llama-bench.cpp 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. // utils
  23. static uint64_t get_time_ns() {
  24. using clock = std::chrono::high_resolution_clock;
  25. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  26. }
  27. template<class T>
  28. static std::string join(const std::vector<T> & values, const std::string & delim) {
  29. std::ostringstream str;
  30. for (size_t i = 0; i < values.size(); i++) {
  31. str << values[i];
  32. if (i < values.size() - 1) {
  33. str << delim;
  34. }
  35. }
  36. return str.str();
  37. }
  38. template<class T>
  39. static std::vector<T> split(const std::string & str, char delim) {
  40. std::vector<T> values;
  41. std::istringstream str_stream(str);
  42. std::string token;
  43. while (std::getline(str_stream, token, delim)) {
  44. T value;
  45. std::istringstream token_stream(token);
  46. token_stream >> value;
  47. values.push_back(value);
  48. }
  49. return values;
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. }
  98. #endif
  99. // TODO: other platforms
  100. return id;
  101. }
  102. static std::string get_gpu_info() {
  103. std::string id;
  104. #ifdef GGML_USE_CUBLAS
  105. int count = ggml_cuda_get_device_count();
  106. for (int i = 0; i < count; i++) {
  107. char buf[128];
  108. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  109. id += buf;
  110. if (i < count - 1) {
  111. id += "/";
  112. }
  113. }
  114. #endif
  115. // TODO: other backends
  116. return id;
  117. }
  118. // command line params
  119. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  120. static const char * output_format_str(output_formats format) {
  121. switch (format) {
  122. case CSV: return "csv";
  123. case JSON: return "json";
  124. case MARKDOWN: return "md";
  125. case SQL: return "sql";
  126. default: GGML_ASSERT(!"invalid output format");
  127. }
  128. }
  129. static const char * split_mode_str(llama_split_mode mode) {
  130. switch (mode) {
  131. case LLAMA_SPLIT_NONE: return "none";
  132. case LLAMA_SPLIT_LAYER: return "layer";
  133. case LLAMA_SPLIT_ROW: return "row";
  134. default: GGML_ASSERT(!"invalid split mode");
  135. }
  136. }
  137. struct cmd_params {
  138. std::vector<std::string> model;
  139. std::vector<int> n_prompt;
  140. std::vector<int> n_gen;
  141. std::vector<int> n_batch;
  142. std::vector<ggml_type> type_k;
  143. std::vector<ggml_type> type_v;
  144. std::vector<int> n_threads;
  145. std::vector<int> n_gpu_layers;
  146. std::vector<llama_split_mode> split_mode;
  147. std::vector<int> main_gpu;
  148. std::vector<bool> no_kv_offload;
  149. std::vector<bool> mul_mat_q;
  150. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  151. int reps;
  152. bool verbose;
  153. output_formats output_format;
  154. };
  155. static const cmd_params cmd_params_defaults = {
  156. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  157. /* n_prompt */ {512},
  158. /* n_gen */ {128},
  159. /* n_batch */ {512},
  160. /* type_k */ {GGML_TYPE_F16},
  161. /* type_v */ {GGML_TYPE_F16},
  162. /* n_threads */ {get_num_physical_cores()},
  163. /* n_gpu_layers */ {99},
  164. /* split_mode */ {LLAMA_SPLIT_LAYER},
  165. /* main_gpu */ {0},
  166. /* no_kv_offload */ {false},
  167. /* mul_mat_q */ {true},
  168. /* tensor_split */ {{}},
  169. /* reps */ 5,
  170. /* verbose */ false,
  171. /* output_format */ MARKDOWN
  172. };
  173. static void print_usage(int /* argc */, char ** argv) {
  174. printf("usage: %s [options]\n", argv[0]);
  175. printf("\n");
  176. printf("options:\n");
  177. printf(" -h, --help\n");
  178. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  179. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  180. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  181. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  182. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  183. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  184. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  185. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  186. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  187. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  188. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  189. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  190. printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
  191. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  192. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  193. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  194. printf("\n");
  195. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  196. }
  197. static ggml_type ggml_type_from_name(const std::string & s) {
  198. if (s == "f16") {
  199. return GGML_TYPE_F16;
  200. }
  201. if (s == "q8_0") {
  202. return GGML_TYPE_Q8_0;
  203. }
  204. if (s == "q4_0") {
  205. return GGML_TYPE_Q4_0;
  206. }
  207. if (s == "q4_1") {
  208. return GGML_TYPE_Q4_1;
  209. }
  210. if (s == "q5_0") {
  211. return GGML_TYPE_Q5_0;
  212. }
  213. if (s == "q5_1") {
  214. return GGML_TYPE_Q5_1;
  215. }
  216. return GGML_TYPE_COUNT;
  217. }
  218. static cmd_params parse_cmd_params(int argc, char ** argv) {
  219. cmd_params params;
  220. std::string arg;
  221. bool invalid_param = false;
  222. const std::string arg_prefix = "--";
  223. const char split_delim = ',';
  224. params.verbose = cmd_params_defaults.verbose;
  225. params.output_format = cmd_params_defaults.output_format;
  226. params.reps = cmd_params_defaults.reps;
  227. for (int i = 1; i < argc; i++) {
  228. arg = argv[i];
  229. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  230. std::replace(arg.begin(), arg.end(), '_', '-');
  231. }
  232. if (arg == "-h" || arg == "--help") {
  233. print_usage(argc, argv);
  234. exit(0);
  235. } else if (arg == "-m" || arg == "--model") {
  236. if (++i >= argc) {
  237. invalid_param = true;
  238. break;
  239. }
  240. auto p = split<std::string>(argv[i], split_delim);
  241. params.model.insert(params.model.end(), p.begin(), p.end());
  242. } else if (arg == "-p" || arg == "--n-prompt") {
  243. if (++i >= argc) {
  244. invalid_param = true;
  245. break;
  246. }
  247. auto p = split<int>(argv[i], split_delim);
  248. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  249. } else if (arg == "-n" || arg == "--n-gen") {
  250. if (++i >= argc) {
  251. invalid_param = true;
  252. break;
  253. }
  254. auto p = split<int>(argv[i], split_delim);
  255. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  256. } else if (arg == "-b" || arg == "--batch-size") {
  257. if (++i >= argc) {
  258. invalid_param = true;
  259. break;
  260. }
  261. auto p = split<int>(argv[i], split_delim);
  262. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  263. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  264. if (++i >= argc) {
  265. invalid_param = true;
  266. break;
  267. }
  268. auto p = split<std::string>(argv[i], split_delim);
  269. std::vector<ggml_type> types;
  270. for (const auto & t : p) {
  271. ggml_type gt = ggml_type_from_name(t);
  272. if (gt == GGML_TYPE_COUNT) {
  273. invalid_param = true;
  274. break;
  275. }
  276. types.push_back(gt);
  277. }
  278. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  279. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  280. if (++i >= argc) {
  281. invalid_param = true;
  282. break;
  283. }
  284. auto p = split<std::string>(argv[i], split_delim);
  285. std::vector<ggml_type> types;
  286. for (const auto & t : p) {
  287. ggml_type gt = ggml_type_from_name(t);
  288. if (gt == GGML_TYPE_COUNT) {
  289. invalid_param = true;
  290. break;
  291. }
  292. types.push_back(gt);
  293. }
  294. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  295. } else if (arg == "-t" || arg == "--threads") {
  296. if (++i >= argc) {
  297. invalid_param = true;
  298. break;
  299. }
  300. auto p = split<int>(argv[i], split_delim);
  301. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  302. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  303. if (++i >= argc) {
  304. invalid_param = true;
  305. break;
  306. }
  307. auto p = split<int>(argv[i], split_delim);
  308. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  309. } else if (arg == "-sm" || arg == "--split-mode") {
  310. if (++i >= argc) {
  311. invalid_param = true;
  312. break;
  313. }
  314. auto p = split<std::string>(argv[i], split_delim);
  315. std::vector<llama_split_mode> modes;
  316. for (const auto & m : p) {
  317. llama_split_mode mode;
  318. if (m == "none") {
  319. mode = LLAMA_SPLIT_NONE;
  320. } else if (m == "layer") {
  321. mode = LLAMA_SPLIT_LAYER;
  322. } else if (m == "row") {
  323. mode = LLAMA_SPLIT_ROW;
  324. } else {
  325. invalid_param = true;
  326. break;
  327. }
  328. modes.push_back(mode);
  329. }
  330. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  331. } else if (arg == "-mg" || arg == "--main-gpu") {
  332. if (++i >= argc) {
  333. invalid_param = true;
  334. break;
  335. }
  336. params.main_gpu = split<int>(argv[i], split_delim);
  337. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  338. if (++i >= argc) {
  339. invalid_param = true;
  340. break;
  341. }
  342. auto p = split<bool>(argv[i], split_delim);
  343. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  344. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  345. if (++i >= argc) {
  346. invalid_param = true;
  347. break;
  348. }
  349. auto p = split<bool>(argv[i], split_delim);
  350. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  351. } else if (arg == "-ts" || arg == "--tensor-split") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. break;
  355. }
  356. for (auto ts : split<std::string>(argv[i], split_delim)) {
  357. // split string by ; and /
  358. const std::regex regex{R"([;/]+)"};
  359. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  360. std::vector<std::string> split_arg{it, {}};
  361. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  362. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  363. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  364. if (i < split_arg.size()) {
  365. tensor_split[i] = std::stof(split_arg[i]);
  366. } else {
  367. tensor_split[i] = 0.0f;
  368. }
  369. }
  370. params.tensor_split.push_back(tensor_split);
  371. }
  372. } else if (arg == "-r" || arg == "--repetitions") {
  373. if (++i >= argc) {
  374. invalid_param = true;
  375. break;
  376. }
  377. params.reps = std::stoi(argv[i]);
  378. } else if (arg == "-o" || arg == "--output") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. if (argv[i] == std::string("csv")) {
  384. params.output_format = CSV;
  385. } else if (argv[i] == std::string("json")) {
  386. params.output_format = JSON;
  387. } else if (argv[i] == std::string("md")) {
  388. params.output_format = MARKDOWN;
  389. } else if (argv[i] == std::string("sql")) {
  390. params.output_format = SQL;
  391. } else {
  392. invalid_param = true;
  393. break;
  394. }
  395. } else if (arg == "-v" || arg == "--verbose") {
  396. params.verbose = true;
  397. } else {
  398. invalid_param = true;
  399. break;
  400. }
  401. }
  402. if (invalid_param) {
  403. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  404. print_usage(argc, argv);
  405. exit(1);
  406. }
  407. // set defaults
  408. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  409. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  410. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  411. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  412. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  413. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  414. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  415. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  416. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  417. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  418. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  419. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  420. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  421. return params;
  422. }
  423. struct cmd_params_instance {
  424. std::string model;
  425. int n_prompt;
  426. int n_gen;
  427. int n_batch;
  428. ggml_type type_k;
  429. ggml_type type_v;
  430. int n_threads;
  431. int n_gpu_layers;
  432. llama_split_mode split_mode;
  433. int main_gpu;
  434. bool no_kv_offload;
  435. bool mul_mat_q;
  436. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  437. llama_model_params to_llama_mparams() const {
  438. llama_model_params mparams = llama_model_default_params();
  439. mparams.n_gpu_layers = n_gpu_layers;
  440. mparams.split_mode = split_mode;
  441. mparams.main_gpu = main_gpu;
  442. mparams.tensor_split = tensor_split.data();
  443. return mparams;
  444. }
  445. bool equal_mparams(const cmd_params_instance & other) const {
  446. return model == other.model &&
  447. n_gpu_layers == other.n_gpu_layers &&
  448. split_mode == other.split_mode &&
  449. main_gpu == other.main_gpu &&
  450. tensor_split == other.tensor_split;
  451. }
  452. llama_context_params to_llama_cparams() const {
  453. llama_context_params cparams = llama_context_default_params();
  454. cparams.n_ctx = n_prompt + n_gen;
  455. cparams.n_batch = n_batch;
  456. cparams.type_k = type_k;
  457. cparams.type_v = type_v;
  458. cparams.mul_mat_q = mul_mat_q;
  459. cparams.offload_kqv = !no_kv_offload;
  460. return cparams;
  461. }
  462. };
  463. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  464. std::vector<cmd_params_instance> instances;
  465. // this ordering minimizes the number of times that each model needs to be reloaded
  466. for (const auto & m : params.model)
  467. for (const auto & nl : params.n_gpu_layers)
  468. for (const auto & sm : params.split_mode)
  469. for (const auto & mg : params.main_gpu)
  470. for (const auto & ts : params.tensor_split)
  471. for (const auto & nb : params.n_batch)
  472. for (const auto & tk : params.type_k)
  473. for (const auto & tv : params.type_v)
  474. for (const auto & mmq : params.mul_mat_q)
  475. for (const auto & nkvo : params.no_kv_offload)
  476. for (const auto & nt : params.n_threads) {
  477. for (const auto & n_prompt : params.n_prompt) {
  478. if (n_prompt == 0) {
  479. continue;
  480. }
  481. cmd_params_instance instance = {
  482. /* .model = */ m,
  483. /* .n_prompt = */ n_prompt,
  484. /* .n_gen = */ 0,
  485. /* .n_batch = */ nb,
  486. /* .type_k = */ tk,
  487. /* .type_v = */ tv,
  488. /* .n_threads = */ nt,
  489. /* .n_gpu_layers = */ nl,
  490. /* .split_mode = */ sm,
  491. /* .main_gpu = */ mg,
  492. /* .no_kv_offload= */ nkvo,
  493. /* .mul_mat_q = */ mmq,
  494. /* .tensor_split = */ ts,
  495. };
  496. instances.push_back(instance);
  497. }
  498. for (const auto & n_gen : params.n_gen) {
  499. if (n_gen == 0) {
  500. continue;
  501. }
  502. cmd_params_instance instance = {
  503. /* .model = */ m,
  504. /* .n_prompt = */ 0,
  505. /* .n_gen = */ n_gen,
  506. /* .n_batch = */ nb,
  507. /* .type_k = */ tk,
  508. /* .type_v = */ tv,
  509. /* .n_threads = */ nt,
  510. /* .n_gpu_layers = */ nl,
  511. /* .split_mode = */ sm,
  512. /* .main_gpu = */ mg,
  513. /* .no_kv_offload= */ nkvo,
  514. /* .mul_mat_q = */ mmq,
  515. /* .tensor_split = */ ts,
  516. };
  517. instances.push_back(instance);
  518. }
  519. }
  520. return instances;
  521. }
  522. struct test {
  523. static const std::string build_commit;
  524. static const int build_number;
  525. static const bool cuda;
  526. static const bool opencl;
  527. static const bool vulkan;
  528. static const bool metal;
  529. static const bool gpu_blas;
  530. static const bool blas;
  531. static const std::string cpu_info;
  532. static const std::string gpu_info;
  533. std::string model_filename;
  534. std::string model_type;
  535. uint64_t model_size;
  536. uint64_t model_n_params;
  537. int n_batch;
  538. int n_threads;
  539. ggml_type type_k;
  540. ggml_type type_v;
  541. int n_gpu_layers;
  542. llama_split_mode split_mode;
  543. int main_gpu;
  544. bool no_kv_offload;
  545. bool mul_mat_q;
  546. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  547. int n_prompt;
  548. int n_gen;
  549. std::string test_time;
  550. std::vector<uint64_t> samples_ns;
  551. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  552. model_filename = inst.model;
  553. char buf[128];
  554. llama_model_desc(lmodel, buf, sizeof(buf));
  555. model_type = buf;
  556. model_size = llama_model_size(lmodel);
  557. model_n_params = llama_model_n_params(lmodel);
  558. n_batch = inst.n_batch;
  559. n_threads = inst.n_threads;
  560. type_k = inst.type_k;
  561. type_v = inst.type_v;
  562. n_gpu_layers = inst.n_gpu_layers;
  563. split_mode = inst.split_mode;
  564. main_gpu = inst.main_gpu;
  565. no_kv_offload = inst.no_kv_offload;
  566. mul_mat_q = inst.mul_mat_q;
  567. tensor_split = inst.tensor_split;
  568. n_prompt = inst.n_prompt;
  569. n_gen = inst.n_gen;
  570. // RFC 3339 date-time format
  571. time_t t = time(NULL);
  572. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  573. test_time = buf;
  574. (void) ctx;
  575. }
  576. uint64_t avg_ns() const {
  577. return ::avg(samples_ns);
  578. }
  579. uint64_t stdev_ns() const {
  580. return ::stdev(samples_ns);
  581. }
  582. std::vector<double> get_ts() const {
  583. int n_tokens = n_prompt + n_gen;
  584. std::vector<double> ts;
  585. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  586. return ts;
  587. }
  588. double avg_ts() const {
  589. return ::avg(get_ts());
  590. }
  591. double stdev_ts() const {
  592. return ::stdev(get_ts());
  593. }
  594. static std::string get_backend() {
  595. if (cuda) {
  596. return GGML_CUDA_NAME;
  597. }
  598. if (opencl) {
  599. return "OpenCL";
  600. }
  601. if (vulkan) {
  602. return "Vulkan";
  603. }
  604. if (metal) {
  605. return "Metal";
  606. }
  607. if (gpu_blas) {
  608. return "GPU BLAS";
  609. }
  610. if (blas) {
  611. return "BLAS";
  612. }
  613. return "CPU";
  614. }
  615. static const std::vector<std::string> & get_fields() {
  616. static const std::vector<std::string> fields = {
  617. "build_commit", "build_number",
  618. "cuda", "opencl", "vulkan", "metal", "gpu_blas", "blas",
  619. "cpu_info", "gpu_info",
  620. "model_filename", "model_type", "model_size", "model_n_params",
  621. "n_batch", "n_threads", "type_k", "type_v",
  622. "n_gpu_layers", "split_mode",
  623. "main_gpu", "no_kv_offload",
  624. "mul_mat_q", "tensor_split",
  625. "n_prompt", "n_gen", "test_time",
  626. "avg_ns", "stddev_ns",
  627. "avg_ts", "stddev_ts"
  628. };
  629. return fields;
  630. }
  631. enum field_type {STRING, BOOL, INT, FLOAT};
  632. static field_type get_field_type(const std::string & field) {
  633. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  634. field == "model_size" || field == "model_n_params" ||
  635. field == "n_gpu_layers" || field == "main_gpu" ||
  636. field == "n_prompt" || field == "n_gen" ||
  637. field == "avg_ns" || field == "stddev_ns") {
  638. return INT;
  639. }
  640. if (field == "cuda" || field == "opencl" || field == "vulkan"|| field == "metal" || field == "gpu_blas" || field == "blas" ||
  641. field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
  642. return BOOL;
  643. }
  644. if (field == "avg_ts" || field == "stddev_ts") {
  645. return FLOAT;
  646. }
  647. return STRING;
  648. }
  649. std::vector<std::string> get_values() const {
  650. std::string tensor_split_str;
  651. int max_nonzero = 0;
  652. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  653. if (tensor_split[i] > 0) {
  654. max_nonzero = i;
  655. }
  656. }
  657. for (int i = 0; i <= max_nonzero; i++) {
  658. char buf[32];
  659. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  660. tensor_split_str += buf;
  661. if (i < max_nonzero) {
  662. tensor_split_str += "/";
  663. }
  664. }
  665. std::vector<std::string> values = {
  666. build_commit, std::to_string(build_number),
  667. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  668. cpu_info, gpu_info,
  669. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  670. std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  671. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  672. std::to_string(main_gpu), std::to_string(no_kv_offload),
  673. std::to_string(mul_mat_q), tensor_split_str,
  674. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  675. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  676. std::to_string(avg_ts()), std::to_string(stdev_ts())
  677. };
  678. return values;
  679. }
  680. std::map<std::string, std::string> get_map() const {
  681. std::map<std::string, std::string> map;
  682. auto fields = get_fields();
  683. auto values = get_values();
  684. std::transform(fields.begin(), fields.end(), values.begin(),
  685. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  686. return map;
  687. }
  688. };
  689. const std::string test::build_commit = LLAMA_COMMIT;
  690. const int test::build_number = LLAMA_BUILD_NUMBER;
  691. const bool test::cuda = !!ggml_cpu_has_cublas();
  692. const bool test::opencl = !!ggml_cpu_has_clblast();
  693. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  694. const bool test::metal = !!ggml_cpu_has_metal();
  695. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  696. const bool test::blas = !!ggml_cpu_has_blas();
  697. const std::string test::cpu_info = get_cpu_info();
  698. const std::string test::gpu_info = get_gpu_info();
  699. struct printer {
  700. virtual ~printer() {}
  701. FILE * fout;
  702. virtual void print_header(const cmd_params & params) { (void) params; }
  703. virtual void print_test(const test & t) = 0;
  704. virtual void print_footer() { }
  705. };
  706. struct csv_printer : public printer {
  707. static std::string escape_csv(const std::string & field) {
  708. std::string escaped = "\"";
  709. for (auto c : field) {
  710. if (c == '"') {
  711. escaped += "\"";
  712. }
  713. escaped += c;
  714. }
  715. escaped += "\"";
  716. return escaped;
  717. }
  718. void print_header(const cmd_params & params) override {
  719. std::vector<std::string> fields = test::get_fields();
  720. fprintf(fout, "%s\n", join(fields, ",").c_str());
  721. (void) params;
  722. }
  723. void print_test(const test & t) override {
  724. std::vector<std::string> values = t.get_values();
  725. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  726. fprintf(fout, "%s\n", join(values, ",").c_str());
  727. }
  728. };
  729. struct json_printer : public printer {
  730. bool first = true;
  731. static std::string escape_json(const std::string & value) {
  732. std::string escaped;
  733. for (auto c : value) {
  734. if (c == '"') {
  735. escaped += "\\\"";
  736. } else if (c == '\\') {
  737. escaped += "\\\\";
  738. } else if (c <= 0x1f) {
  739. char buf[8];
  740. snprintf(buf, sizeof(buf), "\\u%04x", c);
  741. escaped += buf;
  742. } else {
  743. escaped += c;
  744. }
  745. }
  746. return escaped;
  747. }
  748. static std::string format_value(const std::string & field, const std::string & value) {
  749. switch (test::get_field_type(field)) {
  750. case test::STRING:
  751. return "\"" + escape_json(value) + "\"";
  752. case test::BOOL:
  753. return value == "0" ? "false" : "true";
  754. default:
  755. return value;
  756. }
  757. }
  758. void print_header(const cmd_params & params) override {
  759. fprintf(fout, "[\n");
  760. (void) params;
  761. }
  762. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  763. assert(fields.size() == values.size());
  764. for (size_t i = 0; i < fields.size(); i++) {
  765. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  766. }
  767. }
  768. void print_test(const test & t) override {
  769. if (first) {
  770. first = false;
  771. } else {
  772. fprintf(fout, ",\n");
  773. }
  774. fprintf(fout, " {\n");
  775. print_fields(test::get_fields(), t.get_values());
  776. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  777. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  778. fprintf(fout, " }");
  779. fflush(fout);
  780. }
  781. void print_footer() override {
  782. fprintf(fout, "\n]\n");
  783. }
  784. };
  785. struct markdown_printer : public printer {
  786. std::vector<std::string> fields;
  787. static int get_field_width(const std::string & field) {
  788. if (field == "model") {
  789. return -30;
  790. }
  791. if (field == "t/s") {
  792. return 16;
  793. }
  794. if (field == "size" || field == "params") {
  795. return 10;
  796. }
  797. if (field == "n_gpu_layers") {
  798. return 3;
  799. }
  800. int width = std::max((int)field.length(), 10);
  801. if (test::get_field_type(field) == test::STRING) {
  802. return -width;
  803. }
  804. return width;
  805. }
  806. static std::string get_field_display_name(const std::string & field) {
  807. if (field == "n_gpu_layers") {
  808. return "ngl";
  809. }
  810. if (field == "split_mode") {
  811. return "sm";
  812. }
  813. if (field == "n_threads") {
  814. return "threads";
  815. }
  816. if (field == "mul_mat_q") {
  817. return "mmq";
  818. }
  819. if (field == "no_kv_offload") {
  820. return "nkvo";
  821. }
  822. if (field == "tensor_split") {
  823. return "ts";
  824. }
  825. return field;
  826. }
  827. void print_header(const cmd_params & params) override {
  828. // select fields to print
  829. fields.push_back("model");
  830. fields.push_back("size");
  831. fields.push_back("params");
  832. fields.push_back("backend");
  833. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  834. if (!is_cpu_backend) {
  835. fields.push_back("n_gpu_layers");
  836. }
  837. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  838. fields.push_back("n_threads");
  839. }
  840. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  841. fields.push_back("n_batch");
  842. }
  843. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  844. fields.push_back("type_k");
  845. }
  846. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  847. fields.push_back("type_v");
  848. }
  849. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  850. fields.push_back("main_gpu");
  851. }
  852. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  853. fields.push_back("split_mode");
  854. }
  855. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  856. fields.push_back("mul_mat_q");
  857. }
  858. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  859. fields.push_back("no_kv_offload");
  860. }
  861. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  862. fields.push_back("tensor_split");
  863. }
  864. fields.push_back("test");
  865. fields.push_back("t/s");
  866. fprintf(fout, "|");
  867. for (const auto & field : fields) {
  868. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  869. }
  870. fprintf(fout, "\n");
  871. fprintf(fout, "|");
  872. for (const auto & field : fields) {
  873. int width = get_field_width(field);
  874. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  875. }
  876. fprintf(fout, "\n");
  877. }
  878. void print_test(const test & t) override {
  879. std::map<std::string, std::string> vmap = t.get_map();
  880. fprintf(fout, "|");
  881. for (const auto & field : fields) {
  882. std::string value;
  883. char buf[128];
  884. if (field == "model") {
  885. value = t.model_type;
  886. } else if (field == "size") {
  887. if (t.model_size < 1024*1024*1024) {
  888. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  889. } else {
  890. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  891. }
  892. value = buf;
  893. } else if (field == "params") {
  894. if (t.model_n_params < 1000*1000*1000) {
  895. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  896. } else {
  897. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  898. }
  899. value = buf;
  900. } else if (field == "backend") {
  901. value = test::get_backend();
  902. } else if (field == "test") {
  903. if (t.n_prompt > 0 && t.n_gen == 0) {
  904. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  905. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  906. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  907. } else {
  908. assert(false);
  909. exit(1);
  910. }
  911. value = buf;
  912. } else if (field == "t/s") {
  913. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  914. value = buf;
  915. } else if (vmap.find(field) != vmap.end()) {
  916. value = vmap.at(field);
  917. } else {
  918. assert(false);
  919. exit(1);
  920. }
  921. int width = get_field_width(field);
  922. if (field == "t/s") {
  923. // HACK: the utf-8 character is 2 bytes
  924. width += 1;
  925. }
  926. fprintf(fout, " %*s |", width, value.c_str());
  927. }
  928. fprintf(fout, "\n");
  929. }
  930. void print_footer() override {
  931. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  932. }
  933. };
  934. struct sql_printer : public printer {
  935. static std::string get_sql_field_type(const std::string & field) {
  936. switch (test::get_field_type(field)) {
  937. case test::STRING:
  938. return "TEXT";
  939. case test::BOOL:
  940. case test::INT:
  941. return "INTEGER";
  942. case test::FLOAT:
  943. return "REAL";
  944. default:
  945. assert(false);
  946. exit(1);
  947. }
  948. }
  949. void print_header(const cmd_params & params) override {
  950. std::vector<std::string> fields = test::get_fields();
  951. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  952. for (size_t i = 0; i < fields.size(); i++) {
  953. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  954. }
  955. fprintf(fout, ");\n");
  956. fprintf(fout, "\n");
  957. (void) params;
  958. }
  959. void print_test(const test & t) override {
  960. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  961. fprintf(fout, "VALUES (");
  962. std::vector<std::string> values = t.get_values();
  963. for (size_t i = 0; i < values.size(); i++) {
  964. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  965. }
  966. fprintf(fout, ");\n");
  967. }
  968. };
  969. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  970. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  971. int n_processed = 0;
  972. llama_set_n_threads(ctx, n_threads, n_threads);
  973. while (n_processed < n_prompt) {
  974. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  975. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  976. n_processed += n_tokens;
  977. }
  978. }
  979. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  980. llama_token token = llama_token_bos(llama_get_model(ctx));
  981. llama_set_n_threads(ctx, n_threads, n_threads);
  982. for (int i = 0; i < n_gen; i++) {
  983. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  984. }
  985. }
  986. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  987. (void) level;
  988. (void) text;
  989. (void) user_data;
  990. }
  991. int main(int argc, char ** argv) {
  992. // try to set locale for unicode characters in markdown
  993. setlocale(LC_CTYPE, ".UTF-8");
  994. #if !defined(NDEBUG)
  995. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  996. #endif
  997. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  998. fprintf(stderr, "warning: debug build, performance may be affected\n");
  999. #endif
  1000. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1001. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1002. #endif
  1003. cmd_params params = parse_cmd_params(argc, argv);
  1004. // initialize llama.cpp
  1005. if (!params.verbose) {
  1006. llama_log_set(llama_null_log_callback, NULL);
  1007. }
  1008. bool numa = false;
  1009. llama_backend_init(numa);
  1010. // initialize printer
  1011. std::unique_ptr<printer> p;
  1012. switch (params.output_format) {
  1013. case CSV:
  1014. p.reset(new csv_printer());
  1015. break;
  1016. case JSON:
  1017. p.reset(new json_printer());
  1018. break;
  1019. case MARKDOWN:
  1020. p.reset(new markdown_printer());
  1021. break;
  1022. case SQL:
  1023. p.reset(new sql_printer());
  1024. break;
  1025. default:
  1026. assert(false);
  1027. exit(1);
  1028. }
  1029. p->fout = stdout;
  1030. p->print_header(params);
  1031. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1032. llama_model * lmodel = nullptr;
  1033. const cmd_params_instance * prev_inst = nullptr;
  1034. for (const auto & inst : params_instances) {
  1035. // keep the same model between tests when possible
  1036. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1037. if (lmodel) {
  1038. llama_free_model(lmodel);
  1039. }
  1040. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1041. if (lmodel == NULL) {
  1042. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1043. return 1;
  1044. }
  1045. prev_inst = &inst;
  1046. }
  1047. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1048. if (ctx == NULL) {
  1049. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1050. llama_free_model(lmodel);
  1051. return 1;
  1052. }
  1053. test t(inst, lmodel, ctx);
  1054. llama_kv_cache_clear(ctx);
  1055. // warmup run
  1056. if (t.n_prompt > 0) {
  1057. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  1058. }
  1059. if (t.n_gen > 0) {
  1060. test_gen(ctx, 1, 0, t.n_threads);
  1061. }
  1062. for (int i = 0; i < params.reps; i++) {
  1063. llama_kv_cache_clear(ctx);
  1064. uint64_t t_start = get_time_ns();
  1065. if (t.n_prompt > 0) {
  1066. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1067. }
  1068. if (t.n_gen > 0) {
  1069. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1070. }
  1071. uint64_t t_ns = get_time_ns() - t_start;
  1072. t.samples_ns.push_back(t_ns);
  1073. }
  1074. p->print_test(t);
  1075. llama_print_timings(ctx);
  1076. llama_free(ctx);
  1077. }
  1078. llama_free_model(lmodel);
  1079. p->print_footer();
  1080. llama_backend_free();
  1081. return 0;
  1082. }