ggml-alloc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. #include "ggml-alloc.h"
  2. #include "ggml.h"
  3. #include <assert.h>
  4. #include <stdarg.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #define UNUSED(x) (void)(x)
  9. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  10. //#define GGML_ALLOCATOR_DEBUG
  11. //#define AT_PRINTF printf
  12. #define AT_PRINTF(...) ((void)0)
  13. struct hash_node {
  14. struct ggml_tensor * t;
  15. int n_children;
  16. int n_views;
  17. };
  18. static size_t hash(void * p) {
  19. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  20. }
  21. static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
  22. size_t h = hash(t);
  23. // linear probing
  24. size_t i = h;
  25. while (hash_table[i].t != NULL) {
  26. if (hash_table[i].t == t) {
  27. return &hash_table[i];
  28. }
  29. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  30. if (i == h) {
  31. // hash table is full
  32. GGML_ASSERT(false);
  33. }
  34. }
  35. hash_table[i].t = t;
  36. return &hash_table[i];
  37. }
  38. // TODO: GGML_PAD ?
  39. static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
  40. assert(alignment && !(alignment & (alignment - 1))); // power of 2
  41. size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
  42. return offset + align;
  43. }
  44. struct free_block {
  45. void * addr;
  46. size_t size;
  47. };
  48. #define MAX_FREE_BLOCKS 128
  49. struct ggml_allocr {
  50. void * data;
  51. size_t size;
  52. size_t alignment;
  53. int n_free_blocks;
  54. struct free_block free_blocks[MAX_FREE_BLOCKS];
  55. struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  56. size_t max_size;
  57. bool measure;
  58. int parse_seq[GGML_MAX_NODES];
  59. bool has_parse_seq;
  60. #ifdef GGML_ALLOCATOR_DEBUG
  61. struct ggml_tensor * allocated_tensors[1024];
  62. #endif
  63. };
  64. #ifdef GGML_ALLOCATOR_DEBUG
  65. static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
  66. for (int i = 0; i < 1024; i++) {
  67. if (alloc->allocated_tensors[i] == NULL) {
  68. alloc->allocated_tensors[i] = tensor;
  69. return;
  70. }
  71. }
  72. GGML_ASSERT(!"out of allocated_tensors");
  73. }
  74. static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
  75. for (int i = 0; i < 1024; i++) {
  76. if (alloc->allocated_tensors[i] == tensor ||
  77. (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
  78. alloc->allocated_tensors[i] = NULL;
  79. return;
  80. }
  81. }
  82. printf("tried to free tensor %s not found\n", tensor->name);
  83. GGML_ASSERT(!"tensor not found");
  84. }
  85. #endif
  86. static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  87. return ggml_nbytes(tensor);
  88. UNUSED(alloc);
  89. }
  90. void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  91. size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
  92. size = aligned_offset(NULL, size, alloc->alignment);
  93. AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
  94. size_t max_avail = 0;
  95. // find the best fitting free block
  96. int best_fit_block = -1;
  97. size_t best_fit_size = SIZE_MAX;
  98. for (int i = 0; i < alloc->n_free_blocks; i++) {
  99. struct free_block * block = &alloc->free_blocks[i];
  100. max_avail = MAX(max_avail, block->size);
  101. if (block->size >= size && block->size <= best_fit_size) {
  102. best_fit_block = i;
  103. best_fit_size = block->size;
  104. }
  105. }
  106. AT_PRINTF("block %d\n", best_fit_block);
  107. if (best_fit_block == -1) {
  108. fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
  109. __func__, size, max_avail);
  110. GGML_ASSERT(!"not enough space in the buffer");
  111. return;
  112. }
  113. struct free_block * block = &alloc->free_blocks[best_fit_block];
  114. void * addr = block->addr;
  115. block->addr = (char*)block->addr + size;
  116. block->size -= size;
  117. if (block->size == 0) {
  118. // remove block if empty
  119. alloc->n_free_blocks--;
  120. for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
  121. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  122. }
  123. }
  124. tensor->data = addr;
  125. #ifdef GGML_ALLOCATOR_DEBUG
  126. add_allocated_tensor(alloc, tensor);
  127. size_t cur_max = (char*)addr - (char*)alloc->data + size;
  128. if (cur_max > alloc->max_size) {
  129. printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
  130. for (int i = 0; i < 1024; i++) {
  131. if (alloc->allocated_tensors[i]) {
  132. printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
  133. }
  134. }
  135. printf("\n");
  136. }
  137. #endif
  138. alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
  139. }
  140. // this is a very naive implementation, but for our case the number of free blocks should be very small
  141. static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  142. void * ptr = tensor->data;
  143. if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
  144. // the tensor was not allocated in this buffer
  145. // this can happen because the graph allocator will try to free weights and other tensors from different buffers
  146. // the easiest way to deal with this is just to ignore it
  147. return;
  148. }
  149. size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
  150. size = aligned_offset(NULL, size, alloc->alignment);
  151. AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
  152. #ifdef GGML_ALLOCATOR_DEBUG
  153. remove_allocated_tensor(alloc, tensor);
  154. #endif
  155. // see if we can merge with an existing block
  156. for (int i = 0; i < alloc->n_free_blocks; i++) {
  157. struct free_block * block = &alloc->free_blocks[i];
  158. // check if ptr is at the end of the block
  159. if ((char*)block->addr + block->size == ptr) {
  160. block->size += size;
  161. // check if we can merge with the next block
  162. if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
  163. block->size += alloc->free_blocks[i+1].size;
  164. alloc->n_free_blocks--;
  165. for (int j = i+1; j < alloc->n_free_blocks; j++) {
  166. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  167. }
  168. }
  169. return;
  170. }
  171. // check if ptr is at the beginning of the block
  172. if ((char*)ptr + size == block->addr) {
  173. block->addr = ptr;
  174. block->size += size;
  175. // check if we can merge with the previous block
  176. if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
  177. alloc->free_blocks[i-1].size += block->size;
  178. alloc->n_free_blocks--;
  179. for (int j = i; j < alloc->n_free_blocks; j++) {
  180. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  181. }
  182. }
  183. return;
  184. }
  185. }
  186. // otherwise, add a new block
  187. GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
  188. // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
  189. int insert_pos = 0;
  190. while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
  191. insert_pos++;
  192. }
  193. // shift all blocks from insert_pos onward to make room for the new block
  194. for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
  195. alloc->free_blocks[i] = alloc->free_blocks[i-1];
  196. }
  197. // insert the new block
  198. alloc->free_blocks[insert_pos].addr = ptr;
  199. alloc->free_blocks[insert_pos].size = size;
  200. alloc->n_free_blocks++;
  201. }
  202. void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n) {
  203. int pos = 0;
  204. for (int i = 0; i < n; i++) {
  205. if (list[i] != -1) {
  206. alloc->parse_seq[pos] = list[i];
  207. pos++;
  208. }
  209. }
  210. alloc->has_parse_seq = true;
  211. }
  212. void ggml_allocr_reset(struct ggml_allocr * alloc) {
  213. alloc->n_free_blocks = 1;
  214. size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
  215. alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
  216. alloc->free_blocks[0].size = alloc->size - align_offset;
  217. }
  218. struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
  219. struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
  220. *alloc = (struct ggml_allocr){
  221. /*.data = */ data,
  222. /*.size = */ size,
  223. /*.alignment = */ alignment,
  224. /*.n_free_blocks = */ 0,
  225. /*.free_blocks = */ {{0}},
  226. /*.hash_table = */ {{0}},
  227. /*.max_size = */ 0,
  228. /*.measure = */ false,
  229. /*.parse_seq = */ {0},
  230. /*.has_parse_seq = */ false,
  231. #ifdef GGML_ALLOCATOR_DEBUG
  232. /*.allocated_tensors = */ = {0},
  233. #endif
  234. };
  235. ggml_allocr_reset(alloc);
  236. return alloc;
  237. }
  238. // address and size of the buffer when measuring
  239. // it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
  240. static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
  241. static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
  242. struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
  243. struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
  244. *alloc = (struct ggml_allocr){
  245. /*.data = */ MEASURE_BASE_ADDR,
  246. /*.size = */ MEASURE_MAX_SIZE,
  247. /*.alignment = */ alignment,
  248. /*.n_free_blocks = */ 0,
  249. /*.free_blocks = */ {{0}},
  250. /*.hash_table = */ {{0}},
  251. /*.max_size = */ 0,
  252. /*.measure = */ true,
  253. /*.parse_seq = */ {0},
  254. /*.has_parse_seq = */ false,
  255. #ifdef GGML_ALLOCATOR_DEBUG
  256. /*.allocated_tensors = */ = {0},
  257. #endif
  258. };
  259. ggml_allocr_reset(alloc);
  260. return alloc;
  261. }
  262. void ggml_allocr_free(struct ggml_allocr * alloc) {
  263. free(alloc);
  264. }
  265. bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
  266. return alloc->measure;
  267. }
  268. //////////// compute graph allocator
  269. static bool ggml_is_view(struct ggml_tensor * t) {
  270. return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
  271. t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
  272. }
  273. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  274. if (a->type != b->type) {
  275. return false;
  276. }
  277. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  278. if (a->ne[i] != b->ne[i]) {
  279. return false;
  280. }
  281. if (a->nb[i] != b->nb[i]) {
  282. return false;
  283. }
  284. }
  285. return true;
  286. }
  287. static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
  288. switch (t->op) {
  289. case GGML_OP_PERMUTE:
  290. case GGML_OP_RESHAPE:
  291. case GGML_OP_TRANSPOSE:
  292. case GGML_OP_VIEW:
  293. return t->src[0];
  294. case GGML_OP_CPY:
  295. return t->src[1];
  296. default:
  297. return NULL;
  298. }
  299. }
  300. static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
  301. struct ggml_tensor * parent = t;
  302. do {
  303. parent = get_view_parent(parent);
  304. } while (ggml_is_view(parent));
  305. return parent;
  306. }
  307. static bool ggml_op_can_inplace(enum ggml_op op) {
  308. switch (op) {
  309. case GGML_OP_SCALE:
  310. case GGML_OP_DIAG_MASK_ZERO:
  311. case GGML_OP_DIAG_MASK_INF:
  312. case GGML_OP_ADD:
  313. case GGML_OP_ADD1:
  314. case GGML_OP_ACC:
  315. case GGML_OP_SUB:
  316. case GGML_OP_MUL:
  317. case GGML_OP_DIV:
  318. case GGML_OP_SQR:
  319. case GGML_OP_SQRT:
  320. case GGML_OP_LOG:
  321. case GGML_OP_UNARY:
  322. case GGML_OP_ROPE:
  323. case GGML_OP_RMS_NORM:
  324. case GGML_OP_SET:
  325. case GGML_OP_SOFT_MAX:
  326. case GGML_OP_CONT:
  327. return true;
  328. default:
  329. return false;
  330. }
  331. }
  332. static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
  333. struct hash_node * ht = alloc->hash_table;
  334. if (node->data == NULL) {
  335. if (ggml_is_view(node)) {
  336. size_t offset;
  337. switch(node->op) {
  338. case GGML_OP_VIEW:
  339. memcpy(&offset, node->op_params, sizeof(size_t));
  340. node->data = (char *) node->src[0]->data + offset;
  341. break;
  342. case GGML_OP_PERMUTE:
  343. case GGML_OP_RESHAPE:
  344. case GGML_OP_TRANSPOSE:
  345. node->data = node->src[0]->data;
  346. break;
  347. case GGML_OP_CPY:
  348. node->data = node->src[1]->data;
  349. break;
  350. default:
  351. GGML_ASSERT(!"unknown view op");
  352. break;
  353. }
  354. } else {
  355. // see if we can reuse a parent's buffer (inplace)
  356. if (ggml_op_can_inplace(node->op)) {
  357. for (int i = 0; i < GGML_MAX_SRC; i++) {
  358. struct ggml_tensor * parent = node->src[i];
  359. if (parent == NULL) {
  360. break;
  361. }
  362. // if the node's data is external, then we cannot re-use it
  363. if ((char *) parent->data < (char *) alloc->data ||
  364. (char *) parent->data >= ((char *) alloc->data + alloc->size)) {
  365. AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
  366. continue;
  367. }
  368. struct hash_node * p_hn = hash_get(ht, parent);
  369. if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
  370. if (ggml_is_view(parent)) {
  371. struct ggml_tensor * view_src = get_view_source(parent);
  372. struct hash_node * view_src_hn = hash_get(ht, view_src);
  373. if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
  374. // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
  375. // the parent's data that it will need later (same layout requirement). the problem is that then
  376. // we cannot free the tensor because the original address of the allocation is lost.
  377. // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
  378. // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
  379. AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
  380. node->data = parent->data;
  381. return;
  382. }
  383. }
  384. else {
  385. AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
  386. node->data = parent->data;
  387. }
  388. return;
  389. }
  390. }
  391. }
  392. ggml_allocr_alloc(alloc, node);
  393. }
  394. }
  395. }
  396. static size_t ggml_allocator_alloc_graph_tensors_n(
  397. struct ggml_allocr * alloc,
  398. struct ggml_cgraph ** graphs, int n_graphs,
  399. struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
  400. // reset hash table
  401. struct hash_node * ht = alloc->hash_table;
  402. memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
  403. // count number of children and views
  404. for (int g = 0; g < n_graphs; g++) {
  405. struct ggml_cgraph * gf = graphs[g];
  406. for (int i = 0; i < gf->n_nodes; i++) {
  407. struct ggml_tensor * node = gf->nodes[i];
  408. if (ggml_is_view(node)) {
  409. struct ggml_tensor * view_src = get_view_source(node);
  410. hash_get(ht, view_src)->n_views += 1;
  411. }
  412. for (int j = 0; j < GGML_MAX_SRC; j++) {
  413. struct ggml_tensor * parent = node->src[j];
  414. if (parent == NULL) {
  415. break;
  416. }
  417. hash_get(ht, parent)->n_children += 1;
  418. }
  419. }
  420. }
  421. // allocate tensors
  422. for (int g = 0; g < n_graphs; g++) {
  423. struct ggml_cgraph * gf = graphs[g];
  424. AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
  425. // graph inputs are allocated first to ensure that they are not overwritten by each other
  426. if (inputs != NULL && inputs[g] != NULL) {
  427. for (int i = 0; inputs[g][i] != NULL; i++) {
  428. struct ggml_tensor * input = inputs[g][i];
  429. AT_PRINTF("input: %s\n", input->name);
  430. allocate_node(alloc, input);
  431. }
  432. }
  433. for (int ind = 0; ind < gf->n_nodes; ind++) {
  434. int i;
  435. if (alloc->has_parse_seq) {
  436. i = alloc->parse_seq[ind];
  437. } else {
  438. i = ind;
  439. }
  440. struct ggml_tensor * node = gf->nodes[i];
  441. // allocate parents (leafs)
  442. for (int j = 0; j < GGML_MAX_SRC; j++) {
  443. struct ggml_tensor * parent = node->src[j];
  444. if (parent == NULL) {
  445. break;
  446. }
  447. allocate_node(alloc, parent);
  448. }
  449. // allocate node
  450. allocate_node(alloc, node);
  451. AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
  452. for (int j = 0; j < GGML_MAX_SRC; j++) {
  453. struct ggml_tensor * parent = node->src[j];
  454. if (parent == NULL) {
  455. break;
  456. }
  457. AT_PRINTF("%s", parent->name);
  458. if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
  459. AT_PRINTF(", ");
  460. }
  461. }
  462. AT_PRINTF("\n");
  463. // update parents
  464. for (int j = 0; j < GGML_MAX_SRC; j++) {
  465. struct ggml_tensor * parent = node->src[j];
  466. if (parent == NULL) {
  467. break;
  468. }
  469. struct hash_node * p_hn = hash_get(ht, parent);
  470. p_hn->n_children -= 1;
  471. //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
  472. if (p_hn->n_children == 0 && p_hn->n_views == 0) {
  473. if (ggml_is_view(parent)) {
  474. struct ggml_tensor * view_src = get_view_source(parent);
  475. struct hash_node * view_src_hn = hash_get(ht, view_src);
  476. view_src_hn->n_views -= 1;
  477. AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
  478. if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
  479. ggml_allocator_free_tensor(alloc, view_src);
  480. }
  481. }
  482. else {
  483. if (parent->data != node->data) {
  484. ggml_allocator_free_tensor(alloc, parent);
  485. }
  486. }
  487. }
  488. }
  489. AT_PRINTF("\n");
  490. }
  491. // free graph outputs here that wouldn't be freed otherwise because they have no children
  492. if (outputs != NULL && outputs[g] != NULL) {
  493. for (int i = 0; outputs[g][i] != NULL; i++) {
  494. struct ggml_tensor * output = outputs[g][i];
  495. AT_PRINTF("output: %s\n", output->name);
  496. ggml_allocator_free_tensor(alloc, output);
  497. }
  498. }
  499. }
  500. return alloc->max_size;
  501. }
  502. size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
  503. return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
  504. }