test-sampling.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. #include "ggml.h"
  2. #include "llama.h"
  3. #ifdef NDEBUG
  4. #undef NDEBUG
  5. #endif
  6. #include <algorithm>
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. static void dump(const llama_token_data_array * cur_p) {
  11. for (size_t i = 0; i < cur_p->size; i++) {
  12. printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
  13. }
  14. }
  15. #define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
  16. #define APPLY(__cnstr, __cur_p) do { \
  17. auto * cnstr = (__cnstr); \
  18. llama_sampler_apply(cnstr, (__cur_p)); \
  19. llama_sampler_free(cnstr); \
  20. } while(0)
  21. static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
  22. const size_t n_vocab = probs.size();
  23. std::vector<llama_token_data> cur;
  24. cur.reserve(n_vocab);
  25. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  26. const float logit = logf(probs[token_id]);
  27. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  28. }
  29. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  30. APPLY(llama_sampler_init_softmax(), &cur_p);
  31. DUMP(&cur_p);
  32. APPLY(llama_sampler_init_top_k(k), &cur_p);
  33. DUMP(&cur_p);
  34. GGML_ASSERT(cur_p.size == expected_probs.size());
  35. for (size_t i = 0; i < cur_p.size; i++) {
  36. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
  37. }
  38. }
  39. static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
  40. const size_t n_vocab = probs.size();
  41. std::vector<llama_token_data> cur;
  42. cur.reserve(n_vocab);
  43. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  44. const float logit = logf(probs[token_id]);
  45. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  46. }
  47. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  48. APPLY(llama_sampler_init_softmax(), &cur_p);
  49. DUMP(&cur_p);
  50. APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
  51. DUMP(&cur_p);
  52. GGML_ASSERT(cur_p.size == expected_probs.size());
  53. for (size_t i = 0; i < cur_p.size; i++) {
  54. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  55. }
  56. }
  57. static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
  58. const size_t n_vocab = probs.size();
  59. std::vector<llama_token_data> cur;
  60. cur.reserve(n_vocab);
  61. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  62. const float logit = logf(probs[token_id]);
  63. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  64. }
  65. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  66. DUMP(&cur_p);
  67. APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
  68. DUMP(&cur_p);
  69. GGML_ASSERT(cur_p.size == expected_probs.size());
  70. for (size_t i = 0; i < cur_p.size; i++) {
  71. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  72. }
  73. }
  74. static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
  75. const size_t n_vocab = probs.size();
  76. std::vector<llama_token_data> cur;
  77. cur.reserve(n_vocab);
  78. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  79. const float logit = logf(probs[token_id]);
  80. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  81. }
  82. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  83. DUMP(&cur_p);
  84. APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
  85. DUMP(&cur_p);
  86. APPLY(llama_sampler_init_softmax(), &cur_p);
  87. GGML_ASSERT(cur_p.size == expected_probs.size());
  88. for (size_t i = 0; i < cur_p.size; i++) {
  89. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  90. }
  91. }
  92. static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t) {
  93. const size_t n_vocab = probs.size();
  94. std::vector<llama_token_data> cur;
  95. cur.reserve(n_vocab);
  96. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  97. const float logit = logf(probs[token_id]);
  98. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  99. }
  100. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  101. APPLY(llama_sampler_init_softmax(), &cur_p);
  102. DUMP(&cur_p);
  103. APPLY(llama_sampler_init_xtc(p, t, 0, 0), &cur_p);
  104. DUMP(&cur_p);
  105. GGML_ASSERT(cur_p.size == expected_probs.size());
  106. for (size_t i = 0; i < cur_p.size; i++) {
  107. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
  108. }
  109. }
  110. static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
  111. const size_t n_vocab = probs.size();
  112. std::vector<llama_token_data> cur;
  113. cur.reserve(n_vocab);
  114. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  115. const float logit = logf(probs[token_id]);
  116. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  117. }
  118. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  119. DUMP(&cur_p);
  120. APPLY(llama_sampler_init_typical(p, 1), &cur_p);
  121. DUMP(&cur_p);
  122. GGML_ASSERT(cur_p.size == expected_probs.size());
  123. for (size_t i = 0; i < cur_p.size; i++) {
  124. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  125. }
  126. }
  127. static void test_penalties(
  128. const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
  129. const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
  130. ) {
  131. GGML_ASSERT(probs.size() == expected_probs.size());
  132. const size_t n_vocab = probs.size();
  133. std::vector<llama_token_data> cur;
  134. cur.reserve(n_vocab);
  135. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  136. const float logit = logf(probs[token_id]);
  137. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  138. }
  139. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  140. auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
  141. for (size_t i = 0; i < last_tokens.size(); i++) {
  142. llama_sampler_accept(sampler, last_tokens[i]);
  143. }
  144. APPLY(llama_sampler_init_softmax(), &cur_p);
  145. DUMP(&cur_p);
  146. APPLY(sampler, &cur_p);
  147. APPLY(llama_sampler_init_softmax(), &cur_p);
  148. DUMP(&cur_p);
  149. GGML_ASSERT(cur_p.size == expected_probs.size());
  150. for (size_t i = 0; i < cur_p.size; i++) {
  151. GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
  152. }
  153. }
  154. static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
  155. ) {
  156. std::vector<llama_token_data> cur;
  157. cur.reserve(n_vocab);
  158. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  159. const float logit = logf(token_id);
  160. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  161. }
  162. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  163. llama_token min_token_id = 0;
  164. const llama_token max_token_id = n_vocab-1;
  165. for (auto s : samplers_sequence) {
  166. switch (s){
  167. case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
  168. case 'f': GGML_ABORT("tail_free test not implemented");
  169. case 'y': GGML_ABORT("typical test not implemented");
  170. case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
  171. case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
  172. case 't': GGML_ABORT("temperature test not implemented");
  173. default : GGML_ABORT("Unknown sampler");
  174. }
  175. APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
  176. const int size = cur_p.size;
  177. if (s == 'k') {
  178. const int expected_size = std::min(size, top_k);
  179. min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
  180. GGML_ASSERT(size == expected_size);
  181. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  182. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  183. } else if (s == 'p') {
  184. const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
  185. const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
  186. min_token_id = n_vocab;
  187. int expected_size = 0;
  188. int cumsum = 0;
  189. do { // do-while because always at least one token is sampled
  190. min_token_id--;
  191. expected_size++;
  192. cumsum += min_token_id;
  193. } while (cumsum < softmax_numerator_target);
  194. // token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
  195. if (min_token_id == 1) {
  196. min_token_id--;
  197. expected_size += 1;
  198. }
  199. GGML_ASSERT(size == expected_size);
  200. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  201. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  202. } else if (s == 'm') {
  203. int expected_size = ceilf((1.0f-min_p) * n_vocab);
  204. expected_size = std::max(expected_size, 1);
  205. expected_size = std::min(expected_size, size);
  206. min_token_id = floorf(min_p * n_vocab);
  207. min_token_id = std::max(min_token_id, 1);
  208. min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
  209. min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
  210. GGML_ASSERT(size == expected_size);
  211. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  212. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  213. } else {
  214. GGML_ABORT("fatal error");
  215. }
  216. }
  217. printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%05d top_p=%f min_p=%f\n",
  218. samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
  219. }
  220. static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) {
  221. std::vector<llama_token_data> cur(data.size());
  222. std::copy(data.begin(), data.end(), cur.begin());
  223. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  224. llama_sampler_apply(cnstr, &cur_p);
  225. llama_sampler_reset(cnstr);
  226. const int64_t t_start = ggml_time_us();
  227. for (int i = 0; i < n_iter; i++) {
  228. std::copy(data.begin(), data.end(), cur.begin());
  229. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  230. llama_sampler_apply(cnstr, &cur_p);
  231. llama_sampler_reset(cnstr);
  232. }
  233. const int64_t t_end = ggml_time_us();
  234. llama_sampler_free(cnstr);
  235. printf("%-43s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
  236. }
  237. #define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))
  238. static void test_perf() {
  239. const int n_vocab = 1 << 17;
  240. std::vector<llama_token_data> data;
  241. data.reserve(n_vocab);
  242. for (int i = 0; i < n_vocab; i++) {
  243. const float logit = 2.0f*((float)(rand())/RAND_MAX - 0.5f);
  244. data.emplace_back(llama_token_data{i, logit, 0.0f});
  245. }
  246. BENCH(llama_sampler_init_top_k (40), data, 32);
  247. BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
  248. BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
  249. BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
  250. BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
  251. BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
  252. BENCH(llama_sampler_init_softmax (), data, 32);
  253. }
  254. int main(void) {
  255. ggml_time_init();
  256. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
  257. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
  258. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
  259. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
  260. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
  261. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
  262. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
  263. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
  264. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
  265. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
  266. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f);
  267. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f);
  268. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f);
  269. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f);
  270. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
  271. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
  272. printf("XTC should:\n");
  273. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.1f}, 0.99f, 0.09f);
  274. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.2f, 0.1f}, 0.99f, 0.19f);
  275. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.3f, 0.2f, 0.1f}, 0.99f, 0.29f);
  276. printf("XTC should not:\n");
  277. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.39f);
  278. test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
  279. test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
  280. test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
  281. test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
  282. test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
  283. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
  284. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
  285. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
  286. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
  287. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
  288. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
  289. test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
  290. test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
  291. test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
  292. test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
  293. test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
  294. test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
  295. test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f);
  296. test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
  297. test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
  298. test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
  299. test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
  300. test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
  301. test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
  302. test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
  303. test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
  304. test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
  305. test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
  306. test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
  307. test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
  308. test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
  309. test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
  310. test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
  311. test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
  312. test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
  313. printf("OK\n");
  314. test_perf();
  315. return 0;
  316. }