| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- #include "common.comp"
- // TODO: use a local size of 32 or more (Metal uses 1024)
- layout(local_size_x = 1) in;
- layout (push_constant) uniform parameter {
- uint inAOff;
- uint inBOff;
- uint outOff;
- int n_dims;
- int mode;
- int n_orig_ctx;
- float freq_base;
- float freq_scale;
- float ext_factor;
- float attn_factor;
- float beta_fast;
- float beta_slow;
- uint nb00;
- uint nb01;
- uint nb02;
- uint nb03;
- int ne0;
- uint nb0;
- uint nb1;
- uint nb2;
- uint nb3;
- } pcs;
- float rope_yarn_ramp(const float low, const float high, const float i0) {
- const float y = (i0 / 2 - low) / max(0.001f, high - low);
- return 1.0f - min(1.0f, max(0.0f, y));
- }
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- void rope_yarn(
- float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale,
- out float cos_theta, out float sin_theta
- ) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
- }
- cos_theta = cos(theta) * mscale;
- sin_theta = sin(theta) * mscale;
- }
- // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
- // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
- float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
- return n_dims * log(n_orig_ctx / (n_rot * TWOPI_F)) / (2 * log(base));
- }
- void rope_yarn_corr_dims(
- int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, out float dims[2]
- ) {
- // start and end correction dims
- dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
- dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
- }
|