tensor_mapping.py 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. ),
  31. # Token type embeddings
  32. MODEL_TENSOR.TOKEN_TYPES: (
  33. "embeddings.token_type_embeddings", # bert nomic-bert
  34. ),
  35. # Normalization of token embeddings
  36. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  37. "word_embeddings_layernorm", # bloom
  38. "embeddings.LayerNorm", # bert
  39. "emb_ln", # nomic-bert
  40. "transformer.norm", # openelm
  41. "rwkv.blocks.0.pre_ln", # rwkv
  42. "rwkv.blocks.0.pre_ln", # rwkv6
  43. "model.pre_ln", # rwkv7
  44. "model.layers.0.pre_norm", # rwkv7
  45. "backbone.norm", # wavtokenizer
  46. ),
  47. # Position embeddings
  48. MODEL_TENSOR.POS_EMBD: (
  49. "transformer.wpe", # gpt2
  50. "embeddings.position_embeddings", # bert
  51. "wpe", # gpt2
  52. ),
  53. # Output
  54. MODEL_TENSOR.OUTPUT: (
  55. "embed_out", # gptneox
  56. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  57. "output", # llama-pth bloom internlm2
  58. "word_embeddings_for_head", # persimmon
  59. "lm_head.linear", # phi2
  60. "output_layer", # chatglm
  61. "head", # rwkv
  62. "head.out", # wavtokenizer
  63. "language_model.lm_head", # llama4
  64. ),
  65. # Output norm
  66. MODEL_TENSOR.OUTPUT_NORM: (
  67. "gpt_neox.final_layer_norm", # gptneox
  68. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  69. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  70. "norm", # llama-pth
  71. "transformer.norm_f", # mpt dbrx
  72. "ln_f", # refact bloom qwen gpt2
  73. "language_model.encoder.final_layernorm", # persimmon
  74. "model.final_layernorm", # persimmon
  75. "lm_head.ln", # phi2
  76. "model.norm_f", # mamba-qbert
  77. "backbone.norm_f", # mamba
  78. "transformer.rms_norm", # Grok
  79. "encoder.final_layernorm", # chatglm
  80. "transformer.norm", # openelm
  81. "model.norm", # nemotron
  82. "rwkv.ln_out", # rwkv6
  83. "model.ln_out", # rwkv7
  84. "backbone.final_layer_norm", # wavtokenizer
  85. "language_model.model.norm", # llama4
  86. ),
  87. # Rope frequencies
  88. MODEL_TENSOR.ROPE_FREQS: (
  89. "rope.freqs", # llama-pth
  90. "rotary_pos_emb.inv_freq", # chatglm
  91. ),
  92. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  93. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  94. MODEL_TENSOR.CONV1D: (
  95. "backbone.embed", # roberta
  96. ),
  97. }
  98. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  99. # Attention norm
  100. MODEL_TENSOR.ATTN_NORM: (
  101. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  102. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  103. "transformer.blocks.{bid}.norm_1", # mpt
  104. "transformer.h.{bid}.input_layernorm", # falcon7b
  105. "h.{bid}.input_layernorm", # bloom
  106. "transformer.h.{bid}.ln_mlp", # falcon40b
  107. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  108. "layers.{bid}.attention_norm", # llama-pth
  109. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  110. "model.layers.{bid}.ln1", # yi
  111. "h.{bid}.ln_1", # gpt2
  112. "transformer.h.{bid}.ln", # phi2
  113. "model.layers.layers.{bid}.norm", # plamo
  114. "model.layers.{bid}.attention_norm", # internlm2
  115. "model.layers.{bid}.norm", # mamba-qbert
  116. "backbone.layers.{bid}.norm", # mamba
  117. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  118. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  119. "encoder.layers.{bid}.input_layernorm", # chatglm
  120. "transformer.layers.{bid}.attn_norm", # openelm
  121. "rwkv.blocks.{bid}.ln1", # rwkv6
  122. "model.layers.{bid}.ln1", # rwkv7
  123. "language_model.model.layers.{bid}.input_layernorm", # llama4
  124. ),
  125. # Attention norm 2
  126. MODEL_TENSOR.ATTN_NORM_2: (
  127. "transformer.h.{bid}.ln_attn", # falcon40b
  128. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  129. "rwkv.blocks.{bid}.ln2", # rwkv6
  130. "model.layers.{bid}.ln2", # rwkv7
  131. ),
  132. # Attention query-key-value
  133. MODEL_TENSOR.ATTN_QKV: (
  134. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  135. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  136. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  137. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  138. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  139. "h.{bid}.self_attention.query_key_value", # bloom
  140. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  141. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  142. "h.{bid}.attn.c_attn", # gpt2
  143. "transformer.h.{bid}.mixer.Wqkv", # phi2
  144. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  145. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  146. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  147. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  148. ),
  149. # Attention query
  150. MODEL_TENSOR.ATTN_Q: (
  151. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  152. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  153. "layers.{bid}.attention.wq", # llama-pth
  154. "encoder.layer.{bid}.attention.self.query", # bert
  155. "transformer.h.{bid}.attn.q_proj", # gpt-j
  156. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  157. "model.layers.{bid}.attention.wq", # internlm2
  158. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  159. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  160. "language_model.model.layers.{bid}.self_attn.q_proj", # llama4
  161. ),
  162. # Attention key
  163. MODEL_TENSOR.ATTN_K: (
  164. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  165. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  166. "layers.{bid}.attention.wk", # llama-pth
  167. "encoder.layer.{bid}.attention.self.key", # bert
  168. "transformer.h.{bid}.attn.k_proj", # gpt-j
  169. "transformer.h.{bid}.attn.k", # refact
  170. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  171. "model.layers.{bid}.attention.wk", # internlm2
  172. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  173. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  174. "language_model.model.layers.{bid}.self_attn.k_proj", # llama4
  175. ),
  176. # Attention value
  177. MODEL_TENSOR.ATTN_V: (
  178. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  179. "layers.{bid}.attention.wv", # llama-pth
  180. "encoder.layer.{bid}.attention.self.value", # bert
  181. "transformer.h.{bid}.attn.v_proj", # gpt-j
  182. "transformer.h.{bid}.attn.v", # refact
  183. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  184. "model.layers.{bid}.attention.wv", # internlm2
  185. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  186. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  187. "language_model.model.layers.{bid}.self_attn.v_proj", # llama4
  188. ),
  189. # Attention output
  190. MODEL_TENSOR.ATTN_OUT: (
  191. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  192. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  193. "transformer.blocks.{bid}.attn.out_proj", # mpt
  194. "transformer.h.{bid}.self_attention.dense", # falcon
  195. "h.{bid}.self_attention.dense", # bloom
  196. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  197. "model.layers.{bid}.self_attn.linear_attn", # deci
  198. "layers.{bid}.attention.wo", # llama-pth
  199. "encoder.layer.{bid}.attention.output.dense", # bert
  200. "transformer.h.{bid}.attn.out_proj", # gpt-j
  201. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  202. "model.layers.{bid}.self_attn.dense", # persimmon
  203. "h.{bid}.attn.c_proj", # gpt2
  204. "transformer.h.{bid}.mixer.out_proj", # phi2
  205. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  206. "model.layers.{bid}.attention.wo", # internlm2
  207. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  208. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  209. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  210. "encoder.layers.{bid}.self_attention.dense", # chatglm
  211. "transformer.layers.{bid}.attn.out_proj", # openelm
  212. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  213. "language_model.model.layers.{bid}.self_attn.o_proj", # llama4
  214. ),
  215. # Attention output norm
  216. MODEL_TENSOR.ATTN_OUT_NORM: (
  217. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  218. "encoder.layers.{bid}.norm1", # nomic-bert
  219. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  220. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  221. ),
  222. MODEL_TENSOR.ATTN_POST_NORM: (
  223. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  224. ),
  225. # Rotary embeddings
  226. MODEL_TENSOR.ATTN_ROT_EMBD: (
  227. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  228. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  229. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  230. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  231. ),
  232. # Feed-forward norm
  233. MODEL_TENSOR.FFN_NORM: (
  234. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  235. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  236. "h.{bid}.post_attention_layernorm", # bloom
  237. "transformer.blocks.{bid}.norm_2", # mpt
  238. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  239. "layers.{bid}.ffn_norm", # llama-pth
  240. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  241. "model.layers.{bid}.ln2", # yi
  242. "h.{bid}.ln_2", # gpt2
  243. "model.layers.{bid}.ffn_norm", # internlm2
  244. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  245. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  246. "transformer.layers.{bid}.ffn_norm", # openelm
  247. "language_model.model.layers.{bid}.post_attention_layernorm", # llama4
  248. ),
  249. # Post feed-forward norm
  250. MODEL_TENSOR.FFN_PRE_NORM: (
  251. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  252. ),
  253. # Post feed-forward norm
  254. MODEL_TENSOR.FFN_POST_NORM: (
  255. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  256. ),
  257. MODEL_TENSOR.FFN_GATE_INP: (
  258. "layers.{bid}.feed_forward.gate", # mixtral
  259. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  260. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  261. "transformer.decoder_layer.{bid}.router", # Grok
  262. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  263. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  264. "language_model.model.layers.{bid}.feed_forward.router", # llama4
  265. ),
  266. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  267. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  268. ),
  269. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  270. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
  271. ),
  272. # Feed-forward up
  273. MODEL_TENSOR.FFN_UP: (
  274. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  275. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  276. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  277. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  278. "h.{bid}.mlp.dense_h_to_4h", # bloom
  279. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  280. "layers.{bid}.feed_forward.w3", # llama-pth
  281. "encoder.layer.{bid}.intermediate.dense", # bert
  282. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  283. "transformer.h.{bid}.mlp.linear_3", # refact
  284. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  285. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  286. "transformer.h.{bid}.mlp.w1", # qwen
  287. "h.{bid}.mlp.c_fc", # gpt2
  288. "transformer.h.{bid}.mlp.fc1", # phi2
  289. "model.layers.{bid}.mlp.fc1", # phi2
  290. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  291. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  292. "model.layers.{bid}.feed_forward.w3", # internlm2
  293. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  294. "model.layers.{bid}.mlp.c_fc", # starcoder2
  295. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  296. "model.layers.{bid}.residual_mlp.w3", # arctic
  297. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  298. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  299. "language_model.model.layers.{bid}.feed_forward.up_proj", # llama4
  300. ),
  301. MODEL_TENSOR.FFN_UP_EXP: (
  302. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  303. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  304. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  305. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  306. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  307. "language_model.model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  308. ),
  309. MODEL_TENSOR.FFN_UP_SHEXP: (
  310. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  311. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  312. "language_model.model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  313. ),
  314. # AWQ-activation gate
  315. MODEL_TENSOR.FFN_ACT: (
  316. "transformer.blocks.{bid}.ffn.act", # mpt
  317. ),
  318. # Feed-forward gate
  319. MODEL_TENSOR.FFN_GATE: (
  320. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  321. "layers.{bid}.feed_forward.w1", # llama-pth
  322. "transformer.h.{bid}.mlp.w2", # qwen
  323. "transformer.h.{bid}.mlp.c_fc2", # jais
  324. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  325. "model.layers.{bid}.feed_forward.w1", # internlm2
  326. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  327. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  328. "transformer.h.{bid}.mlp.linear_1", # refact
  329. "model.layers.{bid}.residual_mlp.w1", # arctic
  330. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  331. "language_model.model.layers.{bid}.feed_forward.gate_proj", # llama4
  332. ),
  333. MODEL_TENSOR.FFN_GATE_EXP: (
  334. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  335. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  336. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  337. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  338. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  339. "language_model.model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  340. ),
  341. MODEL_TENSOR.FFN_GATE_SHEXP: (
  342. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  343. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  344. "language_model.model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  345. ),
  346. # Feed-forward down
  347. MODEL_TENSOR.FFN_DOWN: (
  348. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  349. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  350. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  351. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  352. "h.{bid}.mlp.dense_4h_to_h", # bloom
  353. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  354. "layers.{bid}.feed_forward.w2", # llama-pth
  355. "encoder.layer.{bid}.output.dense", # bert
  356. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  357. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  358. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  359. "h.{bid}.mlp.c_proj", # gpt2
  360. "transformer.h.{bid}.mlp.fc2", # phi2
  361. "model.layers.{bid}.mlp.fc2", # phi2
  362. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  363. "model.layers.{bid}.feed_forward.w2", # internlm2
  364. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  365. "model.layers.{bid}.mlp.c_proj", # starcoder2
  366. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  367. "transformer.layers.{bid}.ffn.proj_2", # openelm
  368. "model.layers.{bid}.residual_mlp.w2", # arctic
  369. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  370. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  371. "model.layers.h.{bid}.mlp.c_proj", # exaone
  372. "language_model.model.layers.{bid}.feed_forward.down_proj", # llama4
  373. ),
  374. MODEL_TENSOR.FFN_DOWN_EXP: (
  375. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  376. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  377. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  378. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  379. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  380. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  381. "language_model.model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  382. ),
  383. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  384. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  385. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  386. "language_model.model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  387. ),
  388. MODEL_TENSOR.ATTN_Q_NORM: (
  389. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  390. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  391. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  392. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  393. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  394. "transformer.layers.{bid}.attn.q_norm", # openelm
  395. ),
  396. MODEL_TENSOR.ATTN_K_NORM: (
  397. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  398. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  399. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  400. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  401. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  402. "transformer.layers.{bid}.attn.k_norm", # openelm
  403. ),
  404. MODEL_TENSOR.ROPE_FREQS: (
  405. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  406. ),
  407. MODEL_TENSOR.LAYER_OUT_NORM: (
  408. "encoder.layer.{bid}.output.LayerNorm", # bert
  409. "encoder.layers.{bid}.norm2", # nomic-bert
  410. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  411. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  412. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  413. ),
  414. MODEL_TENSOR.SSM_IN: (
  415. "model.layers.{bid}.in_proj",
  416. "backbone.layers.{bid}.mixer.in_proj",
  417. ),
  418. MODEL_TENSOR.SSM_CONV1D: (
  419. "model.layers.{bid}.conv1d",
  420. "backbone.layers.{bid}.mixer.conv1d",
  421. ),
  422. MODEL_TENSOR.SSM_X: (
  423. "model.layers.{bid}.x_proj",
  424. "backbone.layers.{bid}.mixer.x_proj",
  425. ),
  426. MODEL_TENSOR.SSM_DT: (
  427. "model.layers.{bid}.dt_proj",
  428. "backbone.layers.{bid}.mixer.dt_proj",
  429. ),
  430. MODEL_TENSOR.SSM_A: (
  431. "model.layers.{bid}.A_log",
  432. "backbone.layers.{bid}.mixer.A_log",
  433. ),
  434. MODEL_TENSOR.SSM_D: (
  435. "model.layers.{bid}.D",
  436. "backbone.layers.{bid}.mixer.D",
  437. ),
  438. MODEL_TENSOR.SSM_OUT: (
  439. "model.layers.{bid}.out_proj",
  440. "backbone.layers.{bid}.mixer.out_proj",
  441. ),
  442. MODEL_TENSOR.TIME_MIX_W0: (
  443. "model.layers.{bid}.attention.w0", # rwkv7
  444. ),
  445. MODEL_TENSOR.TIME_MIX_W1: (
  446. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  447. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  448. "model.layers.{bid}.attention.w1", # rwkv7
  449. ),
  450. MODEL_TENSOR.TIME_MIX_W2: (
  451. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  452. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  453. "model.layers.{bid}.attention.w2", # rwkv7
  454. ),
  455. MODEL_TENSOR.TIME_MIX_A0: (
  456. "model.layers.{bid}.attention.a0", # rwkv7
  457. ),
  458. MODEL_TENSOR.TIME_MIX_A1: (
  459. "model.layers.{bid}.attention.a1", # rwkv7
  460. ),
  461. MODEL_TENSOR.TIME_MIX_A2: (
  462. "model.layers.{bid}.attention.a2", # rwkv7
  463. ),
  464. MODEL_TENSOR.TIME_MIX_V0: (
  465. "model.layers.{bid}.attention.v0", # rwkv7
  466. ),
  467. MODEL_TENSOR.TIME_MIX_V1: (
  468. "model.layers.{bid}.attention.v1", # rwkv7
  469. ),
  470. MODEL_TENSOR.TIME_MIX_V2: (
  471. "model.layers.{bid}.attention.v2", # rwkv7
  472. ),
  473. MODEL_TENSOR.TIME_MIX_G1: (
  474. "model.layers.{bid}.attention.g1", # rwkv7
  475. ),
  476. MODEL_TENSOR.TIME_MIX_G2: (
  477. "model.layers.{bid}.attention.g2", # rwkv7
  478. ),
  479. MODEL_TENSOR.TIME_MIX_K_K: (
  480. "model.layers.{bid}.attention.k_k", # rwkv7
  481. ),
  482. MODEL_TENSOR.TIME_MIX_K_A: (
  483. "model.layers.{bid}.attention.k_a", # rwkv7
  484. ),
  485. MODEL_TENSOR.TIME_MIX_R_K: (
  486. "model.layers.{bid}.attention.r_k", # rwkv7
  487. ),
  488. MODEL_TENSOR.TIME_MIX_LERP_X: (
  489. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  490. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  491. ),
  492. MODEL_TENSOR.TIME_MIX_LERP_K: (
  493. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  494. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  495. ),
  496. MODEL_TENSOR.TIME_MIX_LERP_V: (
  497. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  498. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  499. ),
  500. MODEL_TENSOR.TIME_MIX_LERP_R: (
  501. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  502. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  503. ),
  504. MODEL_TENSOR.TIME_MIX_LERP_G: (
  505. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  506. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  507. ),
  508. MODEL_TENSOR.TIME_MIX_LERP_W: (
  509. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  510. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  511. ),
  512. MODEL_TENSOR.TIME_MIX_FIRST: (
  513. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  514. ),
  515. MODEL_TENSOR.TIME_MIX_DECAY: (
  516. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  517. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  518. ),
  519. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  520. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  521. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  522. ),
  523. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  524. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  525. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  526. ),
  527. MODEL_TENSOR.TIME_MIX_KEY: (
  528. "rwkv.blocks.{bid}.attention.key", # rwkv6
  529. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  530. "model.layers.{bid}.attention.key", # rwkv7
  531. "model.layers.{bid}.attention.k_proj", # rwkv7
  532. ),
  533. MODEL_TENSOR.TIME_MIX_VALUE: (
  534. "rwkv.blocks.{bid}.attention.value", # rwkv6
  535. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  536. "model.layers.{bid}.attention.value", # rwkv7
  537. "model.layers.{bid}.attention.v_proj", # rwkv7
  538. ),
  539. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  540. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  541. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  542. "model.layers.{bid}.attention.receptance", # rwkv7
  543. "model.layers.{bid}.attention.r_proj", # rwkv7
  544. ),
  545. MODEL_TENSOR.TIME_MIX_GATE: (
  546. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  547. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  548. ),
  549. MODEL_TENSOR.TIME_MIX_LN: (
  550. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  551. "model.layers.{bid}.attention.ln_x" # rwkv7
  552. ),
  553. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  554. "rwkv.blocks.{bid}.attention.output", # rwkv6
  555. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  556. "model.layers.{bid}.attention.output", # rwkv7
  557. "model.layers.{bid}.attention.o_proj", # rwkv7
  558. ),
  559. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  560. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  561. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  562. ),
  563. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  564. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  565. ),
  566. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  567. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  568. "model.layers.{bid}.feed_forward.key", # rwkv7
  569. ),
  570. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  571. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  572. ),
  573. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  574. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  575. "model.layers.{bid}.feed_forward.value", # rwkv7
  576. ),
  577. MODEL_TENSOR.ATTN_Q_A: (
  578. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  579. ),
  580. MODEL_TENSOR.ATTN_Q_B: (
  581. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  582. ),
  583. MODEL_TENSOR.ATTN_KV_A_MQA: (
  584. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  585. ),
  586. MODEL_TENSOR.ATTN_KV_B: (
  587. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  588. ),
  589. MODEL_TENSOR.ATTN_Q_A_NORM: (
  590. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  591. ),
  592. MODEL_TENSOR.ATTN_KV_A_NORM: (
  593. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  594. ),
  595. MODEL_TENSOR.ATTN_SUB_NORM: (
  596. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  597. ),
  598. MODEL_TENSOR.FFN_SUB_NORM: (
  599. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  600. ),
  601. MODEL_TENSOR.DEC_ATTN_NORM: (
  602. "decoder.block.{bid}.layer.0.layer_norm", # t5
  603. ),
  604. MODEL_TENSOR.DEC_ATTN_Q: (
  605. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  606. ),
  607. MODEL_TENSOR.DEC_ATTN_K: (
  608. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  609. ),
  610. MODEL_TENSOR.DEC_ATTN_V: (
  611. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  612. ),
  613. MODEL_TENSOR.DEC_ATTN_OUT: (
  614. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  615. ),
  616. MODEL_TENSOR.DEC_ATTN_REL_B: (
  617. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  618. ),
  619. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  620. "decoder.block.{bid}.layer.1.layer_norm", # t5
  621. ),
  622. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  623. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  624. ),
  625. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  626. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  627. ),
  628. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  629. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  630. ),
  631. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  632. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  633. ),
  634. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  635. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  636. ),
  637. MODEL_TENSOR.DEC_FFN_NORM: (
  638. "decoder.block.{bid}.layer.2.layer_norm", # t5
  639. ),
  640. MODEL_TENSOR.DEC_FFN_GATE: (
  641. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  642. ),
  643. MODEL_TENSOR.DEC_FFN_UP: (
  644. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  645. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  646. ),
  647. MODEL_TENSOR.DEC_FFN_DOWN: (
  648. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  649. ),
  650. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  651. "decoder.final_layer_norm", # t5
  652. ),
  653. MODEL_TENSOR.ENC_ATTN_NORM: (
  654. "encoder.block.{bid}.layer.0.layer_norm", # t5
  655. ),
  656. MODEL_TENSOR.ENC_ATTN_Q: (
  657. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  658. ),
  659. MODEL_TENSOR.ENC_ATTN_K: (
  660. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  661. ),
  662. MODEL_TENSOR.ENC_ATTN_V: (
  663. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  664. ),
  665. MODEL_TENSOR.ENC_ATTN_OUT: (
  666. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  667. ),
  668. MODEL_TENSOR.ENC_ATTN_REL_B: (
  669. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  670. ),
  671. MODEL_TENSOR.ENC_FFN_NORM: (
  672. "encoder.block.{bid}.layer.1.layer_norm", # t5
  673. ),
  674. MODEL_TENSOR.ENC_FFN_GATE: (
  675. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  676. ),
  677. MODEL_TENSOR.ENC_FFN_UP: (
  678. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  679. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  680. ),
  681. MODEL_TENSOR.ENC_FFN_DOWN: (
  682. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  683. ),
  684. ############################################################################
  685. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  686. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  687. "encoder.final_layer_norm", # t5
  688. ),
  689. MODEL_TENSOR.CLS: (
  690. "classifier", # jina
  691. "classifier.dense", # roberta
  692. ),
  693. MODEL_TENSOR.CLS_OUT: (
  694. "classifier.out_proj", # roberta
  695. ),
  696. #############################################################################
  697. MODEL_TENSOR.CONVNEXT_DW: (
  698. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  699. ),
  700. MODEL_TENSOR.CONVNEXT_NORM: (
  701. "backbone.convnext.{bid}.norm", # wavtokenizer
  702. ),
  703. MODEL_TENSOR.CONVNEXT_PW1: (
  704. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  705. ),
  706. MODEL_TENSOR.CONVNEXT_PW2: (
  707. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  708. ),
  709. MODEL_TENSOR.CONVNEXT_GAMMA: (
  710. "backbone.convnext.{bid}.gamma", # wavtokenizer
  711. ),
  712. MODEL_TENSOR.POSNET_CONV1: (
  713. "backbone.posnet.{bid}.conv1", # wavtokenizer
  714. ),
  715. MODEL_TENSOR.POSNET_CONV2: (
  716. "backbone.posnet.{bid}.conv2", # wavtokenizer
  717. ),
  718. MODEL_TENSOR.POSNET_NORM: (
  719. "backbone.posnet.{bid}.norm", # wavtokenizer
  720. ),
  721. MODEL_TENSOR.POSNET_NORM1: (
  722. "backbone.posnet.{bid}.norm1", # wavtokenizer
  723. ),
  724. MODEL_TENSOR.POSNET_NORM2: (
  725. "backbone.posnet.{bid}.norm2", # wavtokenizer
  726. ),
  727. MODEL_TENSOR.POSNET_ATTN_NORM: (
  728. "backbone.posnet.{bid}.norm", # wavtokenizer
  729. ),
  730. MODEL_TENSOR.POSNET_ATTN_Q: (
  731. "backbone.posnet.{bid}.q", # wavtokenizer
  732. ),
  733. MODEL_TENSOR.POSNET_ATTN_K: (
  734. "backbone.posnet.{bid}.k", # wavtokenizer
  735. ),
  736. MODEL_TENSOR.POSNET_ATTN_V: (
  737. "backbone.posnet.{bid}.v", # wavtokenizer
  738. ),
  739. MODEL_TENSOR.POSNET_ATTN_OUT: (
  740. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  741. ),
  742. }
  743. # architecture-specific block mappings
  744. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  745. MODEL_ARCH.ARCTIC: {
  746. MODEL_TENSOR.FFN_NORM: (
  747. "model.layers.{bid}.residual_layernorm",
  748. ),
  749. MODEL_TENSOR.FFN_NORM_EXP: (
  750. "model.layers.{bid}.post_attention_layernorm",
  751. ),
  752. },
  753. }
  754. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  755. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  756. self.mapping = {}
  757. for tensor, keys in self.mappings_cfg.items():
  758. if tensor not in MODEL_TENSORS[arch]:
  759. continue
  760. tensor_name = TENSOR_NAMES[tensor]
  761. self.mapping[tensor_name] = (tensor, tensor_name)
  762. for key in keys:
  763. self.mapping[key] = (tensor, tensor_name)
  764. if arch in self.arch_block_mappings_cfg:
  765. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  766. for bid in range(n_blocks):
  767. for tensor, keys in self.block_mappings_cfg.items():
  768. if tensor not in MODEL_TENSORS[arch]:
  769. continue
  770. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  771. self.mapping[tensor_name] = (tensor, tensor_name)
  772. for key in keys:
  773. key = key.format(bid = bid)
  774. self.mapping[key] = (tensor, tensor_name)
  775. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  776. result = self.mapping.get(key)
  777. if result is not None:
  778. return result
  779. for suffix in try_suffixes:
  780. if key.endswith(suffix):
  781. result = self.mapping.get(key[:-len(suffix)])
  782. if result is not None:
  783. return result[0], result[1] + suffix
  784. return None
  785. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  786. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  787. if result is None:
  788. return None
  789. return result[1]
  790. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  791. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  792. if result is None:
  793. return None
  794. return result[0]
  795. def __getitem__(self, key: str) -> str:
  796. try:
  797. return self.mapping[key][1]
  798. except KeyError:
  799. raise KeyError(key)
  800. def __contains__(self, key: str) -> bool:
  801. return key in self.mapping
  802. def __repr__(self) -> str:
  803. return repr(self.mapping)
  804. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  805. return TensorNameMap(arch, n_blocks)