1
0

ggml-vulkan.cpp 226 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176
  1. #include "ggml-vulkan.h"
  2. #ifdef VK_RUN_TESTS
  3. #include <chrono>
  4. #endif
  5. #include <vulkan/vulkan.hpp>
  6. #include <algorithm>
  7. #include <cmath>
  8. #include <iostream>
  9. #include <iomanip>
  10. #include <limits>
  11. #include <tuple>
  12. #include <vector>
  13. #include <sstream>
  14. #include <utility>
  15. #include "ggml.h"
  16. #include "ggml-backend-impl.h"
  17. #include "ggml-vulkan-shaders.hpp"
  18. #define VK_API_VERSION VK_API_VERSION_1_2
  19. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  20. #define VK_VENDOR_ID_AMD 0x1002
  21. #define VK_VENDOR_ID_INTEL 0x8086
  22. #define VK_VENDOR_ID_NVIDIA 0x10de
  23. #define VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN 0
  24. #define VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI 1
  25. #define VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE 2
  26. #define VK_NUM_TYPES 16
  27. #define GGML_VK_MAX_NODES 8192
  28. #ifndef K_QUANTS_PER_ITERATION
  29. #define K_QUANTS_PER_ITERATION 1
  30. #else
  31. static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
  32. #endif
  33. #define VK_CHECK(err, msg) \
  34. do { \
  35. vk::Result err_ = (err); \
  36. if (err_ != vk::Result::eSuccess) { \
  37. fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \
  38. #err, to_string(err_).c_str(), __FILE__, __LINE__); \
  39. exit(1); \
  40. } \
  41. } while (0)
  42. struct vk_buffer {
  43. vk::Buffer buffer;
  44. vk::DeviceMemory device_memory;
  45. vk::MemoryPropertyFlags memory_property_flags;
  46. void * ptr;
  47. size_t size = 0;
  48. uint32_t qf_owner;
  49. };
  50. struct vk_subbuffer {
  51. vk_buffer buffer;
  52. uint64_t offset;
  53. uint64_t size;
  54. };
  55. struct vk_pipeline {
  56. std::string name;
  57. vk::DescriptorSetLayout dsl;
  58. std::vector<vk::DescriptorPool> descriptor_pools;
  59. std::vector<vk::DescriptorSet> descriptor_sets;
  60. uint32_t descriptor_set_idx;
  61. vk::PipelineLayout layout;
  62. vk::Pipeline pipeline;
  63. uint32_t push_constant_size;
  64. uint32_t parameter_count;
  65. std::array<uint32_t, 3> wg_denoms;
  66. uint32_t align;
  67. };
  68. struct vk_queue {
  69. uint32_t queue_family_index;
  70. vk::Queue queue;
  71. vk::CommandPool pool;
  72. uint32_t cmd_buffer_idx;
  73. std::vector<vk::CommandBuffer> cmd_buffers;
  74. vk::PipelineStageFlags stage_flags;
  75. };
  76. struct vk_semaphore {
  77. vk::Semaphore s;
  78. uint64_t value;
  79. };
  80. struct vk_submission {
  81. vk::CommandBuffer buffer;
  82. std::vector<vk_semaphore> wait_semaphores;
  83. std::vector<vk_semaphore> signal_semaphores;
  84. };
  85. typedef std::vector<vk_submission> vk_sequence;
  86. struct vk_device {
  87. vk::PhysicalDevice physical_device;
  88. vk::PhysicalDeviceProperties properties;
  89. uint64_t max_memory_allocation_size;
  90. bool fp16;
  91. vk::Device device;
  92. uint32_t vendor_id;
  93. vk_queue compute_queue;
  94. vk_queue transfer_queue;
  95. uint32_t descriptor_set_mode;
  96. uint32_t subgroup_size;
  97. bool is_igpu;
  98. };
  99. struct vk_op_push_constants {
  100. uint32_t KX;
  101. uint32_t KY;
  102. float param1;
  103. float param2;
  104. };
  105. struct vk_op_cpy_push_constants {
  106. uint32_t ne;
  107. uint32_t ne00; uint32_t ne01; uint32_t nb00; uint32_t nb01; uint32_t nb02;
  108. uint32_t ne10; uint32_t ne11; uint32_t nb10; uint32_t nb11; uint32_t nb12;
  109. uint32_t d_offset;
  110. };
  111. struct vk_op_diag_mask_push_constants {
  112. uint32_t ncols;
  113. uint32_t rows_per_channel;
  114. int32_t n_past;
  115. };
  116. struct vk_op_rope_push_constants {
  117. uint32_t ncols;
  118. float freq_scale;
  119. uint32_t p_delta_rows;
  120. float freq_base;
  121. float ext_factor;
  122. float attn_factor;
  123. float corr_dims[4];
  124. };
  125. struct vk_op_rope_neox_push_constants {
  126. uint32_t ncols;
  127. uint32_t ndims;
  128. float freq_scale;
  129. uint32_t p_delta_rows;
  130. float freq_base;
  131. float ext_factor;
  132. float attn_factor;
  133. float corr_dims[4];
  134. float theta_scale;
  135. float inv_ndims;
  136. };
  137. // Allow pre-recording command buffers
  138. struct vk_staging_memcpy {
  139. vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
  140. void * dst;
  141. const void * src;
  142. size_t n;
  143. };
  144. struct vk_context {
  145. size_t idx;
  146. vk_submission * s;
  147. std::vector<vk_sequence> seqs;
  148. ggml_tensor * exit_tensor;
  149. std::vector<vk_staging_memcpy> in_memcpys;
  150. std::vector<vk_staging_memcpy> out_memcpys;
  151. vk_queue * q;
  152. };
  153. struct ggml_tensor_extra_gpu {
  154. bool ready;
  155. size_t ctx_idx;
  156. vk_buffer buffer_gpu;
  157. uint64_t offset;
  158. void reset() {
  159. ready = false;
  160. ctx_idx = 0;
  161. buffer_gpu.size = 0;
  162. offset = 0;
  163. }
  164. };
  165. struct ggml_vk_garbage_collector {
  166. std::vector<vk_pipeline *> pipelines;
  167. std::vector<vk_semaphore> tl_semaphores;
  168. std::vector<vk_semaphore> semaphores;
  169. std::vector<vk::Event> events;
  170. std::vector<vk_buffer> temp_buffers;
  171. std::vector<vk_context> contexts;
  172. };
  173. typedef void (*ggml_vk_func_t)(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  174. vk::Instance vk_instance;
  175. vk_device vk_device;
  176. vk_pipeline vk_pipeline_matmul_f32_l, vk_pipeline_matmul_f32_m, vk_pipeline_matmul_f32_s;
  177. vk_pipeline vk_pipeline_matmul_f32_aligned_l, vk_pipeline_matmul_f32_aligned_m, vk_pipeline_matmul_f32_aligned_s;
  178. vk_pipeline vk_pipeline_matmul_f16_l, vk_pipeline_matmul_f16_m, vk_pipeline_matmul_f16_s;
  179. vk_pipeline vk_pipeline_matmul_f16_aligned_l, vk_pipeline_matmul_f16_aligned_m, vk_pipeline_matmul_f16_aligned_s;
  180. vk_pipeline vk_pipeline_matmul_f16_f32_l, vk_pipeline_matmul_f16_f32_m, vk_pipeline_matmul_f16_f32_s;
  181. vk_pipeline vk_pipeline_matmul_f16_f32_aligned_l, vk_pipeline_matmul_f16_f32_aligned_m, vk_pipeline_matmul_f16_f32_aligned_s;
  182. vk_pipeline vk_pipeline_matmul_split_k_reduce;
  183. vk_pipeline vk_pipeline_dequant[VK_NUM_TYPES];
  184. vk_pipeline vk_pipeline_dequant_mul_mat_vec_f32[VK_NUM_TYPES];
  185. vk_pipeline vk_pipeline_mul_mat_vec_p021_f16_f32;
  186. vk_pipeline vk_pipeline_mul_mat_vec_nc_f16_f32;
  187. vk_pipeline vk_pipeline_get_rows[VK_NUM_TYPES];
  188. vk_pipeline vk_pipeline_get_rows_f32[VK_NUM_TYPES];
  189. vk_pipeline vk_pipeline_mul_f32;
  190. vk_pipeline vk_pipeline_add_f32;
  191. vk_pipeline vk_pipeline_scale_f32;
  192. vk_pipeline vk_pipeline_sqr_f32;
  193. vk_pipeline vk_pipeline_clamp_f32;
  194. vk_pipeline vk_pipeline_cpy_f32_f32, vk_pipeline_cpy_f32_f16, vk_pipeline_cpy_f16_f16;
  195. vk_pipeline vk_pipeline_norm_f32;
  196. vk_pipeline vk_pipeline_rms_norm_f32;
  197. vk_pipeline vk_pipeline_gelu_f32;
  198. vk_pipeline vk_pipeline_silu_f32;
  199. vk_pipeline vk_pipeline_relu_f32;
  200. vk_pipeline vk_pipeline_diag_mask_inf_f32;
  201. vk_pipeline vk_pipeline_soft_max_f32;
  202. vk_pipeline vk_pipeline_rope_f32, vk_pipeline_rope_f16;
  203. vk_pipeline vk_pipeline_rope_neox_f32, vk_pipeline_rope_neox_f16;
  204. static size_t vk_semaphore_idx, vk_event_idx;
  205. static ggml_vk_garbage_collector vk_gc;
  206. static std::vector<std::tuple<void*, size_t, vk_buffer>> vk_pinned_memory;
  207. static size_t vk_prealloc_size_qx, vk_prealloc_size_qy, vk_prealloc_size_x, vk_prealloc_size_y, vk_prealloc_size_split_k;
  208. static vk_buffer vk_prealloc_qx, vk_prealloc_qy, vk_prealloc_x, vk_prealloc_y, vk_prealloc_split_k;
  209. static vk::Fence vk_fence;
  210. static vk_buffer vk_staging;
  211. static size_t vk_staging_size;
  212. static size_t vk_staging_offset;
  213. static vk_buffer vk_sync_staging;
  214. static vk_context * vk_ctx;
  215. static bool vk_disable;
  216. #ifdef GGML_VULKAN_CHECK_RESULTS
  217. size_t vk_skip_checks;
  218. size_t vk_output_tensor;
  219. #endif
  220. static vk_pipeline ggml_vk_create_pipeline(const std::string& name, size_t spv_size, const void* spv_data, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t>&& specialization_constants, uint32_t align) {
  221. #ifdef VK_DEBUG
  222. std::cerr << "ggml_vk_create_pipeline(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
  223. #endif
  224. GGML_ASSERT(parameter_count > 0);
  225. GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
  226. vk_pipeline pipeline;
  227. pipeline.name = name;
  228. pipeline.parameter_count = parameter_count;
  229. pipeline.push_constant_size = push_constant_size;
  230. pipeline.wg_denoms = wg_denoms;
  231. pipeline.align = align;
  232. vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
  233. vk::ShaderModule shader_module = vk_device.device.createShaderModule(shader_module_create_info);
  234. std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
  235. std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
  236. for (uint32_t i = 0; i < parameter_count; i++) {
  237. dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
  238. dsl_binding_flags.push_back({});
  239. }
  240. vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
  241. vk::PushConstantRange pcr(
  242. vk::ShaderStageFlagBits::eCompute,
  243. 0,
  244. pipeline.push_constant_size
  245. );
  246. vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
  247. {},
  248. dsl_binding);
  249. descriptor_set_layout_create_info.setPNext(&dslbfci);
  250. pipeline.dsl = vk_device.device.createDescriptorSetLayout(descriptor_set_layout_create_info);
  251. // Check if device supports multiple descriptors per pool
  252. if (vk_device.descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN) {
  253. const uint32_t alloc_count = 2;
  254. // Try allocating multiple sets from one pool
  255. // This fails on AMD for some reason, so add a fall back to allocating one pool per set
  256. vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
  257. vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, alloc_count, descriptor_pool_size);
  258. vk::DescriptorPool pool = vk_device.device.createDescriptorPool(descriptor_pool_create_info);
  259. std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
  260. for (uint32_t i = 0; i < alloc_count; i++) {
  261. layouts[i] = pipeline.dsl;
  262. }
  263. try {
  264. vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pool, alloc_count, layouts.data());
  265. std::vector<vk::DescriptorSet> sets = vk_device.device.allocateDescriptorSets(descriptor_set_alloc_info);
  266. } catch(vk::OutOfPoolMemoryError const&) {
  267. vk_device.descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE;
  268. }
  269. vk_device.device.destroyDescriptorPool(pool);
  270. }
  271. if (vk_device.descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) {
  272. vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
  273. vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 128, descriptor_pool_size);
  274. pipeline.descriptor_pools.push_back(vk_device.device.createDescriptorPool(descriptor_pool_create_info));
  275. }
  276. pipeline.descriptor_set_idx = 0;
  277. vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline.dsl, pcr);
  278. pipeline.layout = vk_device.device.createPipelineLayout(pipeline_layout_create_info);
  279. std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
  280. for (size_t i = 0; i < specialization_constants.size(); i++) {
  281. specialization_entries[i].constantID = i;
  282. specialization_entries[i].offset = i * sizeof(uint32_t);
  283. specialization_entries[i].size = sizeof(uint32_t);
  284. }
  285. vk::SpecializationInfo specialization_info(
  286. specialization_entries.size(),
  287. specialization_entries.data(),
  288. specialization_constants.size() * sizeof(uint32_t),
  289. specialization_constants.data()
  290. );
  291. vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
  292. vk::PipelineShaderStageCreateFlags(),
  293. vk::ShaderStageFlagBits::eCompute,
  294. shader_module,
  295. entrypoint.c_str(),
  296. &specialization_info);
  297. vk::ComputePipelineCreateInfo compute_pipeline_create_info(
  298. vk::PipelineCreateFlags(),
  299. pipeline_shader_create_info,
  300. pipeline.layout);
  301. pipeline.pipeline = vk_device.device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
  302. return pipeline;
  303. }
  304. static void ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline& pipeline, uint32_t n) {
  305. #ifdef VK_DEBUG
  306. std::cerr << "ggml_vk_pipeline_allocate_descriptor_sets(" << pipeline.name << ", " << n << ")" << std::endl;
  307. #endif
  308. // Check if gc already contains pipeline before adding it
  309. bool gc_found = false;
  310. for (auto * pl : vk_gc.pipelines) {
  311. if (&pipeline == pl) {
  312. gc_found = true;
  313. break;
  314. }
  315. }
  316. if (!gc_found) {
  317. vk_gc.pipelines.push_back(&pipeline);
  318. }
  319. if (pipeline.descriptor_sets.size() >= pipeline.descriptor_set_idx + n) {
  320. // Enough descriptors are available
  321. return;
  322. }
  323. if (vk_device.descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) {
  324. const uint32_t alloc_count = pipeline.descriptor_set_idx + n - pipeline.descriptor_sets.size();
  325. std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
  326. for (uint32_t i = 0; i < alloc_count; i++) {
  327. layouts[i] = pipeline.dsl;
  328. }
  329. vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[0], alloc_count, layouts.data());
  330. std::vector<vk::DescriptorSet> sets = vk_device.device.allocateDescriptorSets(descriptor_set_alloc_info);
  331. pipeline.descriptor_sets.insert(pipeline.descriptor_sets.end(), sets.begin(), sets.end());
  332. } else {
  333. for (uint32_t i = pipeline.descriptor_sets.size(); i < pipeline.descriptor_set_idx + n; i++) {
  334. vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
  335. vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 1, descriptor_pool_size);
  336. pipeline.descriptor_pools.push_back(vk_device.device.createDescriptorPool(descriptor_pool_create_info));
  337. vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[i], 1, &pipeline.dsl);
  338. std::vector<vk::DescriptorSet> sets = vk_device.device.allocateDescriptorSets(descriptor_set_alloc_info);
  339. pipeline.descriptor_sets.push_back(sets[0]);
  340. }
  341. }
  342. }
  343. static void ggml_vk_pipeline_cleanup(vk_pipeline& pipeline) {
  344. #ifdef VK_DEBUG
  345. std::cerr << "ggml_vk_pipeline_cleanup(" << pipeline.name << ")" << std::endl;
  346. #endif
  347. pipeline.descriptor_set_idx = 0;
  348. }
  349. static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_queue& q) {
  350. #ifdef VK_DEBUG
  351. std::cerr << "ggml_vk_create_cmd_buffer()" << std::endl;
  352. #endif
  353. if (q.cmd_buffers.size() > q.cmd_buffer_idx) {
  354. // Reuse command buffer
  355. return q.cmd_buffers[q.cmd_buffer_idx++];
  356. }
  357. vk::CommandBufferAllocateInfo command_buffer_alloc_info(
  358. q.pool,
  359. vk::CommandBufferLevel::ePrimary,
  360. 1);
  361. const std::vector<vk::CommandBuffer> cmd_buffers = vk_device.device.allocateCommandBuffers(command_buffer_alloc_info);
  362. auto buf = cmd_buffers.front();
  363. q.cmd_buffers.push_back(buf);
  364. q.cmd_buffer_idx++;
  365. return buf;
  366. }
  367. static vk_submission ggml_vk_create_submission(vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
  368. #ifdef VK_DEBUG
  369. std::cerr << "ggml_vk_create_submission()" << std::endl;
  370. #endif
  371. vk_submission s;
  372. s.buffer = ggml_vk_create_cmd_buffer(q);
  373. s.wait_semaphores = std::move(wait_semaphores);
  374. s.signal_semaphores = std::move(signal_semaphores);
  375. return s;
  376. }
  377. static vk_sequence ggml_vk_create_sequence_1(vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
  378. #ifdef VK_DEBUG
  379. std::cerr << "ggml_vk_create_sequence_1()" << std::endl;
  380. #endif
  381. return { ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores)) };
  382. }
  383. static void ggml_vk_submit(vk_context * ctx, vk::Fence fence) {
  384. #ifdef VK_DEBUG
  385. std::cerr << "ggml_vk_submit(" << ctx->seqs.size() << ", " << fence << ")" << std::endl;
  386. #endif
  387. if (ctx->seqs.empty()) {
  388. return;
  389. }
  390. std::vector<std::vector<uint64_t>> tl_wait_vals;
  391. std::vector<std::vector<uint64_t>> tl_signal_vals;
  392. std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores;
  393. std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores;
  394. std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos;
  395. std::vector<vk::SubmitInfo> submit_infos;
  396. int idx = -1;
  397. std::vector<std::vector<vk::PipelineStageFlags>> stage_flags;
  398. size_t reserve = 0;
  399. for (const auto& sequence : ctx->seqs) {
  400. reserve += sequence.size();
  401. }
  402. // Pre-reserve vectors to prevent reallocation, which invalidates pointers
  403. tl_wait_semaphores.reserve(reserve);
  404. tl_wait_vals.reserve(reserve);
  405. tl_signal_semaphores.reserve(reserve);
  406. tl_signal_vals.reserve(reserve);
  407. tl_submit_infos.reserve(reserve);
  408. submit_infos.reserve(reserve);
  409. stage_flags.reserve(reserve);
  410. for (const auto& sequence : ctx->seqs) {
  411. for (const auto& submission : sequence) {
  412. stage_flags.push_back({});
  413. idx++;
  414. tl_wait_vals.push_back({});
  415. tl_wait_semaphores.push_back({});
  416. tl_signal_vals.push_back({});
  417. tl_signal_semaphores.push_back({});
  418. for (size_t i = 0; i < submission.wait_semaphores.size(); i++) {
  419. stage_flags[idx].push_back(ctx->q->stage_flags);
  420. tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value);
  421. tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s);
  422. }
  423. for (size_t i = 0; i < submission.signal_semaphores.size(); i++) {
  424. tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value);
  425. tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s);
  426. }
  427. tl_submit_infos.push_back({
  428. (uint32_t) submission.wait_semaphores.size(),
  429. tl_wait_vals[idx].data(),
  430. (uint32_t) submission.signal_semaphores.size(),
  431. tl_signal_vals[idx].data(),
  432. });
  433. tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo;
  434. tl_submit_infos[idx].pNext = nullptr;
  435. vk::SubmitInfo si{
  436. (uint32_t) submission.wait_semaphores.size(),
  437. tl_wait_semaphores[idx].data(),
  438. stage_flags[idx].data(),
  439. 1,
  440. &submission.buffer,
  441. (uint32_t) submission.signal_semaphores.size(),
  442. tl_signal_semaphores[idx].data(),
  443. };
  444. si.setPNext(&tl_submit_infos[idx]);
  445. submit_infos.push_back(si);
  446. }
  447. }
  448. ctx->q->queue.submit(submit_infos, fence);
  449. ctx->seqs.clear();
  450. }
  451. static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) {
  452. #ifdef VK_DEBUG
  453. std::cerr << "ggml_vk_find_queue_family_index()" << std::endl;
  454. #endif
  455. const uint32_t qfsize = queue_family_props.size();
  456. // Try with avoid preferences first
  457. for (uint32_t i = 0; i < qfsize; i++) {
  458. if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) {
  459. return i;
  460. }
  461. }
  462. // Fall back to only required
  463. for (size_t i = 0; i < qfsize; i++) {
  464. if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) {
  465. return i;
  466. }
  467. }
  468. // Fall back to reusing compute queue
  469. for (size_t i = 0; i < qfsize; i++) {
  470. if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) {
  471. return i;
  472. }
  473. }
  474. // Fall back to ignoring min_num_queries
  475. for (size_t i = 0; i < qfsize; i++) {
  476. if (queue_family_props[i].queueFlags & required) {
  477. return i;
  478. }
  479. }
  480. std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
  481. for(auto &q_family : queue_family_props) {
  482. std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl;
  483. }
  484. abort();
  485. }
  486. static vk_queue ggml_vk_create_queue(uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags) {
  487. #ifdef VK_DEBUG
  488. std::cerr << "ggml_vk_create_queue()" << std::endl;
  489. #endif
  490. vk_queue q;
  491. q.queue_family_index = queue_family_index;
  492. vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index);
  493. q.pool = vk_device.device.createCommandPool(command_pool_create_info_compute);
  494. q.cmd_buffer_idx = 0;
  495. q.queue = vk_device.device.getQueue(queue_family_index, queue_index);
  496. q.stage_flags = stage_flags;
  497. return q;
  498. }
  499. static vk_context * ggml_vk_create_context(vk_queue& q) {
  500. #ifdef VK_DEBUG
  501. std::cerr << "ggml_vk_create_context()" << std::endl;
  502. #endif
  503. vk_gc.contexts.emplace_back();
  504. vk_context * result = &vk_gc.contexts[vk_gc.contexts.size() - 1];
  505. memset((void *) result, 0, sizeof(vk_context));
  506. result->idx = vk_gc.contexts.size() - 1;
  507. result->q = &q;
  508. return result;
  509. }
  510. static vk_semaphore * ggml_vk_create_binary_semaphore() {
  511. #ifdef VK_DEBUG
  512. std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl;
  513. #endif
  514. vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 };
  515. vk::SemaphoreCreateInfo ci{};
  516. ci.setPNext(&tci);
  517. vk::Semaphore semaphore = vk_device.device.createSemaphore(ci);
  518. vk_gc.semaphores.push_back({ semaphore, 0 });
  519. return &vk_gc.semaphores[vk_gc.semaphores.size() - 1];
  520. }
  521. static vk_semaphore * ggml_vk_create_timeline_semaphore() {
  522. #ifdef VK_DEBUG
  523. std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl;
  524. #endif
  525. if (vk_semaphore_idx >= vk_gc.tl_semaphores.size()) {
  526. vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 };
  527. vk::SemaphoreCreateInfo ci{};
  528. ci.setPNext(&tci);
  529. vk::Semaphore semaphore = vk_device.device.createSemaphore(ci);
  530. vk_gc.tl_semaphores.push_back({ semaphore, 0 });
  531. }
  532. return &vk_gc.tl_semaphores[vk_semaphore_idx++];
  533. }
  534. static vk::Event ggml_vk_create_event() {
  535. if (vk_event_idx >= vk_gc.events.size()) {
  536. vk_gc.events.push_back(vk_device.device.createEvent({}));
  537. }
  538. return vk_gc.events[vk_event_idx++];
  539. }
  540. static void ggml_vk_queue_cleanup(vk_queue& q) {
  541. #ifdef VK_DEBUG
  542. std::cerr << "ggml_vk_queue_cleanup()" << std::endl;
  543. #endif
  544. // Requires command buffers to be done
  545. vk_device.device.resetCommandPool(q.pool);
  546. q.cmd_buffer_idx = 0;
  547. }
  548. static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_flags) {
  549. #ifdef VK_DEBUG
  550. std::cerr << "ggml_vk_create_buffer(" << size << ", " << to_string(req_flags) << ")" << std::endl;
  551. #endif
  552. GGML_ASSERT(size > 0);
  553. vk_buffer buf;
  554. buf.size = size;
  555. vk::BufferCreateInfo buffer_create_info{
  556. vk::BufferCreateFlags(),
  557. size,
  558. vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst,
  559. vk::SharingMode::eExclusive,
  560. 0,
  561. nullptr,
  562. };
  563. buf.buffer = vk_device.device.createBuffer(buffer_create_info);
  564. vk::MemoryRequirements mem_req = vk_device.device.getBufferMemoryRequirements(buf.buffer);
  565. vk::PhysicalDeviceMemoryProperties mem_props = vk_device.physical_device.getMemoryProperties();
  566. uint32_t memory_type_index = uint32_t(~0);
  567. for (uint32_t i = 0; i < mem_props.memoryTypeCount; ++i) {
  568. vk::MemoryType memory_type = mem_props.memoryTypes[i];
  569. if ((mem_req.memoryTypeBits & ((uint64_t)1 << i)) && (req_flags & memory_type.propertyFlags) == req_flags && mem_props.memoryHeaps[memory_type.heapIndex].size >= mem_req.size) {
  570. memory_type_index = i;
  571. break;
  572. }
  573. }
  574. buf.device_memory = vk_device.device.allocateMemory({ mem_req.size, memory_type_index });
  575. buf.memory_property_flags = req_flags;
  576. buf.ptr = nullptr;
  577. if (req_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  578. buf.ptr = vk_device.device.mapMemory(buf.device_memory, 0, VK_WHOLE_SIZE);
  579. }
  580. vk_device.device.bindBufferMemory(buf.buffer, buf.device_memory, 0);
  581. buf.qf_owner = VK_QUEUE_FAMILY_IGNORED;
  582. return buf;
  583. }
  584. static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
  585. return { buf, 0, VK_WHOLE_SIZE };
  586. }
  587. static void ggml_vk_sync_buffers(vk_context * ctx) {
  588. #ifdef VK_DEBUG
  589. std::cerr << "ggml_vk_sync_buffers()" << std::endl;
  590. #endif
  591. const std::vector<vk::MemoryBarrier> mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } };
  592. ctx->s->buffer.pipelineBarrier(
  593. ctx->q->stage_flags,
  594. ctx->q->stage_flags,
  595. {},
  596. mem_barriers,
  597. {},
  598. {}
  599. );
  600. }
  601. static void ggml_vk_wait_events(vk::CommandBuffer& cmd_buffer, std::vector<vk::Event>&& events, vk::PipelineStageFlags src_stages, vk::PipelineStageFlags dst_stages) {
  602. #ifdef VK_DEBUG
  603. std::cerr << "ggml_vk_wait_events()" << std::endl;
  604. #endif
  605. if (events.empty()) {
  606. return;
  607. }
  608. cmd_buffer.waitEvents(
  609. events,
  610. src_stages,
  611. dst_stages,
  612. {},
  613. {},
  614. {}
  615. );
  616. }
  617. static void ggml_vk_destroy_buffer(vk_buffer& buf) {
  618. if (buf.size == 0) {
  619. return;
  620. }
  621. #ifdef VK_DEBUG
  622. std::cerr << "ggml_vk_destroy_buffer(" << buf.size << ")" << std::endl;
  623. #endif
  624. buf.size = 0;
  625. vk_device.device.freeMemory(buf.device_memory);
  626. vk_device.device.destroyBuffer(buf.buffer);
  627. }
  628. static bool ggml_vk_build_shader(ggml_type type) {
  629. switch(type) {
  630. case GGML_TYPE_F16:
  631. case GGML_TYPE_Q4_0:
  632. case GGML_TYPE_Q4_1:
  633. case GGML_TYPE_Q5_0:
  634. case GGML_TYPE_Q5_1:
  635. case GGML_TYPE_Q8_0:
  636. case GGML_TYPE_Q2_K:
  637. case GGML_TYPE_Q3_K:
  638. case GGML_TYPE_Q4_K:
  639. case GGML_TYPE_Q5_K:
  640. case GGML_TYPE_Q6_K:
  641. return true;
  642. default:
  643. return false;
  644. }
  645. }
  646. static void ggml_vk_load_shaders() {
  647. #ifdef VK_DEBUG
  648. std::cerr << "ggml_vk_load_shaders()" << std::endl;
  649. #endif
  650. // mulmat
  651. std::initializer_list<uint32_t> warptile_l = { 128, 128, 128, 16, vk_device.subgroup_size * 2, 64, 2, 4, 4, vk_device.subgroup_size };
  652. std::initializer_list<uint32_t> warptile_m = { 128, 64, 64, 16, vk_device.subgroup_size, 32, 2, 4, 2, vk_device.subgroup_size };
  653. std::initializer_list<uint32_t> warptile_s = { vk_device.subgroup_size, 32, 32, 8, 32, 32, 2, 2, 2, vk_device.subgroup_size };
  654. std::array<uint32_t, 3> l_wg_denoms = {128, 128, 1 };
  655. std::array<uint32_t, 3> m_wg_denoms = { 64, 64, 1 };
  656. std::array<uint32_t, 3> s_wg_denoms = { 32, 32, 1 };
  657. uint32_t l_align = 128;
  658. uint32_t m_align = 64;
  659. uint32_t s_align = 32;
  660. if (vk_device.fp16) {
  661. vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline("matmul_f32_l", matmul_f32_l_len, matmul_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  662. vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline("matmul_f32_m", matmul_f32_m_len, matmul_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  663. vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline("matmul_f32_s", matmul_f32_s_len, matmul_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  664. vk_pipeline_matmul_f32_aligned_l = ggml_vk_create_pipeline("matmul_f32_aligned_l", matmul_f32_aligned_l_len, matmul_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  665. vk_pipeline_matmul_f32_aligned_m = ggml_vk_create_pipeline("matmul_f32_aligned_m", matmul_f32_aligned_m_len, matmul_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  666. vk_pipeline_matmul_f32_aligned_s = ggml_vk_create_pipeline("matmul_f32_aligned_s", matmul_f32_aligned_s_len, matmul_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  667. vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline("matmul_f16_l", matmul_f16_l_len, matmul_f16_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  668. vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline("matmul_f16_m", matmul_f16_m_len, matmul_f16_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  669. vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline("matmul_f16_s", matmul_f16_s_len, matmul_f16_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  670. vk_pipeline_matmul_f16_aligned_l = ggml_vk_create_pipeline("matmul_f16_aligned_l", matmul_f16_aligned_l_len, matmul_f16_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  671. vk_pipeline_matmul_f16_aligned_m = ggml_vk_create_pipeline("matmul_f16_aligned_m", matmul_f16_aligned_m_len, matmul_f16_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  672. vk_pipeline_matmul_f16_aligned_s = ggml_vk_create_pipeline("matmul_f16_aligned_s", matmul_f16_aligned_s_len, matmul_f16_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  673. vk_pipeline_matmul_f16_f32_l = ggml_vk_create_pipeline("matmul_f16_f32_l", matmul_f16_f32_l_len, matmul_f16_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  674. vk_pipeline_matmul_f16_f32_m = ggml_vk_create_pipeline("matmul_f16_f32_m", matmul_f16_f32_m_len, matmul_f16_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  675. vk_pipeline_matmul_f16_f32_s = ggml_vk_create_pipeline("matmul_f16_f32_s", matmul_f16_f32_s_len, matmul_f16_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  676. vk_pipeline_matmul_f16_f32_aligned_l = ggml_vk_create_pipeline("matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_len, matmul_f16_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  677. vk_pipeline_matmul_f16_f32_aligned_m = ggml_vk_create_pipeline("matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_len, matmul_f16_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  678. vk_pipeline_matmul_f16_f32_aligned_s = ggml_vk_create_pipeline("matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_len, matmul_f16_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  679. // Build dequant shaders
  680. vk_pipeline_dequant[GGML_TYPE_F32] = ggml_vk_create_pipeline("f32_to_f16", f32_to_f16_len, f32_to_f16_data, "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1);
  681. vk_pipeline_dequant[GGML_TYPE_F16] = ggml_vk_create_pipeline("dequant_f16", dequant_f16_len, dequant_f16_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  682. vk_pipeline_dequant[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  683. vk_pipeline_dequant[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  684. vk_pipeline_dequant[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  685. vk_pipeline_dequant[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  686. vk_pipeline_dequant[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  687. vk_pipeline_dequant[GGML_TYPE_Q2_K] = ggml_vk_create_pipeline("dequant_q2_K", dequant_q2_K_len, dequant_q2_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  688. vk_pipeline_dequant[GGML_TYPE_Q3_K] = ggml_vk_create_pipeline("dequant_q3_K", dequant_q3_K_len, dequant_q3_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  689. vk_pipeline_dequant[GGML_TYPE_Q4_K] = ggml_vk_create_pipeline("dequant_q4_K", dequant_q4_K_len, dequant_q4_K_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  690. vk_pipeline_dequant[GGML_TYPE_Q5_K] = ggml_vk_create_pipeline("dequant_q5_K", dequant_q5_K_len, dequant_q5_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  691. vk_pipeline_dequant[GGML_TYPE_Q6_K] = ggml_vk_create_pipeline("dequant_q6_K", dequant_q6_K_len, dequant_q6_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  692. // get_rows
  693. vk_pipeline_get_rows[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  694. vk_pipeline_get_rows[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  695. vk_pipeline_get_rows[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  696. vk_pipeline_get_rows[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  697. vk_pipeline_get_rows[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  698. vk_pipeline_get_rows[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  699. vk_pipeline_get_rows_f32[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  700. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  701. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  702. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  703. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  704. vk_pipeline_get_rows_f32[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  705. } else {
  706. vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline("matmul_f32_l", matmul_f32_l_fp32_len, matmul_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  707. vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline("matmul_f32_m", matmul_f32_m_fp32_len, matmul_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  708. vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline("matmul_f32_s", matmul_f32_s_fp32_len, matmul_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  709. vk_pipeline_matmul_f32_aligned_l = ggml_vk_create_pipeline("matmul_f32_aligned_l", matmul_f32_aligned_l_fp32_len, matmul_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  710. vk_pipeline_matmul_f32_aligned_m = ggml_vk_create_pipeline("matmul_f32_aligned_m", matmul_f32_aligned_m_fp32_len, matmul_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  711. vk_pipeline_matmul_f32_aligned_s = ggml_vk_create_pipeline("matmul_f32_aligned_s", matmul_f32_aligned_s_fp32_len, matmul_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  712. vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline("matmul_f16_l", matmul_f16_l_fp32_len, matmul_f16_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  713. vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline("matmul_f16_m", matmul_f16_m_fp32_len, matmul_f16_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  714. vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline("matmul_f16_s", matmul_f16_s_fp32_len, matmul_f16_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  715. vk_pipeline_matmul_f16_aligned_l = ggml_vk_create_pipeline("matmul_f16_aligned_l", matmul_f16_aligned_l_fp32_len, matmul_f16_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  716. vk_pipeline_matmul_f16_aligned_m = ggml_vk_create_pipeline("matmul_f16_aligned_m", matmul_f16_aligned_m_fp32_len, matmul_f16_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  717. vk_pipeline_matmul_f16_aligned_s = ggml_vk_create_pipeline("matmul_f16_aligned_s", matmul_f16_aligned_s_fp32_len, matmul_f16_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  718. vk_pipeline_matmul_f16_f32_l = ggml_vk_create_pipeline("matmul_f16_f32_l", matmul_f16_f32_l_fp32_len, matmul_f16_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  719. vk_pipeline_matmul_f16_f32_m = ggml_vk_create_pipeline("matmul_f16_f32_m", matmul_f16_f32_m_fp32_len, matmul_f16_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  720. vk_pipeline_matmul_f16_f32_s = ggml_vk_create_pipeline("matmul_f16_f32_s", matmul_f16_f32_s_fp32_len, matmul_f16_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  721. vk_pipeline_matmul_f16_f32_aligned_l = ggml_vk_create_pipeline("matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_fp32_len, matmul_f16_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  722. vk_pipeline_matmul_f16_f32_aligned_m = ggml_vk_create_pipeline("matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_fp32_len, matmul_f16_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  723. vk_pipeline_matmul_f16_f32_aligned_s = ggml_vk_create_pipeline("matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_fp32_len, matmul_f16_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  724. // Build dequant shaders
  725. vk_pipeline_dequant[GGML_TYPE_F32] = ggml_vk_create_pipeline("f32_to_f16", f32_to_f16_fp32_len, f32_to_f16_fp32_data, "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1);
  726. vk_pipeline_dequant[GGML_TYPE_F16] = ggml_vk_create_pipeline("dequant_f16", dequant_f16_fp32_len, dequant_f16_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  727. vk_pipeline_dequant[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("dequant_q4_0", dequant_q4_0_fp32_len, dequant_q4_0_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  728. vk_pipeline_dequant[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("dequant_q4_1", dequant_q4_1_fp32_len, dequant_q4_1_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  729. vk_pipeline_dequant[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("dequant_q5_0", dequant_q5_0_fp32_len, dequant_q5_0_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  730. vk_pipeline_dequant[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("dequant_q5_1", dequant_q5_1_fp32_len, dequant_q5_1_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  731. vk_pipeline_dequant[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("dequant_q8_0", dequant_q8_0_fp32_len, dequant_q8_0_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  732. vk_pipeline_dequant[GGML_TYPE_Q2_K] = ggml_vk_create_pipeline("dequant_q2_K", dequant_q2_K_fp32_len, dequant_q2_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  733. vk_pipeline_dequant[GGML_TYPE_Q3_K] = ggml_vk_create_pipeline("dequant_q3_K", dequant_q3_K_fp32_len, dequant_q3_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  734. vk_pipeline_dequant[GGML_TYPE_Q4_K] = ggml_vk_create_pipeline("dequant_q4_K", dequant_q4_K_fp32_len, dequant_q4_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  735. vk_pipeline_dequant[GGML_TYPE_Q5_K] = ggml_vk_create_pipeline("dequant_q5_K", dequant_q5_K_fp32_len, dequant_q5_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  736. vk_pipeline_dequant[GGML_TYPE_Q6_K] = ggml_vk_create_pipeline("dequant_q6_K", dequant_q6_K_fp32_len, dequant_q6_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  737. // get_rows
  738. vk_pipeline_get_rows[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16", get_rows_f16_fp32_len, get_rows_f16_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  739. vk_pipeline_get_rows[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0", get_rows_q4_0_fp32_len, get_rows_q4_0_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  740. vk_pipeline_get_rows[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1", get_rows_q4_1_fp32_len, get_rows_q4_1_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  741. vk_pipeline_get_rows[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0", get_rows_q5_0_fp32_len, get_rows_q5_0_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  742. vk_pipeline_get_rows[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1", get_rows_q5_1_fp32_len, get_rows_q5_1_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  743. vk_pipeline_get_rows[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0", get_rows_q8_0_fp32_len, get_rows_q8_0_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  744. vk_pipeline_get_rows_f32[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16_f32", get_rows_f16_f32_fp32_len, get_rows_f16_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  745. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0_f32", get_rows_q4_0_f32_fp32_len, get_rows_q4_0_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  746. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1_f32", get_rows_q4_1_f32_fp32_len, get_rows_q4_1_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  747. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0_f32", get_rows_q5_0_f32_fp32_len, get_rows_q5_0_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  748. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1_f32", get_rows_q5_1_f32_fp32_len, get_rows_q5_1_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  749. vk_pipeline_get_rows_f32[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0_f32", get_rows_q8_0_f32_fp32_len, get_rows_q8_0_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  750. }
  751. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_F16] = ggml_vk_create_pipeline("mul_mat_vec_f16_f32", mul_mat_vec_f16_f32_len, mul_mat_vec_f16_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  752. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("mul_mat_vec_q4_0_f32", mul_mat_vec_q4_0_f32_len, mul_mat_vec_q4_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  753. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("mul_mat_vec_q4_1_f32", mul_mat_vec_q4_1_f32_len, mul_mat_vec_q4_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  754. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("mul_mat_vec_q5_0_f32", mul_mat_vec_q5_0_f32_len, mul_mat_vec_q5_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  755. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("mul_mat_vec_q5_1_f32", mul_mat_vec_q5_1_f32_len, mul_mat_vec_q5_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  756. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("mul_mat_vec_q8_0_f32", mul_mat_vec_q8_0_f32_len, mul_mat_vec_q8_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  757. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q2_K] = ggml_vk_create_pipeline("mul_mat_vec_q2_K_f32", mul_mat_vec_q2_K_f32_len, mul_mat_vec_q2_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  758. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q3_K] = ggml_vk_create_pipeline("mul_mat_vec_q3_K_f32", mul_mat_vec_q3_K_f32_len, mul_mat_vec_q3_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  759. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_K] = ggml_vk_create_pipeline("mul_mat_vec_q4_K_f32", mul_mat_vec_q4_K_f32_len, mul_mat_vec_q4_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  760. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_K] = ggml_vk_create_pipeline("mul_mat_vec_q5_K_f32", mul_mat_vec_q5_K_f32_len, mul_mat_vec_q5_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  761. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q6_K] = ggml_vk_create_pipeline("mul_mat_vec_q6_K_f32", mul_mat_vec_q6_K_f32_len, mul_mat_vec_q6_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  762. vk_pipeline_matmul_split_k_reduce = ggml_vk_create_pipeline("split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256, 1, 1}, {}, 1);
  763. vk_pipeline_mul_mat_vec_p021_f16_f32 = ggml_vk_create_pipeline("mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
  764. vk_pipeline_mul_mat_vec_nc_f16_f32 = ggml_vk_create_pipeline("mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
  765. vk_pipeline_norm_f32 = ggml_vk_create_pipeline("norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
  766. vk_pipeline_rms_norm_f32 = ggml_vk_create_pipeline("rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
  767. vk_pipeline_cpy_f32_f32 = ggml_vk_create_pipeline("cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
  768. vk_pipeline_cpy_f32_f16 = ggml_vk_create_pipeline("cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
  769. vk_pipeline_cpy_f16_f16 = ggml_vk_create_pipeline("cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
  770. vk_pipeline_add_f32 = ggml_vk_create_pipeline("add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  771. vk_pipeline_mul_f32 = ggml_vk_create_pipeline("mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  772. vk_pipeline_scale_f32 = ggml_vk_create_pipeline("scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  773. vk_pipeline_sqr_f32 = ggml_vk_create_pipeline("sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  774. vk_pipeline_clamp_f32 = ggml_vk_create_pipeline("clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  775. vk_pipeline_gelu_f32 = ggml_vk_create_pipeline("gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  776. vk_pipeline_silu_f32 = ggml_vk_create_pipeline("silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  777. vk_pipeline_relu_f32 = ggml_vk_create_pipeline("relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  778. vk_pipeline_diag_mask_inf_f32 = ggml_vk_create_pipeline("diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
  779. vk_pipeline_soft_max_f32 = ggml_vk_create_pipeline("soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
  780. vk_pipeline_rope_f32 = ggml_vk_create_pipeline("rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
  781. vk_pipeline_rope_f16 = ggml_vk_create_pipeline("rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
  782. vk_pipeline_rope_neox_f32 = ggml_vk_create_pipeline("rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
  783. vk_pipeline_rope_neox_f16 = ggml_vk_create_pipeline("rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
  784. }
  785. void ggml_vk_init() {
  786. #ifdef VK_DEBUG
  787. std::cerr << "ggml_vk_init()" << std::endl;
  788. #endif
  789. static bool initialized = false;
  790. if (initialized) {
  791. return;
  792. }
  793. initialized = true;
  794. const char* GGML_VULKAN_DEVICE = getenv("GGML_VULKAN_DEVICE");
  795. int dev_num = (GGML_VULKAN_DEVICE == NULL ? 0 : atoi(GGML_VULKAN_DEVICE));
  796. vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
  797. const std::vector<const char*> layers = {
  798. #ifdef VK_VALIDATE
  799. "VK_LAYER_KHRONOS_validation",
  800. #endif
  801. };
  802. const std::vector<const char*> extensions = {
  803. #ifdef VK_VALIDATE
  804. "VK_EXT_validation_features",
  805. #endif
  806. };
  807. vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions);
  808. #ifdef VK_VALIDATE
  809. const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
  810. vk::ValidationFeaturesEXT validation_features = {
  811. features_enable,
  812. {},
  813. };
  814. validation_features.setPNext(nullptr);
  815. instance_create_info.setPNext(&validation_features);
  816. std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
  817. #endif
  818. vk_instance = vk::createInstance(instance_create_info);
  819. vk_device.physical_device = vk_instance.enumeratePhysicalDevices()[dev_num];
  820. std::vector<vk::ExtensionProperties> ext_props = vk_device.physical_device.enumerateDeviceExtensionProperties();
  821. bool maintenance4_support = false;
  822. // Check if maintenance4 is supported
  823. for (auto properties : ext_props) {
  824. if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
  825. maintenance4_support = true;
  826. }
  827. }
  828. vk::PhysicalDeviceProperties2 props2;
  829. vk::PhysicalDeviceMaintenance3Properties props3;
  830. vk::PhysicalDeviceMaintenance4Properties props4;
  831. vk::PhysicalDeviceSubgroupProperties subgroup_props;
  832. props2.pNext = &props3;
  833. props3.pNext = &subgroup_props;
  834. if (maintenance4_support) {
  835. subgroup_props.pNext = &props4;
  836. }
  837. vk_device.physical_device.getProperties2(&props2);
  838. vk_device.properties = props2.properties;
  839. if (maintenance4_support) {
  840. vk_device.max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
  841. } else {
  842. vk_device.max_memory_allocation_size = props3.maxMemoryAllocationSize;
  843. }
  844. vk_device.vendor_id = vk_device.properties.vendorID;
  845. vk_device.subgroup_size = subgroup_props.subgroupSize;
  846. vk_device.is_igpu = vk_device.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
  847. bool fp16_storage = false;
  848. bool fp16_compute = false;
  849. for (auto properties : ext_props) {
  850. if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
  851. fp16_storage = true;
  852. } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
  853. fp16_compute = true;
  854. }
  855. }
  856. const char* GGML_VULKAN_DISABLE_F16 = getenv("GGML_VULKAN_DISABLE_F16");
  857. bool force_disable_f16 = GGML_VULKAN_DISABLE_F16 != NULL;
  858. vk_device.fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
  859. std::vector<vk::QueueFamilyProperties> queue_family_props = vk_device.physical_device.getQueueFamilyProperties();
  860. // Try to find a non-graphics compute queue and transfer-focused queues
  861. const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1);
  862. const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1);
  863. const float priorities[] = { 1.0f, 1.0f };
  864. const bool single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1;
  865. std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos;
  866. if (compute_queue_family_index != transfer_queue_family_index) {
  867. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
  868. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1});
  869. } else if(!single_queue) {
  870. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities});
  871. } else {
  872. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
  873. }
  874. vk::DeviceCreateInfo device_create_info;
  875. std::vector<const char *> device_extensions;
  876. vk::PhysicalDeviceFeatures device_features = vk_device.physical_device.getFeatures();
  877. VkPhysicalDeviceFeatures2 device_features2;
  878. device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
  879. device_features2.pNext = nullptr;
  880. device_features2.features = (VkPhysicalDeviceFeatures)device_features;
  881. VkPhysicalDeviceVulkan11Features vk11_features;
  882. vk11_features.pNext = nullptr;
  883. vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
  884. device_features2.pNext = &vk11_features;
  885. VkPhysicalDeviceVulkan12Features vk12_features;
  886. vk12_features.pNext = nullptr;
  887. vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
  888. vk11_features.pNext = &vk12_features;
  889. vkGetPhysicalDeviceFeatures2(vk_device.physical_device, &device_features2);
  890. vk_device.fp16 = vk_device.fp16 && vk12_features.shaderFloat16;
  891. if (!vk11_features.storageBuffer16BitAccess) {
  892. std::cerr << "ggml_vulkan: device does not support 16-bit storage" << std::endl;
  893. GGML_ASSERT(false);
  894. }
  895. device_extensions.push_back("VK_KHR_16bit_storage");
  896. #ifdef VK_VALIDATE
  897. device_extensions.push_back("VK_KHR_shader_non_semantic_info");
  898. #endif
  899. if (vk_device.fp16) {
  900. device_extensions.push_back("VK_KHR_shader_float16_int8");
  901. }
  902. std::cerr << "ggml_vulkan: Using " << vk_device.properties.deviceName << " | fp16: " << vk_device.fp16 << " | warp size: " << vk_device.subgroup_size << std::endl;
  903. device_create_info = {
  904. vk::DeviceCreateFlags(),
  905. device_queue_create_infos,
  906. {},
  907. device_extensions
  908. };
  909. device_create_info.setPNext(&device_features2);
  910. vk_device.device = vk_device.physical_device.createDevice(device_create_info);
  911. vk_device.descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN;
  912. // Shaders
  913. ggml_vk_load_shaders();
  914. // Queues
  915. vk_device.compute_queue = ggml_vk_create_queue(compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer });
  916. if (!single_queue) {
  917. const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;
  918. vk_device.transfer_queue = ggml_vk_create_queue(transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer });
  919. } else {
  920. vk_device.transfer_queue = vk_device.compute_queue;
  921. }
  922. vk_fence = vk_device.device.createFence({});
  923. vk_ctx = nullptr;
  924. vk_disable = false;
  925. #ifdef GGML_VULKAN_CHECK_RESULTS
  926. const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
  927. vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks));
  928. const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR");
  929. vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor));
  930. #endif
  931. }
  932. static vk_pipeline* ggml_vk_get_to_fp16(ggml_type type) {
  933. #ifdef VK_DEBUG
  934. std::cerr << "ggml_vk_get_to_fp16()" << std::endl;
  935. #endif
  936. switch (type) {
  937. case GGML_TYPE_F32:
  938. case GGML_TYPE_Q4_0:
  939. case GGML_TYPE_Q4_1:
  940. case GGML_TYPE_Q5_0:
  941. case GGML_TYPE_Q5_1:
  942. case GGML_TYPE_Q8_0:
  943. case GGML_TYPE_Q2_K:
  944. case GGML_TYPE_Q3_K:
  945. case GGML_TYPE_Q4_K:
  946. case GGML_TYPE_Q5_K:
  947. case GGML_TYPE_Q6_K:
  948. break;
  949. default:
  950. return nullptr;
  951. }
  952. return &vk_pipeline_dequant[type];
  953. }
  954. static vk_pipeline* ggml_vk_get_dequantize_mul_mat_vec(ggml_type type) {
  955. #ifdef VK_DEBUG
  956. std::cerr << "ggml_vk_get_dequantize_mul_mat_vec()" << std::endl;
  957. #endif
  958. switch (type) {
  959. case GGML_TYPE_F16:
  960. case GGML_TYPE_Q4_0:
  961. case GGML_TYPE_Q4_1:
  962. case GGML_TYPE_Q5_0:
  963. case GGML_TYPE_Q5_1:
  964. case GGML_TYPE_Q8_0:
  965. case GGML_TYPE_Q2_K:
  966. case GGML_TYPE_Q3_K:
  967. case GGML_TYPE_Q4_K:
  968. case GGML_TYPE_Q5_K:
  969. case GGML_TYPE_Q6_K:
  970. break;
  971. default:
  972. return nullptr;
  973. }
  974. return &vk_pipeline_dequant_mul_mat_vec_f32[type];
  975. }
  976. // buffer pool for vulkan
  977. #define MAX_VK_BUFFERS 256
  978. static vk_buffer g_vk_buffer_pool[MAX_VK_BUFFERS];
  979. static vk_buffer ggml_vk_pool_malloc(size_t size) {
  980. #ifdef VK_DEBUG
  981. std::cerr << "ggml_vk_pool_malloc(" << size << ")" << std::endl;
  982. #endif
  983. int best_i = -1;
  984. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  985. int worst_i = -1;
  986. size_t worst_size = 0; //largest unused buffer seen so far
  987. for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
  988. vk_buffer &b = g_vk_buffer_pool[i];
  989. if (b.size > 0 && b.size >= size && b.size < best_size) {
  990. best_i = i;
  991. best_size = b.size;
  992. }
  993. if (b.size > 0 && b.size > worst_size) {
  994. worst_i = i;
  995. worst_size = b.size;
  996. }
  997. }
  998. if(best_i != -1) {
  999. //found the smallest buffer that fits our needs
  1000. vk_buffer b = g_vk_buffer_pool[best_i];
  1001. g_vk_buffer_pool[best_i].size = 0;
  1002. return b;
  1003. }
  1004. if(worst_i != -1) {
  1005. //no buffer that fits our needs, resize largest one to save memory
  1006. vk_buffer& b = g_vk_buffer_pool[worst_i];
  1007. ggml_vk_destroy_buffer(b);
  1008. }
  1009. return ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
  1010. }
  1011. static void ggml_vk_pool_free(vk_buffer& buffer) {
  1012. #ifdef VK_DEBUG
  1013. std::cerr << "ggml_vk_pool_free(" << buffer.size << ")" << std::endl;
  1014. #endif
  1015. for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
  1016. vk_buffer& b = g_vk_buffer_pool[i];
  1017. if (b.size == 0) {
  1018. b = buffer;
  1019. // Set owning queue family index to ignored to avoid synchronization on next use
  1020. b.qf_owner = VK_QUEUE_FAMILY_IGNORED;
  1021. return;
  1022. }
  1023. }
  1024. fprintf(stderr, "WARNING: vk buffer pool full, increase MAX_VK_BUFFERS\n");
  1025. ggml_vk_destroy_buffer(buffer);
  1026. }
  1027. // Returns an available temporary buffer that may only be used temporarily, it will be reused
  1028. static vk_buffer ggml_vk_create_buffer_temp(size_t size) {
  1029. // Try to find existing temp buffer with enough capacity
  1030. for (auto& buffer : vk_gc.temp_buffers) {
  1031. if (buffer.size >= size) {
  1032. return buffer;
  1033. }
  1034. }
  1035. // Otherwise create new buffer
  1036. vk_buffer buf = ggml_vk_pool_malloc(size);
  1037. vk_gc.temp_buffers.push_back(buf);
  1038. return buf;
  1039. }
  1040. static void * ggml_vk_host_malloc(size_t size) {
  1041. #ifdef VK_DEBUG
  1042. std::cerr << "ggml_vk_host_malloc(" << size << ")" << std::endl;
  1043. #endif
  1044. if (getenv("GGML_VK_NO_PINNED") != nullptr) {
  1045. return nullptr;
  1046. }
  1047. vk_buffer buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  1048. if(!(buf.memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
  1049. fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
  1050. size/1024.0/1024.0);
  1051. buf.size = 0;
  1052. vk_device.device.freeMemory(buf.device_memory);
  1053. vk_device.device.destroyBuffer(buf.buffer);
  1054. return nullptr;
  1055. }
  1056. vk_pinned_memory.push_back(std::make_tuple(buf.ptr, size, buf));
  1057. return buf.ptr;
  1058. }
  1059. static void ggml_vk_host_free(void* ptr) {
  1060. if (ptr == nullptr) {
  1061. return;
  1062. }
  1063. #ifdef VK_DEBUG
  1064. std::cerr << "ggml_vk_host_free(" << ptr << ")" << std::endl;
  1065. #endif
  1066. vk_buffer* buf = nullptr;
  1067. size_t index;
  1068. for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
  1069. const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
  1070. const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
  1071. if (ptr >= addr && ptr < endr) {
  1072. buf = &std::get<2>(vk_pinned_memory[i]);
  1073. index = i;
  1074. break;
  1075. }
  1076. }
  1077. if (buf == nullptr) {
  1078. fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n");
  1079. return;
  1080. }
  1081. ggml_vk_destroy_buffer(*buf);
  1082. vk_pinned_memory.erase(vk_pinned_memory.begin() + index);
  1083. }
  1084. static vk_submission ggml_vk_begin_submission(vk_queue& q, bool one_time = true) {
  1085. vk_submission s;
  1086. s.buffer = ggml_vk_create_cmd_buffer(q);
  1087. if (one_time) {
  1088. s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
  1089. } else {
  1090. s.buffer.begin({ vk::CommandBufferUsageFlags{} });
  1091. }
  1092. return s;
  1093. }
  1094. static void ggml_vk_dispatch_pipeline(vk_context * ctx, vk_pipeline& pipeline, std::vector<vk_subbuffer>&& buffers, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
  1095. const uint32_t wg0 = CEIL_DIV(elements[0], pipeline.wg_denoms[0]);
  1096. const uint32_t wg1 = CEIL_DIV(elements[1], pipeline.wg_denoms[1]);
  1097. const uint32_t wg2 = CEIL_DIV(elements[2], pipeline.wg_denoms[2]);
  1098. #ifdef VK_DEBUG
  1099. std::cerr << "ggml_vk_dispatch_pipeline(" << pipeline.name << ", (" << wg0 << "," << wg1 << "," << wg2 << "))" << std::endl;
  1100. #endif
  1101. std::vector<vk::DescriptorBufferInfo> descriptor_buffer_infos;
  1102. std::vector<vk::WriteDescriptorSet> write_descriptor_sets;
  1103. GGML_ASSERT(pipeline.descriptor_set_idx < pipeline.descriptor_sets.size());
  1104. GGML_ASSERT(buffers.size() == pipeline.parameter_count);
  1105. vk::DescriptorSet& descriptor_set = pipeline.descriptor_sets[pipeline.descriptor_set_idx++];
  1106. for (uint32_t i = 0; i < pipeline.parameter_count; i++) {
  1107. descriptor_buffer_infos.push_back({buffers[i].buffer.buffer, buffers[i].offset, buffers[i].size});
  1108. }
  1109. for (uint32_t i = 0; i < pipeline.parameter_count; i++) {
  1110. write_descriptor_sets.push_back({descriptor_set, i, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &descriptor_buffer_infos[i]});
  1111. }
  1112. vk_device.device.updateDescriptorSets(write_descriptor_sets, {});
  1113. ctx->s->buffer.pushConstants(pipeline.layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
  1114. ctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.pipeline);
  1115. ctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
  1116. pipeline.layout,
  1117. 0,
  1118. { descriptor_set },
  1119. {});
  1120. ctx->s->buffer.dispatch(wg0, wg1, wg2);
  1121. }
  1122. static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
  1123. s.buffer.end();
  1124. s.wait_semaphores = std::move(wait_semaphores);
  1125. s.signal_semaphores = std::move(signal_semaphores);
  1126. }
  1127. static void ggml_vk_ctx_end(vk_context * ctx) {
  1128. #ifdef VK_DEBUG
  1129. std::cerr << "ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")" << std::endl;
  1130. #endif
  1131. if (ctx->s == nullptr) {
  1132. return;
  1133. }
  1134. ctx->s->buffer.end();
  1135. ctx->s = nullptr;
  1136. }
  1137. static void ggml_vk_ctx_begin(vk_context * ctx) {
  1138. #ifdef VK_DEBUG
  1139. std::cerr << "ggml_vk_ctx_begin(" << ctx << ")" << std::endl;
  1140. #endif
  1141. if (ctx->s != nullptr) {
  1142. ggml_vk_ctx_end(ctx);
  1143. }
  1144. ctx->seqs.push_back({ ggml_vk_begin_submission(*ctx->q) });
  1145. ctx->s = ctx->seqs[ctx->seqs.size() - 1].data();
  1146. }
  1147. static size_t ggml_vk_align_size(size_t width, size_t align) {
  1148. return CEIL_DIV(width, align) * align;
  1149. }
  1150. static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) {
  1151. if (memcpys == nullptr) {
  1152. memcpy(dst, src, size);
  1153. } else {
  1154. memcpys->emplace_back(dst, src, size);
  1155. }
  1156. }
  1157. static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
  1158. #ifdef VK_DEBUG
  1159. std::cerr << "ggml_vk_buffer_write_nc_async(" << tensor << ")" << std::endl;
  1160. #endif
  1161. GGML_ASSERT(!ggml_is_contiguous(tensor));
  1162. // Buffer is already mapped
  1163. if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1164. std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
  1165. GGML_ASSERT(false);
  1166. }
  1167. // Check if src is pinned memory
  1168. vk_buffer* buf = nullptr;
  1169. size_t buf_offset = 0;
  1170. for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
  1171. const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
  1172. const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
  1173. if (tensor->data >= addr && tensor->data < endr) {
  1174. buf = &std::get<2>(vk_pinned_memory[i]);
  1175. buf_offset = ((const uint8_t *)tensor->data) - addr;
  1176. break;
  1177. }
  1178. }
  1179. const uint64_t ne0 = tensor->ne[0];
  1180. const uint64_t ne1 = tensor->ne[1];
  1181. const uint64_t ne2 = tensor->ne[2];
  1182. const uint64_t ne3 = tensor->ne[3];
  1183. const uint64_t nb0 = tensor->nb[0];
  1184. const uint64_t nb1 = tensor->nb[1];
  1185. const uint64_t nb2 = tensor->nb[2];
  1186. const uint64_t nb3 = tensor->nb[3];
  1187. const ggml_type type = tensor->type;
  1188. const uint64_t ts = ggml_type_size(type);
  1189. const uint64_t bs = ggml_blck_size(type);
  1190. const uint64_t dstnb0 = ts;
  1191. const uint64_t dstnb1 = dstnb0*(ne0/bs);
  1192. const uint64_t dstnb2 = dstnb1*ne1;
  1193. const uint64_t dstnb3 = dstnb2*ne2;
  1194. const uint64_t ne = ggml_nelements(tensor);
  1195. if (buf != nullptr) {
  1196. // Memory is pinned, use as staging buffer
  1197. std::vector<vk::BufferCopy> slices;
  1198. for (uint64_t i3 = 0; i3 < ne3; i3++) {
  1199. for (uint64_t i2 = 0; i2 < ne2; i2++) {
  1200. // Find longest contiguous slice
  1201. if (ne1*nb1 == dstnb2) {
  1202. slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 });
  1203. } else {
  1204. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  1205. if (ne0*nb0/bs == dstnb1) {
  1206. slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 });
  1207. } else {
  1208. const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
  1209. const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
  1210. for (uint64_t i0 = 0; i0 < ne0; i0++) {
  1211. slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 });
  1212. }
  1213. }
  1214. }
  1215. }
  1216. }
  1217. }
  1218. ggml_vk_sync_buffers(ctx);
  1219. ctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
  1220. return;
  1221. }
  1222. // Staging buffer required
  1223. vk_buffer * staging = &vk_staging;
  1224. size_t staging_offset = vk_staging_offset;
  1225. const size_t copy_size = ts*ne/bs;
  1226. if (vk_staging.size < vk_staging_offset + copy_size) {
  1227. if (sync_staging) {
  1228. // Create temporary larger buffer
  1229. if (vk_sync_staging.size < copy_size) {
  1230. ggml_vk_destroy_buffer(vk_sync_staging);
  1231. vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  1232. }
  1233. staging = &vk_sync_staging;
  1234. staging_offset = 0;
  1235. } else {
  1236. GGML_ASSERT(false);
  1237. }
  1238. }
  1239. VkBufferCopy buf_copy{ staging_offset, offset, copy_size };
  1240. ggml_vk_sync_buffers(ctx);
  1241. vkCmdCopyBuffer(ctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
  1242. for (uint64_t i3 = 0; i3 < ne3; i3++) {
  1243. for (uint64_t i2 = 0; i2 < ne2; i2++) {
  1244. // Find longest contiguous slice
  1245. if (ne1*nb1 == dstnb2) {
  1246. deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &ctx->in_memcpys);
  1247. } else {
  1248. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  1249. if (ne0*nb0/bs == dstnb1) {
  1250. deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &ctx->in_memcpys);
  1251. } else {
  1252. const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
  1253. const uint64_t d_off = staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
  1254. for (uint64_t i0 = 0; i0 < ne0; i0++) {
  1255. deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &ctx->in_memcpys);
  1256. }
  1257. }
  1258. }
  1259. }
  1260. }
  1261. }
  1262. }
  1263. static void ggml_vk_buffer_write_2d_async(vk_context * ctx, vk_buffer* dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) {
  1264. #ifdef VK_DEBUG
  1265. std::cerr << "ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")" << std::endl;
  1266. #endif
  1267. // Buffer is already mapped
  1268. if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1269. std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
  1270. GGML_ASSERT(false);
  1271. }
  1272. // Check if src is pinned memory
  1273. vk_buffer* buf = nullptr;
  1274. size_t buf_offset = 0;
  1275. for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
  1276. const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
  1277. const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
  1278. if (src >= addr && src < endr) {
  1279. buf = &std::get<2>(vk_pinned_memory[i]);
  1280. buf_offset = ((const uint8_t *)src) - addr;
  1281. break;
  1282. }
  1283. }
  1284. if (buf != nullptr) {
  1285. // Memory is pinned, use as staging buffer
  1286. std::vector<vk::BufferCopy> slices(1);
  1287. if (width == spitch) {
  1288. // Only do single write if stride is equal
  1289. slices[0].srcOffset = buf_offset;
  1290. slices[0].dstOffset = offset;
  1291. slices[0].size = width * height;
  1292. } else {
  1293. slices.resize(height);
  1294. for (size_t i = 0; i < height; i++) {
  1295. slices[i].srcOffset = buf_offset + i * spitch;
  1296. slices[i].dstOffset = offset + i * width;
  1297. slices[i].size = width;
  1298. }
  1299. }
  1300. ggml_vk_sync_buffers(ctx);
  1301. ctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
  1302. return;
  1303. }
  1304. #ifdef VK_DEBUG
  1305. std::cerr << "STAGING" << std::endl;
  1306. #endif
  1307. // Staging buffer required
  1308. vk_buffer * staging = &vk_staging;
  1309. size_t staging_offset = vk_staging_offset;
  1310. const size_t copy_size = width*height;
  1311. if (vk_staging.size < vk_staging_offset + copy_size) {
  1312. if (sync_staging) {
  1313. if (vk_sync_staging.size < copy_size) {
  1314. ggml_vk_destroy_buffer(vk_sync_staging);
  1315. vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  1316. }
  1317. staging = &vk_sync_staging;
  1318. staging_offset = 0;
  1319. } else {
  1320. GGML_ASSERT(false);
  1321. }
  1322. }
  1323. VkBufferCopy buf_copy = {
  1324. staging_offset,
  1325. offset,
  1326. copy_size};
  1327. ggml_vk_sync_buffers(ctx);
  1328. vkCmdCopyBuffer(ctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
  1329. if (width == spitch) {
  1330. deferred_memcpy((uint8_t *)staging->ptr + staging_offset, src, width * height, &ctx->in_memcpys);
  1331. } else {
  1332. for (size_t i = 0; i < height; i++) {
  1333. deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i * width, (const uint8_t *) src + i * spitch, width, &ctx->in_memcpys);
  1334. }
  1335. }
  1336. }
  1337. static void ggml_vk_buffer_write_async(vk_context * ctx, vk_buffer* dst, size_t offset, const void * src, size_t size, bool sync_staging = false) {
  1338. #ifdef VK_DEBUG
  1339. std::cerr << "ggml_vk_buffer_write_async(" << size << ")" << std::endl;
  1340. #endif
  1341. return ggml_vk_buffer_write_2d_async(ctx, dst, offset, src, size, size, 1, sync_staging);
  1342. }
  1343. static void ggml_vk_buffer_write_2d(vk_buffer* dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) {
  1344. #ifdef VK_DEBUG
  1345. std::cerr << "ggml_vk_buffer_write_2d(" << width << ", " << height << ")" << std::endl;
  1346. #endif
  1347. // Buffer is already mapped
  1348. if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1349. GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
  1350. for (size_t i = 0; i < height; i++) {
  1351. memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width);
  1352. }
  1353. } else {
  1354. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1355. ggml_vk_ctx_begin(ctx);
  1356. ggml_vk_buffer_write_2d_async(ctx, dst, offset, src, spitch, width, height, true);
  1357. ggml_vk_ctx_end(ctx);
  1358. for (auto& cpy : ctx->in_memcpys) {
  1359. memcpy(cpy.dst, cpy.src, cpy.n);
  1360. }
  1361. ggml_vk_submit(ctx, vk_fence);
  1362. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences");
  1363. vk_device.device.resetFences({ vk_fence });
  1364. }
  1365. }
  1366. static void ggml_vk_buffer_write(vk_buffer* dst, size_t offset, const void * src, size_t size) {
  1367. #ifdef VK_DEBUG
  1368. std::cerr << "ggml_vk_buffer_write(" << size << ")" << std::endl;
  1369. #endif
  1370. ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1);
  1371. }
  1372. static void ggml_vk_buffer_read_2d_async(vk_context * ctx, vk_buffer* src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
  1373. #ifdef VK_DEBUG
  1374. std::cerr << "ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")" << std::endl;
  1375. #endif
  1376. GGML_ASSERT(width > 0);
  1377. GGML_ASSERT(height > 0);
  1378. GGML_ASSERT(src->size > 0);
  1379. // Check if dst is pinned memory
  1380. vk_buffer* buf = nullptr;
  1381. size_t buf_offset = 0;
  1382. for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
  1383. const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
  1384. const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
  1385. if (dst >= addr && dst < endr) {
  1386. buf = &std::get<2>(vk_pinned_memory[i]);
  1387. buf_offset = ((const uint8_t *)dst) - addr;
  1388. break;
  1389. }
  1390. }
  1391. std::vector<vk::BufferCopy> slices(1);
  1392. if (width == spitch && width == dpitch) {
  1393. // Only do single write if stride is equal
  1394. slices[0].srcOffset = offset;
  1395. slices[0].dstOffset = buf_offset;
  1396. slices[0].size = width * height;
  1397. } else {
  1398. slices.resize(height);
  1399. for (size_t i = 0; i < height; i++) {
  1400. slices[i].srcOffset = offset + i * spitch;
  1401. slices[i].dstOffset = buf_offset + i * dpitch;
  1402. slices[i].size = width;
  1403. }
  1404. }
  1405. if (buf != nullptr) {
  1406. // Memory is pinned, use as staging buffer
  1407. ggml_vk_sync_buffers(ctx);
  1408. ctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
  1409. return;
  1410. }
  1411. #ifdef VK_DEBUG
  1412. std::cerr << "STAGING" << std::endl;
  1413. #endif
  1414. // Fall back to staging buffer
  1415. vk_buffer * staging = &vk_staging;
  1416. const size_t copy_size = dpitch * height;
  1417. if (vk_staging.size < vk_staging_offset + copy_size) {
  1418. if (sync_staging) {
  1419. // Create temporary larger buffer
  1420. if (vk_sync_staging.size < copy_size) {
  1421. ggml_vk_destroy_buffer(vk_sync_staging);
  1422. vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  1423. }
  1424. staging = &vk_sync_staging;
  1425. } else {
  1426. GGML_ASSERT(false);
  1427. }
  1428. }
  1429. ggml_vk_sync_buffers(ctx);
  1430. ctx->s->buffer.copyBuffer(src->buffer, staging->buffer, slices);
  1431. deferred_memcpy(dst, staging->ptr, copy_size, &ctx->out_memcpys);
  1432. }
  1433. static void ggml_vk_buffer_read_async(vk_context * ctx, vk_buffer* src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
  1434. return ggml_vk_buffer_read_2d_async(ctx, src, offset, dst, size, size, size, 1, sync_staging);
  1435. }
  1436. static void ggml_vk_buffer_read(vk_buffer* src, size_t offset, void * dst, size_t size) {
  1437. #ifdef VK_DEBUG
  1438. std::cerr << "ggml_vk_buffer_read(" << offset << ", " << size << ")" << std::endl;
  1439. #endif
  1440. if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1441. GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
  1442. memcpy(dst, (uint8_t *) src->ptr + offset, size);
  1443. } else {
  1444. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1445. ggml_vk_ctx_begin(ctx);
  1446. ggml_vk_buffer_read_async(ctx, src, offset, dst, size, true);
  1447. ggml_vk_ctx_end(ctx);
  1448. ggml_vk_submit(ctx, vk_fence);
  1449. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_buffer_read waitForFences");
  1450. vk_device.device.resetFences({ vk_fence });
  1451. for (auto& cpy : ctx->out_memcpys) {
  1452. memcpy(cpy.dst, cpy.src, cpy.n);
  1453. }
  1454. }
  1455. }
  1456. static void ggml_vk_buffer_copy_async(vk_context * ctx, vk_buffer * dst, size_t dst_offset, vk_buffer * src, size_t src_offset, size_t size) {
  1457. #ifdef VK_DEBUG
  1458. std::cerr << "ggml_vk_buffer_copy_async(" << size << ")" << std::endl;
  1459. #endif
  1460. VkBufferCopy bc{ src_offset, dst_offset, size };
  1461. vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
  1462. }
  1463. static void ggml_vk_buffer_copy(vk_buffer * dst, size_t dst_offset, vk_buffer * src, size_t src_offset, size_t size) {
  1464. #ifdef VK_DEBUG
  1465. std::cerr << "ggml_vk_buffer_copy(" << size << ")" << std::endl;
  1466. #endif
  1467. VkBufferCopy bc{ src_offset, dst_offset, size };
  1468. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1469. ggml_vk_ctx_begin(ctx);
  1470. vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
  1471. ggml_vk_buffer_copy_async(ctx, dst, dst_offset, src, src_offset, size);
  1472. ggml_vk_ctx_end(ctx);
  1473. ggml_vk_submit(ctx, vk_fence);
  1474. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences");
  1475. vk_device.device.resetFences({ vk_fence });
  1476. }
  1477. static void ggml_vk_buffer_memset(vk_buffer* dst, size_t offset, uint32_t c, size_t size) {
  1478. #ifdef VK_DEBUG
  1479. std::cerr << "ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")" << std::endl;
  1480. #endif
  1481. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1482. ggml_vk_ctx_begin(ctx);
  1483. ctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
  1484. ggml_vk_ctx_end(ctx);
  1485. ggml_vk_submit(ctx, vk_fence);
  1486. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_memset waitForFences");
  1487. vk_device.device.resetFences({ vk_fence });
  1488. }
  1489. static void ggml_vk_h2d_tensor_2d(vk_context * ctx, vk_buffer * dst, size_t offset, const ggml_tensor * src, uint64_t i3, uint64_t i2, uint64_t i1) {
  1490. #ifdef VK_DEBUG
  1491. std::cerr << "ggml_vk_h2d_tensor_2d(dst=" << dst << ", offset=" << offset << ", src=" << src << ", i3=" << i3 << ", i2=" << i2 << ", i1=" << i1 << ")" << std::endl;
  1492. #endif
  1493. const uint64_t ne0 = src->ne[0];
  1494. const uint64_t ne1 = src->ne[1];
  1495. const uint64_t nb0 = src->nb[0];
  1496. const uint64_t nb1 = src->nb[1];
  1497. const uint64_t nb2 = src->nb[2];
  1498. const uint64_t nb3 = src->nb[3];
  1499. const enum ggml_type type = src->type;
  1500. const size_t ts = ggml_type_size(type);
  1501. const size_t bs = ggml_blck_size(type);
  1502. const size_t row_length = ts*ne0/bs;
  1503. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  1504. if (nb0 == ts && nb1 == row_length) {
  1505. return ggml_vk_buffer_write_async(ctx, dst, offset, x, i1*nb1);
  1506. }
  1507. if (nb0 == ts && (i1 == ne1 || !ggml_is_permuted(src))) {
  1508. return ggml_vk_buffer_write_2d_async(ctx, dst, offset, x, nb1, row_length, i1);
  1509. }
  1510. GGML_ASSERT(i3 == 0);
  1511. GGML_ASSERT(i2 == 0);
  1512. GGML_ASSERT(i1 == (uint64_t) ggml_nrows(src));
  1513. return ggml_vk_buffer_write_nc_async(ctx, dst, offset, src);
  1514. }
  1515. static void ggml_vk_d2h_tensor_2d(vk_context * ctx, vk_buffer * src, size_t offset, const ggml_tensor * dst) {
  1516. #ifdef VK_DEBUG
  1517. std::cerr << "ggml_vk_d2h_tensor_2d()" << std::endl;
  1518. #endif
  1519. const uint64_t ne0 = dst->ne[0];
  1520. const uint64_t ne1 = dst->ne[1];
  1521. const uint64_t ne2 = dst->ne[2];
  1522. const uint64_t ne3 = dst->ne[3];
  1523. const uint64_t nb0 = dst->nb[0];
  1524. const uint64_t nb1 = dst->nb[1];
  1525. // const uint64_t nb2 = dst->nb[2];
  1526. // const uint64_t nb3 = dst->nb[3];
  1527. const enum ggml_type type = dst->type;
  1528. const size_t ts = ggml_type_size(type);
  1529. const size_t bs = ggml_blck_size(type);
  1530. const size_t row_length = ts*ne0/bs;
  1531. if (ggml_is_contiguous(dst)) {
  1532. return ggml_vk_buffer_read_async(ctx, src, offset, dst->data, ne1*nb1*ne2*ne3);
  1533. }
  1534. if (nb0 == ts) {
  1535. return ggml_vk_buffer_read_2d_async(ctx, src, offset, dst->data, nb1, nb1, row_length, ne1*ne2*ne3);
  1536. }
  1537. GGML_ASSERT(false);
  1538. }
  1539. static uint32_t ggml_vk_guess_split_k(int m, int n, int k) {
  1540. #ifdef VK_DEBUG
  1541. std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ", " << aligned << ")";
  1542. #endif
  1543. if (k > 128 && (m < 128 || n < 128) && m > 2 && n > 2) {
  1544. #ifdef VK_DEBUG
  1545. std::cerr << " = 4" << std::endl;
  1546. #endif
  1547. return 4;
  1548. }
  1549. #ifdef VK_DEBUG
  1550. std::cerr << " = 1" << std::endl;
  1551. #endif
  1552. return 1;
  1553. }
  1554. static uint32_t ggml_vk_guess_matmul_pipeline_align(int m, int n) {
  1555. #ifdef VK_DEBUG
  1556. std::cerr << "ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")" << std::endl;
  1557. #endif
  1558. if (m <= 32 || n <= 32) {
  1559. return vk_pipeline_matmul_f32_aligned_s.align;
  1560. }
  1561. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1562. return vk_pipeline_matmul_f32_aligned_m.align;
  1563. }
  1564. return vk_pipeline_matmul_f32_aligned_l.align;
  1565. }
  1566. static vk_pipeline* ggml_vk_guess_matmul_pipeline(bool bit16_x, bool bit16_y, int m, int n, bool aligned) {
  1567. #ifdef VK_DEBUG
  1568. std::cerr << "ggml_vk_guess_matmul_pipeline(" << bit16_x << ", " << bit16_y << ", " << m << ", " << n << ", " << aligned << ")";
  1569. #endif
  1570. if (bit16_x && bit16_y) {
  1571. if (m <= 32 || n <= 32) {
  1572. #ifdef VK_DEBUG
  1573. std::cerr << " S" << std::endl;
  1574. #endif
  1575. return aligned ? &vk_pipeline_matmul_f16_aligned_s : &vk_pipeline_matmul_f16_s;
  1576. }
  1577. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1578. #ifdef VK_DEBUG
  1579. std::cerr << " M" << std::endl;
  1580. #endif
  1581. return aligned ? &vk_pipeline_matmul_f16_aligned_m : &vk_pipeline_matmul_f16_m;
  1582. }
  1583. #ifdef VK_DEBUG
  1584. std::cerr << " L" << std::endl;
  1585. #endif
  1586. return aligned ? &vk_pipeline_matmul_f16_aligned_l : &vk_pipeline_matmul_f16_l;
  1587. }
  1588. if (bit16_x && !bit16_y) {
  1589. if (m <= 32 || n <= 32) {
  1590. #ifdef VK_DEBUG
  1591. std::cerr << " S" << std::endl;
  1592. #endif
  1593. return aligned ? &vk_pipeline_matmul_f16_f32_aligned_s : &vk_pipeline_matmul_f16_f32_s;
  1594. }
  1595. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1596. #ifdef VK_DEBUG
  1597. std::cerr << " M" << std::endl;
  1598. #endif
  1599. return aligned ? &vk_pipeline_matmul_f16_f32_aligned_m : &vk_pipeline_matmul_f16_f32_m;
  1600. }
  1601. #ifdef VK_DEBUG
  1602. std::cerr << " L" << std::endl;
  1603. #endif
  1604. return aligned ? &vk_pipeline_matmul_f16_f32_aligned_l : &vk_pipeline_matmul_f16_f32_l;
  1605. }
  1606. if (!bit16_x && bit16_y) {
  1607. GGML_ASSERT(false);
  1608. }
  1609. if (m <= 32 || n <= 32) {
  1610. #ifdef VK_DEBUG
  1611. std::cerr << " S" << std::endl;
  1612. #endif
  1613. return aligned ? &vk_pipeline_matmul_f32_aligned_s : &vk_pipeline_matmul_f32_s;
  1614. }
  1615. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1616. #ifdef VK_DEBUG
  1617. std::cerr << " M" << std::endl;
  1618. #endif
  1619. return aligned ? &vk_pipeline_matmul_f32_aligned_m : &vk_pipeline_matmul_f32_m;
  1620. }
  1621. #ifdef VK_DEBUG
  1622. std::cerr << " L" << std::endl;
  1623. #endif
  1624. return aligned ? &vk_pipeline_matmul_f32_aligned_l : &vk_pipeline_matmul_f32_l;
  1625. }
  1626. static void ggml_vk_matmul(vk_context * ctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d) {
  1627. #ifdef VK_DEBUG
  1628. std::cerr << "ggml_vk_matmul(a: (" << a.buffer.buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer.buffer << ", " << b.offset << ", " << b.size << "), c: (" << d.buffer.buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << split_k_buffer.buffer.buffer << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ")" << std::endl;
  1629. #endif
  1630. if (split_k == 1) {
  1631. ggml_vk_sync_buffers(ctx);
  1632. const std::array<uint32_t, 14> pc = { m, n, k, stride_a, stride_b, stride_d, k, ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d };
  1633. ggml_vk_dispatch_pipeline(ctx, pipeline, { a, b, d }, pc.size() * sizeof(uint32_t), pc.data(), { m, n, batch });
  1634. return;
  1635. }
  1636. GGML_ASSERT(batch_stride_d == m * n);
  1637. // Synchronize the two submissions
  1638. ggml_vk_sync_buffers(ctx);
  1639. ctx->s->buffer.fillBuffer(split_k_buffer.buffer.buffer, 0, split_k_buffer.size, 0);
  1640. ggml_vk_sync_buffers(ctx);
  1641. const std::array<uint32_t, 14> pc1 = { m, n, k, stride_a, stride_b, stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d };
  1642. // Make sure enough workgroups get assigned for split k to work
  1643. ggml_vk_dispatch_pipeline(ctx, pipeline, { a, b, split_k_buffer }, pc1.size() * sizeof(uint32_t), pc1.data(), { (CEIL_DIV(m, pipeline.wg_denoms[0]) * pipeline.wg_denoms[0]) * split_k, n, batch });
  1644. ggml_vk_sync_buffers(ctx);
  1645. const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
  1646. ggml_vk_dispatch_pipeline(ctx, vk_pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
  1647. }
  1648. static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
  1649. return
  1650. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1651. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1652. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1653. }
  1654. static vk_pipeline * ggml_vk_get_cpy_pipeline(ggml_type from, ggml_type to) {
  1655. if (from == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
  1656. return &vk_pipeline_cpy_f32_f32;
  1657. }
  1658. if (from == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
  1659. return &vk_pipeline_cpy_f32_f16;
  1660. }
  1661. if (from == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
  1662. return &vk_pipeline_cpy_f16_f16;
  1663. }
  1664. std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl;
  1665. GGML_ASSERT(false);
  1666. }
  1667. static void ggml_vk_cpy_to_contiguous(vk_context * ctx, vk_pipeline * pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out, ggml_type buffer_type, bool aligned=true) {
  1668. #ifdef VK_DEBUG
  1669. std::cerr << "ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
  1670. std::cerr << "buffer in size=" << in.buffer.size << ", buffer out size=" << out.buffer.size << ")" << std::endl;
  1671. #endif
  1672. const int tensor_type_size = ggml_type_size(tensor->type);
  1673. const int dst_type_size = ggml_type_size(buffer_type);
  1674. const uint32_t ne = tensor->ne[0] * tensor->ne[1] * tensor->ne[2];
  1675. const uint32_t nb2 = aligned ? ggml_vk_align_size(dst_type_size * tensor->ne[0] * tensor->ne[1], vk_device.properties.limits.minStorageBufferOffsetAlignment) / dst_type_size : tensor->ne[0] * tensor->ne[1];
  1676. const vk_op_cpy_push_constants pc = {
  1677. (uint32_t)ne,
  1678. (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size,
  1679. (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], 1 , (uint32_t)tensor->ne[0] , nb2,
  1680. 0,
  1681. };
  1682. ggml_vk_sync_buffers(ctx);
  1683. ggml_vk_dispatch_pipeline(ctx, *pipeline, { in, out }, sizeof(vk_op_cpy_push_constants), &pc, { ne, 1, 1 });
  1684. }
  1685. static void ggml_vk_mul_mat_q_f16(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1686. #ifdef VK_DEBUG
  1687. std::cerr << "ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  1688. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  1689. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  1690. #endif
  1691. GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
  1692. GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
  1693. const uint64_t ne00 = src0->ne[0];
  1694. const uint64_t ne01 = src0->ne[1];
  1695. const uint64_t ne02 = src0->ne[2];
  1696. const uint64_t ne03 = src0->ne[3];
  1697. const uint64_t ne10 = src1->ne[0];
  1698. const uint64_t ne11 = src1->ne[1];
  1699. const uint64_t ne12 = src1->ne[2];
  1700. const uint64_t ne13 = src1->ne[3];
  1701. const uint64_t ne20 = dst->ne[0];
  1702. const uint64_t ne21 = dst->ne[1];
  1703. const uint64_t r2 = ne12 / ne02;
  1704. const uint64_t r3 = ne13 / ne03;
  1705. const bool load_x = src0->backend != GGML_BACKEND_GPU;
  1706. const bool load_y = src1->backend != GGML_BACKEND_GPU;
  1707. const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
  1708. const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
  1709. const bool f16_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
  1710. const bool qx_needs_dequant = src0->type != GGML_TYPE_F16 || x_non_contig;
  1711. const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
  1712. // Not implemented
  1713. GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
  1714. const int x_ne = ne01 * ne00;
  1715. const int y_ne = ne11 * ne10;
  1716. const int d_ne = ne11 * ne01;
  1717. const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ne01, ne11));
  1718. const bool aligned = ne10 == kpad;
  1719. const uint32_t split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
  1720. vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(true, !f16_f32_kernel, ne01, ne11, aligned);
  1721. const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
  1722. const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
  1723. const uint64_t x_sz = sizeof(ggml_fp16_t) * x_ne;
  1724. const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
  1725. const uint64_t d_sz = sizeof(float) * d_ne;
  1726. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  1727. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  1728. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  1729. vk_buffer* d_D = &extra->buffer_gpu;
  1730. const uint64_t d_buf_offset = extra->offset;
  1731. GGML_ASSERT(d_D != nullptr);
  1732. GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
  1733. vk_buffer * d_Qx;
  1734. uint64_t qx_buf_offset = 0;
  1735. vk_buffer * d_Qy;
  1736. uint64_t qy_buf_offset = 0;
  1737. vk_buffer* d_X;
  1738. uint64_t x_buf_offset = 0;
  1739. vk_buffer* d_Y;
  1740. uint64_t y_buf_offset = 0;
  1741. if (load_x) {
  1742. d_Qx = &vk_prealloc_qx;
  1743. } else {
  1744. d_Qx = &extra_src0->buffer_gpu;
  1745. qx_buf_offset = extra_src0->offset;
  1746. GGML_ASSERT(d_Qx != nullptr);
  1747. }
  1748. if (load_y) {
  1749. d_Qy = &vk_prealloc_qy;
  1750. } else {
  1751. d_Qy = &extra_src1->buffer_gpu;
  1752. qy_buf_offset = extra_src1->offset;
  1753. GGML_ASSERT(d_Qy != nullptr);
  1754. }
  1755. if (qx_needs_dequant) {
  1756. d_X = &vk_prealloc_x;
  1757. GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
  1758. } else {
  1759. d_X = d_Qx;
  1760. x_buf_offset = qx_buf_offset;
  1761. GGML_ASSERT(qx_sz == x_sz); // NOLINT
  1762. }
  1763. if (qy_needs_dequant) {
  1764. d_Y = &vk_prealloc_y;
  1765. GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03);
  1766. } else {
  1767. d_Y = d_Qy;
  1768. y_buf_offset = qy_buf_offset;
  1769. GGML_ASSERT(qy_sz == y_sz);
  1770. }
  1771. vk_pipeline * to_fp16_vk_0 = nullptr;
  1772. vk_pipeline * to_fp16_vk_1 = nullptr;
  1773. if (x_non_contig) {
  1774. to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(src0->type, GGML_TYPE_F16);
  1775. } else {
  1776. to_fp16_vk_0 = ggml_vk_get_to_fp16(src0->type);
  1777. }
  1778. if (y_non_contig) {
  1779. to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(src1->type, GGML_TYPE_F16);
  1780. } else {
  1781. to_fp16_vk_1 = ggml_vk_get_to_fp16(src1->type);
  1782. }
  1783. GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
  1784. GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
  1785. // Allocate descriptor sets
  1786. ggml_vk_pipeline_allocate_descriptor_sets(*pipeline, ne12 * ne13);
  1787. if (qx_needs_dequant) {
  1788. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_0, x_non_contig ? 1 : ne12 * ne13);
  1789. }
  1790. if (qy_needs_dequant) {
  1791. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13);
  1792. }
  1793. if (split_k > 1) {
  1794. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_matmul_split_k_reduce, ne12 * ne13);
  1795. }
  1796. if (x_non_contig) {
  1797. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_0, src0, { *d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { *d_X, 0, VK_WHOLE_SIZE }, dst->type, false);
  1798. } else if (load_x || qx_needs_dequant) {
  1799. if (load_x) {
  1800. // copy data to device
  1801. ggml_vk_h2d_tensor_2d(ctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0));
  1802. vk_staging_offset = qx_sz * ne02 * ne03;
  1803. }
  1804. if (qx_needs_dequant) {
  1805. const std::vector<int> pc = { (int)ne01, (int)ne10, (int)ne10, (int)ne10 };
  1806. ggml_vk_sync_buffers(ctx);
  1807. ggml_vk_dispatch_pipeline(ctx, *to_fp16_vk_0, { { *d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { *d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
  1808. }
  1809. }
  1810. if (y_non_contig) {
  1811. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_1, src1, { *d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { *d_Y, 0, VK_WHOLE_SIZE }, dst->type);
  1812. } else if (load_y) {
  1813. ggml_vk_h2d_tensor_2d(ctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1));
  1814. }
  1815. uint32_t stride_batch_x = ne00*ne01;
  1816. uint32_t stride_batch_y = ne10*ne11;
  1817. if (!ggml_vk_dim01_contiguous(src0) && !load_x && !qx_needs_dequant) {
  1818. stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
  1819. }
  1820. if (!ggml_vk_dim01_contiguous(src1) && !load_y && !qy_needs_dequant) {
  1821. stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
  1822. }
  1823. // compute
  1824. ggml_vk_matmul(ctx, *pipeline, { *d_X, x_buf_offset, x_sz * ne02 * ne03 }, { *d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { *d_D, d_buf_offset, d_sz * ne12 * ne13 }, { vk_prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
  1825. if (dst->backend == GGML_BACKEND_CPU) {
  1826. // copy dst to host
  1827. float * d = (float *) ((char *) dst->data);
  1828. ggml_vk_buffer_read_async(ctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
  1829. }
  1830. }
  1831. static void ggml_vk_mul_mat_vec_q_f16(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1832. #ifdef VK_DEBUG
  1833. std::cerr << "ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  1834. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  1835. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  1836. #endif
  1837. GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
  1838. GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
  1839. const uint64_t ne00 = src0->ne[0];
  1840. const uint64_t ne01 = src0->ne[1];
  1841. const uint64_t ne02 = src0->ne[2];
  1842. const uint64_t ne03 = src0->ne[3];
  1843. const uint64_t ne10 = src1->ne[0];
  1844. const uint64_t ne11 = src1->ne[1];
  1845. const uint64_t ne12 = src1->ne[2];
  1846. const uint64_t ne13 = src1->ne[3];
  1847. GGML_ASSERT(ne11 == 1);
  1848. const uint64_t nb2 = dst->nb[2];
  1849. const uint64_t nb3 = dst->nb[3];
  1850. const uint64_t r2 = ne12 / ne02;
  1851. const uint64_t r3 = ne13 / ne03;
  1852. const bool load_x = src0->backend != GGML_BACKEND_GPU;
  1853. const bool load_y = src1->backend != GGML_BACKEND_GPU;
  1854. const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
  1855. const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
  1856. const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
  1857. const bool qx_needs_dequant = x_non_contig;
  1858. const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
  1859. const uint64_t x_ne = ne01 * ne00;
  1860. const uint64_t y_ne = ne11 * ne10;
  1861. const uint64_t d_ne = ne11 * ne01;
  1862. const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), vk_device.properties.limits.minStorageBufferOffsetAlignment);
  1863. const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
  1864. const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
  1865. const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
  1866. const uint64_t d_sz = sizeof(float) * d_ne;
  1867. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  1868. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  1869. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  1870. vk_buffer* d_D = &extra->buffer_gpu;
  1871. const uint64_t d_buf_offset = extra->offset;
  1872. GGML_ASSERT(d_D != nullptr);
  1873. vk_buffer* d_Qx;
  1874. uint32_t qx_buf_offset = 0;
  1875. vk_buffer* d_Qy;
  1876. uint32_t qy_buf_offset = 0;
  1877. vk_buffer* d_X;
  1878. uint64_t x_buf_offset = 0;
  1879. vk_buffer* d_Y;
  1880. uint64_t y_buf_offset = 0;
  1881. if (load_x) {
  1882. d_Qx = &vk_prealloc_qx;
  1883. } else {
  1884. d_Qx = &extra_src0->buffer_gpu;
  1885. qx_buf_offset = extra_src0->offset;
  1886. GGML_ASSERT(d_Qx != nullptr);
  1887. }
  1888. if (load_y) {
  1889. d_Qy = &vk_prealloc_qy;
  1890. } else {
  1891. d_Qy = &extra_src1->buffer_gpu;
  1892. qy_buf_offset = extra_src1->offset;
  1893. GGML_ASSERT(d_Qy != nullptr);
  1894. }
  1895. if (qx_needs_dequant) {
  1896. d_X = &vk_prealloc_x;
  1897. } else {
  1898. d_X = d_Qx;
  1899. x_buf_offset = qx_buf_offset;
  1900. GGML_ASSERT(qx_sz == x_sz);
  1901. }
  1902. if (qy_needs_dequant) {
  1903. d_Y = &vk_prealloc_y;
  1904. } else {
  1905. d_Y = d_Qy;
  1906. y_buf_offset = qy_buf_offset;
  1907. GGML_ASSERT(qy_sz == y_sz);
  1908. }
  1909. vk_pipeline * to_fp16_vk_0 = nullptr;
  1910. vk_pipeline* to_fp16_vk_1 = nullptr;
  1911. if (x_non_contig) {
  1912. to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(src0->type, src0->type);
  1913. }
  1914. if (y_non_contig) {
  1915. to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(src1->type, src1->type);
  1916. } else {
  1917. to_fp16_vk_1 = ggml_vk_get_to_fp16(src1->type);
  1918. }
  1919. vk_pipeline* dmmv = ggml_vk_get_dequantize_mul_mat_vec(src0->type);
  1920. GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
  1921. GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
  1922. GGML_ASSERT(dmmv != nullptr);
  1923. // Allocate descriptor sets
  1924. if (qx_needs_dequant) {
  1925. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_0, 1);
  1926. }
  1927. if (qy_needs_dequant) {
  1928. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13);
  1929. }
  1930. ggml_vk_pipeline_allocate_descriptor_sets(*dmmv, ne12 * ne13);
  1931. if (x_non_contig) {
  1932. GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment));
  1933. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_0, src0, { *d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { *d_X, 0, VK_WHOLE_SIZE }, src0->type);
  1934. } else if (load_x) {
  1935. // copy data to device
  1936. ggml_vk_h2d_tensor_2d(ctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0));
  1937. }
  1938. if (y_non_contig) {
  1939. GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
  1940. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_1, src1, { *d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { *d_Y, 0, VK_WHOLE_SIZE }, src1->type);
  1941. } else if (load_y) {
  1942. ggml_vk_h2d_tensor_2d(ctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1));
  1943. }
  1944. for (uint64_t i13 = 0; i13 < ne13; i13++) {
  1945. const uint64_t i03 = i13 / r3;
  1946. for (uint64_t i12 = 0; i12 < ne12; i12++) {
  1947. const uint64_t i02 = i12 / r2;
  1948. const uint64_t it_idx0 = (i03 * ne02 + i02);
  1949. const uint64_t it_idx1 = (i13 * ne12 + i12);
  1950. const uint64_t x_offset = x_buf_offset + x_sz * it_idx0;
  1951. const uint64_t qy_offset = qy_buf_offset + qy_sz * it_idx1;
  1952. const uint64_t y_offset = y_buf_offset + y_sz * it_idx1;
  1953. const uint64_t d_offset = d_buf_offset + d_sz * it_idx1;
  1954. const uint64_t y_buffer_offset = (y_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  1955. const uint64_t y_shader_offset = y_offset - y_buffer_offset;
  1956. const uint64_t d_buffer_offset = (d_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  1957. const uint64_t d_shader_offset = d_offset - d_buffer_offset;
  1958. if (!y_non_contig && qy_needs_dequant) {
  1959. const std::vector<int> pc = { (int)ne11, (int)ne10, (int)ne10, (int)ne10 };
  1960. ggml_vk_sync_buffers(ctx);
  1961. ggml_vk_dispatch_pipeline(ctx, *to_fp16_vk_1, { { *d_Qy, qy_offset, qy_sz }, { *d_Y, y_offset, y_sz } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)y_ne, 1, 1});
  1962. }
  1963. // compute
  1964. const std::array<int, 3> pc = { (int)ne00, (int)(y_shader_offset / ggml_type_size(src1->type)), (int)(d_shader_offset / ggml_type_size(dst->type))};
  1965. ggml_vk_sync_buffers(ctx);
  1966. ggml_vk_dispatch_pipeline(ctx, *dmmv, { { *d_X, x_offset, x_sz }, { *d_Y, y_buffer_offset, y_sz + y_shader_offset }, { *d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
  1967. if (dst->backend == GGML_BACKEND_CPU) {
  1968. // copy dst to host
  1969. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  1970. ggml_vk_sync_buffers(ctx);
  1971. ggml_vk_buffer_read_async(ctx, d_D, d_offset, d, sizeof(float) * d_ne);
  1972. }
  1973. }
  1974. }
  1975. }
  1976. static void ggml_vk_mul_mat_vec_p021_f16_f32(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1977. #ifdef VK_DEBUG
  1978. std::cerr << "ggml_vk_mul_mat_p021_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  1979. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  1980. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  1981. #endif
  1982. GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
  1983. GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
  1984. GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
  1985. GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
  1986. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1987. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1988. const uint64_t ne00 = src0->ne[0];
  1989. const uint64_t ne01 = src0->ne[1];
  1990. const uint64_t ne02 = src0->ne[2];
  1991. // const uint64_t ne03 = src0->ne[3];
  1992. const uint64_t ne10 = src1->ne[0];
  1993. const uint64_t ne11 = src1->ne[1];
  1994. const uint64_t ne12 = src1->ne[2];
  1995. // const uint64_t ne13 = src1->ne[3];
  1996. GGML_ASSERT(ne11 == 1);
  1997. const bool load_y = src1->backend != GGML_BACKEND_GPU;
  1998. const uint64_t x_ne = ne00 * ne01 * ne02;
  1999. const uint64_t y_ne = ne10 * ne11 * ne12;
  2000. const uint64_t d_ne = ne01 * ne11 * ne12;
  2001. const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), vk_device.properties.limits.minStorageBufferOffsetAlignment);
  2002. const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
  2003. const uint64_t d_sz = sizeof(float) * d_ne;
  2004. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2005. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2006. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  2007. vk_buffer* d_D = &extra->buffer_gpu;
  2008. const uint64_t d_buf_offset = extra->offset;
  2009. GGML_ASSERT(d_D != nullptr);
  2010. vk_buffer* d_Qx;
  2011. const uint64_t qx_buf_offset = extra_src0->offset;
  2012. vk_buffer* d_Qy;
  2013. uint64_t qy_buf_offset = 0;
  2014. d_Qx = &extra_src0->buffer_gpu;
  2015. GGML_ASSERT(d_Qx != nullptr);
  2016. if (load_y) {
  2017. d_Qy = &vk_prealloc_qy;
  2018. } else {
  2019. d_Qy = &extra_src1->buffer_gpu;
  2020. qy_buf_offset = extra_src1->offset;
  2021. GGML_ASSERT(d_Qx != nullptr);
  2022. }
  2023. // Allocate descriptor sets
  2024. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_mul_mat_vec_p021_f16_f32, 1);
  2025. const uint64_t qy_buffer_offset = (qy_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2026. const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
  2027. const uint64_t d_buffer_offset = (d_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2028. const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
  2029. if (load_y) {
  2030. ggml_vk_h2d_tensor_2d(ctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1));
  2031. }
  2032. // compute
  2033. const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
  2034. ggml_vk_sync_buffers(ctx);
  2035. ggml_vk_dispatch_pipeline(ctx, vk_pipeline_mul_mat_vec_p021_f16_f32, { { *d_Qx, qx_buf_offset, qx_sz }, { *d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { *d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
  2036. if (dst->backend == GGML_BACKEND_CPU) {
  2037. // copy dst to host
  2038. float * d = (float *) dst->data;
  2039. ggml_vk_sync_buffers(ctx);
  2040. ggml_vk_buffer_read_async(ctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
  2041. }
  2042. }
  2043. static void ggml_vk_mul_mat_vec_nc_f16_f32(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2044. #ifdef VK_DEBUG
  2045. std::cerr << "ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  2046. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  2047. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  2048. #endif
  2049. GGML_ASSERT(!ggml_is_transposed(src0));
  2050. GGML_ASSERT(!ggml_is_transposed(src1));
  2051. GGML_ASSERT(!ggml_is_permuted(src0));
  2052. GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
  2053. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  2054. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  2055. const uint64_t ne00 = src0->ne[0];
  2056. const uint64_t ne01 = src0->ne[1];
  2057. const uint64_t ne02 = src0->ne[2];
  2058. // const uint64_t ne03 = src0->ne[3];
  2059. const uint64_t nb01 = src0->nb[1];
  2060. const uint64_t nb02 = src0->nb[2];
  2061. // const uint64_t ne10 = src1->ne[0];
  2062. const uint64_t ne11 = src1->ne[1];
  2063. const uint64_t ne12 = src1->ne[2];
  2064. // const uint64_t ne13 = src1->ne[3];
  2065. GGML_ASSERT(ne11 == 1);
  2066. const bool load_y = src1->backend != GGML_BACKEND_GPU;
  2067. const uint64_t d_ne = ne01 * ne11 * ne12;
  2068. const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
  2069. const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
  2070. const uint64_t qx_sz = ggml_nbytes(src0);
  2071. const uint64_t qy_sz = ggml_nbytes(src1);
  2072. const uint64_t d_sz = sizeof(float) * d_ne;
  2073. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2074. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2075. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  2076. vk_buffer* d_D = &extra->buffer_gpu;
  2077. const uint64_t d_buf_offset = extra->offset;
  2078. GGML_ASSERT(d_D != nullptr);
  2079. vk_buffer* d_Qx;
  2080. const uint64_t qx_buf_offset = extra_src0->offset;
  2081. vk_buffer* d_Qy;
  2082. uint64_t qy_buf_offset = 0;
  2083. d_Qx = &extra_src0->buffer_gpu;
  2084. GGML_ASSERT(d_Qx != nullptr);
  2085. if (load_y) {
  2086. d_Qy = &vk_prealloc_qy;
  2087. } else {
  2088. d_Qy = &extra_src1->buffer_gpu;
  2089. qy_buf_offset = extra_src1->offset;
  2090. GGML_ASSERT(d_Qx != nullptr);
  2091. }
  2092. // Allocate descriptor sets
  2093. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_mul_mat_vec_nc_f16_f32, 1);
  2094. const uint64_t qy_buffer_offset = (qy_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2095. const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
  2096. const uint64_t d_buffer_offset = (d_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2097. const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
  2098. if (load_y) {
  2099. ggml_vk_h2d_tensor_2d(ctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1));
  2100. }
  2101. // compute
  2102. const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
  2103. ggml_vk_sync_buffers(ctx);
  2104. ggml_vk_dispatch_pipeline(ctx, vk_pipeline_mul_mat_vec_nc_f16_f32, { { *d_Qx, qx_buf_offset, qx_sz }, { *d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { *d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
  2105. if (dst->backend == GGML_BACKEND_CPU) {
  2106. // copy dst to host
  2107. float * d = (float *) dst->data;
  2108. ggml_vk_sync_buffers(ctx);
  2109. ggml_vk_buffer_read_async(ctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
  2110. }
  2111. }
  2112. static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * dst) {
  2113. const uint64_t ne10 = src1->ne[0];
  2114. const uint64_t ne0 = dst->ne[0];
  2115. const uint64_t ne1 = dst->ne[1];
  2116. // TODO: find the optimal values for these
  2117. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  2118. (src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
  2119. dst->type == GGML_TYPE_F32 &&
  2120. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
  2121. }
  2122. static void ggml_vk_mul_mat(vk_context * ctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  2123. #ifdef VK_DEBUG
  2124. std::cerr << "ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")" << std::endl;
  2125. #endif
  2126. if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
  2127. ggml_vk_mul_mat_vec_p021_f16_f32(ctx, src0, src1, dst);
  2128. } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
  2129. ggml_vk_mul_mat_vec_nc_f16_f32(ctx, src0, src1, dst);
  2130. } else if (src1->ne[1] == 1 && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
  2131. ggml_vk_mul_mat_vec_q_f16(ctx, src0, src1, dst);
  2132. } else {
  2133. ggml_vk_mul_mat_q_f16(ctx, src0, src1, dst);
  2134. }
  2135. }
  2136. static void ggml_vk_op_repeat(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2137. // guaranteed to be an integer due to the check in ggml_can_repeat
  2138. const uint64_t ne0 = dst->ne[0];
  2139. const uint64_t ne1 = dst->ne[1];
  2140. const uint64_t ne2 = dst->ne[2];
  2141. const uint64_t ne3 = dst->ne[3];
  2142. const uint64_t ne00 = src0->ne[0];
  2143. const uint64_t ne01 = src0->ne[1];
  2144. const uint64_t ne02 = src0->ne[2];
  2145. const uint64_t ne03 = src0->ne[3];
  2146. const uint64_t nb0 = dst->nb[0];
  2147. const uint64_t nb1 = dst->nb[1];
  2148. const uint64_t nb2 = dst->nb[2];
  2149. const uint64_t nb3 = dst->nb[3];
  2150. const uint64_t nb00 = src0->nb[0];
  2151. const uint64_t nb01 = src0->nb[1];
  2152. const uint64_t nb02 = src0->nb[2];
  2153. const uint64_t nb03 = src0->nb[3];
  2154. const uint64_t nr0 = ne0/ne00;
  2155. const uint64_t nr1 = ne1/ne01;
  2156. const uint64_t nr2 = ne2/ne02;
  2157. const uint64_t nr3 = ne3/ne03;
  2158. // TODO: support for transposed / permuted tensors
  2159. GGML_ASSERT(nb0 == sizeof(float));
  2160. GGML_ASSERT(nb00 == sizeof(float));
  2161. GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
  2162. GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
  2163. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2164. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2165. const vk_buffer* src_buf = &extra_src0->buffer_gpu;
  2166. const uint64_t src_offset = extra_src0->offset;
  2167. vk_buffer* dst_buf = &extra->buffer_gpu;
  2168. const uint64_t dst_offset = extra->offset;
  2169. std::vector<vk::BufferCopy> copies;
  2170. for (uint64_t i3 = 0; i3 < nr3; i3++) {
  2171. for (uint64_t k3 = 0; k3 < ne03; k3++) {
  2172. for (uint64_t i2 = 0; i2 < nr2; i2++) {
  2173. for (uint64_t k2 = 0; k2 < ne02; k2++) {
  2174. for (uint64_t i1 = 0; i1 < nr1; i1++) {
  2175. for (uint64_t k1 = 0; k1 < ne01; k1++) {
  2176. for (uint64_t i0 = 0; i0 < nr0; i0++) {
  2177. copies.push_back({
  2178. src_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0,
  2179. dst_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01,
  2180. ne00*nb0,
  2181. });
  2182. }
  2183. }
  2184. }
  2185. }
  2186. }
  2187. }
  2188. }
  2189. ggml_vk_sync_buffers(ctx);
  2190. ctx->s->buffer.copyBuffer(src_buf->buffer, dst_buf->buffer, copies);
  2191. (void) src1;
  2192. }
  2193. static vk_pipeline* ggml_vk_op_get_pipeline(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
  2194. switch (op) {
  2195. case GGML_OP_ADD:
  2196. if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2197. return &vk_pipeline_add_f32;
  2198. }
  2199. return nullptr;
  2200. case GGML_OP_GET_ROWS:
  2201. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  2202. if (dst->type == GGML_TYPE_F16) {
  2203. return &vk_pipeline_get_rows[src0->type];
  2204. }
  2205. if (dst->type == GGML_TYPE_F32) {
  2206. return &vk_pipeline_get_rows_f32[src0->type];
  2207. }
  2208. return nullptr;
  2209. case GGML_OP_MUL:
  2210. if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2211. return &vk_pipeline_mul_f32;
  2212. }
  2213. return nullptr;
  2214. case GGML_OP_SCALE:
  2215. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2216. return &vk_pipeline_scale_f32;
  2217. }
  2218. return nullptr;
  2219. case GGML_OP_SQR:
  2220. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2221. return &vk_pipeline_sqr_f32;
  2222. }
  2223. return nullptr;
  2224. case GGML_OP_CLAMP:
  2225. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2226. return &vk_pipeline_clamp_f32;
  2227. }
  2228. return nullptr;
  2229. case GGML_OP_CPY:
  2230. case GGML_OP_CONT:
  2231. case GGML_OP_DUP:
  2232. return ggml_vk_get_cpy_pipeline(src0->type, dst->type);
  2233. case GGML_OP_NORM:
  2234. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2235. return &vk_pipeline_norm_f32;
  2236. }
  2237. return nullptr;
  2238. case GGML_OP_RMS_NORM:
  2239. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2240. return &vk_pipeline_rms_norm_f32;
  2241. }
  2242. return nullptr;
  2243. case GGML_OP_UNARY:
  2244. switch (ggml_get_unary_op(dst)) {
  2245. case GGML_UNARY_OP_SILU:
  2246. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2247. return &vk_pipeline_silu_f32;
  2248. }
  2249. break;
  2250. case GGML_UNARY_OP_GELU:
  2251. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2252. return &vk_pipeline_gelu_f32;
  2253. }
  2254. break;
  2255. case GGML_UNARY_OP_RELU:
  2256. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2257. return &vk_pipeline_relu_f32;
  2258. }
  2259. break;
  2260. default:
  2261. break;
  2262. }
  2263. return nullptr;
  2264. case GGML_OP_DIAG_MASK_INF:
  2265. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2266. return &vk_pipeline_diag_mask_inf_f32;
  2267. }
  2268. return nullptr;
  2269. case GGML_OP_SOFT_MAX:
  2270. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2271. return &vk_pipeline_soft_max_f32;
  2272. }
  2273. return nullptr;
  2274. case GGML_OP_ROPE:
  2275. {
  2276. const int mode = ((const int32_t *) dst->op_params)[2];
  2277. const bool is_neox = mode & 2;
  2278. const bool is_glm = mode & 4;
  2279. if (is_glm) {
  2280. return nullptr;
  2281. }
  2282. if (is_neox) {
  2283. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2284. return &vk_pipeline_rope_neox_f32;
  2285. }
  2286. if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  2287. return &vk_pipeline_rope_neox_f16;
  2288. }
  2289. } else {
  2290. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2291. return &vk_pipeline_rope_f32;
  2292. }
  2293. if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  2294. return &vk_pipeline_rope_f16;
  2295. }
  2296. }
  2297. return nullptr;
  2298. }
  2299. default:
  2300. return nullptr;
  2301. }
  2302. }
  2303. static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
  2304. switch(op) {
  2305. case GGML_OP_REPEAT:
  2306. return ggml_vk_op_repeat;
  2307. default:
  2308. return nullptr;
  2309. }
  2310. }
  2311. #ifdef GGML_VULKAN_CHECK_RESULTS
  2312. void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
  2313. #endif
  2314. template<typename PC>
  2315. static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
  2316. #ifdef VK_DEBUG
  2317. std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  2318. if (src1 != nullptr) {
  2319. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  2320. }
  2321. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
  2322. #endif
  2323. GGML_ASSERT(!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type))); // NOLINT
  2324. GGML_ASSERT(op == GGML_OP_CPY || ggml_vk_dim01_contiguous(src0)); // NOLINT
  2325. GGML_ASSERT(src1 == nullptr || ggml_vk_dim01_contiguous(src1)); // NOLINT
  2326. GGML_ASSERT(dst->extra != nullptr);
  2327. const uint64_t ne00 = src0->ne[0];
  2328. const uint64_t ne01 = src0->ne[1];
  2329. const uint64_t ne02 = src0->ne[2];
  2330. const uint64_t ne03 = src0->ne[3];
  2331. const uint64_t ne0 = ne00 * ne01;
  2332. const bool use_src1 = src1 != nullptr;
  2333. const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
  2334. const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
  2335. const uint64_t ne12 = use_src1 ? src1->ne[2] : 0;
  2336. const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
  2337. const uint64_t ne1 = ne10 * ne11;
  2338. // const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
  2339. const uint64_t nb2 = dst->nb[2];
  2340. const uint64_t nb3 = dst->nb[3];
  2341. vk_pipeline * pipeline = ggml_vk_op_get_pipeline(src0, src1, dst, op);
  2342. ggml_vk_func_t op_func;
  2343. if (pipeline == nullptr) {
  2344. op_func = ggml_vk_op_get_func(op);
  2345. if (op_func == nullptr) {
  2346. std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type);
  2347. if (src1 != nullptr) {
  2348. std::cerr << " and " << ggml_type_name(src1->type);
  2349. }
  2350. std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
  2351. GGML_ASSERT(false);
  2352. }
  2353. op_func(ctx, src0, src1, dst);
  2354. return;
  2355. }
  2356. const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU;
  2357. const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU;
  2358. uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, vk_device.properties.limits.minStorageBufferOffsetAlignment);
  2359. uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, vk_device.properties.limits.minStorageBufferOffsetAlignment) : 0;
  2360. uint64_t d_sz = ggml_type_size(dst->type) * ne0;
  2361. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2362. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2363. ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
  2364. // Workaround for tiny tensor inputs on ROPE
  2365. if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > extra_src1->buffer_gpu.size) {
  2366. y_sz = VK_WHOLE_SIZE;
  2367. }
  2368. vk_buffer* d_D = &extra->buffer_gpu;
  2369. GGML_ASSERT(d_D != nullptr);
  2370. uint64_t d_buf_offset = (extra->offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2371. GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT
  2372. vk_buffer* d_X = nullptr;
  2373. uint64_t x_buf_offset = 0;
  2374. vk_buffer* d_Y = nullptr;
  2375. uint64_t y_buf_offset = 0;
  2376. if (transfer_src0) {
  2377. d_X = &vk_prealloc_qx;
  2378. } else {
  2379. d_X = &extra_src0->buffer_gpu;
  2380. x_buf_offset = extra_src0->offset;
  2381. GGML_ASSERT(d_X != nullptr);
  2382. }
  2383. if (transfer_src1) {
  2384. d_Y = &vk_prealloc_qy;
  2385. } else if (use_src1) {
  2386. d_Y = &extra_src1->buffer_gpu;
  2387. y_buf_offset = extra_src1->offset;
  2388. GGML_ASSERT(d_Y != nullptr);
  2389. }
  2390. if (op == GGML_OP_CPY) {
  2391. GGML_ASSERT(!transfer_src0);
  2392. GGML_ASSERT(!transfer_src1);
  2393. d_sz = dst->ne[1] * dst->nb[1];
  2394. if (extra->offset + d_sz >= d_D->size) {
  2395. d_sz = VK_WHOLE_SIZE;
  2396. }
  2397. }
  2398. std::array<uint32_t, 3> elements;
  2399. // copy src0 to device
  2400. if (transfer_src0) {
  2401. ggml_vk_h2d_tensor_2d(ctx, d_X, 0, src0, 0, 0, ggml_nrows(src0));
  2402. vk_staging_offset = x_sz * ne02 * ne03;
  2403. }
  2404. if (transfer_src1) {
  2405. ggml_vk_h2d_tensor_2d(ctx, d_Y, 0, src1, 0, 0, ggml_nrows(src1));
  2406. }
  2407. // Single call if dimension 2 is contiguous
  2408. if (op == GGML_OP_CPY || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) {
  2409. ggml_vk_pipeline_allocate_descriptor_sets(*pipeline, 1);
  2410. switch (dst->op) {
  2411. case GGML_OP_NORM:
  2412. case GGML_OP_RMS_NORM:
  2413. case GGML_OP_SOFT_MAX:
  2414. elements = { (uint32_t)ggml_nrows(src0), 1, 1 };
  2415. break;
  2416. case GGML_OP_DIAG_MASK_INF:
  2417. case GGML_OP_ROPE:
  2418. elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
  2419. break;
  2420. default:
  2421. elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
  2422. break;
  2423. }
  2424. x_sz *= ne02 * ne03;
  2425. if (y_sz != VK_WHOLE_SIZE) {
  2426. y_sz *= ne12 * ne13;
  2427. }
  2428. if (op != GGML_OP_CPY) {
  2429. d_sz *= ne02 * ne03;
  2430. }
  2431. if (!use_src1 && op == GGML_OP_SOFT_MAX) {
  2432. // Empty src1 is possible on soft_max, but the shader needs a buffer
  2433. ggml_vk_sync_buffers(ctx);
  2434. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { vk_prealloc_y, 0, vk_prealloc_y.size }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2435. } else if (use_src1) {
  2436. ggml_vk_sync_buffers(ctx);
  2437. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { *d_Y, y_buf_offset, y_sz }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2438. } else {
  2439. ggml_vk_sync_buffers(ctx);
  2440. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2441. }
  2442. if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
  2443. ggml_vk_d2h_tensor_2d(ctx, d_D, 0, dst);
  2444. } else if(dst->backend == GGML_BACKEND_CPU) {
  2445. // copy dst to host
  2446. float * d = (float *) dst->data;
  2447. ggml_vk_buffer_read_async(ctx, d_D, 0, d, d_sz);
  2448. }
  2449. } else {
  2450. ggml_vk_pipeline_allocate_descriptor_sets(*pipeline, ne02 * ne03);
  2451. switch (dst->op) {
  2452. case GGML_OP_NORM:
  2453. case GGML_OP_RMS_NORM:
  2454. case GGML_OP_SOFT_MAX:
  2455. elements = { (uint32_t)ne01, 1, 1 };
  2456. break;
  2457. case GGML_OP_DIAG_MASK_INF:
  2458. case GGML_OP_ROPE:
  2459. elements = { (uint32_t)ne01, (uint32_t)ne00, 1 };
  2460. break;
  2461. default:
  2462. elements = { (uint32_t)ne0, 1, 1 };
  2463. break;
  2464. }
  2465. for (uint64_t i03 = 0; i03 < ne03; i03++) {
  2466. for (uint64_t i02 = 0; i02 < ne02; i02++) {
  2467. const uint32_t it_idx0 = (i03 * ne02 + i02);
  2468. const uint32_t it_idx1 = use_src1 ? ((i03 % ne13) * ne12 + (i02 % ne12)) : 0;
  2469. const uint32_t x_offset = x_sz * it_idx0;
  2470. const uint32_t y_offset = y_sz * it_idx1;
  2471. const uint32_t d_offset = d_sz * it_idx0;
  2472. if (!use_src1 && op == GGML_OP_SOFT_MAX) {
  2473. // Empty src1 is possible on soft_max, but the shader needs a buffer
  2474. ggml_vk_sync_buffers(ctx);
  2475. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { vk_prealloc_y, 0, vk_prealloc_y.size }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2476. } else if (use_src1) {
  2477. ggml_vk_sync_buffers(ctx);
  2478. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset + x_offset, x_sz }, { *d_Y, y_buf_offset + y_offset, y_sz }, { *d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
  2479. } else {
  2480. ggml_vk_sync_buffers(ctx);
  2481. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset + x_offset, x_sz }, { *d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
  2482. }
  2483. if (dst->backend == GGML_BACKEND_CPU) {
  2484. // copy dst to host
  2485. ggml_vk_buffer_read_async(ctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
  2486. }
  2487. }
  2488. }
  2489. }
  2490. }
  2491. static void ggml_vk_repeat(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2492. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2493. }
  2494. static void ggml_vk_get_rows(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2495. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2496. }
  2497. static void ggml_vk_add(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2498. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2499. }
  2500. static void ggml_vk_mul(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2501. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2502. }
  2503. static void ggml_vk_scale(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2504. float * op_params = (float *)dst->op_params;
  2505. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f });
  2506. }
  2507. static void ggml_vk_sqr(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2508. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
  2509. }
  2510. static void ggml_vk_clamp(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2511. float * op_params = (float *)dst->op_params;
  2512. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), 0, op_params[0], op_params[1] });
  2513. }
  2514. static void ggml_vk_cpy(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2515. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2516. const int src0_type_size = ggml_type_size(src0->type);
  2517. const int dst_type_size = ggml_type_size(dst->type);
  2518. const uint32_t d_offset = (extra->offset % vk_device.properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
  2519. ggml_vk_op_f32<vk_op_cpy_push_constants>(ctx, src0, nullptr, dst, GGML_OP_CPY, {
  2520. (uint32_t)ggml_nelements(src0),
  2521. (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size,
  2522. (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size,
  2523. d_offset,
  2524. });
  2525. }
  2526. static void ggml_vk_norm(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2527. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f });
  2528. }
  2529. static void ggml_vk_rms_norm(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2530. float * op_params = (float *)dst->op_params;
  2531. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
  2532. }
  2533. static void ggml_vk_unary(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2534. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
  2535. }
  2536. static void ggml_vk_diag_mask_inf(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2537. int32_t * op_params = (int32_t *)dst->op_params;
  2538. ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
  2539. }
  2540. static void ggml_vk_soft_max(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2541. float * op_params = (float *)dst->op_params;
  2542. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_SOFT_MAX, { (uint32_t)src0->ne[0], (uint32_t)(src1 != nullptr ? ggml_nrows(src1) : 0), op_params[0], 0.0f });
  2543. }
  2544. static void ggml_vk_rope(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2545. const int n_dims = ((int32_t *) dst->op_params)[1];
  2546. const int mode = ((int32_t *) dst->op_params)[2];
  2547. // const int n_ctx = ((int32_t *) dst->op_params)[3];
  2548. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  2549. const float freq_base = ((float *) dst->op_params)[5];
  2550. const float freq_scale = ((float *) dst->op_params)[6];
  2551. const float ext_factor = ((float *) dst->op_params)[7];
  2552. const float attn_factor = ((float *) dst->op_params)[8];
  2553. const float beta_fast = ((float *) dst->op_params)[9];
  2554. const float beta_slow = ((float *) dst->op_params)[10];
  2555. const bool is_neox = mode & 2;
  2556. const bool is_glm = mode & 4;
  2557. GGML_ASSERT(!is_glm);
  2558. float corr_dims[2];
  2559. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  2560. if (is_neox) {
  2561. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  2562. const float inv_ndims = -1.0f / n_dims;
  2563. ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f, theta_scale, inv_ndims });
  2564. } else {
  2565. ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f });
  2566. }
  2567. }
  2568. static void ggml_vk_nop(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2569. // If backend is CPU, data from src0 has to be copied off the device
  2570. if (dst->backend == GGML_BACKEND_CPU) {
  2571. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2572. vk_buffer * d_D = &extra_src0->buffer_gpu;
  2573. ggml_vk_sync_buffers(ctx);
  2574. ggml_vk_buffer_read_async(ctx, d_D, 0, dst->data, d_D->size);
  2575. }
  2576. }
  2577. #ifdef VK_RUN_TESTS
  2578. static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) {
  2579. if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) {
  2580. return;
  2581. }
  2582. i0 = std::max(i0, 5);
  2583. i1 = std::max(i1, 5);
  2584. i2 = std::max(i2, 0);
  2585. fprintf(stderr, " ");
  2586. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2587. fprintf(stderr, "%7d ", idx1);
  2588. }
  2589. fprintf(stderr, "\n");
  2590. for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
  2591. fprintf(stderr, "%7d: ", idx0);
  2592. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2593. if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) {
  2594. float val;
  2595. if (type == GGML_TYPE_F32) {
  2596. val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0);
  2597. } else if (type == GGML_TYPE_F16) {
  2598. val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
  2599. }
  2600. fprintf(stderr, "% 7.2f ", val);
  2601. } else {
  2602. fprintf(stderr, " ");
  2603. }
  2604. }
  2605. fprintf(stderr, "\n");
  2606. }
  2607. }
  2608. template <typename X_TYPE, typename Y_TYPE>
  2609. static void ggml_vk_test_matmul(size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) {
  2610. #ifdef VK_DEBUG
  2611. std::cerr << "ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")" << std::endl;
  2612. #endif
  2613. const size_t x_ne = m * k * batch;
  2614. const size_t y_ne = k * n * batch;
  2615. const size_t d_ne = m * n * batch;
  2616. vk_pipeline * p;
  2617. std::string shname;
  2618. if (shader_size == 0) {
  2619. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2620. p = &vk_pipeline_matmul_f32_aligned_s;
  2621. shname = "F32_ALIGNED_S";
  2622. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2623. p = &vk_pipeline_matmul_f16_f32_aligned_s;
  2624. shname = "F16_F32_ALIGNED_S";
  2625. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2626. p = &vk_pipeline_matmul_f16_aligned_s;
  2627. shname = "F16_ALIGNED_S";
  2628. } else {
  2629. GGML_ASSERT(false);
  2630. }
  2631. } else if (shader_size == 1) {
  2632. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2633. p = &vk_pipeline_matmul_f32_aligned_m;
  2634. shname = "F32_ALIGNED_M";
  2635. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2636. p = &vk_pipeline_matmul_f16_f32_aligned_m;
  2637. shname = "F16_F32_ALIGNED_M";
  2638. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2639. p = &vk_pipeline_matmul_f16_aligned_m;
  2640. shname = "F16_ALIGNED_M";
  2641. } else {
  2642. GGML_ASSERT(false);
  2643. }
  2644. } else if (shader_size == 2) {
  2645. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2646. p = &vk_pipeline_matmul_f32_aligned_l;
  2647. shname = "F32_ALIGNED_L";
  2648. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2649. p = &vk_pipeline_matmul_f16_f32_aligned_l;
  2650. shname = "F16_F32_ALIGNED_L";
  2651. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2652. p = &vk_pipeline_matmul_f16_aligned_l;
  2653. shname = "F16_ALIGNED_L";
  2654. } else {
  2655. GGML_ASSERT(false);
  2656. }
  2657. } else {
  2658. GGML_ASSERT(0);
  2659. }
  2660. const size_t kpad = ggml_vk_align_size(k, p->align);
  2661. if (k != kpad) {
  2662. if (shader_size == 0) {
  2663. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2664. p = &vk_pipeline_matmul_f32_s;
  2665. shname = "F32_S";
  2666. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2667. p = &vk_pipeline_matmul_f16_f32_s;
  2668. shname = "F16_F32_S";
  2669. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2670. p = &vk_pipeline_matmul_f16_s;
  2671. shname = "F16_S";
  2672. }
  2673. } else if (shader_size == 1) {
  2674. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2675. p = &vk_pipeline_matmul_f32_m;
  2676. shname = "F32_M";
  2677. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2678. p = &vk_pipeline_matmul_f16_f32_m;
  2679. shname = "F16_F32_M";
  2680. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2681. p = &vk_pipeline_matmul_f16_m;
  2682. shname = "F16_M";
  2683. }
  2684. } else if (shader_size == 2) {
  2685. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2686. p = &vk_pipeline_matmul_f32_l;
  2687. shname = "F32_L";
  2688. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2689. p = &vk_pipeline_matmul_f16_f32_l;
  2690. shname = "F16_F32_L";
  2691. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2692. p = &vk_pipeline_matmul_f16_l;
  2693. shname = "F16_L";
  2694. }
  2695. }
  2696. }
  2697. ggml_vk_pipeline_allocate_descriptor_sets(*p, num_it);
  2698. if (split_k > 1) {
  2699. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_matmul_split_k_reduce, num_it);
  2700. if (vk_prealloc_split_k.size < sizeof(float) * d_ne * split_k) {
  2701. // Resize buffer
  2702. if (vk_prealloc_split_k.size > 0) {
  2703. ggml_vk_destroy_buffer(vk_prealloc_split_k);
  2704. }
  2705. vk_prealloc_split_k = ggml_vk_create_buffer(sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2706. }
  2707. }
  2708. vk_buffer d_X = ggml_vk_create_buffer(sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2709. vk_buffer d_Y = ggml_vk_create_buffer(sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2710. vk_buffer d_D = ggml_vk_create_buffer(sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2711. X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
  2712. Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
  2713. float* d = (float *) malloc(sizeof(float) * d_ne);
  2714. for (size_t i = 0; i < x_ne; i++) {
  2715. if (std::is_same<float, X_TYPE>()) {
  2716. x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
  2717. } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
  2718. x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
  2719. } else {
  2720. GGML_ASSERT(false);
  2721. }
  2722. }
  2723. for (size_t i = 0; i < y_ne; i++) {
  2724. if (std::is_same<float, Y_TYPE>()) {
  2725. y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
  2726. } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2727. y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
  2728. } else {
  2729. GGML_ASSERT(false);
  2730. }
  2731. }
  2732. ggml_vk_buffer_write(&d_X, 0, x, sizeof(X_TYPE) * k * m * batch);
  2733. ggml_vk_buffer_write(&d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch);
  2734. vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
  2735. for (size_t i = 0; i < num_it; i++) {
  2736. ggml_vk_ctx_begin(ctx);
  2737. ggml_vk_matmul(ctx, *p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(vk_prealloc_split_k), m, n, k, k, k, m, split_k, batch, batch, batch, 1, 1, k*m, k*n, m*n);
  2738. ggml_vk_ctx_end(ctx);
  2739. }
  2740. auto begin = std::chrono::high_resolution_clock::now();
  2741. ggml_vk_submit(ctx, vk_fence);
  2742. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences");
  2743. vk_device.device.resetFences({ vk_fence });
  2744. auto end = std::chrono::high_resolution_clock::now();
  2745. double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
  2746. // copy dst to host
  2747. ggml_vk_buffer_read(&d_D, 0, d, sizeof(float) * d_ne);
  2748. float * d_chk = (float *) malloc(sizeof(float) * d_ne);
  2749. ggml_init_params iparams = {
  2750. /*.mem_size =*/ 1024*1024*1024,
  2751. /*.mem_buffer =*/ NULL,
  2752. /*.no_alloc =*/ true,
  2753. };
  2754. ggml_context * ggml_ctx = ggml_init(iparams);
  2755. ggml_type src0_type;
  2756. ggml_type src1_type;
  2757. if (std::is_same<float, X_TYPE>()) {
  2758. src0_type = GGML_TYPE_F32;
  2759. } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
  2760. src0_type = GGML_TYPE_F16;
  2761. } else {
  2762. GGML_ASSERT(false);
  2763. }
  2764. if (std::is_same<float, Y_TYPE>()) {
  2765. src1_type = GGML_TYPE_F32;
  2766. } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2767. src1_type = GGML_TYPE_F16;
  2768. } else {
  2769. GGML_ASSERT(false);
  2770. }
  2771. ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
  2772. ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch);
  2773. ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
  2774. src0_ggml->data = x;
  2775. src1_ggml->data = y;
  2776. tensor_ggml->data = d_chk;
  2777. vk_disable = true;
  2778. ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
  2779. ggml_build_forward_expand(cgraph, tensor_ggml);
  2780. ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
  2781. vk_disable = false;
  2782. ggml_free(ggml_ctx);
  2783. double avg_err = 0.0;
  2784. int first_err_n = -1;
  2785. int first_err_m = -1;
  2786. int first_err_b = -1;
  2787. for (size_t i = 0; i < m*n*batch; i++) {
  2788. double err = std::fabs(d[i] - d_chk[i]);
  2789. avg_err += err;
  2790. if (err > 0.05f && first_err_n == -1) {
  2791. first_err_b = i / (m * n);
  2792. first_err_n = (i % (m * n)) / m;
  2793. first_err_m = (i % (m * n)) % m;
  2794. }
  2795. }
  2796. avg_err /= m * n;
  2797. std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms avg_err=" << avg_err << std::endl;
  2798. if (avg_err > 0.1) {
  2799. std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
  2800. std::cerr << "Actual result: " << std::endl << std::endl;
  2801. ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2802. std::cerr << "Expected result: " << std::endl << std::endl;
  2803. ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2804. if (split_k > 1) {
  2805. float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
  2806. ggml_vk_buffer_read(&vk_prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
  2807. std::cerr << "d_buf0: " << std::endl << std::endl;
  2808. ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2809. std::cerr << "d_buf1: " << std::endl << std::endl;
  2810. ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2811. std::cerr << "d_buf2: " << std::endl << std::endl;
  2812. ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2813. std::cerr << "d_buf3: " << std::endl << std::endl;
  2814. ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2815. free(split_k_buf);
  2816. }
  2817. }
  2818. free(d_chk);
  2819. ggml_vk_queue_cleanup(vk_device.transfer_queue);
  2820. ggml_vk_queue_cleanup(vk_device.compute_queue);
  2821. ggml_vk_destroy_buffer(d_X);
  2822. ggml_vk_destroy_buffer(d_Y);
  2823. ggml_vk_destroy_buffer(d_D);
  2824. ggml_vk_pipeline_cleanup(*p);
  2825. ggml_vk_pipeline_cleanup(vk_pipeline_matmul_split_k_reduce);
  2826. free(x);
  2827. free(y);
  2828. free(d);
  2829. }
  2830. static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2831. if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
  2832. return;
  2833. }
  2834. fprintf(stderr, " ");
  2835. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2836. fprintf(stderr, "%7d ", idx1);
  2837. }
  2838. fprintf(stderr, "\n");
  2839. for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
  2840. fprintf(stderr, "%7d: ", idx0);
  2841. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2842. if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
  2843. float val;
  2844. if (tensor->type == GGML_TYPE_F32) {
  2845. val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
  2846. } else if (tensor->type == GGML_TYPE_F16) {
  2847. val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
  2848. }
  2849. fprintf(stderr, "% 7.2f ", val);
  2850. } else {
  2851. fprintf(stderr, " ");
  2852. }
  2853. }
  2854. fprintf(stderr, "\n");
  2855. }
  2856. }
  2857. static void ggml_vk_test_h2d_nc(size_t ne0, size_t ne1, size_t ne2, size_t ne3) {
  2858. const size_t ne = ne0 * ne1 * ne2 * ne3;
  2859. ggml_init_params iparams = {
  2860. /*.mem_size =*/ 1024*1024*1024,
  2861. /*.mem_buffer =*/ NULL,
  2862. /*.no_alloc =*/ true,
  2863. };
  2864. ggml_context * ggml_ctx = ggml_init(iparams);
  2865. ggml_tensor * tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne2, ne1, ne3); // NOLINT
  2866. ggml_tensor * result_tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne1, ne2, ne3);
  2867. float * data = (float *) ggml_vk_host_malloc(ggml_nbytes(tensor));
  2868. tensor->data = data;
  2869. float * result_data = (float *) malloc(ggml_nbytes(tensor));
  2870. result_tensor->data = result_data;
  2871. // Permute
  2872. {
  2873. size_t tmp = tensor->nb[2];
  2874. tensor->nb[2] = tensor->nb[1];
  2875. tensor->nb[1] = tmp;
  2876. tensor->ne[2] = ne2;
  2877. tensor->ne[1] = ne1;
  2878. }
  2879. for (size_t i = 0; i < ne; i++) {
  2880. data[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
  2881. }
  2882. vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
  2883. ggml_vk_ctx_begin(ctx);
  2884. vk_buffer buffer = ggml_vk_create_buffer(ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
  2885. ggml_vk_h2d_tensor_2d(ctx, &buffer, 0, tensor, 0, 0, ggml_nrows(tensor));
  2886. ggml_vk_ctx_end(ctx);
  2887. ggml_vk_submit(ctx, vk_fence);
  2888. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  2889. vk_device.device.resetFences({ vk_fence });
  2890. ggml_vk_buffer_read(&buffer, 0, result_data, ggml_nbytes(tensor));
  2891. double avg_err = 0.0;
  2892. int first_err_i0 = -1;
  2893. int first_err_i1 = -1;
  2894. int first_err_i2 = -1;
  2895. int first_err_i3 = -1;
  2896. for (size_t i3 = 0; i3 < ne3; i3++) {
  2897. for (size_t i2 = 0; i2 < ne2; i2++) {
  2898. for (size_t i1 = 0; i1 < ne1; i1++) {
  2899. for (size_t i0 = 0; i0 < ne0; i0++) {
  2900. float correct = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
  2901. float result = *(float *) ((char *) result_data + i3*ne2*ne1*ne0*sizeof(float) + i2*ne1*ne0*sizeof(float) + i1*ne0*sizeof(float) + i0*sizeof(float));
  2902. double err = std::fabs(result - correct);
  2903. avg_err += err;
  2904. if (err > 0.05f && first_err_i0 == -1) {
  2905. first_err_i0 = i0;
  2906. first_err_i1 = i1;
  2907. first_err_i2 = i2;
  2908. first_err_i3 = i3;
  2909. }
  2910. }
  2911. }
  2912. }
  2913. }
  2914. avg_err /= ne;
  2915. std::cerr << "TEST nc copy ne0=" << ne0 << " ne1=" << ne1 << " ne2=" << ne2 << " ne3=" << ne3 << " avg_err=" << avg_err << std::endl;
  2916. if (avg_err > 0.1) {
  2917. std::cerr << "i0 = " << first_err_i0 << " i1 = " << first_err_i1 << " i2 = " << first_err_i2 << " i3 = " << first_err_i3 << std::endl;
  2918. std::cerr << "Actual result: " << std::endl << std::endl;
  2919. ggml_vk_print_tensor_area(result_tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3);
  2920. std::cerr << "Expected result: " << std::endl << std::endl;
  2921. ggml_vk_print_tensor_area(tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3);
  2922. }
  2923. ggml_free(ggml_ctx);
  2924. ggml_vk_destroy_buffer(buffer);
  2925. ggml_vk_host_free(data);
  2926. free(result_data);
  2927. }
  2928. static void ggml_vk_test_transfer(size_t ne, bool pinned) {
  2929. #ifdef VK_DEBUG
  2930. std::cerr << "ggml_vk_test_transfer(" << ne << ")" << std::endl;
  2931. #endif
  2932. // Check transfers are correct
  2933. vk_buffer buffer = ggml_vk_create_buffer(sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2934. float * x;
  2935. float * y;
  2936. if (pinned) {
  2937. x = (float *) ggml_vk_host_malloc(sizeof(float) * ne);
  2938. y = (float *) ggml_vk_host_malloc(sizeof(float) * ne);
  2939. } else {
  2940. x = (float *) malloc(sizeof(float) * ne);
  2941. y = (float *) malloc(sizeof(float) * ne);
  2942. }
  2943. for (size_t i = 0; i < ne; i++) {
  2944. x[i] = rand() / (float)RAND_MAX;
  2945. }
  2946. vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
  2947. ggml_vk_ctx_begin(ctx);
  2948. auto begin = std::chrono::high_resolution_clock::now();
  2949. ggml_vk_buffer_write_async(ctx, &buffer, 0, x, sizeof(float) * ne);
  2950. for (auto& cpy : ctx->in_memcpys) {
  2951. memcpy(cpy.dst, cpy.src, cpy.n);
  2952. }
  2953. ctx->in_memcpys.clear();
  2954. ggml_vk_ctx_end(ctx);
  2955. ggml_vk_submit(ctx, vk_fence);
  2956. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  2957. vk_device.device.resetFences({ vk_fence });
  2958. auto end = std::chrono::high_resolution_clock::now();
  2959. double ms_to_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
  2960. ggml_vk_ctx_begin(ctx);
  2961. begin = std::chrono::high_resolution_clock::now();
  2962. ggml_vk_buffer_read_async(ctx, &buffer, 0, y, sizeof(float) * ne);
  2963. ggml_vk_ctx_end(ctx);
  2964. ggml_vk_submit(ctx, vk_fence);
  2965. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  2966. vk_device.device.resetFences({ vk_fence });
  2967. for (auto& cpy : ctx->out_memcpys) {
  2968. memcpy(cpy.dst, cpy.src, cpy.n);
  2969. }
  2970. ctx->out_memcpys.clear();
  2971. end = std::chrono::high_resolution_clock::now();
  2972. double ms_from_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
  2973. double avg_err = 0.0;
  2974. for (size_t i = 0; i < ne; i++) {
  2975. avg_err += std::fabs(x[i] - y[i]);
  2976. }
  2977. double kb = ne * sizeof(float) / 1024.0;
  2978. std::cerr << "TEST TRANSFER " << kb << " KB to_gpu " << ms_to_gpu << "ms (" << kb / ms_to_gpu * 1000.0 / 1024.0 << " MB/s) from_gpu " << ms_from_gpu << "ms (" << kb / ms_from_gpu * 1000.0 / 1024.0 << " MB/s) avg_err=" << avg_err / ne << std::endl;
  2979. ggml_vk_destroy_buffer(buffer);
  2980. if (pinned) {
  2981. ggml_vk_host_free(x);
  2982. ggml_vk_host_free(y);
  2983. } else {
  2984. free(x);
  2985. free(y);
  2986. }
  2987. }
  2988. #endif
  2989. static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) {
  2990. #ifdef VK_DEBUG
  2991. std::cerr << "ggml_vk_create_extra(" << tensor << " (" << tensor->name << ", " << ggml_op_name(tensor->op) << "))" << std::endl;
  2992. #endif
  2993. ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
  2994. extra->reset();
  2995. tensor->extra = extra;
  2996. return extra;
  2997. }
  2998. static ggml_tensor * ggml_vk_find_last_use(const ggml_tensor * node, ggml_cgraph * graph) {
  2999. GGML_ASSERT(node != nullptr);
  3000. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  3001. for (int j = 0; j < GGML_MAX_SRC; j++) {
  3002. if (graph->nodes[i]->src[j] == node) {
  3003. return graph->nodes[i];
  3004. }
  3005. }
  3006. }
  3007. return nullptr;
  3008. }
  3009. void ggml_vk_preallocate_buffers_graph(ggml_tensor * node){
  3010. #ifdef VK_DEBUG
  3011. std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
  3012. #endif
  3013. const bool any_on_device = node->backend == GGML_BACKEND_GPU
  3014. || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
  3015. || (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
  3016. if (vk_disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
  3017. return;
  3018. }
  3019. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
  3020. if (extra == nullptr) {
  3021. // Workaround for CPU backend BLAS matmul calls
  3022. extra = ggml_vk_tensor_create_extra(node);
  3023. }
  3024. ggml_tensor * src0 = node->src[0];
  3025. ggml_tensor * src1 = node->src[1];
  3026. const bool use_src0 = src0 != nullptr;
  3027. const int64_t ne00 = use_src0 ? src0->ne[0] : 0;
  3028. const int64_t ne01 = use_src0 ? src0->ne[1] : 0;
  3029. const int64_t ne02 = use_src0 ? src0->ne[2] : 0;
  3030. const int64_t ne03 = use_src0 ? src0->ne[3] : 0;
  3031. const bool use_src1 = src1 != nullptr && node->op != GGML_OP_CPY && node->op != GGML_OP_CONT && node->op != GGML_OP_DUP;
  3032. const int64_t ne10 = use_src1 ? src1->ne[0] : 0;
  3033. const int64_t ne11 = use_src1 ? src1->ne[1] : 0;
  3034. const int64_t ne12 = use_src1 ? src1->ne[2] : 0;
  3035. const int64_t ne13 = use_src1 ? src1->ne[3] : 0;
  3036. const int64_t ne20 = node->ne[0];
  3037. const int64_t ne21 = node->ne[1];
  3038. const int64_t ne22 = node->ne[2];
  3039. const int64_t ne23 = node->ne[3];
  3040. const bool f16_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32;
  3041. int split_k;
  3042. if (node->op == GGML_OP_MUL_MAT) {
  3043. split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
  3044. } else {
  3045. split_k = 1;
  3046. }
  3047. const uint32_t x_ne = ne00 * ne01;
  3048. const uint32_t y_ne = ne10 * ne11;
  3049. const uint32_t d_ne = ne20 * ne21;
  3050. const uint64_t qx_sz = use_src0 ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0;
  3051. const uint64_t qy_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type), vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0;
  3052. const uint64_t x_sz = use_src0 ? ggml_vk_align_size(sizeof(ggml_fp16_t) * x_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0;
  3053. const uint64_t y_sz = use_src1 ? ggml_vk_align_size(f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0;
  3054. uint64_t d_sz = ggml_vk_align_size(ggml_type_size(node->type) * d_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne22 * ne23;
  3055. const uint64_t split_k_size = split_k > 1 ? d_sz * 4 : 0;
  3056. if (extra->buffer_gpu.size == 0) {
  3057. // Workaround for CPU backend BLAS matmul calls
  3058. extra->buffer_gpu = ggml_vk_create_buffer_temp(d_sz);
  3059. }
  3060. switch (node->op) {
  3061. case GGML_OP_REPEAT:
  3062. case GGML_OP_GET_ROWS:
  3063. case GGML_OP_RESHAPE:
  3064. case GGML_OP_VIEW:
  3065. case GGML_OP_PERMUTE:
  3066. case GGML_OP_TRANSPOSE:
  3067. case GGML_OP_ADD:
  3068. case GGML_OP_SCALE:
  3069. case GGML_OP_SQR:
  3070. case GGML_OP_CLAMP:
  3071. case GGML_OP_CPY:
  3072. case GGML_OP_CONT:
  3073. case GGML_OP_DUP:
  3074. case GGML_OP_MUL:
  3075. case GGML_OP_NORM:
  3076. case GGML_OP_RMS_NORM:
  3077. case GGML_OP_DIAG_MASK_INF:
  3078. case GGML_OP_SOFT_MAX:
  3079. case GGML_OP_ROPE:
  3080. break;
  3081. case GGML_OP_UNARY:
  3082. switch (ggml_get_unary_op(node)) {
  3083. case GGML_UNARY_OP_SILU:
  3084. case GGML_UNARY_OP_GELU:
  3085. case GGML_UNARY_OP_RELU:
  3086. break;
  3087. default:
  3088. return;
  3089. }
  3090. break;
  3091. case GGML_OP_MUL_MAT:
  3092. if (vk_prealloc_size_qx < qx_sz) {
  3093. vk_prealloc_size_qx = qx_sz;
  3094. }
  3095. if (vk_prealloc_size_qy < qy_sz) {
  3096. vk_prealloc_size_qy = qy_sz;
  3097. }
  3098. if (vk_prealloc_size_x < x_sz) {
  3099. vk_prealloc_size_x = x_sz;
  3100. }
  3101. if (vk_prealloc_size_y < y_sz) {
  3102. vk_prealloc_size_y = y_sz;
  3103. }
  3104. if (vk_prealloc_size_split_k < split_k_size) {
  3105. vk_prealloc_size_split_k = split_k_size;
  3106. }
  3107. if (vk_staging_size < x_sz + y_sz) {
  3108. vk_staging_size = x_sz + y_sz;
  3109. }
  3110. break;
  3111. default:
  3112. return;
  3113. }
  3114. }
  3115. void ggml_vk_preallocate_buffers() {
  3116. if (vk_disable) {
  3117. return;
  3118. }
  3119. #ifdef VK_DEBUG
  3120. std::cerr << "ggml_vk_preallocate_buffers()" << std::endl;
  3121. std::cerr << "qx_size: " << vk_prealloc_size_qx << " qy_size: " << vk_prealloc_size_qy << " x_size: " << vk_prealloc_size_x << " y_size: " << vk_prealloc_size_y << " split_k_size: " << vk_prealloc_size_split_k << std::endl;
  3122. #endif
  3123. #if defined(VK_RUN_TESTS)
  3124. vk_staging = ggml_vk_create_buffer(100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  3125. ggml_vk_test_transfer(8192 * 1000, false);
  3126. ggml_vk_test_transfer(8192 * 1000, true);
  3127. const std::vector<size_t> vals {
  3128. 8, 8, 8,
  3129. 100, 46, 576,
  3130. 623, 111, 128,
  3131. 100, 46, 558,
  3132. 512, 1, 256,
  3133. 128, 110, 622,
  3134. 511, 511, 127,
  3135. 511, 511, 7,
  3136. 511, 511, 17,
  3137. 49, 49, 128,
  3138. 128, 49, 49,
  3139. 4096, 49, 4096,
  3140. 11008, 49, 4096,
  3141. 4096, 49, 11008,
  3142. 32000, 49, 4096,
  3143. 512, 512, 128,
  3144. 128, 512, 512,
  3145. 4096, 512, 4096,
  3146. 11008, 512, 4096,
  3147. 4096, 512, 11008,
  3148. 32000, 512, 4096,
  3149. };
  3150. const size_t num_it = 1;
  3151. for (size_t i = 0; i < vals.size(); i += 3) {
  3152. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
  3153. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1);
  3154. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2);
  3155. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0);
  3156. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1);
  3157. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2);
  3158. std::cerr << std::endl;
  3159. }
  3160. GGML_ASSERT(false);
  3161. #endif
  3162. if (vk_prealloc_size_qx > 0 && vk_prealloc_qx.size < vk_prealloc_size_qx) {
  3163. // Resize buffer
  3164. if (vk_prealloc_qx.size > 0) {
  3165. ggml_vk_destroy_buffer(vk_prealloc_qx);
  3166. }
  3167. vk_prealloc_qx = ggml_vk_create_buffer(vk_prealloc_size_qx, vk::MemoryPropertyFlagBits::eDeviceLocal);
  3168. }
  3169. if (vk_prealloc_size_qy > 0 && vk_prealloc_qy.size < vk_prealloc_size_qy) {
  3170. // Resize buffer
  3171. if (vk_prealloc_qy.size > 0) {
  3172. ggml_vk_destroy_buffer(vk_prealloc_qy);
  3173. }
  3174. vk_prealloc_qy = ggml_vk_create_buffer(vk_prealloc_size_qy, vk::MemoryPropertyFlagBits::eDeviceLocal);
  3175. }
  3176. if (vk_prealloc_size_x > 0 && vk_prealloc_x.size < vk_prealloc_size_x) {
  3177. // Resize buffer
  3178. if (vk_prealloc_x.size > 0) {
  3179. ggml_vk_destroy_buffer(vk_prealloc_x);
  3180. }
  3181. vk_prealloc_x = ggml_vk_create_buffer(vk_prealloc_size_x, vk::MemoryPropertyFlagBits::eDeviceLocal);
  3182. }
  3183. if (vk_prealloc_size_y > 0 && vk_prealloc_y.size < vk_prealloc_size_y) {
  3184. // Resize buffer
  3185. if (vk_prealloc_y.size > 0) {
  3186. ggml_vk_destroy_buffer(vk_prealloc_y);
  3187. }
  3188. vk_prealloc_y = ggml_vk_create_buffer(vk_prealloc_size_y, vk::MemoryPropertyFlagBits::eDeviceLocal);
  3189. }
  3190. if (vk_prealloc_size_split_k > 0 && vk_prealloc_split_k.size < vk_prealloc_size_split_k) {
  3191. // Resize buffer
  3192. if (vk_prealloc_split_k.size > 0) {
  3193. ggml_vk_destroy_buffer(vk_prealloc_split_k);
  3194. }
  3195. vk_prealloc_split_k = ggml_vk_create_buffer(vk_prealloc_size_split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
  3196. }
  3197. if (vk_staging_size > 0 && vk_staging.size < vk_staging_size) {
  3198. // Resize buffer
  3199. if (vk_staging.size > 0) {
  3200. ggml_vk_destroy_buffer(vk_staging);
  3201. }
  3202. vk_staging = ggml_vk_create_buffer(vk_staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  3203. }
  3204. }
  3205. void ggml_vk_build_graph(ggml_tensor * node, bool last_node){
  3206. const bool any_on_device = node->backend == GGML_BACKEND_GPU
  3207. || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
  3208. || (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
  3209. if (vk_disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
  3210. return;
  3211. }
  3212. #ifdef VK_DEBUG
  3213. std::cerr << "ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")" << std::endl;
  3214. #endif
  3215. vk_semaphore_idx = 0;
  3216. vk_staging_offset = 0;
  3217. const ggml_tensor * src0 = node->src[0];
  3218. const ggml_tensor * src1 = node->src[1];
  3219. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
  3220. switch (node->op) {
  3221. case GGML_OP_UNARY:
  3222. switch (ggml_get_unary_op(node)) {
  3223. case GGML_UNARY_OP_SILU:
  3224. case GGML_UNARY_OP_GELU:
  3225. case GGML_UNARY_OP_RELU:
  3226. break;
  3227. default:
  3228. return;
  3229. }
  3230. break;
  3231. case GGML_OP_REPEAT:
  3232. // case GGML_OP_GET_ROWS:
  3233. case GGML_OP_ADD:
  3234. case GGML_OP_MUL:
  3235. case GGML_OP_SCALE:
  3236. case GGML_OP_SQR:
  3237. case GGML_OP_CLAMP:
  3238. case GGML_OP_CPY:
  3239. case GGML_OP_CONT:
  3240. case GGML_OP_DUP:
  3241. case GGML_OP_RESHAPE:
  3242. case GGML_OP_VIEW:
  3243. case GGML_OP_PERMUTE:
  3244. case GGML_OP_TRANSPOSE:
  3245. case GGML_OP_NORM:
  3246. case GGML_OP_RMS_NORM:
  3247. case GGML_OP_DIAG_MASK_INF:
  3248. case GGML_OP_SOFT_MAX:
  3249. case GGML_OP_ROPE:
  3250. case GGML_OP_MUL_MAT:
  3251. case GGML_OP_NONE:
  3252. break;
  3253. default:
  3254. if (any_on_device) {
  3255. std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
  3256. GGML_ASSERT(false);
  3257. }
  3258. return;
  3259. }
  3260. if (vk_ctx == nullptr) {
  3261. vk_ctx = ggml_vk_create_context(vk_device.compute_queue);
  3262. ggml_vk_ctx_begin(vk_ctx);
  3263. }
  3264. switch (node->op) {
  3265. case GGML_OP_REPEAT:
  3266. ggml_vk_repeat(vk_ctx, src0, src1, node);
  3267. break;
  3268. case GGML_OP_GET_ROWS:
  3269. ggml_vk_get_rows(vk_ctx, src0, src1, node);
  3270. break;
  3271. case GGML_OP_ADD:
  3272. ggml_vk_add(vk_ctx, src0, src1, node);
  3273. break;
  3274. case GGML_OP_MUL:
  3275. ggml_vk_mul(vk_ctx, src0, src1, node);
  3276. break;
  3277. case GGML_OP_SCALE:
  3278. ggml_vk_scale(vk_ctx, src0, node);
  3279. break;
  3280. case GGML_OP_SQR:
  3281. ggml_vk_sqr(vk_ctx, src0, node);
  3282. break;
  3283. case GGML_OP_CLAMP:
  3284. ggml_vk_clamp(vk_ctx, src0, node);
  3285. break;
  3286. case GGML_OP_CPY:
  3287. case GGML_OP_CONT:
  3288. case GGML_OP_DUP:
  3289. ggml_vk_cpy(vk_ctx, src0, node);
  3290. break;
  3291. case GGML_OP_RESHAPE:
  3292. case GGML_OP_VIEW:
  3293. case GGML_OP_PERMUTE:
  3294. case GGML_OP_TRANSPOSE:
  3295. case GGML_OP_NONE:
  3296. ggml_vk_nop(vk_ctx, src0, node);
  3297. break;
  3298. case GGML_OP_NORM:
  3299. ggml_vk_norm(vk_ctx, src0, node);
  3300. break;
  3301. case GGML_OP_RMS_NORM:
  3302. ggml_vk_rms_norm(vk_ctx, src0, node);
  3303. break;
  3304. case GGML_OP_UNARY:
  3305. switch (ggml_get_unary_op(node)) {
  3306. case GGML_UNARY_OP_SILU:
  3307. case GGML_UNARY_OP_GELU:
  3308. case GGML_UNARY_OP_RELU:
  3309. ggml_vk_unary(vk_ctx, src0, node);
  3310. break;
  3311. default:
  3312. return;
  3313. }
  3314. break;
  3315. case GGML_OP_DIAG_MASK_INF:
  3316. ggml_vk_diag_mask_inf(vk_ctx, src0, node);
  3317. break;
  3318. case GGML_OP_SOFT_MAX:
  3319. ggml_vk_soft_max(vk_ctx, src0, src1, node);
  3320. break;
  3321. case GGML_OP_ROPE:
  3322. ggml_vk_rope(vk_ctx, src0, src1, node);
  3323. break;
  3324. case GGML_OP_MUL_MAT:
  3325. ggml_vk_mul_mat(vk_ctx, src0, src1, node);
  3326. break;
  3327. default:
  3328. return;
  3329. }
  3330. extra->ready = true;
  3331. extra->ctx_idx = vk_ctx->idx;
  3332. #ifdef GGML_VULKAN_CHECK_RESULTS
  3333. // Force context reset on each node so that each tensor ends up in its own context
  3334. // and can be run and compared to its CPU equivalent separately
  3335. last_node = true;
  3336. #endif
  3337. if (node->backend == GGML_BACKEND_CPU || last_node) {
  3338. ggml_vk_ctx_end(vk_ctx);
  3339. vk_ctx->exit_tensor = node;
  3340. vk_ctx = nullptr;
  3341. }
  3342. }
  3343. bool ggml_vk_compute_forward(ggml_compute_params * params, ggml_tensor * tensor){
  3344. const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
  3345. || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
  3346. || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
  3347. if (vk_disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
  3348. return false;
  3349. }
  3350. ggml_tensor_extra_gpu * extra = nullptr;
  3351. switch (tensor->op) {
  3352. case GGML_OP_ADD:
  3353. case GGML_OP_GET_ROWS:
  3354. case GGML_OP_MUL:
  3355. case GGML_OP_SCALE:
  3356. case GGML_OP_SQR:
  3357. case GGML_OP_CLAMP:
  3358. case GGML_OP_CPY:
  3359. case GGML_OP_CONT:
  3360. case GGML_OP_DUP:
  3361. case GGML_OP_NORM:
  3362. case GGML_OP_RMS_NORM:
  3363. case GGML_OP_DIAG_MASK_INF:
  3364. case GGML_OP_SOFT_MAX:
  3365. case GGML_OP_ROPE:
  3366. case GGML_OP_RESHAPE:
  3367. case GGML_OP_VIEW:
  3368. case GGML_OP_PERMUTE:
  3369. case GGML_OP_TRANSPOSE:
  3370. case GGML_OP_NONE:
  3371. extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3372. break;
  3373. case GGML_OP_UNARY:
  3374. switch (ggml_get_unary_op(tensor)) {
  3375. case GGML_UNARY_OP_SILU:
  3376. case GGML_UNARY_OP_GELU:
  3377. case GGML_UNARY_OP_RELU:
  3378. extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3379. break;
  3380. default:
  3381. return false;
  3382. }
  3383. break;
  3384. case GGML_OP_MUL_MAT:
  3385. if (!any_on_device && !ggml_vk_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  3386. return false;
  3387. }
  3388. extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3389. break;
  3390. default:
  3391. return false;
  3392. }
  3393. if (extra == nullptr) {
  3394. return false;
  3395. }
  3396. if (params->ith != 0) {
  3397. return true;
  3398. }
  3399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3400. return true;
  3401. }
  3402. #ifdef VK_DEBUG
  3403. std::cerr << "ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")" << std::endl;
  3404. #endif
  3405. #ifdef GGML_VULKAN_CHECK_RESULTS
  3406. ggml_vk_check_results_0(params, tensor);
  3407. #endif
  3408. GGML_ASSERT(extra->ready);
  3409. vk_context& ctx = vk_gc.contexts[extra->ctx_idx];
  3410. // Only run if ctx hasn't been submitted yet
  3411. if (!ctx.seqs.empty()) {
  3412. // Do staging buffer copies
  3413. for (auto& cpy : ctx.in_memcpys) {
  3414. memcpy(cpy.dst, cpy.src, cpy.n);
  3415. }
  3416. ggml_vk_submit(&ctx, vk_fence);
  3417. }
  3418. if (tensor == ctx.exit_tensor) {
  3419. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  3420. vk_device.device.resetFences({ vk_fence });
  3421. // Do staging buffer copies
  3422. for (auto& cpy : ctx.out_memcpys) {
  3423. memcpy(cpy.dst, cpy.src, cpy.n);
  3424. }
  3425. ctx.in_memcpys.clear();
  3426. ctx.out_memcpys.clear();
  3427. }
  3428. extra->ready = false;
  3429. return true;
  3430. }
  3431. void ggml_vk_graph_cleanup() {
  3432. if (vk_disable) {
  3433. return;
  3434. }
  3435. #ifdef VK_DEBUG
  3436. std::cerr << "ggml_vk_graph_cleanup()" << std::endl;
  3437. #endif
  3438. for (auto& buffer : vk_gc.temp_buffers) {
  3439. ggml_vk_pool_free(buffer);
  3440. }
  3441. vk_gc.temp_buffers.clear();
  3442. for (auto * pipeline : vk_gc.pipelines) {
  3443. ggml_vk_pipeline_cleanup(*pipeline);
  3444. }
  3445. vk_gc.pipelines.clear();
  3446. ggml_vk_queue_cleanup(vk_device.compute_queue);
  3447. ggml_vk_queue_cleanup(vk_device.transfer_queue);
  3448. for (size_t i = 0; i < vk_gc.semaphores.size(); i++) {
  3449. vk_device.device.destroySemaphore({ vk_gc.semaphores[i].s });
  3450. }
  3451. vk_gc.semaphores.clear();
  3452. for (size_t i = 0; i < vk_gc.tl_semaphores.size(); i++) {
  3453. vk_device.device.destroySemaphore({ vk_gc.tl_semaphores[i].s });
  3454. }
  3455. vk_gc.tl_semaphores.clear();
  3456. vk_event_idx = 0;
  3457. for (auto& event : vk_gc.events) {
  3458. vk_device.device.resetEvent(event);
  3459. }
  3460. vk_staging_offset = 0;
  3461. vk_ctx = nullptr;
  3462. vk_gc.contexts.clear();
  3463. }
  3464. static void ggml_vk_cleanup() {
  3465. #ifdef VK_DEBUG
  3466. std::cerr << "ggml_vk_cleanup()" << std::endl;
  3467. #endif
  3468. ggml_vk_destroy_buffer(vk_prealloc_x);
  3469. ggml_vk_destroy_buffer(vk_prealloc_y);
  3470. ggml_vk_destroy_buffer(vk_prealloc_split_k);
  3471. ggml_vk_destroy_buffer(vk_staging);
  3472. ggml_vk_destroy_buffer(vk_sync_staging);
  3473. vk_prealloc_size_x = 0;
  3474. vk_prealloc_size_y = 0;
  3475. vk_prealloc_size_split_k = 0;
  3476. vk_staging_size = 0;
  3477. for (auto& event : vk_gc.events) {
  3478. vk_device.device.destroyEvent(event);
  3479. }
  3480. vk_gc.events.clear();
  3481. }
  3482. // backend interface
  3483. #define UNUSED GGML_UNUSED
  3484. struct ggml_backend_vk_context {
  3485. std::string name;
  3486. };
  3487. // device backend
  3488. static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
  3489. struct ggml_backend_vk_buffer_context {
  3490. vk_buffer dev_buffer;
  3491. ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
  3492. size_t temp_tensor_extra_index = 0;
  3493. std::string name;
  3494. ggml_backend_vk_buffer_context(vk_buffer dev_buffer) :
  3495. dev_buffer(dev_buffer),
  3496. name(GGML_VK_NAME) {
  3497. }
  3498. ~ggml_backend_vk_buffer_context() {
  3499. ggml_vk_destroy_buffer(dev_buffer);
  3500. delete[] temp_tensor_extras;
  3501. }
  3502. ggml_tensor_extra_gpu * ggml_vk_alloc_temp_tensor_extra() {
  3503. if (temp_tensor_extras == nullptr) {
  3504. temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_VK_MAX_NODES];
  3505. }
  3506. size_t alloc_index = temp_tensor_extra_index;
  3507. temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_VK_MAX_NODES;
  3508. ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
  3509. extra->reset();
  3510. return extra;
  3511. }
  3512. };
  3513. GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
  3514. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3515. return ctx->name.c_str();
  3516. }
  3517. GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
  3518. return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
  3519. }
  3520. GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  3521. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3522. delete ctx;
  3523. }
  3524. GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
  3525. return vk_ptr_base;
  3526. UNUSED(buffer);
  3527. }
  3528. GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  3529. #ifdef VK_DEBUG
  3530. std::cerr << "ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")" << std::endl;
  3531. #endif
  3532. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3533. ggml_tensor_extra_gpu * extra = ctx->ggml_vk_alloc_temp_tensor_extra();
  3534. if (tensor->view_src != nullptr && tensor->view_src->extra != nullptr) {
  3535. ggml_tensor_extra_gpu * extra_view = (ggml_tensor_extra_gpu *) tensor->view_src->extra;
  3536. extra->buffer_gpu = extra_view->buffer_gpu;
  3537. extra->offset = extra_view->offset + tensor->view_offs;
  3538. } else {
  3539. extra->buffer_gpu = ctx->dev_buffer;
  3540. extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
  3541. }
  3542. if (extra->offset + ggml_nbytes(tensor) > extra->buffer_gpu.size) {
  3543. std::cerr << "ERROR: Trying to assign tensor " << tensor << " outside of buffer size " << ctx->dev_buffer.size << " requested offset: " << extra->offset << " tensor size: " << ggml_nbytes(tensor) << std::endl;
  3544. if (tensor->view_src != nullptr) {
  3545. std::cerr << "view_src: " << tensor->view_src << " extra: " << tensor->view_src->extra << std::endl;
  3546. }
  3547. GGML_ASSERT(false);
  3548. }
  3549. tensor->backend = GGML_BACKEND_GPU;
  3550. tensor->extra = extra;
  3551. }
  3552. GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  3553. #ifdef VK_DEBUG
  3554. std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
  3555. #endif
  3556. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3557. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3558. ggml_vk_buffer_write(&extra->buffer_gpu, extra->offset + offset, data, size);
  3559. UNUSED(buffer);
  3560. }
  3561. GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3562. #ifdef VK_DEBUG
  3563. std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
  3564. #endif
  3565. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3566. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3567. ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset + offset, data, size);
  3568. UNUSED(buffer);
  3569. }
  3570. GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  3571. if (ggml_backend_buffer_is_vk(src->buffer)) {
  3572. ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
  3573. ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
  3574. ggml_vk_buffer_copy(&src_extra->buffer_gpu, src_extra->offset, &dst_extra->buffer_gpu, dst_extra->offset, ggml_nbytes(src));
  3575. return true;
  3576. }
  3577. return false;
  3578. UNUSED(buffer);
  3579. }
  3580. GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3581. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3582. ggml_vk_buffer_memset(&ctx->dev_buffer, 0, value, buffer->size);
  3583. }
  3584. static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
  3585. /* .get_name = */ ggml_backend_vk_buffer_get_name,
  3586. /* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
  3587. /* .get_base = */ ggml_backend_vk_buffer_get_base,
  3588. /* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
  3589. /* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
  3590. /* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
  3591. /* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
  3592. /* .clear = */ ggml_backend_vk_buffer_clear,
  3593. /* .reset = */ NULL,
  3594. };
  3595. // vk buffer type
  3596. struct ggml_backend_vk_buffer_type_context {
  3597. std::string name;
  3598. };
  3599. GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
  3600. ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
  3601. return ctx->name.c_str();
  3602. }
  3603. GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  3604. #ifdef VK_DEBUG
  3605. std::cerr << "ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")" << std::endl;
  3606. #endif
  3607. vk_buffer dev_buffer = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
  3608. ggml_backend_vk_buffer_context * ctx = new ggml_backend_vk_buffer_context(dev_buffer);
  3609. return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, ctx, size);
  3610. UNUSED(buft);
  3611. }
  3612. GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  3613. return vk_device.properties.limits.minStorageBufferOffsetAlignment;
  3614. UNUSED(buft);
  3615. }
  3616. GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
  3617. return vk_device.max_memory_allocation_size;
  3618. UNUSED(buft);
  3619. }
  3620. GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  3621. return ggml_nbytes(tensor);
  3622. UNUSED(buft);
  3623. }
  3624. GGML_CALL static bool ggml_backend_vk_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3625. return ggml_backend_is_vk(backend);
  3626. UNUSED(buft);
  3627. }
  3628. static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
  3629. /* .get_name = */ ggml_backend_vk_buffer_type_name,
  3630. /* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
  3631. /* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment,
  3632. /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
  3633. /* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size,
  3634. /* .supports_backend = */ ggml_backend_vk_buffer_type_supports_backend,
  3635. /* .is_host = */ NULL,
  3636. };
  3637. GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type() {
  3638. static ggml_backend_buffer_type ggml_backend_vk_buffer_type;
  3639. static bool ggml_backend_vk_buffer_type_initialized = false;
  3640. if (!ggml_backend_vk_buffer_type_initialized) {
  3641. ggml_backend_vk_buffer_type = {
  3642. /* .iface = */ ggml_backend_vk_buffer_type_interface,
  3643. /* .context = */ new ggml_backend_vk_buffer_type_context{GGML_VK_NAME},
  3644. };
  3645. ggml_backend_vk_buffer_type_initialized = true;
  3646. }
  3647. return &ggml_backend_vk_buffer_type;
  3648. }
  3649. // host buffer type
  3650. GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
  3651. return GGML_VK_NAME "_Host";
  3652. UNUSED(buft);
  3653. }
  3654. GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
  3655. return GGML_VK_NAME "_Host";
  3656. UNUSED(buffer);
  3657. }
  3658. GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  3659. ggml_vk_host_free(buffer->context);
  3660. }
  3661. GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  3662. void * ptr = ggml_vk_host_malloc(size);
  3663. if (ptr == nullptr) {
  3664. // fallback to cpu buffer
  3665. return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
  3666. }
  3667. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  3668. buffer->buft = buft;
  3669. buffer->iface.get_name = ggml_backend_vk_host_buffer_name;
  3670. buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
  3671. return buffer;
  3672. }
  3673. GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  3674. return vk_device.properties.limits.minMemoryMapAlignment;
  3675. UNUSED(buft);
  3676. }
  3677. GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
  3678. static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
  3679. /* .iface = */ {
  3680. /* .get_name = */ ggml_backend_vk_host_buffer_type_name,
  3681. /* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer,
  3682. /* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment,
  3683. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  3684. /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
  3685. /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
  3686. /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
  3687. },
  3688. /* .context = */ nullptr,
  3689. };
  3690. return &ggml_backend_vk_buffer_type_host;
  3691. }
  3692. // backend
  3693. GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) {
  3694. ggml_backend_vk_context * vk_ctx = (ggml_backend_vk_context *)backend->context;
  3695. return vk_ctx->name.c_str();
  3696. }
  3697. GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
  3698. ggml_backend_vk_context * vk_ctx = (ggml_backend_vk_context *)backend->context;
  3699. delete vk_ctx;
  3700. delete backend;
  3701. }
  3702. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
  3703. return ggml_backend_vk_buffer_type();
  3704. UNUSED(backend);
  3705. }
  3706. GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  3707. #ifdef VK_DEBUG
  3708. std::cerr << "ggml_backend_vk_set_tensor_async(" << size << ")" << std::endl;
  3709. #endif
  3710. GGML_ASSERT(tensor->buffer->buft == ggml_backend_vk_buffer_type() && "unsupported buffer type");
  3711. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3712. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3713. if (vk_ctx == nullptr) {
  3714. // Initialize new transfer context
  3715. vk_ctx = ggml_vk_create_context(vk_device.transfer_queue);
  3716. ggml_vk_ctx_begin(vk_ctx);
  3717. }
  3718. ggml_vk_buffer_write_async(vk_ctx, &extra->buffer_gpu, extra->offset + offset, data, size);
  3719. UNUSED(backend);
  3720. }
  3721. GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3722. #ifdef VK_DEBUG
  3723. std::cerr << "ggml_backend_vk_get_tensor_async(" << size << ")" << std::endl;
  3724. #endif
  3725. GGML_ASSERT(tensor->buffer->buft == ggml_backend_vk_buffer_type() && "unsupported buffer type");
  3726. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3727. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3728. if (vk_ctx == nullptr) {
  3729. // Initialize new transfer context
  3730. vk_ctx = ggml_vk_create_context(vk_device.transfer_queue);
  3731. ggml_vk_ctx_begin(vk_ctx);
  3732. }
  3733. ggml_vk_buffer_read_async(vk_ctx, &extra->buffer_gpu, extra->offset + offset, data, size);
  3734. UNUSED(backend);
  3735. }
  3736. GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  3737. #ifdef VK_DEBUG
  3738. std::cerr << "ggml_backend_vk_cpy_tensor_async()" << std::endl;
  3739. #endif
  3740. if (dst->buffer->buft == ggml_backend_vk_buffer_type() && ggml_backend_buffer_is_vk(src->buffer)) {
  3741. ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
  3742. ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
  3743. if (vk_ctx == nullptr) {
  3744. // Initialize new transfer context
  3745. vk_ctx = ggml_vk_create_context(vk_device.transfer_queue);
  3746. ggml_vk_ctx_begin(vk_ctx);
  3747. }
  3748. ggml_vk_buffer_copy_async(vk_ctx, &src_extra->buffer_gpu, src_extra->offset, &dst_extra->buffer_gpu, dst_extra->offset, ggml_nbytes(src));
  3749. return true;
  3750. }
  3751. return false;
  3752. UNUSED(backend);
  3753. }
  3754. GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
  3755. #ifdef VK_DEBUG
  3756. std::cerr << "ggml_backend_vk_synchronize()" << std::endl;
  3757. #endif
  3758. if(vk_ctx == nullptr) {
  3759. return;
  3760. }
  3761. ggml_vk_ctx_end(vk_ctx);
  3762. for (auto& cpy : vk_ctx->in_memcpys) {
  3763. memcpy(cpy.dst, cpy.src, cpy.n);
  3764. }
  3765. ggml_vk_submit(vk_ctx, vk_fence);
  3766. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences");
  3767. vk_device.device.resetFences({ vk_fence });
  3768. for (auto& cpy : vk_ctx->out_memcpys) {
  3769. memcpy(cpy.dst, cpy.src, cpy.n);
  3770. }
  3771. vk_ctx = nullptr;
  3772. UNUSED(backend);
  3773. }
  3774. GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  3775. // ggml_backend_vk_context * vk_ctx = (ggml_backend_vk_context *)backend->context;
  3776. for (int i = 0; i < cgraph->n_nodes; i++) {
  3777. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  3778. }
  3779. ggml_vk_preallocate_buffers();
  3780. for (int i = 0; i < cgraph->n_nodes; i++) {
  3781. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  3782. }
  3783. ggml_compute_params params = {};
  3784. params.type = GGML_TASK_COMPUTE;
  3785. params.ith = 0;
  3786. for (int i = 0; i < cgraph->n_nodes; i++) {
  3787. ggml_tensor * node = cgraph->nodes[i];
  3788. if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  3789. continue;
  3790. }
  3791. bool ok = ggml_vk_compute_forward(&params, node);
  3792. if (!ok) {
  3793. std::cerr << "Vulkan disable: " << vk_disable << std::endl;
  3794. fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  3795. }
  3796. #ifdef GGML_VULKAN_CHECK_RESULTS
  3797. else {
  3798. ggml_vk_check_results_1(&params, node);
  3799. }
  3800. #endif
  3801. GGML_ASSERT(ok);
  3802. }
  3803. ggml_vk_graph_cleanup();
  3804. return true;
  3805. UNUSED(backend);
  3806. }
  3807. GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
  3808. switch (op->op) {
  3809. case GGML_OP_UNARY:
  3810. switch (ggml_get_unary_op(op)) {
  3811. case GGML_UNARY_OP_GELU:
  3812. case GGML_UNARY_OP_SILU:
  3813. case GGML_UNARY_OP_RELU:
  3814. return true;
  3815. default:
  3816. return false;
  3817. }
  3818. break;
  3819. case GGML_OP_MUL_MAT:
  3820. {
  3821. struct ggml_tensor * a;
  3822. struct ggml_tensor * b;
  3823. if (op->op == GGML_OP_MUL_MAT) {
  3824. a = op->src[0];
  3825. b = op->src[1];
  3826. } else {
  3827. a = op->src[2];
  3828. b = op->src[1];
  3829. }
  3830. if (a->ne[3] != b->ne[3]) {
  3831. return false;
  3832. }
  3833. return true;
  3834. } break;
  3835. // case GGML_OP_GET_ROWS:
  3836. // {
  3837. // switch (op->src[0]->type) {
  3838. // case GGML_TYPE_F16:
  3839. // case GGML_TYPE_F32:
  3840. // case GGML_TYPE_Q4_0:
  3841. // case GGML_TYPE_Q4_1:
  3842. // case GGML_TYPE_Q5_0:
  3843. // case GGML_TYPE_Q5_1:
  3844. // case GGML_TYPE_Q8_0:
  3845. // return true;
  3846. // default:
  3847. // return false;
  3848. // }
  3849. // } break;
  3850. case GGML_OP_CPY:
  3851. {
  3852. ggml_type src0_type = op->src[0]->type;
  3853. ggml_type src1_type = op->src[1]->type;
  3854. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
  3855. return true;
  3856. }
  3857. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
  3858. return true;
  3859. }
  3860. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
  3861. return true;
  3862. }
  3863. return false;
  3864. } break;
  3865. // case GGML_OP_DUP:
  3866. // case GGML_OP_REPEAT:
  3867. // {
  3868. // ggml_type src0_type = op->src[0]->type;
  3869. // return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  3870. // } break;
  3871. case GGML_OP_ROPE:
  3872. {
  3873. const int mode = ((const int32_t *) op->op_params)[2];
  3874. const bool is_glm = mode & 4;
  3875. return !is_glm;
  3876. } break;
  3877. case GGML_OP_NONE:
  3878. case GGML_OP_RESHAPE:
  3879. case GGML_OP_VIEW:
  3880. case GGML_OP_PERMUTE:
  3881. case GGML_OP_TRANSPOSE:
  3882. case GGML_OP_NORM:
  3883. case GGML_OP_ADD:
  3884. case GGML_OP_MUL:
  3885. case GGML_OP_RMS_NORM:
  3886. case GGML_OP_SCALE:
  3887. case GGML_OP_SQR:
  3888. case GGML_OP_CLAMP:
  3889. case GGML_OP_CONT:
  3890. case GGML_OP_DIAG_MASK_INF:
  3891. case GGML_OP_SOFT_MAX:
  3892. return true;
  3893. default:
  3894. return false;
  3895. }
  3896. UNUSED(backend);
  3897. }
  3898. // TODO: enable async and synchronize
  3899. static ggml_backend_i ggml_backend_vk_interface = {
  3900. /* .get_name = */ ggml_backend_vk_name,
  3901. /* .free = */ ggml_backend_vk_free,
  3902. /* .get_default_buffer_type = */ ggml_backend_vk_get_default_buffer_type,
  3903. /* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
  3904. /* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async,
  3905. /* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
  3906. /* .synchronize = */ NULL, // ggml_backend_vk_synchronize,
  3907. /* .graph_plan_create = */ NULL,
  3908. /* .graph_plan_free = */ NULL,
  3909. /* .graph_plan_compute = */ NULL,
  3910. /* .graph_compute = */ ggml_backend_vk_graph_compute,
  3911. /* .supports_op = */ ggml_backend_vk_supports_op,
  3912. };
  3913. GGML_CALL ggml_backend_t ggml_backend_vk_init() {
  3914. ggml_vk_init(); // TODO: remove from ggml.c
  3915. ggml_backend_vk_context * ctx = new ggml_backend_vk_context {
  3916. /* .name = */ GGML_VK_NAME,
  3917. };
  3918. ggml_backend_t vk_backend = new ggml_backend {
  3919. /* .interface = */ ggml_backend_vk_interface,
  3920. /* .context = */ ctx
  3921. };
  3922. return vk_backend;
  3923. }
  3924. GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
  3925. return backend && backend->iface.get_name == ggml_backend_vk_name;
  3926. }
  3927. // backend registry
  3928. GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) {
  3929. ggml_backend_t vk_backend = ggml_backend_vk_init();
  3930. return vk_backend;
  3931. UNUSED(params);
  3932. UNUSED(user_data);
  3933. }
  3934. extern "C" GGML_CALL int ggml_backend_vk_reg_devices();
  3935. GGML_CALL int ggml_backend_vk_reg_devices() {
  3936. ggml_backend_register(GGML_VK_NAME, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(), nullptr);
  3937. return 1;
  3938. }
  3939. // checks
  3940. #ifdef GGML_VULKAN_CHECK_RESULTS
  3941. void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
  3942. if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
  3943. return;
  3944. }
  3945. for (int j = 0; j < level; j++) {
  3946. std::cerr << " ";
  3947. }
  3948. std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl;
  3949. done.push_back(tensor);
  3950. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3951. if (tensor->src[i] != nullptr) {
  3952. ggml_vk_print_graph_origin(tensor->src[i], done, level + 1);
  3953. }
  3954. }
  3955. }
  3956. void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
  3957. if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
  3958. return;
  3959. }
  3960. fprintf(stderr, " ");
  3961. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  3962. fprintf(stderr, "%7d ", idx1);
  3963. }
  3964. fprintf(stderr, "\n");
  3965. for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
  3966. fprintf(stderr, "%7d: ", idx0);
  3967. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  3968. if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
  3969. float val;
  3970. if (tensor->type == GGML_TYPE_F32) {
  3971. val = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
  3972. } else if (tensor->type == GGML_TYPE_F16) {
  3973. val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
  3974. }
  3975. fprintf(stderr, "% 7.2f ", val);
  3976. } else {
  3977. fprintf(stderr, " ");
  3978. }
  3979. }
  3980. fprintf(stderr, "\n");
  3981. }
  3982. }
  3983. void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
  3984. void * tensor_data = tensor->data;
  3985. if (tensor->backend == GGML_BACKEND_GPU) {
  3986. const size_t tensor_size = ggml_nbytes(tensor);
  3987. tensor_data = malloc(tensor_size);
  3988. ggml_vk_buffer_read((vk_buffer *)tensor->data, 0, tensor_data, tensor_size, vk_device.transfer_queue);
  3989. }
  3990. std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
  3991. std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
  3992. if (tensor->src[0] != nullptr) {
  3993. std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
  3994. }
  3995. if (tensor->src[1] != nullptr) {
  3996. std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
  3997. }
  3998. std::cerr << std::endl << "Result:" << std::endl;
  3999. ggml_vk_print_tensor_area(tensor, tensor->data, 5, 5, 0, 0);
  4000. std::cerr << std::endl;
  4001. std::cerr << std::endl << "Result:" << std::endl;
  4002. ggml_vk_print_tensor_area(tensor, tensor->data, 5, 5, 1, 0);
  4003. std::cerr << std::endl;
  4004. std::vector<const ggml_tensor *> done;
  4005. ggml_vk_print_graph_origin(tensor, done);
  4006. if (tensor->backend == GGML_BACKEND_GPU) {
  4007. free(tensor_data);
  4008. }
  4009. }
  4010. void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
  4011. return;
  4012. GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
  4013. if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
  4014. return;
  4015. }
  4016. for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
  4017. for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
  4018. for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
  4019. for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
  4020. float val = 0.0f;
  4021. if (tensor->type == GGML_TYPE_F32) {
  4022. val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
  4023. } else if (tensor->type == GGML_TYPE_F16) {
  4024. val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
  4025. }
  4026. if (std::isnan(val)) {
  4027. std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl;
  4028. std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
  4029. std::cerr << std::endl;
  4030. ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3);
  4031. std::cerr << std::endl;
  4032. std::vector<const ggml_tensor *> done;
  4033. ggml_vk_print_graph_origin(tensor, done);
  4034. GGML_ASSERT(false);
  4035. }
  4036. }
  4037. }
  4038. }
  4039. }
  4040. }
  4041. void * comp_result;
  4042. size_t comp_size;
  4043. size_t comp_nb[GGML_MAX_DIMS];
  4044. size_t check_counter = 0;
  4045. void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor) {
  4046. if (params->ith != 0) {
  4047. return;
  4048. }
  4049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
  4050. return;
  4051. }
  4052. check_counter++;
  4053. if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
  4054. return;
  4055. }
  4056. ggml_tensor * src0 = tensor->src[0];
  4057. ggml_tensor * src1 = tensor->src[1];
  4058. struct ggml_init_params iparams = {
  4059. .mem_size = 1024*1024*1024,
  4060. .mem_buffer = NULL,
  4061. };
  4062. struct ggml_context * ctx = ggml_init(iparams);
  4063. struct ggml_tensor * src0_clone = nullptr;
  4064. struct ggml_tensor * src1_clone = nullptr;
  4065. struct ggml_tensor * tensor_clone = nullptr;
  4066. size_t src0_size;
  4067. size_t src1_size;
  4068. void * src0_buffer;
  4069. void * src1_buffer;
  4070. if (src0 != nullptr) {
  4071. src0_clone = ggml_dup_tensor(ctx, src0);
  4072. src0_size = ggml_nbytes(src0);
  4073. src0_buffer = malloc(src0_size);
  4074. src0_clone->data = src0_buffer;
  4075. if (src0->backend == GGML_BACKEND_CPU) {
  4076. memcpy(src0_clone->data, src0->data, src0_size);
  4077. memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4078. } else if (src0->backend == GGML_BACKEND_GPU) {
  4079. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
  4080. uint64_t offset = extra->offset;
  4081. if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
  4082. for (int i3 = 0; i3 < src0->ne[3]; i3++) {
  4083. for (int i2 = 0; i2 < src0->ne[2]; i2++) {
  4084. const int idx = i3*src0->ne[2] + i2;
  4085. ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1], vk_device.transfer_queue);
  4086. }
  4087. }
  4088. src0_clone->nb[0] = src0->nb[0];
  4089. src0_clone->nb[1] = src0->nb[1];
  4090. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  4091. src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
  4092. }
  4093. } else {
  4094. if (offset + src0_size >= extra->buffer_gpu.size) {
  4095. src0_size = extra->buffer_gpu.size - offset;
  4096. }
  4097. ggml_vk_buffer_read(&extra->buffer_gpu, offset, src0_clone->data, src0_size, vk_device.transfer_queue);
  4098. memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4099. }
  4100. } else {
  4101. GGML_ASSERT(false);
  4102. }
  4103. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4104. ggml_vk_print_tensor(src0, "src0");
  4105. }
  4106. ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone);
  4107. }
  4108. if (src1 != nullptr) {
  4109. src1_clone = ggml_dup_tensor(ctx, src1);
  4110. src1_size = ggml_nbytes(src1);
  4111. src1_buffer = malloc(src1_size);
  4112. src1_clone->data = src1_buffer;
  4113. if (src1->backend == GGML_BACKEND_CPU) {
  4114. memcpy(src1_clone->data, src1->data, src1_size);
  4115. memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4116. } else if (src1->backend == GGML_BACKEND_GPU) {
  4117. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
  4118. uint64_t offset = extra->offset;
  4119. if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
  4120. for (int i3 = 0; i3 < src1->ne[3]; i3++) {
  4121. for (int i2 = 0; i2 < src1->ne[2]; i2++) {
  4122. const int idx = i3*src1->ne[2] + i2;
  4123. ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1], vk_device.transfer_queue);
  4124. }
  4125. }
  4126. src1_clone->nb[0] = src1->nb[0];
  4127. src1_clone->nb[1] = src1->nb[1];
  4128. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  4129. src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
  4130. }
  4131. } else {
  4132. if (offset + src1_size >= extra->buffer_gpu.size) {
  4133. src1_size = extra->buffer_gpu.size - offset;
  4134. }
  4135. ggml_vk_buffer_read(&extra->buffer_gpu, offset, src1_clone->data, src1_size, vk_device.transfer_queue);
  4136. memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4137. }
  4138. } else {
  4139. GGML_ASSERT(false);
  4140. }
  4141. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4142. ggml_vk_print_tensor(src1, "src1");
  4143. std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
  4144. std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
  4145. if (src1->src[0] != nullptr) {
  4146. std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
  4147. }
  4148. if (src1->src[1] != nullptr) {
  4149. std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
  4150. }
  4151. std::cerr << std::endl << "Result:" << std::endl;
  4152. ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
  4153. std::cerr << std::endl;
  4154. std::cerr << std::endl << "Result:" << std::endl;
  4155. ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 1, 0);
  4156. std::cerr << std::endl;
  4157. std::vector<const ggml_tensor *> done;
  4158. ggml_vk_print_graph_origin(src1_clone, done);
  4159. }
  4160. ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
  4161. }
  4162. if (tensor->op == GGML_OP_MUL_MAT) {
  4163. tensor_clone = ggml_mul_mat(ctx, src0_clone, src1_clone);
  4164. } else if (tensor->op == GGML_OP_MUL) {
  4165. tensor_clone = ggml_mul(ctx, src0_clone, src1_clone);
  4166. } else if (tensor->op == GGML_OP_SCALE) {
  4167. tensor_clone = ggml_scale(ctx, src0_clone, ((float *)tensor->op_params)[0]);
  4168. } else if (tensor->op == GGML_OP_SQR) {
  4169. tensor_clone = ggml_sqr(ctx, src0_clone);
  4170. } else if (tensor->op == GGML_OP_CLAMP) {
  4171. tensor_clone = ggml_clamp(ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
  4172. } else if (tensor->op == GGML_OP_ADD) {
  4173. tensor_clone = ggml_add(ctx, src0_clone, src1_clone);
  4174. } else if (tensor->op == GGML_OP_NORM) {
  4175. tensor_clone = ggml_norm(ctx, src0_clone, *(float *)tensor->op_params);
  4176. } else if (tensor->op == GGML_OP_RMS_NORM) {
  4177. tensor_clone = ggml_rms_norm(ctx, src0_clone, *(float *)tensor->op_params);
  4178. } else if (tensor->op == GGML_OP_SOFT_MAX) {
  4179. if (src1 != nullptr) {
  4180. tensor_clone = ggml_soft_max_ext(ctx, src0_clone, src1_clone, *(float *)tensor->op_params);
  4181. } else {
  4182. tensor_clone = ggml_soft_max(ctx, src0_clone);
  4183. }
  4184. } else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
  4185. tensor_clone = ggml_diag_mask_inf(ctx, src0_clone, *(float *)tensor->op_params);
  4186. } else if (tensor->op == GGML_OP_ROPE) {
  4187. const int n_dims = ((int32_t *) tensor->op_params)[1];
  4188. const int mode = ((int32_t *) tensor->op_params)[2];
  4189. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  4190. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  4191. float freq_base = ((float *) tensor->op_params)[5];
  4192. float freq_scale = ((float *) tensor->op_params)[6];
  4193. float ext_factor = ((float *) tensor->op_params)[7];
  4194. float attn_factor = ((float *) tensor->op_params)[8];
  4195. float beta_fast = ((float *) tensor->op_params)[9];
  4196. float beta_slow = ((float *) tensor->op_params)[10];
  4197. tensor_clone = ggml_rope_custom(ctx, src0_clone, src1_clone, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
  4198. } else if (tensor->op == GGML_OP_UNARY) {
  4199. switch (ggml_get_unary_op(tensor)) {
  4200. case GGML_UNARY_OP_SILU:
  4201. tensor_clone = ggml_silu(ctx, src0_clone);
  4202. break;
  4203. case GGML_UNARY_OP_GELU:
  4204. tensor_clone = ggml_gelu(ctx, src0_clone);
  4205. break;
  4206. case GGML_UNARY_OP_RELU:
  4207. tensor_clone = ggml_relu(ctx, src0_clone);
  4208. break;
  4209. default:
  4210. std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
  4211. GGML_ASSERT(false);
  4212. }
  4213. } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
  4214. if (src1 == nullptr) {
  4215. tensor_clone = ggml_dup(ctx, src0_clone);
  4216. tensor_clone->type == tensor->type;
  4217. } else {
  4218. tensor_clone = ggml_cpy(ctx, src0_clone, src1_clone);
  4219. }
  4220. } else if (tensor->op == GGML_OP_CONT) {
  4221. tensor_clone = ggml_cont_4d(ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  4222. } else if (tensor->op == GGML_OP_RESHAPE) {
  4223. tensor_clone = ggml_reshape_4d(ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  4224. } else if (tensor->op == GGML_OP_VIEW) {
  4225. tensor_clone = ggml_view_4d(ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]);
  4226. } else if (tensor->op == GGML_OP_PERMUTE) {
  4227. int32_t * params = (int32_t *)tensor->op_params;
  4228. tensor_clone = ggml_permute(ctx, src0_clone, params[0], params[1], params[2], params[3]);
  4229. } else if (tensor->op == GGML_OP_TRANSPOSE) {
  4230. tensor_clone = ggml_transpose(ctx, src0_clone);
  4231. } else {
  4232. std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
  4233. GGML_ASSERT(false);
  4234. }
  4235. // Disable vulkan here to avoid the hooks in ggml.c
  4236. vk_disable = true;
  4237. ggml_cgraph * cgraph = ggml_new_graph(ctx);
  4238. ggml_build_forward_expand(cgraph, tensor_clone);
  4239. ggml_graph_compute_with_ctx(ctx, cgraph, 8);
  4240. vk_disable = false;
  4241. ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
  4242. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4243. ggml_vk_print_tensor(tensor_clone, "tensor_clone");
  4244. }
  4245. comp_size = ggml_nbytes(tensor_clone);
  4246. comp_result = malloc(comp_size);
  4247. memcpy(comp_result, tensor_clone->data, comp_size);
  4248. memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4249. if (src0 != nullptr) {
  4250. free(src0_buffer);
  4251. }
  4252. if (src1 != nullptr) {
  4253. free(src1_buffer);
  4254. }
  4255. ggml_free(ctx);
  4256. }
  4257. void ggml_vk_check_results_1(ggml_compute_params * params, ggml_tensor * tensor) {
  4258. if (params->ith != 0) {
  4259. return;
  4260. }
  4261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
  4262. return;
  4263. }
  4264. if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
  4265. return;
  4266. }
  4267. ggml_tensor * src0 = tensor->src[0];
  4268. ggml_tensor * src1 = tensor->src[1];
  4269. void * tensor_data = tensor->data;
  4270. if (tensor->backend == GGML_BACKEND_GPU) {
  4271. size_t tensor_size = ggml_nbytes(tensor);
  4272. tensor_data = malloc(tensor_size);
  4273. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  4274. if (extra->offset + tensor_size >= extra->buffer_gpu.size) {
  4275. tensor_size = extra->buffer_gpu.size - (extra->offset);
  4276. }
  4277. ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size, vk_device.transfer_queue);
  4278. }
  4279. float first_error_result = -1.0f;
  4280. float first_error_correct = -1.0f;
  4281. std::array<int, 4> first_error = { -1, -1, -1, -1 };
  4282. double avg_err = 0.0;
  4283. size_t counter = 0;
  4284. for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
  4285. for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
  4286. for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
  4287. for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
  4288. const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size;
  4289. float correct = 0.0f;
  4290. float result = 0.0f;
  4291. if (buffer_size_fit) {
  4292. if (tensor->type == GGML_TYPE_F32) {
  4293. correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
  4294. result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
  4295. } else if (tensor->type == GGML_TYPE_F16) {
  4296. correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
  4297. result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
  4298. } else {
  4299. std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl;
  4300. }
  4301. } else {
  4302. std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
  4303. GGML_ASSERT(false);
  4304. }
  4305. if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
  4306. std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
  4307. std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
  4308. if (src0 != nullptr) {
  4309. std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
  4310. }
  4311. if (src1 != nullptr) {
  4312. std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
  4313. }
  4314. std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
  4315. std::cerr << std::endl << "Result:" << std::endl;
  4316. ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
  4317. std::cerr << std::endl << "Correct:" << std::endl;
  4318. ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3);
  4319. std::cerr << std::endl;
  4320. std::vector<const ggml_tensor *> done;
  4321. ggml_vk_print_graph_origin(tensor, done);
  4322. GGML_ASSERT(false);
  4323. }
  4324. if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) {
  4325. first_error[0] = i0;
  4326. first_error[1] = i1;
  4327. first_error[2] = i2;
  4328. first_error[3] = i3;
  4329. first_error_result = result;
  4330. first_error_correct = correct;
  4331. }
  4332. // Special case, value is infinite, avoid NaN result in avg_err
  4333. // NaN also appears in results, if both are nan error is 0
  4334. if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) {
  4335. avg_err += std::fabs(correct - result);
  4336. }
  4337. counter++;
  4338. }
  4339. }
  4340. }
  4341. }
  4342. avg_err /= counter;
  4343. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4344. std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
  4345. std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
  4346. if (src0 != nullptr) {
  4347. std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
  4348. }
  4349. if (src1 != nullptr) {
  4350. std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
  4351. }
  4352. std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
  4353. std::cerr << std::endl << "Result:" << std::endl;
  4354. ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
  4355. std::cerr << std::endl << "Correct:" << std::endl;
  4356. ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0);
  4357. std::cerr << std::endl;
  4358. std::cerr << std::endl << "Result:" << std::endl;
  4359. ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
  4360. std::cerr << std::endl << "Correct:" << std::endl;
  4361. ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 1, 0);
  4362. std::cerr << std::endl;
  4363. std::vector<const ggml_tensor *> done;
  4364. ggml_vk_print_graph_origin(tensor, done);
  4365. }
  4366. if (avg_err > 0.05 || std::isnan(avg_err)) {
  4367. std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
  4368. std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
  4369. if (src0 != nullptr) {
  4370. std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
  4371. }
  4372. if (src1 != nullptr) {
  4373. std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
  4374. }
  4375. std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
  4376. std::cerr << std::endl << "Result:" << std::endl;
  4377. ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);
  4378. std::cerr << std::endl << "Correct:" << std::endl;
  4379. ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]);
  4380. std::cerr << std::endl;
  4381. std::vector<const ggml_tensor *> done;
  4382. ggml_vk_print_graph_origin(tensor, done);
  4383. GGML_ASSERT(false);
  4384. } else {
  4385. std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl;
  4386. }
  4387. free(comp_result);
  4388. comp_result = nullptr;
  4389. comp_size = 0;
  4390. if (tensor->backend == GGML_BACKEND_GPU) {
  4391. free(tensor_data);
  4392. }
  4393. }
  4394. #endif