. .eps = 1e-5f,
  17474. .ftol = 1e-4f,
  17475. .wolfe = 0.9f,
  17476. .min_step = 1e-20f,
  17477. .max_step = 1e+20f,
  17478. .linesearch = GGML_LINESEARCH_DEFAULT,
  17479. },
  17480. };
  17481. } break;
  17482. }
  17483. return result;
  17484. }
  17485. GGML_API void ggml_opt_init(
  17486. struct ggml_context * ctx,
  17487. struct ggml_opt_context * opt,
  17488. struct ggml_opt_params params,
  17489. int64_t nx) {
  17490. opt->ctx = ctx;
  17491. opt->params = params;
  17492. opt->iter = 0;
  17493. opt->nx = nx;
  17494. opt->just_initialized = true;
  17495. if (opt->ctx == NULL) {
  17496. struct ggml_init_params ctx_opt_params;
  17497. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17498. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17499. if (opt->params.past > 0) {
  17500. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17501. }
  17502. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17503. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17504. if (opt->params.past > 0) {
  17505. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17506. }
  17507. }
  17508. ctx_opt_params.mem_buffer = NULL;
  17509. ctx_opt_params.no_alloc = false;
  17510. opt->ctx = ggml_init(ctx_opt_params);
  17511. }
  17512. switch (opt->params.type) {
  17513. case GGML_OPT_TYPE_ADAM:
  17514. {
  17515. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17516. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17517. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17518. opt->adam.pf = params.past > 0
  17519. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17520. : NULL;
  17521. ggml_set_zero(opt->adam.m);
  17522. ggml_set_zero(opt->adam.v);
  17523. if (opt->adam.pf) {
  17524. ggml_set_zero(opt->adam.pf);
  17525. }
  17526. } break;
  17527. case GGML_OPT_TYPE_LBFGS:
  17528. {
  17529. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17530. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17531. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17532. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17533. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17534. opt->lbfgs.pf = params.past > 0
  17535. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17536. : NULL;
  17537. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17538. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17539. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17540. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17541. ggml_set_zero(opt->lbfgs.x);
  17542. ggml_set_zero(opt->lbfgs.xp);
  17543. ggml_set_zero(opt->lbfgs.g);
  17544. ggml_set_zero(opt->lbfgs.gp);
  17545. ggml_set_zero(opt->lbfgs.d);
  17546. if (opt->lbfgs.pf) {
  17547. ggml_set_zero(opt->lbfgs.pf);
  17548. }
  17549. ggml_set_zero(opt->lbfgs.lmal);
  17550. ggml_set_zero(opt->lbfgs.lmys);
  17551. ggml_set_zero(opt->lbfgs.lms);
  17552. ggml_set_zero(opt->lbfgs.lmy);
  17553. } break;
  17554. }
  17555. }
  17556. enum ggml_opt_result ggml_opt(
  17557. struct ggml_context * ctx,
  17558. struct ggml_opt_params params,
  17559. struct ggml_tensor * f) {
  17560. bool free_ctx = false;
  17561. if (ctx == NULL) {
  17562. struct ggml_init_params params_ctx = {
  17563. .mem_size = 16*1024*1024,
  17564. .mem_buffer = NULL,
  17565. .no_alloc = false,
  17566. };
  17567. ctx = ggml_init(params_ctx);
  17568. if (ctx == NULL) {
  17569. return GGML_OPT_RESULT_NO_CONTEXT;
  17570. }
  17571. free_ctx = true;
  17572. }
  17573. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17574. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17575. ggml_opt_init(ctx, opt, params, 0);
  17576. result = ggml_opt_resume(ctx, opt, f);
  17577. if (free_ctx) {
  17578. ggml_free(ctx);
  17579. }
  17580. return result;
  17581. }
  17582. enum ggml_opt_result ggml_opt_resume(
  17583. struct ggml_context * ctx,
  17584. struct ggml_opt_context * opt,
  17585. struct ggml_tensor * f) {
  17586. // build forward + backward compute graphs
  17587. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17588. ggml_build_forward_expand(gf, f);
  17589. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17590. ggml_build_backward_expand(ctx, gf, gb, true);
  17591. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17592. }
  17593. enum ggml_opt_result ggml_opt_resume_g(
  17594. struct ggml_context * ctx,
  17595. struct ggml_opt_context * opt,
  17596. struct ggml_tensor * f,
  17597. struct ggml_cgraph * gf,
  17598. struct ggml_cgraph * gb,
  17599. ggml_opt_callback callback,
  17600. void * callback_data) {
  17601. // build forward + backward compute graphs
  17602. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17603. switch (opt->params.type) {
  17604. case GGML_OPT_TYPE_ADAM:
  17605. {
  17606. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17607. } break;
  17608. case GGML_OPT_TYPE_LBFGS:
  17609. {
  17610. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17611. } break;
  17612. }
  17613. if (opt->params.print_forward_graph) {
  17614. ggml_graph_print (gf);
  17615. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17616. }
  17617. if (opt->params.print_backward_graph) {
  17618. ggml_graph_print (gb);
  17619. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17620. }
  17621. return result;
  17622. }
  17623. ////////////////////////////////////////////////////////////////////////////////
  17624. void ggml_set_input(struct ggml_tensor * tensor) {
  17625. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17626. }
  17627. void ggml_set_output(struct ggml_tensor * tensor) {
  17628. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17629. }
  17630. ////////////////////////////////////////////////////////////////////////////////
  17631. void ggml_quantize_init(enum ggml_type type) {
  17632. ggml_critical_section_start();
  17633. switch (type) {
  17634. case GGML_TYPE_IQ2_XXS:
  17635. case GGML_TYPE_IQ2_XS:
  17636. case GGML_TYPE_IQ2_S:
  17637. case GGML_TYPE_IQ1_S:
  17638. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17639. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17640. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17641. default: // nothing
  17642. break;
  17643. }
  17644. ggml_critical_section_end();
  17645. }
  17646. void ggml_quantize_free(void) {
  17647. ggml_critical_section_start();
  17648. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17649. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17650. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17651. iq3xs_free_impl(256);
  17652. ggml_critical_section_end();
  17653. }
  17654. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17655. return
  17656. type == GGML_TYPE_IQ2_XXS ||
  17657. type == GGML_TYPE_IQ2_XS ||
  17658. type == GGML_TYPE_IQ1_S;// ||
  17659. //type == GGML_TYPE_IQ1_M;
  17660. }
  17661. size_t ggml_quantize_chunk(
  17662. enum ggml_type type,
  17663. const float * src,
  17664. void * dst,
  17665. int64_t start,
  17666. int64_t nrows,
  17667. int64_t n_per_row,
  17668. const float * imatrix) {
  17669. const int64_t n = (int64_t) nrows * n_per_row;
  17670. if (ggml_quantize_requires_imatrix(type)) {
  17671. GGML_ASSERT(imatrix != NULL);
  17672. }
  17673. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17674. GGML_ASSERT(start % n_per_row == 0);
  17675. ggml_quantize_init(type); // this is noop if already initialized
  17676. const size_t start_row = start / n_per_row;
  17677. const size_t row_size = ggml_row_size(type, n_per_row);
  17678. size_t result = 0;
  17679. switch (type) {
  17680. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17681. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17682. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17683. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17684. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17685. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17686. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17687. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17688. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17689. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17690. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17691. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17692. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17693. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17694. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17695. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17696. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17697. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17698. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17699. case GGML_TYPE_F16:
  17700. {
  17701. size_t elemsize = sizeof(ggml_fp16_t);
  17702. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17703. result = n * elemsize;
  17704. } break;
  17705. case GGML_TYPE_BF16:
  17706. {
  17707. size_t elemsize = sizeof(ggml_bf16_t);
  17708. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17709. result = n * elemsize;
  17710. } break;
  17711. case GGML_TYPE_F32:
  17712. {
  17713. size_t elemsize = sizeof(float);
  17714. result = n * elemsize;
  17715. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17716. } break;
  17717. default:
  17718. assert(false);
  17719. }
  17720. GGML_ASSERT(result == nrows * row_size);
  17721. return result;
  17722. }
  17723. ////////////////////////////////////////////////////////////////////////////////
  17724. struct gguf_str {
  17725. uint64_t n; // GGUFv2
  17726. char * data;
  17727. };
  17728. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17729. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17730. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17731. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17732. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17733. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17734. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17735. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17736. [GGUF_TYPE_BOOL] = sizeof(bool),
  17737. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17738. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17739. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17740. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17741. [GGUF_TYPE_ARRAY] = 0, // undefined
  17742. };
  17743. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17744. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17745. [GGUF_TYPE_UINT8] = "u8",
  17746. [GGUF_TYPE_INT8] = "i8",
  17747. [GGUF_TYPE_UINT16] = "u16",
  17748. [GGUF_TYPE_INT16] = "i16",
  17749. [GGUF_TYPE_UINT32] = "u32",
  17750. [GGUF_TYPE_INT32] = "i32",
  17751. [GGUF_TYPE_FLOAT32] = "f32",
  17752. [GGUF_TYPE_BOOL] = "bool",
  17753. [GGUF_TYPE_STRING] = "str",
  17754. [GGUF_TYPE_ARRAY] = "arr",
  17755. [GGUF_TYPE_UINT64] = "u64",
  17756. [GGUF_TYPE_INT64] = "i64",
  17757. [GGUF_TYPE_FLOAT64] = "f64",
  17758. };
  17759. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17760. union gguf_value {
  17761. uint8_t uint8;
  17762. int8_t int8;
  17763. uint16_t uint16;
  17764. int16_t int16;
  17765. uint32_t uint32;
  17766. int32_t int32;
  17767. float float32;
  17768. uint64_t uint64;
  17769. int64_t int64;
  17770. double float64;
  17771. bool bool_;
  17772. struct gguf_str str;
  17773. struct {
  17774. enum gguf_type type;
  17775. uint64_t n; // GGUFv2
  17776. void * data;
  17777. } arr;
  17778. };
  17779. struct gguf_kv {
  17780. struct gguf_str key;
  17781. enum gguf_type type;
  17782. union gguf_value value;
  17783. };
  17784. struct gguf_header {
  17785. char magic[4];
  17786. uint32_t version;
  17787. uint64_t n_tensors; // GGUFv2
  17788. uint64_t n_kv; // GGUFv2
  17789. };
  17790. struct gguf_tensor_info {
  17791. struct gguf_str name;
  17792. uint32_t n_dims;
  17793. uint64_t ne[GGML_MAX_DIMS];
  17794. enum ggml_type type;
  17795. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17796. // for writing API
  17797. const void * data;
  17798. size_t size;
  17799. };
  17800. struct gguf_context {
  17801. struct gguf_header header;
  17802. struct gguf_kv * kv;
  17803. struct gguf_tensor_info * infos;
  17804. size_t alignment;
  17805. size_t offset; // offset of `data` from beginning of file
  17806. size_t size; // size of `data` in bytes
  17807. //uint8_t * padding;
  17808. void * data;
  17809. };
  17810. static size_t gguf_type_size(enum gguf_type type) {
  17811. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17812. return GGUF_TYPE_SIZE[type];
  17813. }
  17814. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17815. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17816. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17817. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17818. GGML_ASSERT(info->ne[i] > 0);
  17819. }
  17820. // prevent overflow for total number of elements
  17821. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17822. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17823. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17824. }
  17825. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17826. const size_t n = fread(dst, 1, size, file);
  17827. *offset += n;
  17828. return n == size;
  17829. }
  17830. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17831. p->n = 0;
  17832. p->data = NULL;
  17833. bool ok = true;
  17834. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17835. // early exit if string length is invalid, prevents from integer overflow
  17836. if (p->n == SIZE_MAX) {
  17837. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17838. return false;
  17839. }
  17840. p->data = GGML_CALLOC(p->n + 1, 1);
  17841. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17842. return ok;
  17843. }
  17844. static void gguf_free_kv(struct gguf_kv * kv) {
  17845. if (kv->key.data) {
  17846. GGML_FREE(kv->key.data);
  17847. }
  17848. if (kv->type == GGUF_TYPE_STRING) {
  17849. if (kv->value.str.data) {
  17850. GGML_FREE(kv->value.str.data);
  17851. }
  17852. }
  17853. if (kv->type == GGUF_TYPE_ARRAY) {
  17854. if (kv->value.arr.data) {
  17855. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17856. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17857. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17858. if (str->data) {
  17859. GGML_FREE(str->data);
  17860. }
  17861. }
  17862. }
  17863. GGML_FREE(kv->value.arr.data);
  17864. }
  17865. }
  17866. }
  17867. struct gguf_context * gguf_init_empty(void) {
  17868. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17869. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17870. ctx->header.version = GGUF_VERSION;
  17871. ctx->header.n_tensors = 0;
  17872. ctx->header.n_kv = 0;
  17873. ctx->kv = NULL;
  17874. ctx->infos = NULL;
  17875. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17876. ctx->offset = 0;
  17877. ctx->size = 0;
  17878. ctx->data = NULL;
  17879. return ctx;
  17880. }
  17881. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17882. FILE * file = ggml_fopen(fname, "rb");
  17883. if (!file) {
  17884. return NULL;
  17885. }
  17886. // offset from start of file
  17887. size_t offset = 0;
  17888. char magic[4];
  17889. // check the magic before making allocations
  17890. {
  17891. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17892. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17893. if (magic[i] != GGUF_MAGIC[i]) {
  17894. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17895. fclose(file);
  17896. return NULL;
  17897. }
  17898. }
  17899. }
  17900. bool ok = true;
  17901. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17902. // read the header
  17903. {
  17904. strncpy(ctx->header.magic, magic, 4);
  17905. ctx->kv = NULL;
  17906. ctx->infos = NULL;
  17907. ctx->data = NULL;
  17908. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17909. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17910. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17911. if (ctx->header.version == 1) {
  17912. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17913. fclose(file);
  17914. gguf_free(ctx);
  17915. return NULL;
  17916. }
  17917. // sanity-checks to prevent from integer/buffer overflows
  17918. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17919. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17920. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17921. if (!ok) {
  17922. fprintf(stderr, "%s: failed to read header\n", __func__);
  17923. fclose(file);
  17924. gguf_free(ctx);
  17925. return NULL;
  17926. }
  17927. }
  17928. // read the kv pairs
  17929. {
  17930. const uint64_t n_kv = ctx->header.n_kv;
  17931. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17932. ctx->header.n_kv = 0;
  17933. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17934. for (uint64_t i = 0; i < n_kv; ++i) {
  17935. struct gguf_kv * kv = &ctx->kv[i];
  17936. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17937. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17938. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17939. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17940. switch (kv->type) {
  17941. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17942. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17943. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17944. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17945. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17946. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17947. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17948. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17949. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17950. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17951. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17952. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17953. case GGUF_TYPE_ARRAY:
  17954. {
  17955. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17956. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17957. switch (kv->value.arr.type) {
  17958. case GGUF_TYPE_UINT8:
  17959. case GGUF_TYPE_INT8:
  17960. case GGUF_TYPE_UINT16:
  17961. case GGUF_TYPE_INT16:
  17962. case GGUF_TYPE_UINT32:
  17963. case GGUF_TYPE_INT32:
  17964. case GGUF_TYPE_FLOAT32:
  17965. case GGUF_TYPE_UINT64:
  17966. case GGUF_TYPE_INT64:
  17967. case GGUF_TYPE_FLOAT64:
  17968. case GGUF_TYPE_BOOL:
  17969. {
  17970. // prevent from integer overflow in the malloc below
  17971. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17972. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17973. fclose(file);
  17974. gguf_free(ctx);
  17975. return NULL;
  17976. }
  17977. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17978. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17979. } break;
  17980. case GGUF_TYPE_STRING:
  17981. {
  17982. // prevent from integer overflow in the malloc below
  17983. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17984. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17985. fclose(file);
  17986. gguf_free(ctx);
  17987. return NULL;
  17988. }
  17989. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17990. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17991. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17992. }
  17993. } break;
  17994. case GGUF_TYPE_ARRAY:
  17995. default: GGML_ASSERT(false && "invalid type"); break;
  17996. }
  17997. } break;
  17998. default: GGML_ASSERT(false && "invalid type");
  17999. }
  18000. if (!ok) {
  18001. break;
  18002. }
  18003. ctx->header.n_kv++;
  18004. }
  18005. if (!ok) {
  18006. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18007. fclose(file);
  18008. gguf_free(ctx);
  18009. return NULL;
  18010. }
  18011. }
  18012. // read the tensor infos
  18013. if (ctx->header.n_tensors > 0) {
  18014. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18015. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18016. struct gguf_tensor_info * info = &ctx->infos[i];
  18017. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18018. info->ne[j] = 1;
  18019. }
  18020. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18021. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18022. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18023. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18024. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18025. }
  18026. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18027. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18028. // TODO: return an error instead of crashing with GGML_ASSERT
  18029. gguf_tensor_info_sanitize(info);
  18030. // make sure there is no duplicated tensor names
  18031. for (uint64_t j = 0; j < i; ++j) {
  18032. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18033. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18034. ok = false;
  18035. }
  18036. }
  18037. if (!ok) {
  18038. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18039. fclose(file);
  18040. gguf_free(ctx);
  18041. return NULL;
  18042. }
  18043. }
  18044. }
  18045. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18046. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18047. if (alignment_idx != -1) {
  18048. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18049. }
  18050. // we require the data section to be aligned, so take into account any padding
  18051. {
  18052. const size_t offset_pad = offset % ctx->alignment;
  18053. if (offset_pad != 0) {
  18054. offset += ctx->alignment - offset_pad;
  18055. fseek(file, offset, SEEK_SET);
  18056. }
  18057. }
  18058. // store the current file offset - this is where the data section starts
  18059. ctx->offset = offset;
  18060. // compute the total size of the data section, taking into account the alignment
  18061. {
  18062. ctx->size = 0;
  18063. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18064. struct gguf_tensor_info * info = &ctx->infos[i];
  18065. const int64_t ne =
  18066. (int64_t) info->ne[0] *
  18067. (int64_t) info->ne[1] *
  18068. (int64_t) info->ne[2] *
  18069. (int64_t) info->ne[3];
  18070. if (ne % ggml_blck_size(info->type) != 0) {
  18071. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18072. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18073. fclose(file);
  18074. gguf_free(ctx);
  18075. return NULL;
  18076. }
  18077. const size_t size_cur = ggml_row_size(info->type, ne);
  18078. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18079. }
  18080. }
  18081. // load the tensor data only if requested
  18082. if (params.ctx != NULL) {
  18083. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18084. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18085. // the ggml_tensor structs to the appropriate locations in the binary blob
  18086. // compute the exact size needed for the new ggml_context
  18087. const size_t mem_size =
  18088. params.no_alloc ?
  18089. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18090. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18091. struct ggml_init_params pdata = {
  18092. .mem_size = mem_size,
  18093. .mem_buffer = NULL,
  18094. .no_alloc = params.no_alloc,
  18095. };
  18096. *params.ctx = ggml_init(pdata);
  18097. struct ggml_context * ctx_data = *params.ctx;
  18098. struct ggml_tensor * data = NULL;
  18099. if (!params.no_alloc) {
  18100. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18101. ok = ok && data != NULL;
  18102. // read the binary blob with the tensor data
  18103. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18104. if (!ok) {
  18105. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18106. fclose(file);
  18107. ggml_free(ctx_data);
  18108. gguf_free(ctx);
  18109. return NULL;
  18110. }
  18111. ctx->data = data->data;
  18112. }
  18113. ggml_set_no_alloc(ctx_data, true);
  18114. // create the tensors
  18115. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18116. const int64_t ne[GGML_MAX_DIMS] = {
  18117. ctx->infos[i].ne[0],
  18118. ctx->infos[i].ne[1],
  18119. ctx->infos[i].ne[2],
  18120. ctx->infos[i].ne[3],
  18121. };
  18122. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18123. ok = ok && cur != NULL;
  18124. if (!ok) {
  18125. break;
  18126. }
  18127. ggml_set_name(cur, ctx->infos[i].name.data);
  18128. // point the data member to the appropriate location in the binary blob using the tensor infos
  18129. if (!params.no_alloc) {
  18130. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18131. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18132. }
  18133. }
  18134. if (!ok) {
  18135. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18136. fclose(file);
  18137. ggml_free(ctx_data);
  18138. gguf_free(ctx);
  18139. return NULL;
  18140. }
  18141. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18142. }
  18143. fclose(file);
  18144. return ctx;
  18145. }
  18146. void gguf_free(struct gguf_context * ctx) {
  18147. if (ctx == NULL) {
  18148. return;
  18149. }
  18150. if (ctx->kv) {
  18151. // free string memory - not great..
  18152. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18153. gguf_free_kv(&ctx->kv[i]);
  18154. }
  18155. GGML_FREE(ctx->kv);
  18156. }
  18157. if (ctx->infos) {
  18158. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18159. struct gguf_tensor_info * info = &ctx->infos[i];
  18160. if (info->name.data) {
  18161. GGML_FREE(info->name.data);
  18162. }
  18163. }
  18164. GGML_FREE(ctx->infos);
  18165. }
  18166. GGML_FREE(ctx);
  18167. }
  18168. const char * gguf_type_name(enum gguf_type type) {
  18169. return GGUF_TYPE_NAME[type];
  18170. }
  18171. int gguf_get_version(const struct gguf_context * ctx) {
  18172. return ctx->header.version;
  18173. }
  18174. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18175. return ctx->alignment;
  18176. }
  18177. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18178. return ctx->offset;
  18179. }
  18180. void * gguf_get_data(const struct gguf_context * ctx) {
  18181. return ctx->data;
  18182. }
  18183. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18184. return ctx->header.n_kv;
  18185. }
  18186. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18187. // return -1 if key not found
  18188. int keyfound = -1;
  18189. const int n_kv = gguf_get_n_kv(ctx);
  18190. for (int i = 0; i < n_kv; ++i) {
  18191. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18192. keyfound = i;
  18193. break;
  18194. }
  18195. }
  18196. return keyfound;
  18197. }
  18198. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18199. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18200. return ctx->kv[key_id].key.data;
  18201. }
  18202. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18203. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18204. return ctx->kv[key_id].type;
  18205. }
  18206. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18207. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18208. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18209. return ctx->kv[key_id].value.arr.type;
  18210. }
  18211. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18212. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18213. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18214. return ctx->kv[key_id].value.arr.data;
  18215. }
  18216. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18217. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18218. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18219. struct gguf_kv * kv = &ctx->kv[key_id];
  18220. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18221. return str->data;
  18222. }
  18223. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18224. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18225. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18226. return ctx->kv[key_id].value.arr.n;
  18227. }
  18228. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18229. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18230. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18231. return ctx->kv[key_id].value.uint8;
  18232. }
  18233. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18234. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18235. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18236. return ctx->kv[key_id].value.int8;
  18237. }
  18238. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18241. return ctx->kv[key_id].value.uint16;
  18242. }
  18243. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18246. return ctx->kv[key_id].value.int16;
  18247. }
  18248. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18251. return ctx->kv[key_id].value.uint32;
  18252. }
  18253. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18256. return ctx->kv[key_id].value.int32;
  18257. }
  18258. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18261. return ctx->kv[key_id].value.float32;
  18262. }
  18263. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18266. return ctx->kv[key_id].value.uint64;
  18267. }
  18268. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18271. return ctx->kv[key_id].value.int64;
  18272. }
  18273. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18276. return ctx->kv[key_id].value.float64;
  18277. }
  18278. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18281. return ctx->kv[key_id].value.bool_;
  18282. }
  18283. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18286. return ctx->kv[key_id].value.str.data;
  18287. }
  18288. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18290. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18291. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18292. return &ctx->kv[key_id].value;
  18293. }
  18294. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18295. return ctx->header.n_tensors;
  18296. }
  18297. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18298. // return -1 if tensor not found
  18299. int tensorfound = -1;
  18300. const int n_tensors = gguf_get_n_tensors(ctx);
  18301. for (int i = 0; i < n_tensors; ++i) {
  18302. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18303. tensorfound = i;
  18304. break;
  18305. }
  18306. }
  18307. return tensorfound;
  18308. }
  18309. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18310. return ctx->infos[i].offset;
  18311. }
  18312. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18313. return ctx->infos[i].name.data;
  18314. }
  18315. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18316. return ctx->infos[i].type;
  18317. }
  18318. // returns the index
  18319. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18320. const int idx = gguf_find_key(ctx, key);
  18321. if (idx >= 0) {
  18322. return idx;
  18323. }
  18324. const int n_kv = gguf_get_n_kv(ctx);
  18325. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18326. ctx->kv[n_kv].key.n = strlen(key);
  18327. ctx->kv[n_kv].key.data = strdup(key);
  18328. ctx->header.n_kv++;
  18329. return n_kv;
  18330. }
  18331. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18332. const int idx = gguf_find_key(ctx, key);
  18333. if (idx >= 0) {
  18334. const int n_kv = gguf_get_n_kv(ctx);
  18335. gguf_free_kv(&ctx->kv[idx]);
  18336. for (int i = idx; i < n_kv-1; ++i) {
  18337. ctx->kv[i] = ctx->kv[i+1];
  18338. }
  18339. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18340. ctx->header.n_kv--;
  18341. }
  18342. }
  18343. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18344. const int idx = gguf_get_or_add_key(ctx, key);
  18345. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18346. ctx->kv[idx].value.uint8 = val;
  18347. }
  18348. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18349. const int idx = gguf_get_or_add_key(ctx, key);
  18350. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18351. ctx->kv[idx].value.int8 = val;
  18352. }
  18353. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18354. const int idx = gguf_get_or_add_key(ctx, key);
  18355. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18356. ctx->kv[idx].value.uint16 = val;
  18357. }
  18358. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18359. const int idx = gguf_get_or_add_key(ctx, key);
  18360. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18361. ctx->kv[idx].value.int16 = val;
  18362. }
  18363. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18364. const int idx = gguf_get_or_add_key(ctx, key);
  18365. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18366. ctx->kv[idx].value.uint32 = val;
  18367. }
  18368. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18369. const int idx = gguf_get_or_add_key(ctx, key);
  18370. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18371. ctx->kv[idx].value.int32 = val;
  18372. }
  18373. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18374. const int idx = gguf_get_or_add_key(ctx, key);
  18375. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18376. ctx->kv[idx].value.float32 = val;
  18377. }
  18378. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18379. const int idx = gguf_get_or_add_key(ctx, key);
  18380. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18381. ctx->kv[idx].value.uint64 = val;
  18382. }
  18383. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18384. const int idx = gguf_get_or_add_key(ctx, key);
  18385. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18386. ctx->kv[idx].value.int64 = val;
  18387. }
  18388. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18389. const int idx = gguf_get_or_add_key(ctx, key);
  18390. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18391. ctx->kv[idx].value.float64 = val;
  18392. }
  18393. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18394. const int idx = gguf_get_or_add_key(ctx, key);
  18395. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18396. ctx->kv[idx].value.bool_ = val;
  18397. }
  18398. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18399. const int idx = gguf_get_or_add_key(ctx, key);
  18400. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18401. ctx->kv[idx].value.str.n = strlen(val);
  18402. ctx->kv[idx].value.str.data = strdup(val);
  18403. }
  18404. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18405. const int idx = gguf_get_or_add_key(ctx, key);
  18406. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18407. ctx->kv[idx].value.arr.type = type;
  18408. ctx->kv[idx].value.arr.n = n;
  18409. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18410. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18411. }
  18412. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18413. const int idx = gguf_get_or_add_key(ctx, key);
  18414. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18415. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18416. ctx->kv[idx].value.arr.n = n;
  18417. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18418. for (int i = 0; i < n; i++) {
  18419. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18420. str->n = strlen(data[i]);
  18421. str->data = strdup(data[i]);
  18422. }
  18423. }
  18424. // set or add KV pairs from another context
  18425. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18426. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18427. switch (src->kv[i].type) {
  18428. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18429. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18430. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18431. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18432. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18433. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18434. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18435. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18436. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18437. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18438. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18439. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18440. case GGUF_TYPE_ARRAY:
  18441. {
  18442. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18443. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18444. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18445. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18446. }
  18447. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18448. GGML_FREE((void *)data);
  18449. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18450. GGML_ASSERT(false && "nested arrays not supported");
  18451. } else {
  18452. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18453. }
  18454. } break;
  18455. default: GGML_ASSERT(false && "invalid type"); break;
  18456. }
  18457. }
  18458. }
  18459. void gguf_add_tensor(
  18460. struct gguf_context * ctx,
  18461. const struct ggml_tensor * tensor) {
  18462. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18463. GGML_ASSERT(false && "duplicated tensor name");
  18464. }
  18465. const int idx = ctx->header.n_tensors;
  18466. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18467. ctx->infos[idx].name.n = strlen(tensor->name);
  18468. ctx->infos[idx].name.data = strdup(tensor->name);
  18469. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18470. ctx->infos[idx].ne[i] = 1;
  18471. }
  18472. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18473. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18474. ctx->infos[idx].ne[i] = tensor->ne[i];
  18475. }
  18476. ctx->infos[idx].type = tensor->type;
  18477. ctx->infos[idx].offset = 0;
  18478. ctx->infos[idx].data = tensor->data;
  18479. ctx->infos[idx].size = ggml_nbytes(tensor);
  18480. if (ctx->header.n_tensors > 0) {
  18481. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18482. }
  18483. ctx->header.n_tensors++;
  18484. }
  18485. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18486. const int idx = gguf_find_tensor(ctx, name);
  18487. if (idx < 0) {
  18488. GGML_ASSERT(false && "tensor not found");
  18489. }
  18490. ctx->infos[idx].type = type;
  18491. }
  18492. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18493. const int idx = gguf_find_tensor(ctx, name);
  18494. if (idx < 0) {
  18495. GGML_ASSERT(false && "tensor not found");
  18496. }
  18497. ctx->infos[idx].data = data;
  18498. ctx->infos[idx].size = size;
  18499. // update offsets
  18500. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18501. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18502. }
  18503. }
  18504. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18505. // fwrite(&val->n, sizeof(val->n), 1, file);
  18506. // fwrite(val->data, sizeof(char), val->n, file);
  18507. //}
  18508. //
  18509. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18510. // fwrite(val, sizeof(char), size, file);
  18511. //}
  18512. struct gguf_buf {
  18513. void * data;
  18514. size_t size;
  18515. size_t offset;
  18516. };
  18517. static struct gguf_buf gguf_buf_init(size_t size) {
  18518. struct gguf_buf buf = {
  18519. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18520. /*buf.size =*/ size,
  18521. /*buf.offset =*/ 0,
  18522. };
  18523. return buf;
  18524. }
  18525. static void gguf_buf_free(struct gguf_buf buf) {
  18526. if (buf.data) {
  18527. GGML_FREE(buf.data);
  18528. }
  18529. }
  18530. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18531. if (buf->offset + size > buf->size) {
  18532. buf->size = 1.5*(buf->offset + size);
  18533. if (buf->data) {
  18534. buf->data = realloc(buf->data, buf->size);
  18535. }
  18536. }
  18537. }
  18538. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18539. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18540. if (buf->data) {
  18541. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18542. }
  18543. buf->offset += sizeof(val->n);
  18544. if (buf->data) {
  18545. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18546. }
  18547. buf->offset += val->n;
  18548. }
  18549. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18550. gguf_buf_grow(buf, el_size);
  18551. if (buf->data) {
  18552. memcpy((char *) buf->data + buf->offset, val, el_size);
  18553. }
  18554. buf->offset += el_size;
  18555. }
  18556. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18557. // write header
  18558. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18559. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18560. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18561. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18562. // write key-value pairs
  18563. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18564. struct gguf_kv * kv = &ctx->kv[i];
  18565. gguf_bwrite_str(buf, &kv->key);
  18566. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18567. switch (kv->type) {
  18568. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18569. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18570. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18571. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18572. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18573. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18574. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18575. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18576. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18577. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18578. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18579. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18580. case GGUF_TYPE_ARRAY:
  18581. {
  18582. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18583. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18584. switch (kv->value.arr.type) {
  18585. case GGUF_TYPE_UINT8:
  18586. case GGUF_TYPE_INT8:
  18587. case GGUF_TYPE_UINT16:
  18588. case GGUF_TYPE_INT16:
  18589. case GGUF_TYPE_UINT32:
  18590. case GGUF_TYPE_INT32:
  18591. case GGUF_TYPE_FLOAT32:
  18592. case GGUF_TYPE_UINT64:
  18593. case GGUF_TYPE_INT64:
  18594. case GGUF_TYPE_FLOAT64:
  18595. case GGUF_TYPE_BOOL:
  18596. {
  18597. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18598. } break;
  18599. case GGUF_TYPE_STRING:
  18600. {
  18601. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18602. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18603. }
  18604. } break;
  18605. case GGUF_TYPE_ARRAY:
  18606. default: GGML_ASSERT(false && "invalid type"); break;
  18607. }
  18608. } break;
  18609. default: GGML_ASSERT(false && "invalid type");
  18610. }
  18611. }
  18612. // write tensor infos
  18613. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18614. struct gguf_tensor_info * info = &ctx->infos[i];
  18615. gguf_bwrite_str(buf, &info->name);
  18616. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18617. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18618. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18619. }
  18620. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18621. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18622. }
  18623. // we require the data section to be aligned, so take into account any padding
  18624. {
  18625. const size_t offset = buf->offset;
  18626. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18627. if (offset_pad != offset) {
  18628. uint8_t pad = 0;
  18629. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18630. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18631. }
  18632. }
  18633. }
  18634. if (only_meta) {
  18635. return;
  18636. }
  18637. size_t offset = 0;
  18638. // write tensor data
  18639. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18640. struct gguf_tensor_info * info = &ctx->infos[i];
  18641. const size_t size = info->size;
  18642. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18643. gguf_bwrite_el(buf, info->data, size);
  18644. if (size_pad != size) {
  18645. uint8_t pad = 0;
  18646. for (size_t j = 0; j < size_pad - size; ++j) {
  18647. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18648. }
  18649. }
  18650. GGML_ASSERT(offset == info->offset);
  18651. offset += size_pad;
  18652. }
  18653. }
  18654. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18655. FILE * file = ggml_fopen(fname, "wb");
  18656. if (!file) {
  18657. GGML_ASSERT(false && "failed to open file for writing");
  18658. }
  18659. struct gguf_buf buf = gguf_buf_init(16*1024);
  18660. gguf_write_to_buf(ctx, &buf, only_meta);
  18661. fwrite(buf.data, 1, buf.offset, file);
  18662. gguf_buf_free(buf);
  18663. fclose(file);
  18664. }
  18665. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18666. // no allocs - only compute size
  18667. struct gguf_buf buf = gguf_buf_init(0);
  18668. gguf_write_to_buf(ctx, &buf, true);
  18669. return buf.offset;
  18670. }
  18671. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18672. struct gguf_buf buf = gguf_buf_init(16*1024);
  18673. gguf_write_to_buf(ctx, &buf, true);
  18674. memcpy(data, buf.data, buf.offset);
  18675. gguf_buf_free(buf);
  18676. }
  18677. ////////////////////////////////////////////////////////////////////////////////
  18678. int ggml_cpu_has_avx(void) {
  18679. #if defined(__AVX__)
  18680. return 1;
  18681. #else
  18682. return 0;
  18683. #endif
  18684. }
  18685. int ggml_cpu_has_avx_vnni(void) {
  18686. #if defined(__AVXVNNI__)
  18687. return 1;
  18688. #else
  18689. return 0;
  18690. #endif
  18691. }
  18692. int ggml_cpu_has_avx2(void) {
  18693. #if defined(__AVX2__)
  18694. return 1;
  18695. #else
  18696. return 0;
  18697. #endif
  18698. }
  18699. int ggml_cpu_has_avx512(void) {
  18700. #if defined(__AVX512F__)
  18701. return 1;
  18702. #else
  18703. return 0;
  18704. #endif
  18705. }
  18706. int ggml_cpu_has_avx512_vbmi(void) {
  18707. #if defined(__AVX512VBMI__)
  18708. return 1;
  18709. #else
  18710. return 0;
  18711. #endif
  18712. }
  18713. int ggml_cpu_has_avx512_vnni(void) {
  18714. #if defined(__AVX512VNNI__)
  18715. return 1;
  18716. #else
  18717. return 0;
  18718. #endif
  18719. }
  18720. int ggml_cpu_has_avx512_bf16(void) {
  18721. #if defined(__AVX512BF16__)
  18722. return 1;
  18723. #else
  18724. return 0;
  18725. #endif
  18726. }
  18727. int ggml_cpu_has_fma(void) {
  18728. #if defined(__FMA__)
  18729. return 1;
  18730. #else
  18731. return 0;
  18732. #endif
  18733. }
  18734. int ggml_cpu_has_neon(void) {
  18735. #if defined(__ARM_NEON)
  18736. return 1;
  18737. #else
  18738. return 0;
  18739. #endif
  18740. }
  18741. int ggml_cpu_has_sve(void) {
  18742. #if defined(__ARM_FEATURE_SVE)
  18743. // TODO: Currently, SVE 256 bit is only supported.
  18744. GGML_ASSERT(svcntb() == QK8_0);
  18745. return 1;
  18746. #else
  18747. return 0;
  18748. #endif
  18749. }
  18750. int ggml_cpu_has_arm_fma(void) {
  18751. #if defined(__ARM_FEATURE_FMA)
  18752. return 1;
  18753. #else
  18754. return 0;
  18755. #endif
  18756. }
  18757. int ggml_cpu_has_metal(void) {
  18758. #if defined(GGML_USE_METAL)
  18759. return 1;
  18760. #else
  18761. return 0;
  18762. #endif
  18763. }
  18764. int ggml_cpu_has_f16c(void) {
  18765. #if defined(__F16C__)
  18766. return 1;
  18767. #else
  18768. return 0;
  18769. #endif
  18770. }
  18771. int ggml_cpu_has_fp16_va(void) {
  18772. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18773. return 1;
  18774. #else
  18775. return 0;
  18776. #endif
  18777. }
  18778. int ggml_cpu_has_wasm_simd(void) {
  18779. #if defined(__wasm_simd128__)
  18780. return 1;
  18781. #else
  18782. return 0;
  18783. #endif
  18784. }
  18785. int ggml_cpu_has_blas(void) {
  18786. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18787. return 1;
  18788. #else
  18789. return 0;
  18790. #endif
  18791. }
  18792. int ggml_cpu_has_cuda(void) {
  18793. #if defined(GGML_USE_CUDA)
  18794. return 1;
  18795. #else
  18796. return 0;
  18797. #endif
  18798. }
  18799. int ggml_cpu_has_clblast(void) {
  18800. #if defined(GGML_USE_CLBLAST)
  18801. return 1;
  18802. #else
  18803. return 0;
  18804. #endif
  18805. }
  18806. int ggml_cpu_has_vulkan(void) {
  18807. #if defined(GGML_USE_VULKAN)
  18808. return 1;
  18809. #else
  18810. return 0;
  18811. #endif
  18812. }
  18813. int ggml_cpu_has_kompute(void) {
  18814. #if defined(GGML_USE_KOMPUTE)
  18815. return 1;
  18816. #else
  18817. return 0;
  18818. #endif
  18819. }
  18820. int ggml_cpu_has_sycl(void) {
  18821. #if defined(GGML_USE_SYCL)
  18822. return 1;
  18823. #else
  18824. return 0;
  18825. #endif
  18826. }
  18827. int ggml_cpu_has_rpc(void) {
  18828. #if defined(GGML_USE_RPC)
  18829. return 1;
  18830. #else
  18831. return 0;
  18832. #endif
  18833. }
  18834. int ggml_cpu_has_gpublas(void) {
  18835. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18836. ggml_cpu_has_sycl();
  18837. }
  18838. int ggml_cpu_has_sse3(void) {
  18839. #if defined(__SSE3__)
  18840. return 1;
  18841. #else
  18842. return 0;
  18843. #endif
  18844. }
  18845. int ggml_cpu_has_ssse3(void) {
  18846. #if defined(__SSSE3__)
  18847. return 1;
  18848. #else
  18849. return 0;
  18850. #endif
  18851. }
  18852. int ggml_cpu_has_vsx(void) {
  18853. #if defined(__POWER9_VECTOR__)
  18854. return 1;
  18855. #else
  18856. return 0;
  18857. #endif
  18858. }
  18859. int ggml_cpu_has_matmul_int8(void) {
  18860. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18861. return 1;
  18862. #else
  18863. return 0;
  18864. #endif
  18865. }
  18866. ////////////////////////////////////////////////////////////////////////////////