ggml.c 656 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #elif defined(GGML_USE_VULKAN)
  213. #include "ggml-vulkan.h"
  214. #elif defined(GGML_USE_SYCL)
  215. #include "ggml-sycl.h"
  216. #endif
  217. // floating point type used to accumulate sums
  218. typedef double ggml_float;
  219. #undef MIN
  220. #undef MAX
  221. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  222. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  223. //
  224. // global data
  225. //
  226. // precomputed gelu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  228. // precomputed quick gelu table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  230. // precomputed silu table for f16 (128 KB)
  231. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  232. // precomputed exp table for f16 (128 KB)
  233. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  234. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  235. float ggml_table_f32_f16[1 << 16];
  236. // note: do not use these inside ggml.c
  237. // these are meant to be used via the ggml.h API
  238. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  239. return (float) GGML_FP16_TO_FP32(x);
  240. }
  241. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  242. return GGML_FP32_TO_FP16(x);
  243. }
  244. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  245. for (int i = 0; i < n; i++) {
  246. y[i] = GGML_FP16_TO_FP32(x[i]);
  247. }
  248. }
  249. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  250. int i = 0;
  251. #if defined(__F16C__)
  252. for (; i + 7 < n; i += 8) {
  253. __m256 x_vec = _mm256_loadu_ps(x + i);
  254. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  255. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  256. }
  257. for(; i + 3 < n; i += 4) {
  258. __m128 x_vec = _mm_loadu_ps(x + i);
  259. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  260. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  261. }
  262. #endif
  263. for (; i < n; i++) {
  264. y[i] = GGML_FP32_TO_FP16(x[i]);
  265. }
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq, timer_start;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER t;
  274. QueryPerformanceFrequency(&t);
  275. timer_freq = t.QuadPart;
  276. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  277. // and the uptime is high enough.
  278. // We subtract the program start time to reduce the likelihood of that happening.
  279. QueryPerformanceCounter(&t);
  280. timer_start = t.QuadPart;
  281. }
  282. int64_t ggml_time_ms(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  286. }
  287. int64_t ggml_time_us(void) {
  288. LARGE_INTEGER t;
  289. QueryPerformanceCounter(&t);
  290. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  291. }
  292. #else
  293. void ggml_time_init(void) {}
  294. int64_t ggml_time_ms(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  298. }
  299. int64_t ggml_time_us(void) {
  300. struct timespec ts;
  301. clock_gettime(CLOCK_MONOTONIC, &ts);
  302. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  303. }
  304. #endif
  305. int64_t ggml_cycles(void) {
  306. return clock();
  307. }
  308. int64_t ggml_cycles_per_ms(void) {
  309. return CLOCKS_PER_SEC/1000;
  310. }
  311. #ifdef GGML_PERF
  312. #define ggml_perf_time_ms() ggml_time_ms()
  313. #define ggml_perf_time_us() ggml_time_us()
  314. #define ggml_perf_cycles() ggml_cycles()
  315. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  316. #else
  317. #define ggml_perf_time_ms() 0
  318. #define ggml_perf_time_us() 0
  319. #define ggml_perf_cycles() 0
  320. #define ggml_perf_cycles_per_ms() 0
  321. #endif
  322. //
  323. // cache line
  324. //
  325. #if defined(__cpp_lib_hardware_interference_size)
  326. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  327. #else
  328. #if defined(__POWER9_VECTOR__)
  329. #define CACHE_LINE_SIZE 128
  330. #else
  331. #define CACHE_LINE_SIZE 64
  332. #endif
  333. #endif
  334. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  335. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  336. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  338. [GGML_TYPE_I8] = {
  339. .type_name = "i8",
  340. .blck_size = 1,
  341. .type_size = sizeof(int8_t),
  342. .is_quantized = false,
  343. },
  344. [GGML_TYPE_I16] = {
  345. .type_name = "i16",
  346. .blck_size = 1,
  347. .type_size = sizeof(int16_t),
  348. .is_quantized = false,
  349. },
  350. [GGML_TYPE_I32] = {
  351. .type_name = "i32",
  352. .blck_size = 1,
  353. .type_size = sizeof(int32_t),
  354. .is_quantized = false,
  355. },
  356. [GGML_TYPE_F32] = {
  357. .type_name = "f32",
  358. .blck_size = 1,
  359. .type_size = sizeof(float),
  360. .is_quantized = false,
  361. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  362. .vec_dot_type = GGML_TYPE_F32,
  363. },
  364. [GGML_TYPE_F16] = {
  365. .type_name = "f16",
  366. .blck_size = 1,
  367. .type_size = sizeof(ggml_fp16_t),
  368. .is_quantized = false,
  369. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  370. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  371. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  373. .vec_dot_type = GGML_TYPE_F16,
  374. },
  375. [GGML_TYPE_Q4_0] = {
  376. .type_name = "q4_0",
  377. .blck_size = QK4_0,
  378. .type_size = sizeof(block_q4_0),
  379. .is_quantized = true,
  380. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  381. .from_float = quantize_row_q4_0,
  382. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  383. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  384. .vec_dot_type = GGML_TYPE_Q8_0,
  385. },
  386. [GGML_TYPE_Q4_1] = {
  387. .type_name = "q4_1",
  388. .blck_size = QK4_1,
  389. .type_size = sizeof(block_q4_1),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  392. .from_float = quantize_row_q4_1,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  394. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  395. .vec_dot_type = GGML_TYPE_Q8_1,
  396. },
  397. [4] = { // GGML_TYPE_Q4_2
  398. .type_name = "DEPRECATED",
  399. .blck_size = 0,
  400. .type_size = 0,
  401. .is_quantized = false,
  402. .to_float = NULL,
  403. .from_float = NULL,
  404. .from_float_reference = NULL,
  405. .vec_dot = NULL,
  406. .vec_dot_type = GGML_TYPE_COUNT,
  407. },
  408. [5] = { // GGML_TYPE_Q4_3
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [GGML_TYPE_Q5_0] = {
  420. .type_name = "q5_0",
  421. .blck_size = QK5_0,
  422. .type_size = sizeof(block_q5_0),
  423. .is_quantized = true,
  424. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  425. .from_float = quantize_row_q5_0,
  426. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  427. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  428. .vec_dot_type = GGML_TYPE_Q8_0,
  429. },
  430. [GGML_TYPE_Q5_1] = {
  431. .type_name = "q5_1",
  432. .blck_size = QK5_1,
  433. .type_size = sizeof(block_q5_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  436. .from_float = quantize_row_q5_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  438. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. },
  441. [GGML_TYPE_Q8_0] = {
  442. .type_name = "q8_0",
  443. .blck_size = QK8_0,
  444. .type_size = sizeof(block_q8_0),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  447. .from_float = quantize_row_q8_0,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  449. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  450. .vec_dot_type = GGML_TYPE_Q8_0,
  451. },
  452. [GGML_TYPE_Q8_1] = {
  453. .type_name = "q8_1",
  454. .blck_size = QK8_1,
  455. .type_size = sizeof(block_q8_1),
  456. .is_quantized = true,
  457. .from_float = quantize_row_q8_1,
  458. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  459. .vec_dot_type = GGML_TYPE_Q8_1,
  460. },
  461. [GGML_TYPE_Q2_K] = {
  462. .type_name = "q2_K",
  463. .blck_size = QK_K,
  464. .type_size = sizeof(block_q2_K),
  465. .is_quantized = true,
  466. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  467. .from_float = quantize_row_q2_K,
  468. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  469. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  470. .vec_dot_type = GGML_TYPE_Q8_K,
  471. },
  472. [GGML_TYPE_Q3_K] = {
  473. .type_name = "q3_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q3_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  478. .from_float = quantize_row_q3_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  480. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q4_K] = {
  484. .type_name = "q4_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q4_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  489. .from_float = quantize_row_q4_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  491. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q5_K] = {
  495. .type_name = "q5_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q5_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  500. .from_float = quantize_row_q5_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  502. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q6_K] = {
  506. .type_name = "q6_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q6_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  511. .from_float = quantize_row_q6_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  513. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_IQ2_XXS] = {
  517. .type_name = "iq2_xxs",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_iq2_xxs),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  522. .from_float = NULL,
  523. .from_float_reference = NULL,
  524. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_IQ2_XS] = {
  528. .type_name = "iq2_xs",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_iq2_xs),
  531. .is_quantized = true,
  532. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  533. .from_float = NULL,
  534. .from_float_reference = NULL,
  535. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  536. .vec_dot_type = GGML_TYPE_Q8_K,
  537. },
  538. [GGML_TYPE_Q8_K] = {
  539. .type_name = "q8_K",
  540. .blck_size = QK_K,
  541. .type_size = sizeof(block_q8_K),
  542. .is_quantized = true,
  543. .from_float = quantize_row_q8_K,
  544. }
  545. };
  546. // For internal test use
  547. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  548. GGML_ASSERT(type < GGML_TYPE_COUNT);
  549. return type_traits[type];
  550. }
  551. //
  552. // simd mappings
  553. //
  554. #if defined(__ARM_NEON)
  555. #if !defined(__aarch64__)
  556. // 64-bit compatibility
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. #endif
  561. #endif
  562. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  563. // we then implement the fundamental computation operations below using only these macros
  564. // adding support for new architectures requires to define the corresponding SIMD macros
  565. //
  566. // GGML_F32_STEP / GGML_F16_STEP
  567. // number of elements to process in a single step
  568. //
  569. // GGML_F32_EPR / GGML_F16_EPR
  570. // number of elements to fit in a single register
  571. //
  572. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  573. #define GGML_SIMD
  574. // F32 NEON
  575. #define GGML_F32_STEP 16
  576. #define GGML_F32_EPR 4
  577. #define GGML_F32x4 float32x4_t
  578. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  579. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  580. #define GGML_F32x4_LOAD vld1q_f32
  581. #define GGML_F32x4_STORE vst1q_f32
  582. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  583. #define GGML_F32x4_ADD vaddq_f32
  584. #define GGML_F32x4_MUL vmulq_f32
  585. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  586. #define GGML_F32x4_REDUCE(res, x) \
  587. { \
  588. int offset = GGML_F32_ARR >> 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. offset >>= 1; \
  597. for (int i = 0; i < offset; ++i) { \
  598. x[i] = vaddq_f32(x[i], x[offset+i]); \
  599. } \
  600. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  601. }
  602. #define GGML_F32_VEC GGML_F32x4
  603. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  604. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  605. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  606. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  607. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  608. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  609. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  610. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  611. // F16 NEON
  612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  613. #define GGML_F16_STEP 32
  614. #define GGML_F16_EPR 8
  615. #define GGML_F16x8 float16x8_t
  616. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  617. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  618. #define GGML_F16x8_LOAD vld1q_f16
  619. #define GGML_F16x8_STORE vst1q_f16
  620. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  621. #define GGML_F16x8_ADD vaddq_f16
  622. #define GGML_F16x8_MUL vmulq_f16
  623. #define GGML_F16x8_REDUCE(res, x) \
  624. do { \
  625. int offset = GGML_F16_ARR >> 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. offset >>= 1; \
  634. for (int i = 0; i < offset; ++i) { \
  635. x[i] = vaddq_f16(x[i], x[offset+i]); \
  636. } \
  637. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  638. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  639. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  640. } while (0)
  641. #define GGML_F16_VEC GGML_F16x8
  642. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  643. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  644. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  645. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  646. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  647. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  648. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  649. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  650. #else
  651. // if FP16 vector arithmetic is not supported, we use FP32 instead
  652. // and take advantage of the vcvt_ functions to convert to/from FP16
  653. #define GGML_F16_STEP 16
  654. #define GGML_F16_EPR 4
  655. #define GGML_F32Cx4 float32x4_t
  656. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  657. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  658. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  659. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  660. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  661. #define GGML_F32Cx4_ADD vaddq_f32
  662. #define GGML_F32Cx4_MUL vmulq_f32
  663. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  664. #define GGML_F16_VEC GGML_F32Cx4
  665. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  666. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  667. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  668. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  669. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  670. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  671. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  672. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  673. #endif
  674. #elif defined(__AVX__)
  675. #define GGML_SIMD
  676. // F32 AVX
  677. #define GGML_F32_STEP 32
  678. #define GGML_F32_EPR 8
  679. #define GGML_F32x8 __m256
  680. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  681. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  682. #define GGML_F32x8_LOAD _mm256_loadu_ps
  683. #define GGML_F32x8_STORE _mm256_storeu_ps
  684. #if defined(__FMA__)
  685. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  686. #else
  687. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  688. #endif
  689. #define GGML_F32x8_ADD _mm256_add_ps
  690. #define GGML_F32x8_MUL _mm256_mul_ps
  691. #define GGML_F32x8_REDUCE(res, x) \
  692. do { \
  693. int offset = GGML_F32_ARR >> 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. offset >>= 1; \
  702. for (int i = 0; i < offset; ++i) { \
  703. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  704. } \
  705. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  706. _mm256_extractf128_ps(x[0], 1)); \
  707. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  708. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  709. } while (0)
  710. // TODO: is this optimal ?
  711. #define GGML_F32_VEC GGML_F32x8
  712. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  713. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  714. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  715. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  716. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  717. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  718. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  719. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  720. // F16 AVX
  721. #define GGML_F16_STEP 32
  722. #define GGML_F16_EPR 8
  723. // F16 arithmetic is not supported by AVX, so we use F32 instead
  724. #define GGML_F32Cx8 __m256
  725. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  726. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  727. #if defined(__F16C__)
  728. // the _mm256_cvt intrinsics require F16C
  729. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  730. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  731. #else
  732. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  733. float tmp[8];
  734. for (int i = 0; i < 8; i++) {
  735. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  736. }
  737. return _mm256_loadu_ps(tmp);
  738. }
  739. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  740. float arr[8];
  741. _mm256_storeu_ps(arr, y);
  742. for (int i = 0; i < 8; i++)
  743. x[i] = GGML_FP32_TO_FP16(arr[i]);
  744. }
  745. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  746. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  747. #endif
  748. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  749. #define GGML_F32Cx8_ADD _mm256_add_ps
  750. #define GGML_F32Cx8_MUL _mm256_mul_ps
  751. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  752. #define GGML_F16_VEC GGML_F32Cx8
  753. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  754. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  755. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  757. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  758. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  759. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  760. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  761. #elif defined(__POWER9_VECTOR__)
  762. #define GGML_SIMD
  763. // F32 POWER9
  764. #define GGML_F32_STEP 32
  765. #define GGML_F32_EPR 4
  766. #define GGML_F32x4 vector float
  767. #define GGML_F32x4_ZERO 0.0f
  768. #define GGML_F32x4_SET1 vec_splats
  769. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  770. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  771. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  772. #define GGML_F32x4_ADD vec_add
  773. #define GGML_F32x4_MUL vec_mul
  774. #define GGML_F32x4_REDUCE(res, x) \
  775. { \
  776. int offset = GGML_F32_ARR >> 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vec_add(x[i], x[offset+i]); \
  787. } \
  788. res = vec_extract(x[0], 0) + \
  789. vec_extract(x[0], 1) + \
  790. vec_extract(x[0], 2) + \
  791. vec_extract(x[0], 3); \
  792. }
  793. #define GGML_F32_VEC GGML_F32x4
  794. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  795. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  796. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  797. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  798. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  799. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  800. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  801. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  802. // F16 POWER9
  803. #define GGML_F16_STEP GGML_F32_STEP
  804. #define GGML_F16_EPR GGML_F32_EPR
  805. #define GGML_F16_VEC GGML_F32x4
  806. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  807. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  808. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  809. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  810. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  811. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  812. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  813. vec_extract_fp32_from_shortl(vec_xl(0, p))
  814. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  815. #define GGML_F16_VEC_STORE(p, r, i) \
  816. if (i & 0x1) \
  817. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  818. r[i - GGML_ENDIAN_BYTE(0)]), \
  819. 0, p - GGML_F16_EPR)
  820. #elif defined(__wasm_simd128__)
  821. #define GGML_SIMD
  822. // F32 WASM
  823. #define GGML_F32_STEP 16
  824. #define GGML_F32_EPR 4
  825. #define GGML_F32x4 v128_t
  826. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  827. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  828. #define GGML_F32x4_LOAD wasm_v128_load
  829. #define GGML_F32x4_STORE wasm_v128_store
  830. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  831. #define GGML_F32x4_ADD wasm_f32x4_add
  832. #define GGML_F32x4_MUL wasm_f32x4_mul
  833. #define GGML_F32x4_REDUCE(res, x) \
  834. { \
  835. int offset = GGML_F32_ARR >> 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  846. } \
  847. res = wasm_f32x4_extract_lane(x[0], 0) + \
  848. wasm_f32x4_extract_lane(x[0], 1) + \
  849. wasm_f32x4_extract_lane(x[0], 2) + \
  850. wasm_f32x4_extract_lane(x[0], 3); \
  851. }
  852. #define GGML_F32_VEC GGML_F32x4
  853. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  854. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  855. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  856. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  857. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  858. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  859. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  860. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  861. // F16 WASM
  862. #define GGML_F16_STEP 16
  863. #define GGML_F16_EPR 4
  864. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  865. float tmp[4];
  866. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  867. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  868. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  869. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  870. return wasm_v128_load(tmp);
  871. }
  872. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  873. float tmp[4];
  874. wasm_v128_store(tmp, x);
  875. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  876. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  877. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  878. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  879. }
  880. #define GGML_F16x4 v128_t
  881. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  882. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  883. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  884. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  885. #define GGML_F16x4_FMA GGML_F32x4_FMA
  886. #define GGML_F16x4_ADD wasm_f32x4_add
  887. #define GGML_F16x4_MUL wasm_f32x4_mul
  888. #define GGML_F16x4_REDUCE(res, x) \
  889. { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  901. } \
  902. res = wasm_f32x4_extract_lane(x[0], 0) + \
  903. wasm_f32x4_extract_lane(x[0], 1) + \
  904. wasm_f32x4_extract_lane(x[0], 2) + \
  905. wasm_f32x4_extract_lane(x[0], 3); \
  906. }
  907. #define GGML_F16_VEC GGML_F16x4
  908. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  913. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  914. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  916. #elif defined(__SSE3__)
  917. #define GGML_SIMD
  918. // F32 SSE
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 __m128
  922. #define GGML_F32x4_ZERO _mm_setzero_ps()
  923. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  924. #define GGML_F32x4_LOAD _mm_loadu_ps
  925. #define GGML_F32x4_STORE _mm_storeu_ps
  926. #if defined(__FMA__)
  927. // TODO: Does this work?
  928. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  929. #else
  930. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  931. #endif
  932. #define GGML_F32x4_ADD _mm_add_ps
  933. #define GGML_F32x4_MUL _mm_mul_ps
  934. #define GGML_F32x4_REDUCE(res, x) \
  935. { \
  936. int offset = GGML_F32_ARR >> 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. offset >>= 1; \
  945. for (int i = 0; i < offset; ++i) { \
  946. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  947. } \
  948. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  949. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  950. }
  951. // TODO: is this optimal ?
  952. #define GGML_F32_VEC GGML_F32x4
  953. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  954. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  955. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  956. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  957. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  958. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  959. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  960. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  961. // F16 SSE
  962. #define GGML_F16_STEP 32
  963. #define GGML_F16_EPR 4
  964. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  965. float tmp[4];
  966. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  967. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  968. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  969. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  970. return _mm_loadu_ps(tmp);
  971. }
  972. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  973. float arr[4];
  974. _mm_storeu_ps(arr, y);
  975. x[0] = GGML_FP32_TO_FP16(arr[0]);
  976. x[1] = GGML_FP32_TO_FP16(arr[1]);
  977. x[2] = GGML_FP32_TO_FP16(arr[2]);
  978. x[3] = GGML_FP32_TO_FP16(arr[3]);
  979. }
  980. #define GGML_F32Cx4 __m128
  981. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  982. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  983. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  984. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  985. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  986. #define GGML_F32Cx4_ADD _mm_add_ps
  987. #define GGML_F32Cx4_MUL _mm_mul_ps
  988. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  989. #define GGML_F16_VEC GGML_F32Cx4
  990. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  991. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  992. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  993. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  994. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  995. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  996. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  997. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  998. #endif
  999. // GGML_F32_ARR / GGML_F16_ARR
  1000. // number of registers to use per step
  1001. #ifdef GGML_SIMD
  1002. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1003. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1004. #endif
  1005. //
  1006. // fundamental operations
  1007. //
  1008. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1009. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1010. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1011. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1012. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1013. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1014. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1015. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1016. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1017. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1018. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1019. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1020. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1021. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1022. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1023. #ifdef GGML_SIMD
  1024. float sumf = 0.0f;
  1025. const int np = (n & ~(GGML_F32_STEP - 1));
  1026. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1027. GGML_F32_VEC ax[GGML_F32_ARR];
  1028. GGML_F32_VEC ay[GGML_F32_ARR];
  1029. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1030. for (int j = 0; j < GGML_F32_ARR; j++) {
  1031. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1032. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1033. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1034. }
  1035. }
  1036. // reduce sum0..sum3 to sum0
  1037. GGML_F32_VEC_REDUCE(sumf, sum);
  1038. // leftovers
  1039. for (int i = np; i < n; ++i) {
  1040. sumf += x[i]*y[i];
  1041. }
  1042. #else
  1043. // scalar
  1044. ggml_float sumf = 0.0;
  1045. for (int i = 0; i < n; ++i) {
  1046. sumf += (ggml_float)(x[i]*y[i]);
  1047. }
  1048. #endif
  1049. *s = sumf;
  1050. }
  1051. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1052. ggml_float sumf = 0.0;
  1053. #if defined(GGML_SIMD)
  1054. const int np = (n & ~(GGML_F16_STEP - 1));
  1055. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1056. GGML_F16_VEC ax[GGML_F16_ARR];
  1057. GGML_F16_VEC ay[GGML_F16_ARR];
  1058. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1059. for (int j = 0; j < GGML_F16_ARR; j++) {
  1060. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1061. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1062. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1063. }
  1064. }
  1065. // reduce sum0..sum3 to sum0
  1066. GGML_F16_VEC_REDUCE(sumf, sum);
  1067. // leftovers
  1068. for (int i = np; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #else
  1072. for (int i = 0; i < n; ++i) {
  1073. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1074. }
  1075. #endif
  1076. *s = sumf;
  1077. }
  1078. // compute GGML_VEC_DOT_UNROLL dot products at once
  1079. // xs - x row stride in bytes
  1080. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1081. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1082. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1083. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1084. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1085. }
  1086. #if defined(GGML_SIMD)
  1087. const int np = (n & ~(GGML_F16_STEP - 1));
  1088. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1089. GGML_F16_VEC ax[GGML_F16_ARR];
  1090. GGML_F16_VEC ay[GGML_F16_ARR];
  1091. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1092. for (int j = 0; j < GGML_F16_ARR; j++) {
  1093. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1094. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1095. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1096. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1097. }
  1098. }
  1099. }
  1100. // reduce sum0..sum3 to sum0
  1101. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1102. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1103. }
  1104. // leftovers
  1105. for (int i = np; i < n; ++i) {
  1106. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1107. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1108. }
  1109. }
  1110. #else
  1111. for (int i = 0; i < n; ++i) {
  1112. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1113. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. }
  1116. #endif
  1117. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1118. s[i] = sumf[i];
  1119. }
  1120. }
  1121. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1122. #if defined(GGML_SIMD)
  1123. const int np = (n & ~(GGML_F32_STEP - 1));
  1124. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1125. GGML_F32_VEC ax[GGML_F32_ARR];
  1126. GGML_F32_VEC ay[GGML_F32_ARR];
  1127. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1128. for (int j = 0; j < GGML_F32_ARR; j++) {
  1129. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1130. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1131. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1132. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1133. }
  1134. }
  1135. // leftovers
  1136. for (int i = np; i < n; ++i) {
  1137. y[i] += x[i]*v;
  1138. }
  1139. #else
  1140. // scalar
  1141. for (int i = 0; i < n; ++i) {
  1142. y[i] += x[i]*v;
  1143. }
  1144. #endif
  1145. }
  1146. // xs and vs are byte strides of x and v
  1147. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1148. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1149. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1150. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1151. x[i] = (const float *) ((const char *) xv + i*xs);
  1152. v[i] = (const float *) ((const char *) vv + i*vs);
  1153. }
  1154. #if defined(GGML_SIMD)
  1155. const int np = (n & ~(GGML_F32_STEP - 1));
  1156. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1157. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1158. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1159. }
  1160. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1161. GGML_F32_VEC ay[GGML_F32_ARR];
  1162. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1163. for (int j = 0; j < GGML_F32_ARR; j++) {
  1164. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1165. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1166. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1167. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1168. }
  1169. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1170. }
  1171. }
  1172. // leftovers
  1173. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1174. for (int i = np; i < n; ++i) {
  1175. y[i] += x[k][i]*v[k][0];
  1176. }
  1177. }
  1178. #else
  1179. // scalar
  1180. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[k][i]*v[k][0];
  1183. }
  1184. }
  1185. #endif
  1186. }
  1187. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1188. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1189. #if defined(GGML_USE_ACCELERATE)
  1190. vDSP_vsmul(y, 1, &v, y, 1, n);
  1191. #elif defined(GGML_SIMD)
  1192. const int np = (n & ~(GGML_F32_STEP - 1));
  1193. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1194. GGML_F32_VEC ay[GGML_F32_ARR];
  1195. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1196. for (int j = 0; j < GGML_F32_ARR; j++) {
  1197. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1198. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1199. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1200. }
  1201. }
  1202. // leftovers
  1203. for (int i = np; i < n; ++i) {
  1204. y[i] *= v;
  1205. }
  1206. #else
  1207. // scalar
  1208. for (int i = 0; i < n; ++i) {
  1209. y[i] *= v;
  1210. }
  1211. #endif
  1212. }
  1213. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1214. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1215. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1216. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1217. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1218. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1219. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1220. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1221. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1222. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1223. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1224. // TODO: optimize performance
  1225. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1226. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1227. static const float GELU_COEF_A = 0.044715f;
  1228. static const float GELU_QUICK_COEF = -1.702f;
  1229. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1230. inline static float ggml_gelu_f32(float x) {
  1231. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1232. }
  1233. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1234. const uint16_t * i16 = (const uint16_t *) x;
  1235. for (int i = 0; i < n; ++i) {
  1236. y[i] = ggml_table_gelu_f16[i16[i]];
  1237. }
  1238. }
  1239. #ifdef GGML_GELU_FP16
  1240. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1241. uint16_t t;
  1242. for (int i = 0; i < n; ++i) {
  1243. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1244. memcpy(&t, &fp16, sizeof(uint16_t));
  1245. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1246. }
  1247. }
  1248. #else
  1249. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1250. for (int i = 0; i < n; ++i) {
  1251. y[i] = ggml_gelu_f32(x[i]);
  1252. }
  1253. }
  1254. #endif
  1255. inline static float ggml_gelu_quick_f32(float x) {
  1256. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1257. }
  1258. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1259. // const uint16_t * i16 = (const uint16_t *) x;
  1260. // for (int i = 0; i < n; ++i) {
  1261. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1262. // }
  1263. //}
  1264. #ifdef GGML_GELU_QUICK_FP16
  1265. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1266. uint16_t t;
  1267. for (int i = 0; i < n; ++i) {
  1268. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1269. memcpy(&t, &fp16, sizeof(uint16_t));
  1270. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1271. }
  1272. }
  1273. #else
  1274. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1275. for (int i = 0; i < n; ++i) {
  1276. y[i] = ggml_gelu_quick_f32(x[i]);
  1277. }
  1278. }
  1279. #endif
  1280. // Sigmoid Linear Unit (SiLU) function
  1281. inline static float ggml_silu_f32(float x) {
  1282. return x/(1.0f + expf(-x));
  1283. }
  1284. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1285. // const uint16_t * i16 = (const uint16_t *) x;
  1286. // for (int i = 0; i < n; ++i) {
  1287. // y[i] = ggml_table_silu_f16[i16[i]];
  1288. // }
  1289. //}
  1290. #ifdef GGML_SILU_FP16
  1291. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1292. uint16_t t;
  1293. for (int i = 0; i < n; ++i) {
  1294. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1295. memcpy(&t, &fp16, sizeof(uint16_t));
  1296. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1297. }
  1298. }
  1299. #else
  1300. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1301. for (int i = 0; i < n; ++i) {
  1302. y[i] = ggml_silu_f32(x[i]);
  1303. }
  1304. }
  1305. #endif
  1306. inline static float ggml_silu_backward_f32(float x, float dy) {
  1307. const float s = 1.0f/(1.0f + expf(-x));
  1308. return dy*s*(1.0f + x*(1.0f - s));
  1309. }
  1310. #ifdef GGML_SILU_FP16
  1311. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1312. for (int i = 0; i < n; ++i) {
  1313. // we did not use x[i] to compute forward silu but its f16 equivalent
  1314. // take derivative at f16 of x[i]:
  1315. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1316. float usedx = GGML_FP16_TO_FP32(fp16);
  1317. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1318. }
  1319. }
  1320. #else
  1321. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1322. for (int i = 0; i < n; ++i) {
  1323. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1324. }
  1325. }
  1326. #endif
  1327. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1328. #ifndef GGML_USE_ACCELERATE
  1329. ggml_float sum = 0.0;
  1330. for (int i = 0; i < n; ++i) {
  1331. sum += (ggml_float)x[i];
  1332. }
  1333. *s = sum;
  1334. #else
  1335. vDSP_sve(x, 1, s, n);
  1336. #endif
  1337. }
  1338. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1339. ggml_float sum = 0.0;
  1340. for (int i = 0; i < n; ++i) {
  1341. sum += (ggml_float)x[i];
  1342. }
  1343. *s = sum;
  1344. }
  1345. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1346. float sum = 0.0f;
  1347. for (int i = 0; i < n; ++i) {
  1348. sum += GGML_FP16_TO_FP32(x[i]);
  1349. }
  1350. *s = sum;
  1351. }
  1352. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1353. #ifndef GGML_USE_ACCELERATE
  1354. float max = -INFINITY;
  1355. for (int i = 0; i < n; ++i) {
  1356. max = MAX(max, x[i]);
  1357. }
  1358. *s = max;
  1359. #else
  1360. vDSP_maxv(x, 1, s, n);
  1361. #endif
  1362. }
  1363. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1364. ggml_vec_norm_f32(n, s, x);
  1365. *s = 1.f/(*s);
  1366. }
  1367. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1368. float max = -INFINITY;
  1369. int idx = 0;
  1370. for (int i = 0; i < n; ++i) {
  1371. max = MAX(max, x[i]);
  1372. if (max == x[i]) { idx = i; }
  1373. }
  1374. *s = idx;
  1375. }
  1376. //
  1377. // data types
  1378. //
  1379. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1380. "NONE",
  1381. "DUP",
  1382. "ADD",
  1383. "ADD1",
  1384. "ACC",
  1385. "SUB",
  1386. "MUL",
  1387. "DIV",
  1388. "SQR",
  1389. "SQRT",
  1390. "LOG",
  1391. "SUM",
  1392. "SUM_ROWS",
  1393. "MEAN",
  1394. "ARGMAX",
  1395. "REPEAT",
  1396. "REPEAT_BACK",
  1397. "CONCAT",
  1398. "SILU_BACK",
  1399. "NORM",
  1400. "RMS_NORM",
  1401. "RMS_NORM_BACK",
  1402. "GROUP_NORM",
  1403. "MUL_MAT",
  1404. "MUL_MAT_ID",
  1405. "OUT_PROD",
  1406. "SCALE",
  1407. "SET",
  1408. "CPY",
  1409. "CONT",
  1410. "RESHAPE",
  1411. "VIEW",
  1412. "PERMUTE",
  1413. "TRANSPOSE",
  1414. "GET_ROWS",
  1415. "GET_ROWS_BACK",
  1416. "DIAG",
  1417. "DIAG_MASK_INF",
  1418. "DIAG_MASK_ZERO",
  1419. "SOFT_MAX",
  1420. "SOFT_MAX_BACK",
  1421. "ROPE",
  1422. "ROPE_BACK",
  1423. "ALIBI",
  1424. "CLAMP",
  1425. "CONV_TRANSPOSE_1D",
  1426. "IM2COL",
  1427. "CONV_TRANSPOSE_2D",
  1428. "POOL_1D",
  1429. "POOL_2D",
  1430. "UPSCALE",
  1431. "PAD",
  1432. "ARGSORT",
  1433. "LEAKY_RELU",
  1434. "FLASH_ATTN",
  1435. "FLASH_FF",
  1436. "FLASH_ATTN_BACK",
  1437. "WIN_PART",
  1438. "WIN_UNPART",
  1439. "GET_REL_POS",
  1440. "ADD_REL_POS",
  1441. "UNARY",
  1442. "MAP_UNARY",
  1443. "MAP_BINARY",
  1444. "MAP_CUSTOM1_F32",
  1445. "MAP_CUSTOM2_F32",
  1446. "MAP_CUSTOM3_F32",
  1447. "MAP_CUSTOM1",
  1448. "MAP_CUSTOM2",
  1449. "MAP_CUSTOM3",
  1450. "CROSS_ENTROPY_LOSS",
  1451. "CROSS_ENTROPY_LOSS_BACK",
  1452. };
  1453. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1454. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1455. "none",
  1456. "x",
  1457. "x+y",
  1458. "x+y",
  1459. "view(x,nb,offset)+=y->x",
  1460. "x-y",
  1461. "x*y",
  1462. "x/y",
  1463. "x^2",
  1464. "√x",
  1465. "log(x)",
  1466. "Σx",
  1467. "Σx_k",
  1468. "Σx/n",
  1469. "argmax(x)",
  1470. "repeat(x)",
  1471. "repeat_back(x)",
  1472. "concat(x, y)",
  1473. "silu_back(x)",
  1474. "norm(x)",
  1475. "rms_norm(x)",
  1476. "rms_norm_back(x)",
  1477. "group_norm(x)",
  1478. "X*Y",
  1479. "X[i]*Y",
  1480. "X*Y",
  1481. "x*v",
  1482. "y-\\>view(x)",
  1483. "x-\\>y",
  1484. "cont(x)",
  1485. "reshape(x)",
  1486. "view(x)",
  1487. "permute(x)",
  1488. "transpose(x)",
  1489. "get_rows(x)",
  1490. "get_rows_back(x)",
  1491. "diag(x)",
  1492. "diag_mask_inf(x)",
  1493. "diag_mask_zero(x)",
  1494. "soft_max(x)",
  1495. "soft_max_back(x)",
  1496. "rope(x)",
  1497. "rope_back(x)",
  1498. "alibi(x)",
  1499. "clamp(x)",
  1500. "conv_transpose_1d(x)",
  1501. "im2col(x)",
  1502. "conv_transpose_2d(x)",
  1503. "pool_1d(x)",
  1504. "pool_2d(x)",
  1505. "upscale(x)",
  1506. "pad(x)",
  1507. "argsort(x)",
  1508. "leaky_relu(x)",
  1509. "flash_attn(x)",
  1510. "flash_ff(x)",
  1511. "flash_attn_back(x)",
  1512. "win_part(x)",
  1513. "win_unpart(x)",
  1514. "get_rel_pos(x)",
  1515. "add_rel_pos(x)",
  1516. "unary(x)",
  1517. "f(x)",
  1518. "f(x,y)",
  1519. "custom_f32(x)",
  1520. "custom_f32(x,y)",
  1521. "custom_f32(x,y,z)",
  1522. "custom(x)",
  1523. "custom(x,y)",
  1524. "custom(x,y,z)",
  1525. "cross_entropy_loss(x,y)",
  1526. "cross_entropy_loss_back(x,y)",
  1527. };
  1528. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1529. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1530. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1531. "ABS",
  1532. "SGN",
  1533. "NEG",
  1534. "STEP",
  1535. "TANH",
  1536. "ELU",
  1537. "RELU",
  1538. "GELU",
  1539. "GELU_QUICK",
  1540. "SILU",
  1541. "HARDSWISH",
  1542. "HARDSIGMOID",
  1543. };
  1544. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1545. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1546. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1547. // WARN:
  1548. // Mis-configuration can lead to problem that's hard to reason about:
  1549. // * At best it crash or talks nosense.
  1550. // * At worst it talks slightly difference but hard to perceive.
  1551. //
  1552. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1553. // Take care about compile options (e.g., GGML_USE_xxx).
  1554. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1555. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1556. static void ggml_setup_op_has_task_pass(void) {
  1557. { // INIT
  1558. bool * p = GGML_OP_HAS_INIT;
  1559. p[GGML_OP_ACC ] = true;
  1560. p[GGML_OP_MUL_MAT ] = true;
  1561. p[GGML_OP_MUL_MAT_ID ] = true;
  1562. p[GGML_OP_OUT_PROD ] = true;
  1563. p[GGML_OP_SET ] = true;
  1564. p[GGML_OP_GET_ROWS_BACK ] = true;
  1565. p[GGML_OP_DIAG_MASK_INF ] = true;
  1566. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1567. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1568. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1569. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1570. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1571. p[GGML_OP_ADD_REL_POS ] = true;
  1572. }
  1573. { // FINALIZE
  1574. bool * p = GGML_OP_HAS_FINALIZE;
  1575. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1576. }
  1577. }
  1578. //
  1579. // ggml context
  1580. //
  1581. struct ggml_context {
  1582. size_t mem_size;
  1583. void * mem_buffer;
  1584. bool mem_buffer_owned;
  1585. bool no_alloc;
  1586. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1587. int n_objects;
  1588. struct ggml_object * objects_begin;
  1589. struct ggml_object * objects_end;
  1590. struct ggml_scratch scratch;
  1591. struct ggml_scratch scratch_save;
  1592. };
  1593. struct ggml_context_container {
  1594. bool used;
  1595. struct ggml_context context;
  1596. };
  1597. //
  1598. // NUMA support
  1599. //
  1600. #define GGML_NUMA_MAX_NODES 8
  1601. #define GGML_NUMA_MAX_CPUS 512
  1602. struct ggml_numa_node {
  1603. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1604. uint32_t n_cpus;
  1605. };
  1606. struct ggml_numa_nodes {
  1607. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1608. uint32_t n_nodes;
  1609. uint32_t total_cpus; // hardware threads on system
  1610. };
  1611. //
  1612. // ggml state
  1613. //
  1614. struct ggml_state {
  1615. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1616. struct ggml_numa_nodes numa;
  1617. };
  1618. // global state
  1619. static struct ggml_state g_state;
  1620. static atomic_int g_state_barrier = 0;
  1621. // barrier via spin lock
  1622. inline static void ggml_critical_section_start(void) {
  1623. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1624. while (processing > 0) {
  1625. // wait for other threads to finish
  1626. atomic_fetch_sub(&g_state_barrier, 1);
  1627. sched_yield(); // TODO: reconsider this
  1628. processing = atomic_fetch_add(&g_state_barrier, 1);
  1629. }
  1630. }
  1631. // TODO: make this somehow automatically executed
  1632. // some sort of "sentry" mechanism
  1633. inline static void ggml_critical_section_end(void) {
  1634. atomic_fetch_sub(&g_state_barrier, 1);
  1635. }
  1636. void ggml_numa_init(void) {
  1637. if (g_state.numa.n_nodes > 0) {
  1638. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1639. return;
  1640. }
  1641. #ifdef __linux__
  1642. struct stat st;
  1643. char path[256];
  1644. int rv;
  1645. // enumerate nodes
  1646. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1647. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1648. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1649. if (stat(path, &st) != 0) { break; }
  1650. ++g_state.numa.n_nodes;
  1651. }
  1652. // enumerate CPUs
  1653. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1654. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1655. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1656. if (stat(path, &st) != 0) { break; }
  1657. ++g_state.numa.total_cpus;
  1658. }
  1659. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1660. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1661. g_state.numa.n_nodes = 0;
  1662. return;
  1663. }
  1664. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1665. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1666. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1667. node->n_cpus = 0;
  1668. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1669. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1670. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1671. if (stat(path, &st) == 0) {
  1672. node->cpus[node->n_cpus++] = c;
  1673. GGML_PRINT_DEBUG(" %u", c);
  1674. }
  1675. }
  1676. GGML_PRINT_DEBUG("\n");
  1677. }
  1678. if (ggml_is_numa()) {
  1679. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1680. if (fptr != NULL) {
  1681. char buf[42];
  1682. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1683. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1684. }
  1685. fclose(fptr);
  1686. }
  1687. }
  1688. #else
  1689. // TODO
  1690. #endif
  1691. }
  1692. bool ggml_is_numa(void) {
  1693. return g_state.numa.n_nodes > 1;
  1694. }
  1695. ////////////////////////////////////////////////////////////////////////////////
  1696. void ggml_print_object(const struct ggml_object * obj) {
  1697. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1698. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1699. }
  1700. void ggml_print_objects(const struct ggml_context * ctx) {
  1701. struct ggml_object * obj = ctx->objects_begin;
  1702. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1703. while (obj != NULL) {
  1704. ggml_print_object(obj);
  1705. obj = obj->next;
  1706. }
  1707. GGML_PRINT("%s: --- end ---\n", __func__);
  1708. }
  1709. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1711. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1712. }
  1713. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1715. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1716. }
  1717. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1718. size_t nbytes;
  1719. size_t blck_size = ggml_blck_size(tensor->type);
  1720. if (blck_size == 1) {
  1721. nbytes = ggml_type_size(tensor->type);
  1722. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1723. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1724. }
  1725. }
  1726. else {
  1727. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1728. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1729. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1730. }
  1731. }
  1732. return nbytes;
  1733. }
  1734. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1735. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1736. }
  1737. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1738. return type_traits[type].blck_size;
  1739. }
  1740. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1741. return type_traits[type].type_size;
  1742. }
  1743. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1744. assert(ne % ggml_blck_size(type) == 0);
  1745. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1746. }
  1747. double ggml_type_sizef(enum ggml_type type) {
  1748. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1749. }
  1750. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1751. return type_traits[type].type_name;
  1752. }
  1753. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1754. return type_traits[type].is_quantized;
  1755. }
  1756. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1757. return GGML_OP_NAME[op];
  1758. }
  1759. const char * ggml_op_symbol(enum ggml_op op) {
  1760. return GGML_OP_SYMBOL[op];
  1761. }
  1762. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1763. return GGML_UNARY_OP_NAME[op];
  1764. }
  1765. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1766. if (t->op == GGML_OP_UNARY) {
  1767. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1768. return ggml_unary_op_name(uop);
  1769. }
  1770. else {
  1771. return ggml_op_name(t->op);
  1772. }
  1773. }
  1774. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1775. return ggml_type_size(tensor->type);
  1776. }
  1777. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1778. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1779. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1780. }
  1781. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1783. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1784. }
  1785. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1786. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1787. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1788. }
  1789. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1790. return tensor->ne[3] == 1;
  1791. }
  1792. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1793. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1794. if (tensor->ne[i] > 1) {
  1795. return i + 1;
  1796. }
  1797. }
  1798. return 1;
  1799. }
  1800. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1801. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1802. return (t0->ne[0] == t1->ne[0]) &&
  1803. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1804. (t1->ne[3]%t0->ne[3] == 0);
  1805. }
  1806. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1807. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1808. return (t0->ne[1] == t1->ne[1]) &&
  1809. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1810. (t1->ne[3]%t0->ne[3] == 0);
  1811. }
  1812. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1813. enum ggml_type wtype = GGML_TYPE_COUNT;
  1814. switch (ftype) {
  1815. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1816. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1817. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1818. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1819. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1820. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1821. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1822. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1823. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1824. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1825. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1826. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1827. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1828. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1829. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1830. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1831. }
  1832. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1833. return wtype;
  1834. }
  1835. size_t ggml_tensor_overhead(void) {
  1836. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1837. }
  1838. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1839. return tensor->nb[0] > tensor->nb[1];
  1840. }
  1841. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1842. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1843. return
  1844. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1845. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1846. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1847. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1848. }
  1849. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1850. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1851. return
  1852. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1853. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1854. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1855. }
  1856. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1857. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1858. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1859. }
  1860. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1862. return
  1863. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1864. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1865. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1866. }
  1867. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1869. return
  1870. (t0->ne[0] == t1->ne[0] ) &&
  1871. (t0->ne[1] == t1->ne[1] ) &&
  1872. (t0->ne[2] == t1->ne[2] ) &&
  1873. (t0->ne[3] == t1->ne[3] );
  1874. }
  1875. // check if t1 can be represented as a repeatition of t0
  1876. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1877. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1878. return
  1879. (t1->ne[0]%t0->ne[0] == 0) &&
  1880. (t1->ne[1]%t0->ne[1] == 0) &&
  1881. (t1->ne[2]%t0->ne[2] == 0) &&
  1882. (t1->ne[3]%t0->ne[3] == 0);
  1883. }
  1884. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1885. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1886. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1887. }
  1888. static inline int ggml_up32(int n) {
  1889. return (n + 31) & ~31;
  1890. }
  1891. //static inline int ggml_up64(int n) {
  1892. // return (n + 63) & ~63;
  1893. //}
  1894. static inline int ggml_up(int n, int m) {
  1895. // assert m is a power of 2
  1896. GGML_ASSERT((m & (m - 1)) == 0);
  1897. return (n + m - 1) & ~(m - 1);
  1898. }
  1899. // assert that pointer is aligned to GGML_MEM_ALIGN
  1900. #define ggml_assert_aligned(ptr) \
  1901. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1902. ////////////////////////////////////////////////////////////////////////////////
  1903. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1904. // make this function thread safe
  1905. ggml_critical_section_start();
  1906. static bool is_first_call = true;
  1907. if (is_first_call) {
  1908. // initialize time system (required on Windows)
  1909. ggml_time_init();
  1910. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1911. {
  1912. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1913. ggml_fp16_t ii;
  1914. for (int i = 0; i < (1 << 16); ++i) {
  1915. uint16_t ui = i;
  1916. memcpy(&ii, &ui, sizeof(ii));
  1917. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1918. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1919. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1920. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1921. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1922. }
  1923. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1924. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1925. }
  1926. // initialize g_state
  1927. {
  1928. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1929. g_state = (struct ggml_state) {
  1930. /*.contexts =*/ { { 0 } },
  1931. /*.numa =*/ {
  1932. .n_nodes = 0,
  1933. .total_cpus = 0,
  1934. },
  1935. };
  1936. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1937. g_state.contexts[i].used = false;
  1938. }
  1939. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1940. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1941. }
  1942. #if defined(GGML_USE_CUBLAS)
  1943. ggml_init_cublas();
  1944. #elif defined(GGML_USE_CLBLAST)
  1945. ggml_cl_init();
  1946. #elif defined(GGML_USE_VULKAN)
  1947. ggml_vk_init();
  1948. #elif defined(GGML_USE_SYCL)
  1949. ggml_init_sycl();
  1950. #endif
  1951. ggml_setup_op_has_task_pass();
  1952. is_first_call = false;
  1953. }
  1954. // find non-used context in g_state
  1955. struct ggml_context * ctx = NULL;
  1956. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1957. if (!g_state.contexts[i].used) {
  1958. g_state.contexts[i].used = true;
  1959. ctx = &g_state.contexts[i].context;
  1960. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1961. break;
  1962. }
  1963. }
  1964. if (ctx == NULL) {
  1965. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1966. ggml_critical_section_end();
  1967. return NULL;
  1968. }
  1969. // allow to call ggml_init with 0 size
  1970. if (params.mem_size == 0) {
  1971. params.mem_size = GGML_MEM_ALIGN;
  1972. }
  1973. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1974. *ctx = (struct ggml_context) {
  1975. /*.mem_size =*/ mem_size,
  1976. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1977. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1978. /*.no_alloc =*/ params.no_alloc,
  1979. /*.no_alloc_save =*/ params.no_alloc,
  1980. /*.n_objects =*/ 0,
  1981. /*.objects_begin =*/ NULL,
  1982. /*.objects_end =*/ NULL,
  1983. /*.scratch =*/ { 0, 0, NULL, },
  1984. /*.scratch_save =*/ { 0, 0, NULL, },
  1985. };
  1986. GGML_ASSERT(ctx->mem_buffer != NULL);
  1987. ggml_assert_aligned(ctx->mem_buffer);
  1988. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1989. ggml_critical_section_end();
  1990. return ctx;
  1991. }
  1992. void ggml_free(struct ggml_context * ctx) {
  1993. if (ctx == NULL) {
  1994. return;
  1995. }
  1996. // make this function thread safe
  1997. ggml_critical_section_start();
  1998. bool found = false;
  1999. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2000. if (&g_state.contexts[i].context == ctx) {
  2001. g_state.contexts[i].used = false;
  2002. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2003. __func__, i, ggml_used_mem(ctx));
  2004. if (ctx->mem_buffer_owned) {
  2005. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2006. }
  2007. found = true;
  2008. break;
  2009. }
  2010. }
  2011. if (!found) {
  2012. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2013. }
  2014. ggml_critical_section_end();
  2015. }
  2016. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2017. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2018. }
  2019. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2020. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2021. ctx->scratch = scratch;
  2022. return result;
  2023. }
  2024. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2025. return ctx->no_alloc;
  2026. }
  2027. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2028. ctx->no_alloc = no_alloc;
  2029. }
  2030. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2031. return ctx->mem_buffer;
  2032. }
  2033. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2034. return ctx->mem_size;
  2035. }
  2036. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2037. size_t max_size = 0;
  2038. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2039. max_size = MAX(max_size, ggml_nbytes(tensor));
  2040. }
  2041. return max_size;
  2042. }
  2043. // IMPORTANT:
  2044. // when creating "opt" tensors, always save and load the scratch buffer
  2045. // this is an error prone process, but it is necessary to support inplace
  2046. // operators when using scratch buffers
  2047. // TODO: implement a better way
  2048. static void ggml_scratch_save(struct ggml_context * ctx) {
  2049. // this is needed to allow opt tensors to store their data
  2050. // TODO: again, need to find a better way
  2051. ctx->no_alloc_save = ctx->no_alloc;
  2052. ctx->no_alloc = false;
  2053. ctx->scratch_save = ctx->scratch;
  2054. ctx->scratch.data = NULL;
  2055. }
  2056. static void ggml_scratch_load(struct ggml_context * ctx) {
  2057. ctx->no_alloc = ctx->no_alloc_save;
  2058. ctx->scratch = ctx->scratch_save;
  2059. }
  2060. ////////////////////////////////////////////////////////////////////////////////
  2061. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2062. // always insert objects at the end of the context's memory pool
  2063. struct ggml_object * obj_cur = ctx->objects_end;
  2064. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2065. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2066. const size_t cur_end = cur_offs + cur_size;
  2067. // align to GGML_MEM_ALIGN
  2068. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2069. char * const mem_buffer = ctx->mem_buffer;
  2070. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2071. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2072. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2073. __func__, cur_end + size_needed, ctx->mem_size);
  2074. assert(false);
  2075. return NULL;
  2076. }
  2077. *obj_new = (struct ggml_object) {
  2078. .offs = cur_end + GGML_OBJECT_SIZE,
  2079. .size = size_needed,
  2080. .next = NULL,
  2081. .type = type,
  2082. };
  2083. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2084. if (obj_cur != NULL) {
  2085. obj_cur->next = obj_new;
  2086. } else {
  2087. // this is the first object in this context
  2088. ctx->objects_begin = obj_new;
  2089. }
  2090. ctx->objects_end = obj_new;
  2091. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2092. return obj_new;
  2093. }
  2094. static struct ggml_tensor * ggml_new_tensor_impl(
  2095. struct ggml_context * ctx,
  2096. enum ggml_type type,
  2097. int n_dims,
  2098. const int64_t * ne,
  2099. struct ggml_tensor * view_src,
  2100. size_t view_offs) {
  2101. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2102. // find the base tensor and absolute offset
  2103. if (view_src != NULL && view_src->view_src != NULL) {
  2104. view_offs += view_src->view_offs;
  2105. view_src = view_src->view_src;
  2106. }
  2107. size_t data_size = ggml_row_size(type, ne[0]);
  2108. for (int i = 1; i < n_dims; i++) {
  2109. data_size *= ne[i];
  2110. }
  2111. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2112. void * data = view_src != NULL ? view_src->data : NULL;
  2113. if (data != NULL) {
  2114. data = (char *) data + view_offs;
  2115. }
  2116. size_t obj_alloc_size = 0;
  2117. if (view_src == NULL && !ctx->no_alloc) {
  2118. if (ctx->scratch.data != NULL) {
  2119. // allocate tensor data in the scratch buffer
  2120. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2121. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2122. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2123. assert(false);
  2124. return NULL;
  2125. }
  2126. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2127. ctx->scratch.offs += data_size;
  2128. } else {
  2129. // allocate tensor data in the context's memory pool
  2130. obj_alloc_size = data_size;
  2131. }
  2132. }
  2133. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2134. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2135. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2136. *result = (struct ggml_tensor) {
  2137. /*.type =*/ type,
  2138. /*.backend =*/ GGML_BACKEND_CPU,
  2139. /*.buffer =*/ NULL,
  2140. /*.ne =*/ { 1, 1, 1, 1 },
  2141. /*.nb =*/ { 0, 0, 0, 0 },
  2142. /*.op =*/ GGML_OP_NONE,
  2143. /*.op_params =*/ { 0 },
  2144. /*.is_param =*/ false,
  2145. /*.grad =*/ NULL,
  2146. /*.src =*/ { NULL },
  2147. /*.perf_runs =*/ 0,
  2148. /*.perf_cycles =*/ 0,
  2149. /*.perf_time_us =*/ 0,
  2150. /*.view_src =*/ view_src,
  2151. /*.view_offs =*/ view_offs,
  2152. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2153. /*.name =*/ { 0 },
  2154. /*.extra =*/ NULL,
  2155. /*.padding =*/ { 0 },
  2156. };
  2157. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2158. //ggml_assert_aligned(result->data);
  2159. for (int i = 0; i < n_dims; i++) {
  2160. result->ne[i] = ne[i];
  2161. }
  2162. result->nb[0] = ggml_type_size(type);
  2163. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2164. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2165. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2166. }
  2167. ctx->n_objects++;
  2168. return result;
  2169. }
  2170. struct ggml_tensor * ggml_new_tensor(
  2171. struct ggml_context * ctx,
  2172. enum ggml_type type,
  2173. int n_dims,
  2174. const int64_t * ne) {
  2175. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2176. }
  2177. struct ggml_tensor * ggml_new_tensor_1d(
  2178. struct ggml_context * ctx,
  2179. enum ggml_type type,
  2180. int64_t ne0) {
  2181. return ggml_new_tensor(ctx, type, 1, &ne0);
  2182. }
  2183. struct ggml_tensor * ggml_new_tensor_2d(
  2184. struct ggml_context * ctx,
  2185. enum ggml_type type,
  2186. int64_t ne0,
  2187. int64_t ne1) {
  2188. const int64_t ne[2] = { ne0, ne1 };
  2189. return ggml_new_tensor(ctx, type, 2, ne);
  2190. }
  2191. struct ggml_tensor * ggml_new_tensor_3d(
  2192. struct ggml_context * ctx,
  2193. enum ggml_type type,
  2194. int64_t ne0,
  2195. int64_t ne1,
  2196. int64_t ne2) {
  2197. const int64_t ne[3] = { ne0, ne1, ne2 };
  2198. return ggml_new_tensor(ctx, type, 3, ne);
  2199. }
  2200. struct ggml_tensor * ggml_new_tensor_4d(
  2201. struct ggml_context * ctx,
  2202. enum ggml_type type,
  2203. int64_t ne0,
  2204. int64_t ne1,
  2205. int64_t ne2,
  2206. int64_t ne3) {
  2207. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2208. return ggml_new_tensor(ctx, type, 4, ne);
  2209. }
  2210. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2211. ggml_scratch_save(ctx);
  2212. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2213. ggml_scratch_load(ctx);
  2214. ggml_set_i32(result, value);
  2215. return result;
  2216. }
  2217. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2218. ggml_scratch_save(ctx);
  2219. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2220. ggml_scratch_load(ctx);
  2221. ggml_set_f32(result, value);
  2222. return result;
  2223. }
  2224. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2225. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2226. }
  2227. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2228. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2229. assert(params_size <= GGML_MAX_OP_PARAMS);
  2230. memcpy(tensor->op_params, params, params_size);
  2231. }
  2232. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2233. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2234. return ((const int32_t *)(tensor->op_params))[i];
  2235. }
  2236. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2237. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2238. ((int32_t *)(tensor->op_params))[i] = value;
  2239. }
  2240. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2241. memset(tensor->data, 0, ggml_nbytes(tensor));
  2242. return tensor;
  2243. }
  2244. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2245. const int n = ggml_nrows(tensor);
  2246. const int nc = tensor->ne[0];
  2247. const size_t n1 = tensor->nb[1];
  2248. char * const data = tensor->data;
  2249. switch (tensor->type) {
  2250. case GGML_TYPE_I8:
  2251. {
  2252. assert(tensor->nb[0] == sizeof(int8_t));
  2253. for (int i = 0; i < n; i++) {
  2254. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2255. }
  2256. } break;
  2257. case GGML_TYPE_I16:
  2258. {
  2259. assert(tensor->nb[0] == sizeof(int16_t));
  2260. for (int i = 0; i < n; i++) {
  2261. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2262. }
  2263. } break;
  2264. case GGML_TYPE_I32:
  2265. {
  2266. assert(tensor->nb[0] == sizeof(int32_t));
  2267. for (int i = 0; i < n; i++) {
  2268. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2269. }
  2270. } break;
  2271. case GGML_TYPE_F16:
  2272. {
  2273. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2274. for (int i = 0; i < n; i++) {
  2275. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2276. }
  2277. } break;
  2278. case GGML_TYPE_F32:
  2279. {
  2280. assert(tensor->nb[0] == sizeof(float));
  2281. for (int i = 0; i < n; i++) {
  2282. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2283. }
  2284. } break;
  2285. default:
  2286. {
  2287. GGML_ASSERT(false);
  2288. } break;
  2289. }
  2290. return tensor;
  2291. }
  2292. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2293. const int n = ggml_nrows(tensor);
  2294. const int nc = tensor->ne[0];
  2295. const size_t n1 = tensor->nb[1];
  2296. char * const data = tensor->data;
  2297. switch (tensor->type) {
  2298. case GGML_TYPE_I8:
  2299. {
  2300. assert(tensor->nb[0] == sizeof(int8_t));
  2301. for (int i = 0; i < n; i++) {
  2302. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2303. }
  2304. } break;
  2305. case GGML_TYPE_I16:
  2306. {
  2307. assert(tensor->nb[0] == sizeof(int16_t));
  2308. for (int i = 0; i < n; i++) {
  2309. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2310. }
  2311. } break;
  2312. case GGML_TYPE_I32:
  2313. {
  2314. assert(tensor->nb[0] == sizeof(int32_t));
  2315. for (int i = 0; i < n; i++) {
  2316. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2317. }
  2318. } break;
  2319. case GGML_TYPE_F16:
  2320. {
  2321. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2322. for (int i = 0; i < n; i++) {
  2323. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2324. }
  2325. } break;
  2326. case GGML_TYPE_F32:
  2327. {
  2328. assert(tensor->nb[0] == sizeof(float));
  2329. for (int i = 0; i < n; i++) {
  2330. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2331. }
  2332. } break;
  2333. default:
  2334. {
  2335. GGML_ASSERT(false);
  2336. } break;
  2337. }
  2338. return tensor;
  2339. }
  2340. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2341. const int64_t ne2 = tensor->ne[2];
  2342. const int64_t ne1 = tensor->ne[1];
  2343. const int64_t ne0 = tensor->ne[0];
  2344. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2345. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2346. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2347. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2348. if (i0) {
  2349. * i0 = i0_;
  2350. }
  2351. if (i1) {
  2352. * i1 = i1_;
  2353. }
  2354. if (i2) {
  2355. * i2 = i2_;
  2356. }
  2357. if (i3) {
  2358. * i3 = i3_;
  2359. }
  2360. }
  2361. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2362. if (!ggml_is_contiguous(tensor)) {
  2363. int64_t id[4] = { 0, 0, 0, 0 };
  2364. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2365. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2366. }
  2367. switch (tensor->type) {
  2368. case GGML_TYPE_I8:
  2369. {
  2370. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2371. return ((int8_t *)(tensor->data))[i];
  2372. }
  2373. case GGML_TYPE_I16:
  2374. {
  2375. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2376. return ((int16_t *)(tensor->data))[i];
  2377. }
  2378. case GGML_TYPE_I32:
  2379. {
  2380. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2381. return ((int32_t *)(tensor->data))[i];
  2382. }
  2383. case GGML_TYPE_F16:
  2384. {
  2385. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2387. }
  2388. case GGML_TYPE_F32:
  2389. {
  2390. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2391. return ((float *)(tensor->data))[i];
  2392. }
  2393. default:
  2394. {
  2395. GGML_ASSERT(false);
  2396. }
  2397. }
  2398. return 0.0f;
  2399. }
  2400. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2401. if (!ggml_is_contiguous(tensor)) {
  2402. int64_t id[4] = { 0, 0, 0, 0 };
  2403. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2404. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2405. return;
  2406. }
  2407. switch (tensor->type) {
  2408. case GGML_TYPE_I8:
  2409. {
  2410. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2411. ((int8_t *)(tensor->data))[i] = value;
  2412. } break;
  2413. case GGML_TYPE_I16:
  2414. {
  2415. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2416. ((int16_t *)(tensor->data))[i] = value;
  2417. } break;
  2418. case GGML_TYPE_I32:
  2419. {
  2420. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2421. ((int32_t *)(tensor->data))[i] = value;
  2422. } break;
  2423. case GGML_TYPE_F16:
  2424. {
  2425. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2426. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2427. } break;
  2428. case GGML_TYPE_F32:
  2429. {
  2430. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2431. ((float *)(tensor->data))[i] = value;
  2432. } break;
  2433. default:
  2434. {
  2435. GGML_ASSERT(false);
  2436. } break;
  2437. }
  2438. }
  2439. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2440. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2441. switch (tensor->type) {
  2442. case GGML_TYPE_I8:
  2443. return ((int8_t *) data)[0];
  2444. case GGML_TYPE_I16:
  2445. return ((int16_t *) data)[0];
  2446. case GGML_TYPE_I32:
  2447. return ((int32_t *) data)[0];
  2448. case GGML_TYPE_F16:
  2449. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2450. case GGML_TYPE_F32:
  2451. return ((float *) data)[0];
  2452. default:
  2453. GGML_ASSERT(false);
  2454. }
  2455. return 0.0f;
  2456. }
  2457. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2458. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2459. switch (tensor->type) {
  2460. case GGML_TYPE_I8:
  2461. {
  2462. ((int8_t *)(data))[0] = value;
  2463. } break;
  2464. case GGML_TYPE_I16:
  2465. {
  2466. ((int16_t *)(data))[0] = value;
  2467. } break;
  2468. case GGML_TYPE_I32:
  2469. {
  2470. ((int32_t *)(data))[0] = value;
  2471. } break;
  2472. case GGML_TYPE_F16:
  2473. {
  2474. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2475. } break;
  2476. case GGML_TYPE_F32:
  2477. {
  2478. ((float *)(data))[0] = value;
  2479. } break;
  2480. default:
  2481. {
  2482. GGML_ASSERT(false);
  2483. } break;
  2484. }
  2485. }
  2486. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2487. if (!ggml_is_contiguous(tensor)) {
  2488. int64_t id[4] = { 0, 0, 0, 0 };
  2489. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2490. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2491. }
  2492. switch (tensor->type) {
  2493. case GGML_TYPE_I8:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2496. return ((int8_t *)(tensor->data))[i];
  2497. }
  2498. case GGML_TYPE_I16:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2501. return ((int16_t *)(tensor->data))[i];
  2502. }
  2503. case GGML_TYPE_I32:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2506. return ((int32_t *)(tensor->data))[i];
  2507. }
  2508. case GGML_TYPE_F16:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2511. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2512. }
  2513. case GGML_TYPE_F32:
  2514. {
  2515. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2516. return ((float *)(tensor->data))[i];
  2517. }
  2518. default:
  2519. {
  2520. GGML_ASSERT(false);
  2521. }
  2522. }
  2523. return 0.0f;
  2524. }
  2525. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2526. if (!ggml_is_contiguous(tensor)) {
  2527. int64_t id[4] = { 0, 0, 0, 0 };
  2528. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2529. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2530. return;
  2531. }
  2532. switch (tensor->type) {
  2533. case GGML_TYPE_I8:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2536. ((int8_t *)(tensor->data))[i] = value;
  2537. } break;
  2538. case GGML_TYPE_I16:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2541. ((int16_t *)(tensor->data))[i] = value;
  2542. } break;
  2543. case GGML_TYPE_I32:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2546. ((int32_t *)(tensor->data))[i] = value;
  2547. } break;
  2548. case GGML_TYPE_F16:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2551. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2552. } break;
  2553. case GGML_TYPE_F32:
  2554. {
  2555. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2556. ((float *)(tensor->data))[i] = value;
  2557. } break;
  2558. default:
  2559. {
  2560. GGML_ASSERT(false);
  2561. } break;
  2562. }
  2563. }
  2564. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2565. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2566. switch (tensor->type) {
  2567. case GGML_TYPE_I8:
  2568. return ((int8_t *) data)[0];
  2569. case GGML_TYPE_I16:
  2570. return ((int16_t *) data)[0];
  2571. case GGML_TYPE_I32:
  2572. return ((int32_t *) data)[0];
  2573. case GGML_TYPE_F16:
  2574. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2575. case GGML_TYPE_F32:
  2576. return ((float *) data)[0];
  2577. default:
  2578. GGML_ASSERT(false);
  2579. }
  2580. return 0.0f;
  2581. }
  2582. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2583. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2584. switch (tensor->type) {
  2585. case GGML_TYPE_I8:
  2586. {
  2587. ((int8_t *)(data))[0] = value;
  2588. } break;
  2589. case GGML_TYPE_I16:
  2590. {
  2591. ((int16_t *)(data))[0] = value;
  2592. } break;
  2593. case GGML_TYPE_I32:
  2594. {
  2595. ((int32_t *)(data))[0] = value;
  2596. } break;
  2597. case GGML_TYPE_F16:
  2598. {
  2599. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2600. } break;
  2601. case GGML_TYPE_F32:
  2602. {
  2603. ((float *)(data))[0] = value;
  2604. } break;
  2605. default:
  2606. {
  2607. GGML_ASSERT(false);
  2608. } break;
  2609. }
  2610. }
  2611. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2612. return tensor->data;
  2613. }
  2614. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2615. assert(tensor->type == GGML_TYPE_F32);
  2616. return (float *)(tensor->data);
  2617. }
  2618. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2619. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2620. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2621. }
  2622. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2623. return tensor->name;
  2624. }
  2625. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2626. strncpy(tensor->name, name, sizeof(tensor->name));
  2627. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2628. return tensor;
  2629. }
  2630. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2631. va_list args;
  2632. va_start(args, fmt);
  2633. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2634. va_end(args);
  2635. return tensor;
  2636. }
  2637. struct ggml_tensor * ggml_view_tensor(
  2638. struct ggml_context * ctx,
  2639. struct ggml_tensor * src) {
  2640. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2641. ggml_format_name(result, "%s (view)", src->name);
  2642. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2643. result->nb[i] = src->nb[i];
  2644. }
  2645. return result;
  2646. }
  2647. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2648. struct ggml_object * obj = ctx->objects_begin;
  2649. char * const mem_buffer = ctx->mem_buffer;
  2650. while (obj != NULL) {
  2651. if (obj->type == GGML_OBJECT_TENSOR) {
  2652. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2653. }
  2654. obj = obj->next;
  2655. }
  2656. return NULL;
  2657. }
  2658. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2659. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2660. obj = obj->next;
  2661. char * const mem_buffer = ctx->mem_buffer;
  2662. while (obj != NULL) {
  2663. if (obj->type == GGML_OBJECT_TENSOR) {
  2664. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2665. }
  2666. obj = obj->next;
  2667. }
  2668. return NULL;
  2669. }
  2670. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2671. struct ggml_object * obj = ctx->objects_begin;
  2672. char * const mem_buffer = ctx->mem_buffer;
  2673. while (obj != NULL) {
  2674. if (obj->type == GGML_OBJECT_TENSOR) {
  2675. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2676. if (strcmp(cur->name, name) == 0) {
  2677. return cur;
  2678. }
  2679. }
  2680. obj = obj->next;
  2681. }
  2682. return NULL;
  2683. }
  2684. ////////////////////////////////////////////////////////////////////////////////
  2685. // ggml_dup
  2686. static struct ggml_tensor * ggml_dup_impl(
  2687. struct ggml_context * ctx,
  2688. struct ggml_tensor * a,
  2689. bool inplace) {
  2690. bool is_node = false;
  2691. if (!inplace && (a->grad)) {
  2692. is_node = true;
  2693. }
  2694. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2695. result->op = GGML_OP_DUP;
  2696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2697. result->src[0] = a;
  2698. return result;
  2699. }
  2700. struct ggml_tensor * ggml_dup(
  2701. struct ggml_context * ctx,
  2702. struct ggml_tensor * a) {
  2703. return ggml_dup_impl(ctx, a, false);
  2704. }
  2705. struct ggml_tensor * ggml_dup_inplace(
  2706. struct ggml_context * ctx,
  2707. struct ggml_tensor * a) {
  2708. return ggml_dup_impl(ctx, a, true);
  2709. }
  2710. // ggml_add
  2711. static struct ggml_tensor * ggml_add_impl(
  2712. struct ggml_context * ctx,
  2713. struct ggml_tensor * a,
  2714. struct ggml_tensor * b,
  2715. bool inplace) {
  2716. GGML_ASSERT(ggml_can_repeat(b, a));
  2717. bool is_node = false;
  2718. if (!inplace && (a->grad || b->grad)) {
  2719. // TODO: support backward pass for broadcasting
  2720. GGML_ASSERT(ggml_are_same_shape(a, b));
  2721. is_node = true;
  2722. }
  2723. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2724. result->op = GGML_OP_ADD;
  2725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2726. result->src[0] = a;
  2727. result->src[1] = b;
  2728. return result;
  2729. }
  2730. struct ggml_tensor * ggml_add(
  2731. struct ggml_context * ctx,
  2732. struct ggml_tensor * a,
  2733. struct ggml_tensor * b) {
  2734. return ggml_add_impl(ctx, a, b, false);
  2735. }
  2736. struct ggml_tensor * ggml_add_inplace(
  2737. struct ggml_context * ctx,
  2738. struct ggml_tensor * a,
  2739. struct ggml_tensor * b) {
  2740. return ggml_add_impl(ctx, a, b, true);
  2741. }
  2742. // ggml_add_cast
  2743. static struct ggml_tensor * ggml_add_cast_impl(
  2744. struct ggml_context * ctx,
  2745. struct ggml_tensor * a,
  2746. struct ggml_tensor * b,
  2747. enum ggml_type type) {
  2748. // TODO: support less-strict constraint
  2749. // GGML_ASSERT(ggml_can_repeat(b, a));
  2750. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2751. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2752. bool is_node = false;
  2753. if (a->grad || b->grad) {
  2754. // TODO: support backward pass for broadcasting
  2755. GGML_ASSERT(ggml_are_same_shape(a, b));
  2756. is_node = true;
  2757. }
  2758. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2759. result->op = GGML_OP_ADD;
  2760. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2761. result->src[0] = a;
  2762. result->src[1] = b;
  2763. return result;
  2764. }
  2765. struct ggml_tensor * ggml_add_cast(
  2766. struct ggml_context * ctx,
  2767. struct ggml_tensor * a,
  2768. struct ggml_tensor * b,
  2769. enum ggml_type type) {
  2770. return ggml_add_cast_impl(ctx, a, b, type);
  2771. }
  2772. // ggml_add1
  2773. static struct ggml_tensor * ggml_add1_impl(
  2774. struct ggml_context * ctx,
  2775. struct ggml_tensor * a,
  2776. struct ggml_tensor * b,
  2777. bool inplace) {
  2778. GGML_ASSERT(ggml_is_scalar(b));
  2779. GGML_ASSERT(ggml_is_padded_1d(a));
  2780. bool is_node = false;
  2781. if (a->grad || b->grad) {
  2782. is_node = true;
  2783. }
  2784. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2785. result->op = GGML_OP_ADD1;
  2786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2787. result->src[0] = a;
  2788. result->src[1] = b;
  2789. return result;
  2790. }
  2791. struct ggml_tensor * ggml_add1(
  2792. struct ggml_context * ctx,
  2793. struct ggml_tensor * a,
  2794. struct ggml_tensor * b) {
  2795. return ggml_add1_impl(ctx, a, b, false);
  2796. }
  2797. struct ggml_tensor * ggml_add1_inplace(
  2798. struct ggml_context * ctx,
  2799. struct ggml_tensor * a,
  2800. struct ggml_tensor * b) {
  2801. return ggml_add1_impl(ctx, a, b, true);
  2802. }
  2803. // ggml_acc
  2804. static struct ggml_tensor * ggml_acc_impl(
  2805. struct ggml_context * ctx,
  2806. struct ggml_tensor * a,
  2807. struct ggml_tensor * b,
  2808. size_t nb1,
  2809. size_t nb2,
  2810. size_t nb3,
  2811. size_t offset,
  2812. bool inplace) {
  2813. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2814. GGML_ASSERT(ggml_is_contiguous(a));
  2815. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2816. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2817. bool is_node = false;
  2818. if (!inplace && (a->grad || b->grad)) {
  2819. is_node = true;
  2820. }
  2821. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2822. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2823. ggml_set_op_params(result, params, sizeof(params));
  2824. result->op = GGML_OP_ACC;
  2825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2826. result->src[0] = a;
  2827. result->src[1] = b;
  2828. return result;
  2829. }
  2830. struct ggml_tensor * ggml_acc(
  2831. struct ggml_context * ctx,
  2832. struct ggml_tensor * a,
  2833. struct ggml_tensor * b,
  2834. size_t nb1,
  2835. size_t nb2,
  2836. size_t nb3,
  2837. size_t offset) {
  2838. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2839. }
  2840. struct ggml_tensor * ggml_acc_inplace(
  2841. struct ggml_context * ctx,
  2842. struct ggml_tensor * a,
  2843. struct ggml_tensor * b,
  2844. size_t nb1,
  2845. size_t nb2,
  2846. size_t nb3,
  2847. size_t offset) {
  2848. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2849. }
  2850. // ggml_sub
  2851. static struct ggml_tensor * ggml_sub_impl(
  2852. struct ggml_context * ctx,
  2853. struct ggml_tensor * a,
  2854. struct ggml_tensor * b,
  2855. bool inplace) {
  2856. GGML_ASSERT(ggml_are_same_shape(a, b));
  2857. bool is_node = false;
  2858. if (!inplace && (a->grad || b->grad)) {
  2859. is_node = true;
  2860. }
  2861. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2862. result->op = GGML_OP_SUB;
  2863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2864. result->src[0] = a;
  2865. result->src[1] = b;
  2866. return result;
  2867. }
  2868. struct ggml_tensor * ggml_sub(
  2869. struct ggml_context * ctx,
  2870. struct ggml_tensor * a,
  2871. struct ggml_tensor * b) {
  2872. return ggml_sub_impl(ctx, a, b, false);
  2873. }
  2874. struct ggml_tensor * ggml_sub_inplace(
  2875. struct ggml_context * ctx,
  2876. struct ggml_tensor * a,
  2877. struct ggml_tensor * b) {
  2878. return ggml_sub_impl(ctx, a, b, true);
  2879. }
  2880. // ggml_mul
  2881. static struct ggml_tensor * ggml_mul_impl(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. struct ggml_tensor * b,
  2885. bool inplace) {
  2886. GGML_ASSERT(ggml_can_repeat(b, a));
  2887. bool is_node = false;
  2888. if (!inplace && (a->grad || b->grad)) {
  2889. // TODO: support backward pass for broadcasting
  2890. GGML_ASSERT(ggml_are_same_shape(a, b));
  2891. is_node = true;
  2892. }
  2893. if (inplace) {
  2894. GGML_ASSERT(!is_node);
  2895. }
  2896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2897. result->op = GGML_OP_MUL;
  2898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2899. result->src[0] = a;
  2900. result->src[1] = b;
  2901. return result;
  2902. }
  2903. struct ggml_tensor * ggml_mul(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. struct ggml_tensor * b) {
  2907. return ggml_mul_impl(ctx, a, b, false);
  2908. }
  2909. struct ggml_tensor * ggml_mul_inplace(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. struct ggml_tensor * b) {
  2913. return ggml_mul_impl(ctx, a, b, true);
  2914. }
  2915. // ggml_div
  2916. static struct ggml_tensor * ggml_div_impl(
  2917. struct ggml_context * ctx,
  2918. struct ggml_tensor * a,
  2919. struct ggml_tensor * b,
  2920. bool inplace) {
  2921. GGML_ASSERT(ggml_can_repeat(b, a));
  2922. bool is_node = false;
  2923. if (!inplace && (a->grad || b->grad)) {
  2924. is_node = true;
  2925. }
  2926. if (inplace) {
  2927. GGML_ASSERT(!is_node);
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_DIV;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src[0] = a;
  2933. result->src[1] = b;
  2934. return result;
  2935. }
  2936. struct ggml_tensor * ggml_div(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a,
  2939. struct ggml_tensor * b) {
  2940. return ggml_div_impl(ctx, a, b, false);
  2941. }
  2942. struct ggml_tensor * ggml_div_inplace(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. struct ggml_tensor * b) {
  2946. return ggml_div_impl(ctx, a, b, true);
  2947. }
  2948. // ggml_sqr
  2949. static struct ggml_tensor * ggml_sqr_impl(
  2950. struct ggml_context * ctx,
  2951. struct ggml_tensor * a,
  2952. bool inplace) {
  2953. bool is_node = false;
  2954. if (!inplace && (a->grad)) {
  2955. is_node = true;
  2956. }
  2957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2958. result->op = GGML_OP_SQR;
  2959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2960. result->src[0] = a;
  2961. return result;
  2962. }
  2963. struct ggml_tensor * ggml_sqr(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a) {
  2966. return ggml_sqr_impl(ctx, a, false);
  2967. }
  2968. struct ggml_tensor * ggml_sqr_inplace(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a) {
  2971. return ggml_sqr_impl(ctx, a, true);
  2972. }
  2973. // ggml_sqrt
  2974. static struct ggml_tensor * ggml_sqrt_impl(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a,
  2977. bool inplace) {
  2978. bool is_node = false;
  2979. if (!inplace && (a->grad)) {
  2980. is_node = true;
  2981. }
  2982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2983. result->op = GGML_OP_SQRT;
  2984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2985. result->src[0] = a;
  2986. return result;
  2987. }
  2988. struct ggml_tensor * ggml_sqrt(
  2989. struct ggml_context * ctx,
  2990. struct ggml_tensor * a) {
  2991. return ggml_sqrt_impl(ctx, a, false);
  2992. }
  2993. struct ggml_tensor * ggml_sqrt_inplace(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a) {
  2996. return ggml_sqrt_impl(ctx, a, true);
  2997. }
  2998. // ggml_log
  2999. static struct ggml_tensor * ggml_log_impl(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a,
  3002. bool inplace) {
  3003. bool is_node = false;
  3004. if (!inplace && (a->grad)) {
  3005. is_node = true;
  3006. }
  3007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3008. result->op = GGML_OP_LOG;
  3009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3010. result->src[0] = a;
  3011. return result;
  3012. }
  3013. struct ggml_tensor * ggml_log(
  3014. struct ggml_context * ctx,
  3015. struct ggml_tensor * a) {
  3016. return ggml_log_impl(ctx, a, false);
  3017. }
  3018. struct ggml_tensor * ggml_log_inplace(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * a) {
  3021. return ggml_log_impl(ctx, a, true);
  3022. }
  3023. // ggml_sum
  3024. struct ggml_tensor * ggml_sum(
  3025. struct ggml_context * ctx,
  3026. struct ggml_tensor * a) {
  3027. bool is_node = false;
  3028. if (a->grad) {
  3029. is_node = true;
  3030. }
  3031. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3032. result->op = GGML_OP_SUM;
  3033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3034. result->src[0] = a;
  3035. return result;
  3036. }
  3037. // ggml_sum_rows
  3038. struct ggml_tensor * ggml_sum_rows(
  3039. struct ggml_context * ctx,
  3040. struct ggml_tensor * a) {
  3041. bool is_node = false;
  3042. if (a->grad) {
  3043. is_node = true;
  3044. }
  3045. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3046. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3047. ne[i] = a->ne[i];
  3048. }
  3049. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3050. result->op = GGML_OP_SUM_ROWS;
  3051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3052. result->src[0] = a;
  3053. return result;
  3054. }
  3055. // ggml_mean
  3056. struct ggml_tensor * ggml_mean(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a) {
  3059. bool is_node = false;
  3060. if (a->grad) {
  3061. GGML_ASSERT(false); // TODO: implement
  3062. is_node = true;
  3063. }
  3064. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3065. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3066. result->op = GGML_OP_MEAN;
  3067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3068. result->src[0] = a;
  3069. return result;
  3070. }
  3071. // ggml_argmax
  3072. struct ggml_tensor * ggml_argmax(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a) {
  3075. GGML_ASSERT(ggml_is_matrix(a));
  3076. bool is_node = false;
  3077. if (a->grad) {
  3078. GGML_ASSERT(false);
  3079. is_node = true;
  3080. }
  3081. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3082. result->op = GGML_OP_ARGMAX;
  3083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3084. result->src[0] = a;
  3085. return result;
  3086. }
  3087. // ggml_repeat
  3088. struct ggml_tensor * ggml_repeat(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a,
  3091. struct ggml_tensor * b) {
  3092. GGML_ASSERT(ggml_can_repeat(a, b));
  3093. bool is_node = false;
  3094. if (a->grad) {
  3095. is_node = true;
  3096. }
  3097. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3098. result->op = GGML_OP_REPEAT;
  3099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3100. result->src[0] = a;
  3101. return result;
  3102. }
  3103. // ggml_repeat_back
  3104. struct ggml_tensor * ggml_repeat_back(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. struct ggml_tensor * b) {
  3108. GGML_ASSERT(ggml_can_repeat(b, a));
  3109. bool is_node = false;
  3110. if (a->grad) {
  3111. is_node = true;
  3112. }
  3113. if (ggml_are_same_shape(a, b) && !is_node) {
  3114. return a;
  3115. }
  3116. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3117. result->op = GGML_OP_REPEAT_BACK;
  3118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3119. result->src[0] = a;
  3120. return result;
  3121. }
  3122. // ggml_concat
  3123. struct ggml_tensor * ggml_concat(
  3124. struct ggml_context* ctx,
  3125. struct ggml_tensor* a,
  3126. struct ggml_tensor* b) {
  3127. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3128. bool is_node = false;
  3129. if (a->grad || b->grad) {
  3130. is_node = true;
  3131. }
  3132. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3133. result->op = GGML_OP_CONCAT;
  3134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3135. result->src[0] = a;
  3136. result->src[1] = b;
  3137. return result;
  3138. }
  3139. // ggml_abs
  3140. struct ggml_tensor * ggml_abs(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3144. }
  3145. struct ggml_tensor * ggml_abs_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3149. }
  3150. // ggml_sgn
  3151. struct ggml_tensor * ggml_sgn(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3155. }
  3156. struct ggml_tensor * ggml_sgn_inplace(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3160. }
  3161. // ggml_neg
  3162. struct ggml_tensor * ggml_neg(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a) {
  3165. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3166. }
  3167. struct ggml_tensor * ggml_neg_inplace(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3171. }
  3172. // ggml_step
  3173. struct ggml_tensor * ggml_step(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3177. }
  3178. struct ggml_tensor * ggml_step_inplace(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3182. }
  3183. // ggml_tanh
  3184. struct ggml_tensor * ggml_tanh(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3188. }
  3189. struct ggml_tensor * ggml_tanh_inplace(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3193. }
  3194. // ggml_elu
  3195. struct ggml_tensor * ggml_elu(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a) {
  3198. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3199. }
  3200. struct ggml_tensor * ggml_elu_inplace(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a) {
  3203. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3204. }
  3205. // ggml_relu
  3206. struct ggml_tensor * ggml_relu(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3210. }
  3211. struct ggml_tensor * ggml_relu_inplace(
  3212. struct ggml_context * ctx,
  3213. struct ggml_tensor * a) {
  3214. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3215. }
  3216. // ggml_leaky_relu
  3217. struct ggml_tensor * ggml_leaky_relu(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3220. bool is_node = false;
  3221. if (!inplace && (a->grad)) {
  3222. is_node = true;
  3223. }
  3224. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3225. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3226. result->op = GGML_OP_LEAKY_RELU;
  3227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3228. result->src[0] = a;
  3229. return result;
  3230. }
  3231. // ggml_gelu
  3232. struct ggml_tensor * ggml_gelu(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a) {
  3235. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3236. }
  3237. struct ggml_tensor * ggml_gelu_inplace(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a) {
  3240. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3241. }
  3242. // ggml_gelu_quick
  3243. struct ggml_tensor * ggml_gelu_quick(
  3244. struct ggml_context * ctx,
  3245. struct ggml_tensor * a) {
  3246. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3247. }
  3248. struct ggml_tensor * ggml_gelu_quick_inplace(
  3249. struct ggml_context * ctx,
  3250. struct ggml_tensor * a) {
  3251. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3252. }
  3253. // ggml_silu
  3254. struct ggml_tensor * ggml_silu(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a) {
  3257. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3258. }
  3259. struct ggml_tensor * ggml_silu_inplace(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a) {
  3262. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3263. }
  3264. // ggml_silu_back
  3265. struct ggml_tensor * ggml_silu_back(
  3266. struct ggml_context * ctx,
  3267. struct ggml_tensor * a,
  3268. struct ggml_tensor * b) {
  3269. bool is_node = false;
  3270. if (a->grad || b->grad) {
  3271. // TODO: implement backward
  3272. is_node = true;
  3273. }
  3274. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3275. result->op = GGML_OP_SILU_BACK;
  3276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3277. result->src[0] = a;
  3278. result->src[1] = b;
  3279. return result;
  3280. }
  3281. // ggml hardswish
  3282. struct ggml_tensor * ggml_hardswish(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a) {
  3285. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3286. }
  3287. // ggml hardsigmoid
  3288. struct ggml_tensor * ggml_hardsigmoid(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a) {
  3291. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3292. }
  3293. // ggml_norm
  3294. static struct ggml_tensor * ggml_norm_impl(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. float eps,
  3298. bool inplace) {
  3299. bool is_node = false;
  3300. if (!inplace && (a->grad)) {
  3301. GGML_ASSERT(false); // TODO: implement backward
  3302. is_node = true;
  3303. }
  3304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3305. ggml_set_op_params(result, &eps, sizeof(eps));
  3306. result->op = GGML_OP_NORM;
  3307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3308. result->src[0] = a;
  3309. return result;
  3310. }
  3311. struct ggml_tensor * ggml_norm(
  3312. struct ggml_context * ctx,
  3313. struct ggml_tensor * a,
  3314. float eps) {
  3315. return ggml_norm_impl(ctx, a, eps, false);
  3316. }
  3317. struct ggml_tensor * ggml_norm_inplace(
  3318. struct ggml_context * ctx,
  3319. struct ggml_tensor * a,
  3320. float eps) {
  3321. return ggml_norm_impl(ctx, a, eps, true);
  3322. }
  3323. // ggml_rms_norm
  3324. static struct ggml_tensor * ggml_rms_norm_impl(
  3325. struct ggml_context * ctx,
  3326. struct ggml_tensor * a,
  3327. float eps,
  3328. bool inplace) {
  3329. bool is_node = false;
  3330. if (!inplace && (a->grad)) {
  3331. is_node = true;
  3332. }
  3333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3334. ggml_set_op_params(result, &eps, sizeof(eps));
  3335. result->op = GGML_OP_RMS_NORM;
  3336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3337. result->src[0] = a;
  3338. return result;
  3339. }
  3340. struct ggml_tensor * ggml_rms_norm(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a,
  3343. float eps) {
  3344. return ggml_rms_norm_impl(ctx, a, eps, false);
  3345. }
  3346. struct ggml_tensor * ggml_rms_norm_inplace(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a,
  3349. float eps) {
  3350. return ggml_rms_norm_impl(ctx, a, eps, true);
  3351. }
  3352. // ggml_rms_norm_back
  3353. struct ggml_tensor * ggml_rms_norm_back(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a,
  3356. struct ggml_tensor * b,
  3357. float eps) {
  3358. bool is_node = false;
  3359. if (a->grad) {
  3360. // TODO: implement backward
  3361. is_node = true;
  3362. }
  3363. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3364. ggml_set_op_params(result, &eps, sizeof(eps));
  3365. result->op = GGML_OP_RMS_NORM_BACK;
  3366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3367. result->src[0] = a;
  3368. result->src[1] = b;
  3369. return result;
  3370. }
  3371. // ggml_group_norm
  3372. static struct ggml_tensor * ggml_group_norm_impl(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a,
  3375. int n_groups,
  3376. bool inplace) {
  3377. bool is_node = false;
  3378. if (!inplace && (a->grad)) {
  3379. GGML_ASSERT(false); // TODO: implement backward
  3380. is_node = true;
  3381. }
  3382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3383. result->op_params[0] = n_groups;
  3384. result->op = GGML_OP_GROUP_NORM;
  3385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3386. result->src[0] = a;
  3387. return result;
  3388. }
  3389. struct ggml_tensor * ggml_group_norm(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a,
  3392. int n_groups) {
  3393. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3394. }
  3395. struct ggml_tensor * ggml_group_norm_inplace(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a,
  3398. int n_groups) {
  3399. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3400. }
  3401. // ggml_mul_mat
  3402. struct ggml_tensor * ggml_mul_mat(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a,
  3405. struct ggml_tensor * b) {
  3406. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3407. GGML_ASSERT(!ggml_is_transposed(a));
  3408. bool is_node = false;
  3409. if (a->grad || b->grad) {
  3410. is_node = true;
  3411. }
  3412. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3413. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3414. result->op = GGML_OP_MUL_MAT;
  3415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3416. result->src[0] = a;
  3417. result->src[1] = b;
  3418. return result;
  3419. }
  3420. void ggml_mul_mat_set_prec(
  3421. struct ggml_tensor * a,
  3422. enum ggml_prec prec) {
  3423. const int32_t prec_i32 = (int32_t) prec;
  3424. ggml_set_op_params_i32(a, 0, prec_i32);
  3425. }
  3426. // ggml_mul_mat_id
  3427. struct ggml_tensor * ggml_mul_mat_id(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * const as[],
  3430. int n_as,
  3431. struct ggml_tensor * ids,
  3432. int id,
  3433. struct ggml_tensor * b) {
  3434. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3435. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3436. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3437. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3438. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3439. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3440. bool is_node = false;
  3441. if (as[0]->grad || b->grad) {
  3442. is_node = true;
  3443. }
  3444. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3445. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3446. ggml_set_op_params_i32(result, 0, id);
  3447. ggml_set_op_params_i32(result, 1, n_as);
  3448. result->op = GGML_OP_MUL_MAT_ID;
  3449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3450. result->src[0] = ids;
  3451. result->src[1] = b;
  3452. for (int i = 0; i < n_as; i++) {
  3453. struct ggml_tensor * a = as[i];
  3454. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3455. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3456. GGML_ASSERT(!ggml_is_transposed(a));
  3457. result->src[i + 2] = a;
  3458. }
  3459. return result;
  3460. }
  3461. // ggml_out_prod
  3462. struct ggml_tensor * ggml_out_prod(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b) {
  3466. GGML_ASSERT(ggml_can_out_prod(a, b));
  3467. GGML_ASSERT(!ggml_is_transposed(a));
  3468. bool is_node = false;
  3469. if (a->grad || b->grad) {
  3470. is_node = true;
  3471. }
  3472. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3473. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3474. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3475. result->op = GGML_OP_OUT_PROD;
  3476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3477. result->src[0] = a;
  3478. result->src[1] = b;
  3479. return result;
  3480. }
  3481. // ggml_scale
  3482. static struct ggml_tensor * ggml_scale_impl(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a,
  3485. float s,
  3486. bool inplace) {
  3487. GGML_ASSERT(ggml_is_padded_1d(a));
  3488. bool is_node = false;
  3489. if (a->grad) {
  3490. is_node = true;
  3491. }
  3492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3493. ggml_set_op_params(result, &s, sizeof(s));
  3494. result->op = GGML_OP_SCALE;
  3495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3496. result->src[0] = a;
  3497. return result;
  3498. }
  3499. struct ggml_tensor * ggml_scale(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a,
  3502. float s) {
  3503. return ggml_scale_impl(ctx, a, s, false);
  3504. }
  3505. struct ggml_tensor * ggml_scale_inplace(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a,
  3508. float s) {
  3509. return ggml_scale_impl(ctx, a, s, true);
  3510. }
  3511. // ggml_set
  3512. static struct ggml_tensor * ggml_set_impl(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. struct ggml_tensor * b,
  3516. size_t nb1,
  3517. size_t nb2,
  3518. size_t nb3,
  3519. size_t offset,
  3520. bool inplace) {
  3521. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3522. bool is_node = false;
  3523. if (a->grad || b->grad) {
  3524. is_node = true;
  3525. }
  3526. // make a view of the destination
  3527. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3528. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3529. ggml_set_op_params(result, params, sizeof(params));
  3530. result->op = GGML_OP_SET;
  3531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3532. result->src[0] = a;
  3533. result->src[1] = b;
  3534. return result;
  3535. }
  3536. struct ggml_tensor * ggml_set(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. struct ggml_tensor * b,
  3540. size_t nb1,
  3541. size_t nb2,
  3542. size_t nb3,
  3543. size_t offset) {
  3544. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3545. }
  3546. struct ggml_tensor * ggml_set_inplace(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b,
  3550. size_t nb1,
  3551. size_t nb2,
  3552. size_t nb3,
  3553. size_t offset) {
  3554. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3555. }
  3556. struct ggml_tensor * ggml_set_1d(
  3557. struct ggml_context * ctx,
  3558. struct ggml_tensor * a,
  3559. struct ggml_tensor * b,
  3560. size_t offset) {
  3561. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3562. }
  3563. struct ggml_tensor * ggml_set_1d_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. struct ggml_tensor * b,
  3567. size_t offset) {
  3568. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3569. }
  3570. struct ggml_tensor * ggml_set_2d(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b,
  3574. size_t nb1,
  3575. size_t offset) {
  3576. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3577. }
  3578. struct ggml_tensor * ggml_set_2d_inplace(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a,
  3581. struct ggml_tensor * b,
  3582. size_t nb1,
  3583. size_t offset) {
  3584. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3585. }
  3586. // ggml_cpy
  3587. static struct ggml_tensor * ggml_cpy_impl(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. struct ggml_tensor * b) {
  3591. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3592. bool is_node = false;
  3593. if (a->grad || b->grad) {
  3594. // inplace is false and either one have a grad
  3595. is_node = true;
  3596. }
  3597. // make a view of the destination
  3598. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3599. if (strlen(b->name) > 0) {
  3600. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3601. } else {
  3602. ggml_format_name(result, "%s (copy)", a->name);
  3603. }
  3604. result->op = GGML_OP_CPY;
  3605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3606. result->src[0] = a;
  3607. result->src[1] = b;
  3608. return result;
  3609. }
  3610. struct ggml_tensor * ggml_cpy(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. struct ggml_tensor * b) {
  3614. return ggml_cpy_impl(ctx, a, b);
  3615. }
  3616. struct ggml_tensor * ggml_cast(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. enum ggml_type type) {
  3620. bool is_node = false;
  3621. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3622. ggml_format_name(result, "%s (copy)", a->name);
  3623. result->op = GGML_OP_CPY;
  3624. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3625. result->src[0] = a;
  3626. result->src[1] = result;
  3627. return result;
  3628. }
  3629. // ggml_cont
  3630. static struct ggml_tensor * ggml_cont_impl(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a) {
  3633. bool is_node = false;
  3634. if (a->grad) {
  3635. is_node = true;
  3636. }
  3637. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3638. ggml_format_name(result, "%s (cont)", a->name);
  3639. result->op = GGML_OP_CONT;
  3640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3641. result->src[0] = a;
  3642. return result;
  3643. }
  3644. struct ggml_tensor * ggml_cont(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. return ggml_cont_impl(ctx, a);
  3648. }
  3649. // make contiguous, with new shape
  3650. GGML_API struct ggml_tensor * ggml_cont_1d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0) {
  3654. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3655. }
  3656. GGML_API struct ggml_tensor * ggml_cont_2d(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * a,
  3659. int64_t ne0,
  3660. int64_t ne1) {
  3661. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3662. }
  3663. GGML_API struct ggml_tensor * ggml_cont_3d(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. int64_t ne0,
  3667. int64_t ne1,
  3668. int64_t ne2) {
  3669. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3670. }
  3671. struct ggml_tensor * ggml_cont_4d(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a,
  3674. int64_t ne0,
  3675. int64_t ne1,
  3676. int64_t ne2,
  3677. int64_t ne3) {
  3678. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3679. bool is_node = false;
  3680. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3681. ggml_format_name(result, "%s (cont)", a->name);
  3682. result->op = GGML_OP_CONT;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src[0] = a;
  3685. return result;
  3686. }
  3687. // ggml_reshape
  3688. struct ggml_tensor * ggml_reshape(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * a,
  3691. struct ggml_tensor * b) {
  3692. GGML_ASSERT(ggml_is_contiguous(a));
  3693. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3694. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3695. bool is_node = false;
  3696. if (a->grad) {
  3697. is_node = true;
  3698. }
  3699. if (b->grad) {
  3700. // gradient propagation is not supported
  3701. //GGML_ASSERT(false);
  3702. }
  3703. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3704. ggml_format_name(result, "%s (reshaped)", a->name);
  3705. result->op = GGML_OP_RESHAPE;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src[0] = a;
  3708. return result;
  3709. }
  3710. struct ggml_tensor * ggml_reshape_1d(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a,
  3713. int64_t ne0) {
  3714. GGML_ASSERT(ggml_is_contiguous(a));
  3715. GGML_ASSERT(ggml_nelements(a) == ne0);
  3716. bool is_node = false;
  3717. if (a->grad) {
  3718. is_node = true;
  3719. }
  3720. const int64_t ne[1] = { ne0 };
  3721. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3722. ggml_format_name(result, "%s (reshaped)", a->name);
  3723. result->op = GGML_OP_RESHAPE;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src[0] = a;
  3726. return result;
  3727. }
  3728. struct ggml_tensor * ggml_reshape_2d(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. int64_t ne0,
  3732. int64_t ne1) {
  3733. GGML_ASSERT(ggml_is_contiguous(a));
  3734. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3735. bool is_node = false;
  3736. if (a->grad) {
  3737. is_node = true;
  3738. }
  3739. const int64_t ne[2] = { ne0, ne1 };
  3740. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3741. ggml_format_name(result, "%s (reshaped)", a->name);
  3742. result->op = GGML_OP_RESHAPE;
  3743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3744. result->src[0] = a;
  3745. return result;
  3746. }
  3747. struct ggml_tensor * ggml_reshape_3d(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. int64_t ne0,
  3751. int64_t ne1,
  3752. int64_t ne2) {
  3753. GGML_ASSERT(ggml_is_contiguous(a));
  3754. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3755. bool is_node = false;
  3756. if (a->grad) {
  3757. is_node = true;
  3758. }
  3759. const int64_t ne[3] = { ne0, ne1, ne2 };
  3760. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3761. ggml_format_name(result, "%s (reshaped)", a->name);
  3762. result->op = GGML_OP_RESHAPE;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src[0] = a;
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_reshape_4d(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. int64_t ne0,
  3771. int64_t ne1,
  3772. int64_t ne2,
  3773. int64_t ne3) {
  3774. GGML_ASSERT(ggml_is_contiguous(a));
  3775. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3776. bool is_node = false;
  3777. if (a->grad) {
  3778. is_node = true;
  3779. }
  3780. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3781. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3782. ggml_format_name(result, "%s (reshaped)", a->name);
  3783. result->op = GGML_OP_RESHAPE;
  3784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3785. result->src[0] = a;
  3786. return result;
  3787. }
  3788. static struct ggml_tensor * ggml_view_impl(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a,
  3791. int n_dims,
  3792. const int64_t * ne,
  3793. size_t offset) {
  3794. bool is_node = false;
  3795. if (a->grad) {
  3796. is_node = true;
  3797. }
  3798. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3799. ggml_format_name(result, "%s (view)", a->name);
  3800. ggml_set_op_params(result, &offset, sizeof(offset));
  3801. result->op = GGML_OP_VIEW;
  3802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3803. result->src[0] = a;
  3804. return result;
  3805. }
  3806. // ggml_view_1d
  3807. struct ggml_tensor * ggml_view_1d(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. int64_t ne0,
  3811. size_t offset) {
  3812. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3813. return result;
  3814. }
  3815. // ggml_view_2d
  3816. struct ggml_tensor * ggml_view_2d(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. int64_t ne0,
  3820. int64_t ne1,
  3821. size_t nb1,
  3822. size_t offset) {
  3823. const int64_t ne[2] = { ne0, ne1 };
  3824. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3825. result->nb[1] = nb1;
  3826. result->nb[2] = result->nb[1]*ne1;
  3827. result->nb[3] = result->nb[2];
  3828. return result;
  3829. }
  3830. // ggml_view_3d
  3831. struct ggml_tensor * ggml_view_3d(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. int64_t ne0,
  3835. int64_t ne1,
  3836. int64_t ne2,
  3837. size_t nb1,
  3838. size_t nb2,
  3839. size_t offset) {
  3840. const int64_t ne[3] = { ne0, ne1, ne2 };
  3841. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3842. result->nb[1] = nb1;
  3843. result->nb[2] = nb2;
  3844. result->nb[3] = result->nb[2]*ne2;
  3845. return result;
  3846. }
  3847. // ggml_view_4d
  3848. struct ggml_tensor * ggml_view_4d(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. int64_t ne0,
  3852. int64_t ne1,
  3853. int64_t ne2,
  3854. int64_t ne3,
  3855. size_t nb1,
  3856. size_t nb2,
  3857. size_t nb3,
  3858. size_t offset) {
  3859. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3860. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3861. result->nb[1] = nb1;
  3862. result->nb[2] = nb2;
  3863. result->nb[3] = nb3;
  3864. return result;
  3865. }
  3866. // ggml_permute
  3867. struct ggml_tensor * ggml_permute(
  3868. struct ggml_context * ctx,
  3869. struct ggml_tensor * a,
  3870. int axis0,
  3871. int axis1,
  3872. int axis2,
  3873. int axis3) {
  3874. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3875. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3876. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3877. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3878. GGML_ASSERT(axis0 != axis1);
  3879. GGML_ASSERT(axis0 != axis2);
  3880. GGML_ASSERT(axis0 != axis3);
  3881. GGML_ASSERT(axis1 != axis2);
  3882. GGML_ASSERT(axis1 != axis3);
  3883. GGML_ASSERT(axis2 != axis3);
  3884. bool is_node = false;
  3885. if (a->grad) {
  3886. is_node = true;
  3887. }
  3888. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3889. ggml_format_name(result, "%s (permuted)", a->name);
  3890. int ne[GGML_MAX_DIMS];
  3891. int nb[GGML_MAX_DIMS];
  3892. ne[axis0] = a->ne[0];
  3893. ne[axis1] = a->ne[1];
  3894. ne[axis2] = a->ne[2];
  3895. ne[axis3] = a->ne[3];
  3896. nb[axis0] = a->nb[0];
  3897. nb[axis1] = a->nb[1];
  3898. nb[axis2] = a->nb[2];
  3899. nb[axis3] = a->nb[3];
  3900. result->ne[0] = ne[0];
  3901. result->ne[1] = ne[1];
  3902. result->ne[2] = ne[2];
  3903. result->ne[3] = ne[3];
  3904. result->nb[0] = nb[0];
  3905. result->nb[1] = nb[1];
  3906. result->nb[2] = nb[2];
  3907. result->nb[3] = nb[3];
  3908. result->op = GGML_OP_PERMUTE;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src[0] = a;
  3911. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3912. ggml_set_op_params(result, params, sizeof(params));
  3913. return result;
  3914. }
  3915. // ggml_transpose
  3916. struct ggml_tensor * ggml_transpose(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a) {
  3919. bool is_node = false;
  3920. if (a->grad) {
  3921. is_node = true;
  3922. }
  3923. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3924. ggml_format_name(result, "%s (transposed)", a->name);
  3925. result->ne[0] = a->ne[1];
  3926. result->ne[1] = a->ne[0];
  3927. result->nb[0] = a->nb[1];
  3928. result->nb[1] = a->nb[0];
  3929. result->op = GGML_OP_TRANSPOSE;
  3930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3931. result->src[0] = a;
  3932. return result;
  3933. }
  3934. // ggml_get_rows
  3935. struct ggml_tensor * ggml_get_rows(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b) {
  3939. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3940. GGML_ASSERT(b->ne[3] == 1);
  3941. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3942. bool is_node = false;
  3943. if (a->grad || b->grad) {
  3944. is_node = true;
  3945. }
  3946. // TODO: implement non F32 return
  3947. enum ggml_type type = GGML_TYPE_F32;
  3948. if (a->type == GGML_TYPE_I32) {
  3949. type = a->type;
  3950. }
  3951. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3952. result->op = GGML_OP_GET_ROWS;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src[0] = a;
  3955. result->src[1] = b;
  3956. return result;
  3957. }
  3958. // ggml_get_rows_back
  3959. struct ggml_tensor * ggml_get_rows_back(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b,
  3963. struct ggml_tensor * c) {
  3964. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3965. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3966. bool is_node = false;
  3967. if (a->grad || b->grad) {
  3968. is_node = true;
  3969. }
  3970. // TODO: implement non F32 return
  3971. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3972. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3973. result->op = GGML_OP_GET_ROWS_BACK;
  3974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3975. result->src[0] = a;
  3976. result->src[1] = b;
  3977. return result;
  3978. }
  3979. // ggml_diag
  3980. struct ggml_tensor * ggml_diag(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. GGML_ASSERT(a->ne[1] == 1);
  3984. bool is_node = false;
  3985. if (a->grad) {
  3986. is_node = true;
  3987. }
  3988. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3989. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3990. result->op = GGML_OP_DIAG;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. return result;
  3994. }
  3995. // ggml_diag_mask_inf
  3996. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. int n_past,
  4000. bool inplace) {
  4001. bool is_node = false;
  4002. if (a->grad) {
  4003. is_node = true;
  4004. }
  4005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4006. int32_t params[] = { n_past };
  4007. ggml_set_op_params(result, params, sizeof(params));
  4008. result->op = GGML_OP_DIAG_MASK_INF;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src[0] = a;
  4011. return result;
  4012. }
  4013. struct ggml_tensor * ggml_diag_mask_inf(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. int n_past) {
  4017. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4018. }
  4019. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. int n_past) {
  4023. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4024. }
  4025. // ggml_diag_mask_zero
  4026. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a,
  4029. int n_past,
  4030. bool inplace) {
  4031. bool is_node = false;
  4032. if (a->grad) {
  4033. is_node = true;
  4034. }
  4035. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4036. int32_t params[] = { n_past };
  4037. ggml_set_op_params(result, params, sizeof(params));
  4038. result->op = GGML_OP_DIAG_MASK_ZERO;
  4039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4040. result->src[0] = a;
  4041. return result;
  4042. }
  4043. struct ggml_tensor * ggml_diag_mask_zero(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. int n_past) {
  4047. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4048. }
  4049. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int n_past) {
  4053. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4054. }
  4055. // ggml_soft_max
  4056. static struct ggml_tensor * ggml_soft_max_impl(
  4057. struct ggml_context * ctx,
  4058. struct ggml_tensor * a,
  4059. struct ggml_tensor * mask,
  4060. float scale,
  4061. bool inplace) {
  4062. GGML_ASSERT(ggml_is_contiguous(a));
  4063. if (mask) {
  4064. GGML_ASSERT(ggml_is_contiguous(mask));
  4065. GGML_ASSERT(mask->ne[2] == 1);
  4066. GGML_ASSERT(mask->ne[3] == 1);
  4067. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4068. }
  4069. bool is_node = false;
  4070. if (a->grad) {
  4071. is_node = true;
  4072. }
  4073. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4074. float params[] = { scale };
  4075. ggml_set_op_params(result, params, sizeof(params));
  4076. result->op = GGML_OP_SOFT_MAX;
  4077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4078. result->src[0] = a;
  4079. result->src[1] = mask;
  4080. return result;
  4081. }
  4082. struct ggml_tensor * ggml_soft_max(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a) {
  4085. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4086. }
  4087. struct ggml_tensor * ggml_soft_max_inplace(
  4088. struct ggml_context * ctx,
  4089. struct ggml_tensor * a) {
  4090. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4091. }
  4092. struct ggml_tensor * ggml_soft_max_ext(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. struct ggml_tensor * mask,
  4096. float scale) {
  4097. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4098. }
  4099. // ggml_soft_max_back
  4100. static struct ggml_tensor * ggml_soft_max_back_impl(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. struct ggml_tensor * b,
  4104. bool inplace) {
  4105. bool is_node = false;
  4106. if (a->grad || b->grad) {
  4107. is_node = true; // TODO : implement backward pass
  4108. }
  4109. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4110. result->op = GGML_OP_SOFT_MAX_BACK;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src[0] = a;
  4113. result->src[1] = b;
  4114. return result;
  4115. }
  4116. struct ggml_tensor * ggml_soft_max_back(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. struct ggml_tensor * b) {
  4120. return ggml_soft_max_back_impl(ctx, a, b, false);
  4121. }
  4122. struct ggml_tensor * ggml_soft_max_back_inplace(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. struct ggml_tensor * b) {
  4126. return ggml_soft_max_back_impl(ctx, a, b, true);
  4127. }
  4128. // ggml_rope
  4129. static struct ggml_tensor * ggml_rope_impl(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. struct ggml_tensor * b,
  4133. int n_dims,
  4134. int mode,
  4135. int n_ctx,
  4136. int n_orig_ctx,
  4137. float freq_base,
  4138. float freq_scale,
  4139. float ext_factor,
  4140. float attn_factor,
  4141. float beta_fast,
  4142. float beta_slow,
  4143. float xpos_base,
  4144. bool xpos_down,
  4145. bool inplace) {
  4146. GGML_ASSERT(ggml_is_vector(b));
  4147. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4148. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4149. bool is_node = false;
  4150. if (a->grad) {
  4151. is_node = true;
  4152. }
  4153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4154. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4155. memcpy(params + 5, &freq_base, sizeof(float));
  4156. memcpy(params + 6, &freq_scale, sizeof(float));
  4157. memcpy(params + 7, &ext_factor, sizeof(float));
  4158. memcpy(params + 8, &attn_factor, sizeof(float));
  4159. memcpy(params + 9, &beta_fast, sizeof(float));
  4160. memcpy(params + 10, &beta_slow, sizeof(float));
  4161. memcpy(params + 11, &xpos_base, sizeof(float));
  4162. memcpy(params + 12, &xpos_down, sizeof(bool));
  4163. ggml_set_op_params(result, params, sizeof(params));
  4164. result->op = GGML_OP_ROPE;
  4165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4166. result->src[0] = a;
  4167. result->src[1] = b;
  4168. return result;
  4169. }
  4170. struct ggml_tensor * ggml_rope(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. int n_dims,
  4175. int mode,
  4176. int n_ctx) {
  4177. return ggml_rope_impl(
  4178. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4179. );
  4180. }
  4181. struct ggml_tensor * ggml_rope_inplace(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. struct ggml_tensor * b,
  4185. int n_dims,
  4186. int mode,
  4187. int n_ctx) {
  4188. return ggml_rope_impl(
  4189. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4190. );
  4191. }
  4192. struct ggml_tensor * ggml_rope_custom(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b,
  4196. int n_dims,
  4197. int mode,
  4198. int n_ctx,
  4199. int n_orig_ctx,
  4200. float freq_base,
  4201. float freq_scale,
  4202. float ext_factor,
  4203. float attn_factor,
  4204. float beta_fast,
  4205. float beta_slow) {
  4206. return ggml_rope_impl(
  4207. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4208. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4209. );
  4210. }
  4211. struct ggml_tensor * ggml_rope_custom_inplace(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int n_dims,
  4216. int mode,
  4217. int n_ctx,
  4218. int n_orig_ctx,
  4219. float freq_base,
  4220. float freq_scale,
  4221. float ext_factor,
  4222. float attn_factor,
  4223. float beta_fast,
  4224. float beta_slow) {
  4225. return ggml_rope_impl(
  4226. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4227. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4228. );
  4229. }
  4230. struct ggml_tensor * ggml_rope_xpos_inplace(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. struct ggml_tensor * b,
  4234. int n_dims,
  4235. float base,
  4236. bool down) {
  4237. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4238. }
  4239. // ggml_rope_back
  4240. struct ggml_tensor * ggml_rope_back(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b,
  4244. int n_dims,
  4245. int mode,
  4246. int n_ctx,
  4247. int n_orig_ctx,
  4248. float freq_base,
  4249. float freq_scale,
  4250. float ext_factor,
  4251. float attn_factor,
  4252. float beta_fast,
  4253. float beta_slow,
  4254. float xpos_base,
  4255. bool xpos_down) {
  4256. GGML_ASSERT(ggml_is_vector(b));
  4257. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4258. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4259. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4260. bool is_node = false;
  4261. if (a->grad) {
  4262. is_node = false; // TODO: implement backward
  4263. }
  4264. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4265. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4266. memcpy(params + 5, &freq_base, sizeof(float));
  4267. memcpy(params + 6, &freq_scale, sizeof(float));
  4268. memcpy(params + 7, &ext_factor, sizeof(float));
  4269. memcpy(params + 8, &attn_factor, sizeof(float));
  4270. memcpy(params + 9, &beta_fast, sizeof(float));
  4271. memcpy(params + 10, &beta_slow, sizeof(float));
  4272. memcpy(params + 11, &xpos_base, sizeof(float));
  4273. memcpy(params + 12, &xpos_down, sizeof(bool));
  4274. ggml_set_op_params(result, params, sizeof(params));
  4275. result->op = GGML_OP_ROPE_BACK;
  4276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4277. result->src[0] = a;
  4278. result->src[1] = b;
  4279. return result;
  4280. }
  4281. // ggml_alibi
  4282. struct ggml_tensor * ggml_alibi(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. int n_past,
  4286. int n_head,
  4287. float bias_max) {
  4288. GGML_ASSERT(n_past >= 0);
  4289. bool is_node = false;
  4290. if (a->grad) {
  4291. GGML_ASSERT(false); // TODO: implement backward
  4292. is_node = true;
  4293. }
  4294. // TODO: when implement backward, fix this:
  4295. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4296. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4297. int32_t op_params[3] = { n_past, n_head };
  4298. memcpy(op_params + 2, &bias_max, sizeof(float));
  4299. ggml_set_op_params(result, op_params, sizeof(op_params));
  4300. result->op = GGML_OP_ALIBI;
  4301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4302. result->src[0] = a;
  4303. return result;
  4304. }
  4305. // ggml_clamp
  4306. struct ggml_tensor * ggml_clamp(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a,
  4309. float min,
  4310. float max) {
  4311. bool is_node = false;
  4312. if (a->grad) {
  4313. GGML_ASSERT(false); // TODO: implement backward
  4314. is_node = true;
  4315. }
  4316. // TODO: when implement backward, fix this:
  4317. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4318. float params[] = { min, max };
  4319. ggml_set_op_params(result, params, sizeof(params));
  4320. result->op = GGML_OP_CLAMP;
  4321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4322. result->src[0] = a;
  4323. return result;
  4324. }
  4325. // ggml_conv_1d
  4326. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4327. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4328. }
  4329. GGML_API struct ggml_tensor * ggml_conv_1d(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b,
  4333. int s0,
  4334. int p0,
  4335. int d0) {
  4336. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4337. struct ggml_tensor * result =
  4338. ggml_mul_mat(ctx,
  4339. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4340. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4341. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4342. return result;
  4343. }
  4344. // ggml_conv_1d_ph
  4345. struct ggml_tensor* ggml_conv_1d_ph(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b,
  4349. int s,
  4350. int d) {
  4351. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4352. }
  4353. // ggml_conv_transpose_1d
  4354. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4355. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4356. }
  4357. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. int s0,
  4362. int p0,
  4363. int d0) {
  4364. GGML_ASSERT(ggml_is_matrix(b));
  4365. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4366. GGML_ASSERT(a->ne[3] == 1);
  4367. GGML_ASSERT(p0 == 0);
  4368. GGML_ASSERT(d0 == 1);
  4369. bool is_node = false;
  4370. if (a->grad || b->grad) {
  4371. GGML_ASSERT(false); // TODO: implement backward
  4372. is_node = true;
  4373. }
  4374. const int64_t ne[4] = {
  4375. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4376. a->ne[1], b->ne[2], 1,
  4377. };
  4378. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4379. int32_t params[] = { s0, p0, d0 };
  4380. ggml_set_op_params(result, params, sizeof(params));
  4381. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src[0] = a;
  4384. result->src[1] = b;
  4385. return result;
  4386. }
  4387. // ggml_conv_depthwise
  4388. struct ggml_tensor * ggml_conv_depthwise_2d(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b,
  4392. int s0,
  4393. int s1,
  4394. int p0,
  4395. int p1,
  4396. int d0,
  4397. int d1) {
  4398. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4399. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4400. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4401. s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
  4402. struct ggml_tensor * result =
  4403. ggml_mul_mat(ctx,
  4404. ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4405. ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4406. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4407. return result;
  4408. }
  4409. // ggml_conv_2d
  4410. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4411. // a: [OC,IC, KH, KW]
  4412. // b: [N, IC, IH, IW]
  4413. // result: [N, OH, OW, IC*KH*KW]
  4414. struct ggml_tensor * ggml_im2col(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. struct ggml_tensor * b,
  4418. int s0,
  4419. int s1,
  4420. int p0,
  4421. int p1,
  4422. int d0,
  4423. int d1,
  4424. bool is_2D) {
  4425. if(is_2D) {
  4426. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4427. } else {
  4428. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4429. }
  4430. bool is_node = false;
  4431. if (a->grad || b->grad) {
  4432. GGML_ASSERT(false); // TODO: implement backward
  4433. is_node = true;
  4434. }
  4435. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4436. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4437. const int64_t ne[4] = {
  4438. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4439. OW,
  4440. is_2D ? OH : b->ne[2],
  4441. is_2D ? b->ne[3] : 1,
  4442. };
  4443. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4444. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4445. ggml_set_op_params(result, params, sizeof(params));
  4446. result->op = GGML_OP_IM2COL;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src[0] = a;
  4449. result->src[1] = b;
  4450. return result;
  4451. }
  4452. // a: [OC,IC, KH, KW]
  4453. // b: [N, IC, IH, IW]
  4454. // result: [N, OC, OH, OW]
  4455. struct ggml_tensor * ggml_conv_2d(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b,
  4459. int s0,
  4460. int s1,
  4461. int p0,
  4462. int p1,
  4463. int d0,
  4464. int d1) {
  4465. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4466. struct ggml_tensor * result =
  4467. ggml_mul_mat(ctx,
  4468. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4469. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4470. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4471. return result;
  4472. }
  4473. // ggml_conv_2d_sk_p0
  4474. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4475. struct ggml_context * ctx,
  4476. struct ggml_tensor * a,
  4477. struct ggml_tensor * b) {
  4478. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4479. }
  4480. // ggml_conv_2d_s1_ph
  4481. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * b) {
  4485. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4486. }
  4487. // ggml_conv_transpose_2d_p0
  4488. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4489. return (ins - 1) * s - 2 * p + ks;
  4490. }
  4491. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b,
  4495. int stride) {
  4496. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4497. bool is_node = false;
  4498. if (a->grad || b->grad) {
  4499. GGML_ASSERT(false); // TODO: implement backward
  4500. is_node = true;
  4501. }
  4502. const int64_t ne[4] = {
  4503. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4504. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4505. a->ne[2], b->ne[3],
  4506. };
  4507. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4508. ggml_set_op_params_i32(result, 0, stride);
  4509. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. result->src[1] = b;
  4513. return result;
  4514. }
  4515. // ggml_pool_*
  4516. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4517. return (ins + 2 * p - ks) / s + 1;
  4518. }
  4519. // ggml_pool_1d
  4520. struct ggml_tensor * ggml_pool_1d(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. enum ggml_op_pool op,
  4524. int k0,
  4525. int s0,
  4526. int p0) {
  4527. bool is_node = false;
  4528. if (a->grad) {
  4529. GGML_ASSERT(false); // TODO: implement backward
  4530. is_node = true;
  4531. }
  4532. const int64_t ne[2] = {
  4533. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4534. a->ne[1],
  4535. };
  4536. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4537. int32_t params[] = { op, k0, s0, p0 };
  4538. ggml_set_op_params(result, params, sizeof(params));
  4539. result->op = GGML_OP_POOL_1D;
  4540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4541. result->src[0] = a;
  4542. return result;
  4543. }
  4544. // ggml_pool_2d
  4545. struct ggml_tensor * ggml_pool_2d(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. enum ggml_op_pool op,
  4549. int k0,
  4550. int k1,
  4551. int s0,
  4552. int s1,
  4553. float p0,
  4554. float p1) {
  4555. bool is_node = false;
  4556. if (a->grad) {
  4557. GGML_ASSERT(false); // TODO: implement backward
  4558. is_node = true;
  4559. }
  4560. const int64_t ne[3] = {
  4561. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4562. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4563. a->ne[2],
  4564. };
  4565. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4566. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4567. ggml_set_op_params(result, params, sizeof(params));
  4568. result->op = GGML_OP_POOL_2D;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src[0] = a;
  4571. return result;
  4572. }
  4573. // ggml_upscale
  4574. static struct ggml_tensor * ggml_upscale_impl(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. int scale_factor) {
  4578. bool is_node = false;
  4579. if (a->grad) {
  4580. GGML_ASSERT(false); // TODO: implement backward
  4581. is_node = true;
  4582. }
  4583. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4584. a->ne[0] * scale_factor,
  4585. a->ne[1] * scale_factor,
  4586. a->ne[2], a->ne[3]);
  4587. result->op = GGML_OP_UPSCALE;
  4588. result->op_params[0] = scale_factor;
  4589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4590. result->src[0] = a;
  4591. return result;
  4592. }
  4593. struct ggml_tensor * ggml_pad(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a,
  4596. int p0, int p1, int p2, int p3) {
  4597. bool is_node = false;
  4598. if (a->grad) {
  4599. GGML_ASSERT(false); // TODO: implement backward
  4600. is_node = true;
  4601. }
  4602. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4603. a->ne[0] + p0,
  4604. a->ne[1] + p1,
  4605. a->ne[2] + p2,
  4606. a->ne[3] + p3);
  4607. result->op = GGML_OP_PAD;
  4608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4609. result->src[0] = a;
  4610. return result;
  4611. }
  4612. struct ggml_tensor * ggml_upscale(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. int scale_factor) {
  4616. return ggml_upscale_impl(ctx, a, scale_factor);
  4617. }
  4618. // ggml_argsort
  4619. struct ggml_tensor * ggml_argsort(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. enum ggml_sort_order order) {
  4623. bool is_node = false;
  4624. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4625. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4626. result->op = GGML_OP_ARGSORT;
  4627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4628. result->src[0] = a;
  4629. return result;
  4630. }
  4631. // ggml_top_k
  4632. struct ggml_tensor * ggml_top_k(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a,
  4635. int k) {
  4636. GGML_ASSERT(a->ne[0] >= k);
  4637. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4638. result = ggml_view_4d(ctx, result,
  4639. k, result->ne[1], result->ne[2], result->ne[3],
  4640. result->nb[1], result->nb[2], result->nb[3],
  4641. 0);
  4642. return result;
  4643. }
  4644. // ggml_flash_attn
  4645. struct ggml_tensor * ggml_flash_attn(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * q,
  4648. struct ggml_tensor * k,
  4649. struct ggml_tensor * v,
  4650. bool masked) {
  4651. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4652. // TODO: check if vT can be multiplied by (k*qT)
  4653. bool is_node = false;
  4654. if (q->grad || k->grad || v->grad) {
  4655. is_node = true;
  4656. }
  4657. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4658. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4659. int32_t t = masked ? 1 : 0;
  4660. ggml_set_op_params(result, &t, sizeof(t));
  4661. result->op = GGML_OP_FLASH_ATTN;
  4662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4663. result->src[0] = q;
  4664. result->src[1] = k;
  4665. result->src[2] = v;
  4666. return result;
  4667. }
  4668. // ggml_flash_ff
  4669. struct ggml_tensor * ggml_flash_ff(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. struct ggml_tensor * b0,
  4673. struct ggml_tensor * b1,
  4674. struct ggml_tensor * c0,
  4675. struct ggml_tensor * c1) {
  4676. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4677. // TODO: more checks
  4678. bool is_node = false;
  4679. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4680. is_node = true;
  4681. }
  4682. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4683. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4684. result->op = GGML_OP_FLASH_FF;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = a;
  4687. result->src[1] = b0;
  4688. result->src[2] = b1;
  4689. result->src[3] = c0;
  4690. result->src[4] = c1;
  4691. return result;
  4692. }
  4693. // ggml_flash_attn_back
  4694. struct ggml_tensor * ggml_flash_attn_back(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * q,
  4697. struct ggml_tensor * k,
  4698. struct ggml_tensor * v,
  4699. struct ggml_tensor * d,
  4700. bool masked) {
  4701. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4702. // TODO: check if vT can be multiplied by (k*qT)
  4703. // d shape [D,N,ne2,ne3]
  4704. // q shape [D,N,ne2,ne3]
  4705. // k shape [D,M,kvne2,ne3]
  4706. // v shape [M,D,kvne2,ne3]
  4707. const int64_t D = q->ne[0];
  4708. const int64_t N = q->ne[1];
  4709. const int64_t M = k->ne[1];
  4710. const int64_t ne2 = q->ne[2];
  4711. const int64_t ne3 = q->ne[3];
  4712. const int64_t kvne2 = k->ne[2];
  4713. GGML_ASSERT(k->ne[0] == D);
  4714. GGML_ASSERT(v->ne[0] == M);
  4715. GGML_ASSERT(v->ne[1] == D);
  4716. GGML_ASSERT(d->ne[0] == D);
  4717. GGML_ASSERT(d->ne[1] == N);
  4718. GGML_ASSERT(k->ne[2] == kvne2);
  4719. GGML_ASSERT(k->ne[3] == ne3);
  4720. GGML_ASSERT(v->ne[2] == kvne2);
  4721. GGML_ASSERT(v->ne[3] == ne3);
  4722. GGML_ASSERT(d->ne[2] == ne2);
  4723. GGML_ASSERT(d->ne[3] == ne3);
  4724. GGML_ASSERT(ne2 % kvne2 == 0);
  4725. bool is_node = false;
  4726. if (q->grad || k->grad || v->grad) {
  4727. // when using this operation (in backwards pass) these grads are set.
  4728. // we don't want to create (big) grad of our result, so is_node is false.
  4729. is_node = false;
  4730. }
  4731. // store gradients of q, k and v as continuous tensors concatenated in result.
  4732. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4733. const int64_t elem_q = ggml_nelements(q);
  4734. const int64_t elem_k = ggml_nelements(k);
  4735. const int64_t elem_v = ggml_nelements(v);
  4736. enum ggml_type result_type = GGML_TYPE_F32;
  4737. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4738. const size_t tsize = ggml_type_size(result_type);
  4739. const size_t offs_q = 0;
  4740. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4741. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4742. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4743. const size_t nelements = (end + tsize - 1)/tsize;
  4744. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4745. int32_t masked_i = masked ? 1 : 0;
  4746. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4747. result->op = GGML_OP_FLASH_ATTN_BACK;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src[0] = q;
  4750. result->src[1] = k;
  4751. result->src[2] = v;
  4752. result->src[3] = d;
  4753. return result;
  4754. }
  4755. // ggml_win_part
  4756. struct ggml_tensor * ggml_win_part(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a,
  4759. int w) {
  4760. GGML_ASSERT(a->ne[3] == 1);
  4761. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4762. bool is_node = false;
  4763. if (a->grad) {
  4764. GGML_ASSERT(false); // TODO: implement backward
  4765. is_node = true;
  4766. }
  4767. // padding
  4768. const int px = (w - a->ne[1]%w)%w;
  4769. const int py = (w - a->ne[2]%w)%w;
  4770. const int npx = (px + a->ne[1])/w;
  4771. const int npy = (py + a->ne[2])/w;
  4772. const int np = npx*npy;
  4773. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4774. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4775. int32_t params[] = { npx, npy, w };
  4776. ggml_set_op_params(result, params, sizeof(params));
  4777. result->op = GGML_OP_WIN_PART;
  4778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4779. result->src[0] = a;
  4780. return result;
  4781. }
  4782. // ggml_win_unpart
  4783. struct ggml_tensor * ggml_win_unpart(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. int w0,
  4787. int h0,
  4788. int w) {
  4789. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4790. bool is_node = false;
  4791. if (a->grad) {
  4792. GGML_ASSERT(false); // TODO: implement backward
  4793. is_node = true;
  4794. }
  4795. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4796. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4797. int32_t params[] = { w };
  4798. ggml_set_op_params(result, params, sizeof(params));
  4799. result->op = GGML_OP_WIN_UNPART;
  4800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4801. result->src[0] = a;
  4802. return result;
  4803. }
  4804. // ggml_get_rel_pos
  4805. struct ggml_tensor * ggml_get_rel_pos(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. int qh,
  4809. int kh) {
  4810. GGML_ASSERT(qh == kh);
  4811. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4812. bool is_node = false;
  4813. if (a->grad) {
  4814. GGML_ASSERT(false); // TODO: implement backward
  4815. is_node = true;
  4816. }
  4817. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4818. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4819. result->op = GGML_OP_GET_REL_POS;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src[0] = a;
  4822. return result;
  4823. }
  4824. // ggml_add_rel_pos
  4825. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. struct ggml_tensor * pw,
  4829. struct ggml_tensor * ph,
  4830. bool inplace) {
  4831. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4832. GGML_ASSERT(ggml_is_contiguous(a));
  4833. GGML_ASSERT(ggml_is_contiguous(pw));
  4834. GGML_ASSERT(ggml_is_contiguous(ph));
  4835. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4836. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4837. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4838. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4839. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4840. bool is_node = false;
  4841. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4842. is_node = true;
  4843. }
  4844. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4845. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4846. result->op = GGML_OP_ADD_REL_POS;
  4847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4848. result->src[0] = a;
  4849. result->src[1] = pw;
  4850. result->src[2] = ph;
  4851. return result;
  4852. }
  4853. struct ggml_tensor * ggml_add_rel_pos(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * pw,
  4857. struct ggml_tensor * ph) {
  4858. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4859. }
  4860. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. struct ggml_tensor * pw,
  4864. struct ggml_tensor * ph) {
  4865. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4866. }
  4867. // gmml_unary
  4868. static struct ggml_tensor * ggml_unary_impl(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. enum ggml_unary_op op,
  4872. bool inplace) {
  4873. bool is_node = false;
  4874. if (!inplace && (a->grad)) {
  4875. is_node = true;
  4876. }
  4877. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4878. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4879. result->op = GGML_OP_UNARY;
  4880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4881. result->src[0] = a;
  4882. return result;
  4883. }
  4884. struct ggml_tensor * ggml_unary(
  4885. struct ggml_context * ctx,
  4886. struct ggml_tensor * a,
  4887. enum ggml_unary_op op) {
  4888. return ggml_unary_impl(ctx, a, op, false);
  4889. }
  4890. struct ggml_tensor * ggml_unary_inplace(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. enum ggml_unary_op op) {
  4894. return ggml_unary_impl(ctx, a, op, true);
  4895. }
  4896. // ggml_map_unary
  4897. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. const ggml_unary_op_f32_t fun,
  4901. bool inplace) {
  4902. bool is_node = false;
  4903. if (!inplace && a->grad) {
  4904. is_node = true;
  4905. }
  4906. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4907. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4908. result->op = GGML_OP_MAP_UNARY;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src[0] = a;
  4911. return result;
  4912. }
  4913. struct ggml_tensor * ggml_map_unary_f32(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. const ggml_unary_op_f32_t fun) {
  4917. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4918. }
  4919. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. const ggml_unary_op_f32_t fun) {
  4923. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4924. }
  4925. // ggml_map_binary
  4926. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. struct ggml_tensor * b,
  4930. const ggml_binary_op_f32_t fun,
  4931. bool inplace) {
  4932. GGML_ASSERT(ggml_are_same_shape(a, b));
  4933. bool is_node = false;
  4934. if (!inplace && (a->grad || b->grad)) {
  4935. is_node = true;
  4936. }
  4937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4938. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4939. result->op = GGML_OP_MAP_BINARY;
  4940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4941. result->src[0] = a;
  4942. result->src[1] = b;
  4943. return result;
  4944. }
  4945. struct ggml_tensor * ggml_map_binary_f32(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b,
  4949. const ggml_binary_op_f32_t fun) {
  4950. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4951. }
  4952. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. struct ggml_tensor * b,
  4956. const ggml_binary_op_f32_t fun) {
  4957. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4958. }
  4959. // ggml_map_custom1_f32
  4960. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. const ggml_custom1_op_f32_t fun,
  4964. bool inplace) {
  4965. bool is_node = false;
  4966. if (!inplace && a->grad) {
  4967. is_node = true;
  4968. }
  4969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4970. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4971. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src[0] = a;
  4974. return result;
  4975. }
  4976. struct ggml_tensor * ggml_map_custom1_f32(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. const ggml_custom1_op_f32_t fun) {
  4980. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4981. }
  4982. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. const ggml_custom1_op_f32_t fun) {
  4986. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4987. }
  4988. // ggml_map_custom2_f32
  4989. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a,
  4992. struct ggml_tensor * b,
  4993. const ggml_custom2_op_f32_t fun,
  4994. bool inplace) {
  4995. bool is_node = false;
  4996. if (!inplace && (a->grad || b->grad)) {
  4997. is_node = true;
  4998. }
  4999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5000. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5001. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5003. result->src[0] = a;
  5004. result->src[1] = b;
  5005. return result;
  5006. }
  5007. struct ggml_tensor * ggml_map_custom2_f32(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. const ggml_custom2_op_f32_t fun) {
  5012. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5013. }
  5014. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b,
  5018. const ggml_custom2_op_f32_t fun) {
  5019. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5020. }
  5021. // ggml_map_custom3_f32
  5022. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. struct ggml_tensor * b,
  5026. struct ggml_tensor * c,
  5027. const ggml_custom3_op_f32_t fun,
  5028. bool inplace) {
  5029. bool is_node = false;
  5030. if (!inplace && (a->grad || b->grad || c->grad)) {
  5031. is_node = true;
  5032. }
  5033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5035. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5037. result->src[0] = a;
  5038. result->src[1] = b;
  5039. result->src[2] = c;
  5040. return result;
  5041. }
  5042. struct ggml_tensor * ggml_map_custom3_f32(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * b,
  5046. struct ggml_tensor * c,
  5047. const ggml_custom3_op_f32_t fun) {
  5048. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5049. }
  5050. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. struct ggml_tensor * b,
  5054. struct ggml_tensor * c,
  5055. const ggml_custom3_op_f32_t fun) {
  5056. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5057. }
  5058. // ggml_map_custom1
  5059. struct ggml_map_custom1_op_params {
  5060. ggml_custom1_op_t fun;
  5061. int n_tasks;
  5062. void * userdata;
  5063. };
  5064. static struct ggml_tensor * ggml_map_custom1_impl(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a,
  5067. const ggml_custom1_op_t fun,
  5068. int n_tasks,
  5069. void * userdata,
  5070. bool inplace) {
  5071. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5072. bool is_node = false;
  5073. if (!inplace && a->grad) {
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. struct ggml_map_custom1_op_params params = {
  5078. /*.fun =*/ fun,
  5079. /*.n_tasks =*/ n_tasks,
  5080. /*.userdata =*/ userdata
  5081. };
  5082. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5083. result->op = GGML_OP_MAP_CUSTOM1;
  5084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5085. result->src[0] = a;
  5086. return result;
  5087. }
  5088. struct ggml_tensor * ggml_map_custom1(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. const ggml_custom1_op_t fun,
  5092. int n_tasks,
  5093. void * userdata) {
  5094. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5095. }
  5096. struct ggml_tensor * ggml_map_custom1_inplace(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. const ggml_custom1_op_t fun,
  5100. int n_tasks,
  5101. void * userdata) {
  5102. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5103. }
  5104. // ggml_map_custom2
  5105. struct ggml_map_custom2_op_params {
  5106. ggml_custom2_op_t fun;
  5107. int n_tasks;
  5108. void * userdata;
  5109. };
  5110. static struct ggml_tensor * ggml_map_custom2_impl(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. struct ggml_tensor * b,
  5114. const ggml_custom2_op_t fun,
  5115. int n_tasks,
  5116. void * userdata,
  5117. bool inplace) {
  5118. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5119. bool is_node = false;
  5120. if (!inplace && (a->grad || b->grad)) {
  5121. is_node = true;
  5122. }
  5123. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5124. struct ggml_map_custom2_op_params params = {
  5125. /*.fun =*/ fun,
  5126. /*.n_tasks =*/ n_tasks,
  5127. /*.userdata =*/ userdata
  5128. };
  5129. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5130. result->op = GGML_OP_MAP_CUSTOM2;
  5131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5132. result->src[0] = a;
  5133. result->src[1] = b;
  5134. return result;
  5135. }
  5136. struct ggml_tensor * ggml_map_custom2(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. struct ggml_tensor * b,
  5140. const ggml_custom2_op_t fun,
  5141. int n_tasks,
  5142. void * userdata) {
  5143. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5144. }
  5145. struct ggml_tensor * ggml_map_custom2_inplace(
  5146. struct ggml_context * ctx,
  5147. struct ggml_tensor * a,
  5148. struct ggml_tensor * b,
  5149. const ggml_custom2_op_t fun,
  5150. int n_tasks,
  5151. void * userdata) {
  5152. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5153. }
  5154. // ggml_map_custom3
  5155. struct ggml_map_custom3_op_params {
  5156. ggml_custom3_op_t fun;
  5157. int n_tasks;
  5158. void * userdata;
  5159. };
  5160. static struct ggml_tensor * ggml_map_custom3_impl(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b,
  5164. struct ggml_tensor * c,
  5165. const ggml_custom3_op_t fun,
  5166. int n_tasks,
  5167. void * userdata,
  5168. bool inplace) {
  5169. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5170. bool is_node = false;
  5171. if (!inplace && (a->grad || b->grad || c->grad)) {
  5172. is_node = true;
  5173. }
  5174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5175. struct ggml_map_custom3_op_params params = {
  5176. /*.fun =*/ fun,
  5177. /*.n_tasks =*/ n_tasks,
  5178. /*.userdata =*/ userdata
  5179. };
  5180. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5181. result->op = GGML_OP_MAP_CUSTOM3;
  5182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5183. result->src[0] = a;
  5184. result->src[1] = b;
  5185. result->src[2] = c;
  5186. return result;
  5187. }
  5188. struct ggml_tensor * ggml_map_custom3(
  5189. struct ggml_context * ctx,
  5190. struct ggml_tensor * a,
  5191. struct ggml_tensor * b,
  5192. struct ggml_tensor * c,
  5193. const ggml_custom3_op_t fun,
  5194. int n_tasks,
  5195. void * userdata) {
  5196. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5197. }
  5198. struct ggml_tensor * ggml_map_custom3_inplace(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. struct ggml_tensor * b,
  5202. struct ggml_tensor * c,
  5203. const ggml_custom3_op_t fun,
  5204. int n_tasks,
  5205. void * userdata) {
  5206. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5207. }
  5208. // ggml_cross_entropy_loss
  5209. struct ggml_tensor * ggml_cross_entropy_loss(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. struct ggml_tensor * b) {
  5213. GGML_ASSERT(ggml_are_same_shape(a, b));
  5214. bool is_node = false;
  5215. if (a->grad || b->grad) {
  5216. is_node = true;
  5217. }
  5218. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5219. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5221. result->src[0] = a;
  5222. result->src[1] = b;
  5223. return result;
  5224. }
  5225. // ggml_cross_entropy_loss_back
  5226. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. struct ggml_tensor * c) {
  5231. GGML_ASSERT(ggml_are_same_shape(a, b));
  5232. GGML_ASSERT(ggml_is_scalar(c));
  5233. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5234. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5235. result->grad = NULL;
  5236. result->src[0] = a;
  5237. result->src[1] = b;
  5238. result->src[2] = c;
  5239. return result;
  5240. }
  5241. ////////////////////////////////////////////////////////////////////////////////
  5242. void ggml_set_param(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * tensor) {
  5245. tensor->is_param = true;
  5246. GGML_ASSERT(tensor->grad == NULL);
  5247. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5248. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5249. }
  5250. // ggml_compute_forward_dup
  5251. static void ggml_compute_forward_dup_same_cont(
  5252. const struct ggml_compute_params * params,
  5253. const struct ggml_tensor * src0,
  5254. struct ggml_tensor * dst) {
  5255. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5256. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5257. GGML_ASSERT(src0->type == dst->type);
  5258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5259. return;
  5260. }
  5261. const size_t nb00 = src0->nb[0];
  5262. const size_t nb0 = dst->nb[0];
  5263. const int ith = params->ith; // thread index
  5264. const int nth = params->nth; // number of threads
  5265. // parallelize by elements
  5266. const int ne = ggml_nelements(dst);
  5267. const int dr = (ne + nth - 1) / nth;
  5268. const int ie0 = dr * ith;
  5269. const int ie1 = MIN(ie0 + dr, ne);
  5270. if (ie0 < ie1) {
  5271. memcpy(
  5272. ((char *) dst->data + ie0*nb0),
  5273. ((char *) src0->data + ie0*nb00),
  5274. (ie1 - ie0) * ggml_type_size(src0->type));
  5275. }
  5276. }
  5277. static void ggml_compute_forward_dup_f16(
  5278. const struct ggml_compute_params * params,
  5279. const struct ggml_tensor * src0,
  5280. struct ggml_tensor * dst) {
  5281. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5283. return;
  5284. }
  5285. GGML_TENSOR_UNARY_OP_LOCALS
  5286. const int ith = params->ith; // thread index
  5287. const int nth = params->nth; // number of threads
  5288. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5289. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5290. return;
  5291. }
  5292. // parallelize by rows
  5293. const int nr = ne01;
  5294. // number of rows per thread
  5295. const int dr = (nr + nth - 1) / nth;
  5296. // row range for this thread
  5297. const int ir0 = dr * ith;
  5298. const int ir1 = MIN(ir0 + dr, nr);
  5299. if (src0->type == dst->type &&
  5300. ne00 == ne0 &&
  5301. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5302. // copy by rows
  5303. const size_t rs = ne00*nb00;
  5304. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5305. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5306. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5307. memcpy(
  5308. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5309. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5310. rs);
  5311. }
  5312. }
  5313. }
  5314. return;
  5315. }
  5316. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5317. if (ggml_is_contiguous(dst)) {
  5318. if (nb00 == sizeof(ggml_fp16_t)) {
  5319. if (dst->type == GGML_TYPE_F16) {
  5320. size_t id = 0;
  5321. const size_t rs = ne00 * nb00;
  5322. char * dst_ptr = (char *) dst->data;
  5323. for (int i03 = 0; i03 < ne03; i03++) {
  5324. for (int i02 = 0; i02 < ne02; i02++) {
  5325. id += rs * ir0;
  5326. for (int i01 = ir0; i01 < ir1; i01++) {
  5327. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5328. memcpy(dst_ptr + id, src0_ptr, rs);
  5329. id += rs;
  5330. }
  5331. id += rs * (ne01 - ir1);
  5332. }
  5333. }
  5334. } else if (dst->type == GGML_TYPE_F32) {
  5335. size_t id = 0;
  5336. float * dst_ptr = (float *) dst->data;
  5337. for (int i03 = 0; i03 < ne03; i03++) {
  5338. for (int i02 = 0; i02 < ne02; i02++) {
  5339. id += ne00 * ir0;
  5340. for (int i01 = ir0; i01 < ir1; i01++) {
  5341. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5342. for (int i00 = 0; i00 < ne00; i00++) {
  5343. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5344. id++;
  5345. }
  5346. }
  5347. id += ne00 * (ne01 - ir1);
  5348. }
  5349. }
  5350. } else if (type_traits[dst->type].from_float) {
  5351. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5352. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5353. size_t id = 0;
  5354. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5355. char * dst_ptr = (char *) dst->data;
  5356. for (int i03 = 0; i03 < ne03; i03++) {
  5357. for (int i02 = 0; i02 < ne02; i02++) {
  5358. id += rs * ir0;
  5359. for (int i01 = ir0; i01 < ir1; i01++) {
  5360. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5361. for (int i00 = 0; i00 < ne00; i00++) {
  5362. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5363. }
  5364. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5365. id += rs;
  5366. }
  5367. id += rs * (ne01 - ir1);
  5368. }
  5369. }
  5370. } else {
  5371. GGML_ASSERT(false); // TODO: implement
  5372. }
  5373. } else {
  5374. //printf("%s: this is not optimal - fix me\n", __func__);
  5375. if (dst->type == GGML_TYPE_F32) {
  5376. size_t id = 0;
  5377. float * dst_ptr = (float *) dst->data;
  5378. for (int i03 = 0; i03 < ne03; i03++) {
  5379. for (int i02 = 0; i02 < ne02; i02++) {
  5380. id += ne00 * ir0;
  5381. for (int i01 = ir0; i01 < ir1; i01++) {
  5382. for (int i00 = 0; i00 < ne00; i00++) {
  5383. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5384. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5385. id++;
  5386. }
  5387. }
  5388. id += ne00 * (ne01 - ir1);
  5389. }
  5390. }
  5391. } else if (dst->type == GGML_TYPE_F16) {
  5392. size_t id = 0;
  5393. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5394. for (int i03 = 0; i03 < ne03; i03++) {
  5395. for (int i02 = 0; i02 < ne02; i02++) {
  5396. id += ne00 * ir0;
  5397. for (int i01 = ir0; i01 < ir1; i01++) {
  5398. for (int i00 = 0; i00 < ne00; i00++) {
  5399. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5400. dst_ptr[id] = *src0_ptr;
  5401. id++;
  5402. }
  5403. }
  5404. id += ne00 * (ne01 - ir1);
  5405. }
  5406. }
  5407. } else {
  5408. GGML_ASSERT(false); // TODO: implement
  5409. }
  5410. }
  5411. return;
  5412. }
  5413. // dst counters
  5414. int64_t i10 = 0;
  5415. int64_t i11 = 0;
  5416. int64_t i12 = 0;
  5417. int64_t i13 = 0;
  5418. if (dst->type == GGML_TYPE_F16) {
  5419. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5420. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5421. i10 += ne00 * ir0;
  5422. while (i10 >= ne0) {
  5423. i10 -= ne0;
  5424. if (++i11 == ne1) {
  5425. i11 = 0;
  5426. if (++i12 == ne2) {
  5427. i12 = 0;
  5428. if (++i13 == ne3) {
  5429. i13 = 0;
  5430. }
  5431. }
  5432. }
  5433. }
  5434. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5435. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5436. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5437. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5438. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5439. if (++i10 == ne00) {
  5440. i10 = 0;
  5441. if (++i11 == ne01) {
  5442. i11 = 0;
  5443. if (++i12 == ne02) {
  5444. i12 = 0;
  5445. if (++i13 == ne03) {
  5446. i13 = 0;
  5447. }
  5448. }
  5449. }
  5450. }
  5451. }
  5452. }
  5453. i10 += ne00 * (ne01 - ir1);
  5454. while (i10 >= ne0) {
  5455. i10 -= ne0;
  5456. if (++i11 == ne1) {
  5457. i11 = 0;
  5458. if (++i12 == ne2) {
  5459. i12 = 0;
  5460. if (++i13 == ne3) {
  5461. i13 = 0;
  5462. }
  5463. }
  5464. }
  5465. }
  5466. }
  5467. }
  5468. } else if (dst->type == GGML_TYPE_F32) {
  5469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5471. i10 += ne00 * ir0;
  5472. while (i10 >= ne0) {
  5473. i10 -= ne0;
  5474. if (++i11 == ne1) {
  5475. i11 = 0;
  5476. if (++i12 == ne2) {
  5477. i12 = 0;
  5478. if (++i13 == ne3) {
  5479. i13 = 0;
  5480. }
  5481. }
  5482. }
  5483. }
  5484. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5486. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5487. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5488. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5489. if (++i10 == ne0) {
  5490. i10 = 0;
  5491. if (++i11 == ne1) {
  5492. i11 = 0;
  5493. if (++i12 == ne2) {
  5494. i12 = 0;
  5495. if (++i13 == ne3) {
  5496. i13 = 0;
  5497. }
  5498. }
  5499. }
  5500. }
  5501. }
  5502. }
  5503. i10 += ne00 * (ne01 - ir1);
  5504. while (i10 >= ne0) {
  5505. i10 -= ne0;
  5506. if (++i11 == ne1) {
  5507. i11 = 0;
  5508. if (++i12 == ne2) {
  5509. i12 = 0;
  5510. if (++i13 == ne3) {
  5511. i13 = 0;
  5512. }
  5513. }
  5514. }
  5515. }
  5516. }
  5517. }
  5518. } else {
  5519. GGML_ASSERT(false); // TODO: implement
  5520. }
  5521. }
  5522. static void ggml_compute_forward_dup_f32(
  5523. const struct ggml_compute_params * params,
  5524. const struct ggml_tensor * src0,
  5525. struct ggml_tensor * dst) {
  5526. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5528. return;
  5529. }
  5530. GGML_TENSOR_UNARY_OP_LOCALS
  5531. const int ith = params->ith; // thread index
  5532. const int nth = params->nth; // number of threads
  5533. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5534. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5535. return;
  5536. }
  5537. // parallelize by rows
  5538. const int nr = ne01;
  5539. // number of rows per thread
  5540. const int dr = (nr + nth - 1) / nth;
  5541. // row range for this thread
  5542. const int ir0 = dr * ith;
  5543. const int ir1 = MIN(ir0 + dr, nr);
  5544. if (src0->type == dst->type &&
  5545. ne00 == ne0 &&
  5546. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5547. // copy by rows
  5548. const size_t rs = ne00*nb00;
  5549. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5550. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5551. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5552. memcpy(
  5553. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5554. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5555. rs);
  5556. }
  5557. }
  5558. }
  5559. return;
  5560. }
  5561. if (ggml_is_contiguous(dst)) {
  5562. // TODO: simplify
  5563. if (nb00 == sizeof(float)) {
  5564. if (dst->type == GGML_TYPE_F32) {
  5565. size_t id = 0;
  5566. const size_t rs = ne00 * nb00;
  5567. char * dst_ptr = (char *) dst->data;
  5568. for (int i03 = 0; i03 < ne03; i03++) {
  5569. for (int i02 = 0; i02 < ne02; i02++) {
  5570. id += rs * ir0;
  5571. for (int i01 = ir0; i01 < ir1; i01++) {
  5572. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5573. memcpy(dst_ptr + id, src0_ptr, rs);
  5574. id += rs;
  5575. }
  5576. id += rs * (ne01 - ir1);
  5577. }
  5578. }
  5579. } else if (type_traits[dst->type].from_float) {
  5580. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5581. size_t id = 0;
  5582. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5583. char * dst_ptr = (char *) dst->data;
  5584. for (int i03 = 0; i03 < ne03; i03++) {
  5585. for (int i02 = 0; i02 < ne02; i02++) {
  5586. id += rs * ir0;
  5587. for (int i01 = ir0; i01 < ir1; i01++) {
  5588. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5589. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5590. id += rs;
  5591. }
  5592. id += rs * (ne01 - ir1);
  5593. }
  5594. }
  5595. } else {
  5596. GGML_ASSERT(false); // TODO: implement
  5597. }
  5598. } else {
  5599. //printf("%s: this is not optimal - fix me\n", __func__);
  5600. if (dst->type == GGML_TYPE_F32) {
  5601. size_t id = 0;
  5602. float * dst_ptr = (float *) dst->data;
  5603. for (int i03 = 0; i03 < ne03; i03++) {
  5604. for (int i02 = 0; i02 < ne02; i02++) {
  5605. id += ne00 * ir0;
  5606. for (int i01 = ir0; i01 < ir1; i01++) {
  5607. for (int i00 = 0; i00 < ne00; i00++) {
  5608. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5609. dst_ptr[id] = *src0_ptr;
  5610. id++;
  5611. }
  5612. }
  5613. id += ne00 * (ne01 - ir1);
  5614. }
  5615. }
  5616. } else if (dst->type == GGML_TYPE_F16) {
  5617. size_t id = 0;
  5618. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5619. for (int i03 = 0; i03 < ne03; i03++) {
  5620. for (int i02 = 0; i02 < ne02; i02++) {
  5621. id += ne00 * ir0;
  5622. for (int i01 = ir0; i01 < ir1; i01++) {
  5623. for (int i00 = 0; i00 < ne00; i00++) {
  5624. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5625. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5626. id++;
  5627. }
  5628. }
  5629. id += ne00 * (ne01 - ir1);
  5630. }
  5631. }
  5632. } else {
  5633. GGML_ASSERT(false); // TODO: implement
  5634. }
  5635. }
  5636. return;
  5637. }
  5638. // dst counters
  5639. int64_t i10 = 0;
  5640. int64_t i11 = 0;
  5641. int64_t i12 = 0;
  5642. int64_t i13 = 0;
  5643. if (dst->type == GGML_TYPE_F32) {
  5644. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5645. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5646. i10 += ne00 * ir0;
  5647. while (i10 >= ne0) {
  5648. i10 -= ne0;
  5649. if (++i11 == ne1) {
  5650. i11 = 0;
  5651. if (++i12 == ne2) {
  5652. i12 = 0;
  5653. if (++i13 == ne3) {
  5654. i13 = 0;
  5655. }
  5656. }
  5657. }
  5658. }
  5659. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5660. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5661. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5662. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5663. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5664. if (++i10 == ne0) {
  5665. i10 = 0;
  5666. if (++i11 == ne1) {
  5667. i11 = 0;
  5668. if (++i12 == ne2) {
  5669. i12 = 0;
  5670. if (++i13 == ne3) {
  5671. i13 = 0;
  5672. }
  5673. }
  5674. }
  5675. }
  5676. }
  5677. }
  5678. i10 += ne00 * (ne01 - ir1);
  5679. while (i10 >= ne0) {
  5680. i10 -= ne0;
  5681. if (++i11 == ne1) {
  5682. i11 = 0;
  5683. if (++i12 == ne2) {
  5684. i12 = 0;
  5685. if (++i13 == ne3) {
  5686. i13 = 0;
  5687. }
  5688. }
  5689. }
  5690. }
  5691. }
  5692. }
  5693. } else if (dst->type == GGML_TYPE_F16) {
  5694. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5696. i10 += ne00 * ir0;
  5697. while (i10 >= ne0) {
  5698. i10 -= ne0;
  5699. if (++i11 == ne1) {
  5700. i11 = 0;
  5701. if (++i12 == ne2) {
  5702. i12 = 0;
  5703. if (++i13 == ne3) {
  5704. i13 = 0;
  5705. }
  5706. }
  5707. }
  5708. }
  5709. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5710. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5711. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5712. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5713. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5714. if (++i10 == ne0) {
  5715. i10 = 0;
  5716. if (++i11 == ne1) {
  5717. i11 = 0;
  5718. if (++i12 == ne2) {
  5719. i12 = 0;
  5720. if (++i13 == ne3) {
  5721. i13 = 0;
  5722. }
  5723. }
  5724. }
  5725. }
  5726. }
  5727. }
  5728. i10 += ne00 * (ne01 - ir1);
  5729. while (i10 >= ne0) {
  5730. i10 -= ne0;
  5731. if (++i11 == ne1) {
  5732. i11 = 0;
  5733. if (++i12 == ne2) {
  5734. i12 = 0;
  5735. if (++i13 == ne3) {
  5736. i13 = 0;
  5737. }
  5738. }
  5739. }
  5740. }
  5741. }
  5742. }
  5743. } else {
  5744. GGML_ASSERT(false); // TODO: implement
  5745. }
  5746. }
  5747. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5748. static void ggml_compute_forward_dup_bytes(
  5749. const struct ggml_compute_params * params,
  5750. const struct ggml_tensor * src0,
  5751. struct ggml_tensor * dst) {
  5752. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5753. GGML_ASSERT(src0->type == dst->type);
  5754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5755. return;
  5756. }
  5757. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5758. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5759. return;
  5760. }
  5761. GGML_TENSOR_UNARY_OP_LOCALS;
  5762. const size_t type_size = ggml_type_size(src0->type);
  5763. const int ith = params->ith; // thread index
  5764. const int nth = params->nth; // number of threads
  5765. // parallelize by rows
  5766. const int nr = ne01;
  5767. // number of rows per thread
  5768. const int dr = (nr + nth - 1) / nth;
  5769. // row range for this thread
  5770. const int ir0 = dr * ith;
  5771. const int ir1 = MIN(ir0 + dr, nr);
  5772. if (src0->type == dst->type &&
  5773. ne00 == ne0 &&
  5774. nb00 == type_size && nb0 == type_size) {
  5775. // copy by rows
  5776. const size_t rs = ne00 * type_size;
  5777. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5778. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5779. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5780. memcpy(
  5781. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5782. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5783. rs);
  5784. }
  5785. }
  5786. }
  5787. return;
  5788. }
  5789. if (ggml_is_contiguous(dst)) {
  5790. size_t id = 0;
  5791. char * dst_ptr = (char *) dst->data;
  5792. const size_t rs = ne00 * type_size;
  5793. if (nb00 == type_size) {
  5794. // src0 is contigous on first dimension, copy by rows
  5795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5797. id += rs * ir0;
  5798. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5799. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5800. memcpy(dst_ptr + id, src0_ptr, rs);
  5801. id += rs;
  5802. }
  5803. id += rs * (ne01 - ir1);
  5804. }
  5805. }
  5806. } else {
  5807. //printf("%s: this is not optimal - fix me\n", __func__);
  5808. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5809. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5810. id += rs * ir0;
  5811. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5812. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5813. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5814. memcpy(dst_ptr + id, src0_ptr, type_size);
  5815. id += type_size;
  5816. }
  5817. }
  5818. id += rs * (ne01 - ir1);
  5819. }
  5820. }
  5821. }
  5822. return;
  5823. }
  5824. // dst counters
  5825. int64_t i10 = 0;
  5826. int64_t i11 = 0;
  5827. int64_t i12 = 0;
  5828. int64_t i13 = 0;
  5829. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5830. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5831. i10 += ne00 * ir0;
  5832. while (i10 >= ne0) {
  5833. i10 -= ne0;
  5834. if (++i11 == ne1) {
  5835. i11 = 0;
  5836. if (++i12 == ne2) {
  5837. i12 = 0;
  5838. if (++i13 == ne3) {
  5839. i13 = 0;
  5840. }
  5841. }
  5842. }
  5843. }
  5844. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5845. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5846. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5847. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5848. memcpy(dst_ptr, src0_ptr, type_size);
  5849. if (++i10 == ne0) {
  5850. i10 = 0;
  5851. if (++i11 == ne1) {
  5852. i11 = 0;
  5853. if (++i12 == ne2) {
  5854. i12 = 0;
  5855. if (++i13 == ne3) {
  5856. i13 = 0;
  5857. }
  5858. }
  5859. }
  5860. }
  5861. }
  5862. }
  5863. i10 += ne00 * (ne01 - ir1);
  5864. while (i10 >= ne0) {
  5865. i10 -= ne0;
  5866. if (++i11 == ne1) {
  5867. i11 = 0;
  5868. if (++i12 == ne2) {
  5869. i12 = 0;
  5870. if (++i13 == ne3) {
  5871. i13 = 0;
  5872. }
  5873. }
  5874. }
  5875. }
  5876. }
  5877. }
  5878. }
  5879. static void ggml_compute_forward_dup(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. struct ggml_tensor * dst) {
  5883. if (src0->type == dst->type) {
  5884. ggml_compute_forward_dup_bytes(params, src0, dst);
  5885. return;
  5886. }
  5887. switch (src0->type) {
  5888. case GGML_TYPE_F16:
  5889. {
  5890. ggml_compute_forward_dup_f16(params, src0, dst);
  5891. } break;
  5892. case GGML_TYPE_F32:
  5893. {
  5894. ggml_compute_forward_dup_f32(params, src0, dst);
  5895. } break;
  5896. default:
  5897. {
  5898. GGML_ASSERT(false);
  5899. } break;
  5900. }
  5901. }
  5902. // ggml_compute_forward_add
  5903. static void ggml_compute_forward_add_f32(
  5904. const struct ggml_compute_params * params,
  5905. const struct ggml_tensor * src0,
  5906. const struct ggml_tensor * src1,
  5907. struct ggml_tensor * dst) {
  5908. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5910. return;
  5911. }
  5912. const int ith = params->ith;
  5913. const int nth = params->nth;
  5914. #ifdef GGML_USE_CLBLAST
  5915. if (src1->backend == GGML_BACKEND_GPU) {
  5916. // TODO: OpenCL kernel support full broadcast
  5917. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  5918. if (ith == 0) {
  5919. ggml_cl_add(src0, src1, dst);
  5920. }
  5921. return;
  5922. }
  5923. #endif
  5924. const int nr = ggml_nrows(src0);
  5925. GGML_TENSOR_BINARY_OP_LOCALS
  5926. GGML_ASSERT( nb0 == sizeof(float));
  5927. GGML_ASSERT(nb00 == sizeof(float));
  5928. // rows per thread
  5929. const int dr = (nr + nth - 1)/nth;
  5930. // row range for this thread
  5931. const int ir0 = dr*ith;
  5932. const int ir1 = MIN(ir0 + dr, nr);
  5933. if (nb10 == sizeof(float)) {
  5934. for (int ir = ir0; ir < ir1; ++ir) {
  5935. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5936. const int64_t i03 = ir/(ne02*ne01);
  5937. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5938. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5939. const int64_t i13 = i03 % ne13;
  5940. const int64_t i12 = i02 % ne12;
  5941. const int64_t i11 = i01 % ne11;
  5942. const int64_t nr0 = ne00 / ne10;
  5943. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5944. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5945. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5946. for (int64_t r = 0; r < nr0; ++r) {
  5947. #ifdef GGML_USE_ACCELERATE
  5948. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5949. #else
  5950. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5951. #endif
  5952. }
  5953. }
  5954. } else {
  5955. // src1 is not contiguous
  5956. for (int ir = ir0; ir < ir1; ++ir) {
  5957. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5958. const int64_t i03 = ir/(ne02*ne01);
  5959. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5960. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5961. const int64_t i13 = i03 % ne13;
  5962. const int64_t i12 = i02 % ne12;
  5963. const int64_t i11 = i01 % ne11;
  5964. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5965. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5966. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5967. const int64_t i10 = i0 % ne10;
  5968. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5969. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5970. }
  5971. }
  5972. }
  5973. }
  5974. static void ggml_compute_forward_add_f16_f32(
  5975. const struct ggml_compute_params * params,
  5976. const struct ggml_tensor * src0,
  5977. const struct ggml_tensor * src1,
  5978. struct ggml_tensor * dst) {
  5979. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5981. return;
  5982. }
  5983. const int ith = params->ith;
  5984. const int nth = params->nth;
  5985. const int nr = ggml_nrows(src0);
  5986. GGML_TENSOR_BINARY_OP_LOCALS
  5987. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5988. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5989. if (dst->type == GGML_TYPE_F32) {
  5990. GGML_ASSERT( nb0 == sizeof(float));
  5991. }
  5992. else {
  5993. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5994. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5995. }
  5996. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5997. // rows per thread
  5998. const int dr = (nr + nth - 1)/nth;
  5999. // row range for this thread
  6000. const int ir0 = dr*ith;
  6001. const int ir1 = MIN(ir0 + dr, nr);
  6002. if (nb10 == sizeof(float)) {
  6003. if (dst->type == GGML_TYPE_F16) {
  6004. for (int ir = ir0; ir < ir1; ++ir) {
  6005. // src0, src1 and dst are same shape => same indices
  6006. const int i3 = ir/(ne2*ne1);
  6007. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6008. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6009. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6010. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6011. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6012. for (int i = 0; i < ne0; i++) {
  6013. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6014. }
  6015. }
  6016. } else {
  6017. for (int ir = ir0; ir < ir1; ++ir) {
  6018. // src0, src1 and dst are same shape => same indices
  6019. const int i3 = ir/(ne2*ne1);
  6020. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6021. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6022. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6023. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6024. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6025. for (int i = 0; i < ne0; i++) {
  6026. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6027. }
  6028. }
  6029. }
  6030. }
  6031. else {
  6032. // src1 is not contiguous
  6033. GGML_ASSERT(false);
  6034. }
  6035. }
  6036. static void ggml_compute_forward_add_f16_f16(
  6037. const struct ggml_compute_params * params,
  6038. const struct ggml_tensor * src0,
  6039. const struct ggml_tensor * src1,
  6040. struct ggml_tensor * dst) {
  6041. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6043. return;
  6044. }
  6045. const int ith = params->ith;
  6046. const int nth = params->nth;
  6047. const int nr = ggml_nrows(src0);
  6048. GGML_TENSOR_BINARY_OP_LOCALS
  6049. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6050. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6051. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6052. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6053. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6054. // rows per thread
  6055. const int dr = (nr + nth - 1)/nth;
  6056. // row range for this thread
  6057. const int ir0 = dr*ith;
  6058. const int ir1 = MIN(ir0 + dr, nr);
  6059. if (nb10 == sizeof(ggml_fp16_t)) {
  6060. for (int ir = ir0; ir < ir1; ++ir) {
  6061. // src0, src1 and dst are same shape => same indices
  6062. const int i3 = ir/(ne2*ne1);
  6063. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6064. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6065. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6066. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6067. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6068. for (int i = 0; i < ne0; i++) {
  6069. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6070. }
  6071. }
  6072. }
  6073. else {
  6074. // src1 is not contiguous
  6075. GGML_ASSERT(false);
  6076. }
  6077. }
  6078. static void ggml_compute_forward_add_q_f32(
  6079. const struct ggml_compute_params * params,
  6080. const struct ggml_tensor * src0,
  6081. const struct ggml_tensor * src1,
  6082. struct ggml_tensor * dst) {
  6083. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6085. return;
  6086. }
  6087. const int nr = ggml_nrows(src0);
  6088. GGML_TENSOR_BINARY_OP_LOCALS
  6089. const int ith = params->ith;
  6090. const int nth = params->nth;
  6091. const enum ggml_type type = src0->type;
  6092. const enum ggml_type dtype = dst->type;
  6093. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6094. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6095. // we don't support permuted src0 or src1
  6096. GGML_ASSERT(nb00 == ggml_type_size(type));
  6097. GGML_ASSERT(nb10 == sizeof(float));
  6098. // dst cannot be transposed or permuted
  6099. GGML_ASSERT(nb0 <= nb1);
  6100. GGML_ASSERT(nb1 <= nb2);
  6101. GGML_ASSERT(nb2 <= nb3);
  6102. GGML_ASSERT(ggml_is_quantized(src0->type));
  6103. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6104. // rows per thread
  6105. const int dr = (nr + nth - 1)/nth;
  6106. // row range for this thread
  6107. const int ir0 = dr*ith;
  6108. const int ir1 = MIN(ir0 + dr, nr);
  6109. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6110. for (int ir = ir0; ir < ir1; ++ir) {
  6111. // src0 indices
  6112. const int i03 = ir/(ne02*ne01);
  6113. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6114. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6115. // src1 and dst are same shape as src0 => same indices
  6116. const int i13 = i03;
  6117. const int i12 = i02;
  6118. const int i11 = i01;
  6119. const int i3 = i03;
  6120. const int i2 = i02;
  6121. const int i1 = i01;
  6122. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6123. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6124. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6125. assert(ne00 % 32 == 0);
  6126. // unquantize row from src0 to temp buffer
  6127. dequantize_row_q(src0_row, wdata, ne00);
  6128. // add src1
  6129. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6130. // quantize row to dst
  6131. if (quantize_row_q != NULL) {
  6132. quantize_row_q(wdata, dst_row, ne00);
  6133. } else {
  6134. memcpy(dst_row, wdata, ne0*nb0);
  6135. }
  6136. }
  6137. }
  6138. static void ggml_compute_forward_add(
  6139. const struct ggml_compute_params * params,
  6140. const struct ggml_tensor * src0,
  6141. const struct ggml_tensor * src1,
  6142. struct ggml_tensor * dst) {
  6143. switch (src0->type) {
  6144. case GGML_TYPE_F32:
  6145. {
  6146. if (src1->type == GGML_TYPE_F32) {
  6147. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6148. }
  6149. else {
  6150. GGML_ASSERT(false);
  6151. }
  6152. } break;
  6153. case GGML_TYPE_F16:
  6154. {
  6155. if (src1->type == GGML_TYPE_F16) {
  6156. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6157. }
  6158. else if (src1->type == GGML_TYPE_F32) {
  6159. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6160. }
  6161. else {
  6162. GGML_ASSERT(false);
  6163. }
  6164. } break;
  6165. case GGML_TYPE_Q4_0:
  6166. case GGML_TYPE_Q4_1:
  6167. case GGML_TYPE_Q5_0:
  6168. case GGML_TYPE_Q5_1:
  6169. case GGML_TYPE_Q8_0:
  6170. case GGML_TYPE_Q2_K:
  6171. case GGML_TYPE_Q3_K:
  6172. case GGML_TYPE_Q4_K:
  6173. case GGML_TYPE_Q5_K:
  6174. case GGML_TYPE_Q6_K:
  6175. case GGML_TYPE_IQ2_XXS:
  6176. case GGML_TYPE_IQ2_XS:
  6177. {
  6178. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6179. } break;
  6180. default:
  6181. {
  6182. GGML_ASSERT(false);
  6183. } break;
  6184. }
  6185. }
  6186. // ggml_compute_forward_add1
  6187. static void ggml_compute_forward_add1_f32(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. const struct ggml_tensor * src1,
  6191. struct ggml_tensor * dst) {
  6192. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6193. GGML_ASSERT(ggml_is_scalar(src1));
  6194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6195. return;
  6196. }
  6197. const int ith = params->ith;
  6198. const int nth = params->nth;
  6199. const int nr = ggml_nrows(src0);
  6200. GGML_TENSOR_UNARY_OP_LOCALS
  6201. GGML_ASSERT( nb0 == sizeof(float));
  6202. GGML_ASSERT(nb00 == sizeof(float));
  6203. // rows per thread
  6204. const int dr = (nr + nth - 1)/nth;
  6205. // row range for this thread
  6206. const int ir0 = dr*ith;
  6207. const int ir1 = MIN(ir0 + dr, nr);
  6208. for (int ir = ir0; ir < ir1; ++ir) {
  6209. // src0 and dst are same shape => same indices
  6210. const int i3 = ir/(ne2*ne1);
  6211. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6212. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6213. #ifdef GGML_USE_ACCELERATE
  6214. UNUSED(ggml_vec_add1_f32);
  6215. vDSP_vadd(
  6216. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6217. (float *) ((char *) src1->data), 0,
  6218. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6219. ne0);
  6220. #else
  6221. ggml_vec_add1_f32(ne0,
  6222. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6223. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6224. *(float *) src1->data);
  6225. #endif
  6226. }
  6227. }
  6228. static void ggml_compute_forward_add1_f16_f32(
  6229. const struct ggml_compute_params * params,
  6230. const struct ggml_tensor * src0,
  6231. const struct ggml_tensor * src1,
  6232. struct ggml_tensor * dst) {
  6233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6234. GGML_ASSERT(ggml_is_scalar(src1));
  6235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6236. return;
  6237. }
  6238. // scalar to add
  6239. const float v = *(float *) src1->data;
  6240. const int ith = params->ith;
  6241. const int nth = params->nth;
  6242. const int nr = ggml_nrows(src0);
  6243. GGML_TENSOR_UNARY_OP_LOCALS
  6244. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6245. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6246. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6247. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6248. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6249. // rows per thread
  6250. const int dr = (nr + nth - 1)/nth;
  6251. // row range for this thread
  6252. const int ir0 = dr*ith;
  6253. const int ir1 = MIN(ir0 + dr, nr);
  6254. for (int ir = ir0; ir < ir1; ++ir) {
  6255. // src0 and dst are same shape => same indices
  6256. const int i3 = ir/(ne2*ne1);
  6257. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6258. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6259. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6260. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6261. for (int i = 0; i < ne0; i++) {
  6262. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6263. }
  6264. }
  6265. }
  6266. static void ggml_compute_forward_add1_f16_f16(
  6267. const struct ggml_compute_params * params,
  6268. const struct ggml_tensor * src0,
  6269. const struct ggml_tensor * src1,
  6270. struct ggml_tensor * dst) {
  6271. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6272. GGML_ASSERT(ggml_is_scalar(src1));
  6273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6274. return;
  6275. }
  6276. // scalar to add
  6277. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6278. const int ith = params->ith;
  6279. const int nth = params->nth;
  6280. const int nr = ggml_nrows(src0);
  6281. GGML_TENSOR_UNARY_OP_LOCALS
  6282. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6283. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6284. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6285. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6286. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6287. // rows per thread
  6288. const int dr = (nr + nth - 1)/nth;
  6289. // row range for this thread
  6290. const int ir0 = dr*ith;
  6291. const int ir1 = MIN(ir0 + dr, nr);
  6292. for (int ir = ir0; ir < ir1; ++ir) {
  6293. // src0 and dst are same shape => same indices
  6294. const int i3 = ir/(ne2*ne1);
  6295. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6296. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6297. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6298. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6299. for (int i = 0; i < ne0; i++) {
  6300. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6301. }
  6302. }
  6303. }
  6304. static void ggml_compute_forward_add1_q_f32(
  6305. const struct ggml_compute_params * params,
  6306. const struct ggml_tensor * src0,
  6307. const struct ggml_tensor * src1,
  6308. struct ggml_tensor * dst) {
  6309. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6310. GGML_ASSERT(ggml_is_scalar(src1));
  6311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6312. return;
  6313. }
  6314. // scalar to add
  6315. const float v = *(float *) src1->data;
  6316. const int ith = params->ith;
  6317. const int nth = params->nth;
  6318. const int nr = ggml_nrows(src0);
  6319. GGML_TENSOR_UNARY_OP_LOCALS
  6320. const enum ggml_type type = src0->type;
  6321. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6322. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6323. // we don't support permuted src0
  6324. GGML_ASSERT(nb00 == ggml_type_size(type));
  6325. // dst cannot be transposed or permuted
  6326. GGML_ASSERT(nb0 <= nb1);
  6327. GGML_ASSERT(nb1 <= nb2);
  6328. GGML_ASSERT(nb2 <= nb3);
  6329. GGML_ASSERT(ggml_is_quantized(src0->type));
  6330. GGML_ASSERT(dst->type == src0->type);
  6331. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6332. // rows per thread
  6333. const int dr = (nr + nth - 1)/nth;
  6334. // row range for this thread
  6335. const int ir0 = dr*ith;
  6336. const int ir1 = MIN(ir0 + dr, nr);
  6337. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6338. for (int ir = ir0; ir < ir1; ++ir) {
  6339. // src0 and dst are same shape => same indices
  6340. const int i3 = ir/(ne2*ne1);
  6341. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6342. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6343. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6344. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6345. assert(ne0 % 32 == 0);
  6346. // unquantize row from src0 to temp buffer
  6347. dequantize_row_q(src0_row, wdata, ne0);
  6348. // add src1
  6349. ggml_vec_acc1_f32(ne0, wdata, v);
  6350. // quantize row to dst
  6351. quantize_row_q(wdata, dst_row, ne0);
  6352. }
  6353. }
  6354. static void ggml_compute_forward_add1(
  6355. const struct ggml_compute_params * params,
  6356. const struct ggml_tensor * src0,
  6357. const struct ggml_tensor * src1,
  6358. struct ggml_tensor * dst) {
  6359. switch (src0->type) {
  6360. case GGML_TYPE_F32:
  6361. {
  6362. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6363. } break;
  6364. case GGML_TYPE_F16:
  6365. {
  6366. if (src1->type == GGML_TYPE_F16) {
  6367. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6368. }
  6369. else if (src1->type == GGML_TYPE_F32) {
  6370. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6371. }
  6372. else {
  6373. GGML_ASSERT(false);
  6374. }
  6375. } break;
  6376. case GGML_TYPE_Q4_0:
  6377. case GGML_TYPE_Q4_1:
  6378. case GGML_TYPE_Q5_0:
  6379. case GGML_TYPE_Q5_1:
  6380. case GGML_TYPE_Q8_0:
  6381. case GGML_TYPE_Q8_1:
  6382. case GGML_TYPE_Q2_K:
  6383. case GGML_TYPE_Q3_K:
  6384. case GGML_TYPE_Q4_K:
  6385. case GGML_TYPE_Q5_K:
  6386. case GGML_TYPE_Q6_K:
  6387. case GGML_TYPE_IQ2_XXS:
  6388. case GGML_TYPE_IQ2_XS:
  6389. {
  6390. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6391. } break;
  6392. default:
  6393. {
  6394. GGML_ASSERT(false);
  6395. } break;
  6396. }
  6397. }
  6398. // ggml_compute_forward_acc
  6399. static void ggml_compute_forward_acc_f32(
  6400. const struct ggml_compute_params * params,
  6401. const struct ggml_tensor * src0,
  6402. const struct ggml_tensor * src1,
  6403. struct ggml_tensor * dst) {
  6404. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6405. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6406. // view src0 and dst with these strides and data offset inbytes during acc
  6407. // nb0 is implicitly element_size because src0 and dst are contiguous
  6408. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6409. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6410. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6411. size_t offset = ((int32_t *) dst->op_params)[3];
  6412. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6413. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6414. if (params->ith != 0) {
  6415. return;
  6416. }
  6417. // memcpy needs to be synchronized across threads to avoid race conditions.
  6418. // => do it in INIT phase
  6419. memcpy(
  6420. ((char *) dst->data),
  6421. ((char *) src0->data),
  6422. ggml_nbytes(dst));
  6423. }
  6424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6425. return;
  6426. }
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. const int nr = ggml_nrows(src1);
  6430. const int nc = src1->ne[0];
  6431. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6432. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6433. // src0 and dst as viewed during acc
  6434. const size_t nb0 = ggml_element_size(src0);
  6435. const size_t nb00 = nb0;
  6436. const size_t nb01 = nb1;
  6437. const size_t nb02 = nb2;
  6438. const size_t nb03 = nb3;
  6439. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6440. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6441. GGML_ASSERT(nb10 == sizeof(float));
  6442. // rows per thread
  6443. const int dr = (nr + nth - 1)/nth;
  6444. // row range for this thread
  6445. const int ir0 = dr*ith;
  6446. const int ir1 = MIN(ir0 + dr, nr);
  6447. for (int ir = ir0; ir < ir1; ++ir) {
  6448. // src0 and dst are viewed with shape of src1 and offset
  6449. // => same indices
  6450. const int i3 = ir/(ne12*ne11);
  6451. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6452. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6453. #ifdef GGML_USE_ACCELERATE
  6454. vDSP_vadd(
  6455. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6456. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6457. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6458. #else
  6459. ggml_vec_add_f32(nc,
  6460. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6461. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6462. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6463. #endif
  6464. }
  6465. }
  6466. static void ggml_compute_forward_acc(
  6467. const struct ggml_compute_params * params,
  6468. const struct ggml_tensor * src0,
  6469. const struct ggml_tensor * src1,
  6470. struct ggml_tensor * dst) {
  6471. switch (src0->type) {
  6472. case GGML_TYPE_F32:
  6473. {
  6474. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6475. } break;
  6476. case GGML_TYPE_F16:
  6477. case GGML_TYPE_Q4_0:
  6478. case GGML_TYPE_Q4_1:
  6479. case GGML_TYPE_Q5_0:
  6480. case GGML_TYPE_Q5_1:
  6481. case GGML_TYPE_Q8_0:
  6482. case GGML_TYPE_Q8_1:
  6483. case GGML_TYPE_Q2_K:
  6484. case GGML_TYPE_Q3_K:
  6485. case GGML_TYPE_Q4_K:
  6486. case GGML_TYPE_Q5_K:
  6487. case GGML_TYPE_Q6_K:
  6488. case GGML_TYPE_IQ2_XXS:
  6489. case GGML_TYPE_IQ2_XS:
  6490. default:
  6491. {
  6492. GGML_ASSERT(false);
  6493. } break;
  6494. }
  6495. }
  6496. // ggml_compute_forward_sub
  6497. static void ggml_compute_forward_sub_f32(
  6498. const struct ggml_compute_params * params,
  6499. const struct ggml_tensor * src0,
  6500. const struct ggml_tensor * src1,
  6501. struct ggml_tensor * dst) {
  6502. assert(params->ith == 0);
  6503. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6505. return;
  6506. }
  6507. const int nr = ggml_nrows(src0);
  6508. GGML_TENSOR_BINARY_OP_LOCALS
  6509. GGML_ASSERT( nb0 == sizeof(float));
  6510. GGML_ASSERT(nb00 == sizeof(float));
  6511. if (nb10 == sizeof(float)) {
  6512. for (int ir = 0; ir < nr; ++ir) {
  6513. // src0, src1 and dst are same shape => same indices
  6514. const int i3 = ir/(ne2*ne1);
  6515. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6516. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6517. #ifdef GGML_USE_ACCELERATE
  6518. vDSP_vsub(
  6519. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6520. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6521. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6522. ne0);
  6523. #else
  6524. ggml_vec_sub_f32(ne0,
  6525. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6526. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6527. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6528. #endif
  6529. // }
  6530. // }
  6531. }
  6532. } else {
  6533. // src1 is not contiguous
  6534. for (int ir = 0; ir < nr; ++ir) {
  6535. // src0, src1 and dst are same shape => same indices
  6536. const int i3 = ir/(ne2*ne1);
  6537. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6538. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6539. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6540. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6541. for (int i0 = 0; i0 < ne0; i0++) {
  6542. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6543. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6544. }
  6545. }
  6546. }
  6547. }
  6548. static void ggml_compute_forward_sub(
  6549. const struct ggml_compute_params * params,
  6550. const struct ggml_tensor * src0,
  6551. const struct ggml_tensor * src1,
  6552. struct ggml_tensor * dst) {
  6553. switch (src0->type) {
  6554. case GGML_TYPE_F32:
  6555. {
  6556. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6557. } break;
  6558. default:
  6559. {
  6560. GGML_ASSERT(false);
  6561. } break;
  6562. }
  6563. }
  6564. // ggml_compute_forward_mul
  6565. static void ggml_compute_forward_mul_f32(
  6566. const struct ggml_compute_params * params,
  6567. const struct ggml_tensor * src0,
  6568. const struct ggml_tensor * src1,
  6569. struct ggml_tensor * dst) {
  6570. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6572. return;
  6573. }
  6574. const int ith = params->ith;
  6575. const int nth = params->nth;
  6576. #if defined(GGML_USE_CLBLAST)
  6577. if (src1->backend == GGML_BACKEND_GPU) {
  6578. // TODO: OpenCL kernel support full broadcast
  6579. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6580. if (ith == 0) {
  6581. ggml_cl_mul(src0, src1, dst);
  6582. }
  6583. return;
  6584. }
  6585. #endif
  6586. const int64_t nr = ggml_nrows(src0);
  6587. GGML_TENSOR_BINARY_OP_LOCALS
  6588. GGML_ASSERT( nb0 == sizeof(float));
  6589. GGML_ASSERT(nb00 == sizeof(float));
  6590. if (nb10 == sizeof(float)) {
  6591. for (int64_t ir = ith; ir < nr; ir += nth) {
  6592. // src0 and dst are same shape => same indices
  6593. const int64_t i03 = ir/(ne02*ne01);
  6594. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6595. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6596. const int64_t i13 = i03 % ne13;
  6597. const int64_t i12 = i02 % ne12;
  6598. const int64_t i11 = i01 % ne11;
  6599. const int64_t nr0 = ne00 / ne10;
  6600. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6601. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6602. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6603. for (int64_t r = 0 ; r < nr0; ++r) {
  6604. #ifdef GGML_USE_ACCELERATE
  6605. UNUSED(ggml_vec_mul_f32);
  6606. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6607. #else
  6608. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6609. #endif
  6610. }
  6611. }
  6612. } else {
  6613. // src1 is not contiguous
  6614. for (int64_t ir = ith; ir < nr; ir += nth) {
  6615. // src0 and dst are same shape => same indices
  6616. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6617. const int64_t i03 = ir/(ne02*ne01);
  6618. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6619. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6620. const int64_t i13 = i03 % ne13;
  6621. const int64_t i12 = i02 % ne12;
  6622. const int64_t i11 = i01 % ne11;
  6623. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6624. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6625. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6626. const int64_t i10 = i0 % ne10;
  6627. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6628. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6629. }
  6630. }
  6631. }
  6632. }
  6633. static void ggml_compute_forward_mul(
  6634. const struct ggml_compute_params * params,
  6635. const struct ggml_tensor * src0,
  6636. const struct ggml_tensor * src1,
  6637. struct ggml_tensor * dst) {
  6638. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6639. switch (src0->type) {
  6640. case GGML_TYPE_F32:
  6641. {
  6642. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6643. } break;
  6644. default:
  6645. {
  6646. GGML_ASSERT(false);
  6647. } break;
  6648. }
  6649. }
  6650. // ggml_compute_forward_div
  6651. static void ggml_compute_forward_div_f32(
  6652. const struct ggml_compute_params * params,
  6653. const struct ggml_tensor * src0,
  6654. const struct ggml_tensor * src1,
  6655. struct ggml_tensor * dst) {
  6656. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6658. return;
  6659. }
  6660. const int ith = params->ith;
  6661. const int nth = params->nth;
  6662. const int64_t nr = ggml_nrows(src0);
  6663. GGML_TENSOR_BINARY_OP_LOCALS
  6664. GGML_ASSERT( nb0 == sizeof(float));
  6665. GGML_ASSERT(nb00 == sizeof(float));
  6666. if (nb10 == sizeof(float)) {
  6667. for (int64_t ir = ith; ir < nr; ir += nth) {
  6668. // src0 and dst are same shape => same indices
  6669. const int64_t i03 = ir/(ne02*ne01);
  6670. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6671. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6672. const int64_t i13 = i03 % ne13;
  6673. const int64_t i12 = i02 % ne12;
  6674. const int64_t i11 = i01 % ne11;
  6675. const int64_t nr0 = ne00 / ne10;
  6676. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6677. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6678. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6679. for (int64_t r = 0; r < nr0; ++r) {
  6680. #ifdef GGML_USE_ACCELERATE
  6681. UNUSED(ggml_vec_div_f32);
  6682. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6683. #else
  6684. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6685. #endif
  6686. }
  6687. }
  6688. } else {
  6689. // src1 is not contiguous
  6690. for (int64_t ir = ith; ir < nr; ir += nth) {
  6691. // src0 and dst are same shape => same indices
  6692. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6693. const int64_t i03 = ir/(ne02*ne01);
  6694. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6695. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6696. const int64_t i13 = i03 % ne13;
  6697. const int64_t i12 = i02 % ne12;
  6698. const int64_t i11 = i01 % ne11;
  6699. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6700. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6701. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6702. const int64_t i10 = i0 % ne10;
  6703. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6704. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6705. }
  6706. }
  6707. }
  6708. }
  6709. static void ggml_compute_forward_div(
  6710. const struct ggml_compute_params * params,
  6711. const struct ggml_tensor * src0,
  6712. const struct ggml_tensor * src1,
  6713. struct ggml_tensor * dst) {
  6714. switch (src0->type) {
  6715. case GGML_TYPE_F32:
  6716. {
  6717. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6718. } break;
  6719. default:
  6720. {
  6721. GGML_ASSERT(false);
  6722. } break;
  6723. }
  6724. }
  6725. // ggml_compute_forward_sqr
  6726. static void ggml_compute_forward_sqr_f32(
  6727. const struct ggml_compute_params * params,
  6728. const struct ggml_tensor * src0,
  6729. struct ggml_tensor * dst) {
  6730. assert(params->ith == 0);
  6731. assert(ggml_are_same_shape(src0, dst));
  6732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6733. return;
  6734. }
  6735. const int n = ggml_nrows(src0);
  6736. const int nc = src0->ne[0];
  6737. assert( dst->nb[0] == sizeof(float));
  6738. assert(src0->nb[0] == sizeof(float));
  6739. for (int i = 0; i < n; i++) {
  6740. ggml_vec_sqr_f32(nc,
  6741. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6742. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6743. }
  6744. }
  6745. static void ggml_compute_forward_sqr(
  6746. const struct ggml_compute_params * params,
  6747. const struct ggml_tensor * src0,
  6748. struct ggml_tensor * dst) {
  6749. switch (src0->type) {
  6750. case GGML_TYPE_F32:
  6751. {
  6752. ggml_compute_forward_sqr_f32(params, src0, dst);
  6753. } break;
  6754. default:
  6755. {
  6756. GGML_ASSERT(false);
  6757. } break;
  6758. }
  6759. }
  6760. // ggml_compute_forward_sqrt
  6761. static void ggml_compute_forward_sqrt_f32(
  6762. const struct ggml_compute_params * params,
  6763. const struct ggml_tensor * src0,
  6764. struct ggml_tensor * dst) {
  6765. assert(params->ith == 0);
  6766. assert(ggml_are_same_shape(src0, dst));
  6767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6768. return;
  6769. }
  6770. const int n = ggml_nrows(src0);
  6771. const int nc = src0->ne[0];
  6772. assert( dst->nb[0] == sizeof(float));
  6773. assert(src0->nb[0] == sizeof(float));
  6774. for (int i = 0; i < n; i++) {
  6775. ggml_vec_sqrt_f32(nc,
  6776. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6777. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6778. }
  6779. }
  6780. static void ggml_compute_forward_sqrt(
  6781. const struct ggml_compute_params * params,
  6782. const struct ggml_tensor * src0,
  6783. struct ggml_tensor * dst) {
  6784. switch (src0->type) {
  6785. case GGML_TYPE_F32:
  6786. {
  6787. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6788. } break;
  6789. default:
  6790. {
  6791. GGML_ASSERT(false);
  6792. } break;
  6793. }
  6794. }
  6795. // ggml_compute_forward_log
  6796. static void ggml_compute_forward_log_f32(
  6797. const struct ggml_compute_params * params,
  6798. const struct ggml_tensor * src0,
  6799. struct ggml_tensor * dst) {
  6800. GGML_ASSERT(params->ith == 0);
  6801. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6803. return;
  6804. }
  6805. const int n = ggml_nrows(src0);
  6806. const int nc = src0->ne[0];
  6807. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6808. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6809. for (int i = 0; i < n; i++) {
  6810. ggml_vec_log_f32(nc,
  6811. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6812. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6813. }
  6814. }
  6815. static void ggml_compute_forward_log(
  6816. const struct ggml_compute_params * params,
  6817. const struct ggml_tensor * src0,
  6818. struct ggml_tensor * dst) {
  6819. switch (src0->type) {
  6820. case GGML_TYPE_F32:
  6821. {
  6822. ggml_compute_forward_log_f32(params, src0, dst);
  6823. } break;
  6824. default:
  6825. {
  6826. GGML_ASSERT(false);
  6827. } break;
  6828. }
  6829. }
  6830. // ggml_compute_forward_sum
  6831. static void ggml_compute_forward_sum_f32(
  6832. const struct ggml_compute_params * params,
  6833. const struct ggml_tensor * src0,
  6834. struct ggml_tensor * dst) {
  6835. assert(params->ith == 0);
  6836. assert(ggml_is_scalar(dst));
  6837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6838. return;
  6839. }
  6840. assert(ggml_is_scalar(dst));
  6841. assert(src0->nb[0] == sizeof(float));
  6842. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6843. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6844. ggml_float sum = 0;
  6845. ggml_float row_sum = 0;
  6846. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6847. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6848. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6849. ggml_vec_sum_f32_ggf(ne00,
  6850. &row_sum,
  6851. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6852. sum += row_sum;
  6853. }
  6854. }
  6855. }
  6856. ((float *) dst->data)[0] = sum;
  6857. }
  6858. static void ggml_compute_forward_sum_f16(
  6859. const struct ggml_compute_params * params,
  6860. const struct ggml_tensor * src0,
  6861. struct ggml_tensor * dst) {
  6862. assert(params->ith == 0);
  6863. assert(ggml_is_scalar(dst));
  6864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6865. return;
  6866. }
  6867. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6868. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6869. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6870. float sum = 0;
  6871. float row_sum = 0;
  6872. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6873. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6874. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6875. ggml_vec_sum_f16_ggf(ne00,
  6876. &row_sum,
  6877. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6878. sum += row_sum;
  6879. }
  6880. }
  6881. }
  6882. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6883. }
  6884. static void ggml_compute_forward_sum(
  6885. const struct ggml_compute_params * params,
  6886. const struct ggml_tensor * src0,
  6887. struct ggml_tensor * dst) {
  6888. switch (src0->type) {
  6889. case GGML_TYPE_F32:
  6890. {
  6891. ggml_compute_forward_sum_f32(params, src0, dst);
  6892. } break;
  6893. case GGML_TYPE_F16:
  6894. {
  6895. ggml_compute_forward_sum_f16(params, src0, dst);
  6896. } break;
  6897. default:
  6898. {
  6899. GGML_ASSERT(false);
  6900. } break;
  6901. }
  6902. }
  6903. // ggml_compute_forward_sum_rows
  6904. static void ggml_compute_forward_sum_rows_f32(
  6905. const struct ggml_compute_params * params,
  6906. const struct ggml_tensor * src0,
  6907. struct ggml_tensor * dst) {
  6908. GGML_ASSERT(params->ith == 0);
  6909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6910. return;
  6911. }
  6912. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6913. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6914. GGML_TENSOR_UNARY_OP_LOCALS
  6915. GGML_ASSERT(ne0 == 1);
  6916. GGML_ASSERT(ne1 == ne01);
  6917. GGML_ASSERT(ne2 == ne02);
  6918. GGML_ASSERT(ne3 == ne03);
  6919. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6920. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6921. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6922. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6923. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6924. float row_sum = 0;
  6925. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6926. dst_row[0] = row_sum;
  6927. }
  6928. }
  6929. }
  6930. }
  6931. static void ggml_compute_forward_sum_rows(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. switch (src0->type) {
  6936. case GGML_TYPE_F32:
  6937. {
  6938. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6939. } break;
  6940. default:
  6941. {
  6942. GGML_ASSERT(false);
  6943. } break;
  6944. }
  6945. }
  6946. // ggml_compute_forward_mean
  6947. static void ggml_compute_forward_mean_f32(
  6948. const struct ggml_compute_params * params,
  6949. const struct ggml_tensor * src0,
  6950. struct ggml_tensor * dst) {
  6951. assert(params->ith == 0);
  6952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6953. return;
  6954. }
  6955. assert(src0->nb[0] == sizeof(float));
  6956. GGML_TENSOR_UNARY_OP_LOCALS
  6957. assert(ne0 == 1);
  6958. assert(ne1 == ne01);
  6959. assert(ne2 == ne02);
  6960. assert(ne3 == ne03);
  6961. UNUSED(ne0);
  6962. UNUSED(ne1);
  6963. UNUSED(ne2);
  6964. UNUSED(ne3);
  6965. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6966. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6968. ggml_vec_sum_f32(ne00,
  6969. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6970. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6971. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6972. }
  6973. }
  6974. }
  6975. }
  6976. static void ggml_compute_forward_mean(
  6977. const struct ggml_compute_params * params,
  6978. const struct ggml_tensor * src0,
  6979. struct ggml_tensor * dst) {
  6980. switch (src0->type) {
  6981. case GGML_TYPE_F32:
  6982. {
  6983. ggml_compute_forward_mean_f32(params, src0, dst);
  6984. } break;
  6985. default:
  6986. {
  6987. GGML_ASSERT(false);
  6988. } break;
  6989. }
  6990. }
  6991. // ggml_compute_forward_argmax
  6992. static void ggml_compute_forward_argmax_f32(
  6993. const struct ggml_compute_params * params,
  6994. const struct ggml_tensor * src0,
  6995. struct ggml_tensor * dst) {
  6996. assert(params->ith == 0);
  6997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6998. return;
  6999. }
  7000. assert(src0->nb[0] == sizeof(float));
  7001. assert(dst->nb[0] == sizeof(float));
  7002. const int64_t ne00 = src0->ne[0];
  7003. const int64_t ne01 = src0->ne[1];
  7004. const size_t nb01 = src0->nb[1];
  7005. const size_t nb0 = dst->nb[0];
  7006. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7007. float * src = (float *) ((char *) src0->data + i1*nb01);
  7008. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7009. int v = 0;
  7010. ggml_vec_argmax_f32(ne00, &v, src);
  7011. dst_[0] = v;
  7012. }
  7013. }
  7014. static void ggml_compute_forward_argmax(
  7015. const struct ggml_compute_params * params,
  7016. const struct ggml_tensor * src0,
  7017. struct ggml_tensor * dst) {
  7018. switch (src0->type) {
  7019. case GGML_TYPE_F32:
  7020. {
  7021. ggml_compute_forward_argmax_f32(params, src0, dst);
  7022. } break;
  7023. default:
  7024. {
  7025. GGML_ASSERT(false);
  7026. } break;
  7027. }
  7028. }
  7029. // ggml_compute_forward_repeat
  7030. static void ggml_compute_forward_repeat_f32(
  7031. const struct ggml_compute_params * params,
  7032. const struct ggml_tensor * src0,
  7033. struct ggml_tensor * dst) {
  7034. GGML_ASSERT(params->ith == 0);
  7035. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7037. return;
  7038. }
  7039. GGML_TENSOR_UNARY_OP_LOCALS
  7040. // guaranteed to be an integer due to the check in ggml_can_repeat
  7041. const int nr0 = (int)(ne0/ne00);
  7042. const int nr1 = (int)(ne1/ne01);
  7043. const int nr2 = (int)(ne2/ne02);
  7044. const int nr3 = (int)(ne3/ne03);
  7045. // TODO: support for transposed / permuted tensors
  7046. GGML_ASSERT(nb0 == sizeof(float));
  7047. GGML_ASSERT(nb00 == sizeof(float));
  7048. // TODO: maybe this is not optimal?
  7049. for (int i3 = 0; i3 < nr3; i3++) {
  7050. for (int k3 = 0; k3 < ne03; k3++) {
  7051. for (int i2 = 0; i2 < nr2; i2++) {
  7052. for (int k2 = 0; k2 < ne02; k2++) {
  7053. for (int i1 = 0; i1 < nr1; i1++) {
  7054. for (int k1 = 0; k1 < ne01; k1++) {
  7055. for (int i0 = 0; i0 < nr0; i0++) {
  7056. ggml_vec_cpy_f32(ne00,
  7057. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7058. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7059. }
  7060. }
  7061. }
  7062. }
  7063. }
  7064. }
  7065. }
  7066. }
  7067. static void ggml_compute_forward_repeat_f16(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. GGML_ASSERT(params->ith == 0);
  7072. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7074. return;
  7075. }
  7076. GGML_TENSOR_UNARY_OP_LOCALS
  7077. // guaranteed to be an integer due to the check in ggml_can_repeat
  7078. const int nr0 = (int)(ne0/ne00);
  7079. const int nr1 = (int)(ne1/ne01);
  7080. const int nr2 = (int)(ne2/ne02);
  7081. const int nr3 = (int)(ne3/ne03);
  7082. // TODO: support for transposed / permuted tensors
  7083. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7084. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7085. // TODO: maybe this is not optimal?
  7086. for (int i3 = 0; i3 < nr3; i3++) {
  7087. for (int k3 = 0; k3 < ne03; k3++) {
  7088. for (int i2 = 0; i2 < nr2; i2++) {
  7089. for (int k2 = 0; k2 < ne02; k2++) {
  7090. for (int i1 = 0; i1 < nr1; i1++) {
  7091. for (int k1 = 0; k1 < ne01; k1++) {
  7092. for (int i0 = 0; i0 < nr0; i0++) {
  7093. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7094. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7095. // ggml_vec_cpy_f16(ne00, y, x)
  7096. for (int i = 0; i < ne00; ++i) {
  7097. y[i] = x[i];
  7098. }
  7099. }
  7100. }
  7101. }
  7102. }
  7103. }
  7104. }
  7105. }
  7106. }
  7107. static void ggml_compute_forward_repeat(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. struct ggml_tensor * dst) {
  7111. switch (src0->type) {
  7112. case GGML_TYPE_F16:
  7113. case GGML_TYPE_I16:
  7114. {
  7115. ggml_compute_forward_repeat_f16(params, src0, dst);
  7116. } break;
  7117. case GGML_TYPE_F32:
  7118. case GGML_TYPE_I32:
  7119. {
  7120. ggml_compute_forward_repeat_f32(params, src0, dst);
  7121. } break;
  7122. default:
  7123. {
  7124. GGML_ASSERT(false);
  7125. } break;
  7126. }
  7127. }
  7128. // ggml_compute_forward_repeat_back
  7129. static void ggml_compute_forward_repeat_back_f32(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. struct ggml_tensor * dst) {
  7133. GGML_ASSERT(params->ith == 0);
  7134. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7136. return;
  7137. }
  7138. GGML_TENSOR_UNARY_OP_LOCALS
  7139. // guaranteed to be an integer due to the check in ggml_can_repeat
  7140. const int nr0 = (int)(ne00/ne0);
  7141. const int nr1 = (int)(ne01/ne1);
  7142. const int nr2 = (int)(ne02/ne2);
  7143. const int nr3 = (int)(ne03/ne3);
  7144. // TODO: support for transposed / permuted tensors
  7145. GGML_ASSERT(nb0 == sizeof(float));
  7146. GGML_ASSERT(nb00 == sizeof(float));
  7147. if (ggml_is_contiguous(dst)) {
  7148. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7149. } else {
  7150. for (int k3 = 0; k3 < ne3; k3++) {
  7151. for (int k2 = 0; k2 < ne2; k2++) {
  7152. for (int k1 = 0; k1 < ne1; k1++) {
  7153. ggml_vec_set_f32(ne0,
  7154. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7155. 0);
  7156. }
  7157. }
  7158. }
  7159. }
  7160. // TODO: maybe this is not optimal?
  7161. for (int i3 = 0; i3 < nr3; i3++) {
  7162. for (int k3 = 0; k3 < ne3; k3++) {
  7163. for (int i2 = 0; i2 < nr2; i2++) {
  7164. for (int k2 = 0; k2 < ne2; k2++) {
  7165. for (int i1 = 0; i1 < nr1; i1++) {
  7166. for (int k1 = 0; k1 < ne1; k1++) {
  7167. for (int i0 = 0; i0 < nr0; i0++) {
  7168. ggml_vec_acc_f32(ne0,
  7169. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7170. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7171. }
  7172. }
  7173. }
  7174. }
  7175. }
  7176. }
  7177. }
  7178. }
  7179. static void ggml_compute_forward_repeat_back(
  7180. const struct ggml_compute_params * params,
  7181. const struct ggml_tensor * src0,
  7182. struct ggml_tensor * dst) {
  7183. switch (src0->type) {
  7184. case GGML_TYPE_F32:
  7185. {
  7186. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7187. } break;
  7188. default:
  7189. {
  7190. GGML_ASSERT(false);
  7191. } break;
  7192. }
  7193. }
  7194. // ggml_compute_forward_concat
  7195. static void ggml_compute_forward_concat_f32(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * src0,
  7198. const struct ggml_tensor * src1,
  7199. struct ggml_tensor * dst) {
  7200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7201. return;
  7202. }
  7203. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7204. const int ith = params->ith;
  7205. const int nth = params->nth;
  7206. GGML_TENSOR_BINARY_OP_LOCALS
  7207. // TODO: support for transposed / permuted tensors
  7208. GGML_ASSERT(nb0 == sizeof(float));
  7209. GGML_ASSERT(nb00 == sizeof(float));
  7210. GGML_ASSERT(nb10 == sizeof(float));
  7211. for (int i3 = 0; i3 < ne3; i3++) {
  7212. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7213. if (i2 < ne02) { // src0
  7214. for (int i1 = 0; i1 < ne1; i1++) {
  7215. for (int i0 = 0; i0 < ne0; i0++) {
  7216. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7217. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7218. *y = *x;
  7219. }
  7220. }
  7221. } // src1
  7222. else {
  7223. for (int i1 = 0; i1 < ne1; i1++) {
  7224. for (int i0 = 0; i0 < ne0; i0++) {
  7225. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7226. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7227. *y = *x;
  7228. }
  7229. }
  7230. }
  7231. }
  7232. }
  7233. }
  7234. static void ggml_compute_forward_concat(
  7235. const struct ggml_compute_params* params,
  7236. const struct ggml_tensor* src0,
  7237. const struct ggml_tensor* src1,
  7238. struct ggml_tensor* dst) {
  7239. switch (src0->type) {
  7240. case GGML_TYPE_F32:
  7241. case GGML_TYPE_I32:
  7242. {
  7243. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7244. } break;
  7245. default:
  7246. {
  7247. GGML_ASSERT(false);
  7248. } break;
  7249. }
  7250. }
  7251. // ggml_compute_forward_abs
  7252. static void ggml_compute_forward_abs_f32(
  7253. const struct ggml_compute_params * params,
  7254. const struct ggml_tensor * src0,
  7255. struct ggml_tensor * dst) {
  7256. assert(params->ith == 0);
  7257. assert(ggml_are_same_shape(src0, dst));
  7258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7259. return;
  7260. }
  7261. const int n = ggml_nrows(src0);
  7262. const int nc = src0->ne[0];
  7263. assert(dst->nb[0] == sizeof(float));
  7264. assert(src0->nb[0] == sizeof(float));
  7265. for (int i = 0; i < n; i++) {
  7266. ggml_vec_abs_f32(nc,
  7267. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7268. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7269. }
  7270. }
  7271. static void ggml_compute_forward_abs(
  7272. const struct ggml_compute_params * params,
  7273. const struct ggml_tensor * src0,
  7274. struct ggml_tensor * dst) {
  7275. switch (src0->type) {
  7276. case GGML_TYPE_F32:
  7277. {
  7278. ggml_compute_forward_abs_f32(params, src0, dst);
  7279. } break;
  7280. default:
  7281. {
  7282. GGML_ASSERT(false);
  7283. } break;
  7284. }
  7285. }
  7286. // ggml_compute_forward_sgn
  7287. static void ggml_compute_forward_sgn_f32(
  7288. const struct ggml_compute_params * params,
  7289. const struct ggml_tensor * src0,
  7290. struct ggml_tensor * dst) {
  7291. assert(params->ith == 0);
  7292. assert(ggml_are_same_shape(src0, dst));
  7293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7294. return;
  7295. }
  7296. const int n = ggml_nrows(src0);
  7297. const int nc = src0->ne[0];
  7298. assert(dst->nb[0] == sizeof(float));
  7299. assert(src0->nb[0] == sizeof(float));
  7300. for (int i = 0; i < n; i++) {
  7301. ggml_vec_sgn_f32(nc,
  7302. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7303. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7304. }
  7305. }
  7306. static void ggml_compute_forward_sgn(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. struct ggml_tensor * dst) {
  7310. switch (src0->type) {
  7311. case GGML_TYPE_F32:
  7312. {
  7313. ggml_compute_forward_sgn_f32(params, src0, dst);
  7314. } break;
  7315. default:
  7316. {
  7317. GGML_ASSERT(false);
  7318. } break;
  7319. }
  7320. }
  7321. // ggml_compute_forward_neg
  7322. static void ggml_compute_forward_neg_f32(
  7323. const struct ggml_compute_params * params,
  7324. const struct ggml_tensor * src0,
  7325. struct ggml_tensor * dst) {
  7326. assert(params->ith == 0);
  7327. assert(ggml_are_same_shape(src0, dst));
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. const int n = ggml_nrows(src0);
  7332. const int nc = src0->ne[0];
  7333. assert(dst->nb[0] == sizeof(float));
  7334. assert(src0->nb[0] == sizeof(float));
  7335. for (int i = 0; i < n; i++) {
  7336. ggml_vec_neg_f32(nc,
  7337. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7338. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7339. }
  7340. }
  7341. static void ggml_compute_forward_neg(
  7342. const struct ggml_compute_params * params,
  7343. const struct ggml_tensor * src0,
  7344. struct ggml_tensor * dst) {
  7345. switch (src0->type) {
  7346. case GGML_TYPE_F32:
  7347. {
  7348. ggml_compute_forward_neg_f32(params, src0, dst);
  7349. } break;
  7350. default:
  7351. {
  7352. GGML_ASSERT(false);
  7353. } break;
  7354. }
  7355. }
  7356. // ggml_compute_forward_step
  7357. static void ggml_compute_forward_step_f32(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. assert(params->ith == 0);
  7362. assert(ggml_are_same_shape(src0, dst));
  7363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7364. return;
  7365. }
  7366. const int n = ggml_nrows(src0);
  7367. const int nc = src0->ne[0];
  7368. assert(dst->nb[0] == sizeof(float));
  7369. assert(src0->nb[0] == sizeof(float));
  7370. for (int i = 0; i < n; i++) {
  7371. ggml_vec_step_f32(nc,
  7372. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7373. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7374. }
  7375. }
  7376. static void ggml_compute_forward_step(
  7377. const struct ggml_compute_params * params,
  7378. const struct ggml_tensor * src0,
  7379. struct ggml_tensor * dst) {
  7380. switch (src0->type) {
  7381. case GGML_TYPE_F32:
  7382. {
  7383. ggml_compute_forward_step_f32(params, src0, dst);
  7384. } break;
  7385. default:
  7386. {
  7387. GGML_ASSERT(false);
  7388. } break;
  7389. }
  7390. }
  7391. // ggml_compute_forward_tanh
  7392. static void ggml_compute_forward_tanh_f32(
  7393. const struct ggml_compute_params * params,
  7394. const struct ggml_tensor * src0,
  7395. struct ggml_tensor * dst) {
  7396. assert(params->ith == 0);
  7397. assert(ggml_are_same_shape(src0, dst));
  7398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7399. return;
  7400. }
  7401. const int n = ggml_nrows(src0);
  7402. const int nc = src0->ne[0];
  7403. assert(dst->nb[0] == sizeof(float));
  7404. assert(src0->nb[0] == sizeof(float));
  7405. for (int i = 0; i < n; i++) {
  7406. ggml_vec_tanh_f32(nc,
  7407. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7408. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7409. }
  7410. }
  7411. static void ggml_compute_forward_tanh(
  7412. const struct ggml_compute_params * params,
  7413. const struct ggml_tensor * src0,
  7414. struct ggml_tensor * dst) {
  7415. switch (src0->type) {
  7416. case GGML_TYPE_F32:
  7417. {
  7418. ggml_compute_forward_tanh_f32(params, src0, dst);
  7419. } break;
  7420. default:
  7421. {
  7422. GGML_ASSERT(false);
  7423. } break;
  7424. }
  7425. }
  7426. // ggml_compute_forward_elu
  7427. static void ggml_compute_forward_elu_f32(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. struct ggml_tensor * dst) {
  7431. assert(params->ith == 0);
  7432. assert(ggml_are_same_shape(src0, dst));
  7433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7434. return;
  7435. }
  7436. const int n = ggml_nrows(src0);
  7437. const int nc = src0->ne[0];
  7438. assert(dst->nb[0] == sizeof(float));
  7439. assert(src0->nb[0] == sizeof(float));
  7440. for (int i = 0; i < n; i++) {
  7441. ggml_vec_elu_f32(nc,
  7442. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7443. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7444. }
  7445. }
  7446. static void ggml_compute_forward_elu(
  7447. const struct ggml_compute_params * params,
  7448. const struct ggml_tensor * src0,
  7449. struct ggml_tensor * dst) {
  7450. switch (src0->type) {
  7451. case GGML_TYPE_F32:
  7452. {
  7453. ggml_compute_forward_elu_f32(params, src0, dst);
  7454. } break;
  7455. default:
  7456. {
  7457. GGML_ASSERT(false);
  7458. } break;
  7459. }
  7460. }
  7461. // ggml_compute_forward_relu
  7462. static void ggml_compute_forward_relu_f32(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. struct ggml_tensor * dst) {
  7466. assert(params->ith == 0);
  7467. assert(ggml_are_same_shape(src0, dst));
  7468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7469. return;
  7470. }
  7471. const int n = ggml_nrows(src0);
  7472. const int nc = src0->ne[0];
  7473. assert(dst->nb[0] == sizeof(float));
  7474. assert(src0->nb[0] == sizeof(float));
  7475. for (int i = 0; i < n; i++) {
  7476. ggml_vec_relu_f32(nc,
  7477. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7478. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7479. }
  7480. }
  7481. static void ggml_compute_forward_relu(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. struct ggml_tensor * dst) {
  7485. switch (src0->type) {
  7486. case GGML_TYPE_F32:
  7487. {
  7488. ggml_compute_forward_relu_f32(params, src0, dst);
  7489. } break;
  7490. default:
  7491. {
  7492. GGML_ASSERT(false);
  7493. } break;
  7494. }
  7495. }
  7496. // ggml_compute_forward_gelu
  7497. static void ggml_compute_forward_gelu_f32(
  7498. const struct ggml_compute_params * params,
  7499. const struct ggml_tensor * src0,
  7500. struct ggml_tensor * dst) {
  7501. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7502. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7505. return;
  7506. }
  7507. const int ith = params->ith;
  7508. const int nth = params->nth;
  7509. const int nc = src0->ne[0];
  7510. const int nr = ggml_nrows(src0);
  7511. // rows per thread
  7512. const int dr = (nr + nth - 1)/nth;
  7513. // row range for this thread
  7514. const int ir0 = dr*ith;
  7515. const int ir1 = MIN(ir0 + dr, nr);
  7516. for (int i1 = ir0; i1 < ir1; i1++) {
  7517. ggml_vec_gelu_f32(nc,
  7518. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7519. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7520. #ifndef NDEBUG
  7521. for (int k = 0; k < nc; k++) {
  7522. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7523. UNUSED(x);
  7524. assert(!isnan(x));
  7525. assert(!isinf(x));
  7526. }
  7527. #endif
  7528. }
  7529. }
  7530. static void ggml_compute_forward_gelu(
  7531. const struct ggml_compute_params * params,
  7532. const struct ggml_tensor * src0,
  7533. struct ggml_tensor * dst) {
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F32:
  7536. {
  7537. ggml_compute_forward_gelu_f32(params, src0, dst);
  7538. } break;
  7539. default:
  7540. {
  7541. GGML_ASSERT(false);
  7542. } break;
  7543. }
  7544. }
  7545. // ggml_compute_forward_gelu_quick
  7546. static void ggml_compute_forward_gelu_quick_f32(
  7547. const struct ggml_compute_params * params,
  7548. const struct ggml_tensor * src0,
  7549. struct ggml_tensor * dst) {
  7550. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7551. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7552. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7554. return;
  7555. }
  7556. const int ith = params->ith;
  7557. const int nth = params->nth;
  7558. const int nc = src0->ne[0];
  7559. const int nr = ggml_nrows(src0);
  7560. // rows per thread
  7561. const int dr = (nr + nth - 1)/nth;
  7562. // row range for this thread
  7563. const int ir0 = dr*ith;
  7564. const int ir1 = MIN(ir0 + dr, nr);
  7565. for (int i1 = ir0; i1 < ir1; i1++) {
  7566. ggml_vec_gelu_quick_f32(nc,
  7567. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7568. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7569. #ifndef NDEBUG
  7570. for (int k = 0; k < nc; k++) {
  7571. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7572. UNUSED(x);
  7573. assert(!isnan(x));
  7574. assert(!isinf(x));
  7575. }
  7576. #endif
  7577. }
  7578. }
  7579. static void ggml_compute_forward_gelu_quick(
  7580. const struct ggml_compute_params * params,
  7581. const struct ggml_tensor * src0,
  7582. struct ggml_tensor * dst) {
  7583. switch (src0->type) {
  7584. case GGML_TYPE_F32:
  7585. {
  7586. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7587. } break;
  7588. default:
  7589. {
  7590. GGML_ASSERT(false);
  7591. } break;
  7592. }
  7593. }
  7594. // ggml_compute_forward_silu
  7595. static void ggml_compute_forward_silu_f32(
  7596. const struct ggml_compute_params * params,
  7597. const struct ggml_tensor * src0,
  7598. struct ggml_tensor * dst) {
  7599. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7600. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7601. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7603. return;
  7604. }
  7605. const int ith = params->ith;
  7606. const int nth = params->nth;
  7607. const int nc = src0->ne[0];
  7608. const int nr = ggml_nrows(src0);
  7609. // rows per thread
  7610. const int dr = (nr + nth - 1)/nth;
  7611. // row range for this thread
  7612. const int ir0 = dr*ith;
  7613. const int ir1 = MIN(ir0 + dr, nr);
  7614. for (int i1 = ir0; i1 < ir1; i1++) {
  7615. ggml_vec_silu_f32(nc,
  7616. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7617. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7618. #ifndef NDEBUG
  7619. for (int k = 0; k < nc; k++) {
  7620. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7621. UNUSED(x);
  7622. assert(!isnan(x));
  7623. assert(!isinf(x));
  7624. }
  7625. #endif
  7626. }
  7627. }
  7628. static void ggml_compute_forward_silu(
  7629. const struct ggml_compute_params * params,
  7630. const struct ggml_tensor * src0,
  7631. struct ggml_tensor * dst) {
  7632. switch (src0->type) {
  7633. case GGML_TYPE_F32:
  7634. {
  7635. ggml_compute_forward_silu_f32(params, src0, dst);
  7636. } break;
  7637. default:
  7638. {
  7639. GGML_ASSERT(false);
  7640. } break;
  7641. }
  7642. }
  7643. // ggml_compute_forward_leaky_relu
  7644. static void ggml_compute_forward_leaky_relu_f32(
  7645. const struct ggml_compute_params * params,
  7646. const struct ggml_tensor * src0,
  7647. struct ggml_tensor * dst) {
  7648. assert(params->ith == 0);
  7649. assert(ggml_are_same_shape(src0, dst));
  7650. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7651. return;
  7652. }
  7653. const int n = ggml_nrows(src0);
  7654. const int nc = src0->ne[0];
  7655. float negative_slope;
  7656. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7657. assert(dst->nb[0] == sizeof(float));
  7658. assert(src0->nb[0] == sizeof(float));
  7659. for (int i = 0; i < n; i++) {
  7660. ggml_vec_leaky_relu_f32(nc,
  7661. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7662. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7663. }
  7664. }
  7665. static void ggml_compute_forward_leaky_relu(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. switch (src0->type) {
  7670. case GGML_TYPE_F32:
  7671. {
  7672. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7673. } break;
  7674. default:
  7675. {
  7676. GGML_ASSERT(false);
  7677. } break;
  7678. }
  7679. }
  7680. // ggml_compute_forward_silu_back
  7681. static void ggml_compute_forward_silu_back_f32(
  7682. const struct ggml_compute_params * params,
  7683. const struct ggml_tensor * src0,
  7684. const struct ggml_tensor * grad,
  7685. struct ggml_tensor * dst) {
  7686. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7687. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7688. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7689. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7690. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7692. return;
  7693. }
  7694. const int ith = params->ith;
  7695. const int nth = params->nth;
  7696. const int nc = src0->ne[0];
  7697. const int nr = ggml_nrows(src0);
  7698. // rows per thread
  7699. const int dr = (nr + nth - 1)/nth;
  7700. // row range for this thread
  7701. const int ir0 = dr*ith;
  7702. const int ir1 = MIN(ir0 + dr, nr);
  7703. for (int i1 = ir0; i1 < ir1; i1++) {
  7704. ggml_vec_silu_backward_f32(nc,
  7705. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7706. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7707. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7708. #ifndef NDEBUG
  7709. for (int k = 0; k < nc; k++) {
  7710. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7711. UNUSED(x);
  7712. assert(!isnan(x));
  7713. assert(!isinf(x));
  7714. }
  7715. #endif
  7716. }
  7717. }
  7718. static void ggml_compute_forward_silu_back(
  7719. const struct ggml_compute_params * params,
  7720. const struct ggml_tensor * src0,
  7721. const struct ggml_tensor * grad,
  7722. struct ggml_tensor * dst) {
  7723. switch (src0->type) {
  7724. case GGML_TYPE_F32:
  7725. {
  7726. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7727. } break;
  7728. default:
  7729. {
  7730. GGML_ASSERT(false);
  7731. } break;
  7732. }
  7733. }
  7734. static void ggml_compute_forward_hardswish_f32(
  7735. const struct ggml_compute_params * params,
  7736. const struct ggml_tensor * src0,
  7737. struct ggml_tensor * dst) {
  7738. assert(params->ith == 0);
  7739. assert(ggml_are_same_shape(src0, dst));
  7740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7741. return;
  7742. }
  7743. const int n = ggml_nrows(src0);
  7744. const int nc = src0->ne[0];
  7745. assert(dst->nb[0] == sizeof(float));
  7746. assert(src0->nb[0] == sizeof(float));
  7747. for (int i = 0; i < n; i++) {
  7748. ggml_vec_hardswish_f32(nc,
  7749. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7750. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7751. }
  7752. }
  7753. static void ggml_compute_forward_hardswish(
  7754. const struct ggml_compute_params * params,
  7755. const struct ggml_tensor * src0,
  7756. struct ggml_tensor * dst) {
  7757. switch (src0->type) {
  7758. case GGML_TYPE_F32:
  7759. {
  7760. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7761. } break;
  7762. default:
  7763. {
  7764. GGML_ASSERT(false);
  7765. } break;
  7766. }
  7767. }
  7768. static void ggml_compute_forward_hardsigmoid_f32(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst) {
  7772. assert(params->ith == 0);
  7773. assert(ggml_are_same_shape(src0, dst));
  7774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7775. return;
  7776. }
  7777. const int n = ggml_nrows(src0);
  7778. const int nc = src0->ne[0];
  7779. assert(dst->nb[0] == sizeof(float));
  7780. assert(src0->nb[0] == sizeof(float));
  7781. for (int i = 0; i < n; i++) {
  7782. ggml_vec_hardsigmoid_f32(nc,
  7783. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7784. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7785. }
  7786. }
  7787. static void ggml_compute_forward_hardsigmoid(
  7788. const struct ggml_compute_params * params,
  7789. const struct ggml_tensor * src0,
  7790. struct ggml_tensor * dst) {
  7791. switch (src0->type) {
  7792. case GGML_TYPE_F32:
  7793. {
  7794. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7795. } break;
  7796. default:
  7797. {
  7798. GGML_ASSERT(false);
  7799. } break;
  7800. }
  7801. }
  7802. // ggml_compute_forward_norm
  7803. static void ggml_compute_forward_norm_f32(
  7804. const struct ggml_compute_params * params,
  7805. const struct ggml_tensor * src0,
  7806. struct ggml_tensor * dst) {
  7807. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7809. return;
  7810. }
  7811. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7812. const int ith = params->ith;
  7813. const int nth = params->nth;
  7814. GGML_TENSOR_UNARY_OP_LOCALS
  7815. float eps;
  7816. memcpy(&eps, dst->op_params, sizeof(float));
  7817. GGML_ASSERT(eps > 0.0f);
  7818. // TODO: optimize
  7819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7821. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7822. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7823. ggml_float sum = 0.0;
  7824. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7825. sum += (ggml_float)x[i00];
  7826. }
  7827. float mean = sum/ne00;
  7828. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7829. ggml_float sum2 = 0.0;
  7830. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7831. float v = x[i00] - mean;
  7832. y[i00] = v;
  7833. sum2 += (ggml_float)(v*v);
  7834. }
  7835. float variance = sum2/ne00;
  7836. const float scale = 1.0f/sqrtf(variance + eps);
  7837. ggml_vec_scale_f32(ne00, y, scale);
  7838. }
  7839. }
  7840. }
  7841. }
  7842. static void ggml_compute_forward_norm(
  7843. const struct ggml_compute_params * params,
  7844. const struct ggml_tensor * src0,
  7845. struct ggml_tensor * dst) {
  7846. switch (src0->type) {
  7847. case GGML_TYPE_F32:
  7848. {
  7849. ggml_compute_forward_norm_f32(params, src0, dst);
  7850. } break;
  7851. default:
  7852. {
  7853. GGML_ASSERT(false);
  7854. } break;
  7855. }
  7856. }
  7857. // ggml_compute_forward_group_rms_norm
  7858. static void ggml_compute_forward_rms_norm_f32(
  7859. const struct ggml_compute_params * params,
  7860. const struct ggml_tensor * src0,
  7861. struct ggml_tensor * dst) {
  7862. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7864. return;
  7865. }
  7866. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7867. const int ith = params->ith;
  7868. const int nth = params->nth;
  7869. GGML_TENSOR_UNARY_OP_LOCALS
  7870. float eps;
  7871. memcpy(&eps, dst->op_params, sizeof(float));
  7872. GGML_ASSERT(eps > 0.0f);
  7873. // TODO: optimize
  7874. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7875. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7876. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7877. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7878. ggml_float sum = 0.0;
  7879. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7880. sum += (ggml_float)(x[i00] * x[i00]);
  7881. }
  7882. const float mean = sum/ne00;
  7883. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7884. memcpy(y, x, ne00 * sizeof(float));
  7885. // for (int i00 = 0; i00 < ne00; i00++) {
  7886. // y[i00] = x[i00];
  7887. // }
  7888. const float scale = 1.0f/sqrtf(mean + eps);
  7889. ggml_vec_scale_f32(ne00, y, scale);
  7890. }
  7891. }
  7892. }
  7893. }
  7894. static void ggml_compute_forward_rms_norm(
  7895. const struct ggml_compute_params * params,
  7896. const struct ggml_tensor * src0,
  7897. struct ggml_tensor * dst) {
  7898. switch (src0->type) {
  7899. case GGML_TYPE_F32:
  7900. {
  7901. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7902. } break;
  7903. default:
  7904. {
  7905. GGML_ASSERT(false);
  7906. } break;
  7907. }
  7908. }
  7909. static void ggml_compute_forward_rms_norm_back_f32(
  7910. const struct ggml_compute_params * params,
  7911. const struct ggml_tensor * src0,
  7912. const struct ggml_tensor * src1,
  7913. struct ggml_tensor * dst) {
  7914. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7916. return;
  7917. }
  7918. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7919. const int ith = params->ith;
  7920. const int nth = params->nth;
  7921. GGML_TENSOR_BINARY_OP_LOCALS
  7922. float eps;
  7923. memcpy(&eps, dst->op_params, sizeof(float));
  7924. // TODO: optimize
  7925. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7926. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7927. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7928. // src1 is same shape as src0 => same indices
  7929. const int64_t i11 = i01;
  7930. const int64_t i12 = i02;
  7931. const int64_t i13 = i03;
  7932. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7933. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7934. ggml_float sum_xx = 0.0;
  7935. ggml_float sum_xdz = 0.0;
  7936. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7937. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7938. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7939. }
  7940. //const float mean = (float)(sum_xx)/ne00;
  7941. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7942. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7943. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7944. // we could cache rms from forward pass to improve performance.
  7945. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7946. //const float rms = sqrtf(mean_eps);
  7947. const float rrms = 1.0f / sqrtf(mean_eps);
  7948. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7949. {
  7950. // z = rms_norm(x)
  7951. //
  7952. // rms_norm(src0) =
  7953. // scale(
  7954. // src0,
  7955. // div(
  7956. // 1,
  7957. // sqrt(
  7958. // add(
  7959. // scale(
  7960. // sum(
  7961. // sqr(
  7962. // src0)),
  7963. // (1.0/N)),
  7964. // eps))));
  7965. // postorder:
  7966. // ## op args grad
  7967. // 00 param src0 grad[#00]
  7968. // 01 const 1
  7969. // 02 sqr (#00) grad[#02]
  7970. // 03 sum (#02) grad[#03]
  7971. // 04 const 1/N
  7972. // 05 scale (#03, #04) grad[#05]
  7973. // 06 const eps
  7974. // 07 add (#05, #06) grad[#07]
  7975. // 08 sqrt (#07) grad[#08]
  7976. // 09 div (#01,#08) grad[#09]
  7977. // 10 scale (#00,#09) grad[#10]
  7978. //
  7979. // backward pass, given grad[#10]
  7980. // #10: scale
  7981. // grad[#00] += scale(grad[#10],#09)
  7982. // grad[#09] += sum(mul(grad[#10],#00))
  7983. // #09: div
  7984. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7985. // #08: sqrt
  7986. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7987. // #07: add
  7988. // grad[#05] += grad[#07]
  7989. // #05: scale
  7990. // grad[#03] += scale(grad[#05],#04)
  7991. // #03: sum
  7992. // grad[#02] += repeat(grad[#03], #02)
  7993. // #02:
  7994. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7995. //
  7996. // substitute and simplify:
  7997. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7998. // grad[#02] = repeat(grad[#03], #02)
  7999. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8000. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8001. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8002. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8003. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8004. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8005. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8006. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8007. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8008. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8009. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8010. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8011. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8012. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8013. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8014. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8015. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8016. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8017. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8018. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8019. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8020. // a = b*c + d*e
  8021. // a = b*c*f/f + d*e*f/f
  8022. // a = (b*c*f + d*e*f)*(1/f)
  8023. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8024. // a = (b + d*e/c)*c
  8025. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8026. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8027. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8028. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8029. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8030. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8031. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8032. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8033. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8034. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8035. }
  8036. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8037. // post-order:
  8038. // dx := x
  8039. // dx := scale(dx,-mean_xdz/mean_eps)
  8040. // dx := add(dx, dz)
  8041. // dx := scale(dx, rrms)
  8042. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8043. ggml_vec_cpy_f32 (ne00, dx, x);
  8044. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8045. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8046. ggml_vec_acc_f32 (ne00, dx, dz);
  8047. ggml_vec_scale_f32(ne00, dx, rrms);
  8048. }
  8049. }
  8050. }
  8051. }
  8052. static void ggml_compute_forward_rms_norm_back(
  8053. const struct ggml_compute_params * params,
  8054. const struct ggml_tensor * src0,
  8055. const struct ggml_tensor * src1,
  8056. struct ggml_tensor * dst) {
  8057. switch (src0->type) {
  8058. case GGML_TYPE_F32:
  8059. {
  8060. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8061. } break;
  8062. default:
  8063. {
  8064. GGML_ASSERT(false);
  8065. } break;
  8066. }
  8067. }
  8068. // ggml_compute_forward_group_norm
  8069. static void ggml_compute_forward_group_norm_f32(
  8070. const struct ggml_compute_params * params,
  8071. const struct ggml_tensor * src0,
  8072. struct ggml_tensor * dst) {
  8073. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8075. return;
  8076. }
  8077. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8078. const int ith = params->ith;
  8079. const int nth = params->nth;
  8080. GGML_TENSOR_UNARY_OP_LOCALS
  8081. const float eps = 1e-6f; // TODO: make this a parameter
  8082. // TODO: optimize
  8083. int n_channels = src0->ne[2];
  8084. int n_groups = dst->op_params[0];
  8085. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8086. for (int i = ith; i < n_groups; i+=nth) {
  8087. int start = i * n_channels_per_group;
  8088. int end = start + n_channels_per_group;
  8089. if (end > n_channels) {
  8090. end = n_channels;
  8091. }
  8092. int step = end - start;
  8093. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8094. ggml_float sum = 0.0;
  8095. for (int64_t i02 = start; i02 < end; i02++) {
  8096. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8097. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8098. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8099. sum += (ggml_float)x[i00];
  8100. }
  8101. }
  8102. }
  8103. float mean = sum / (ne00 * ne01 * step);
  8104. ggml_float sum2 = 0.0;
  8105. for (int64_t i02 = start; i02 < end; i02++) {
  8106. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8107. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8108. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8110. float v = x[i00] - mean;
  8111. y[i00] = v;
  8112. sum2 += (ggml_float)(v * v);
  8113. }
  8114. }
  8115. }
  8116. float variance = sum2 / (ne00 * ne01 * step);
  8117. const float scale = 1.0f / sqrtf(variance + eps);
  8118. for (int64_t i02 = start; i02 < end; i02++) {
  8119. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8120. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8121. ggml_vec_scale_f32(ne00, y, scale);
  8122. }
  8123. }
  8124. }
  8125. }
  8126. }
  8127. static void ggml_compute_forward_group_norm(
  8128. const struct ggml_compute_params * params,
  8129. const struct ggml_tensor * src0,
  8130. struct ggml_tensor * dst) {
  8131. switch (src0->type) {
  8132. case GGML_TYPE_F32:
  8133. {
  8134. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8135. } break;
  8136. default:
  8137. {
  8138. GGML_ASSERT(false);
  8139. } break;
  8140. }
  8141. }
  8142. // ggml_compute_forward_mul_mat
  8143. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8144. // helper function to determine if it is better to use BLAS or not
  8145. // for large matrices, BLAS is faster
  8146. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8147. const struct ggml_tensor * src0 = dst->src[0];
  8148. const struct ggml_tensor * src1 = dst->src[1];
  8149. //const int64_t ne00 = src0->ne[0];
  8150. //const int64_t ne01 = src0->ne[1];
  8151. const int64_t ne10 = src1->ne[0];
  8152. const int64_t ne0 = dst->ne[0];
  8153. const int64_t ne1 = dst->ne[1];
  8154. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8155. // all the experts for each batch element and the processing would become incredibly slow
  8156. // TODO: find the optimal values for these
  8157. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8158. ggml_is_contiguous(src0) &&
  8159. ggml_is_contiguous(src1) &&
  8160. //src0->type == GGML_TYPE_F32 &&
  8161. src1->type == GGML_TYPE_F32 &&
  8162. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8163. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8164. return true;
  8165. }
  8166. return false;
  8167. }
  8168. #endif
  8169. static void ggml_compute_forward_mul_mat(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * src0,
  8172. const struct ggml_tensor * src1,
  8173. struct ggml_tensor * dst) {
  8174. int64_t t0 = ggml_perf_time_us();
  8175. UNUSED(t0);
  8176. GGML_TENSOR_BINARY_OP_LOCALS
  8177. const int ith = params->ith;
  8178. const int nth = params->nth;
  8179. const enum ggml_type type = src0->type;
  8180. const bool src1_cont = ggml_is_contiguous(src1);
  8181. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8182. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8183. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8184. GGML_ASSERT(ne0 == ne01);
  8185. GGML_ASSERT(ne1 == ne11);
  8186. GGML_ASSERT(ne2 == ne12);
  8187. GGML_ASSERT(ne3 == ne13);
  8188. // we don't support permuted src0 or src1
  8189. GGML_ASSERT(nb00 == ggml_type_size(type));
  8190. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8191. // dst cannot be transposed or permuted
  8192. GGML_ASSERT(nb0 == sizeof(float));
  8193. GGML_ASSERT(nb0 <= nb1);
  8194. GGML_ASSERT(nb1 <= nb2);
  8195. GGML_ASSERT(nb2 <= nb3);
  8196. // broadcast factors
  8197. const int64_t r2 = ne12/ne02;
  8198. const int64_t r3 = ne13/ne03;
  8199. // nb01 >= nb00 - src0 is not transposed
  8200. // compute by src0 rows
  8201. #if defined(GGML_USE_CLBLAST)
  8202. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8203. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8204. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8205. }
  8206. return;
  8207. }
  8208. #endif
  8209. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8210. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8211. const int64_t ne_plane = ne01*ne00;
  8212. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8213. UNUSED(desired_wsize);
  8214. if (params->type == GGML_TASK_INIT) {
  8215. if (type != GGML_TYPE_F32) {
  8216. assert(params->wsize >= desired_wsize);
  8217. // parallelize by src0 rows
  8218. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8219. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8220. // broadcast src0 into src1 across 2nd,3rd dimension
  8221. const int64_t i03 = i13/r3;
  8222. const int64_t i02 = i12/r2;
  8223. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8224. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8225. ggml_to_float_t const to_float = type_traits[type].to_float;
  8226. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8227. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8228. }
  8229. }
  8230. }
  8231. }
  8232. return;
  8233. }
  8234. if (params->type == GGML_TASK_FINALIZE) {
  8235. return;
  8236. }
  8237. // perform sgemm, parallelization controlled by blas lib
  8238. if (ith != 0) {
  8239. return;
  8240. }
  8241. //const int64_t tgemm0 = ggml_perf_time_us();
  8242. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8243. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8244. const int64_t i03 = i13/r3;
  8245. const int64_t i02 = i12/r2;
  8246. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8247. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8248. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8249. if (type != GGML_TYPE_F32) {
  8250. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8251. }
  8252. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8253. ne1, ne01, ne10,
  8254. 1.0f, y, ne10,
  8255. x, ne00,
  8256. 0.0f, d, ne01);
  8257. }
  8258. }
  8259. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8260. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8261. return;
  8262. }
  8263. #endif
  8264. if (params->type == GGML_TASK_INIT) {
  8265. if (ith != 0) {
  8266. return;
  8267. }
  8268. if (src1->type != vec_dot_type) {
  8269. char * wdata = params->wdata;
  8270. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8271. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8272. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8273. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8274. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8275. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8276. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8277. wdata += row_size;
  8278. }
  8279. }
  8280. }
  8281. }
  8282. return;
  8283. }
  8284. if (params->type == GGML_TASK_FINALIZE) {
  8285. return;
  8286. }
  8287. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8288. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8289. const int64_t nr0 = ne01; // src0 rows
  8290. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8291. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8292. // distribute the thread work across the inner or outer loop based on which one is larger
  8293. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8294. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8295. const int64_t ith0 = ith % nth0;
  8296. const int64_t ith1 = ith / nth0;
  8297. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8298. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8299. const int64_t ir010 = dr0*ith0;
  8300. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8301. const int64_t ir110 = dr1*ith1;
  8302. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8303. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8304. // threads with no work simply yield (not sure if it helps)
  8305. if (ir010 >= ir011 || ir110 >= ir111) {
  8306. sched_yield();
  8307. return;
  8308. }
  8309. assert(ne12 % ne02 == 0);
  8310. assert(ne13 % ne03 == 0);
  8311. // block-tiling attempt
  8312. const int64_t blck_0 = 16;
  8313. const int64_t blck_1 = 16;
  8314. // attempt to reduce false-sharing (does not seem to make a difference)
  8315. float tmp[16];
  8316. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8317. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8318. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8319. const int64_t i13 = (ir1/(ne12*ne1));
  8320. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8321. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8322. // broadcast src0 into src1
  8323. const int64_t i03 = i13/r3;
  8324. const int64_t i02 = i12/r2;
  8325. const int64_t i1 = i11;
  8326. const int64_t i2 = i12;
  8327. const int64_t i3 = i13;
  8328. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8329. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8330. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8331. // the original src1 data pointer, so we should index using the indices directly
  8332. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8333. const char * src1_col = (const char *) wdata +
  8334. (src1_cont || src1->type != vec_dot_type
  8335. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8336. : (i11*nb11 + i12*nb12 + i13*nb13));
  8337. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8338. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8339. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8340. //}
  8341. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8342. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8343. }
  8344. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8345. }
  8346. }
  8347. }
  8348. }
  8349. // ggml_compute_forward_mul_mat_id
  8350. static void ggml_compute_forward_mul_mat_id(
  8351. const struct ggml_compute_params * params,
  8352. const struct ggml_tensor * ids,
  8353. const struct ggml_tensor * src1,
  8354. struct ggml_tensor * dst) {
  8355. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8356. GGML_TENSOR_BINARY_OP_LOCALS
  8357. const int ith = params->ith;
  8358. const int nth = params->nth;
  8359. const enum ggml_type type = src0->type;
  8360. const bool src1_cont = ggml_is_contiguous(src1);
  8361. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8362. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8363. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8364. GGML_ASSERT(ne0 == ne01);
  8365. GGML_ASSERT(ne1 == ne11);
  8366. GGML_ASSERT(ne2 == ne12);
  8367. GGML_ASSERT(ne3 == ne13);
  8368. // we don't support permuted src0 or src1
  8369. GGML_ASSERT(nb00 == ggml_type_size(type));
  8370. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8371. // dst cannot be transposed or permuted
  8372. GGML_ASSERT(nb0 == sizeof(float));
  8373. GGML_ASSERT(nb0 <= nb1);
  8374. GGML_ASSERT(nb1 <= nb2);
  8375. GGML_ASSERT(nb2 <= nb3);
  8376. // broadcast factors
  8377. const int64_t r2 = ne12/ne02;
  8378. const int64_t r3 = ne13/ne03;
  8379. // row groups
  8380. const int id = ggml_get_op_params_i32(dst, 0);
  8381. const int n_as = ggml_get_op_params_i32(dst, 1);
  8382. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8383. (char *) params->wdata :
  8384. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8385. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8386. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8387. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8388. if (params->type == GGML_TASK_INIT) {
  8389. if (ith != 0) {
  8390. return;
  8391. }
  8392. char * wdata = params->wdata;
  8393. if (src1->type != vec_dot_type) {
  8394. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8395. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8396. assert(src1->type == GGML_TYPE_F32);
  8397. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8398. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8399. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8400. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8401. wdata += row_size;
  8402. }
  8403. }
  8404. }
  8405. }
  8406. // initialize matrix_row_counts
  8407. GGML_ASSERT(wdata == wdata_src1_end);
  8408. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8409. // group rows by src0 matrix
  8410. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8411. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8412. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8413. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8414. matrix_row_counts[row_id] += 1;
  8415. }
  8416. return;
  8417. }
  8418. if (params->type == GGML_TASK_FINALIZE) {
  8419. return;
  8420. }
  8421. // compute each matrix multiplication in sequence
  8422. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8423. const int64_t cne1 = matrix_row_counts[cur_a];
  8424. if (cne1 == 0) {
  8425. continue;
  8426. }
  8427. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8428. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8429. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8430. const int64_t nr0 = ne01; // src0 rows
  8431. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8432. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8433. // distribute the thread work across the inner or outer loop based on which one is larger
  8434. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8435. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8436. const int64_t ith0 = ith % nth0;
  8437. const int64_t ith1 = ith / nth0;
  8438. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8439. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8440. const int64_t ir010 = dr0*ith0;
  8441. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8442. const int64_t ir110 = dr1*ith1;
  8443. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8444. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8445. // threads with no work simply yield (not sure if it helps)
  8446. if (ir010 >= ir011 || ir110 >= ir111) {
  8447. sched_yield();
  8448. continue;
  8449. }
  8450. assert(ne12 % ne02 == 0);
  8451. assert(ne13 % ne03 == 0);
  8452. // block-tiling attempt
  8453. const int64_t blck_0 = 16;
  8454. const int64_t blck_1 = 16;
  8455. // attempt to reduce false-sharing (does not seem to make a difference)
  8456. float tmp[16];
  8457. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8458. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8459. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8460. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8461. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8462. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8463. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8464. // broadcast src0 into src1
  8465. const int64_t i03 = i13/r3;
  8466. const int64_t i02 = i12/r2;
  8467. const int64_t i1 = i11;
  8468. const int64_t i2 = i12;
  8469. const int64_t i3 = i13;
  8470. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8471. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8472. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8473. // the original src1 data pointer, so we should index using the indices directly
  8474. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8475. const char * src1_col = (const char *) wdata +
  8476. (src1_cont || src1->type != vec_dot_type
  8477. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8478. : (i11*nb11 + i12*nb12 + i13*nb13));
  8479. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8480. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8481. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8482. //}
  8483. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8484. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8485. }
  8486. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8487. }
  8488. }
  8489. }
  8490. }
  8491. #undef MMID_MATRIX_ROW
  8492. }
  8493. // ggml_compute_forward_out_prod
  8494. static void ggml_compute_forward_out_prod_f32(
  8495. const struct ggml_compute_params * params,
  8496. const struct ggml_tensor * src0,
  8497. const struct ggml_tensor * src1,
  8498. struct ggml_tensor * dst) {
  8499. // int64_t t0 = ggml_perf_time_us();
  8500. // UNUSED(t0);
  8501. GGML_TENSOR_BINARY_OP_LOCALS
  8502. const int ith = params->ith;
  8503. const int nth = params->nth;
  8504. GGML_ASSERT(ne0 == ne00);
  8505. GGML_ASSERT(ne1 == ne10);
  8506. GGML_ASSERT(ne2 == ne02);
  8507. GGML_ASSERT(ne02 == ne12);
  8508. GGML_ASSERT(ne3 == ne13);
  8509. GGML_ASSERT(ne03 == ne13);
  8510. // we don't support permuted src0 or src1
  8511. GGML_ASSERT(nb00 == sizeof(float));
  8512. // dst cannot be transposed or permuted
  8513. GGML_ASSERT(nb0 == sizeof(float));
  8514. // GGML_ASSERT(nb0 <= nb1);
  8515. // GGML_ASSERT(nb1 <= nb2);
  8516. // GGML_ASSERT(nb2 <= nb3);
  8517. // nb01 >= nb00 - src0 is not transposed
  8518. // compute by src0 rows
  8519. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8520. // TODO: #if defined(GGML_USE_CLBLAST)
  8521. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8522. bool use_blas = ggml_is_matrix(src0) &&
  8523. ggml_is_matrix(src1) &&
  8524. ggml_is_contiguous(src0) &&
  8525. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8526. #endif
  8527. if (params->type == GGML_TASK_INIT) {
  8528. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8529. if (use_blas) {
  8530. return;
  8531. }
  8532. #endif
  8533. if (ith != 0) {
  8534. return;
  8535. }
  8536. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8537. return;
  8538. }
  8539. if (params->type == GGML_TASK_FINALIZE) {
  8540. return;
  8541. }
  8542. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8543. if (use_blas) {
  8544. if (params->ith != 0) { // All threads other than the first do no work.
  8545. return;
  8546. }
  8547. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8548. // src0: (k,n)
  8549. // src1: (k,m)
  8550. // dst: (m,n)
  8551. //
  8552. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8553. // Also expressed as (major,minor)
  8554. // a: (m,k): so src1 transposed
  8555. // b: (k,n): so src0
  8556. // c: (m,n)
  8557. //
  8558. // However, if ggml_is_transposed(src1) is true, then
  8559. // src1->data already contains a transposed version, so sgemm mustn't
  8560. // transpose it further.
  8561. int n = src0->ne[0];
  8562. int k = src0->ne[1];
  8563. int m = src1->ne[0];
  8564. int transposeA, lda;
  8565. if (!ggml_is_transposed(src1)) {
  8566. transposeA = CblasTrans;
  8567. lda = m;
  8568. } else {
  8569. transposeA = CblasNoTrans;
  8570. lda = k;
  8571. }
  8572. float * a = (float *) ((char *) src1->data);
  8573. float * b = (float *) ((char *) src0->data);
  8574. float * c = (float *) ((char *) dst->data);
  8575. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8576. return;
  8577. }
  8578. #endif
  8579. // dst[:,:,:,:] = 0
  8580. // for i2,i3:
  8581. // for i1:
  8582. // for i01:
  8583. // for i0:
  8584. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8585. // parallelize by last three dimensions
  8586. // total rows in dst
  8587. const int64_t nr = ne1*ne2*ne3;
  8588. // rows per thread
  8589. const int64_t dr = (nr + nth - 1)/nth;
  8590. // row range for this thread
  8591. const int64_t ir0 = dr*ith;
  8592. const int64_t ir1 = MIN(ir0 + dr, nr);
  8593. // block-tiling attempt
  8594. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8595. const int64_t blck_1 = 16;
  8596. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8597. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8598. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8599. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8600. for (int64_t ir = bir; ir < bir1; ++ir) {
  8601. // dst indices
  8602. const int64_t i3 = ir/(ne2*ne1);
  8603. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8604. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8605. const int64_t i02 = i2;
  8606. const int64_t i03 = i3;
  8607. //const int64_t i10 = i1;
  8608. const int64_t i12 = i2;
  8609. const int64_t i13 = i3;
  8610. #if GGML_VEC_MAD_UNROLL > 2
  8611. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8612. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8613. const int64_t i11 = i01;
  8614. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8615. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8616. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8617. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8618. }
  8619. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8620. const int64_t i11 = i01;
  8621. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8622. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8623. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8624. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8625. }
  8626. #else
  8627. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8628. const int64_t i11 = i01;
  8629. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8630. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8631. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8632. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8633. }
  8634. #endif
  8635. }
  8636. }
  8637. }
  8638. //int64_t t1 = ggml_perf_time_us();
  8639. //static int64_t acc = 0;
  8640. //acc += t1 - t0;
  8641. //if (t1 - t0 > 10) {
  8642. // printf("\n");
  8643. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8644. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8645. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8646. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8647. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8648. //}
  8649. }
  8650. static void ggml_compute_forward_out_prod_q_f32(
  8651. const struct ggml_compute_params * params,
  8652. const struct ggml_tensor * src0,
  8653. const struct ggml_tensor * src1,
  8654. struct ggml_tensor * dst) {
  8655. // int64_t t0 = ggml_perf_time_us();
  8656. // UNUSED(t0);
  8657. GGML_TENSOR_BINARY_OP_LOCALS;
  8658. const int ith = params->ith;
  8659. const int nth = params->nth;
  8660. const enum ggml_type type = src0->type;
  8661. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8662. GGML_ASSERT(ne02 == ne12);
  8663. GGML_ASSERT(ne03 == ne13);
  8664. GGML_ASSERT(ne2 == ne12);
  8665. GGML_ASSERT(ne3 == ne13);
  8666. // we don't support permuted src0 dim0
  8667. GGML_ASSERT(nb00 == ggml_type_size(type));
  8668. // dst dim0 cannot be transposed or permuted
  8669. GGML_ASSERT(nb0 == sizeof(float));
  8670. // GGML_ASSERT(nb0 <= nb1);
  8671. // GGML_ASSERT(nb1 <= nb2);
  8672. // GGML_ASSERT(nb2 <= nb3);
  8673. GGML_ASSERT(ne0 == ne00);
  8674. GGML_ASSERT(ne1 == ne10);
  8675. GGML_ASSERT(ne2 == ne02);
  8676. GGML_ASSERT(ne3 == ne03);
  8677. // nb01 >= nb00 - src0 is not transposed
  8678. // compute by src0 rows
  8679. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8680. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8681. if (params->type == GGML_TASK_INIT) {
  8682. if (ith != 0) {
  8683. return;
  8684. }
  8685. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8686. return;
  8687. }
  8688. if (params->type == GGML_TASK_FINALIZE) {
  8689. return;
  8690. }
  8691. // parallelize by last three dimensions
  8692. // total rows in dst
  8693. const int64_t nr = ne1*ne2*ne3;
  8694. // rows per thread
  8695. const int64_t dr = (nr + nth - 1)/nth;
  8696. // row range for this thread
  8697. const int64_t ir0 = dr*ith;
  8698. const int64_t ir1 = MIN(ir0 + dr, nr);
  8699. // dst[:,:,:,:] = 0
  8700. // for i2,i3:
  8701. // for i1:
  8702. // for i01:
  8703. // for i0:
  8704. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8705. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8706. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8707. // dst indices
  8708. const int64_t i3 = ir/(ne2*ne1);
  8709. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8710. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8711. const int64_t i02 = i2;
  8712. const int64_t i03 = i3;
  8713. //const int64_t i10 = i1;
  8714. const int64_t i12 = i2;
  8715. const int64_t i13 = i3;
  8716. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8717. const int64_t i11 = i01;
  8718. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8719. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8720. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8721. dequantize_row_q(s0, wdata, ne0);
  8722. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8723. }
  8724. }
  8725. //int64_t t1 = ggml_perf_time_us();
  8726. //static int64_t acc = 0;
  8727. //acc += t1 - t0;
  8728. //if (t1 - t0 > 10) {
  8729. // printf("\n");
  8730. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8731. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8732. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8733. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8734. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8735. //}
  8736. }
  8737. static void ggml_compute_forward_out_prod(
  8738. const struct ggml_compute_params * params,
  8739. const struct ggml_tensor * src0,
  8740. const struct ggml_tensor * src1,
  8741. struct ggml_tensor * dst) {
  8742. switch (src0->type) {
  8743. case GGML_TYPE_Q4_0:
  8744. case GGML_TYPE_Q4_1:
  8745. case GGML_TYPE_Q5_0:
  8746. case GGML_TYPE_Q5_1:
  8747. case GGML_TYPE_Q8_0:
  8748. case GGML_TYPE_Q2_K:
  8749. case GGML_TYPE_Q3_K:
  8750. case GGML_TYPE_Q4_K:
  8751. case GGML_TYPE_Q5_K:
  8752. case GGML_TYPE_Q6_K:
  8753. case GGML_TYPE_IQ2_XXS:
  8754. case GGML_TYPE_IQ2_XS:
  8755. {
  8756. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8757. } break;
  8758. case GGML_TYPE_F16:
  8759. {
  8760. GGML_ASSERT(false); // todo
  8761. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8762. } break;
  8763. case GGML_TYPE_F32:
  8764. {
  8765. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8766. } break;
  8767. default:
  8768. {
  8769. GGML_ASSERT(false);
  8770. } break;
  8771. }
  8772. }
  8773. // ggml_compute_forward_scale
  8774. static void ggml_compute_forward_scale_f32(
  8775. const struct ggml_compute_params * params,
  8776. const struct ggml_tensor * src0,
  8777. struct ggml_tensor * dst) {
  8778. GGML_ASSERT(ggml_is_contiguous(src0));
  8779. GGML_ASSERT(ggml_is_contiguous(dst));
  8780. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8782. return;
  8783. }
  8784. // scale factor
  8785. float v;
  8786. memcpy(&v, dst->op_params, sizeof(float));
  8787. const int ith = params->ith;
  8788. const int nth = params->nth;
  8789. const int nc = src0->ne[0];
  8790. const int nr = ggml_nrows(src0);
  8791. // rows per thread
  8792. const int dr = (nr + nth - 1)/nth;
  8793. // row range for this thread
  8794. const int ir0 = dr*ith;
  8795. const int ir1 = MIN(ir0 + dr, nr);
  8796. const size_t nb01 = src0->nb[1];
  8797. const size_t nb1 = dst->nb[1];
  8798. for (int i1 = ir0; i1 < ir1; i1++) {
  8799. if (dst->data != src0->data) {
  8800. // src0 is same shape as dst => same indices
  8801. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8802. }
  8803. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8804. }
  8805. }
  8806. static void ggml_compute_forward_scale(
  8807. const struct ggml_compute_params * params,
  8808. const struct ggml_tensor * src0,
  8809. struct ggml_tensor * dst) {
  8810. switch (src0->type) {
  8811. case GGML_TYPE_F32:
  8812. {
  8813. ggml_compute_forward_scale_f32(params, src0, dst);
  8814. } break;
  8815. default:
  8816. {
  8817. GGML_ASSERT(false);
  8818. } break;
  8819. }
  8820. }
  8821. // ggml_compute_forward_set
  8822. static void ggml_compute_forward_set_f32(
  8823. const struct ggml_compute_params * params,
  8824. const struct ggml_tensor * src0,
  8825. const struct ggml_tensor * src1,
  8826. struct ggml_tensor * dst) {
  8827. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8828. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8829. // view src0 and dst with these strides and data offset inbytes during set
  8830. // nb0 is implicitly element_size because src0 and dst are contiguous
  8831. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8832. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8833. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8834. size_t offset = ((int32_t *) dst->op_params)[3];
  8835. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8836. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8837. if (params->ith != 0) {
  8838. return;
  8839. }
  8840. // memcpy needs to be synchronized across threads to avoid race conditions.
  8841. // => do it in INIT phase
  8842. memcpy(
  8843. ((char *) dst->data),
  8844. ((char *) src0->data),
  8845. ggml_nbytes(dst));
  8846. }
  8847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8848. return;
  8849. }
  8850. const int ith = params->ith;
  8851. const int nth = params->nth;
  8852. const int nr = ggml_nrows(src1);
  8853. const int nc = src1->ne[0];
  8854. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8855. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8856. // src0 and dst as viewed during set
  8857. const size_t nb0 = ggml_element_size(src0);
  8858. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8859. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8860. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8861. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8862. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8863. GGML_ASSERT(nb10 == sizeof(float));
  8864. // rows per thread
  8865. const int dr = (nr + nth - 1)/nth;
  8866. // row range for this thread
  8867. const int ir0 = dr*ith;
  8868. const int ir1 = MIN(ir0 + dr, nr);
  8869. for (int ir = ir0; ir < ir1; ++ir) {
  8870. // src0 and dst are viewed with shape of src1 and offset
  8871. // => same indices
  8872. const int i3 = ir/(ne12*ne11);
  8873. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8874. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8875. ggml_vec_cpy_f32(nc,
  8876. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8877. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8878. }
  8879. }
  8880. static void ggml_compute_forward_set(
  8881. const struct ggml_compute_params * params,
  8882. const struct ggml_tensor * src0,
  8883. const struct ggml_tensor * src1,
  8884. struct ggml_tensor * dst) {
  8885. switch (src0->type) {
  8886. case GGML_TYPE_F32:
  8887. {
  8888. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8889. } break;
  8890. case GGML_TYPE_F16:
  8891. case GGML_TYPE_Q4_0:
  8892. case GGML_TYPE_Q4_1:
  8893. case GGML_TYPE_Q5_0:
  8894. case GGML_TYPE_Q5_1:
  8895. case GGML_TYPE_Q8_0:
  8896. case GGML_TYPE_Q8_1:
  8897. case GGML_TYPE_Q2_K:
  8898. case GGML_TYPE_Q3_K:
  8899. case GGML_TYPE_Q4_K:
  8900. case GGML_TYPE_Q5_K:
  8901. case GGML_TYPE_Q6_K:
  8902. case GGML_TYPE_IQ2_XXS:
  8903. case GGML_TYPE_IQ2_XS:
  8904. default:
  8905. {
  8906. GGML_ASSERT(false);
  8907. } break;
  8908. }
  8909. }
  8910. // ggml_compute_forward_cpy
  8911. static void ggml_compute_forward_cpy(
  8912. const struct ggml_compute_params * params,
  8913. const struct ggml_tensor * src0,
  8914. struct ggml_tensor * dst) {
  8915. ggml_compute_forward_dup(params, src0, dst);
  8916. }
  8917. // ggml_compute_forward_cont
  8918. static void ggml_compute_forward_cont(
  8919. const struct ggml_compute_params * params,
  8920. const struct ggml_tensor * src0,
  8921. struct ggml_tensor * dst) {
  8922. ggml_compute_forward_dup(params, src0, dst);
  8923. }
  8924. // ggml_compute_forward_reshape
  8925. static void ggml_compute_forward_reshape(
  8926. const struct ggml_compute_params * params,
  8927. const struct ggml_tensor * src0,
  8928. struct ggml_tensor * dst) {
  8929. // NOP
  8930. UNUSED(params);
  8931. UNUSED(src0);
  8932. UNUSED(dst);
  8933. }
  8934. // ggml_compute_forward_view
  8935. static void ggml_compute_forward_view(
  8936. const struct ggml_compute_params * params,
  8937. const struct ggml_tensor * src0) {
  8938. // NOP
  8939. UNUSED(params);
  8940. UNUSED(src0);
  8941. }
  8942. // ggml_compute_forward_permute
  8943. static void ggml_compute_forward_permute(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0) {
  8946. // NOP
  8947. UNUSED(params);
  8948. UNUSED(src0);
  8949. }
  8950. // ggml_compute_forward_transpose
  8951. static void ggml_compute_forward_transpose(
  8952. const struct ggml_compute_params * params,
  8953. const struct ggml_tensor * src0) {
  8954. // NOP
  8955. UNUSED(params);
  8956. UNUSED(src0);
  8957. }
  8958. // ggml_compute_forward_get_rows
  8959. static void ggml_compute_forward_get_rows_q(
  8960. const struct ggml_compute_params * params,
  8961. const struct ggml_tensor * src0,
  8962. const struct ggml_tensor * src1,
  8963. struct ggml_tensor * dst) {
  8964. assert(params->ith == 0);
  8965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8966. return;
  8967. }
  8968. GGML_TENSOR_BINARY_OP_LOCALS
  8969. const int64_t nc = ne00;
  8970. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8971. const enum ggml_type type = src0->type;
  8972. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8973. assert(ne0 == nc);
  8974. assert(ne02 == ne11);
  8975. assert(nb00 == ggml_type_size(type));
  8976. assert(ggml_nrows(dst) == nr);
  8977. // TODO: multi-thread
  8978. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8979. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8980. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8981. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8982. dequantize_row_q(
  8983. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8984. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8985. }
  8986. }
  8987. }
  8988. }
  8989. static void ggml_compute_forward_get_rows_f16(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0,
  8992. const struct ggml_tensor * src1,
  8993. struct ggml_tensor * dst) {
  8994. assert(params->ith == 0);
  8995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8996. return;
  8997. }
  8998. GGML_TENSOR_BINARY_OP_LOCALS
  8999. const int64_t nc = ne00;
  9000. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9001. assert(ne0 == nc);
  9002. assert(ne02 == ne11);
  9003. assert(nb00 == sizeof(ggml_fp16_t));
  9004. assert(ggml_nrows(dst) == nr);
  9005. // TODO: multi-thread
  9006. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9007. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9008. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9009. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9010. ggml_fp16_to_fp32_row(
  9011. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9012. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9013. }
  9014. }
  9015. }
  9016. }
  9017. static void ggml_compute_forward_get_rows_f32(
  9018. const struct ggml_compute_params * params,
  9019. const struct ggml_tensor * src0,
  9020. const struct ggml_tensor * src1,
  9021. struct ggml_tensor * dst) {
  9022. assert(params->ith == 0);
  9023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9024. return;
  9025. }
  9026. GGML_TENSOR_BINARY_OP_LOCALS
  9027. const int64_t nc = ne00;
  9028. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9029. assert(ne0 == nc);
  9030. assert(ne02 == ne11);
  9031. assert(nb00 == sizeof(float));
  9032. assert(ggml_nrows(dst) == nr);
  9033. // TODO: multi-thread
  9034. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9035. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9036. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9037. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9038. ggml_vec_cpy_f32(nc,
  9039. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9040. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9041. }
  9042. }
  9043. }
  9044. }
  9045. static void ggml_compute_forward_get_rows(
  9046. const struct ggml_compute_params * params,
  9047. const struct ggml_tensor * src0,
  9048. const struct ggml_tensor * src1,
  9049. struct ggml_tensor * dst) {
  9050. switch (src0->type) {
  9051. case GGML_TYPE_Q4_0:
  9052. case GGML_TYPE_Q4_1:
  9053. case GGML_TYPE_Q5_0:
  9054. case GGML_TYPE_Q5_1:
  9055. case GGML_TYPE_Q8_0:
  9056. case GGML_TYPE_Q8_1:
  9057. case GGML_TYPE_Q2_K:
  9058. case GGML_TYPE_Q3_K:
  9059. case GGML_TYPE_Q4_K:
  9060. case GGML_TYPE_Q5_K:
  9061. case GGML_TYPE_Q6_K:
  9062. case GGML_TYPE_IQ2_XXS:
  9063. case GGML_TYPE_IQ2_XS:
  9064. {
  9065. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9066. } break;
  9067. case GGML_TYPE_F16:
  9068. {
  9069. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9070. } break;
  9071. case GGML_TYPE_F32:
  9072. case GGML_TYPE_I32:
  9073. {
  9074. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9075. } break;
  9076. default:
  9077. {
  9078. GGML_ASSERT(false);
  9079. } break;
  9080. }
  9081. //static bool first = true;
  9082. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9083. //if (first) {
  9084. // first = false;
  9085. //} else {
  9086. // for (int k = 0; k < dst->ne[1]; ++k) {
  9087. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9088. // for (int i = 0; i < 16; ++i) {
  9089. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9090. // }
  9091. // printf("\n");
  9092. // }
  9093. // printf("\n");
  9094. // }
  9095. // printf("\n");
  9096. // exit(0);
  9097. //}
  9098. }
  9099. // ggml_compute_forward_get_rows_back
  9100. static void ggml_compute_forward_get_rows_back_f32_f16(
  9101. const struct ggml_compute_params * params,
  9102. const struct ggml_tensor * src0,
  9103. const struct ggml_tensor * src1,
  9104. struct ggml_tensor * dst) {
  9105. GGML_ASSERT(params->ith == 0);
  9106. GGML_ASSERT(ggml_is_contiguous(dst));
  9107. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9108. if (params->type == GGML_TASK_INIT) {
  9109. if (params->ith != 0) {
  9110. return;
  9111. }
  9112. memset(dst->data, 0, ggml_nbytes(dst));
  9113. }
  9114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9115. return;
  9116. }
  9117. const int nc = src0->ne[0];
  9118. const int nr = ggml_nelements(src1);
  9119. GGML_ASSERT( dst->ne[0] == nc);
  9120. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9121. for (int i = 0; i < nr; ++i) {
  9122. const int r = ((int32_t *) src1->data)[i];
  9123. for (int j = 0; j < nc; ++j) {
  9124. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9125. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9126. }
  9127. }
  9128. }
  9129. static void ggml_compute_forward_get_rows_back_f32(
  9130. const struct ggml_compute_params * params,
  9131. const struct ggml_tensor * src0,
  9132. const struct ggml_tensor * src1,
  9133. struct ggml_tensor * dst) {
  9134. GGML_ASSERT(params->ith == 0);
  9135. GGML_ASSERT(ggml_is_contiguous(dst));
  9136. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9137. if (params->type == GGML_TASK_INIT) {
  9138. if (params->ith != 0) {
  9139. return;
  9140. }
  9141. memset(dst->data, 0, ggml_nbytes(dst));
  9142. }
  9143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9144. return;
  9145. }
  9146. const int nc = src0->ne[0];
  9147. const int nr = ggml_nelements(src1);
  9148. GGML_ASSERT( dst->ne[0] == nc);
  9149. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9150. for (int i = 0; i < nr; ++i) {
  9151. const int r = ((int32_t *) src1->data)[i];
  9152. ggml_vec_add_f32(nc,
  9153. (float *) ((char *) dst->data + r*dst->nb[1]),
  9154. (float *) ((char *) dst->data + r*dst->nb[1]),
  9155. (float *) ((char *) src0->data + i*src0->nb[1]));
  9156. }
  9157. }
  9158. static void ggml_compute_forward_get_rows_back(
  9159. const struct ggml_compute_params * params,
  9160. const struct ggml_tensor * src0,
  9161. const struct ggml_tensor * src1,
  9162. struct ggml_tensor * dst) {
  9163. switch (src0->type) {
  9164. case GGML_TYPE_F16:
  9165. {
  9166. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9167. } break;
  9168. case GGML_TYPE_F32:
  9169. {
  9170. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9171. } break;
  9172. default:
  9173. {
  9174. GGML_ASSERT(false);
  9175. } break;
  9176. }
  9177. //static bool first = true;
  9178. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9179. //if (first) {
  9180. // first = false;
  9181. //} else {
  9182. // for (int k = 0; k < dst->ne[1]; ++k) {
  9183. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9184. // for (int i = 0; i < 16; ++i) {
  9185. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9186. // }
  9187. // printf("\n");
  9188. // }
  9189. // printf("\n");
  9190. // }
  9191. // printf("\n");
  9192. // exit(0);
  9193. //}
  9194. }
  9195. // ggml_compute_forward_diag
  9196. static void ggml_compute_forward_diag_f32(
  9197. const struct ggml_compute_params * params,
  9198. const struct ggml_tensor * src0,
  9199. struct ggml_tensor * dst) {
  9200. GGML_ASSERT(params->ith == 0);
  9201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9202. return;
  9203. }
  9204. // TODO: handle transposed/permuted matrices
  9205. GGML_TENSOR_UNARY_OP_LOCALS
  9206. GGML_ASSERT(ne00 == ne0);
  9207. GGML_ASSERT(ne00 == ne1);
  9208. GGML_ASSERT(ne01 == 1);
  9209. GGML_ASSERT(ne02 == ne2);
  9210. GGML_ASSERT(ne03 == ne3);
  9211. GGML_ASSERT(nb00 == sizeof(float));
  9212. GGML_ASSERT(nb0 == sizeof(float));
  9213. for (int i3 = 0; i3 < ne3; i3++) {
  9214. for (int i2 = 0; i2 < ne2; i2++) {
  9215. for (int i1 = 0; i1 < ne1; i1++) {
  9216. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9217. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9218. for (int i0 = 0; i0 < i1; i0++) {
  9219. d[i0] = 0;
  9220. }
  9221. d[i1] = s[i1];
  9222. for (int i0 = i1+1; i0 < ne0; i0++) {
  9223. d[i0] = 0;
  9224. }
  9225. }
  9226. }
  9227. }
  9228. }
  9229. static void ggml_compute_forward_diag(
  9230. const struct ggml_compute_params * params,
  9231. const struct ggml_tensor * src0,
  9232. struct ggml_tensor * dst) {
  9233. switch (src0->type) {
  9234. case GGML_TYPE_F32:
  9235. {
  9236. ggml_compute_forward_diag_f32(params, src0, dst);
  9237. } break;
  9238. default:
  9239. {
  9240. GGML_ASSERT(false);
  9241. } break;
  9242. }
  9243. }
  9244. // ggml_compute_forward_diag_mask_inf
  9245. static void ggml_compute_forward_diag_mask_f32(
  9246. const struct ggml_compute_params * params,
  9247. const struct ggml_tensor * src0,
  9248. struct ggml_tensor * dst,
  9249. const float value) {
  9250. const int ith = params->ith;
  9251. const int nth = params->nth;
  9252. const int n_past = ((int32_t *) dst->op_params)[0];
  9253. const bool inplace = src0->data == dst->data;
  9254. GGML_ASSERT(n_past >= 0);
  9255. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9256. if (ith != 0) {
  9257. return;
  9258. }
  9259. // memcpy needs to be synchronized across threads to avoid race conditions.
  9260. // => do it in INIT phase
  9261. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9262. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9263. memcpy(
  9264. ((char *) dst->data),
  9265. ((char *) src0->data),
  9266. ggml_nbytes(dst));
  9267. }
  9268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9269. return;
  9270. }
  9271. // TODO: handle transposed/permuted matrices
  9272. const int n = ggml_nrows(src0);
  9273. const int nc = src0->ne[0];
  9274. const int nr = src0->ne[1];
  9275. const int nz = n/nr;
  9276. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9277. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9278. for (int k = 0; k < nz; k++) {
  9279. for (int j = ith; j < nr; j += nth) {
  9280. for (int i = n_past; i < nc; i++) {
  9281. if (i > n_past + j) {
  9282. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9283. }
  9284. }
  9285. }
  9286. }
  9287. }
  9288. static void ggml_compute_forward_diag_mask_inf(
  9289. const struct ggml_compute_params * params,
  9290. const struct ggml_tensor * src0,
  9291. struct ggml_tensor * dst) {
  9292. switch (src0->type) {
  9293. case GGML_TYPE_F32:
  9294. {
  9295. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9296. } break;
  9297. default:
  9298. {
  9299. GGML_ASSERT(false);
  9300. } break;
  9301. }
  9302. }
  9303. static void ggml_compute_forward_diag_mask_zero(
  9304. const struct ggml_compute_params * params,
  9305. const struct ggml_tensor * src0,
  9306. struct ggml_tensor * dst) {
  9307. switch (src0->type) {
  9308. case GGML_TYPE_F32:
  9309. {
  9310. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9311. } break;
  9312. default:
  9313. {
  9314. GGML_ASSERT(false);
  9315. } break;
  9316. }
  9317. }
  9318. // ggml_compute_forward_soft_max
  9319. static void ggml_compute_forward_soft_max_f32(
  9320. const struct ggml_compute_params * params,
  9321. const struct ggml_tensor * src0,
  9322. const struct ggml_tensor * src1,
  9323. struct ggml_tensor * dst) {
  9324. assert(ggml_is_contiguous(dst));
  9325. assert(ggml_are_same_shape(src0, dst));
  9326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9327. return;
  9328. }
  9329. float scale = 1.0f;
  9330. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9331. // TODO: handle transposed/permuted matrices
  9332. const int ith = params->ith;
  9333. const int nth = params->nth;
  9334. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9335. const int nc = src0->ne[0];
  9336. const int nr = ggml_nrows(src0);
  9337. // rows per thread
  9338. const int dr = (nr + nth - 1)/nth;
  9339. // row range for this thread
  9340. const int ir0 = dr*ith;
  9341. const int ir1 = MIN(ir0 + dr, nr);
  9342. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9343. for (int i1 = ir0; i1 < ir1; i1++) {
  9344. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9345. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9346. // broadcast the mask across rows
  9347. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9348. ggml_vec_cpy_f32 (nc, wp, sp);
  9349. ggml_vec_scale_f32(nc, wp, scale);
  9350. if (mp) {
  9351. ggml_vec_acc_f32(nc, wp, mp);
  9352. }
  9353. #ifndef NDEBUG
  9354. for (int i = 0; i < nc; ++i) {
  9355. //printf("p[%d] = %f\n", i, p[i]);
  9356. assert(!isnan(wp[i]));
  9357. }
  9358. #endif
  9359. float max = -INFINITY;
  9360. ggml_vec_max_f32(nc, &max, wp);
  9361. ggml_float sum = 0.0;
  9362. uint16_t scvt;
  9363. for (int i = 0; i < nc; i++) {
  9364. if (wp[i] == -INFINITY) {
  9365. dp[i] = 0.0f;
  9366. } else {
  9367. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9368. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9369. memcpy(&scvt, &s, sizeof(scvt));
  9370. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9371. sum += (ggml_float)val;
  9372. dp[i] = val;
  9373. }
  9374. }
  9375. assert(sum > 0.0);
  9376. sum = 1.0/sum;
  9377. ggml_vec_scale_f32(nc, dp, sum);
  9378. #ifndef NDEBUG
  9379. for (int i = 0; i < nc; ++i) {
  9380. assert(!isnan(dp[i]));
  9381. assert(!isinf(dp[i]));
  9382. }
  9383. #endif
  9384. }
  9385. }
  9386. static void ggml_compute_forward_soft_max(
  9387. const struct ggml_compute_params * params,
  9388. const struct ggml_tensor * src0,
  9389. const struct ggml_tensor * src1,
  9390. struct ggml_tensor * dst) {
  9391. switch (src0->type) {
  9392. case GGML_TYPE_F32:
  9393. {
  9394. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9395. } break;
  9396. default:
  9397. {
  9398. GGML_ASSERT(false);
  9399. } break;
  9400. }
  9401. }
  9402. // ggml_compute_forward_soft_max_back
  9403. static void ggml_compute_forward_soft_max_back_f32(
  9404. const struct ggml_compute_params * params,
  9405. const struct ggml_tensor * src0,
  9406. const struct ggml_tensor * src1,
  9407. struct ggml_tensor * dst) {
  9408. GGML_ASSERT(ggml_is_contiguous(src0));
  9409. GGML_ASSERT(ggml_is_contiguous(src1));
  9410. GGML_ASSERT(ggml_is_contiguous(dst));
  9411. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9412. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9414. return;
  9415. }
  9416. // TODO: handle transposed/permuted matrices
  9417. const int ith = params->ith;
  9418. const int nth = params->nth;
  9419. const int nc = src0->ne[0];
  9420. const int nr = ggml_nrows(src0);
  9421. // rows per thread
  9422. const int dr = (nr + nth - 1)/nth;
  9423. // row range for this thread
  9424. const int ir0 = dr*ith;
  9425. const int ir1 = MIN(ir0 + dr, nr);
  9426. for (int i1 = ir0; i1 < ir1; i1++) {
  9427. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9428. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9429. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9430. #ifndef NDEBUG
  9431. for (int i = 0; i < nc; ++i) {
  9432. //printf("p[%d] = %f\n", i, p[i]);
  9433. assert(!isnan(dy[i]));
  9434. assert(!isnan(y[i]));
  9435. }
  9436. #endif
  9437. // Jii = yi - yi*yi
  9438. // Jij = -yi*yj
  9439. // J = diag(y)-y.T*y
  9440. // dx = J * dy
  9441. // dxk = sum_i(Jki * dyi)
  9442. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9443. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9444. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9445. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9446. // dxk = -yk * dot(y, dy) + yk*dyk
  9447. // dxk = yk * (- dot(y, dy) + dyk)
  9448. // dxk = yk * (dyk - dot(y, dy))
  9449. //
  9450. // post-order:
  9451. // dot_y_dy := dot(y, dy)
  9452. // dx := dy
  9453. // dx := dx - dot_y_dy
  9454. // dx := dx * y
  9455. // linear runtime, no additional memory
  9456. float dot_y_dy = 0;
  9457. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9458. ggml_vec_cpy_f32 (nc, dx, dy);
  9459. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9460. ggml_vec_mul_f32 (nc, dx, dx, y);
  9461. #ifndef NDEBUG
  9462. for (int i = 0; i < nc; ++i) {
  9463. assert(!isnan(dx[i]));
  9464. assert(!isinf(dx[i]));
  9465. }
  9466. #endif
  9467. }
  9468. }
  9469. static void ggml_compute_forward_soft_max_back(
  9470. const struct ggml_compute_params * params,
  9471. const struct ggml_tensor * src0,
  9472. const struct ggml_tensor * src1,
  9473. struct ggml_tensor * dst) {
  9474. switch (src0->type) {
  9475. case GGML_TYPE_F32:
  9476. {
  9477. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9478. } break;
  9479. default:
  9480. {
  9481. GGML_ASSERT(false);
  9482. } break;
  9483. }
  9484. }
  9485. // ggml_compute_forward_alibi
  9486. static void ggml_compute_forward_alibi_f32(
  9487. const struct ggml_compute_params * params,
  9488. const struct ggml_tensor * src0,
  9489. struct ggml_tensor * dst) {
  9490. assert(params->ith == 0);
  9491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9492. return;
  9493. }
  9494. //const int n_past = ((int32_t *) dst->op_params)[0];
  9495. const int n_head = ((int32_t *) dst->op_params)[1];
  9496. float max_bias;
  9497. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9498. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9499. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9500. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9501. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9502. const int64_t n = ggml_nrows(src0);
  9503. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9504. const size_t nb0 = src0->nb[0];
  9505. const size_t nb1 = src0->nb[1];
  9506. const size_t nb2 = src0->nb[2];
  9507. //const int nb3 = src0->nb[3];
  9508. GGML_ASSERT(nb0 == sizeof(float));
  9509. GGML_ASSERT(n_head == ne2);
  9510. // add alibi to src0 (KQ_scaled)
  9511. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9512. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9513. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9514. for (int64_t i = 0; i < ne0; i++) {
  9515. for (int64_t j = 0; j < ne1; j++) {
  9516. for (int64_t k = 0; k < ne2_ne3; k++) {
  9517. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9518. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9519. // TODO: k*nb2 or k*nb3
  9520. float m_k;
  9521. if (k < n_heads_log2_floor) {
  9522. m_k = powf(m0, k + 1);
  9523. } else {
  9524. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9525. }
  9526. pdst[0] = i * m_k + src[0];
  9527. }
  9528. }
  9529. }
  9530. }
  9531. static void ggml_compute_forward_alibi_f16(
  9532. const struct ggml_compute_params * params,
  9533. const struct ggml_tensor * src0,
  9534. struct ggml_tensor * dst) {
  9535. assert(params->ith == 0);
  9536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9537. return;
  9538. }
  9539. //const int n_past = ((int32_t *) dst->op_params)[0];
  9540. const int n_head = ((int32_t *) dst->op_params)[1];
  9541. float max_bias;
  9542. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9543. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9544. const int ne1 = src0->ne[1]; // seq_len_without_past
  9545. const int ne2 = src0->ne[2]; // n_head -> this is k
  9546. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9547. const int n = ggml_nrows(src0);
  9548. const int ne2_ne3 = n/ne1; // ne2*ne3
  9549. const int nb0 = src0->nb[0];
  9550. const int nb1 = src0->nb[1];
  9551. const int nb2 = src0->nb[2];
  9552. //const int nb3 = src0->nb[3];
  9553. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9554. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9555. GGML_ASSERT(n_head == ne2);
  9556. // add alibi to src0 (KQ_scaled)
  9557. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9558. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9559. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9560. for (int i = 0; i < ne0; i++) {
  9561. for (int j = 0; j < ne1; j++) {
  9562. for (int k = 0; k < ne2_ne3; k++) {
  9563. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9564. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9565. // TODO: k*nb2 or k*nb3
  9566. float m_k;
  9567. if (k < n_heads_log2_floor) {
  9568. m_k = powf(m0, k + 1);
  9569. } else {
  9570. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9571. }
  9572. // we return F32
  9573. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9574. }
  9575. }
  9576. }
  9577. }
  9578. static void ggml_compute_forward_alibi(
  9579. const struct ggml_compute_params * params,
  9580. const struct ggml_tensor * src0,
  9581. struct ggml_tensor * dst) {
  9582. switch (src0->type) {
  9583. case GGML_TYPE_F16:
  9584. {
  9585. ggml_compute_forward_alibi_f16(params, src0, dst);
  9586. } break;
  9587. case GGML_TYPE_F32:
  9588. {
  9589. ggml_compute_forward_alibi_f32(params, src0, dst);
  9590. } break;
  9591. case GGML_TYPE_Q4_0:
  9592. case GGML_TYPE_Q4_1:
  9593. case GGML_TYPE_Q5_0:
  9594. case GGML_TYPE_Q5_1:
  9595. case GGML_TYPE_Q8_0:
  9596. case GGML_TYPE_Q8_1:
  9597. case GGML_TYPE_Q2_K:
  9598. case GGML_TYPE_Q3_K:
  9599. case GGML_TYPE_Q4_K:
  9600. case GGML_TYPE_Q5_K:
  9601. case GGML_TYPE_Q6_K:
  9602. case GGML_TYPE_IQ2_XXS:
  9603. case GGML_TYPE_IQ2_XS:
  9604. case GGML_TYPE_Q8_K:
  9605. case GGML_TYPE_I8:
  9606. case GGML_TYPE_I16:
  9607. case GGML_TYPE_I32:
  9608. case GGML_TYPE_COUNT:
  9609. {
  9610. GGML_ASSERT(false);
  9611. } break;
  9612. }
  9613. }
  9614. // ggml_compute_forward_clamp
  9615. static void ggml_compute_forward_clamp_f32(
  9616. const struct ggml_compute_params * params,
  9617. const struct ggml_tensor * src0,
  9618. struct ggml_tensor * dst) {
  9619. assert(params->ith == 0);
  9620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9621. return;
  9622. }
  9623. float min;
  9624. float max;
  9625. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9626. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9627. const int ith = params->ith;
  9628. const int nth = params->nth;
  9629. const int n = ggml_nrows(src0);
  9630. const int nc = src0->ne[0];
  9631. const size_t nb00 = src0->nb[0];
  9632. const size_t nb01 = src0->nb[1];
  9633. const size_t nb0 = dst->nb[0];
  9634. const size_t nb1 = dst->nb[1];
  9635. GGML_ASSERT( nb0 == sizeof(float));
  9636. GGML_ASSERT(nb00 == sizeof(float));
  9637. for (int j = ith; j < n; j += nth) {
  9638. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9639. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9640. for (int i = 0; i < nc; i++) {
  9641. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9642. }
  9643. }
  9644. }
  9645. static void ggml_compute_forward_clamp(
  9646. const struct ggml_compute_params * params,
  9647. const struct ggml_tensor * src0,
  9648. struct ggml_tensor * dst) {
  9649. switch (src0->type) {
  9650. case GGML_TYPE_F32:
  9651. {
  9652. ggml_compute_forward_clamp_f32(params, src0, dst);
  9653. } break;
  9654. case GGML_TYPE_F16:
  9655. case GGML_TYPE_Q4_0:
  9656. case GGML_TYPE_Q4_1:
  9657. case GGML_TYPE_Q5_0:
  9658. case GGML_TYPE_Q5_1:
  9659. case GGML_TYPE_Q8_0:
  9660. case GGML_TYPE_Q8_1:
  9661. case GGML_TYPE_Q2_K:
  9662. case GGML_TYPE_Q3_K:
  9663. case GGML_TYPE_Q4_K:
  9664. case GGML_TYPE_Q5_K:
  9665. case GGML_TYPE_Q6_K:
  9666. case GGML_TYPE_IQ2_XXS:
  9667. case GGML_TYPE_IQ2_XS:
  9668. case GGML_TYPE_Q8_K:
  9669. case GGML_TYPE_I8:
  9670. case GGML_TYPE_I16:
  9671. case GGML_TYPE_I32:
  9672. case GGML_TYPE_COUNT:
  9673. {
  9674. GGML_ASSERT(false);
  9675. } break;
  9676. }
  9677. }
  9678. // ggml_compute_forward_rope
  9679. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9680. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9681. return 1 - MIN(1, MAX(0, y));
  9682. }
  9683. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9684. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9685. static void rope_yarn(
  9686. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9687. float * cos_theta, float * sin_theta
  9688. ) {
  9689. // Get n-d rotational scaling corrected for extrapolation
  9690. float theta_interp = freq_scale * theta_extrap;
  9691. float theta = theta_interp;
  9692. if (ext_factor != 0.0f) {
  9693. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9694. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9695. // Get n-d magnitude scaling corrected for interpolation
  9696. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9697. }
  9698. *cos_theta = cosf(theta) * mscale;
  9699. *sin_theta = sinf(theta) * mscale;
  9700. }
  9701. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9702. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9703. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9704. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9705. }
  9706. static void ggml_rope_cache_init(
  9707. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9708. float * cache, float sin_sign, float theta_scale
  9709. ) {
  9710. float theta = theta_base;
  9711. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9712. rope_yarn(
  9713. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9714. );
  9715. cache[i0 + 1] *= sin_sign;
  9716. theta *= theta_scale;
  9717. }
  9718. }
  9719. GGML_CALL void ggml_rope_yarn_corr_dims(
  9720. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9721. ) {
  9722. // start and end correction dims
  9723. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9724. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9725. }
  9726. static void ggml_compute_forward_rope_f32(
  9727. const struct ggml_compute_params * params,
  9728. const struct ggml_tensor * src0,
  9729. const struct ggml_tensor * src1,
  9730. struct ggml_tensor * dst,
  9731. const bool forward) {
  9732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9733. return;
  9734. }
  9735. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9736. // these two only relevant for xPos RoPE:
  9737. float xpos_base;
  9738. bool xpos_down;
  9739. //const int n_past = ((int32_t *) dst->op_params)[0];
  9740. const int n_dims = ((int32_t *) dst->op_params)[1];
  9741. const int mode = ((int32_t *) dst->op_params)[2];
  9742. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9743. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9744. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9745. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9746. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9747. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9748. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9749. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9750. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9751. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9752. GGML_TENSOR_UNARY_OP_LOCALS
  9753. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9754. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9755. GGML_ASSERT(nb00 == sizeof(float));
  9756. const int ith = params->ith;
  9757. const int nth = params->nth;
  9758. const int nr = ggml_nrows(dst);
  9759. GGML_ASSERT(n_dims <= ne0);
  9760. GGML_ASSERT(n_dims % 2 == 0);
  9761. // rows per thread
  9762. const int dr = (nr + nth - 1)/nth;
  9763. // row range for this thread
  9764. const int ir0 = dr*ith;
  9765. const int ir1 = MIN(ir0 + dr, nr);
  9766. // row index used to determine which thread to use
  9767. int ir = 0;
  9768. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9769. const float inv_ndims = -1.f/n_dims;
  9770. float corr_dims[2];
  9771. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9772. const bool is_neox = mode & 2;
  9773. const bool is_glm = mode & 4;
  9774. // backward process uses inverse rotation by cos and sin.
  9775. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9776. // this essentially just switches the sign of sin.
  9777. const float sin_sign = forward ? 1.0f : -1.0f;
  9778. const int32_t * pos = (const int32_t *) src1->data;
  9779. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9780. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9781. const int64_t p = pos[i2];
  9782. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9783. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9784. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9785. }
  9786. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9787. if (ir++ < ir0) continue;
  9788. if (ir > ir1) break;
  9789. float theta_base = (float)p;
  9790. if (is_glm) {
  9791. theta_base = MIN(p, n_ctx - 2);
  9792. float block_theta = MAX(p - (n_ctx - 2), 0);
  9793. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9794. const float cos_theta = cosf(theta_base);
  9795. const float sin_theta = sinf(theta_base) * sin_sign;
  9796. const float cos_block_theta = cosf(block_theta);
  9797. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9798. theta_base *= theta_scale;
  9799. block_theta *= theta_scale;
  9800. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9801. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9802. const float x0 = src[0];
  9803. const float x1 = src[n_dims/2];
  9804. const float x2 = src[n_dims];
  9805. const float x3 = src[n_dims/2*3];
  9806. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9807. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9808. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9809. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9810. }
  9811. } else if (!is_neox) {
  9812. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9813. const float cos_theta = cache[i0 + 0];
  9814. const float sin_theta = cache[i0 + 1];
  9815. // zeta scaling for xPos only:
  9816. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9817. if (xpos_down) zeta = 1.0f / zeta;
  9818. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9819. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9820. const float x0 = src[0];
  9821. const float x1 = src[1];
  9822. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9823. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9824. }
  9825. } else {
  9826. // TODO: this might be wrong for ne0 != n_dims - need double check
  9827. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9828. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9829. theta_base *= freq_scale;
  9830. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9831. if (ic < n_dims) {
  9832. const int64_t ib = 0;
  9833. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9834. float cur_rot = inv_ndims * ic - ib;
  9835. float cos_theta, sin_theta;
  9836. rope_yarn(
  9837. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9838. &cos_theta, &sin_theta
  9839. );
  9840. sin_theta *= sin_sign;
  9841. theta_base *= theta_scale;
  9842. const int64_t i0 = ib*n_dims + ic/2;
  9843. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9844. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9845. const float x0 = src[0];
  9846. const float x1 = src[n_dims/2];
  9847. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9848. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9849. } else {
  9850. const int64_t i0 = ic;
  9851. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9852. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9853. dst_data[0] = src[0];
  9854. dst_data[1] = src[1];
  9855. }
  9856. }
  9857. }
  9858. }
  9859. }
  9860. }
  9861. }
  9862. static void ggml_compute_forward_rope_f16(
  9863. const struct ggml_compute_params * params,
  9864. const struct ggml_tensor * src0,
  9865. const struct ggml_tensor * src1,
  9866. struct ggml_tensor * dst,
  9867. const bool forward) {
  9868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9869. return;
  9870. }
  9871. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9872. //const int n_past = ((int32_t *) dst->op_params)[0];
  9873. const int n_dims = ((int32_t *) dst->op_params)[1];
  9874. const int mode = ((int32_t *) dst->op_params)[2];
  9875. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9876. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9877. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9878. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9879. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9880. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9881. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9882. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9883. GGML_TENSOR_UNARY_OP_LOCALS
  9884. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9885. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9886. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9887. const int ith = params->ith;
  9888. const int nth = params->nth;
  9889. const int nr = ggml_nrows(dst);
  9890. GGML_ASSERT(n_dims <= ne0);
  9891. GGML_ASSERT(n_dims % 2 == 0);
  9892. // rows per thread
  9893. const int dr = (nr + nth - 1)/nth;
  9894. // row range for this thread
  9895. const int ir0 = dr*ith;
  9896. const int ir1 = MIN(ir0 + dr, nr);
  9897. // row index used to determine which thread to use
  9898. int ir = 0;
  9899. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9900. const float inv_ndims = -1.f/n_dims;
  9901. float corr_dims[2];
  9902. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9903. const bool is_neox = mode & 2;
  9904. const bool is_glm = mode & 4;
  9905. // backward process uses inverse rotation by cos and sin.
  9906. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9907. // this essentially just switches the sign of sin.
  9908. const float sin_sign = forward ? 1.0f : -1.0f;
  9909. const int32_t * pos = (const int32_t *) src1->data;
  9910. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9911. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9912. const int64_t p = pos[i2];
  9913. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9914. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9915. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9916. }
  9917. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9918. if (ir++ < ir0) continue;
  9919. if (ir > ir1) break;
  9920. float theta_base = (float)p;
  9921. if (is_glm) {
  9922. theta_base = MIN(p, n_ctx - 2);
  9923. float block_theta = MAX(p - (n_ctx - 2), 0);
  9924. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9925. const float cos_theta = cosf(theta_base);
  9926. const float sin_theta = sinf(theta_base) * sin_sign;
  9927. const float cos_block_theta = cosf(block_theta);
  9928. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9929. theta_base *= theta_scale;
  9930. block_theta *= theta_scale;
  9931. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9932. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9933. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9934. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9935. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9936. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9937. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9938. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9939. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9940. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9941. }
  9942. } else if (!is_neox) {
  9943. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9944. const float cos_theta = cache[i0 + 0];
  9945. const float sin_theta = cache[i0 + 1];
  9946. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9947. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9948. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9949. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9950. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9951. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9952. }
  9953. } else {
  9954. // TODO: this might be wrong for ne0 != n_dims - need double check
  9955. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9956. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9957. theta_base *= freq_scale;
  9958. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9959. if (ic < n_dims) {
  9960. const int64_t ib = 0;
  9961. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9962. float cur_rot = inv_ndims * ic - ib;
  9963. float cos_theta, sin_theta;
  9964. rope_yarn(
  9965. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9966. &cos_theta, &sin_theta
  9967. );
  9968. sin_theta *= sin_sign;
  9969. theta_base *= theta_scale;
  9970. const int64_t i0 = ib*n_dims + ic/2;
  9971. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9972. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9973. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9974. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9975. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9976. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9977. } else {
  9978. const int64_t i0 = ic;
  9979. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9980. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9981. dst_data[0] = src[0];
  9982. dst_data[1] = src[1];
  9983. }
  9984. }
  9985. }
  9986. }
  9987. }
  9988. }
  9989. }
  9990. static void ggml_compute_forward_rope(
  9991. const struct ggml_compute_params * params,
  9992. const struct ggml_tensor * src0,
  9993. const struct ggml_tensor * src1,
  9994. struct ggml_tensor * dst) {
  9995. switch (src0->type) {
  9996. case GGML_TYPE_F16:
  9997. {
  9998. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9999. } break;
  10000. case GGML_TYPE_F32:
  10001. {
  10002. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10003. } break;
  10004. default:
  10005. {
  10006. GGML_ASSERT(false);
  10007. } break;
  10008. }
  10009. }
  10010. // ggml_compute_forward_rope_back
  10011. static void ggml_compute_forward_rope_back(
  10012. const struct ggml_compute_params * params,
  10013. const struct ggml_tensor * src0,
  10014. const struct ggml_tensor * src1,
  10015. struct ggml_tensor * dst) {
  10016. switch (src0->type) {
  10017. case GGML_TYPE_F16:
  10018. {
  10019. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10020. } break;
  10021. case GGML_TYPE_F32:
  10022. {
  10023. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10024. } break;
  10025. default:
  10026. {
  10027. GGML_ASSERT(false);
  10028. } break;
  10029. }
  10030. }
  10031. // ggml_compute_forward_conv_transpose_1d
  10032. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10033. const struct ggml_compute_params * params,
  10034. const struct ggml_tensor * src0,
  10035. const struct ggml_tensor * src1,
  10036. struct ggml_tensor * dst) {
  10037. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10038. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10039. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10040. int64_t t0 = ggml_perf_time_us();
  10041. UNUSED(t0);
  10042. GGML_TENSOR_BINARY_OP_LOCALS
  10043. const int ith = params->ith;
  10044. const int nth = params->nth;
  10045. const int nk = ne00*ne01*ne02;
  10046. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10047. GGML_ASSERT(nb10 == sizeof(float));
  10048. if (params->type == GGML_TASK_INIT) {
  10049. if (ith != 0) {
  10050. return;
  10051. }
  10052. memset(params->wdata, 0, params->wsize);
  10053. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10054. {
  10055. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10056. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10057. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10058. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10059. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10060. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10061. dst_data[i00*ne02 + i02] = src[i00];
  10062. }
  10063. }
  10064. }
  10065. }
  10066. // permute source data (src1) from (L x Cin) to (Cin x L)
  10067. {
  10068. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10069. ggml_fp16_t * dst_data = wdata;
  10070. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10071. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10072. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10073. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10074. }
  10075. }
  10076. }
  10077. // need to zero dst since we are accumulating into it
  10078. memset(dst->data, 0, ggml_nbytes(dst));
  10079. return;
  10080. }
  10081. if (params->type == GGML_TASK_FINALIZE) {
  10082. return;
  10083. }
  10084. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10085. // total rows in dst
  10086. const int nr = ne1;
  10087. // rows per thread
  10088. const int dr = (nr + nth - 1)/nth;
  10089. // row range for this thread
  10090. const int ir0 = dr*ith;
  10091. const int ir1 = MIN(ir0 + dr, nr);
  10092. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10093. ggml_fp16_t * const wdata_src = wdata + nk;
  10094. for (int i1 = ir0; i1 < ir1; i1++) {
  10095. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10096. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10097. for (int i10 = 0; i10 < ne10; i10++) {
  10098. const int i1n = i10*ne11;
  10099. for (int i00 = 0; i00 < ne00; i00++) {
  10100. float v = 0;
  10101. ggml_vec_dot_f16(ne02, &v,
  10102. (ggml_fp16_t *) wdata_src + i1n,
  10103. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10104. dst_data[i10*s0 + i00] += v;
  10105. }
  10106. }
  10107. }
  10108. }
  10109. static void ggml_compute_forward_conv_transpose_1d_f32(
  10110. const struct ggml_compute_params * params,
  10111. const struct ggml_tensor * src0,
  10112. const struct ggml_tensor * src1,
  10113. struct ggml_tensor * dst) {
  10114. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10115. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10116. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10117. int64_t t0 = ggml_perf_time_us();
  10118. UNUSED(t0);
  10119. GGML_TENSOR_BINARY_OP_LOCALS
  10120. const int ith = params->ith;
  10121. const int nth = params->nth;
  10122. const int nk = ne00*ne01*ne02;
  10123. GGML_ASSERT(nb00 == sizeof(float));
  10124. GGML_ASSERT(nb10 == sizeof(float));
  10125. if (params->type == GGML_TASK_INIT) {
  10126. if (ith != 0) {
  10127. return;
  10128. }
  10129. memset(params->wdata, 0, params->wsize);
  10130. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10131. {
  10132. float * const wdata = (float *) params->wdata + 0;
  10133. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10134. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10135. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10136. float * dst_data = wdata + i01*ne00*ne02;
  10137. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10138. dst_data[i00*ne02 + i02] = src[i00];
  10139. }
  10140. }
  10141. }
  10142. }
  10143. // prepare source data (src1)
  10144. {
  10145. float * const wdata = (float *) params->wdata + nk;
  10146. float * dst_data = wdata;
  10147. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10148. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10149. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10150. dst_data[i10*ne11 + i11] = src[i10];
  10151. }
  10152. }
  10153. }
  10154. // need to zero dst since we are accumulating into it
  10155. memset(dst->data, 0, ggml_nbytes(dst));
  10156. return;
  10157. }
  10158. if (params->type == GGML_TASK_FINALIZE) {
  10159. return;
  10160. }
  10161. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10162. // total rows in dst
  10163. const int nr = ne1;
  10164. // rows per thread
  10165. const int dr = (nr + nth - 1)/nth;
  10166. // row range for this thread
  10167. const int ir0 = dr*ith;
  10168. const int ir1 = MIN(ir0 + dr, nr);
  10169. float * const wdata = (float *) params->wdata + 0;
  10170. float * const wdata_src = wdata + nk;
  10171. for (int i1 = ir0; i1 < ir1; i1++) {
  10172. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10173. float * wdata_kernel = wdata + i1*ne02*ne00;
  10174. for (int i10 = 0; i10 < ne10; i10++) {
  10175. const int i1n = i10*ne11;
  10176. for (int i00 = 0; i00 < ne00; i00++) {
  10177. float v = 0;
  10178. ggml_vec_dot_f32(ne02, &v,
  10179. wdata_src + i1n,
  10180. wdata_kernel + i00*ne02);
  10181. dst_data[i10*s0 + i00] += v;
  10182. }
  10183. }
  10184. }
  10185. }
  10186. static void ggml_compute_forward_conv_transpose_1d(
  10187. const struct ggml_compute_params * params,
  10188. const struct ggml_tensor * src0,
  10189. const struct ggml_tensor * src1,
  10190. struct ggml_tensor * dst) {
  10191. switch (src0->type) {
  10192. case GGML_TYPE_F16:
  10193. {
  10194. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10195. } break;
  10196. case GGML_TYPE_F32:
  10197. {
  10198. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10199. } break;
  10200. default:
  10201. {
  10202. GGML_ASSERT(false);
  10203. } break;
  10204. }
  10205. }
  10206. // src0: kernel [OC, IC, KH, KW]
  10207. // src1: image [N, IC, IH, IW]
  10208. // dst: result [N, OH, OW, IC*KH*KW]
  10209. static void ggml_compute_forward_im2col_f16(
  10210. const struct ggml_compute_params * params,
  10211. const struct ggml_tensor * src0,
  10212. const struct ggml_tensor * src1,
  10213. struct ggml_tensor * dst) {
  10214. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10215. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10216. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10217. int64_t t0 = ggml_perf_time_us();
  10218. UNUSED(t0);
  10219. GGML_TENSOR_BINARY_OP_LOCALS;
  10220. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10221. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10222. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10223. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10224. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10225. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10226. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10227. const int ith = params->ith;
  10228. const int nth = params->nth;
  10229. const int64_t N = is_2D ? ne13 : ne12;
  10230. const int64_t IC = is_2D ? ne12 : ne11;
  10231. const int64_t IH = is_2D ? ne11 : 1;
  10232. const int64_t IW = ne10;
  10233. const int64_t KH = is_2D ? ne01 : 1;
  10234. const int64_t KW = ne00;
  10235. const int64_t OH = is_2D ? ne2 : 1;
  10236. const int64_t OW = ne1;
  10237. int ofs0 = is_2D ? nb13 : nb12;
  10238. int ofs1 = is_2D ? nb12 : nb11;
  10239. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10240. GGML_ASSERT(nb10 == sizeof(float));
  10241. if (params->type == GGML_TASK_INIT) {
  10242. return;
  10243. }
  10244. if (params->type == GGML_TASK_FINALIZE) {
  10245. return;
  10246. }
  10247. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10248. {
  10249. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10250. for (int64_t in = 0; in < N; in++) {
  10251. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10252. for (int64_t iow = 0; iow < OW; iow++) {
  10253. for (int64_t iic = ith; iic < IC; iic += nth) {
  10254. // micro kernel
  10255. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10256. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10257. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10258. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10259. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10260. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10261. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10262. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10263. } else {
  10264. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10265. }
  10266. }
  10267. }
  10268. }
  10269. }
  10270. }
  10271. }
  10272. }
  10273. }
  10274. static void ggml_compute_forward_im2col(
  10275. const struct ggml_compute_params * params,
  10276. const struct ggml_tensor * src0,
  10277. const struct ggml_tensor * src1,
  10278. struct ggml_tensor * dst) {
  10279. switch (src0->type) {
  10280. case GGML_TYPE_F16:
  10281. {
  10282. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10283. } break;
  10284. case GGML_TYPE_F32:
  10285. {
  10286. GGML_ASSERT(false);
  10287. } break;
  10288. default:
  10289. {
  10290. GGML_ASSERT(false);
  10291. } break;
  10292. }
  10293. }
  10294. // ggml_compute_forward_conv_transpose_2d
  10295. static void ggml_compute_forward_conv_transpose_2d(
  10296. const struct ggml_compute_params * params,
  10297. const struct ggml_tensor * src0,
  10298. const struct ggml_tensor * src1,
  10299. struct ggml_tensor * dst) {
  10300. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10301. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10302. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10303. int64_t t0 = ggml_perf_time_us();
  10304. UNUSED(t0);
  10305. GGML_TENSOR_BINARY_OP_LOCALS
  10306. const int ith = params->ith;
  10307. const int nth = params->nth;
  10308. const int nk = ne00*ne01*ne02*ne03;
  10309. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10310. GGML_ASSERT(nb10 == sizeof(float));
  10311. if (params->type == GGML_TASK_INIT) {
  10312. if (ith != 0) {
  10313. return;
  10314. }
  10315. memset(params->wdata, 0, params->wsize);
  10316. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10317. {
  10318. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10321. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10322. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10323. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10324. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10325. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10326. }
  10327. }
  10328. }
  10329. }
  10330. }
  10331. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10332. {
  10333. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10334. for (int i12 = 0; i12 < ne12; i12++) {
  10335. for (int i11 = 0; i11 < ne11; i11++) {
  10336. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10337. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10338. for (int i10 = 0; i10 < ne10; i10++) {
  10339. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10340. }
  10341. }
  10342. }
  10343. }
  10344. memset(dst->data, 0, ggml_nbytes(dst));
  10345. return;
  10346. }
  10347. if (params->type == GGML_TASK_FINALIZE) {
  10348. return;
  10349. }
  10350. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10351. // total patches in dst
  10352. const int np = ne2;
  10353. // patches per thread
  10354. const int dp = (np + nth - 1)/nth;
  10355. // patch range for this thread
  10356. const int ip0 = dp*ith;
  10357. const int ip1 = MIN(ip0 + dp, np);
  10358. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10359. ggml_fp16_t * const wdata_src = wdata + nk;
  10360. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10361. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10362. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10363. for (int i11 = 0; i11 < ne11; i11++) {
  10364. for (int i10 = 0; i10 < ne10; i10++) {
  10365. const int i1n = i11*ne10*ne12 + i10*ne12;
  10366. for (int i01 = 0; i01 < ne01; i01++) {
  10367. for (int i00 = 0; i00 < ne00; i00++) {
  10368. float v = 0;
  10369. ggml_vec_dot_f16(ne03, &v,
  10370. wdata_src + i1n,
  10371. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10372. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10373. }
  10374. }
  10375. }
  10376. }
  10377. }
  10378. }
  10379. // ggml_compute_forward_pool_1d_sk_p0
  10380. static void ggml_compute_forward_pool_1d_sk_p0(
  10381. const struct ggml_compute_params * params,
  10382. const enum ggml_op_pool op,
  10383. const struct ggml_tensor * src,
  10384. const int k,
  10385. struct ggml_tensor * dst) {
  10386. assert(src->type == GGML_TYPE_F32);
  10387. assert(params->ith == 0);
  10388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10389. return;
  10390. }
  10391. const char * cdata = (const char *)src->data;
  10392. const char * const data_end = cdata + ggml_nbytes(src);
  10393. float * drow = (float *)dst->data;
  10394. const int64_t rs = dst->ne[0];
  10395. while (cdata < data_end) {
  10396. const float * const srow = (const float *)cdata;
  10397. int j = 0;
  10398. for (int64_t i = 0; i < rs; ++i) {
  10399. switch (op) {
  10400. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10401. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10402. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10403. }
  10404. for (int ki = 0; ki < k; ++ki) {
  10405. switch (op) {
  10406. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10407. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10408. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10409. }
  10410. ++j;
  10411. }
  10412. switch (op) {
  10413. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10414. case GGML_OP_POOL_MAX: break;
  10415. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10416. }
  10417. }
  10418. cdata += src->nb[1];
  10419. drow += rs;
  10420. }
  10421. }
  10422. // ggml_compute_forward_pool_1d
  10423. static void ggml_compute_forward_pool_1d(
  10424. const struct ggml_compute_params * params,
  10425. const struct ggml_tensor * src0,
  10426. struct ggml_tensor * dst) {
  10427. const int32_t * opts = (const int32_t *)dst->op_params;
  10428. enum ggml_op_pool op = opts[0];
  10429. const int k0 = opts[1];
  10430. const int s0 = opts[2];
  10431. const int p0 = opts[3];
  10432. GGML_ASSERT(p0 == 0); // padding not supported
  10433. GGML_ASSERT(k0 == s0); // only s = k supported
  10434. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10435. }
  10436. // ggml_compute_forward_pool_2d
  10437. static void ggml_compute_forward_pool_2d(
  10438. const struct ggml_compute_params * params,
  10439. const struct ggml_tensor * src,
  10440. struct ggml_tensor * dst) {
  10441. assert(src->type == GGML_TYPE_F32);
  10442. assert(params->ith == 0);
  10443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10444. return;
  10445. }
  10446. const int32_t * opts = (const int32_t *)dst->op_params;
  10447. enum ggml_op_pool op = opts[0];
  10448. const int k0 = opts[1];
  10449. const int k1 = opts[2];
  10450. const int s0 = opts[3];
  10451. const int s1 = opts[4];
  10452. const int p0 = opts[5];
  10453. const int p1 = opts[6];
  10454. const char * cdata = (const char*)src->data;
  10455. const char * const data_end = cdata + ggml_nbytes(src);
  10456. const int64_t px = dst->ne[0];
  10457. const int64_t py = dst->ne[1];
  10458. const int64_t pa = px * py;
  10459. float * dplane = (float *)dst->data;
  10460. const int ka = k0 * k1;
  10461. const int offset0 = -p0;
  10462. const int offset1 = -p1;
  10463. while (cdata < data_end) {
  10464. for (int oy = 0; oy < py; ++oy) {
  10465. float * const drow = dplane + oy * px;
  10466. for (int ox = 0; ox < px; ++ox) {
  10467. float * const out = drow + ox;
  10468. switch (op) {
  10469. case GGML_OP_POOL_AVG: *out = 0; break;
  10470. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10471. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10472. }
  10473. const int ix = offset0 + ox * s0;
  10474. const int iy = offset1 + oy * s1;
  10475. for (int ky = 0; ky < k1; ++ky) {
  10476. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10477. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10478. for (int kx = 0; kx < k0; ++kx) {
  10479. int j = ix + kx;
  10480. if (j < 0 || j >= src->ne[0]) continue;
  10481. switch (op) {
  10482. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10483. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10484. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10485. }
  10486. }
  10487. }
  10488. switch (op) {
  10489. case GGML_OP_POOL_AVG: *out /= ka; break;
  10490. case GGML_OP_POOL_MAX: break;
  10491. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10492. }
  10493. }
  10494. }
  10495. cdata += src->nb[2];
  10496. dplane += pa;
  10497. }
  10498. }
  10499. // ggml_compute_forward_upscale
  10500. static void ggml_compute_forward_upscale_f32(
  10501. const struct ggml_compute_params * params,
  10502. const struct ggml_tensor * src0,
  10503. struct ggml_tensor * dst) {
  10504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10505. return;
  10506. }
  10507. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10508. const int ith = params->ith;
  10509. const int nth = params->nth;
  10510. GGML_TENSOR_UNARY_OP_LOCALS
  10511. const int scale_factor = dst->op_params[0];
  10512. // TODO: optimize
  10513. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10514. const int64_t i03 = i3;
  10515. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10516. const int64_t i02 = i2;
  10517. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10518. const int64_t i01 = i1 / scale_factor;
  10519. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10520. const int64_t i00 = i0 / scale_factor;
  10521. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10522. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10523. *y = *x;
  10524. }
  10525. }
  10526. }
  10527. }
  10528. }
  10529. static void ggml_compute_forward_upscale(
  10530. const struct ggml_compute_params * params,
  10531. const struct ggml_tensor * src0,
  10532. struct ggml_tensor * dst) {
  10533. switch (src0->type) {
  10534. case GGML_TYPE_F32:
  10535. {
  10536. ggml_compute_forward_upscale_f32(params, src0, dst);
  10537. } break;
  10538. default:
  10539. {
  10540. GGML_ASSERT(false);
  10541. } break;
  10542. }
  10543. }
  10544. // ggml_compute_forward_pad
  10545. static void ggml_compute_forward_pad_f32(
  10546. const struct ggml_compute_params * params,
  10547. const struct ggml_tensor * src0,
  10548. struct ggml_tensor * dst) {
  10549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10550. return;
  10551. }
  10552. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10553. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10554. const int ith = params->ith;
  10555. const int nth = params->nth;
  10556. GGML_TENSOR_UNARY_OP_LOCALS
  10557. float * dst_ptr = (float *) dst->data;
  10558. // TODO: optimize
  10559. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10560. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10561. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10562. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10563. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10564. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10565. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10566. dst_ptr[dst_idx] = *src_ptr;
  10567. } else {
  10568. dst_ptr[dst_idx] = 0;
  10569. }
  10570. }
  10571. }
  10572. }
  10573. }
  10574. }
  10575. static void ggml_compute_forward_pad(
  10576. const struct ggml_compute_params * params,
  10577. const struct ggml_tensor * src0,
  10578. struct ggml_tensor * dst) {
  10579. switch (src0->type) {
  10580. case GGML_TYPE_F32:
  10581. {
  10582. ggml_compute_forward_pad_f32(params, src0, dst);
  10583. } break;
  10584. default:
  10585. {
  10586. GGML_ASSERT(false);
  10587. } break;
  10588. }
  10589. }
  10590. // ggml_compute_forward_argsort
  10591. static void ggml_compute_forward_argsort_f32(
  10592. const struct ggml_compute_params * params,
  10593. const struct ggml_tensor * src0,
  10594. struct ggml_tensor * dst) {
  10595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10596. return;
  10597. }
  10598. GGML_TENSOR_UNARY_OP_LOCALS
  10599. GGML_ASSERT(nb0 == sizeof(float));
  10600. const int ith = params->ith;
  10601. const int nth = params->nth;
  10602. const int64_t nr = ggml_nrows(src0);
  10603. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10604. for (int64_t i = ith; i < nr; i += nth) {
  10605. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10606. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10607. for (int64_t j = 0; j < ne0; j++) {
  10608. dst_data[j] = j;
  10609. }
  10610. // C doesn't have a functional sort, so we do a bubble sort instead
  10611. for (int64_t j = 0; j < ne0; j++) {
  10612. for (int64_t k = j + 1; k < ne0; k++) {
  10613. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10614. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10615. int32_t tmp = dst_data[j];
  10616. dst_data[j] = dst_data[k];
  10617. dst_data[k] = tmp;
  10618. }
  10619. }
  10620. }
  10621. }
  10622. }
  10623. static void ggml_compute_forward_argsort(
  10624. const struct ggml_compute_params * params,
  10625. const struct ggml_tensor * src0,
  10626. struct ggml_tensor * dst) {
  10627. switch (src0->type) {
  10628. case GGML_TYPE_F32:
  10629. {
  10630. ggml_compute_forward_argsort_f32(params, src0, dst);
  10631. } break;
  10632. default:
  10633. {
  10634. GGML_ASSERT(false);
  10635. } break;
  10636. }
  10637. }
  10638. // ggml_compute_forward_flash_attn
  10639. static void ggml_compute_forward_flash_attn_f32(
  10640. const struct ggml_compute_params * params,
  10641. const struct ggml_tensor * q,
  10642. const struct ggml_tensor * k,
  10643. const struct ggml_tensor * v,
  10644. const bool masked,
  10645. struct ggml_tensor * dst) {
  10646. int64_t t0 = ggml_perf_time_us();
  10647. UNUSED(t0);
  10648. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10649. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10650. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10651. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10652. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10653. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10654. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10655. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10656. const int ith = params->ith;
  10657. const int nth = params->nth;
  10658. const int64_t D = neq0;
  10659. const int64_t N = neq1;
  10660. const int64_t P = nek1 - N;
  10661. const int64_t M = P + N;
  10662. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10663. GGML_ASSERT(ne0 == D);
  10664. GGML_ASSERT(ne1 == N);
  10665. GGML_ASSERT(P >= 0);
  10666. GGML_ASSERT(nbq0 == sizeof(float));
  10667. GGML_ASSERT(nbk0 == sizeof(float));
  10668. GGML_ASSERT(nbv0 == sizeof(float));
  10669. GGML_ASSERT(neq0 == D);
  10670. GGML_ASSERT(nek0 == D);
  10671. GGML_ASSERT(nev1 == D);
  10672. GGML_ASSERT(neq1 == N);
  10673. GGML_ASSERT(nek1 == N + P);
  10674. GGML_ASSERT(nev1 == D);
  10675. // dst cannot be transposed or permuted
  10676. GGML_ASSERT(nb0 == sizeof(float));
  10677. GGML_ASSERT(nb0 <= nb1);
  10678. GGML_ASSERT(nb1 <= nb2);
  10679. GGML_ASSERT(nb2 <= nb3);
  10680. if (params->type == GGML_TASK_INIT) {
  10681. return;
  10682. }
  10683. if (params->type == GGML_TASK_FINALIZE) {
  10684. return;
  10685. }
  10686. // parallelize by q rows using ggml_vec_dot_f32
  10687. // total rows in q
  10688. const int nr = neq1*neq2*neq3;
  10689. // rows per thread
  10690. const int dr = (nr + nth - 1)/nth;
  10691. // row range for this thread
  10692. const int ir0 = dr*ith;
  10693. const int ir1 = MIN(ir0 + dr, nr);
  10694. const float scale = 1.0f/sqrtf(D);
  10695. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10696. for (int ir = ir0; ir < ir1; ++ir) {
  10697. // q indices
  10698. const int iq3 = ir/(neq2*neq1);
  10699. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10700. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10701. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10702. for (int i = M; i < Mup; ++i) {
  10703. S[i] = -INFINITY;
  10704. }
  10705. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10706. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10707. // k indices
  10708. const int ik3 = iq3;
  10709. const int ik2 = iq2 % nek2;
  10710. const int ik1 = ic;
  10711. // S indices
  10712. const int i1 = ik1;
  10713. ggml_vec_dot_f32(neq0,
  10714. S + i1,
  10715. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10716. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10717. }
  10718. // scale
  10719. ggml_vec_scale_f32(masked_begin, S, scale);
  10720. for (int64_t i = masked_begin; i < M; i++) {
  10721. S[i] = -INFINITY;
  10722. }
  10723. // softmax
  10724. // exclude known -INF S[..] values from max and loop
  10725. // dont forget to set their SW values to zero
  10726. {
  10727. float max = -INFINITY;
  10728. ggml_vec_max_f32(masked_begin, &max, S);
  10729. ggml_float sum = 0.0;
  10730. {
  10731. #ifdef GGML_SOFT_MAX_ACCELERATE
  10732. max = -max;
  10733. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10734. vvexpf(S, S, &Mup);
  10735. ggml_vec_sum_f32(Mup, &sum, S);
  10736. #else
  10737. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10738. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10739. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10740. if (i >= masked_begin) {
  10741. break;
  10742. }
  10743. float * SS = S + i;
  10744. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10745. if (i + j >= masked_begin) {
  10746. break;
  10747. } else if (SS[j] == -INFINITY) {
  10748. SS[j] = 0.0f;
  10749. } else {
  10750. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10751. const float val = expf(SS[j] - max);
  10752. #else
  10753. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10754. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10755. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10756. #endif
  10757. sump[j] += (ggml_float)val;
  10758. SS[j] = val;
  10759. }
  10760. }
  10761. }
  10762. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10763. sum += sump[i];
  10764. }
  10765. #endif
  10766. }
  10767. assert(sum > 0.0);
  10768. sum = 1.0/sum;
  10769. ggml_vec_scale_f32(masked_begin, S, sum);
  10770. #ifndef NDEBUG
  10771. for (int i = 0; i < masked_begin; ++i) {
  10772. assert(!isnan(S[i]));
  10773. assert(!isinf(S[i]));
  10774. }
  10775. #endif
  10776. }
  10777. for (int64_t ic = 0; ic < nev1; ++ic) {
  10778. // dst indices
  10779. const int i1 = iq1;
  10780. const int i2 = iq2;
  10781. const int i3 = iq3;
  10782. // v indices
  10783. const int iv2 = iq2 % nev2;
  10784. const int iv3 = iq3;
  10785. ggml_vec_dot_f32(masked_begin,
  10786. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10787. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10788. S);
  10789. }
  10790. }
  10791. }
  10792. static void ggml_compute_forward_flash_attn_f16(
  10793. const struct ggml_compute_params * params,
  10794. const struct ggml_tensor * q,
  10795. const struct ggml_tensor * k,
  10796. const struct ggml_tensor * v,
  10797. const bool masked,
  10798. struct ggml_tensor * dst) {
  10799. int64_t t0 = ggml_perf_time_us();
  10800. UNUSED(t0);
  10801. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10802. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10803. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10804. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10805. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10806. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10807. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10808. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10809. const int ith = params->ith;
  10810. const int nth = params->nth;
  10811. const int64_t D = neq0;
  10812. const int64_t N = neq1;
  10813. const int64_t P = nek1 - N;
  10814. const int64_t M = P + N;
  10815. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10816. GGML_ASSERT(ne0 == D);
  10817. GGML_ASSERT(ne1 == N);
  10818. GGML_ASSERT(P >= 0);
  10819. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10820. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10821. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10822. GGML_ASSERT(neq0 == D);
  10823. GGML_ASSERT(nek0 == D);
  10824. GGML_ASSERT(nev1 == D);
  10825. GGML_ASSERT(neq1 == N);
  10826. GGML_ASSERT(nek1 == N + P);
  10827. GGML_ASSERT(nev1 == D);
  10828. // dst cannot be transposed or permuted
  10829. GGML_ASSERT(nb0 == sizeof(float));
  10830. GGML_ASSERT(nb0 <= nb1);
  10831. GGML_ASSERT(nb1 <= nb2);
  10832. GGML_ASSERT(nb2 <= nb3);
  10833. if (params->type == GGML_TASK_INIT) {
  10834. return;
  10835. }
  10836. if (params->type == GGML_TASK_FINALIZE) {
  10837. return;
  10838. }
  10839. // parallelize by q rows using ggml_vec_dot_f32
  10840. // total rows in q
  10841. const int nr = neq1*neq2*neq3;
  10842. // rows per thread
  10843. const int dr = (nr + nth - 1)/nth;
  10844. // row range for this thread
  10845. const int ir0 = dr*ith;
  10846. const int ir1 = MIN(ir0 + dr, nr);
  10847. const float scale = 1.0f/sqrtf(D);
  10848. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10849. for (int ir = ir0; ir < ir1; ++ir) {
  10850. // q indices
  10851. const int iq3 = ir/(neq2*neq1);
  10852. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10853. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10854. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10855. for (int i = M; i < Mup; ++i) {
  10856. S[i] = -INFINITY;
  10857. }
  10858. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10859. for (int64_t ic = 0; ic < nek1; ++ic) {
  10860. // k indices
  10861. const int ik3 = iq3;
  10862. const int ik2 = iq2 % nek2;
  10863. const int ik1 = ic;
  10864. // S indices
  10865. const int i1 = ik1;
  10866. ggml_vec_dot_f16(neq0,
  10867. S + i1,
  10868. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10869. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10870. }
  10871. } else {
  10872. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10873. // k indices
  10874. const int ik3 = iq3;
  10875. const int ik2 = iq2 % nek2;
  10876. const int ik1 = ic;
  10877. // S indices
  10878. const int i1 = ik1;
  10879. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10880. S + i1,
  10881. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10882. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10883. }
  10884. }
  10885. // scale
  10886. ggml_vec_scale_f32(nek1, S, scale);
  10887. if (masked) {
  10888. for (int64_t i = P; i < M; i++) {
  10889. if (i > P + iq1) {
  10890. S[i] = -INFINITY;
  10891. }
  10892. }
  10893. }
  10894. // softmax
  10895. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10896. // dont forget to set their S values to zero
  10897. {
  10898. float max = -INFINITY;
  10899. ggml_vec_max_f32(M, &max, S);
  10900. ggml_float sum = 0.0;
  10901. {
  10902. #ifdef GGML_SOFT_MAX_ACCELERATE
  10903. max = -max;
  10904. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10905. vvexpf(S, S, &Mup);
  10906. ggml_vec_sum_f32(Mup, &sum, S);
  10907. #else
  10908. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10909. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10910. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10911. float * SS = S + i;
  10912. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10913. if (SS[j] == -INFINITY) {
  10914. SS[j] = 0.0f;
  10915. } else {
  10916. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10917. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10918. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10919. sump[j] += (ggml_float)val;
  10920. SS[j] = val;
  10921. }
  10922. }
  10923. }
  10924. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10925. sum += sump[i];
  10926. }
  10927. #endif
  10928. }
  10929. assert(sum > 0.0);
  10930. sum = 1.0/sum;
  10931. ggml_vec_scale_f32(M, S, sum);
  10932. #ifndef NDEBUG
  10933. for (int i = 0; i < M; ++i) {
  10934. assert(!isnan(S[i]));
  10935. assert(!isinf(S[i]));
  10936. }
  10937. #endif
  10938. }
  10939. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10940. for (int64_t i = 0; i < M; i++) {
  10941. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10942. }
  10943. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10944. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10945. for (int64_t ic = 0; ic < nev1; ++ic) {
  10946. // dst indices
  10947. const int i1 = iq1;
  10948. const int i2 = iq2;
  10949. const int i3 = iq3;
  10950. // v indices
  10951. const int iv2 = iq2 % nev2;
  10952. const int iv3 = iq3;
  10953. ggml_vec_dot_f16(nev0,
  10954. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10955. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10956. S16);
  10957. }
  10958. } else {
  10959. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10960. // dst indices
  10961. const int i1 = iq1;
  10962. const int i2 = iq2;
  10963. const int i3 = iq3;
  10964. // v indices
  10965. const int iv2 = iq2 % nev2;
  10966. const int iv3 = iq3;
  10967. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10968. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10969. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10970. S16);
  10971. }
  10972. }
  10973. }
  10974. }
  10975. static void ggml_compute_forward_flash_attn(
  10976. const struct ggml_compute_params * params,
  10977. const struct ggml_tensor * q,
  10978. const struct ggml_tensor * k,
  10979. const struct ggml_tensor * v,
  10980. const bool masked,
  10981. struct ggml_tensor * dst) {
  10982. switch (q->type) {
  10983. case GGML_TYPE_F16:
  10984. {
  10985. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10986. } break;
  10987. case GGML_TYPE_F32:
  10988. {
  10989. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10990. } break;
  10991. default:
  10992. {
  10993. GGML_ASSERT(false);
  10994. } break;
  10995. }
  10996. }
  10997. // ggml_compute_forward_flash_ff
  10998. static void ggml_compute_forward_flash_ff_f16(
  10999. const struct ggml_compute_params * params,
  11000. const struct ggml_tensor * a, // F16
  11001. const struct ggml_tensor * b0, // F16 fc_w
  11002. const struct ggml_tensor * b1, // F32 fc_b
  11003. const struct ggml_tensor * c0, // F16 proj_w
  11004. const struct ggml_tensor * c1, // F32 proj_b
  11005. struct ggml_tensor * dst) {
  11006. int64_t t0 = ggml_perf_time_us();
  11007. UNUSED(t0);
  11008. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11009. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11010. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11011. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11012. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11013. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11014. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11015. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11016. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11017. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11018. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11019. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11020. const int ith = params->ith;
  11021. const int nth = params->nth;
  11022. const int64_t D = nea0;
  11023. //const int64_t N = nea1;
  11024. const int64_t M = neb01;
  11025. GGML_ASSERT(ne0 == nea0);
  11026. GGML_ASSERT(ne1 == nea1);
  11027. GGML_ASSERT(ne2 == nea2);
  11028. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11029. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11030. GGML_ASSERT(nbb10 == sizeof(float));
  11031. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11032. GGML_ASSERT(nbc10 == sizeof(float));
  11033. GGML_ASSERT(neb00 == D);
  11034. GGML_ASSERT(neb01 == M);
  11035. GGML_ASSERT(neb10 == M);
  11036. GGML_ASSERT(neb11 == 1);
  11037. GGML_ASSERT(nec00 == M);
  11038. GGML_ASSERT(nec01 == D);
  11039. GGML_ASSERT(nec10 == D);
  11040. GGML_ASSERT(nec11 == 1);
  11041. // dst cannot be transposed or permuted
  11042. GGML_ASSERT(nb0 == sizeof(float));
  11043. GGML_ASSERT(nb0 <= nb1);
  11044. GGML_ASSERT(nb1 <= nb2);
  11045. GGML_ASSERT(nb2 <= nb3);
  11046. if (params->type == GGML_TASK_INIT) {
  11047. return;
  11048. }
  11049. if (params->type == GGML_TASK_FINALIZE) {
  11050. return;
  11051. }
  11052. // parallelize by a rows using ggml_vec_dot_f32
  11053. // total rows in a
  11054. const int nr = nea1*nea2*nea3;
  11055. // rows per thread
  11056. const int dr = (nr + nth - 1)/nth;
  11057. // row range for this thread
  11058. const int ir0 = dr*ith;
  11059. const int ir1 = MIN(ir0 + dr, nr);
  11060. for (int ir = ir0; ir < ir1; ++ir) {
  11061. // a indices
  11062. const int ia3 = ir/(nea2*nea1);
  11063. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11064. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11065. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11066. for (int64_t ic = 0; ic < neb01; ++ic) {
  11067. // b0 indices
  11068. const int ib03 = ia3;
  11069. const int ib02 = ia2;
  11070. const int ib01 = ic;
  11071. // S indices
  11072. const int i1 = ib01;
  11073. ggml_vec_dot_f16(nea0,
  11074. S + i1,
  11075. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11076. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11077. }
  11078. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11079. //ggml_vec_gelu_f32(neb01, S, S);
  11080. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11081. for (int64_t i = 0; i < M; i++) {
  11082. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11083. }
  11084. ggml_vec_gelu_f16(neb01, S16, S16);
  11085. {
  11086. // dst indices
  11087. const int i1 = ia1;
  11088. const int i2 = ia2;
  11089. const int i3 = ia3;
  11090. for (int64_t ic = 0; ic < nec01; ++ic) {
  11091. ggml_vec_dot_f16(neb01,
  11092. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11093. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11094. S16);
  11095. }
  11096. ggml_vec_add_f32(nec01,
  11097. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11098. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11099. (float *) c1->data);
  11100. }
  11101. }
  11102. }
  11103. static void ggml_compute_forward_flash_ff(
  11104. const struct ggml_compute_params * params,
  11105. const struct ggml_tensor * a,
  11106. const struct ggml_tensor * b0,
  11107. const struct ggml_tensor * b1,
  11108. const struct ggml_tensor * c0,
  11109. const struct ggml_tensor * c1,
  11110. struct ggml_tensor * dst) {
  11111. switch (b0->type) {
  11112. case GGML_TYPE_F16:
  11113. {
  11114. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11115. } break;
  11116. case GGML_TYPE_F32:
  11117. {
  11118. GGML_ASSERT(false); // TODO
  11119. } break;
  11120. default:
  11121. {
  11122. GGML_ASSERT(false);
  11123. } break;
  11124. }
  11125. }
  11126. // ggml_compute_forward_flash_attn_back
  11127. static void ggml_compute_forward_flash_attn_back_f32(
  11128. const struct ggml_compute_params * params,
  11129. const struct ggml_tensor * q,
  11130. const struct ggml_tensor * k,
  11131. const struct ggml_tensor * v,
  11132. const struct ggml_tensor * d,
  11133. const bool masked,
  11134. struct ggml_tensor * dst) {
  11135. int64_t t0 = ggml_perf_time_us();
  11136. UNUSED(t0);
  11137. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11138. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11139. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11140. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11141. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11142. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11143. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11144. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11145. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11146. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11147. const int ith = params->ith;
  11148. const int nth = params->nth;
  11149. const int64_t D = neq0;
  11150. const int64_t N = neq1;
  11151. const int64_t P = nek1 - N;
  11152. const int64_t M = P + N;
  11153. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11154. const int mxDM = MAX(D, Mup);
  11155. // GGML_ASSERT(ne0 == D);
  11156. // GGML_ASSERT(ne1 == N);
  11157. GGML_ASSERT(P >= 0);
  11158. GGML_ASSERT(nbq0 == sizeof(float));
  11159. GGML_ASSERT(nbk0 == sizeof(float));
  11160. GGML_ASSERT(nbv0 == sizeof(float));
  11161. GGML_ASSERT(neq0 == D);
  11162. GGML_ASSERT(nek0 == D);
  11163. GGML_ASSERT(nev1 == D);
  11164. GGML_ASSERT(ned0 == D);
  11165. GGML_ASSERT(neq1 == N);
  11166. GGML_ASSERT(nek1 == N + P);
  11167. GGML_ASSERT(nev1 == D);
  11168. GGML_ASSERT(ned1 == N);
  11169. // dst cannot be transposed or permuted
  11170. GGML_ASSERT(nb0 == sizeof(float));
  11171. GGML_ASSERT(nb0 <= nb1);
  11172. GGML_ASSERT(nb1 <= nb2);
  11173. GGML_ASSERT(nb2 <= nb3);
  11174. if (params->type == GGML_TASK_INIT) {
  11175. if (ith == 0) {
  11176. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11177. }
  11178. return;
  11179. }
  11180. if (params->type == GGML_TASK_FINALIZE) {
  11181. return;
  11182. }
  11183. const int64_t elem_q = ggml_nelements(q);
  11184. const int64_t elem_k = ggml_nelements(k);
  11185. enum ggml_type result_type = dst->type;
  11186. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11187. const size_t tsize = ggml_type_size(result_type);
  11188. const size_t offs_q = 0;
  11189. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11190. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11191. void * grad_q = (char *) dst->data;
  11192. void * grad_k = (char *) dst->data + offs_k;
  11193. void * grad_v = (char *) dst->data + offs_v;
  11194. const size_t nbgq1 = nb0*neq0;
  11195. const size_t nbgq2 = nb0*neq0*neq1;
  11196. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11197. const size_t nbgk1 = nb0*nek0;
  11198. const size_t nbgk2 = nb0*nek0*nek1;
  11199. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11200. const size_t nbgv1 = nb0*nev0;
  11201. const size_t nbgv2 = nb0*nev0*nev1;
  11202. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11203. // parallelize by k rows using ggml_vec_dot_f32
  11204. // total rows in k
  11205. const int nr = nek2*nek3;
  11206. // rows per thread
  11207. const int dr = (nr + nth - 1)/nth;
  11208. // row range for this thread
  11209. const int ir0 = dr*ith;
  11210. const int ir1 = MIN(ir0 + dr, nr);
  11211. const float scale = 1.0f/sqrtf(D);
  11212. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11213. // how often k2 (and v2) is repeated in q2
  11214. int nrep = neq2/nek2;
  11215. for (int ir = ir0; ir < ir1; ++ir) {
  11216. // q indices
  11217. const int ik3 = ir/(nek2);
  11218. const int ik2 = ir - ik3*nek2;
  11219. const int iq3 = ik3;
  11220. const int id3 = ik3;
  11221. const int iv3 = ik3;
  11222. const int iv2 = ik2;
  11223. for (int irep = 0; irep < nrep; ++irep) {
  11224. const int iq2 = ik2 + irep*nek2;
  11225. const int id2 = iq2;
  11226. // (ik2 + irep*nek2) % nek2 == ik2
  11227. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11228. const int id1 = iq1;
  11229. // not sure about CACHE_LINE_SIZE_F32..
  11230. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11231. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11232. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11233. for (int i = M; i < Mup; ++i) {
  11234. S[i] = -INFINITY;
  11235. }
  11236. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11237. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11238. // k indices
  11239. const int ik1 = ic;
  11240. // S indices
  11241. const int i1 = ik1;
  11242. ggml_vec_dot_f32(neq0,
  11243. S + i1,
  11244. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11245. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11246. }
  11247. // scale
  11248. ggml_vec_scale_f32(masked_begin, S, scale);
  11249. for (int64_t i = masked_begin; i < M; i++) {
  11250. S[i] = -INFINITY;
  11251. }
  11252. // softmax
  11253. // exclude known -INF S[..] values from max and loop
  11254. // dont forget to set their SM values to zero
  11255. {
  11256. float max = -INFINITY;
  11257. ggml_vec_max_f32(masked_begin, &max, S);
  11258. ggml_float sum = 0.0;
  11259. {
  11260. #ifdef GGML_SOFT_MAX_ACCELERATE
  11261. max = -max;
  11262. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11263. vvexpf(SM, SM, &Mup);
  11264. ggml_vec_sum_f32(Mup, &sum, SM);
  11265. #else
  11266. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11267. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11268. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11269. if (i >= masked_begin) {
  11270. break;
  11271. }
  11272. float * SR = S + i;
  11273. float * SW = SM + i;
  11274. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11275. if (i + j >= masked_begin) {
  11276. break;
  11277. } else if (SR[j] == -INFINITY) {
  11278. SW[j] = 0.0f;
  11279. } else {
  11280. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11281. const float val = expf(SR[j] - max);
  11282. #else
  11283. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11284. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11285. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11286. #endif
  11287. sump[j] += (ggml_float)val;
  11288. SW[j] = val;
  11289. }
  11290. }
  11291. }
  11292. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11293. sum += sump[i];
  11294. }
  11295. #endif
  11296. }
  11297. assert(sum > 0.0);
  11298. sum = 1.0/sum;
  11299. ggml_vec_scale_f32(masked_begin, SM, sum);
  11300. }
  11301. // step-by-step explanation
  11302. {
  11303. // forward-process shape grads from backward process
  11304. // parallel_for ik2,ik3:
  11305. // for irep:
  11306. // iq2 = ik2 + irep*nek2
  11307. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11308. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11309. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11310. // for iq1:
  11311. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11312. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11313. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11314. // S0 = -Inf [D,1,1,1]
  11315. // ~S1[i] = dot(kcur[:D,i], qcur)
  11316. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11317. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11318. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11319. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11320. // ~S5[i] = dot(vcur[:,i], S4)
  11321. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11322. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11323. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11324. // dst backward-/ grad[dst] = d
  11325. //
  11326. // output gradients with their dependencies:
  11327. //
  11328. // grad[kcur] = grad[S1].T @ qcur
  11329. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11330. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11331. // grad[S4] = grad[S5] @ vcur
  11332. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11333. // grad[qcur] = grad[S1] @ kcur
  11334. // grad[vcur] = grad[S5].T @ S4
  11335. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11336. //
  11337. // in post-order:
  11338. //
  11339. // S1 = qcur @ kcur.T
  11340. // S2 = S1 * scale
  11341. // S3 = diag_mask_inf(S2, P)
  11342. // S4 = softmax(S3)
  11343. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11344. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11345. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11346. // grad[qcur] = grad[S1] @ kcur
  11347. // grad[kcur] = grad[S1].T @ qcur
  11348. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11349. //
  11350. // using less variables (SM=S4):
  11351. //
  11352. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11353. // SM = softmax(S)
  11354. // S = d[:D,iq1,iq2,iq3] @ vcur
  11355. // dot_SM_gradSM = dot(SM, S)
  11356. // S = SM * (S - dot(SM, S))
  11357. // S = diag_mask_zero(S, P) * scale
  11358. //
  11359. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11360. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11361. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11362. }
  11363. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11364. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11365. // for ic:
  11366. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11367. // exclude known future zero S[..] values from operation
  11368. ggml_vec_set_f32(masked_begin, S, 0);
  11369. for (int64_t ic = 0; ic < D; ++ic) {
  11370. ggml_vec_mad_f32(masked_begin,
  11371. S,
  11372. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11373. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11374. }
  11375. // S = SM * (S - dot(SM, S))
  11376. float dot_SM_gradSM = 0;
  11377. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11378. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11379. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11380. // S = diag_mask_zero(S, P) * scale
  11381. // already done by above ggml_vec_set_f32
  11382. // exclude known zero S[..] values from operation
  11383. ggml_vec_scale_f32(masked_begin, S, scale);
  11384. // S shape [M,1]
  11385. // SM shape [M,1]
  11386. // kcur shape [D,M]
  11387. // qcur shape [D,1]
  11388. // vcur shape [M,D]
  11389. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11390. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11391. // for ic:
  11392. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11393. // exclude known zero S[..] values from loop
  11394. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11395. ggml_vec_mad_f32(D,
  11396. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11397. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11398. S[ic]);
  11399. }
  11400. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11401. // for ic:
  11402. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11403. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11404. // exclude known zero S[..] values from loop
  11405. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11406. ggml_vec_mad_f32(D,
  11407. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11408. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11409. S[ic]);
  11410. }
  11411. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11412. // for ic:
  11413. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11414. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11415. // exclude known zero SM[..] values from mad
  11416. for (int64_t ic = 0; ic < D; ++ic) {
  11417. ggml_vec_mad_f32(masked_begin,
  11418. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11419. SM,
  11420. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11421. }
  11422. }
  11423. }
  11424. }
  11425. }
  11426. static void ggml_compute_forward_flash_attn_back(
  11427. const struct ggml_compute_params * params,
  11428. const struct ggml_tensor * q,
  11429. const struct ggml_tensor * k,
  11430. const struct ggml_tensor * v,
  11431. const struct ggml_tensor * d,
  11432. const bool masked,
  11433. struct ggml_tensor * dst) {
  11434. switch (q->type) {
  11435. case GGML_TYPE_F32:
  11436. {
  11437. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11438. } break;
  11439. default:
  11440. {
  11441. GGML_ASSERT(false);
  11442. } break;
  11443. }
  11444. }
  11445. // ggml_compute_forward_win_part
  11446. static void ggml_compute_forward_win_part_f32(
  11447. const struct ggml_compute_params * params,
  11448. const struct ggml_tensor * src0,
  11449. struct ggml_tensor * dst) {
  11450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11451. return;
  11452. }
  11453. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11454. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11455. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11456. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11457. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11458. assert(ne00 == ne0);
  11459. assert(ne3 == nep0*nep1);
  11460. // TODO: optimize / multi-thread
  11461. for (int py = 0; py < nep1; ++py) {
  11462. for (int px = 0; px < nep0; ++px) {
  11463. const int64_t i3 = py*nep0 + px;
  11464. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11465. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11466. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11467. const int64_t i02 = py*w + i2;
  11468. const int64_t i01 = px*w + i1;
  11469. const int64_t i00 = i0;
  11470. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11471. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11472. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11473. ((float *) dst->data)[i] = 0.0f;
  11474. } else {
  11475. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11476. }
  11477. }
  11478. }
  11479. }
  11480. }
  11481. }
  11482. }
  11483. static void ggml_compute_forward_win_part(
  11484. const struct ggml_compute_params * params,
  11485. const struct ggml_tensor * src0,
  11486. struct ggml_tensor * dst) {
  11487. switch (src0->type) {
  11488. case GGML_TYPE_F32:
  11489. {
  11490. ggml_compute_forward_win_part_f32(params, src0, dst);
  11491. } break;
  11492. default:
  11493. {
  11494. GGML_ASSERT(false);
  11495. } break;
  11496. }
  11497. }
  11498. // ggml_compute_forward_win_unpart
  11499. static void ggml_compute_forward_win_unpart_f32(
  11500. const struct ggml_compute_params * params,
  11501. const struct ggml_tensor * src0,
  11502. struct ggml_tensor * dst) {
  11503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11504. return;
  11505. }
  11506. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11507. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11508. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11509. // padding
  11510. const int px = (w - ne1%w)%w;
  11511. //const int py = (w - ne2%w)%w;
  11512. const int npx = (px + ne1)/w;
  11513. //const int npy = (py + ne2)/w;
  11514. assert(ne0 == ne00);
  11515. // TODO: optimize / multi-thread
  11516. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11517. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11518. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11519. const int ip2 = i2/w;
  11520. const int ip1 = i1/w;
  11521. const int64_t i02 = i2%w;
  11522. const int64_t i01 = i1%w;
  11523. const int64_t i00 = i0;
  11524. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11525. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11526. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11527. }
  11528. }
  11529. }
  11530. }
  11531. static void ggml_compute_forward_win_unpart(
  11532. const struct ggml_compute_params * params,
  11533. const struct ggml_tensor * src0,
  11534. struct ggml_tensor * dst) {
  11535. switch (src0->type) {
  11536. case GGML_TYPE_F32:
  11537. {
  11538. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11539. } break;
  11540. default:
  11541. {
  11542. GGML_ASSERT(false);
  11543. } break;
  11544. }
  11545. }
  11546. //gmml_compute_forward_unary
  11547. static void ggml_compute_forward_unary(
  11548. const struct ggml_compute_params * params,
  11549. const struct ggml_tensor * src0,
  11550. struct ggml_tensor * dst) {
  11551. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11552. switch (op) {
  11553. case GGML_UNARY_OP_ABS:
  11554. {
  11555. ggml_compute_forward_abs(params, src0, dst);
  11556. } break;
  11557. case GGML_UNARY_OP_SGN:
  11558. {
  11559. ggml_compute_forward_sgn(params, src0, dst);
  11560. } break;
  11561. case GGML_UNARY_OP_NEG:
  11562. {
  11563. ggml_compute_forward_neg(params, src0, dst);
  11564. } break;
  11565. case GGML_UNARY_OP_STEP:
  11566. {
  11567. ggml_compute_forward_step(params, src0, dst);
  11568. } break;
  11569. case GGML_UNARY_OP_TANH:
  11570. {
  11571. ggml_compute_forward_tanh(params, src0, dst);
  11572. } break;
  11573. case GGML_UNARY_OP_ELU:
  11574. {
  11575. ggml_compute_forward_elu(params, src0, dst);
  11576. } break;
  11577. case GGML_UNARY_OP_RELU:
  11578. {
  11579. ggml_compute_forward_relu(params, src0, dst);
  11580. } break;
  11581. case GGML_UNARY_OP_GELU:
  11582. {
  11583. ggml_compute_forward_gelu(params, src0, dst);
  11584. } break;
  11585. case GGML_UNARY_OP_GELU_QUICK:
  11586. {
  11587. ggml_compute_forward_gelu_quick(params, src0, dst);
  11588. } break;
  11589. case GGML_UNARY_OP_SILU:
  11590. {
  11591. ggml_compute_forward_silu(params, src0, dst);
  11592. } break;
  11593. case GGML_UNARY_OP_HARDSWISH:
  11594. {
  11595. ggml_compute_forward_hardswish(params, src0, dst);
  11596. } break;
  11597. case GGML_UNARY_OP_HARDSIGMOID:
  11598. {
  11599. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11600. } break;
  11601. default:
  11602. {
  11603. GGML_ASSERT(false);
  11604. } break;
  11605. }
  11606. }
  11607. // ggml_compute_forward_get_rel_pos
  11608. static void ggml_compute_forward_get_rel_pos_f16(
  11609. const struct ggml_compute_params * params,
  11610. const struct ggml_tensor * src0,
  11611. struct ggml_tensor * dst) {
  11612. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11613. return;
  11614. }
  11615. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11616. GGML_TENSOR_UNARY_OP_LOCALS
  11617. const int64_t w = ne1;
  11618. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11619. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11620. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11621. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11622. const int64_t pos = (w - i1 - 1) + i2;
  11623. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11624. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11625. }
  11626. }
  11627. }
  11628. }
  11629. static void ggml_compute_forward_get_rel_pos(
  11630. const struct ggml_compute_params * params,
  11631. const struct ggml_tensor * src0,
  11632. struct ggml_tensor * dst) {
  11633. switch (src0->type) {
  11634. case GGML_TYPE_F16:
  11635. {
  11636. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11637. } break;
  11638. default:
  11639. {
  11640. GGML_ASSERT(false);
  11641. } break;
  11642. }
  11643. }
  11644. // ggml_compute_forward_add_rel_pos
  11645. static void ggml_compute_forward_add_rel_pos_f32(
  11646. const struct ggml_compute_params * params,
  11647. const struct ggml_tensor * src0,
  11648. const struct ggml_tensor * src1,
  11649. const struct ggml_tensor * src2,
  11650. struct ggml_tensor * dst) {
  11651. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11652. if (!inplace && params->type == GGML_TASK_INIT) {
  11653. if (params->ith != 0) {
  11654. return;
  11655. }
  11656. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11657. return;
  11658. }
  11659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11660. return;
  11661. }
  11662. int64_t t0 = ggml_perf_time_us();
  11663. UNUSED(t0);
  11664. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11665. float * src1_data = (float *) src1->data;
  11666. float * src2_data = (float *) src2->data;
  11667. float * dst_data = (float *) dst->data;
  11668. const int64_t ne10 = src1->ne[0];
  11669. const int64_t ne11 = src1->ne[1];
  11670. const int64_t ne12 = src1->ne[2];
  11671. const int64_t ne13 = src1->ne[3];
  11672. const int ith = params->ith;
  11673. const int nth = params->nth;
  11674. // total patches in dst
  11675. const int np = ne13;
  11676. // patches per thread
  11677. const int dp = (np + nth - 1)/nth;
  11678. // patch range for this thread
  11679. const int ip0 = dp*ith;
  11680. const int ip1 = MIN(ip0 + dp, np);
  11681. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11682. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11683. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11684. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11685. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11686. const int64_t jp0 = jp1 + i10;
  11687. const float src1_e = src1_data[jp0];
  11688. const float src2_e = src2_data[jp0];
  11689. const int64_t jdh = jp0 * ne10;
  11690. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11691. for (int64_t j = 0; j < ne10; ++j) {
  11692. dst_data[jdh + j ] += src2_e;
  11693. dst_data[jdw + j*ne10] += src1_e;
  11694. }
  11695. }
  11696. }
  11697. }
  11698. }
  11699. }
  11700. static void ggml_compute_forward_add_rel_pos(
  11701. const struct ggml_compute_params * params,
  11702. const struct ggml_tensor * src0,
  11703. const struct ggml_tensor * src1,
  11704. const struct ggml_tensor * src2,
  11705. struct ggml_tensor * dst) {
  11706. switch (src0->type) {
  11707. case GGML_TYPE_F32:
  11708. {
  11709. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11710. } break;
  11711. default:
  11712. {
  11713. GGML_ASSERT(false);
  11714. } break;
  11715. }
  11716. }
  11717. // ggml_compute_forward_map_unary
  11718. static void ggml_compute_forward_map_unary_f32(
  11719. const struct ggml_compute_params * params,
  11720. const struct ggml_tensor * src0,
  11721. struct ggml_tensor * dst,
  11722. const ggml_unary_op_f32_t fun) {
  11723. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11725. return;
  11726. }
  11727. const int n = ggml_nrows(src0);
  11728. const int nc = src0->ne[0];
  11729. assert( dst->nb[0] == sizeof(float));
  11730. assert(src0->nb[0] == sizeof(float));
  11731. for (int i = 0; i < n; i++) {
  11732. fun(nc,
  11733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11734. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11735. }
  11736. }
  11737. static void ggml_compute_forward_map_unary(
  11738. const struct ggml_compute_params * params,
  11739. const struct ggml_tensor * src0,
  11740. struct ggml_tensor * dst,
  11741. const ggml_unary_op_f32_t fun) {
  11742. switch (src0->type) {
  11743. case GGML_TYPE_F32:
  11744. {
  11745. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11746. } break;
  11747. default:
  11748. {
  11749. GGML_ASSERT(false);
  11750. } break;
  11751. }
  11752. }
  11753. // ggml_compute_forward_map_binary
  11754. static void ggml_compute_forward_map_binary_f32(
  11755. const struct ggml_compute_params * params,
  11756. const struct ggml_tensor * src0,
  11757. const struct ggml_tensor * src1,
  11758. struct ggml_tensor * dst,
  11759. const ggml_binary_op_f32_t fun) {
  11760. assert(params->ith == 0);
  11761. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11763. return;
  11764. }
  11765. const int n = ggml_nrows(src0);
  11766. const int nc = src0->ne[0];
  11767. assert( dst->nb[0] == sizeof(float));
  11768. assert(src0->nb[0] == sizeof(float));
  11769. assert(src1->nb[0] == sizeof(float));
  11770. for (int i = 0; i < n; i++) {
  11771. fun(nc,
  11772. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11773. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11774. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11775. }
  11776. }
  11777. static void ggml_compute_forward_map_binary(
  11778. const struct ggml_compute_params * params,
  11779. const struct ggml_tensor * src0,
  11780. const struct ggml_tensor * src1,
  11781. struct ggml_tensor * dst,
  11782. const ggml_binary_op_f32_t fun) {
  11783. switch (src0->type) {
  11784. case GGML_TYPE_F32:
  11785. {
  11786. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11787. } break;
  11788. default:
  11789. {
  11790. GGML_ASSERT(false);
  11791. } break;
  11792. }
  11793. }
  11794. // ggml_compute_forward_map_custom1
  11795. static void ggml_compute_forward_map_custom1_f32(
  11796. const struct ggml_compute_params * params,
  11797. const struct ggml_tensor * a,
  11798. struct ggml_tensor * dst,
  11799. const ggml_custom1_op_f32_t fun) {
  11800. assert(params->ith == 0);
  11801. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11802. return;
  11803. }
  11804. fun(dst, a);
  11805. }
  11806. // ggml_compute_forward_map_custom2
  11807. static void ggml_compute_forward_map_custom2_f32(
  11808. const struct ggml_compute_params * params,
  11809. const struct ggml_tensor * a,
  11810. const struct ggml_tensor * b,
  11811. struct ggml_tensor * dst,
  11812. const ggml_custom2_op_f32_t fun) {
  11813. assert(params->ith == 0);
  11814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11815. return;
  11816. }
  11817. fun(dst, a, b);
  11818. }
  11819. // ggml_compute_forward_map_custom3
  11820. static void ggml_compute_forward_map_custom3_f32(
  11821. const struct ggml_compute_params * params,
  11822. const struct ggml_tensor * a,
  11823. const struct ggml_tensor * b,
  11824. const struct ggml_tensor * c,
  11825. struct ggml_tensor * dst,
  11826. const ggml_custom3_op_f32_t fun) {
  11827. assert(params->ith == 0);
  11828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11829. return;
  11830. }
  11831. fun(dst, a, b, c);
  11832. }
  11833. // ggml_compute_forward_map_custom1
  11834. static void ggml_compute_forward_map_custom1(
  11835. const struct ggml_compute_params * params,
  11836. const struct ggml_tensor * a,
  11837. struct ggml_tensor * dst) {
  11838. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11839. return;
  11840. }
  11841. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11842. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11843. }
  11844. // ggml_compute_forward_map_custom2
  11845. static void ggml_compute_forward_map_custom2(
  11846. const struct ggml_compute_params * params,
  11847. const struct ggml_tensor * a,
  11848. const struct ggml_tensor * b,
  11849. struct ggml_tensor * dst) {
  11850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11851. return;
  11852. }
  11853. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11854. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11855. }
  11856. // ggml_compute_forward_map_custom3
  11857. static void ggml_compute_forward_map_custom3(
  11858. const struct ggml_compute_params * params,
  11859. const struct ggml_tensor * a,
  11860. const struct ggml_tensor * b,
  11861. const struct ggml_tensor * c,
  11862. struct ggml_tensor * dst) {
  11863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11864. return;
  11865. }
  11866. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11867. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11868. }
  11869. // ggml_compute_forward_cross_entropy_loss
  11870. static void ggml_compute_forward_cross_entropy_loss_f32(
  11871. const struct ggml_compute_params * params,
  11872. const struct ggml_tensor * src0,
  11873. const struct ggml_tensor * src1,
  11874. struct ggml_tensor * dst) {
  11875. GGML_ASSERT(ggml_is_contiguous(src0));
  11876. GGML_ASSERT(ggml_is_contiguous(src1));
  11877. GGML_ASSERT(ggml_is_scalar(dst));
  11878. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11879. const int ith = params->ith;
  11880. const int nth = params->nth;
  11881. float * sums = (float *) params->wdata;
  11882. // TODO: handle transposed/permuted matrices
  11883. const int nc = src0->ne[0];
  11884. const int nr = ggml_nrows(src0);
  11885. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11886. if (params->type == GGML_TASK_INIT) {
  11887. if (ith == 0) {
  11888. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11889. }
  11890. return;
  11891. }
  11892. if (params->type == GGML_TASK_FINALIZE) {
  11893. if (ith == 0) {
  11894. float * dp = (float *) dst->data;
  11895. ggml_vec_sum_f32(nth, dp, sums);
  11896. dp[0] *= -1.0f / (float) nr;
  11897. }
  11898. return;
  11899. }
  11900. const double eps = 1e-9;
  11901. // rows per thread
  11902. const int dr = (nr + nth - 1)/nth;
  11903. // row range for this thread
  11904. const int ir0 = dr*ith;
  11905. const int ir1 = MIN(ir0 + dr, nr);
  11906. for (int i1 = ir0; i1 < ir1; i1++) {
  11907. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11908. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11909. float * st = ((float *) params->wdata) + nth + ith*nc;
  11910. #ifndef NDEBUG
  11911. for (int i = 0; i < nc; ++i) {
  11912. //printf("p[%d] = %f\n", i, p[i]);
  11913. assert(!isnan(s0[i]));
  11914. assert(!isnan(s1[i]));
  11915. }
  11916. #endif
  11917. // soft_max
  11918. ggml_float sum = 0.0;
  11919. {
  11920. float max = -INFINITY;
  11921. ggml_vec_max_f32(nc, &max, s0);
  11922. uint16_t scvt; UNUSED(scvt);
  11923. for (int i = 0; i < nc; i++) {
  11924. if (s0[i] == -INFINITY) {
  11925. st[i] = 0.0f;
  11926. } else {
  11927. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11928. const float s = s0[i] - max;
  11929. const float val = expf(s);
  11930. #else
  11931. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11932. memcpy(&scvt, &s, sizeof(scvt));
  11933. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11934. #endif
  11935. sum += (ggml_float)val;
  11936. st[i] = val;
  11937. }
  11938. }
  11939. assert(sum > 0.0);
  11940. // sum = 1.0/sum;
  11941. }
  11942. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11943. sum = (1.0 - eps) / sum;
  11944. ggml_vec_scale_f32(nc, st, sum);
  11945. ggml_vec_add1_f32(nc, st, st, eps);
  11946. ggml_vec_log_f32(nc, st, st);
  11947. ggml_vec_mul_f32(nc, st, st, s1);
  11948. float st_sum = 0;
  11949. ggml_vec_sum_f32(nc, &st_sum, st);
  11950. sums[ith] += st_sum;
  11951. #ifndef NDEBUG
  11952. for (int i = 0; i < nc; ++i) {
  11953. assert(!isnan(st[i]));
  11954. assert(!isinf(st[i]));
  11955. }
  11956. #endif
  11957. }
  11958. }
  11959. static void ggml_compute_forward_cross_entropy_loss(
  11960. const struct ggml_compute_params * params,
  11961. const struct ggml_tensor * src0,
  11962. const struct ggml_tensor * src1,
  11963. struct ggml_tensor * dst) {
  11964. switch (src0->type) {
  11965. case GGML_TYPE_F32:
  11966. {
  11967. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11968. } break;
  11969. default:
  11970. {
  11971. GGML_ASSERT(false);
  11972. } break;
  11973. }
  11974. }
  11975. // ggml_compute_forward_cross_entropy_loss_back
  11976. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11977. const struct ggml_compute_params * params,
  11978. const struct ggml_tensor * src0,
  11979. const struct ggml_tensor * src1,
  11980. const struct ggml_tensor * opt0,
  11981. struct ggml_tensor * dst) {
  11982. GGML_ASSERT(ggml_is_contiguous(dst));
  11983. GGML_ASSERT(ggml_is_contiguous(src0));
  11984. GGML_ASSERT(ggml_is_contiguous(src1));
  11985. GGML_ASSERT(ggml_is_contiguous(opt0));
  11986. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11987. const int64_t ith = params->ith;
  11988. const int64_t nth = params->nth;
  11989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11990. return;
  11991. }
  11992. const double eps = 1e-9;
  11993. // TODO: handle transposed/permuted matrices
  11994. const int64_t nc = src0->ne[0];
  11995. const int64_t nr = ggml_nrows(src0);
  11996. // rows per thread
  11997. const int64_t dr = (nr + nth - 1)/nth;
  11998. // row range for this thread
  11999. const int64_t ir0 = dr*ith;
  12000. const int64_t ir1 = MIN(ir0 + dr, nr);
  12001. float * d = (float *) opt0->data;
  12002. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12003. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12004. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12005. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12006. #ifndef NDEBUG
  12007. for (int i = 0; i < nc; ++i) {
  12008. //printf("p[%d] = %f\n", i, p[i]);
  12009. assert(!isnan(s0[i]));
  12010. assert(!isnan(s1[i]));
  12011. }
  12012. #endif
  12013. // soft_max
  12014. ggml_float sum = 0.0;
  12015. {
  12016. float max = -INFINITY;
  12017. ggml_vec_max_f32(nc, &max, s0);
  12018. uint16_t scvt; UNUSED(scvt);
  12019. for (int i = 0; i < nc; i++) {
  12020. if (s0[i] == -INFINITY) {
  12021. ds0[i] = 0.0f;
  12022. } else {
  12023. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12024. const float s = s0[i] - max;
  12025. const float val = expf(s);
  12026. #else
  12027. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12028. memcpy(&scvt, &s, sizeof(scvt));
  12029. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12030. #endif
  12031. sum += (ggml_float)val;
  12032. ds0[i] = val;
  12033. }
  12034. }
  12035. assert(sum > 0.0);
  12036. sum = (1.0 - eps)/sum;
  12037. }
  12038. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12039. ggml_vec_scale_f32(nc, ds0, sum);
  12040. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12041. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12042. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12043. #ifndef NDEBUG
  12044. for (int i = 0; i < nc; ++i) {
  12045. assert(!isnan(ds0[i]));
  12046. assert(!isinf(ds0[i]));
  12047. }
  12048. #endif
  12049. }
  12050. }
  12051. static void ggml_compute_forward_cross_entropy_loss_back(
  12052. const struct ggml_compute_params * params,
  12053. const struct ggml_tensor * src0,
  12054. const struct ggml_tensor * src1,
  12055. const struct ggml_tensor * opt0,
  12056. struct ggml_tensor * dst) {
  12057. switch (src0->type) {
  12058. case GGML_TYPE_F32:
  12059. {
  12060. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12061. } break;
  12062. default:
  12063. {
  12064. GGML_ASSERT(false);
  12065. } break;
  12066. }
  12067. }
  12068. /////////////////////////////////
  12069. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12070. GGML_ASSERT(params);
  12071. if (tensor->op == GGML_OP_NONE) {
  12072. return;
  12073. }
  12074. #ifdef GGML_USE_CUBLAS
  12075. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12076. if (skip_cpu) {
  12077. return;
  12078. }
  12079. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12080. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12081. #elif defined(GGML_USE_VULKAN)
  12082. const bool skip_cpu = ggml_vk_compute_forward(params, tensor);
  12083. #ifdef GGML_VULKAN_CHECK_RESULTS
  12084. if (skip_cpu) {
  12085. ggml_vk_check_results_1(params, tensor);
  12086. }
  12087. #endif
  12088. if (skip_cpu) {
  12089. return;
  12090. }
  12091. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12092. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12093. #endif // GGML_USE_CUBLAS
  12094. #ifdef GGML_USE_SYCL
  12095. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12096. if (skip_cpu) {
  12097. return;
  12098. }
  12099. #endif // GGML_USE_SYCL
  12100. switch (tensor->op) {
  12101. case GGML_OP_DUP:
  12102. {
  12103. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12104. } break;
  12105. case GGML_OP_ADD:
  12106. {
  12107. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12108. } break;
  12109. case GGML_OP_ADD1:
  12110. {
  12111. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12112. } break;
  12113. case GGML_OP_ACC:
  12114. {
  12115. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12116. } break;
  12117. case GGML_OP_SUB:
  12118. {
  12119. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12120. } break;
  12121. case GGML_OP_MUL:
  12122. {
  12123. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12124. } break;
  12125. case GGML_OP_DIV:
  12126. {
  12127. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12128. } break;
  12129. case GGML_OP_SQR:
  12130. {
  12131. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12132. } break;
  12133. case GGML_OP_SQRT:
  12134. {
  12135. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12136. } break;
  12137. case GGML_OP_LOG:
  12138. {
  12139. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12140. } break;
  12141. case GGML_OP_SUM:
  12142. {
  12143. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12144. } break;
  12145. case GGML_OP_SUM_ROWS:
  12146. {
  12147. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12148. } break;
  12149. case GGML_OP_MEAN:
  12150. {
  12151. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12152. } break;
  12153. case GGML_OP_ARGMAX:
  12154. {
  12155. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12156. } break;
  12157. case GGML_OP_REPEAT:
  12158. {
  12159. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12160. } break;
  12161. case GGML_OP_REPEAT_BACK:
  12162. {
  12163. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12164. } break;
  12165. case GGML_OP_CONCAT:
  12166. {
  12167. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12168. } break;
  12169. case GGML_OP_SILU_BACK:
  12170. {
  12171. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12172. } break;
  12173. case GGML_OP_NORM:
  12174. {
  12175. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12176. } break;
  12177. case GGML_OP_RMS_NORM:
  12178. {
  12179. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12180. } break;
  12181. case GGML_OP_RMS_NORM_BACK:
  12182. {
  12183. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12184. } break;
  12185. case GGML_OP_GROUP_NORM:
  12186. {
  12187. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12188. } break;
  12189. case GGML_OP_MUL_MAT:
  12190. {
  12191. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12192. } break;
  12193. case GGML_OP_MUL_MAT_ID:
  12194. {
  12195. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12196. } break;
  12197. case GGML_OP_OUT_PROD:
  12198. {
  12199. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12200. } break;
  12201. case GGML_OP_SCALE:
  12202. {
  12203. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12204. } break;
  12205. case GGML_OP_SET:
  12206. {
  12207. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12208. } break;
  12209. case GGML_OP_CPY:
  12210. {
  12211. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12212. } break;
  12213. case GGML_OP_CONT:
  12214. {
  12215. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12216. } break;
  12217. case GGML_OP_RESHAPE:
  12218. {
  12219. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12220. } break;
  12221. case GGML_OP_VIEW:
  12222. {
  12223. ggml_compute_forward_view(params, tensor->src[0]);
  12224. } break;
  12225. case GGML_OP_PERMUTE:
  12226. {
  12227. ggml_compute_forward_permute(params, tensor->src[0]);
  12228. } break;
  12229. case GGML_OP_TRANSPOSE:
  12230. {
  12231. ggml_compute_forward_transpose(params, tensor->src[0]);
  12232. } break;
  12233. case GGML_OP_GET_ROWS:
  12234. {
  12235. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12236. } break;
  12237. case GGML_OP_GET_ROWS_BACK:
  12238. {
  12239. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12240. } break;
  12241. case GGML_OP_DIAG:
  12242. {
  12243. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12244. } break;
  12245. case GGML_OP_DIAG_MASK_INF:
  12246. {
  12247. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12248. } break;
  12249. case GGML_OP_DIAG_MASK_ZERO:
  12250. {
  12251. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12252. } break;
  12253. case GGML_OP_SOFT_MAX:
  12254. {
  12255. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12256. } break;
  12257. case GGML_OP_SOFT_MAX_BACK:
  12258. {
  12259. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12260. } break;
  12261. case GGML_OP_ROPE:
  12262. {
  12263. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12264. } break;
  12265. case GGML_OP_ROPE_BACK:
  12266. {
  12267. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12268. } break;
  12269. case GGML_OP_ALIBI:
  12270. {
  12271. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12272. } break;
  12273. case GGML_OP_CLAMP:
  12274. {
  12275. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12276. } break;
  12277. case GGML_OP_CONV_TRANSPOSE_1D:
  12278. {
  12279. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12280. } break;
  12281. case GGML_OP_IM2COL:
  12282. {
  12283. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12284. } break;
  12285. case GGML_OP_CONV_TRANSPOSE_2D:
  12286. {
  12287. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12288. } break;
  12289. case GGML_OP_POOL_1D:
  12290. {
  12291. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12292. } break;
  12293. case GGML_OP_POOL_2D:
  12294. {
  12295. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12296. } break;
  12297. case GGML_OP_UPSCALE:
  12298. {
  12299. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12300. } break;
  12301. case GGML_OP_PAD:
  12302. {
  12303. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12304. } break;
  12305. case GGML_OP_ARGSORT:
  12306. {
  12307. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12308. } break;
  12309. case GGML_OP_LEAKY_RELU:
  12310. {
  12311. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12312. } break;
  12313. case GGML_OP_FLASH_ATTN:
  12314. {
  12315. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12316. GGML_ASSERT(t == 0 || t == 1);
  12317. const bool masked = t != 0;
  12318. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12319. } break;
  12320. case GGML_OP_FLASH_FF:
  12321. {
  12322. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12323. } break;
  12324. case GGML_OP_FLASH_ATTN_BACK:
  12325. {
  12326. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12327. GGML_ASSERT(t == 0 || t == 1);
  12328. bool masked = t != 0;
  12329. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12330. } break;
  12331. case GGML_OP_WIN_PART:
  12332. {
  12333. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12334. } break;
  12335. case GGML_OP_WIN_UNPART:
  12336. {
  12337. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12338. } break;
  12339. case GGML_OP_UNARY:
  12340. {
  12341. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12342. } break;
  12343. case GGML_OP_GET_REL_POS:
  12344. {
  12345. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12346. } break;
  12347. case GGML_OP_ADD_REL_POS:
  12348. {
  12349. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12350. } break;
  12351. case GGML_OP_MAP_UNARY:
  12352. {
  12353. ggml_unary_op_f32_t fun;
  12354. memcpy(&fun, tensor->op_params, sizeof(fun));
  12355. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12356. }
  12357. break;
  12358. case GGML_OP_MAP_BINARY:
  12359. {
  12360. ggml_binary_op_f32_t fun;
  12361. memcpy(&fun, tensor->op_params, sizeof(fun));
  12362. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12363. }
  12364. break;
  12365. case GGML_OP_MAP_CUSTOM1_F32:
  12366. {
  12367. ggml_custom1_op_f32_t fun;
  12368. memcpy(&fun, tensor->op_params, sizeof(fun));
  12369. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12370. }
  12371. break;
  12372. case GGML_OP_MAP_CUSTOM2_F32:
  12373. {
  12374. ggml_custom2_op_f32_t fun;
  12375. memcpy(&fun, tensor->op_params, sizeof(fun));
  12376. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12377. }
  12378. break;
  12379. case GGML_OP_MAP_CUSTOM3_F32:
  12380. {
  12381. ggml_custom3_op_f32_t fun;
  12382. memcpy(&fun, tensor->op_params, sizeof(fun));
  12383. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12384. }
  12385. break;
  12386. case GGML_OP_MAP_CUSTOM1:
  12387. {
  12388. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12389. }
  12390. break;
  12391. case GGML_OP_MAP_CUSTOM2:
  12392. {
  12393. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12394. }
  12395. break;
  12396. case GGML_OP_MAP_CUSTOM3:
  12397. {
  12398. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12399. }
  12400. break;
  12401. case GGML_OP_CROSS_ENTROPY_LOSS:
  12402. {
  12403. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12404. }
  12405. break;
  12406. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12407. {
  12408. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12409. }
  12410. break;
  12411. case GGML_OP_NONE:
  12412. {
  12413. // nop
  12414. } break;
  12415. case GGML_OP_COUNT:
  12416. {
  12417. GGML_ASSERT(false);
  12418. } break;
  12419. }
  12420. }
  12421. ////////////////////////////////////////////////////////////////////////////////
  12422. static size_t ggml_hash_size(size_t min_sz) {
  12423. // next primes after powers of two
  12424. static const size_t primes[] = {
  12425. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12426. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12427. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12428. 16777259, 33554467, 67108879, 134217757, 268435459,
  12429. 536870923, 1073741827, 2147483659
  12430. };
  12431. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12432. // find the smallest prime that is larger or equal to min_sz
  12433. size_t l = 0;
  12434. size_t r = n_primes;
  12435. while (l < r) {
  12436. size_t m = (l + r)/2;
  12437. if (primes[m] < min_sz) {
  12438. l = m + 1;
  12439. } else {
  12440. r = m;
  12441. }
  12442. }
  12443. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12444. return sz;
  12445. }
  12446. static size_t ggml_hash(const void * p) {
  12447. return (size_t)p;
  12448. }
  12449. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12450. size_t h = ggml_hash(key) % hash_set.size;
  12451. // linear probing
  12452. size_t i = h;
  12453. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12454. i = (i + 1) % hash_set.size;
  12455. if (i == h) {
  12456. // visited all hash table entries -> not found
  12457. return GGML_HASHTABLE_FULL;
  12458. }
  12459. }
  12460. return i;
  12461. }
  12462. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12463. size_t i = ggml_hash_find(hash_set, key);
  12464. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12465. }
  12466. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12467. size_t i = ggml_hash_find(hash_set, key);
  12468. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12469. if (hash_set.keys[i] == key) {
  12470. return GGML_HASHTABLE_ALREADY_EXISTS;
  12471. }
  12472. // insert
  12473. GGML_ASSERT(hash_set.keys[i] == NULL);
  12474. hash_set.keys[i] = key;
  12475. return i;
  12476. }
  12477. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12478. size_t i = ggml_hash_find(hash_set, key);
  12479. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12480. hash_set.keys[i] = key;
  12481. return i;
  12482. }
  12483. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12484. size = ggml_hash_size(size);
  12485. struct ggml_hash_set result;
  12486. result.size = size;
  12487. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12488. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12489. return result;
  12490. }
  12491. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12492. free(hash_set.keys);
  12493. }
  12494. struct hash_map {
  12495. struct ggml_hash_set set;
  12496. struct ggml_tensor ** vals;
  12497. };
  12498. static struct hash_map * ggml_new_hash_map(size_t size) {
  12499. struct hash_map * result = malloc(sizeof(struct hash_map));
  12500. result->set = ggml_hash_set_new(size);
  12501. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12502. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12503. return result;
  12504. }
  12505. static void ggml_hash_map_free(struct hash_map * map) {
  12506. ggml_hash_set_free(map->set);
  12507. free(map->vals);
  12508. free(map);
  12509. }
  12510. // gradient checkpointing
  12511. static struct ggml_tensor * ggml_recompute_graph_node(
  12512. struct ggml_context * ctx,
  12513. struct ggml_cgraph * graph,
  12514. struct hash_map * replacements,
  12515. struct ggml_tensor * node) {
  12516. if (node == NULL) {
  12517. return NULL;
  12518. }
  12519. if (node->is_param) {
  12520. return node;
  12521. }
  12522. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12523. return node;
  12524. }
  12525. int count_children = 0;
  12526. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12527. if (node->src[k]) {
  12528. ++count_children;
  12529. }
  12530. }
  12531. if (count_children == 0) {
  12532. return node;
  12533. }
  12534. size_t i = ggml_hash_find(replacements->set, node);
  12535. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12536. if (replacements->set.keys[i] == node) {
  12537. return replacements->vals[i];
  12538. }
  12539. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12540. // insert clone into replacements
  12541. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12542. replacements->set.keys[i] = node;
  12543. replacements->vals[i] = clone;
  12544. clone->op = node->op;
  12545. clone->grad = node->grad;
  12546. clone->is_param = node->is_param;
  12547. clone->extra = node->extra;
  12548. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12549. clone->nb[k] = node->nb[k];
  12550. }
  12551. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12552. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12553. }
  12554. if (node->view_src != NULL) {
  12555. clone->data = (node->view_src->data == NULL)
  12556. ? NULL // view_src not yet allocated
  12557. : (char *) node->view_src->data // view_src already allocated
  12558. + node->view_offs;
  12559. clone->view_src = node->view_src;
  12560. clone->view_offs = node->view_offs;
  12561. }
  12562. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12563. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12564. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12565. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12566. return clone;
  12567. }
  12568. void ggml_build_backward_gradient_checkpointing(
  12569. struct ggml_context * ctx,
  12570. struct ggml_cgraph * gf,
  12571. struct ggml_cgraph * gb,
  12572. struct ggml_cgraph * gb_tmp,
  12573. struct ggml_tensor * * checkpoints,
  12574. int n_checkpoints) {
  12575. ggml_graph_cpy(gf, gb_tmp);
  12576. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12577. if (n_checkpoints <= 0) {
  12578. ggml_graph_cpy(gb_tmp, gb);
  12579. return;
  12580. }
  12581. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12582. // insert checkpoints in replacements
  12583. for (int i = 0; i < n_checkpoints; ++i) {
  12584. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12585. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12586. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12587. replacements->set.keys[k] = checkpoints[i];
  12588. replacements->vals[k] = checkpoints[i];
  12589. }
  12590. ggml_graph_cpy(gf, gb);
  12591. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12592. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12593. // by recomputing them from checkpoints
  12594. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12595. struct ggml_tensor * node = gb_tmp->nodes[i];
  12596. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12597. // insert new tensors recomputing src, reusing already made replacements,
  12598. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12599. // recurse for input tensors,
  12600. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12601. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12602. }
  12603. // insert rewritten backward node with replacements made into resulting backward graph gb
  12604. ggml_build_forward_expand(gb, node);
  12605. }
  12606. ggml_hash_map_free(replacements);
  12607. }
  12608. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12609. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12610. if (ggml_hash_contains(zero_table, a)) {
  12611. return b;
  12612. } else {
  12613. return ggml_add_impl(ctx, a, b, false);
  12614. }
  12615. }
  12616. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12617. if (ggml_hash_contains(zero_table, a)) {
  12618. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12619. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12620. } else {
  12621. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12622. }
  12623. }
  12624. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12625. if (ggml_hash_contains(zero_table, a)) {
  12626. return ggml_repeat(ctx, b, a);
  12627. } else {
  12628. return ggml_add1_impl(ctx, a, b, false);
  12629. }
  12630. }
  12631. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12632. if (ggml_hash_contains(zero_table, a)) {
  12633. return ggml_neg(ctx, b);
  12634. } else {
  12635. return ggml_sub_impl(ctx, a, b, false);
  12636. }
  12637. }
  12638. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12639. struct ggml_tensor * src0 = tensor->src[0];
  12640. struct ggml_tensor * src1 = tensor->src[1];
  12641. switch (tensor->op) {
  12642. case GGML_OP_DUP:
  12643. {
  12644. if (src0->grad) {
  12645. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12646. }
  12647. } break;
  12648. case GGML_OP_ADD:
  12649. {
  12650. if (src0->grad) {
  12651. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12652. }
  12653. if (src1->grad) {
  12654. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12655. }
  12656. } break;
  12657. case GGML_OP_ADD1:
  12658. {
  12659. if (src0->grad) {
  12660. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12661. }
  12662. if (src1->grad) {
  12663. src1->grad = ggml_add_or_set(ctx,
  12664. src1->grad,
  12665. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12666. zero_table);
  12667. }
  12668. } break;
  12669. case GGML_OP_ACC:
  12670. {
  12671. if (src0->grad) {
  12672. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12673. }
  12674. if (src1->grad) {
  12675. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12676. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12677. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12678. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12679. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12680. tensor->grad,
  12681. src1->grad->ne[0],
  12682. src1->grad->ne[1],
  12683. src1->grad->ne[2],
  12684. src1->grad->ne[3],
  12685. nb1, nb2, nb3, offset);
  12686. src1->grad =
  12687. ggml_add_or_set(ctx,
  12688. src1->grad,
  12689. ggml_reshape(ctx,
  12690. ggml_cont(ctx, tensor_grad_view),
  12691. src1->grad),
  12692. zero_table);
  12693. }
  12694. } break;
  12695. case GGML_OP_SUB:
  12696. {
  12697. if (src0->grad) {
  12698. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12699. }
  12700. if (src1->grad) {
  12701. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12702. }
  12703. } break;
  12704. case GGML_OP_MUL:
  12705. {
  12706. if (src0->grad) {
  12707. src0->grad =
  12708. ggml_add_or_set(ctx,
  12709. src0->grad,
  12710. ggml_mul(ctx, src1, tensor->grad),
  12711. zero_table);
  12712. }
  12713. if (src1->grad) {
  12714. src1->grad =
  12715. ggml_add_or_set(ctx,
  12716. src1->grad,
  12717. ggml_mul(ctx, src0, tensor->grad),
  12718. zero_table);
  12719. }
  12720. } break;
  12721. case GGML_OP_DIV:
  12722. {
  12723. if (src0->grad) {
  12724. src0->grad =
  12725. ggml_add_or_set(ctx,
  12726. src0->grad,
  12727. ggml_div(ctx, tensor->grad, src1),
  12728. zero_table);
  12729. }
  12730. if (src1->grad) {
  12731. src1->grad =
  12732. ggml_sub_or_set(ctx,
  12733. src1->grad,
  12734. ggml_mul(ctx,
  12735. tensor->grad,
  12736. ggml_div(ctx, tensor, src1)),
  12737. zero_table);
  12738. }
  12739. } break;
  12740. case GGML_OP_SQR:
  12741. {
  12742. if (src0->grad) {
  12743. src0->grad =
  12744. ggml_add_or_set(ctx,
  12745. src0->grad,
  12746. ggml_scale(ctx,
  12747. ggml_mul(ctx, src0, tensor->grad),
  12748. 2.0f),
  12749. zero_table);
  12750. }
  12751. } break;
  12752. case GGML_OP_SQRT:
  12753. {
  12754. if (src0->grad) {
  12755. src0->grad =
  12756. ggml_add_or_set(ctx,
  12757. src0->grad,
  12758. ggml_scale(ctx,
  12759. ggml_div(ctx,
  12760. tensor->grad,
  12761. tensor),
  12762. 0.5f),
  12763. zero_table);
  12764. }
  12765. } break;
  12766. case GGML_OP_LOG:
  12767. {
  12768. if (src0->grad) {
  12769. src0->grad =
  12770. ggml_add_or_set(ctx,
  12771. src0->grad,
  12772. ggml_div(ctx,
  12773. tensor->grad,
  12774. src0),
  12775. zero_table);
  12776. }
  12777. } break;
  12778. case GGML_OP_SUM:
  12779. {
  12780. if (src0->grad) {
  12781. src0->grad =
  12782. ggml_add1_or_set(ctx,
  12783. src0->grad,
  12784. tensor->grad,
  12785. zero_table);
  12786. }
  12787. } break;
  12788. case GGML_OP_SUM_ROWS:
  12789. {
  12790. if (src0->grad) {
  12791. src0->grad =
  12792. ggml_add_or_set(ctx,
  12793. src0->grad,
  12794. ggml_repeat(ctx,
  12795. tensor->grad,
  12796. src0->grad),
  12797. zero_table);
  12798. }
  12799. } break;
  12800. case GGML_OP_MEAN:
  12801. case GGML_OP_ARGMAX:
  12802. {
  12803. GGML_ASSERT(false); // TODO: implement
  12804. } break;
  12805. case GGML_OP_REPEAT:
  12806. {
  12807. // necessary for llama
  12808. if (src0->grad) {
  12809. src0->grad = ggml_add_or_set(ctx,
  12810. src0->grad,
  12811. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12812. zero_table);
  12813. }
  12814. } break;
  12815. case GGML_OP_REPEAT_BACK:
  12816. {
  12817. if (src0->grad) {
  12818. // TODO: test this
  12819. src0->grad = ggml_add_or_set(ctx,
  12820. src0->grad,
  12821. ggml_repeat(ctx, tensor->grad, src0->grad),
  12822. zero_table);
  12823. }
  12824. } break;
  12825. case GGML_OP_CONCAT:
  12826. {
  12827. GGML_ASSERT(false); // TODO: implement
  12828. } break;
  12829. case GGML_OP_SILU_BACK:
  12830. {
  12831. GGML_ASSERT(false); // TODO: not implemented
  12832. } break;
  12833. case GGML_OP_NORM:
  12834. {
  12835. GGML_ASSERT(false); // TODO: not implemented
  12836. } break;
  12837. case GGML_OP_RMS_NORM:
  12838. {
  12839. // necessary for llama
  12840. if (src0->grad) {
  12841. float eps;
  12842. memcpy(&eps, tensor->op_params, sizeof(float));
  12843. src0->grad = ggml_add_or_set(ctx,
  12844. src0->grad,
  12845. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12846. zero_table);
  12847. }
  12848. } break;
  12849. case GGML_OP_RMS_NORM_BACK:
  12850. {
  12851. GGML_ASSERT(false); // TODO: not implemented
  12852. } break;
  12853. case GGML_OP_GROUP_NORM:
  12854. {
  12855. GGML_ASSERT(false); // TODO: not implemented
  12856. } break;
  12857. case GGML_OP_MUL_MAT:
  12858. {
  12859. // https://cs231n.github.io/optimization-2/#staged
  12860. // # forward pass
  12861. // s0 = np.random.randn(5, 10)
  12862. // s1 = np.random.randn(10, 3)
  12863. // t = s0.dot(s1)
  12864. // # now suppose we had the gradient on t from above in the circuit
  12865. // dt = np.random.randn(*t.shape) # same shape as t
  12866. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12867. // ds1 = t.T.dot(dt)
  12868. // tensor.shape [m,p,qq,rr]
  12869. // src0.shape [n,m,q1,r1]
  12870. // src1.shape [n,p,qq,rr]
  12871. // necessary for llama
  12872. if (src0->grad) {
  12873. struct ggml_tensor * s1_tg =
  12874. ggml_out_prod(ctx, // [n,m,qq,rr]
  12875. src1, // [n,p,qq,rr]
  12876. tensor->grad); // [m,p,qq,rr]
  12877. const int64_t qq = s1_tg->ne[2];
  12878. const int64_t rr = s1_tg->ne[3];
  12879. const int64_t q1 = src0->ne[2];
  12880. const int64_t r1 = src0->ne[3];
  12881. const bool ne2_broadcasted = qq > q1;
  12882. const bool ne3_broadcasted = rr > r1;
  12883. if (ne2_broadcasted || ne3_broadcasted) {
  12884. // sum broadcast repetitions of s1_tg into shape of src0
  12885. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12886. }
  12887. src0->grad =
  12888. ggml_add_or_set(ctx,
  12889. src0->grad, // [n,m,q1,r1]
  12890. s1_tg, // [n,m,q1,r1]
  12891. zero_table);
  12892. }
  12893. if (src1->grad) {
  12894. src1->grad =
  12895. ggml_add_or_set(ctx,
  12896. src1->grad, // [n,p,qq,rr]
  12897. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12898. // ggml_cont(ctx, // [m,n,q1,r1]
  12899. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12900. // tensor->grad), // [m,p,qq,rr]
  12901. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12902. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12903. // // and then use ggml_out_prod
  12904. ggml_out_prod(ctx, // [n,p,qq,rr]
  12905. src0, // [n,m,q1,r1]
  12906. ggml_transpose(ctx, // [p,m,qq,rr]
  12907. tensor->grad)), // [m,p,qq,rr]
  12908. zero_table);
  12909. }
  12910. } break;
  12911. case GGML_OP_MUL_MAT_ID:
  12912. {
  12913. GGML_ASSERT(false); // TODO: not implemented
  12914. } break;
  12915. case GGML_OP_OUT_PROD:
  12916. {
  12917. GGML_ASSERT(false); // TODO: not implemented
  12918. } break;
  12919. case GGML_OP_SCALE:
  12920. {
  12921. // necessary for llama
  12922. if (src0->grad) {
  12923. float s;
  12924. memcpy(&s, tensor->op_params, sizeof(float));
  12925. src0->grad =
  12926. ggml_add_or_set(ctx,
  12927. src0->grad,
  12928. ggml_scale_impl(ctx, tensor->grad, s, false),
  12929. zero_table);
  12930. }
  12931. } break;
  12932. case GGML_OP_SET:
  12933. {
  12934. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12935. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12936. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12937. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12938. struct ggml_tensor * tensor_grad_view = NULL;
  12939. if (src0->grad || src1->grad) {
  12940. GGML_ASSERT(src0->type == tensor->type);
  12941. GGML_ASSERT(tensor->grad->type == tensor->type);
  12942. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12943. tensor_grad_view = ggml_view_4d(ctx,
  12944. tensor->grad,
  12945. src1->grad->ne[0],
  12946. src1->grad->ne[1],
  12947. src1->grad->ne[2],
  12948. src1->grad->ne[3],
  12949. nb1, nb2, nb3, offset);
  12950. }
  12951. if (src0->grad) {
  12952. src0->grad = ggml_add_or_set(ctx,
  12953. src0->grad,
  12954. ggml_acc_impl(ctx,
  12955. tensor->grad,
  12956. ggml_neg(ctx, tensor_grad_view),
  12957. nb1, nb2, nb3, offset, false),
  12958. zero_table);
  12959. }
  12960. if (src1->grad) {
  12961. src1->grad =
  12962. ggml_add_or_set(ctx,
  12963. src1->grad,
  12964. ggml_reshape(ctx,
  12965. ggml_cont(ctx, tensor_grad_view),
  12966. src1->grad),
  12967. zero_table);
  12968. }
  12969. } break;
  12970. case GGML_OP_CPY:
  12971. {
  12972. // necessary for llama
  12973. // cpy overwrites value of src1 by src0 and returns view(src1)
  12974. // the overwriting is mathematically equivalent to:
  12975. // tensor = src0 * 1 + src1 * 0
  12976. if (src0->grad) {
  12977. // dsrc0 = dtensor * 1
  12978. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12979. }
  12980. if (src1->grad) {
  12981. // dsrc1 = dtensor * 0 -> noop
  12982. }
  12983. } break;
  12984. case GGML_OP_CONT:
  12985. {
  12986. // same as cpy
  12987. if (src0->grad) {
  12988. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12989. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12990. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12991. }
  12992. } break;
  12993. case GGML_OP_RESHAPE:
  12994. {
  12995. // necessary for llama
  12996. if (src0->grad) {
  12997. src0->grad =
  12998. ggml_add_or_set(ctx, src0->grad,
  12999. ggml_reshape(ctx,
  13000. ggml_is_contiguous(tensor->grad)
  13001. ? tensor->grad
  13002. : ggml_cont(ctx, tensor->grad),
  13003. src0->grad),
  13004. zero_table);
  13005. }
  13006. } break;
  13007. case GGML_OP_VIEW:
  13008. {
  13009. // necessary for llama
  13010. if (src0->grad) {
  13011. size_t offset;
  13012. memcpy(&offset, tensor->op_params, sizeof(offset));
  13013. size_t nb1 = tensor->nb[1];
  13014. size_t nb2 = tensor->nb[2];
  13015. size_t nb3 = tensor->nb[3];
  13016. if (src0->type != src0->grad->type) {
  13017. // gradient is typically F32, but src0 could be other type
  13018. size_t ng = ggml_element_size(src0->grad);
  13019. size_t n0 = ggml_element_size(src0);
  13020. GGML_ASSERT(offset % n0 == 0);
  13021. GGML_ASSERT(nb1 % n0 == 0);
  13022. GGML_ASSERT(nb2 % n0 == 0);
  13023. GGML_ASSERT(nb3 % n0 == 0);
  13024. offset = (offset / n0) * ng;
  13025. nb1 = (nb1 / n0) * ng;
  13026. nb2 = (nb2 / n0) * ng;
  13027. nb3 = (nb3 / n0) * ng;
  13028. }
  13029. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13030. }
  13031. } break;
  13032. case GGML_OP_PERMUTE:
  13033. {
  13034. // necessary for llama
  13035. if (src0->grad) {
  13036. int32_t * axes = (int32_t *) tensor->op_params;
  13037. int axis0 = axes[0] & 0x3;
  13038. int axis1 = axes[1] & 0x3;
  13039. int axis2 = axes[2] & 0x3;
  13040. int axis3 = axes[3] & 0x3;
  13041. int axes_backward[4] = {0,0,0,0};
  13042. axes_backward[axis0] = 0;
  13043. axes_backward[axis1] = 1;
  13044. axes_backward[axis2] = 2;
  13045. axes_backward[axis3] = 3;
  13046. src0->grad =
  13047. ggml_add_or_set(ctx, src0->grad,
  13048. ggml_permute(ctx,
  13049. tensor->grad,
  13050. axes_backward[0],
  13051. axes_backward[1],
  13052. axes_backward[2],
  13053. axes_backward[3]),
  13054. zero_table);
  13055. }
  13056. } break;
  13057. case GGML_OP_TRANSPOSE:
  13058. {
  13059. // necessary for llama
  13060. if (src0->grad) {
  13061. src0->grad =
  13062. ggml_add_or_set(ctx, src0->grad,
  13063. ggml_transpose(ctx, tensor->grad),
  13064. zero_table);
  13065. }
  13066. } break;
  13067. case GGML_OP_GET_ROWS:
  13068. {
  13069. // necessary for llama (only for tokenizer)
  13070. if (src0->grad) {
  13071. src0->grad =
  13072. ggml_add_or_set(ctx, src0->grad,
  13073. // last ggml_get_rows_back argument src0->grad is only
  13074. // necessary to setup correct output shape
  13075. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13076. zero_table);
  13077. }
  13078. if (src1->grad) {
  13079. // noop
  13080. }
  13081. } break;
  13082. case GGML_OP_GET_ROWS_BACK:
  13083. {
  13084. GGML_ASSERT(false); // TODO: not implemented
  13085. } break;
  13086. case GGML_OP_DIAG:
  13087. {
  13088. GGML_ASSERT(false); // TODO: not implemented
  13089. } break;
  13090. case GGML_OP_DIAG_MASK_INF:
  13091. {
  13092. // necessary for llama
  13093. if (src0->grad) {
  13094. const int n_past = ((int32_t *) tensor->op_params)[0];
  13095. src0->grad =
  13096. ggml_add_or_set(ctx, src0->grad,
  13097. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13098. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13099. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13100. zero_table);
  13101. }
  13102. } break;
  13103. case GGML_OP_DIAG_MASK_ZERO:
  13104. {
  13105. // necessary for llama
  13106. if (src0->grad) {
  13107. const int n_past = ((int32_t *) tensor->op_params)[0];
  13108. src0->grad =
  13109. ggml_add_or_set(ctx, src0->grad,
  13110. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13111. zero_table);
  13112. }
  13113. } break;
  13114. case GGML_OP_SOFT_MAX:
  13115. {
  13116. // necessary for llama
  13117. if (src0->grad) {
  13118. src0->grad =
  13119. ggml_add_or_set(ctx, src0->grad,
  13120. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13121. zero_table);
  13122. }
  13123. } break;
  13124. case GGML_OP_SOFT_MAX_BACK:
  13125. {
  13126. GGML_ASSERT(false); // TODO: not implemented
  13127. } break;
  13128. case GGML_OP_ROPE:
  13129. {
  13130. // necessary for llama
  13131. if (src0->grad) {
  13132. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13133. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13134. const int mode = ((int32_t *) tensor->op_params)[2];
  13135. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13136. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13137. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13138. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13139. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13140. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13141. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13142. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13143. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13144. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13145. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13146. src0->grad = ggml_add_or_set(ctx,
  13147. src0->grad,
  13148. ggml_rope_back(ctx,
  13149. tensor->grad,
  13150. src1,
  13151. n_dims,
  13152. mode,
  13153. n_ctx,
  13154. n_orig_ctx,
  13155. freq_base,
  13156. freq_scale,
  13157. ext_factor,
  13158. attn_factor,
  13159. beta_fast,
  13160. beta_slow,
  13161. xpos_base,
  13162. xpos_down),
  13163. zero_table);
  13164. }
  13165. } break;
  13166. case GGML_OP_ROPE_BACK:
  13167. {
  13168. if (src0->grad) {
  13169. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13170. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13171. const int mode = ((int32_t *) tensor->op_params)[2];
  13172. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13173. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13174. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13175. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13176. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13177. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13178. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13179. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13180. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13181. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13182. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13183. src0->grad = ggml_add_or_set(ctx,
  13184. src0->grad,
  13185. ggml_rope_impl(ctx,
  13186. tensor->grad,
  13187. src1,
  13188. n_dims,
  13189. mode,
  13190. n_ctx,
  13191. n_orig_ctx,
  13192. freq_base,
  13193. freq_scale,
  13194. ext_factor,
  13195. attn_factor,
  13196. beta_fast,
  13197. beta_slow,
  13198. xpos_base,
  13199. xpos_down,
  13200. false),
  13201. zero_table);
  13202. }
  13203. } break;
  13204. case GGML_OP_ALIBI:
  13205. {
  13206. GGML_ASSERT(false); // TODO: not implemented
  13207. } break;
  13208. case GGML_OP_CLAMP:
  13209. {
  13210. GGML_ASSERT(false); // TODO: not implemented
  13211. } break;
  13212. case GGML_OP_CONV_TRANSPOSE_1D:
  13213. {
  13214. GGML_ASSERT(false); // TODO: not implemented
  13215. } break;
  13216. case GGML_OP_IM2COL:
  13217. {
  13218. GGML_ASSERT(false); // TODO: not implemented
  13219. } break;
  13220. case GGML_OP_CONV_TRANSPOSE_2D:
  13221. {
  13222. GGML_ASSERT(false); // TODO: not implemented
  13223. } break;
  13224. case GGML_OP_POOL_1D:
  13225. {
  13226. GGML_ASSERT(false); // TODO: not implemented
  13227. } break;
  13228. case GGML_OP_POOL_2D:
  13229. {
  13230. GGML_ASSERT(false); // TODO: not implemented
  13231. } break;
  13232. case GGML_OP_UPSCALE:
  13233. {
  13234. GGML_ASSERT(false); // TODO: not implemented
  13235. } break;
  13236. case GGML_OP_PAD:
  13237. {
  13238. GGML_ASSERT(false); // TODO: not implemented
  13239. } break;
  13240. case GGML_OP_ARGSORT:
  13241. {
  13242. GGML_ASSERT(false); // TODO: not implemented
  13243. } break;
  13244. case GGML_OP_LEAKY_RELU:
  13245. {
  13246. GGML_ASSERT(false); // TODO: not implemented
  13247. } break;
  13248. case GGML_OP_FLASH_ATTN:
  13249. {
  13250. struct ggml_tensor * flash_grad = NULL;
  13251. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13252. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13253. GGML_ASSERT(t == 0 || t == 1);
  13254. bool masked = t != 0;
  13255. flash_grad =
  13256. ggml_flash_attn_back(ctx,
  13257. src0,
  13258. src1,
  13259. tensor->src[2],
  13260. tensor->grad,
  13261. masked);
  13262. }
  13263. struct ggml_tensor * src2 = tensor->src[2];
  13264. const int64_t elem_q = ggml_nelements(src0);
  13265. const int64_t elem_k = ggml_nelements(src1);
  13266. const int64_t elem_v = ggml_nelements(src2);
  13267. enum ggml_type result_type = flash_grad->type;
  13268. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13269. const size_t tsize = ggml_type_size(result_type);
  13270. const size_t offs_q = 0;
  13271. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13272. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13273. if (src0->grad) {
  13274. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13275. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13276. src0->grad = ggml_add_or_set(ctx,
  13277. src0->grad,
  13278. grad_q,
  13279. zero_table);
  13280. }
  13281. if (src1->grad) {
  13282. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13283. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13284. src1->grad = ggml_add_or_set(ctx,
  13285. src1->grad,
  13286. grad_k,
  13287. zero_table);
  13288. }
  13289. if (src2->grad) {
  13290. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13291. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13292. src2->grad = ggml_add_or_set(ctx,
  13293. src2->grad,
  13294. grad_v,
  13295. zero_table);
  13296. }
  13297. } break;
  13298. case GGML_OP_FLASH_FF:
  13299. {
  13300. GGML_ASSERT(false); // not supported
  13301. } break;
  13302. case GGML_OP_FLASH_ATTN_BACK:
  13303. {
  13304. GGML_ASSERT(false); // not supported
  13305. } break;
  13306. case GGML_OP_WIN_PART:
  13307. case GGML_OP_WIN_UNPART:
  13308. case GGML_OP_UNARY:
  13309. {
  13310. switch (ggml_get_unary_op(tensor)) {
  13311. case GGML_UNARY_OP_ABS:
  13312. {
  13313. if (src0->grad) {
  13314. src0->grad =
  13315. ggml_add_or_set(ctx,
  13316. src0->grad,
  13317. ggml_mul(ctx,
  13318. ggml_sgn(ctx, src0),
  13319. tensor->grad),
  13320. zero_table);
  13321. }
  13322. } break;
  13323. case GGML_UNARY_OP_SGN:
  13324. {
  13325. if (src0->grad) {
  13326. // noop
  13327. }
  13328. } break;
  13329. case GGML_UNARY_OP_NEG:
  13330. {
  13331. if (src0->grad) {
  13332. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13333. }
  13334. } break;
  13335. case GGML_UNARY_OP_STEP:
  13336. {
  13337. if (src0->grad) {
  13338. // noop
  13339. }
  13340. } break;
  13341. case GGML_UNARY_OP_TANH:
  13342. {
  13343. GGML_ASSERT(false); // TODO: not implemented
  13344. } break;
  13345. case GGML_UNARY_OP_ELU:
  13346. {
  13347. GGML_ASSERT(false); // TODO: not implemented
  13348. } break;
  13349. case GGML_UNARY_OP_RELU:
  13350. {
  13351. if (src0->grad) {
  13352. src0->grad = ggml_add_or_set(ctx,
  13353. src0->grad,
  13354. ggml_mul(ctx,
  13355. ggml_step(ctx, src0),
  13356. tensor->grad),
  13357. zero_table);
  13358. }
  13359. } break;
  13360. case GGML_UNARY_OP_GELU:
  13361. {
  13362. GGML_ASSERT(false); // TODO: not implemented
  13363. } break;
  13364. case GGML_UNARY_OP_GELU_QUICK:
  13365. {
  13366. GGML_ASSERT(false); // TODO: not implemented
  13367. } break;
  13368. case GGML_UNARY_OP_SILU:
  13369. {
  13370. // necessary for llama
  13371. if (src0->grad) {
  13372. src0->grad = ggml_add_or_set(ctx,
  13373. src0->grad,
  13374. ggml_silu_back(ctx, src0, tensor->grad),
  13375. zero_table);
  13376. }
  13377. } break;
  13378. default:
  13379. GGML_ASSERT(false);
  13380. }
  13381. } break;
  13382. case GGML_OP_GET_REL_POS:
  13383. case GGML_OP_ADD_REL_POS:
  13384. case GGML_OP_MAP_UNARY:
  13385. case GGML_OP_MAP_BINARY:
  13386. case GGML_OP_MAP_CUSTOM1_F32:
  13387. case GGML_OP_MAP_CUSTOM2_F32:
  13388. case GGML_OP_MAP_CUSTOM3_F32:
  13389. case GGML_OP_MAP_CUSTOM1:
  13390. case GGML_OP_MAP_CUSTOM2:
  13391. case GGML_OP_MAP_CUSTOM3:
  13392. {
  13393. GGML_ASSERT(false); // not supported
  13394. } break;
  13395. case GGML_OP_CROSS_ENTROPY_LOSS:
  13396. {
  13397. if (src0->grad) {
  13398. src0->grad = ggml_add_or_set(ctx,
  13399. src0->grad,
  13400. ggml_cross_entropy_loss_back(ctx,
  13401. src0,
  13402. src1,
  13403. tensor->grad),
  13404. zero_table);
  13405. }
  13406. } break;
  13407. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13408. {
  13409. GGML_ASSERT(false); // not supported
  13410. } break;
  13411. case GGML_OP_NONE:
  13412. {
  13413. // nop
  13414. } break;
  13415. case GGML_OP_COUNT:
  13416. {
  13417. GGML_ASSERT(false);
  13418. } break;
  13419. }
  13420. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13421. if (tensor->src[i] && tensor->src[i]->grad) {
  13422. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13423. }
  13424. }
  13425. }
  13426. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13427. if (node->grad == NULL) {
  13428. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13429. // it can also happen during forward pass, if the user performs computations with constants
  13430. if (node->op != GGML_OP_NONE) {
  13431. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13432. }
  13433. }
  13434. // check if already visited
  13435. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13436. return;
  13437. }
  13438. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13439. const int k =
  13440. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13441. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13442. /* unknown order, just fall back to using i*/ i;
  13443. if (node->src[k]) {
  13444. ggml_visit_parents(cgraph, node->src[k]);
  13445. }
  13446. }
  13447. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13448. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13449. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13450. if (strlen(node->name) == 0) {
  13451. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13452. }
  13453. cgraph->leafs[cgraph->n_leafs] = node;
  13454. cgraph->n_leafs++;
  13455. } else {
  13456. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13457. if (strlen(node->name) == 0) {
  13458. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13459. }
  13460. cgraph->nodes[cgraph->n_nodes] = node;
  13461. if (cgraph->grads) {
  13462. cgraph->grads[cgraph->n_nodes] = node->grad;
  13463. }
  13464. cgraph->n_nodes++;
  13465. }
  13466. }
  13467. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13468. if (!expand) {
  13469. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13470. ggml_graph_clear(cgraph);
  13471. }
  13472. const int n0 = cgraph->n_nodes;
  13473. UNUSED(n0);
  13474. ggml_visit_parents(cgraph, tensor);
  13475. const int n_new = cgraph->n_nodes - n0;
  13476. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13477. if (n_new > 0) {
  13478. // the last added node should always be starting point
  13479. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13480. }
  13481. }
  13482. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13483. ggml_build_forward_impl(cgraph, tensor, true);
  13484. }
  13485. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13486. GGML_ASSERT(gf->n_nodes > 0);
  13487. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13488. if (keep) {
  13489. for (int i = 0; i < gf->n_nodes; i++) {
  13490. struct ggml_tensor * node = gf->nodes[i];
  13491. if (node->grad) {
  13492. node->grad = ggml_dup_tensor(ctx, node);
  13493. gf->grads[i] = node->grad;
  13494. }
  13495. }
  13496. }
  13497. // remember original gradients which start with zero values
  13498. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13499. for (int i = 0; i < gf->n_nodes; i++) {
  13500. if (gf->grads[i]) {
  13501. ggml_hash_insert(zero_table, gf->grads[i]);
  13502. }
  13503. }
  13504. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13505. struct ggml_tensor * node = gf->nodes[i];
  13506. // inplace operations to add gradients are not created by ggml_compute_backward
  13507. // use allocator to automatically make inplace operations
  13508. if (node->grad) {
  13509. ggml_compute_backward(ctx, node, zero_table);
  13510. }
  13511. }
  13512. for (int i = 0; i < gf->n_nodes; i++) {
  13513. struct ggml_tensor * node = gf->nodes[i];
  13514. if (node->is_param) {
  13515. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13516. ggml_build_forward_expand(gb, node->grad);
  13517. }
  13518. }
  13519. ggml_hash_set_free(zero_table);
  13520. }
  13521. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13522. size_t nbytes = sizeof(struct ggml_cgraph);
  13523. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13524. if (grads) {
  13525. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13526. }
  13527. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13528. return nbytes;
  13529. }
  13530. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13531. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13532. }
  13533. size_t ggml_graph_overhead(void) {
  13534. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13535. }
  13536. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13537. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13538. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13539. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13540. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13541. size_t hash_size = ggml_hash_size(size * 2);
  13542. struct ggml_tensor ** nodes_ptr = data_start;
  13543. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13544. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13545. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13546. // check that we allocated the correct amount of memory
  13547. assert(obj_size == (size_t) (
  13548. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13549. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13550. *cgraph = (struct ggml_cgraph) {
  13551. /*.size =*/ size,
  13552. /*.n_nodes =*/ 0,
  13553. /*.n_leafs =*/ 0,
  13554. /*.nodes =*/ nodes_ptr,
  13555. /*.grads =*/ grads_ptr,
  13556. /*.leafs =*/ leafs_ptr,
  13557. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13558. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13559. /*.perf_runs =*/ 0,
  13560. /*.perf_cycles =*/ 0,
  13561. /*.perf_time_us =*/ 0,
  13562. };
  13563. return cgraph;
  13564. }
  13565. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13566. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13567. }
  13568. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13569. struct ggml_cgraph cgraph = {
  13570. /*.size =*/ 0,
  13571. /*.n_nodes =*/ i1 - i0,
  13572. /*.n_leafs =*/ 0,
  13573. /*.nodes =*/ cgraph0->nodes + i0,
  13574. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13575. /*.leafs =*/ NULL,
  13576. /*.hash_table =*/ { 0, NULL },
  13577. /*.order =*/ cgraph0->order,
  13578. /*.perf_runs =*/ 0,
  13579. /*.perf_cycles =*/ 0,
  13580. /*.perf_time_us =*/ 0,
  13581. };
  13582. return cgraph;
  13583. }
  13584. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13585. GGML_ASSERT(dst->size >= src->n_leafs);
  13586. GGML_ASSERT(dst->size >= src->n_nodes);
  13587. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13588. dst->n_leafs = src->n_leafs;
  13589. dst->n_nodes = src->n_nodes;
  13590. dst->order = src->order;
  13591. for (int i = 0; i < src->n_leafs; ++i) {
  13592. dst->leafs[i] = src->leafs[i];
  13593. }
  13594. for (int i = 0; i < src->n_nodes; ++i) {
  13595. dst->nodes[i] = src->nodes[i];
  13596. }
  13597. if (src->grads) {
  13598. GGML_ASSERT(dst->grads != NULL);
  13599. for (int i = 0; i < src->n_nodes; ++i) {
  13600. dst->grads[i] = src->grads[i];
  13601. }
  13602. }
  13603. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13604. if (src->visited_hash_table.keys[i]) {
  13605. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13606. }
  13607. }
  13608. }
  13609. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13610. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13611. ggml_graph_cpy(cgraph, result);
  13612. return result;
  13613. }
  13614. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13615. GGML_ASSERT(cgraph->grads != NULL);
  13616. for (int i = 0; i < cgraph->n_nodes; i++) {
  13617. struct ggml_tensor * grad = cgraph->grads[i];
  13618. if (grad) {
  13619. ggml_set_zero(grad);
  13620. }
  13621. }
  13622. }
  13623. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13624. cgraph->n_leafs = 0;
  13625. cgraph->n_nodes = 0;
  13626. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13627. }
  13628. //
  13629. // thread data
  13630. //
  13631. // synchronization is done via busy loops
  13632. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13633. //
  13634. #ifdef __APPLE__
  13635. //#include <os/lock.h>
  13636. //
  13637. //typedef os_unfair_lock ggml_lock_t;
  13638. //
  13639. //#define ggml_lock_init(x) UNUSED(x)
  13640. //#define ggml_lock_destroy(x) UNUSED(x)
  13641. //#define ggml_lock_lock os_unfair_lock_lock
  13642. //#define ggml_lock_unlock os_unfair_lock_unlock
  13643. //
  13644. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13645. typedef int ggml_lock_t;
  13646. #define ggml_lock_init(x) UNUSED(x)
  13647. #define ggml_lock_destroy(x) UNUSED(x)
  13648. #define ggml_lock_lock(x) UNUSED(x)
  13649. #define ggml_lock_unlock(x) UNUSED(x)
  13650. #define GGML_LOCK_INITIALIZER 0
  13651. typedef pthread_t ggml_thread_t;
  13652. #define ggml_thread_create pthread_create
  13653. #define ggml_thread_join pthread_join
  13654. #else
  13655. //typedef pthread_spinlock_t ggml_lock_t;
  13656. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13657. //#define ggml_lock_destroy pthread_spin_destroy
  13658. //#define ggml_lock_lock pthread_spin_lock
  13659. //#define ggml_lock_unlock pthread_spin_unlock
  13660. typedef int ggml_lock_t;
  13661. #define ggml_lock_init(x) UNUSED(x)
  13662. #define ggml_lock_destroy(x) UNUSED(x)
  13663. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13664. #define ggml_lock_lock(x) _mm_pause()
  13665. #else
  13666. #define ggml_lock_lock(x) UNUSED(x)
  13667. #endif
  13668. #define ggml_lock_unlock(x) UNUSED(x)
  13669. #define GGML_LOCK_INITIALIZER 0
  13670. typedef pthread_t ggml_thread_t;
  13671. #define ggml_thread_create pthread_create
  13672. #define ggml_thread_join pthread_join
  13673. #endif
  13674. // Android's libc implementation "bionic" does not support setting affinity
  13675. #if defined(__linux__) && !defined(__BIONIC__)
  13676. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13677. if (!ggml_is_numa()) {
  13678. return;
  13679. }
  13680. // run thread on node_num thread_n / (threads per node)
  13681. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13682. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13683. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13684. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13685. CPU_ZERO_S(setsize, cpus);
  13686. for (size_t i = 0; i < node->n_cpus; ++i) {
  13687. CPU_SET_S(node->cpus[i], setsize, cpus);
  13688. }
  13689. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13690. if (rv) {
  13691. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13692. strerror(rv));
  13693. }
  13694. CPU_FREE(cpus);
  13695. }
  13696. static void clear_numa_thread_affinity(void) {
  13697. if (!ggml_is_numa()) {
  13698. return;
  13699. }
  13700. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13701. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13702. CPU_ZERO_S(setsize, cpus);
  13703. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13704. CPU_SET_S(i, setsize, cpus);
  13705. }
  13706. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13707. if (rv) {
  13708. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13709. strerror(rv));
  13710. }
  13711. CPU_FREE(cpus);
  13712. }
  13713. #else
  13714. // TODO: Windows etc.
  13715. // (the linux implementation may also work on BSD, someone should test)
  13716. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13717. static void clear_numa_thread_affinity(void) {}
  13718. #endif
  13719. struct ggml_compute_state_shared {
  13720. const struct ggml_cgraph * cgraph;
  13721. const struct ggml_cplan * cplan;
  13722. int64_t perf_node_start_cycles;
  13723. int64_t perf_node_start_time_us;
  13724. const int n_threads;
  13725. // synchronization primitives
  13726. atomic_int n_active; // num active threads
  13727. atomic_int node_n; // active graph node
  13728. atomic_int node_task; // active graph node task phase
  13729. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13730. void * abort_callback_data;
  13731. };
  13732. struct ggml_compute_state {
  13733. ggml_thread_t thrd;
  13734. int ith;
  13735. struct ggml_compute_state_shared * shared;
  13736. };
  13737. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13738. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13739. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13740. node->perf_runs++;
  13741. node->perf_cycles += cycles_cur;
  13742. node->perf_time_us += time_us_cur;
  13743. }
  13744. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13745. int n_tasks = 0;
  13746. switch (node->op) {
  13747. case GGML_OP_CPY:
  13748. case GGML_OP_DUP:
  13749. case GGML_OP_ADD:
  13750. case GGML_OP_ADD1:
  13751. case GGML_OP_ACC:
  13752. {
  13753. n_tasks = n_threads;
  13754. } break;
  13755. case GGML_OP_SUB:
  13756. case GGML_OP_SQR:
  13757. case GGML_OP_SQRT:
  13758. case GGML_OP_LOG:
  13759. case GGML_OP_SUM:
  13760. case GGML_OP_SUM_ROWS:
  13761. case GGML_OP_MEAN:
  13762. case GGML_OP_ARGMAX:
  13763. case GGML_OP_REPEAT:
  13764. case GGML_OP_REPEAT_BACK:
  13765. case GGML_OP_LEAKY_RELU:
  13766. {
  13767. n_tasks = 1;
  13768. } break;
  13769. case GGML_OP_UNARY:
  13770. switch (ggml_get_unary_op(node)) {
  13771. case GGML_UNARY_OP_ABS:
  13772. case GGML_UNARY_OP_SGN:
  13773. case GGML_UNARY_OP_NEG:
  13774. case GGML_UNARY_OP_STEP:
  13775. case GGML_UNARY_OP_TANH:
  13776. case GGML_UNARY_OP_ELU:
  13777. case GGML_UNARY_OP_RELU:
  13778. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13779. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13780. {
  13781. n_tasks = 1;
  13782. } break;
  13783. case GGML_UNARY_OP_GELU:
  13784. case GGML_UNARY_OP_GELU_QUICK:
  13785. case GGML_UNARY_OP_SILU:
  13786. {
  13787. n_tasks = n_threads;
  13788. } break;
  13789. default:
  13790. GGML_ASSERT(false);
  13791. }
  13792. break;
  13793. case GGML_OP_SILU_BACK:
  13794. case GGML_OP_MUL:
  13795. case GGML_OP_DIV:
  13796. case GGML_OP_NORM:
  13797. case GGML_OP_RMS_NORM:
  13798. case GGML_OP_RMS_NORM_BACK:
  13799. case GGML_OP_GROUP_NORM:
  13800. case GGML_OP_CONCAT:
  13801. {
  13802. n_tasks = n_threads;
  13803. } break;
  13804. case GGML_OP_MUL_MAT:
  13805. {
  13806. n_tasks = n_threads;
  13807. // TODO: use different scheduling for different matrix sizes
  13808. //const int nr0 = ggml_nrows(node->src[0]);
  13809. //const int nr1 = ggml_nrows(node->src[1]);
  13810. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13811. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13812. } break;
  13813. case GGML_OP_MUL_MAT_ID:
  13814. {
  13815. n_tasks = n_threads;
  13816. } break;
  13817. case GGML_OP_OUT_PROD:
  13818. {
  13819. n_tasks = n_threads;
  13820. } break;
  13821. case GGML_OP_SCALE:
  13822. case GGML_OP_SET:
  13823. case GGML_OP_CONT:
  13824. case GGML_OP_RESHAPE:
  13825. case GGML_OP_VIEW:
  13826. case GGML_OP_PERMUTE:
  13827. case GGML_OP_TRANSPOSE:
  13828. case GGML_OP_GET_ROWS:
  13829. case GGML_OP_GET_ROWS_BACK:
  13830. case GGML_OP_DIAG:
  13831. {
  13832. n_tasks = 1;
  13833. } break;
  13834. case GGML_OP_DIAG_MASK_ZERO:
  13835. case GGML_OP_DIAG_MASK_INF:
  13836. case GGML_OP_SOFT_MAX_BACK:
  13837. case GGML_OP_ROPE:
  13838. case GGML_OP_ROPE_BACK:
  13839. case GGML_OP_ADD_REL_POS:
  13840. {
  13841. n_tasks = n_threads;
  13842. } break;
  13843. case GGML_OP_ALIBI:
  13844. {
  13845. n_tasks = 1; //TODO
  13846. } break;
  13847. case GGML_OP_CLAMP:
  13848. {
  13849. n_tasks = 1; //TODO
  13850. } break;
  13851. case GGML_OP_SOFT_MAX:
  13852. {
  13853. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  13854. } break;
  13855. case GGML_OP_CONV_TRANSPOSE_1D:
  13856. {
  13857. n_tasks = n_threads;
  13858. } break;
  13859. case GGML_OP_IM2COL:
  13860. {
  13861. n_tasks = n_threads;
  13862. } break;
  13863. case GGML_OP_CONV_TRANSPOSE_2D:
  13864. {
  13865. n_tasks = n_threads;
  13866. } break;
  13867. case GGML_OP_POOL_1D:
  13868. case GGML_OP_POOL_2D:
  13869. {
  13870. n_tasks = 1;
  13871. } break;
  13872. case GGML_OP_UPSCALE:
  13873. {
  13874. n_tasks = n_threads;
  13875. } break;
  13876. case GGML_OP_PAD:
  13877. {
  13878. n_tasks = n_threads;
  13879. } break;
  13880. case GGML_OP_ARGSORT:
  13881. {
  13882. n_tasks = n_threads;
  13883. } break;
  13884. case GGML_OP_FLASH_ATTN:
  13885. {
  13886. n_tasks = n_threads;
  13887. } break;
  13888. case GGML_OP_FLASH_FF:
  13889. {
  13890. n_tasks = n_threads;
  13891. } break;
  13892. case GGML_OP_FLASH_ATTN_BACK:
  13893. {
  13894. n_tasks = n_threads;
  13895. } break;
  13896. case GGML_OP_WIN_PART:
  13897. case GGML_OP_WIN_UNPART:
  13898. case GGML_OP_GET_REL_POS:
  13899. case GGML_OP_MAP_UNARY:
  13900. case GGML_OP_MAP_BINARY:
  13901. case GGML_OP_MAP_CUSTOM1_F32:
  13902. case GGML_OP_MAP_CUSTOM2_F32:
  13903. case GGML_OP_MAP_CUSTOM3_F32:
  13904. {
  13905. n_tasks = 1;
  13906. } break;
  13907. case GGML_OP_MAP_CUSTOM1:
  13908. {
  13909. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13910. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13911. n_tasks = n_threads;
  13912. } else {
  13913. n_tasks = MIN(p->n_tasks, n_threads);
  13914. }
  13915. } break;
  13916. case GGML_OP_MAP_CUSTOM2:
  13917. {
  13918. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13919. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13920. n_tasks = n_threads;
  13921. } else {
  13922. n_tasks = MIN(p->n_tasks, n_threads);
  13923. }
  13924. } break;
  13925. case GGML_OP_MAP_CUSTOM3:
  13926. {
  13927. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13928. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13929. n_tasks = n_threads;
  13930. } else {
  13931. n_tasks = MIN(p->n_tasks, n_threads);
  13932. }
  13933. } break;
  13934. case GGML_OP_CROSS_ENTROPY_LOSS:
  13935. {
  13936. n_tasks = n_threads;
  13937. } break;
  13938. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13939. {
  13940. n_tasks = n_threads;
  13941. } break;
  13942. case GGML_OP_NONE:
  13943. {
  13944. n_tasks = 1;
  13945. } break;
  13946. case GGML_OP_COUNT:
  13947. {
  13948. GGML_ASSERT(false);
  13949. } break;
  13950. default:
  13951. {
  13952. fprintf(stderr, "%s: op not implemented: ", __func__);
  13953. if (node->op < GGML_OP_COUNT) {
  13954. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13955. } else {
  13956. fprintf(stderr, "%d\n", node->op);
  13957. }
  13958. GGML_ASSERT(false);
  13959. } break;
  13960. }
  13961. assert(n_tasks > 0);
  13962. return n_tasks;
  13963. }
  13964. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  13965. // wait for other threads to finish
  13966. const int last_node_n = * node_n;
  13967. while (true) {
  13968. if (do_yield) {
  13969. sched_yield();
  13970. }
  13971. * node_n = atomic_load(&state->shared->node_n);
  13972. if (* node_n != last_node_n) break;
  13973. }
  13974. }
  13975. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  13976. // wait for other threads to finish
  13977. const int last_task_phase = * task_phase;
  13978. while (true) {
  13979. if (do_yield) {
  13980. sched_yield();
  13981. }
  13982. * task_phase = atomic_load(&state->shared->node_task);
  13983. if (* task_phase != last_task_phase) break;
  13984. }
  13985. }
  13986. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13987. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13988. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13989. const struct ggml_cplan * cplan = state->shared->cplan;
  13990. const int n_threads = state->shared->n_threads;
  13991. set_numa_thread_affinity(state->ith, n_threads);
  13992. int node_n = -1;
  13993. int task_phase = GGML_TASK_FINALIZE;
  13994. while (true) {
  13995. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13996. state->shared->node_n += 1;
  13997. return (thread_ret_t) GGML_EXIT_ABORTED;
  13998. }
  13999. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14000. // all other threads are finished and spinning
  14001. // do finalize and init here so we don't have synchronize again
  14002. struct ggml_compute_params params = {
  14003. /*.type =*/ GGML_TASK_FINALIZE,
  14004. /*.ith =*/ 0,
  14005. /*.nth =*/ 0,
  14006. /*.wsize =*/ cplan->work_size,
  14007. /*.wdata =*/ cplan->work_data,
  14008. };
  14009. if (node_n != -1) {
  14010. /* FINALIZE */
  14011. struct ggml_tensor * node = cgraph->nodes[node_n];
  14012. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14013. params.nth = ggml_get_n_tasks(node, n_threads);
  14014. ggml_compute_forward(&params, node);
  14015. }
  14016. ggml_graph_compute_perf_stats_node(node, state->shared);
  14017. }
  14018. // distribute new work or execute it direct if 1T
  14019. while (++node_n < cgraph->n_nodes) {
  14020. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14021. struct ggml_tensor * node = cgraph->nodes[node_n];
  14022. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14023. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14024. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14025. params.nth = n_tasks;
  14026. if (n_tasks == 1) {
  14027. /* INIT */
  14028. if (GGML_OP_HAS_INIT[node->op]) {
  14029. params.type = GGML_TASK_INIT;
  14030. ggml_compute_forward(&params, node);
  14031. }
  14032. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14033. // they do something more efficient than spinning (?)
  14034. params.type = GGML_TASK_COMPUTE;
  14035. ggml_compute_forward(&params, node);
  14036. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14037. params.type = GGML_TASK_FINALIZE;
  14038. ggml_compute_forward(&params, node);
  14039. }
  14040. ggml_graph_compute_perf_stats_node(node, state->shared);
  14041. } else {
  14042. break;
  14043. }
  14044. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14045. break;
  14046. }
  14047. }
  14048. task_phase = GGML_TASK_INIT;
  14049. atomic_store(&state->shared->n_active, n_threads);
  14050. atomic_store(&state->shared->node_n, node_n);
  14051. atomic_store(&state->shared->node_task, task_phase);
  14052. } else {
  14053. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14054. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14055. }
  14056. // check if we should stop
  14057. if (node_n >= cgraph->n_nodes) break;
  14058. /* INIT & COMPUTE */
  14059. struct ggml_tensor * node = cgraph->nodes[node_n];
  14060. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14061. struct ggml_compute_params params = {
  14062. /*.type =*/ GGML_TASK_INIT,
  14063. /*.ith =*/ state->ith,
  14064. /*.nth =*/ n_tasks,
  14065. /*.wsize =*/ cplan->work_size,
  14066. /*.wdata =*/ cplan->work_data,
  14067. };
  14068. if (state->ith < n_tasks) {
  14069. if (GGML_OP_HAS_INIT[node->op]) {
  14070. ggml_compute_forward(&params, node);
  14071. }
  14072. }
  14073. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14074. task_phase = GGML_TASK_COMPUTE;
  14075. atomic_store(&state->shared->n_active, n_threads);
  14076. atomic_store(&state->shared->node_task, task_phase);
  14077. }
  14078. else {
  14079. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14080. // depending on the workload and the operating system.
  14081. // since it is not clear what is the best approach, it should potentially become user-configurable
  14082. // ref: https://github.com/ggerganov/ggml/issues/291
  14083. // UPD: adding the do_yield flag seems to resolve the issue universally
  14084. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14085. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14086. }
  14087. if (state->ith < n_tasks) {
  14088. params.type = GGML_TASK_COMPUTE;
  14089. ggml_compute_forward(&params, node);
  14090. }
  14091. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14092. task_phase = GGML_TASK_FINALIZE;
  14093. atomic_store(&state->shared->n_active, n_threads);
  14094. atomic_store(&state->shared->node_task, task_phase);
  14095. }
  14096. else {
  14097. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14098. }
  14099. }
  14100. return GGML_EXIT_SUCCESS;
  14101. }
  14102. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14103. if (n_threads <= 0) {
  14104. n_threads = GGML_DEFAULT_N_THREADS;
  14105. }
  14106. size_t work_size = 0;
  14107. struct ggml_cplan cplan;
  14108. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14109. // thread scheduling for the different operations + work buffer size estimation
  14110. for (int i = 0; i < cgraph->n_nodes; i++) {
  14111. struct ggml_tensor * node = cgraph->nodes[i];
  14112. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14113. size_t cur = 0;
  14114. switch (node->op) {
  14115. case GGML_OP_CPY:
  14116. case GGML_OP_DUP:
  14117. {
  14118. if (ggml_is_quantized(node->type)) {
  14119. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14120. }
  14121. } break;
  14122. case GGML_OP_ADD:
  14123. case GGML_OP_ADD1:
  14124. {
  14125. if (ggml_is_quantized(node->src[0]->type)) {
  14126. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14127. }
  14128. } break;
  14129. case GGML_OP_ACC:
  14130. {
  14131. if (ggml_is_quantized(node->src[0]->type)) {
  14132. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14133. }
  14134. } break;
  14135. case GGML_OP_MUL_MAT:
  14136. {
  14137. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14138. #if defined(GGML_USE_CLBLAST)
  14139. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14140. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14141. } else
  14142. #endif
  14143. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14144. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14145. if (node->src[0]->type != GGML_TYPE_F32) {
  14146. // here we need memory for fully dequantized matrix from src0
  14147. // take into account that src0 can be broadcasted into src1[2,3]
  14148. cur = ggml_type_size(GGML_TYPE_F32)
  14149. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14150. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14151. }
  14152. } else
  14153. #endif
  14154. if (node->src[1]->type != vec_dot_type) {
  14155. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14156. }
  14157. } break;
  14158. case GGML_OP_MUL_MAT_ID:
  14159. {
  14160. cur = 0;
  14161. const struct ggml_tensor * src0 = node->src[2];
  14162. const struct ggml_tensor * src1 = node->src[1];
  14163. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14164. if (src1->type != vec_dot_type) {
  14165. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14166. }
  14167. const int n_as = ggml_get_op_params_i32(node, 1);
  14168. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14169. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14170. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14171. } break;
  14172. case GGML_OP_OUT_PROD:
  14173. {
  14174. if (ggml_is_quantized(node->src[0]->type)) {
  14175. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14176. }
  14177. } break;
  14178. case GGML_OP_SOFT_MAX:
  14179. case GGML_OP_ROPE:
  14180. {
  14181. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14182. } break;
  14183. case GGML_OP_CONV_TRANSPOSE_1D:
  14184. {
  14185. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14186. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14187. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14188. const int64_t ne00 = node->src[0]->ne[0]; // K
  14189. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14190. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14191. const int64_t ne10 = node->src[1]->ne[0]; // L
  14192. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14193. if (node->src[0]->type == GGML_TYPE_F16 &&
  14194. node->src[1]->type == GGML_TYPE_F32) {
  14195. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14196. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14197. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14198. node->src[1]->type == GGML_TYPE_F32) {
  14199. cur += sizeof(float)*ne00*ne01*ne02;
  14200. cur += sizeof(float)*ne10*ne11;
  14201. } else {
  14202. GGML_ASSERT(false);
  14203. }
  14204. } break;
  14205. case GGML_OP_CONV_TRANSPOSE_2D:
  14206. {
  14207. const int64_t ne00 = node->src[0]->ne[0]; // W
  14208. const int64_t ne01 = node->src[0]->ne[1]; // H
  14209. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14210. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14211. const int64_t ne10 = node->src[1]->ne[0]; // W
  14212. const int64_t ne11 = node->src[1]->ne[1]; // H
  14213. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14214. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14215. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14216. } break;
  14217. case GGML_OP_FLASH_ATTN:
  14218. {
  14219. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14220. if (node->src[1]->type == GGML_TYPE_F32) {
  14221. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14222. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14223. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14224. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14225. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14226. }
  14227. } break;
  14228. case GGML_OP_FLASH_FF:
  14229. {
  14230. if (node->src[1]->type == GGML_TYPE_F32) {
  14231. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14232. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14233. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14234. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14235. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14236. }
  14237. } break;
  14238. case GGML_OP_FLASH_ATTN_BACK:
  14239. {
  14240. const int64_t D = node->src[0]->ne[0];
  14241. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14242. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14243. if (node->src[1]->type == GGML_TYPE_F32) {
  14244. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14245. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14246. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14247. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14248. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14249. }
  14250. } break;
  14251. case GGML_OP_CROSS_ENTROPY_LOSS:
  14252. {
  14253. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14254. } break;
  14255. case GGML_OP_COUNT:
  14256. {
  14257. GGML_ASSERT(false);
  14258. } break;
  14259. default:
  14260. break;
  14261. }
  14262. work_size = MAX(work_size, cur);
  14263. }
  14264. if (work_size > 0) {
  14265. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14266. }
  14267. cplan.n_threads = n_threads;
  14268. cplan.work_size = work_size;
  14269. cplan.work_data = NULL;
  14270. return cplan;
  14271. }
  14272. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14273. {
  14274. GGML_ASSERT(cplan);
  14275. GGML_ASSERT(cplan->n_threads > 0);
  14276. if (cplan->work_size > 0) {
  14277. GGML_ASSERT(cplan->work_data);
  14278. }
  14279. }
  14280. #ifdef GGML_USE_VULKAN
  14281. for (int i = 0; i < cgraph->n_nodes; i++) {
  14282. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  14283. }
  14284. ggml_vk_preallocate_buffers();
  14285. for (int i = 0; i < cgraph->n_nodes; i++) {
  14286. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14287. }
  14288. #endif
  14289. const int n_threads = cplan->n_threads;
  14290. struct ggml_compute_state_shared state_shared = {
  14291. /*.cgraph =*/ cgraph,
  14292. /*.cgraph_plan =*/ cplan,
  14293. /*.perf_node_start_cycles =*/ 0,
  14294. /*.perf_node_start_time_us =*/ 0,
  14295. /*.n_threads =*/ n_threads,
  14296. /*.n_active =*/ n_threads,
  14297. /*.node_n =*/ -1,
  14298. /*.node_task =*/ GGML_TASK_FINALIZE,
  14299. /*.abort_callback =*/ NULL,
  14300. /*.abort_callback_data =*/ NULL,
  14301. };
  14302. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14303. // create thread pool
  14304. if (n_threads > 1) {
  14305. for (int j = 1; j < n_threads; ++j) {
  14306. workers[j] = (struct ggml_compute_state) {
  14307. .thrd = 0,
  14308. .ith = j,
  14309. .shared = &state_shared,
  14310. };
  14311. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14312. GGML_ASSERT(rc == 0);
  14313. UNUSED(rc);
  14314. }
  14315. }
  14316. workers[0].ith = 0;
  14317. workers[0].shared = &state_shared;
  14318. const int64_t perf_start_cycles = ggml_perf_cycles();
  14319. const int64_t perf_start_time_us = ggml_perf_time_us();
  14320. // this is a work thread too
  14321. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14322. // don't leave affinity set on the main thread
  14323. clear_numa_thread_affinity();
  14324. // join or kill thread pool
  14325. if (n_threads > 1) {
  14326. for (int j = 1; j < n_threads; j++) {
  14327. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14328. GGML_ASSERT(rc == 0);
  14329. }
  14330. }
  14331. #ifdef GGML_USE_VULKAN
  14332. ggml_vk_graph_cleanup();
  14333. #endif
  14334. // performance stats (graph)
  14335. {
  14336. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14337. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14338. cgraph->perf_runs++;
  14339. cgraph->perf_cycles += perf_cycles_cur;
  14340. cgraph->perf_time_us += perf_time_us_cur;
  14341. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14342. __func__, cgraph->perf_runs,
  14343. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14344. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14345. (double) perf_time_us_cur / 1000.0,
  14346. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14347. }
  14348. return compute_status;
  14349. }
  14350. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14351. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14352. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14353. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14354. ggml_graph_compute(cgraph, &cplan);
  14355. }
  14356. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14357. for (int i = 0; i < cgraph->n_leafs; i++) {
  14358. struct ggml_tensor * leaf = cgraph->leafs[i];
  14359. if (strcmp(leaf->name, name) == 0) {
  14360. return leaf;
  14361. }
  14362. }
  14363. for (int i = 0; i < cgraph->n_nodes; i++) {
  14364. struct ggml_tensor * node = cgraph->nodes[i];
  14365. if (strcmp(node->name, name) == 0) {
  14366. return node;
  14367. }
  14368. }
  14369. return NULL;
  14370. }
  14371. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14372. const int64_t * ne = tensor->ne;
  14373. const size_t * nb = tensor->nb;
  14374. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14375. ggml_type_name(tensor->type),
  14376. ggml_op_name (tensor->op),
  14377. ggml_n_dims(tensor),
  14378. ne[0], ne[1], ne[2], ne[3],
  14379. nb[0], nb[1], nb[2], nb[3],
  14380. tensor->data,
  14381. tensor->name);
  14382. }
  14383. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14384. const int64_t * ne = tensor->ne;
  14385. const size_t * nb = tensor->nb;
  14386. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14387. arg,
  14388. ggml_type_name(tensor->type),
  14389. ggml_op_name (tensor->op),
  14390. ggml_n_dims(tensor),
  14391. ne[0], ne[1], ne[2], ne[3],
  14392. nb[0], nb[1], nb[2], nb[3],
  14393. tensor->data,
  14394. tensor->name);
  14395. }
  14396. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14397. uint64_t size_eval = 0;
  14398. // compute size of intermediate results
  14399. // TODO: does not take into account scratch buffers !!!!
  14400. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14401. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14402. }
  14403. // print
  14404. {
  14405. FILE * fout = stdout;
  14406. fprintf(fout, "\n");
  14407. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14408. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14409. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14410. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14411. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14412. // header
  14413. fprintf(fout, "\n");
  14414. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14415. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14416. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14417. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14418. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14419. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14420. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14421. }
  14422. // header
  14423. fprintf(fout, "\n");
  14424. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14425. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14426. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14427. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14428. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14429. if (cgraph->nodes[i]->src[j]) {
  14430. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14431. }
  14432. }
  14433. fprintf(fout, "\n");
  14434. }
  14435. fprintf(fout, "\n");
  14436. }
  14437. // write binary data
  14438. {
  14439. FILE * fout = fopen(fname, "wb");
  14440. if (!fout) {
  14441. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14442. return;
  14443. }
  14444. // header
  14445. {
  14446. const uint32_t magic = GGML_FILE_MAGIC;
  14447. const uint32_t version = GGML_FILE_VERSION;
  14448. const uint32_t n_leafs = cgraph->n_leafs;
  14449. const uint32_t n_nodes = cgraph->n_nodes;
  14450. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14451. fwrite(&version, sizeof(uint32_t), 1, fout);
  14452. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14453. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14454. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14455. }
  14456. // leafs
  14457. {
  14458. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14459. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14460. const uint32_t type = tensor->type;
  14461. const uint32_t op = tensor->op;
  14462. fwrite(&type, sizeof(uint32_t), 1, fout);
  14463. fwrite(&op, sizeof(uint32_t), 1, fout);
  14464. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14465. const uint64_t ne = tensor->ne[j];
  14466. const uint64_t nb = tensor->nb[j];
  14467. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14468. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14469. }
  14470. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14471. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14472. // dump the data
  14473. // TODO: pad this to 32 byte boundary
  14474. {
  14475. const size_t size = ggml_nbytes(tensor);
  14476. fwrite(tensor->data, sizeof(char), size, fout);
  14477. }
  14478. }
  14479. }
  14480. // nodes
  14481. {
  14482. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14483. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14484. const uint32_t type = tensor->type;
  14485. const uint32_t op = tensor->op;
  14486. fwrite(&type, sizeof(uint32_t), 1, fout);
  14487. fwrite(&op, sizeof(uint32_t), 1, fout);
  14488. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14489. const uint64_t ne = tensor->ne[j];
  14490. const uint64_t nb = tensor->nb[j];
  14491. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14492. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14493. }
  14494. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14495. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14496. // output the op arguments
  14497. {
  14498. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14499. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14500. args[j] = tensor->src[j];
  14501. }
  14502. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14503. if (args[j]) {
  14504. int32_t idx = -1;
  14505. // check if leaf
  14506. {
  14507. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14508. if (args[j] == cgraph->leafs[k]) {
  14509. idx = k;
  14510. break;
  14511. }
  14512. }
  14513. }
  14514. // check if node
  14515. if (idx == -1) {
  14516. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14517. if (args[j] == cgraph->nodes[k]) {
  14518. idx = cgraph->n_leafs + k;
  14519. break;
  14520. }
  14521. }
  14522. }
  14523. if (idx == -1) {
  14524. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14525. fclose(fout);
  14526. return;
  14527. }
  14528. fwrite(&idx, sizeof(int32_t), 1, fout);
  14529. } else {
  14530. const int32_t nul = -1;
  14531. fwrite(&nul, sizeof(int32_t), 1, fout);
  14532. }
  14533. }
  14534. }
  14535. }
  14536. }
  14537. fclose(fout);
  14538. }
  14539. }
  14540. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14541. assert(*ctx_data == NULL);
  14542. assert(*ctx_eval == NULL);
  14543. struct ggml_cgraph * result = NULL;
  14544. struct ggml_tensor * data = NULL;
  14545. // read file into data
  14546. {
  14547. FILE * fin = fopen(fname, "rb");
  14548. if (!fin) {
  14549. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14550. return result;
  14551. }
  14552. size_t fsize = 0;
  14553. fseek(fin, 0, SEEK_END);
  14554. fsize = ftell(fin);
  14555. fseek(fin, 0, SEEK_SET);
  14556. // create the data context
  14557. {
  14558. const size_t overhead = 1*ggml_tensor_overhead();
  14559. struct ggml_init_params params = {
  14560. .mem_size = fsize + overhead,
  14561. .mem_buffer = NULL,
  14562. .no_alloc = false,
  14563. };
  14564. *ctx_data = ggml_init(params);
  14565. if (!*ctx_data) {
  14566. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14567. fclose(fin);
  14568. return result;
  14569. }
  14570. }
  14571. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14572. {
  14573. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14574. if (ret != fsize) {
  14575. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14576. fclose(fin);
  14577. return result;
  14578. }
  14579. }
  14580. fclose(fin);
  14581. }
  14582. // populate result
  14583. {
  14584. char * ptr = (char *) data->data;
  14585. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14586. if (magic != GGML_FILE_MAGIC) {
  14587. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14588. return result;
  14589. }
  14590. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14591. if (version != GGML_FILE_VERSION) {
  14592. fprintf(stderr, "%s: invalid version number\n", __func__);
  14593. return result;
  14594. }
  14595. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14596. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14597. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14598. const int graph_size = MAX(n_leafs, n_nodes);
  14599. // create the data context
  14600. {
  14601. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14602. struct ggml_init_params params = {
  14603. .mem_size = size_eval + overhead,
  14604. .mem_buffer = NULL,
  14605. .no_alloc = true,
  14606. };
  14607. *ctx_eval = ggml_init(params);
  14608. if (!*ctx_eval) {
  14609. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14610. return result;
  14611. }
  14612. }
  14613. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14614. result->n_leafs = n_leafs;
  14615. result->n_nodes = n_nodes;
  14616. // leafs
  14617. {
  14618. uint32_t type;
  14619. uint32_t op;
  14620. for (uint32_t i = 0; i < n_leafs; ++i) {
  14621. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14622. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14623. int64_t ne[GGML_MAX_DIMS];
  14624. size_t nb[GGML_MAX_DIMS];
  14625. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14626. uint64_t ne_cur;
  14627. uint64_t nb_cur;
  14628. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14629. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14630. ne[j] = ne_cur;
  14631. nb[j] = nb_cur;
  14632. }
  14633. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14634. tensor->op = (enum ggml_op) op;
  14635. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14636. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14637. tensor->data = (void *) ptr;
  14638. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14639. tensor->nb[j] = nb[j];
  14640. }
  14641. result->leafs[i] = tensor;
  14642. ptr += ggml_nbytes(tensor);
  14643. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14644. }
  14645. }
  14646. ggml_set_no_alloc(*ctx_eval, false);
  14647. // nodes
  14648. {
  14649. uint32_t type;
  14650. uint32_t op;
  14651. for (uint32_t i = 0; i < n_nodes; ++i) {
  14652. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14653. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14654. enum ggml_op eop = (enum ggml_op) op;
  14655. int64_t ne[GGML_MAX_DIMS];
  14656. size_t nb[GGML_MAX_DIMS];
  14657. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14658. uint64_t ne_cur;
  14659. uint64_t nb_cur;
  14660. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14661. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14662. ne[j] = ne_cur;
  14663. nb[j] = nb_cur;
  14664. }
  14665. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14666. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14667. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14668. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14669. // parse args
  14670. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14671. const int32_t arg_idx = ptr_arg_idx[j];
  14672. if (arg_idx == -1) {
  14673. continue;
  14674. }
  14675. if (arg_idx < result->n_leafs) {
  14676. args[j] = result->leafs[arg_idx];
  14677. } else {
  14678. args[j] = result->nodes[arg_idx - result->n_leafs];
  14679. }
  14680. }
  14681. // create the tensor
  14682. // "view" operations are handled differently
  14683. // TODO: handle inplace ops - currently a copy is always made
  14684. struct ggml_tensor * tensor = NULL;
  14685. switch (eop) {
  14686. // TODO: implement other view ops
  14687. case GGML_OP_RESHAPE:
  14688. {
  14689. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14690. } break;
  14691. case GGML_OP_VIEW:
  14692. {
  14693. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14694. size_t offs;
  14695. memcpy(&offs, ptr_op_params, sizeof(offs));
  14696. tensor->data = ((char *) tensor->data) + offs;
  14697. } break;
  14698. case GGML_OP_TRANSPOSE:
  14699. {
  14700. tensor = ggml_transpose(*ctx_eval, args[0]);
  14701. } break;
  14702. case GGML_OP_PERMUTE:
  14703. {
  14704. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14705. } break;
  14706. default:
  14707. {
  14708. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14709. tensor->op = eop;
  14710. } break;
  14711. }
  14712. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14713. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14714. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14715. tensor->nb[j] = nb[j];
  14716. }
  14717. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14718. tensor->src[j] = args[j];
  14719. }
  14720. result->nodes[i] = tensor;
  14721. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14722. }
  14723. }
  14724. }
  14725. return result;
  14726. }
  14727. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14728. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14729. GGML_PRINT("=== GRAPH ===\n");
  14730. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14731. for (int i = 0; i < cgraph->n_nodes; i++) {
  14732. struct ggml_tensor * node = cgraph->nodes[i];
  14733. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14734. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14735. i,
  14736. node->ne[0], node->ne[1], node->ne[2],
  14737. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14738. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14739. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14740. (double) node->perf_time_us / 1000.0,
  14741. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14742. }
  14743. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14744. for (int i = 0; i < cgraph->n_leafs; i++) {
  14745. struct ggml_tensor * node = cgraph->leafs[i];
  14746. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14747. i,
  14748. node->ne[0], node->ne[1],
  14749. ggml_op_name(node->op),
  14750. ggml_get_name(node));
  14751. }
  14752. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14753. if (perf_total_per_op_us[i] == 0) {
  14754. continue;
  14755. }
  14756. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14757. }
  14758. GGML_PRINT("========================================\n");
  14759. }
  14760. // check if node is part of the graph
  14761. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14762. if (cgraph == NULL) {
  14763. return true;
  14764. }
  14765. for (int i = 0; i < cgraph->n_nodes; i++) {
  14766. if (cgraph->nodes[i] == node) {
  14767. return true;
  14768. }
  14769. }
  14770. return false;
  14771. }
  14772. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14773. for (int i = 0; i < cgraph->n_nodes; i++) {
  14774. struct ggml_tensor * parent = cgraph->nodes[i];
  14775. if (parent->grad == node) {
  14776. return parent;
  14777. }
  14778. }
  14779. return NULL;
  14780. }
  14781. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14782. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14783. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14784. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14785. gparent0 ? (void *) gparent0 : (void *) parent,
  14786. gparent0 ? "g" : "x",
  14787. gparent ? (void *) gparent : (void *) node,
  14788. gparent ? "g" : "x",
  14789. gparent ? "empty" : "vee",
  14790. gparent ? "dashed" : "solid",
  14791. label);
  14792. }
  14793. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14794. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14795. (void *) parent, "x",
  14796. (void *) node, "x",
  14797. label);
  14798. }
  14799. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14800. char color[16];
  14801. FILE * fp = fopen(filename, "w");
  14802. GGML_ASSERT(fp);
  14803. fprintf(fp, "digraph G {\n");
  14804. fprintf(fp, " newrank = true;\n");
  14805. fprintf(fp, " rankdir = LR;\n");
  14806. for (int i = 0; i < gb->n_nodes; i++) {
  14807. struct ggml_tensor * node = gb->nodes[i];
  14808. if (ggml_graph_get_parent(gb, node) != NULL) {
  14809. continue;
  14810. }
  14811. if (node->is_param) {
  14812. snprintf(color, sizeof(color), "yellow");
  14813. } else if (node->grad) {
  14814. if (ggml_graph_find(gf, node)) {
  14815. snprintf(color, sizeof(color), "green");
  14816. } else {
  14817. snprintf(color, sizeof(color), "lightblue");
  14818. }
  14819. } else {
  14820. snprintf(color, sizeof(color), "white");
  14821. }
  14822. fprintf(fp, " \"%p\" [ "
  14823. "style = filled; fillcolor = %s; shape = record; "
  14824. "label=\"",
  14825. (void *) node, color);
  14826. if (strlen(node->name) > 0) {
  14827. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14828. } else {
  14829. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14830. }
  14831. if (ggml_is_matrix(node)) {
  14832. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14833. } else {
  14834. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14835. }
  14836. if (node->grad) {
  14837. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14838. } else {
  14839. fprintf(fp, "\"; ]\n");
  14840. }
  14841. }
  14842. for (int i = 0; i < gb->n_leafs; i++) {
  14843. struct ggml_tensor * node = gb->leafs[i];
  14844. snprintf(color, sizeof(color), "pink");
  14845. fprintf(fp, " \"%p\" [ "
  14846. "style = filled; fillcolor = %s; shape = record; "
  14847. "label=\"<x>",
  14848. (void *) node, color);
  14849. if (strlen(node->name) > 0) {
  14850. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14851. } else {
  14852. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14853. }
  14854. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14855. if (ggml_nelements(node) < 5) {
  14856. fprintf(fp, " | (");
  14857. for (int j = 0; j < ggml_nelements(node); j++) {
  14858. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14859. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14860. }
  14861. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14862. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14863. }
  14864. else {
  14865. fprintf(fp, "#");
  14866. }
  14867. if (j < ggml_nelements(node) - 1) {
  14868. fprintf(fp, ", ");
  14869. }
  14870. }
  14871. fprintf(fp, ")");
  14872. }
  14873. fprintf(fp, "\"; ]\n");
  14874. }
  14875. for (int i = 0; i < gb->n_nodes; i++) {
  14876. struct ggml_tensor * node = gb->nodes[i];
  14877. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14878. if (node->src[j]) {
  14879. char label[16];
  14880. snprintf(label, sizeof(label), "src %d", j);
  14881. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14882. }
  14883. }
  14884. }
  14885. for (int i = 0; i < gb->n_leafs; i++) {
  14886. struct ggml_tensor * node = gb->leafs[i];
  14887. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14888. if (node->src[j]) {
  14889. char label[16];
  14890. snprintf(label, sizeof(label), "src %d", j);
  14891. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14892. }
  14893. }
  14894. }
  14895. fprintf(fp, "}\n");
  14896. fclose(fp);
  14897. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14898. }
  14899. ////////////////////////////////////////////////////////////////////////////////
  14900. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14901. int i = 0;
  14902. for (int p = 0; p < np; ++p) {
  14903. const int64_t ne = ggml_nelements(ps[p]) ;
  14904. // TODO: add function to set tensor from array
  14905. for (int64_t j = 0; j < ne; ++j) {
  14906. ggml_set_f32_1d(ps[p], j, x[i++]);
  14907. }
  14908. }
  14909. }
  14910. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14911. int i = 0;
  14912. for (int p = 0; p < np; ++p) {
  14913. const int64_t ne = ggml_nelements(ps[p]) ;
  14914. // TODO: add function to get all elements at once
  14915. for (int64_t j = 0; j < ne; ++j) {
  14916. x[i++] = ggml_get_f32_1d(ps[p], j);
  14917. }
  14918. }
  14919. }
  14920. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14921. int64_t i = 0;
  14922. for (int p = 0; p < np; ++p) {
  14923. const int64_t ne = ggml_nelements(ps[p]) ;
  14924. // TODO: add function to get all elements at once
  14925. for (int64_t j = 0; j < ne; ++j) {
  14926. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14927. }
  14928. }
  14929. }
  14930. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14931. int64_t i = 0;
  14932. for (int p = 0; p < np; ++p) {
  14933. const int64_t ne = ggml_nelements(ps[p]) ;
  14934. // TODO: add function to get all elements at once
  14935. for (int64_t j = 0; j < ne; ++j) {
  14936. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14937. }
  14938. }
  14939. }
  14940. //
  14941. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14942. //
  14943. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14944. //
  14945. static enum ggml_opt_result ggml_opt_adam(
  14946. struct ggml_context * ctx,
  14947. struct ggml_opt_context * opt,
  14948. struct ggml_opt_params params,
  14949. struct ggml_tensor * f,
  14950. struct ggml_cgraph * gf,
  14951. struct ggml_cgraph * gb,
  14952. ggml_opt_callback callback,
  14953. void * callback_data) {
  14954. GGML_ASSERT(ggml_is_scalar(f));
  14955. // these will store the parameters we want to optimize
  14956. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14957. int np = 0;
  14958. int64_t nx = 0;
  14959. for (int i = 0; i < gf->n_nodes; ++i) {
  14960. if (gf->nodes[i]->is_param) {
  14961. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14962. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14963. ps[np++] = gf->nodes[i];
  14964. nx += ggml_nelements(gf->nodes[i]);
  14965. }
  14966. }
  14967. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14968. int iter = opt->iter;
  14969. ggml_opt_init(opt->ctx, opt, params, nx);
  14970. opt->iter = iter;
  14971. }
  14972. // constants
  14973. float sched = params.adam.sched;
  14974. const float alpha = params.adam.alpha;
  14975. const float decay = params.adam.decay * alpha;
  14976. const float beta1 = params.adam.beta1;
  14977. const float beta2 = params.adam.beta2;
  14978. const float eps = params.adam.eps;
  14979. const float gclip = params.adam.gclip;
  14980. const int decay_min_ndim = params.adam.decay_min_ndim;
  14981. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14982. const float accum_norm = 1.0f / (float) n_accum;
  14983. float * g = opt->adam.g->data; // gradients
  14984. float * m = opt->adam.m->data; // first moment
  14985. float * v = opt->adam.v->data; // second moment
  14986. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14987. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14988. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14989. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14990. bool cancel = false;
  14991. // compute the function value
  14992. float fx = 0;
  14993. ggml_set_zero(opt->adam.g);
  14994. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14995. if (callback) {
  14996. callback(callback_data, accum_step, &sched, &cancel);
  14997. if (cancel) {
  14998. return GGML_OPT_CANCEL;
  14999. }
  15000. }
  15001. // ggml_graph_reset (gf);
  15002. ggml_set_f32 (f->grad, 1.0f);
  15003. ggml_graph_compute(gb, &cplan);
  15004. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15005. fx += ggml_get_f32_1d(f, 0);
  15006. }
  15007. fx *= accum_norm;
  15008. opt->adam.fx_prev = fx;
  15009. opt->adam.fx_best = opt->adam.fx_prev;
  15010. if (pf) {
  15011. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15012. }
  15013. opt->loss_before = opt->adam.fx_prev;
  15014. opt->loss_after = opt->adam.fx_prev;
  15015. // initialize
  15016. if (opt->just_initialized) {
  15017. opt->adam.n_no_improvement = 0;
  15018. opt->just_initialized = false;
  15019. }
  15020. float * fx_best = &opt->adam.fx_best;
  15021. float * fx_prev = &opt->adam.fx_prev;
  15022. int * n_no_improvement = &opt->adam.n_no_improvement;
  15023. int iter0 = opt->iter;
  15024. // run the optimizer
  15025. for (int t = 0; t < params.adam.n_iter; ++t) {
  15026. opt->iter = iter0 + t + 1;
  15027. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15028. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15029. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15030. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15031. for (int i = 0; i < np; ++i) {
  15032. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15033. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15034. }
  15035. const int64_t t_start_wall = ggml_time_us();
  15036. const int64_t t_start_cpu = ggml_cycles();
  15037. UNUSED(t_start_wall);
  15038. UNUSED(t_start_cpu);
  15039. {
  15040. float gnorm = 1.0f;
  15041. if (gclip > 0.0f) {
  15042. // gradient clipping
  15043. ggml_float sum = 0.0;
  15044. for (int64_t i = 0; i < nx; ++i) {
  15045. sum += (ggml_float)(g[i]*g[i]);
  15046. }
  15047. ggml_float norm = sqrt(sum);
  15048. if (norm > (ggml_float) gclip) {
  15049. gnorm = (float) ((ggml_float) gclip / norm);
  15050. }
  15051. }
  15052. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15053. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15054. int64_t i = 0;
  15055. for (int p = 0; p < np; ++p) {
  15056. const int64_t ne = ggml_nelements(ps[p]);
  15057. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15058. for (int64_t j = 0; j < ne; ++j) {
  15059. float x = ggml_get_f32_1d(ps[p], j);
  15060. float g_ = g[i]*gnorm;
  15061. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15062. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15063. float mh = m[i]*beta1h;
  15064. float vh = v[i]*beta2h;
  15065. vh = sqrtf(vh) + eps;
  15066. x = x*(1.0f - p_decay) - mh/vh;
  15067. ggml_set_f32_1d(ps[p], j, x);
  15068. ++i;
  15069. }
  15070. }
  15071. }
  15072. fx = 0;
  15073. ggml_set_zero(opt->adam.g);
  15074. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15075. if (callback) {
  15076. callback(callback_data, accum_step, &sched, &cancel);
  15077. if (cancel) {
  15078. return GGML_OPT_CANCEL;;
  15079. }
  15080. }
  15081. // ggml_graph_reset (gf);
  15082. ggml_set_f32 (f->grad, 1.0f);
  15083. ggml_graph_compute(gb, &cplan);
  15084. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15085. fx += ggml_get_f32_1d(f, 0);
  15086. }
  15087. fx *= accum_norm;
  15088. opt->loss_after = fx;
  15089. // check convergence
  15090. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15091. GGML_PRINT_DEBUG("converged\n");
  15092. return GGML_OPT_OK;
  15093. }
  15094. // delta-based convergence test
  15095. if (pf != NULL) {
  15096. // need at least params.past iterations to start checking for convergence
  15097. if (params.past <= iter0 + t) {
  15098. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15099. if (fabsf(rate) < params.delta) {
  15100. return GGML_OPT_OK;
  15101. }
  15102. }
  15103. pf[(iter0 + t)%params.past] = fx;
  15104. }
  15105. // check for improvement
  15106. if (params.max_no_improvement > 0) {
  15107. if (fx_best[0] > fx) {
  15108. fx_best[0] = fx;
  15109. n_no_improvement[0] = 0;
  15110. } else {
  15111. ++n_no_improvement[0];
  15112. if (n_no_improvement[0] >= params.max_no_improvement) {
  15113. return GGML_OPT_OK;
  15114. }
  15115. }
  15116. }
  15117. fx_prev[0] = fx;
  15118. {
  15119. const int64_t t_end_cpu = ggml_cycles();
  15120. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15121. UNUSED(t_end_cpu);
  15122. const int64_t t_end_wall = ggml_time_us();
  15123. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15124. UNUSED(t_end_wall);
  15125. }
  15126. }
  15127. return GGML_OPT_DID_NOT_CONVERGE;
  15128. }
  15129. //
  15130. // L-BFGS
  15131. //
  15132. // the L-BFGS implementation below is based on the following implementation:
  15133. //
  15134. // https://github.com/chokkan/liblbfgs
  15135. //
  15136. struct ggml_lbfgs_iteration_data {
  15137. float alpha;
  15138. float ys;
  15139. float * s;
  15140. float * y;
  15141. };
  15142. static enum ggml_opt_result linesearch_backtracking(
  15143. const struct ggml_opt_params * params,
  15144. int nx,
  15145. float * x,
  15146. float * fx,
  15147. float * g,
  15148. float * d,
  15149. float * step,
  15150. const float * xp,
  15151. struct ggml_tensor * f,
  15152. struct ggml_cgraph * gb,
  15153. struct ggml_cplan * cplan,
  15154. const int np,
  15155. struct ggml_tensor * ps[],
  15156. bool * cancel,
  15157. ggml_opt_callback callback,
  15158. void * callback_data) {
  15159. int count = 0;
  15160. float width = 0.0f;
  15161. float dg = 0.0f;
  15162. float finit = 0.0f;
  15163. float dginit = 0.0f;
  15164. float dgtest = 0.0f;
  15165. const float dec = 0.5f;
  15166. const float inc = 2.1f;
  15167. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15168. const float accum_norm = 1.0f / (float) n_accum;
  15169. if (*step <= 0.f) {
  15170. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15171. }
  15172. // compute the initial gradient in the search direction
  15173. ggml_vec_dot_f32(nx, &dginit, g, d);
  15174. // make sure that d points to a descent direction
  15175. if (0 < dginit) {
  15176. return GGML_LINESEARCH_FAIL;
  15177. }
  15178. // initialize local variables
  15179. finit = *fx;
  15180. dgtest = params->lbfgs.ftol*dginit;
  15181. while (true) {
  15182. ggml_vec_cpy_f32(nx, x, xp);
  15183. ggml_vec_mad_f32(nx, x, d, *step);
  15184. // evaluate the function and gradient values
  15185. {
  15186. ggml_opt_set_params(np, ps, x);
  15187. *fx = 0;
  15188. memset(g, 0, sizeof(float)*nx);
  15189. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15190. if (callback) {
  15191. // LBFG-S does not support learning rate -> ignore learning schedule
  15192. float sched = 0;
  15193. callback(callback_data, accum_step, &sched, cancel);
  15194. if (*cancel) {
  15195. return GGML_OPT_CANCEL;
  15196. }
  15197. }
  15198. // ggml_graph_reset (gf);
  15199. ggml_set_f32 (f->grad, 1.0f);
  15200. ggml_graph_compute(gb, cplan);
  15201. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15202. *fx += ggml_get_f32_1d(f, 0);
  15203. }
  15204. *fx *= accum_norm;
  15205. }
  15206. ++count;
  15207. if (*fx > finit + (*step)*dgtest) {
  15208. width = dec;
  15209. } else {
  15210. // Armijo condition is satisfied
  15211. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15212. return count;
  15213. }
  15214. ggml_vec_dot_f32(nx, &dg, g, d);
  15215. // check the Wolfe condition
  15216. if (dg < params->lbfgs.wolfe * dginit) {
  15217. width = inc;
  15218. } else {
  15219. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15220. // regular Wolfe conditions
  15221. return count;
  15222. }
  15223. if(dg > -params->lbfgs.wolfe*dginit) {
  15224. width = dec;
  15225. } else {
  15226. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15227. return count;
  15228. }
  15229. }
  15230. }
  15231. if (*step < params->lbfgs.min_step) {
  15232. return GGML_LINESEARCH_MINIMUM_STEP;
  15233. }
  15234. if (*step > params->lbfgs.max_step) {
  15235. return GGML_LINESEARCH_MAXIMUM_STEP;
  15236. }
  15237. if (params->lbfgs.max_linesearch <= count) {
  15238. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15239. }
  15240. (*step) *= width;
  15241. }
  15242. GGML_UNREACHABLE();
  15243. }
  15244. static enum ggml_opt_result ggml_opt_lbfgs(
  15245. struct ggml_context * ctx,
  15246. struct ggml_opt_context * opt,
  15247. struct ggml_opt_params params,
  15248. struct ggml_tensor * f,
  15249. struct ggml_cgraph * gf,
  15250. struct ggml_cgraph * gb,
  15251. ggml_opt_callback callback,
  15252. void * callback_data) {
  15253. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15254. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15255. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15256. return GGML_OPT_INVALID_WOLFE;
  15257. }
  15258. }
  15259. const int m = params.lbfgs.m;
  15260. // these will store the parameters we want to optimize
  15261. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15262. int np = 0;
  15263. int nx = 0;
  15264. for (int i = 0; i < gf->n_nodes; ++i) {
  15265. if (gf->nodes[i]->is_param) {
  15266. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15267. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15268. ps[np++] = gf->nodes[i];
  15269. nx += ggml_nelements(gf->nodes[i]);
  15270. }
  15271. }
  15272. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15273. int iter = opt->iter;
  15274. ggml_opt_init(ctx, opt, params, nx);
  15275. opt->iter = iter;
  15276. }
  15277. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15278. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15279. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15280. float * x = opt->lbfgs.x->data; // current parameters
  15281. float * xp = opt->lbfgs.xp->data; // previous parameters
  15282. float * g = opt->lbfgs.g->data; // current gradient
  15283. float * gp = opt->lbfgs.gp->data; // previous gradient
  15284. float * d = opt->lbfgs.d->data; // search direction
  15285. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15286. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15287. const float accum_norm = 1.0f / (float) n_accum;
  15288. float fx = 0.0f; // cost function value
  15289. float xnorm = 0.0f; // ||x||
  15290. float gnorm = 0.0f; // ||g||
  15291. // initialize x from the graph nodes
  15292. ggml_opt_get_params(np, ps, x);
  15293. // the L-BFGS memory
  15294. float * lm_alpha = opt->lbfgs.lmal->data;
  15295. float * lm_ys = opt->lbfgs.lmys->data;
  15296. float * lm_s = opt->lbfgs.lms->data;
  15297. float * lm_y = opt->lbfgs.lmy->data;
  15298. bool cancel = false;
  15299. // evaluate the function value and its gradient
  15300. {
  15301. ggml_opt_set_params(np, ps, x);
  15302. fx = 0;
  15303. memset(g, 0, sizeof(float)*nx);
  15304. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15305. if (callback) {
  15306. // LBFG-S does not support learning rate -> ignore learning schedule
  15307. float sched = 0;
  15308. callback(callback_data, accum_step, &sched, &cancel);
  15309. if (cancel) {
  15310. return GGML_OPT_CANCEL;
  15311. }
  15312. }
  15313. // ggml_graph_reset (gf);
  15314. ggml_set_f32 (f->grad, 1.0f);
  15315. ggml_graph_compute(gb, &cplan);
  15316. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15317. fx += ggml_get_f32_1d(f, 0);
  15318. }
  15319. fx *= accum_norm;
  15320. opt->loss_before = fx;
  15321. opt->loss_after = fx;
  15322. }
  15323. // search direction = -gradient
  15324. ggml_vec_neg_f32(nx, d, g);
  15325. // ||x||, ||g||
  15326. ggml_vec_norm_f32(nx, &xnorm, x);
  15327. ggml_vec_norm_f32(nx, &gnorm, g);
  15328. if (xnorm < 1.0f) {
  15329. xnorm = 1.0f;
  15330. }
  15331. // already optimized
  15332. if (gnorm/xnorm <= params.lbfgs.eps) {
  15333. return GGML_OPT_OK;
  15334. }
  15335. if (opt->just_initialized) {
  15336. if (pf) {
  15337. pf[0] = fx;
  15338. }
  15339. opt->lbfgs.fx_best = fx;
  15340. // initial step
  15341. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15342. opt->lbfgs.j = 0;
  15343. opt->lbfgs.k = 1;
  15344. opt->lbfgs.end = 0;
  15345. opt->lbfgs.n_no_improvement = 0;
  15346. opt->just_initialized = false;
  15347. }
  15348. float * fx_best = &opt->lbfgs.fx_best;
  15349. float * step = &opt->lbfgs.step;
  15350. int * j = &opt->lbfgs.j;
  15351. int * k = &opt->lbfgs.k;
  15352. int * end = &opt->lbfgs.end;
  15353. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15354. int ls = 0;
  15355. int bound = 0;
  15356. float ys = 0.0f;
  15357. float yy = 0.0f;
  15358. float beta = 0.0f;
  15359. int it = 0;
  15360. while (true) {
  15361. // store the current position and gradient vectors
  15362. ggml_vec_cpy_f32(nx, xp, x);
  15363. ggml_vec_cpy_f32(nx, gp, g);
  15364. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15365. // to determine if the optimization should be cancelled
  15366. // this is a simple change, but not doing this atm, since I don't have a nice
  15367. // way to test and don't want to break something with so many changes lined up
  15368. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15369. if (cancel) {
  15370. return GGML_OPT_CANCEL;
  15371. }
  15372. if (ls < 0) {
  15373. // linesearch failed - go back to the previous point and return
  15374. ggml_vec_cpy_f32(nx, x, xp);
  15375. ggml_vec_cpy_f32(nx, g, gp);
  15376. return ls;
  15377. }
  15378. opt->loss_after = fx;
  15379. ggml_vec_norm_f32(nx, &xnorm, x);
  15380. ggml_vec_norm_f32(nx, &gnorm, g);
  15381. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15382. if (xnorm < 1.0f) {
  15383. xnorm = 1.0f;
  15384. }
  15385. if (gnorm/xnorm <= params.lbfgs.eps) {
  15386. // converged
  15387. return GGML_OPT_OK;
  15388. }
  15389. // delta-based convergence test
  15390. if (pf != NULL) {
  15391. // need at least params.past iterations to start checking for convergence
  15392. if (params.past <= k[0]) {
  15393. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15394. if (fabsf(rate) < params.delta) {
  15395. return GGML_OPT_OK;
  15396. }
  15397. }
  15398. pf[k[0]%params.past] = fx;
  15399. }
  15400. // check for improvement
  15401. if (params.max_no_improvement > 0) {
  15402. if (fx < fx_best[0]) {
  15403. fx_best[0] = fx;
  15404. n_no_improvement[0] = 0;
  15405. } else {
  15406. n_no_improvement[0]++;
  15407. if (n_no_improvement[0] >= params.max_no_improvement) {
  15408. return GGML_OPT_OK;
  15409. }
  15410. }
  15411. }
  15412. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15413. // reached the maximum number of iterations
  15414. return GGML_OPT_DID_NOT_CONVERGE;
  15415. }
  15416. // update vectors s and y:
  15417. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15418. // y_{k+1} = g_{k+1} - g_{k}.
  15419. //
  15420. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15421. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15422. // compute scalars ys and yy:
  15423. // ys = y^t \cdot s -> 1 / \rho.
  15424. // yy = y^t \cdot y.
  15425. //
  15426. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15427. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15428. lm_ys[end[0]] = ys;
  15429. // find new search direction
  15430. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15431. bound = (m <= k[0]) ? m : k[0];
  15432. k[0]++;
  15433. it++;
  15434. end[0] = (end[0] + 1)%m;
  15435. // initialize search direction with -g
  15436. ggml_vec_neg_f32(nx, d, g);
  15437. j[0] = end[0];
  15438. for (int i = 0; i < bound; ++i) {
  15439. j[0] = (j[0] + m - 1) % m;
  15440. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15441. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15442. lm_alpha[j[0]] /= lm_ys[j[0]];
  15443. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15444. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15445. }
  15446. ggml_vec_scale_f32(nx, d, ys/yy);
  15447. for (int i = 0; i < bound; ++i) {
  15448. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15449. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15450. beta /= lm_ys[j[0]];
  15451. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15452. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15453. j[0] = (j[0] + 1)%m;
  15454. }
  15455. step[0] = 1.0;
  15456. }
  15457. GGML_UNREACHABLE();
  15458. }
  15459. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15460. struct ggml_opt_params result;
  15461. switch (type) {
  15462. case GGML_OPT_ADAM:
  15463. {
  15464. result = (struct ggml_opt_params) {
  15465. .type = GGML_OPT_ADAM,
  15466. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15467. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15468. .past = 0,
  15469. .delta = 1e-5f,
  15470. .max_no_improvement = 100,
  15471. .print_forward_graph = true,
  15472. .print_backward_graph = true,
  15473. .n_gradient_accumulation = 1,
  15474. .adam = {
  15475. .n_iter = 10000,
  15476. .sched = 1.000f,
  15477. .decay = 0.0f,
  15478. .decay_min_ndim = 2,
  15479. .alpha = 0.001f,
  15480. .beta1 = 0.9f,
  15481. .beta2 = 0.999f,
  15482. .eps = 1e-8f,
  15483. .eps_f = 1e-5f,
  15484. .eps_g = 1e-3f,
  15485. .gclip = 0.0f,
  15486. },
  15487. };
  15488. } break;
  15489. case GGML_OPT_LBFGS:
  15490. {
  15491. result = (struct ggml_opt_params) {
  15492. .type = GGML_OPT_LBFGS,
  15493. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15494. .n_threads = 1,
  15495. .past = 0,
  15496. .delta = 1e-5f,
  15497. .max_no_improvement = 0,
  15498. .print_forward_graph = true,
  15499. .print_backward_graph = true,
  15500. .n_gradient_accumulation = 1,
  15501. .lbfgs = {
  15502. .m = 6,
  15503. .n_iter = 100,
  15504. .max_linesearch = 20,
  15505. .eps = 1e-5f,
  15506. .ftol = 1e-4f,
  15507. .wolfe = 0.9f,
  15508. .min_step = 1e-20f,
  15509. .max_step = 1e+20f,
  15510. .linesearch = GGML_LINESEARCH_DEFAULT,
  15511. },
  15512. };
  15513. } break;
  15514. }
  15515. return result;
  15516. }
  15517. GGML_API void ggml_opt_init(
  15518. struct ggml_context * ctx,
  15519. struct ggml_opt_context * opt,
  15520. struct ggml_opt_params params,
  15521. int64_t nx) {
  15522. opt->ctx = ctx;
  15523. opt->params = params;
  15524. opt->iter = 0;
  15525. opt->nx = nx;
  15526. opt->just_initialized = true;
  15527. if (opt->ctx == NULL) {
  15528. struct ggml_init_params ctx_opt_params;
  15529. if (opt->params.type == GGML_OPT_ADAM) {
  15530. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15531. if (opt->params.past > 0) {
  15532. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15533. }
  15534. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15535. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15536. if (opt->params.past > 0) {
  15537. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15538. }
  15539. }
  15540. ctx_opt_params.mem_buffer = NULL;
  15541. ctx_opt_params.no_alloc = false;
  15542. opt->ctx = ggml_init(ctx_opt_params);
  15543. }
  15544. switch (opt->params.type) {
  15545. case GGML_OPT_ADAM:
  15546. {
  15547. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15548. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15549. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15550. opt->adam.pf = params.past > 0
  15551. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15552. : NULL;
  15553. ggml_set_zero(opt->adam.m);
  15554. ggml_set_zero(opt->adam.v);
  15555. if (opt->adam.pf) {
  15556. ggml_set_zero(opt->adam.pf);
  15557. }
  15558. } break;
  15559. case GGML_OPT_LBFGS:
  15560. {
  15561. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15562. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15563. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15564. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15565. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15566. opt->lbfgs.pf = params.past > 0
  15567. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15568. : NULL;
  15569. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15570. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15571. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15572. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15573. ggml_set_zero(opt->lbfgs.x);
  15574. ggml_set_zero(opt->lbfgs.xp);
  15575. ggml_set_zero(opt->lbfgs.g);
  15576. ggml_set_zero(opt->lbfgs.gp);
  15577. ggml_set_zero(opt->lbfgs.d);
  15578. if (opt->lbfgs.pf) {
  15579. ggml_set_zero(opt->lbfgs.pf);
  15580. }
  15581. ggml_set_zero(opt->lbfgs.lmal);
  15582. ggml_set_zero(opt->lbfgs.lmys);
  15583. ggml_set_zero(opt->lbfgs.lms);
  15584. ggml_set_zero(opt->lbfgs.lmy);
  15585. } break;
  15586. }
  15587. }
  15588. enum ggml_opt_result ggml_opt(
  15589. struct ggml_context * ctx,
  15590. struct ggml_opt_params params,
  15591. struct ggml_tensor * f) {
  15592. bool free_ctx = false;
  15593. if (ctx == NULL) {
  15594. struct ggml_init_params params_ctx = {
  15595. .mem_size = 16*1024*1024,
  15596. .mem_buffer = NULL,
  15597. .no_alloc = false,
  15598. };
  15599. ctx = ggml_init(params_ctx);
  15600. if (ctx == NULL) {
  15601. return GGML_OPT_NO_CONTEXT;
  15602. }
  15603. free_ctx = true;
  15604. }
  15605. enum ggml_opt_result result = GGML_OPT_OK;
  15606. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15607. ggml_opt_init(ctx, opt, params, 0);
  15608. result = ggml_opt_resume(ctx, opt, f);
  15609. if (free_ctx) {
  15610. ggml_free(ctx);
  15611. }
  15612. return result;
  15613. }
  15614. enum ggml_opt_result ggml_opt_resume(
  15615. struct ggml_context * ctx,
  15616. struct ggml_opt_context * opt,
  15617. struct ggml_tensor * f) {
  15618. // build forward + backward compute graphs
  15619. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15620. ggml_build_forward_expand(gf, f);
  15621. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15622. ggml_build_backward_expand(ctx, gf, gb, true);
  15623. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15624. }
  15625. enum ggml_opt_result ggml_opt_resume_g(
  15626. struct ggml_context * ctx,
  15627. struct ggml_opt_context * opt,
  15628. struct ggml_tensor * f,
  15629. struct ggml_cgraph * gf,
  15630. struct ggml_cgraph * gb,
  15631. ggml_opt_callback callback,
  15632. void * callback_data) {
  15633. // build forward + backward compute graphs
  15634. enum ggml_opt_result result = GGML_OPT_OK;
  15635. switch (opt->params.type) {
  15636. case GGML_OPT_ADAM:
  15637. {
  15638. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15639. } break;
  15640. case GGML_OPT_LBFGS:
  15641. {
  15642. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15643. } break;
  15644. }
  15645. if (opt->params.print_forward_graph) {
  15646. ggml_graph_print (gf);
  15647. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15648. }
  15649. if (opt->params.print_backward_graph) {
  15650. ggml_graph_print (gb);
  15651. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15652. }
  15653. return result;
  15654. }
  15655. ////////////////////////////////////////////////////////////////////////////////
  15656. void ggml_quantize_init(enum ggml_type type) {
  15657. ggml_critical_section_start();
  15658. switch (type) {
  15659. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15660. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15661. default: // nothing
  15662. break;
  15663. }
  15664. ggml_critical_section_end();
  15665. }
  15666. void ggml_quantize_free(void) {
  15667. ggml_critical_section_start();
  15668. iq2xs_free_impl(256);
  15669. iq2xs_free_impl(512);
  15670. ggml_critical_section_end();
  15671. }
  15672. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15673. assert(k % QK4_0 == 0);
  15674. const int nb = k / QK4_0;
  15675. for (int b = 0; b < n; b += k) {
  15676. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15677. quantize_row_q4_0_reference(src + b, y, k);
  15678. for (int i = 0; i < nb; i++) {
  15679. for (int j = 0; j < QK4_0; j += 2) {
  15680. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15681. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15682. hist[vi0]++;
  15683. hist[vi1]++;
  15684. }
  15685. }
  15686. }
  15687. return (n/QK4_0*sizeof(block_q4_0));
  15688. }
  15689. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15690. assert(k % QK4_1 == 0);
  15691. const int nb = k / QK4_1;
  15692. for (int b = 0; b < n; b += k) {
  15693. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15694. quantize_row_q4_1_reference(src + b, y, k);
  15695. for (int i = 0; i < nb; i++) {
  15696. for (int j = 0; j < QK4_1; j += 2) {
  15697. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15698. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15699. hist[vi0]++;
  15700. hist[vi1]++;
  15701. }
  15702. }
  15703. }
  15704. return (n/QK4_1*sizeof(block_q4_1));
  15705. }
  15706. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15707. assert(k % QK5_0 == 0);
  15708. const int nb = k / QK5_0;
  15709. for (int b = 0; b < n; b += k) {
  15710. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15711. quantize_row_q5_0_reference(src + b, y, k);
  15712. for (int i = 0; i < nb; i++) {
  15713. uint32_t qh;
  15714. memcpy(&qh, &y[i].qh, sizeof(qh));
  15715. for (int j = 0; j < QK5_0; j += 2) {
  15716. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15717. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15718. // cast to 16 bins
  15719. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15720. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15721. hist[vi0]++;
  15722. hist[vi1]++;
  15723. }
  15724. }
  15725. }
  15726. return (n/QK5_0*sizeof(block_q5_0));
  15727. }
  15728. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15729. assert(k % QK5_1 == 0);
  15730. const int nb = k / QK5_1;
  15731. for (int b = 0; b < n; b += k) {
  15732. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15733. quantize_row_q5_1_reference(src + b, y, k);
  15734. for (int i = 0; i < nb; i++) {
  15735. uint32_t qh;
  15736. memcpy(&qh, &y[i].qh, sizeof(qh));
  15737. for (int j = 0; j < QK5_1; j += 2) {
  15738. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15739. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15740. // cast to 16 bins
  15741. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15742. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15743. hist[vi0]++;
  15744. hist[vi1]++;
  15745. }
  15746. }
  15747. }
  15748. return (n/QK5_1*sizeof(block_q5_1));
  15749. }
  15750. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15751. assert(k % QK8_0 == 0);
  15752. const int nb = k / QK8_0;
  15753. for (int b = 0; b < n; b += k) {
  15754. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15755. quantize_row_q8_0_reference(src + b, y, k);
  15756. for (int i = 0; i < nb; i++) {
  15757. for (int j = 0; j < QK8_0; ++j) {
  15758. const int8_t vi = y[i].qs[j];
  15759. hist[vi/16 + 8]++;
  15760. }
  15761. }
  15762. }
  15763. return (n/QK8_0*sizeof(block_q8_0));
  15764. }
  15765. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15766. return
  15767. type == GGML_TYPE_IQ2_XXS ||
  15768. type == GGML_TYPE_IQ2_XS;
  15769. }
  15770. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15771. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15772. ggml_quantize_init(type); // this is noop if already initialized
  15773. size_t result = 0;
  15774. int n = nrows * n_per_row;
  15775. switch (type) {
  15776. case GGML_TYPE_Q4_0:
  15777. {
  15778. GGML_ASSERT(start % QK4_0 == 0);
  15779. GGML_ASSERT(start % n_per_row == 0);
  15780. size_t start_row = start / n_per_row;
  15781. size_t row_size = ggml_row_size(type, n_per_row);
  15782. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15783. GGML_ASSERT(result == row_size * nrows);
  15784. } break;
  15785. case GGML_TYPE_Q4_1:
  15786. {
  15787. GGML_ASSERT(start % QK4_1 == 0);
  15788. GGML_ASSERT(start % n_per_row == 0);
  15789. size_t start_row = start / n_per_row;
  15790. size_t row_size = ggml_row_size(type, n_per_row);
  15791. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15792. GGML_ASSERT(result == row_size * nrows);
  15793. } break;
  15794. case GGML_TYPE_Q5_0:
  15795. {
  15796. GGML_ASSERT(start % QK5_0 == 0);
  15797. GGML_ASSERT(start % n_per_row == 0);
  15798. size_t start_row = start / n_per_row;
  15799. size_t row_size = ggml_row_size(type, n_per_row);
  15800. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15801. GGML_ASSERT(result == row_size * nrows);
  15802. } break;
  15803. case GGML_TYPE_Q5_1:
  15804. {
  15805. GGML_ASSERT(start % QK5_1 == 0);
  15806. GGML_ASSERT(start % n_per_row == 0);
  15807. size_t start_row = start / n_per_row;
  15808. size_t row_size = ggml_row_size(type, n_per_row);
  15809. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15810. GGML_ASSERT(result == row_size * nrows);
  15811. } break;
  15812. case GGML_TYPE_Q8_0:
  15813. {
  15814. GGML_ASSERT(start % QK8_0 == 0);
  15815. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15816. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15817. } break;
  15818. case GGML_TYPE_Q2_K:
  15819. {
  15820. GGML_ASSERT(start % QK_K == 0);
  15821. GGML_ASSERT(start % n_per_row == 0);
  15822. size_t start_row = start / n_per_row;
  15823. size_t row_size = ggml_row_size(type, n_per_row);
  15824. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15825. GGML_ASSERT(result == row_size * nrows);
  15826. } break;
  15827. case GGML_TYPE_Q3_K:
  15828. {
  15829. GGML_ASSERT(start % QK_K == 0);
  15830. GGML_ASSERT(start % n_per_row == 0);
  15831. size_t start_row = start / n_per_row;
  15832. size_t row_size = ggml_row_size(type, n_per_row);
  15833. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15834. GGML_ASSERT(result == row_size * nrows);
  15835. } break;
  15836. case GGML_TYPE_Q4_K:
  15837. {
  15838. GGML_ASSERT(start % QK_K == 0);
  15839. GGML_ASSERT(start % n_per_row == 0);
  15840. size_t start_row = start / n_per_row;
  15841. size_t row_size = ggml_row_size(type, n_per_row);
  15842. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15843. GGML_ASSERT(result == row_size * nrows);
  15844. } break;
  15845. case GGML_TYPE_Q5_K:
  15846. {
  15847. GGML_ASSERT(start % QK_K == 0);
  15848. GGML_ASSERT(start % n_per_row == 0);
  15849. size_t start_row = start / n_per_row;
  15850. size_t row_size = ggml_row_size(type, n_per_row);
  15851. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15852. GGML_ASSERT(result == row_size * nrows);
  15853. } break;
  15854. case GGML_TYPE_Q6_K:
  15855. {
  15856. GGML_ASSERT(start % QK_K == 0);
  15857. GGML_ASSERT(start % n_per_row == 0);
  15858. size_t start_row = start / n_per_row;
  15859. size_t row_size = ggml_row_size(type, n_per_row);
  15860. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15861. GGML_ASSERT(result == row_size * nrows);
  15862. } break;
  15863. case GGML_TYPE_IQ2_XXS:
  15864. {
  15865. GGML_ASSERT(start % QK_K == 0);
  15866. GGML_ASSERT(start % n_per_row == 0);
  15867. GGML_ASSERT(imatrix);
  15868. size_t start_row = start / n_per_row;
  15869. size_t row_size = ggml_row_size(type, n_per_row);
  15870. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15871. GGML_ASSERT(result == row_size * nrows);
  15872. } break;
  15873. case GGML_TYPE_IQ2_XS:
  15874. {
  15875. GGML_ASSERT(start % QK_K == 0);
  15876. GGML_ASSERT(start % n_per_row == 0);
  15877. GGML_ASSERT(imatrix);
  15878. size_t start_row = start / n_per_row;
  15879. size_t row_size = ggml_row_size(type, n_per_row);
  15880. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15881. GGML_ASSERT(result == row_size * nrows);
  15882. } break;
  15883. case GGML_TYPE_F16:
  15884. {
  15885. size_t elemsize = sizeof(ggml_fp16_t);
  15886. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15887. result = n * elemsize;
  15888. } break;
  15889. case GGML_TYPE_F32:
  15890. {
  15891. size_t elemsize = sizeof(float);
  15892. result = n * elemsize;
  15893. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15894. } break;
  15895. default:
  15896. assert(false);
  15897. }
  15898. return result;
  15899. }
  15900. ////////////////////////////////////////////////////////////////////////////////
  15901. struct gguf_str {
  15902. uint64_t n; // GGUFv2
  15903. char * data;
  15904. };
  15905. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15906. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15907. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15908. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15909. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15910. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15911. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15912. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15913. [GGUF_TYPE_BOOL] = sizeof(bool),
  15914. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15915. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15916. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15917. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15918. [GGUF_TYPE_ARRAY] = 0, // undefined
  15919. };
  15920. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15921. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15922. [GGUF_TYPE_UINT8] = "u8",
  15923. [GGUF_TYPE_INT8] = "i8",
  15924. [GGUF_TYPE_UINT16] = "u16",
  15925. [GGUF_TYPE_INT16] = "i16",
  15926. [GGUF_TYPE_UINT32] = "u32",
  15927. [GGUF_TYPE_INT32] = "i32",
  15928. [GGUF_TYPE_FLOAT32] = "f32",
  15929. [GGUF_TYPE_BOOL] = "bool",
  15930. [GGUF_TYPE_STRING] = "str",
  15931. [GGUF_TYPE_ARRAY] = "arr",
  15932. [GGUF_TYPE_UINT64] = "u64",
  15933. [GGUF_TYPE_INT64] = "i64",
  15934. [GGUF_TYPE_FLOAT64] = "f64",
  15935. };
  15936. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15937. union gguf_value {
  15938. uint8_t uint8;
  15939. int8_t int8;
  15940. uint16_t uint16;
  15941. int16_t int16;
  15942. uint32_t uint32;
  15943. int32_t int32;
  15944. float float32;
  15945. uint64_t uint64;
  15946. int64_t int64;
  15947. double float64;
  15948. bool bool_;
  15949. struct gguf_str str;
  15950. struct {
  15951. enum gguf_type type;
  15952. uint64_t n; // GGUFv2
  15953. void * data;
  15954. } arr;
  15955. };
  15956. struct gguf_kv {
  15957. struct gguf_str key;
  15958. enum gguf_type type;
  15959. union gguf_value value;
  15960. };
  15961. struct gguf_header {
  15962. char magic[4];
  15963. uint32_t version;
  15964. uint64_t n_tensors; // GGUFv2
  15965. uint64_t n_kv; // GGUFv2
  15966. };
  15967. struct gguf_tensor_info {
  15968. struct gguf_str name;
  15969. uint32_t n_dims;
  15970. uint64_t ne[GGML_MAX_DIMS];
  15971. enum ggml_type type;
  15972. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15973. // for writing API
  15974. const void * data;
  15975. size_t size;
  15976. };
  15977. struct gguf_context {
  15978. struct gguf_header header;
  15979. struct gguf_kv * kv;
  15980. struct gguf_tensor_info * infos;
  15981. size_t alignment;
  15982. size_t offset; // offset of `data` from beginning of file
  15983. size_t size; // size of `data` in bytes
  15984. //uint8_t * padding;
  15985. void * data;
  15986. };
  15987. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15988. const size_t n = fread(dst, 1, size, file);
  15989. *offset += n;
  15990. return n == size;
  15991. }
  15992. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15993. p->n = 0;
  15994. p->data = NULL;
  15995. bool ok = true;
  15996. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15997. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15998. return ok;
  15999. }
  16000. struct gguf_context * gguf_init_empty(void) {
  16001. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16002. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16003. ctx->header.version = GGUF_VERSION;
  16004. ctx->header.n_tensors = 0;
  16005. ctx->header.n_kv = 0;
  16006. ctx->kv = NULL;
  16007. ctx->infos = NULL;
  16008. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16009. ctx->offset = 0;
  16010. ctx->size = 0;
  16011. ctx->data = NULL;
  16012. return ctx;
  16013. }
  16014. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16015. FILE * file = fopen(fname, "rb");
  16016. if (!file) {
  16017. return NULL;
  16018. }
  16019. // offset from start of file
  16020. size_t offset = 0;
  16021. char magic[4];
  16022. // check the magic before making allocations
  16023. {
  16024. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16025. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16026. if (magic[i] != GGUF_MAGIC[i]) {
  16027. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16028. fclose(file);
  16029. return NULL;
  16030. }
  16031. }
  16032. }
  16033. bool ok = true;
  16034. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16035. // read the header
  16036. {
  16037. strncpy(ctx->header.magic, magic, 4);
  16038. ctx->kv = NULL;
  16039. ctx->infos = NULL;
  16040. ctx->data = NULL;
  16041. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16042. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16043. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16044. if (ctx->header.version == 1) {
  16045. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16046. fclose(file);
  16047. gguf_free(ctx);
  16048. return NULL;
  16049. }
  16050. if (!ok) {
  16051. fprintf(stderr, "%s: failed to read header\n", __func__);
  16052. fclose(file);
  16053. gguf_free(ctx);
  16054. return NULL;
  16055. }
  16056. }
  16057. // read the kv pairs
  16058. {
  16059. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16060. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16061. struct gguf_kv * kv = &ctx->kv[i];
  16062. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16063. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16064. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16065. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16066. switch (kv->type) {
  16067. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16068. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16069. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16070. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16071. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16072. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16073. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16074. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16075. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16076. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16077. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16078. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16079. case GGUF_TYPE_ARRAY:
  16080. {
  16081. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16082. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16083. switch (kv->value.arr.type) {
  16084. case GGUF_TYPE_UINT8:
  16085. case GGUF_TYPE_INT8:
  16086. case GGUF_TYPE_UINT16:
  16087. case GGUF_TYPE_INT16:
  16088. case GGUF_TYPE_UINT32:
  16089. case GGUF_TYPE_INT32:
  16090. case GGUF_TYPE_FLOAT32:
  16091. case GGUF_TYPE_UINT64:
  16092. case GGUF_TYPE_INT64:
  16093. case GGUF_TYPE_FLOAT64:
  16094. case GGUF_TYPE_BOOL:
  16095. {
  16096. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16097. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16098. } break;
  16099. case GGUF_TYPE_STRING:
  16100. {
  16101. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16102. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16103. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16104. }
  16105. } break;
  16106. case GGUF_TYPE_ARRAY:
  16107. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16108. }
  16109. } break;
  16110. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16111. }
  16112. if (!ok) {
  16113. break;
  16114. }
  16115. }
  16116. if (!ok) {
  16117. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16118. fclose(file);
  16119. gguf_free(ctx);
  16120. return NULL;
  16121. }
  16122. }
  16123. // read the tensor infos
  16124. {
  16125. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16126. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16127. struct gguf_tensor_info * info = &ctx->infos[i];
  16128. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16129. info->ne[j] = 1;
  16130. }
  16131. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16132. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16133. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16134. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16135. }
  16136. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16137. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16138. if (!ok) {
  16139. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16140. fclose(file);
  16141. gguf_free(ctx);
  16142. return NULL;
  16143. }
  16144. }
  16145. }
  16146. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16147. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16148. if (alignment_idx != -1) {
  16149. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16150. }
  16151. // we require the data section to be aligned, so take into account any padding
  16152. {
  16153. const size_t offset_pad = offset % ctx->alignment;
  16154. if (offset_pad != 0) {
  16155. offset += ctx->alignment - offset_pad;
  16156. fseek(file, offset, SEEK_SET);
  16157. }
  16158. }
  16159. // store the current file offset - this is where the data section starts
  16160. ctx->offset = offset;
  16161. // compute the total size of the data section, taking into account the alignment
  16162. {
  16163. ctx->size = 0;
  16164. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16165. struct gguf_tensor_info * info = &ctx->infos[i];
  16166. const int64_t ne =
  16167. (int64_t) info->ne[0] *
  16168. (int64_t) info->ne[1] *
  16169. (int64_t) info->ne[2] *
  16170. (int64_t) info->ne[3];
  16171. if (ne % ggml_blck_size(info->type) != 0) {
  16172. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16173. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16174. fclose(file);
  16175. gguf_free(ctx);
  16176. return NULL;
  16177. }
  16178. const size_t size_cur = ggml_row_size(info->type, ne);
  16179. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16180. }
  16181. }
  16182. // load the tensor data only if requested
  16183. if (params.ctx != NULL) {
  16184. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16185. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16186. // the ggml_tensor structs to the appropriate locations in the binary blob
  16187. // compute the exact size needed for the new ggml_context
  16188. const size_t mem_size =
  16189. params.no_alloc ?
  16190. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16191. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16192. struct ggml_init_params pdata = {
  16193. .mem_size = mem_size,
  16194. .mem_buffer = NULL,
  16195. .no_alloc = params.no_alloc,
  16196. };
  16197. *params.ctx = ggml_init(pdata);
  16198. struct ggml_context * ctx_data = *params.ctx;
  16199. struct ggml_tensor * data = NULL;
  16200. if (!params.no_alloc) {
  16201. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16202. ok = ok && data != NULL;
  16203. // read the binary blob with the tensor data
  16204. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16205. if (!ok) {
  16206. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16207. fclose(file);
  16208. ggml_free(ctx_data);
  16209. gguf_free(ctx);
  16210. return NULL;
  16211. }
  16212. ctx->data = data->data;
  16213. }
  16214. ggml_set_no_alloc(ctx_data, true);
  16215. // create the tensors
  16216. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16217. const int64_t ne[GGML_MAX_DIMS] = {
  16218. ctx->infos[i].ne[0],
  16219. ctx->infos[i].ne[1],
  16220. ctx->infos[i].ne[2],
  16221. ctx->infos[i].ne[3],
  16222. };
  16223. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16224. ok = ok && cur != NULL;
  16225. ggml_set_name(cur, ctx->infos[i].name.data);
  16226. if (!ok) {
  16227. break;
  16228. }
  16229. // point the data member to the appropriate location in the binary blob using the tensor infos
  16230. if (!params.no_alloc) {
  16231. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16232. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16233. }
  16234. }
  16235. if (!ok) {
  16236. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16237. fclose(file);
  16238. ggml_free(ctx_data);
  16239. gguf_free(ctx);
  16240. return NULL;
  16241. }
  16242. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16243. }
  16244. fclose(file);
  16245. return ctx;
  16246. }
  16247. void gguf_free(struct gguf_context * ctx) {
  16248. if (ctx == NULL) {
  16249. return;
  16250. }
  16251. if (ctx->kv) {
  16252. // free string memory - not great..
  16253. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16254. struct gguf_kv * kv = &ctx->kv[i];
  16255. if (kv->key.data) {
  16256. free(kv->key.data);
  16257. }
  16258. if (kv->type == GGUF_TYPE_STRING) {
  16259. if (kv->value.str.data) {
  16260. free(kv->value.str.data);
  16261. }
  16262. }
  16263. if (kv->type == GGUF_TYPE_ARRAY) {
  16264. if (kv->value.arr.data) {
  16265. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16266. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16267. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16268. if (str->data) {
  16269. free(str->data);
  16270. }
  16271. }
  16272. }
  16273. free(kv->value.arr.data);
  16274. }
  16275. }
  16276. }
  16277. free(ctx->kv);
  16278. }
  16279. if (ctx->infos) {
  16280. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16281. struct gguf_tensor_info * info = &ctx->infos[i];
  16282. if (info->name.data) {
  16283. free(info->name.data);
  16284. }
  16285. }
  16286. free(ctx->infos);
  16287. }
  16288. GGML_ALIGNED_FREE(ctx);
  16289. }
  16290. const char * gguf_type_name(enum gguf_type type) {
  16291. return GGUF_TYPE_NAME[type];
  16292. }
  16293. int gguf_get_version(const struct gguf_context * ctx) {
  16294. return ctx->header.version;
  16295. }
  16296. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16297. return ctx->alignment;
  16298. }
  16299. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16300. return ctx->offset;
  16301. }
  16302. void * gguf_get_data(const struct gguf_context * ctx) {
  16303. return ctx->data;
  16304. }
  16305. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16306. return ctx->header.n_kv;
  16307. }
  16308. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16309. // return -1 if key not found
  16310. int keyfound = -1;
  16311. const int n_kv = gguf_get_n_kv(ctx);
  16312. for (int i = 0; i < n_kv; ++i) {
  16313. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16314. keyfound = i;
  16315. break;
  16316. }
  16317. }
  16318. return keyfound;
  16319. }
  16320. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16322. return ctx->kv[key_id].key.data;
  16323. }
  16324. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16325. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16326. return ctx->kv[key_id].type;
  16327. }
  16328. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16329. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16330. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16331. return ctx->kv[key_id].value.arr.type;
  16332. }
  16333. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16334. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16335. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16336. return ctx->kv[key_id].value.arr.data;
  16337. }
  16338. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16339. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16340. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16341. struct gguf_kv * kv = &ctx->kv[key_id];
  16342. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16343. return str->data;
  16344. }
  16345. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16346. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16347. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16348. return ctx->kv[key_id].value.arr.n;
  16349. }
  16350. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16351. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16352. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16353. return ctx->kv[key_id].value.uint8;
  16354. }
  16355. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16356. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16357. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16358. return ctx->kv[key_id].value.int8;
  16359. }
  16360. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16361. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16362. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16363. return ctx->kv[key_id].value.uint16;
  16364. }
  16365. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16366. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16367. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16368. return ctx->kv[key_id].value.int16;
  16369. }
  16370. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16371. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16372. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16373. return ctx->kv[key_id].value.uint32;
  16374. }
  16375. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16376. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16377. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16378. return ctx->kv[key_id].value.int32;
  16379. }
  16380. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16381. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16382. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16383. return ctx->kv[key_id].value.float32;
  16384. }
  16385. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16386. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16387. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16388. return ctx->kv[key_id].value.uint64;
  16389. }
  16390. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16391. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16392. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16393. return ctx->kv[key_id].value.int64;
  16394. }
  16395. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16396. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16397. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16398. return ctx->kv[key_id].value.float64;
  16399. }
  16400. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16401. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16402. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16403. return ctx->kv[key_id].value.bool_;
  16404. }
  16405. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16406. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16407. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16408. return ctx->kv[key_id].value.str.data;
  16409. }
  16410. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16411. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16412. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16413. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16414. return &ctx->kv[key_id].value;
  16415. }
  16416. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16417. return ctx->header.n_tensors;
  16418. }
  16419. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16420. // return -1 if tensor not found
  16421. int tensorfound = -1;
  16422. const int n_tensors = gguf_get_n_tensors(ctx);
  16423. for (int i = 0; i < n_tensors; ++i) {
  16424. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16425. tensorfound = i;
  16426. break;
  16427. }
  16428. }
  16429. return tensorfound;
  16430. }
  16431. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16432. return ctx->infos[i].offset;
  16433. }
  16434. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16435. return ctx->infos[i].name.data;
  16436. }
  16437. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16438. return ctx->infos[i].type;
  16439. }
  16440. // returns the index
  16441. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16442. const int idx = gguf_find_key(ctx, key);
  16443. if (idx >= 0) {
  16444. return idx;
  16445. }
  16446. const int n_kv = gguf_get_n_kv(ctx);
  16447. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16448. ctx->kv[n_kv].key.n = strlen(key);
  16449. ctx->kv[n_kv].key.data = strdup(key);
  16450. ctx->header.n_kv++;
  16451. return n_kv;
  16452. }
  16453. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16454. const int idx = gguf_get_or_add_key(ctx, key);
  16455. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16456. ctx->kv[idx].value.uint8 = val;
  16457. }
  16458. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16459. const int idx = gguf_get_or_add_key(ctx, key);
  16460. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16461. ctx->kv[idx].value.int8 = val;
  16462. }
  16463. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16464. const int idx = gguf_get_or_add_key(ctx, key);
  16465. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16466. ctx->kv[idx].value.uint16 = val;
  16467. }
  16468. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16469. const int idx = gguf_get_or_add_key(ctx, key);
  16470. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16471. ctx->kv[idx].value.int16 = val;
  16472. }
  16473. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16474. const int idx = gguf_get_or_add_key(ctx, key);
  16475. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16476. ctx->kv[idx].value.uint32 = val;
  16477. }
  16478. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16479. const int idx = gguf_get_or_add_key(ctx, key);
  16480. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16481. ctx->kv[idx].value.int32 = val;
  16482. }
  16483. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16484. const int idx = gguf_get_or_add_key(ctx, key);
  16485. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16486. ctx->kv[idx].value.float32 = val;
  16487. }
  16488. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16489. const int idx = gguf_get_or_add_key(ctx, key);
  16490. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16491. ctx->kv[idx].value.uint64 = val;
  16492. }
  16493. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16494. const int idx = gguf_get_or_add_key(ctx, key);
  16495. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16496. ctx->kv[idx].value.int64 = val;
  16497. }
  16498. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16499. const int idx = gguf_get_or_add_key(ctx, key);
  16500. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16501. ctx->kv[idx].value.float64 = val;
  16502. }
  16503. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16504. const int idx = gguf_get_or_add_key(ctx, key);
  16505. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16506. ctx->kv[idx].value.bool_ = val;
  16507. }
  16508. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16509. const int idx = gguf_get_or_add_key(ctx, key);
  16510. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16511. ctx->kv[idx].value.str.n = strlen(val);
  16512. ctx->kv[idx].value.str.data = strdup(val);
  16513. }
  16514. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16515. const int idx = gguf_get_or_add_key(ctx, key);
  16516. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16517. ctx->kv[idx].value.arr.type = type;
  16518. ctx->kv[idx].value.arr.n = n;
  16519. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16520. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16521. }
  16522. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16523. const int idx = gguf_get_or_add_key(ctx, key);
  16524. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16525. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16526. ctx->kv[idx].value.arr.n = n;
  16527. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16528. for (int i = 0; i < n; i++) {
  16529. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16530. str->n = strlen(data[i]);
  16531. str->data = strdup(data[i]);
  16532. }
  16533. }
  16534. // set or add KV pairs from another context
  16535. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16536. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16537. switch (src->kv[i].type) {
  16538. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16539. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16540. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16541. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16542. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16543. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16544. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16545. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16546. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16547. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16548. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16549. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16550. case GGUF_TYPE_ARRAY:
  16551. {
  16552. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16553. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16554. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16555. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16556. }
  16557. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16558. free((void *)data);
  16559. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16560. GGML_ASSERT(false && "nested arrays not supported");
  16561. } else {
  16562. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16563. }
  16564. } break;
  16565. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16566. }
  16567. }
  16568. }
  16569. void gguf_add_tensor(
  16570. struct gguf_context * ctx,
  16571. const struct ggml_tensor * tensor) {
  16572. const int idx = ctx->header.n_tensors;
  16573. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16574. ctx->infos[idx].name.n = strlen(tensor->name);
  16575. ctx->infos[idx].name.data = strdup(tensor->name);
  16576. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16577. ctx->infos[idx].ne[i] = 1;
  16578. }
  16579. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16580. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16581. ctx->infos[idx].ne[i] = tensor->ne[i];
  16582. }
  16583. ctx->infos[idx].type = tensor->type;
  16584. ctx->infos[idx].offset = 0;
  16585. ctx->infos[idx].data = tensor->data;
  16586. ctx->infos[idx].size = ggml_nbytes(tensor);
  16587. if (ctx->header.n_tensors > 0) {
  16588. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16589. }
  16590. ctx->header.n_tensors++;
  16591. }
  16592. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16593. const int idx = gguf_find_tensor(ctx, name);
  16594. if (idx < 0) {
  16595. GGML_ASSERT(false && "tensor not found");
  16596. }
  16597. ctx->infos[idx].type = type;
  16598. }
  16599. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16600. const int idx = gguf_find_tensor(ctx, name);
  16601. if (idx < 0) {
  16602. GGML_ASSERT(false && "tensor not found");
  16603. }
  16604. ctx->infos[idx].data = data;
  16605. ctx->infos[idx].size = size;
  16606. // update offsets
  16607. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16608. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16609. }
  16610. }
  16611. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16612. // fwrite(&val->n, sizeof(val->n), 1, file);
  16613. // fwrite(val->data, sizeof(char), val->n, file);
  16614. //}
  16615. //
  16616. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16617. // fwrite(val, sizeof(char), size, file);
  16618. //}
  16619. struct gguf_buf {
  16620. void * data;
  16621. size_t size;
  16622. size_t offset;
  16623. };
  16624. static struct gguf_buf gguf_buf_init(size_t size) {
  16625. struct gguf_buf buf = {
  16626. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16627. /*buf.size =*/ size,
  16628. /*buf.offset =*/ 0,
  16629. };
  16630. return buf;
  16631. }
  16632. static void gguf_buf_free(struct gguf_buf buf) {
  16633. if (buf.data) {
  16634. free(buf.data);
  16635. }
  16636. }
  16637. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16638. if (buf->offset + size > buf->size) {
  16639. buf->size = 1.5*(buf->offset + size);
  16640. if (buf->data) {
  16641. buf->data = realloc(buf->data, buf->size);
  16642. }
  16643. }
  16644. }
  16645. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16646. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16647. if (buf->data) {
  16648. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16649. }
  16650. buf->offset += sizeof(val->n);
  16651. if (buf->data) {
  16652. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16653. }
  16654. buf->offset += val->n;
  16655. }
  16656. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16657. gguf_buf_grow(buf, el_size);
  16658. if (buf->data) {
  16659. memcpy((char *) buf->data + buf->offset, val, el_size);
  16660. }
  16661. buf->offset += el_size;
  16662. }
  16663. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16664. // write header
  16665. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16666. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16667. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16668. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16669. // write key-value pairs
  16670. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16671. struct gguf_kv * kv = &ctx->kv[i];
  16672. gguf_bwrite_str(buf, &kv->key);
  16673. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16674. switch (kv->type) {
  16675. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16676. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16677. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16678. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16679. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16680. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16681. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16682. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16683. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16684. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16685. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16686. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16687. case GGUF_TYPE_ARRAY:
  16688. {
  16689. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16690. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16691. switch (kv->value.arr.type) {
  16692. case GGUF_TYPE_UINT8:
  16693. case GGUF_TYPE_INT8:
  16694. case GGUF_TYPE_UINT16:
  16695. case GGUF_TYPE_INT16:
  16696. case GGUF_TYPE_UINT32:
  16697. case GGUF_TYPE_INT32:
  16698. case GGUF_TYPE_FLOAT32:
  16699. case GGUF_TYPE_UINT64:
  16700. case GGUF_TYPE_INT64:
  16701. case GGUF_TYPE_FLOAT64:
  16702. case GGUF_TYPE_BOOL:
  16703. {
  16704. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16705. } break;
  16706. case GGUF_TYPE_STRING:
  16707. {
  16708. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16709. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16710. }
  16711. } break;
  16712. case GGUF_TYPE_ARRAY:
  16713. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16714. }
  16715. } break;
  16716. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16717. }
  16718. }
  16719. // write tensor infos
  16720. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16721. struct gguf_tensor_info * info = &ctx->infos[i];
  16722. gguf_bwrite_str(buf, &info->name);
  16723. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16724. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16725. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16726. }
  16727. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16728. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16729. }
  16730. // we require the data section to be aligned, so take into account any padding
  16731. {
  16732. const size_t offset = buf->offset;
  16733. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16734. if (offset_pad != offset) {
  16735. uint8_t pad = 0;
  16736. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16737. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16738. }
  16739. }
  16740. }
  16741. if (only_meta) {
  16742. return;
  16743. }
  16744. size_t offset = 0;
  16745. // write tensor data
  16746. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16747. struct gguf_tensor_info * info = &ctx->infos[i];
  16748. const size_t size = info->size;
  16749. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16750. gguf_bwrite_el(buf, info->data, size);
  16751. if (size_pad != size) {
  16752. uint8_t pad = 0;
  16753. for (size_t j = 0; j < size_pad - size; ++j) {
  16754. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16755. }
  16756. }
  16757. GGML_ASSERT(offset == info->offset);
  16758. offset += size_pad;
  16759. }
  16760. }
  16761. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16762. FILE * file = fopen(fname, "wb");
  16763. if (!file) {
  16764. GGML_ASSERT(false && "failed to open file for writing");
  16765. }
  16766. struct gguf_buf buf = gguf_buf_init(16*1024);
  16767. gguf_write_to_buf(ctx, &buf, only_meta);
  16768. fwrite(buf.data, 1, buf.offset, file);
  16769. gguf_buf_free(buf);
  16770. fclose(file);
  16771. }
  16772. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16773. // no allocs - only compute size
  16774. struct gguf_buf buf = gguf_buf_init(0);
  16775. gguf_write_to_buf(ctx, &buf, true);
  16776. return buf.offset;
  16777. }
  16778. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16779. struct gguf_buf buf = gguf_buf_init(16*1024);
  16780. gguf_write_to_buf(ctx, &buf, true);
  16781. memcpy(data, buf.data, buf.offset);
  16782. gguf_buf_free(buf);
  16783. }
  16784. ////////////////////////////////////////////////////////////////////////////////
  16785. int ggml_cpu_has_avx(void) {
  16786. #if defined(__AVX__)
  16787. return 1;
  16788. #else
  16789. return 0;
  16790. #endif
  16791. }
  16792. int ggml_cpu_has_avx_vnni(void) {
  16793. #if defined(__AVXVNNI__)
  16794. return 1;
  16795. #else
  16796. return 0;
  16797. #endif
  16798. }
  16799. int ggml_cpu_has_avx2(void) {
  16800. #if defined(__AVX2__)
  16801. return 1;
  16802. #else
  16803. return 0;
  16804. #endif
  16805. }
  16806. int ggml_cpu_has_avx512(void) {
  16807. #if defined(__AVX512F__)
  16808. return 1;
  16809. #else
  16810. return 0;
  16811. #endif
  16812. }
  16813. int ggml_cpu_has_avx512_vbmi(void) {
  16814. #if defined(__AVX512VBMI__)
  16815. return 1;
  16816. #else
  16817. return 0;
  16818. #endif
  16819. }
  16820. int ggml_cpu_has_avx512_vnni(void) {
  16821. #if defined(__AVX512VNNI__)
  16822. return 1;
  16823. #else
  16824. return 0;
  16825. #endif
  16826. }
  16827. int ggml_cpu_has_fma(void) {
  16828. #if defined(__FMA__)
  16829. return 1;
  16830. #else
  16831. return 0;
  16832. #endif
  16833. }
  16834. int ggml_cpu_has_neon(void) {
  16835. #if defined(__ARM_NEON)
  16836. return 1;
  16837. #else
  16838. return 0;
  16839. #endif
  16840. }
  16841. int ggml_cpu_has_arm_fma(void) {
  16842. #if defined(__ARM_FEATURE_FMA)
  16843. return 1;
  16844. #else
  16845. return 0;
  16846. #endif
  16847. }
  16848. int ggml_cpu_has_metal(void) {
  16849. #if defined(GGML_USE_METAL)
  16850. return 1;
  16851. #else
  16852. return 0;
  16853. #endif
  16854. }
  16855. int ggml_cpu_has_f16c(void) {
  16856. #if defined(__F16C__)
  16857. return 1;
  16858. #else
  16859. return 0;
  16860. #endif
  16861. }
  16862. int ggml_cpu_has_fp16_va(void) {
  16863. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16864. return 1;
  16865. #else
  16866. return 0;
  16867. #endif
  16868. }
  16869. int ggml_cpu_has_wasm_simd(void) {
  16870. #if defined(__wasm_simd128__)
  16871. return 1;
  16872. #else
  16873. return 0;
  16874. #endif
  16875. }
  16876. int ggml_cpu_has_blas(void) {
  16877. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  16878. return 1;
  16879. #else
  16880. return 0;
  16881. #endif
  16882. }
  16883. int ggml_cpu_has_cublas(void) {
  16884. #if defined(GGML_USE_CUBLAS)
  16885. return 1;
  16886. #else
  16887. return 0;
  16888. #endif
  16889. }
  16890. int ggml_cpu_has_clblast(void) {
  16891. #if defined(GGML_USE_CLBLAST)
  16892. return 1;
  16893. #else
  16894. return 0;
  16895. #endif
  16896. }
  16897. int ggml_cpu_has_vulkan(void) {
  16898. #if defined(GGML_USE_VULKAN)
  16899. return 1;
  16900. #else
  16901. return 0;
  16902. #endif
  16903. }
  16904. int ggml_cpu_has_sycl(void) {
  16905. #if defined(GGML_USE_SYCL)
  16906. return 1;
  16907. #else
  16908. return 0;
  16909. #endif
  16910. }
  16911. int ggml_cpu_has_gpublas(void) {
  16912. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_sycl();
  16913. }
  16914. int ggml_cpu_has_sse3(void) {
  16915. #if defined(__SSE3__)
  16916. return 1;
  16917. #else
  16918. return 0;
  16919. #endif
  16920. }
  16921. int ggml_cpu_has_ssse3(void) {
  16922. #if defined(__SSSE3__)
  16923. return 1;
  16924. #else
  16925. return 0;
  16926. #endif
  16927. }
  16928. int ggml_cpu_has_vsx(void) {
  16929. #if defined(__POWER9_VECTOR__)
  16930. return 1;
  16931. #else
  16932. return 0;
  16933. #endif
  16934. }
  16935. ////////////////////////////////////////////////////////////////////////////////