llama.cpp 719 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <future>
  72. #include <initializer_list>
  73. #include <locale>
  74. #include <map>
  75. #include <memory>
  76. #include <mutex>
  77. #include <numeric>
  78. #include <queue>
  79. #include <random>
  80. #include <regex>
  81. #include <set>
  82. #include <sstream>
  83. #include <thread>
  84. #include <type_traits>
  85. #include <unordered_map>
  86. #if defined(_MSC_VER)
  87. #pragma warning(disable: 4244 4267) // possible loss of data
  88. #endif
  89. #ifdef __GNUC__
  90. #ifdef __MINGW32__
  91. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  92. #else
  93. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  94. #endif
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...)
  97. #endif
  98. #define LLAMA_MAX_NODES 8192
  99. #define LLAMA_MAX_EXPERTS 60
  100. //
  101. // logging
  102. //
  103. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  104. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  105. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  106. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  107. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  108. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  109. //
  110. // helpers
  111. //
  112. static size_t utf8_len(char src) {
  113. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  114. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  115. return lookup[highbits];
  116. }
  117. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  118. std::string result;
  119. for (size_t pos = 0; ; pos += search.length()) {
  120. auto new_pos = s.find(search, pos);
  121. if (new_pos == std::string::npos) {
  122. result += s.substr(pos, s.size() - pos);
  123. break;
  124. }
  125. result += s.substr(pos, new_pos - pos) + replace;
  126. pos = new_pos;
  127. }
  128. s = std::move(result);
  129. }
  130. static bool is_float_close(float a, float b, float abs_tol) {
  131. // Check for non-negative tolerance
  132. if (abs_tol < 0.0) {
  133. throw std::invalid_argument("Tolerance must be non-negative");
  134. }
  135. // Exact equality check
  136. if (a == b) {
  137. return true;
  138. }
  139. // Check for infinities
  140. if (std::isinf(a) || std::isinf(b)) {
  141. return false;
  142. }
  143. // Regular comparison using the provided absolute tolerance
  144. return std::fabs(b - a) <= abs_tol;
  145. }
  146. static void zeros(std::ofstream & file, size_t n) {
  147. char zero = 0;
  148. for (size_t i = 0; i < n; ++i) {
  149. file.write(&zero, 1);
  150. }
  151. }
  152. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  153. static std::string format(const char * fmt, ...) {
  154. va_list ap;
  155. va_list ap2;
  156. va_start(ap, fmt);
  157. va_copy(ap2, ap);
  158. int size = vsnprintf(NULL, 0, fmt, ap);
  159. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  160. std::vector<char> buf(size + 1);
  161. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  162. GGML_ASSERT(size2 == size);
  163. va_end(ap2);
  164. va_end(ap);
  165. return std::string(buf.data(), size);
  166. }
  167. //
  168. // gguf constants (sync with gguf.py)
  169. //
  170. enum llm_arch {
  171. LLM_ARCH_LLAMA,
  172. LLM_ARCH_FALCON,
  173. LLM_ARCH_BAICHUAN,
  174. LLM_ARCH_GROK,
  175. LLM_ARCH_GPT2,
  176. LLM_ARCH_GPTJ,
  177. LLM_ARCH_GPTNEOX,
  178. LLM_ARCH_MPT,
  179. LLM_ARCH_STARCODER,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_JINA_BERT_V2,
  184. LLM_ARCH_BLOOM,
  185. LLM_ARCH_STABLELM,
  186. LLM_ARCH_QWEN,
  187. LLM_ARCH_QWEN2,
  188. LLM_ARCH_QWEN2MOE,
  189. LLM_ARCH_PHI2,
  190. LLM_ARCH_PHI3,
  191. LLM_ARCH_PLAMO,
  192. LLM_ARCH_CODESHELL,
  193. LLM_ARCH_ORION,
  194. LLM_ARCH_INTERNLM2,
  195. LLM_ARCH_MINICPM,
  196. LLM_ARCH_GEMMA,
  197. LLM_ARCH_STARCODER2,
  198. LLM_ARCH_MAMBA,
  199. LLM_ARCH_XVERSE,
  200. LLM_ARCH_COMMAND_R,
  201. LLM_ARCH_DBRX,
  202. LLM_ARCH_OLMO,
  203. LLM_ARCH_UNKNOWN,
  204. };
  205. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  206. { LLM_ARCH_LLAMA, "llama" },
  207. { LLM_ARCH_FALCON, "falcon" },
  208. { LLM_ARCH_GROK, "grok" },
  209. { LLM_ARCH_GPT2, "gpt2" },
  210. { LLM_ARCH_GPTJ, "gptj" },
  211. { LLM_ARCH_GPTNEOX, "gptneox" },
  212. { LLM_ARCH_MPT, "mpt" },
  213. { LLM_ARCH_BAICHUAN, "baichuan" },
  214. { LLM_ARCH_STARCODER, "starcoder" },
  215. { LLM_ARCH_REFACT, "refact" },
  216. { LLM_ARCH_BERT, "bert" },
  217. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  218. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  219. { LLM_ARCH_BLOOM, "bloom" },
  220. { LLM_ARCH_STABLELM, "stablelm" },
  221. { LLM_ARCH_QWEN, "qwen" },
  222. { LLM_ARCH_QWEN2, "qwen2" },
  223. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  224. { LLM_ARCH_PHI2, "phi2" },
  225. { LLM_ARCH_PHI3, "phi3" },
  226. { LLM_ARCH_PLAMO, "plamo" },
  227. { LLM_ARCH_CODESHELL, "codeshell" },
  228. { LLM_ARCH_ORION, "orion" },
  229. { LLM_ARCH_INTERNLM2, "internlm2" },
  230. { LLM_ARCH_MINICPM, "minicpm" },
  231. { LLM_ARCH_GEMMA, "gemma" },
  232. { LLM_ARCH_STARCODER2, "starcoder2" },
  233. { LLM_ARCH_MAMBA, "mamba" },
  234. { LLM_ARCH_XVERSE, "xverse" },
  235. { LLM_ARCH_COMMAND_R, "command-r" },
  236. { LLM_ARCH_DBRX, "dbrx" },
  237. { LLM_ARCH_OLMO, "olmo" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_USE_PARALLEL_RESIDUAL,
  258. LLM_KV_TENSOR_DATA_LAYOUT,
  259. LLM_KV_EXPERT_COUNT,
  260. LLM_KV_EXPERT_USED_COUNT,
  261. LLM_KV_POOLING_TYPE,
  262. LLM_KV_LOGIT_SCALE,
  263. LLM_KV_ATTENTION_HEAD_COUNT,
  264. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  265. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  266. LLM_KV_ATTENTION_CLAMP_KQV,
  267. LLM_KV_ATTENTION_KEY_LENGTH,
  268. LLM_KV_ATTENTION_VALUE_LENGTH,
  269. LLM_KV_ATTENTION_LAYERNORM_EPS,
  270. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  271. LLM_KV_ATTENTION_CAUSAL,
  272. LLM_KV_ROPE_DIMENSION_COUNT,
  273. LLM_KV_ROPE_FREQ_BASE,
  274. LLM_KV_ROPE_SCALE_LINEAR,
  275. LLM_KV_ROPE_SCALING_TYPE,
  276. LLM_KV_ROPE_SCALING_FACTOR,
  277. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  278. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  279. LLM_KV_ROPE_SCALING_FINETUNED,
  280. LLM_KV_SPLIT_NO,
  281. LLM_KV_SPLIT_COUNT,
  282. LLM_KV_SPLIT_TENSORS_COUNT,
  283. LLM_KV_SSM_INNER_SIZE,
  284. LLM_KV_SSM_CONV_KERNEL,
  285. LLM_KV_SSM_STATE_SIZE,
  286. LLM_KV_SSM_TIME_STEP_RANK,
  287. LLM_KV_TOKENIZER_MODEL,
  288. LLM_KV_TOKENIZER_PRE,
  289. LLM_KV_TOKENIZER_LIST,
  290. LLM_KV_TOKENIZER_TOKEN_TYPE,
  291. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  292. LLM_KV_TOKENIZER_SCORES,
  293. LLM_KV_TOKENIZER_MERGES,
  294. LLM_KV_TOKENIZER_BOS_ID,
  295. LLM_KV_TOKENIZER_EOS_ID,
  296. LLM_KV_TOKENIZER_UNK_ID,
  297. LLM_KV_TOKENIZER_SEP_ID,
  298. LLM_KV_TOKENIZER_PAD_ID,
  299. LLM_KV_TOKENIZER_CLS_ID,
  300. LLM_KV_TOKENIZER_MASK_ID,
  301. LLM_KV_TOKENIZER_ADD_BOS,
  302. LLM_KV_TOKENIZER_ADD_EOS,
  303. LLM_KV_TOKENIZER_ADD_PREFIX,
  304. LLM_KV_TOKENIZER_HF_JSON,
  305. LLM_KV_TOKENIZER_RWKV,
  306. LLM_KV_TOKENIZER_PREFIX_ID,
  307. LLM_KV_TOKENIZER_SUFFIX_ID,
  308. LLM_KV_TOKENIZER_MIDDLE_ID,
  309. LLM_KV_TOKENIZER_EOT_ID,
  310. };
  311. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  312. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  313. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  314. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  315. { LLM_KV_GENERAL_NAME, "general.name" },
  316. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  317. { LLM_KV_GENERAL_VERSION, "general.version" },
  318. { LLM_KV_GENERAL_URL, "general.url" },
  319. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  320. { LLM_KV_GENERAL_LICENSE, "general.license" },
  321. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  322. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  323. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  324. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  325. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  326. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  327. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  328. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  329. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  330. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  331. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  332. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  333. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  334. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  335. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  336. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  337. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  338. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  339. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  340. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  341. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  342. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  343. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  344. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  345. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  346. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  347. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  348. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  349. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  350. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  351. { LLM_KV_SPLIT_NO, "split.no" },
  352. { LLM_KV_SPLIT_COUNT, "split.count" },
  353. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  354. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  355. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  356. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  357. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  358. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  359. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  360. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  361. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  362. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  363. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  364. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  365. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  366. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  367. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  368. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  369. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  370. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  371. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  372. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  373. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  374. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  375. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  376. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  377. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  378. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  379. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  380. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  381. };
  382. struct LLM_KV {
  383. LLM_KV(llm_arch arch) : arch(arch) {}
  384. llm_arch arch;
  385. std::string operator()(llm_kv kv) const {
  386. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  387. }
  388. };
  389. enum llm_tensor {
  390. LLM_TENSOR_TOKEN_EMBD,
  391. LLM_TENSOR_TOKEN_EMBD_NORM,
  392. LLM_TENSOR_TOKEN_TYPES,
  393. LLM_TENSOR_POS_EMBD,
  394. LLM_TENSOR_OUTPUT,
  395. LLM_TENSOR_OUTPUT_NORM,
  396. LLM_TENSOR_ROPE_FREQS,
  397. LLM_TENSOR_ROPE_FACTORS_LONG,
  398. LLM_TENSOR_ROPE_FACTORS_SHORT,
  399. LLM_TENSOR_ATTN_Q,
  400. LLM_TENSOR_ATTN_K,
  401. LLM_TENSOR_ATTN_V,
  402. LLM_TENSOR_ATTN_QKV,
  403. LLM_TENSOR_ATTN_OUT,
  404. LLM_TENSOR_ATTN_NORM,
  405. LLM_TENSOR_ATTN_NORM_2,
  406. LLM_TENSOR_ATTN_OUT_NORM,
  407. LLM_TENSOR_ATTN_ROT_EMBD,
  408. LLM_TENSOR_FFN_GATE_INP,
  409. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  410. LLM_TENSOR_FFN_NORM,
  411. LLM_TENSOR_FFN_GATE,
  412. LLM_TENSOR_FFN_DOWN,
  413. LLM_TENSOR_FFN_UP,
  414. LLM_TENSOR_FFN_ACT,
  415. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  416. LLM_TENSOR_FFN_GATE_EXP,
  417. LLM_TENSOR_FFN_UP_EXP,
  418. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  419. LLM_TENSOR_FFN_GATE_EXPS,
  420. LLM_TENSOR_FFN_UP_EXPS,
  421. LLM_TENSOR_FFN_DOWN_SHEXP,
  422. LLM_TENSOR_FFN_GATE_SHEXP,
  423. LLM_TENSOR_FFN_UP_SHEXP,
  424. LLM_TENSOR_ATTN_Q_NORM,
  425. LLM_TENSOR_ATTN_K_NORM,
  426. LLM_TENSOR_LAYER_OUT_NORM,
  427. LLM_TENSOR_SSM_IN,
  428. LLM_TENSOR_SSM_CONV1D,
  429. LLM_TENSOR_SSM_X,
  430. LLM_TENSOR_SSM_DT,
  431. LLM_TENSOR_SSM_A,
  432. LLM_TENSOR_SSM_D,
  433. LLM_TENSOR_SSM_OUT,
  434. };
  435. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  436. {
  437. LLM_ARCH_LLAMA,
  438. {
  439. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  440. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  441. { LLM_TENSOR_OUTPUT, "output" },
  442. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  443. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  444. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  445. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  446. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  447. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  448. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  449. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  450. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  451. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  452. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  453. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  454. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  455. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  456. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  457. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  458. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  459. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  460. },
  461. },
  462. {
  463. LLM_ARCH_BAICHUAN,
  464. {
  465. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  466. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  467. { LLM_TENSOR_OUTPUT, "output" },
  468. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  469. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  470. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  471. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  472. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  473. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  474. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  475. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  476. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  477. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  478. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  479. },
  480. },
  481. {
  482. LLM_ARCH_FALCON,
  483. {
  484. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  485. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  486. { LLM_TENSOR_OUTPUT, "output" },
  487. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  488. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  489. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  490. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  491. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  492. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  493. },
  494. },
  495. {
  496. LLM_ARCH_GROK,
  497. {
  498. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  499. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  500. { LLM_TENSOR_OUTPUT, "output" },
  501. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  502. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  503. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  504. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  505. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  506. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  507. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  508. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  509. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  510. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  511. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  512. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  513. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  514. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  515. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  516. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  517. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  518. },
  519. },
  520. {
  521. LLM_ARCH_GPT2,
  522. {
  523. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  524. { LLM_TENSOR_POS_EMBD, "position_embd" },
  525. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  526. { LLM_TENSOR_OUTPUT, "output" },
  527. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  528. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  529. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  530. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  531. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  532. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  533. },
  534. },
  535. {
  536. LLM_ARCH_GPTJ,
  537. {
  538. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  539. },
  540. },
  541. {
  542. LLM_ARCH_GPTNEOX,
  543. {
  544. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  545. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  546. { LLM_TENSOR_OUTPUT, "output" },
  547. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  548. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  549. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  550. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  551. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  552. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  553. },
  554. },
  555. {
  556. LLM_ARCH_MPT,
  557. {
  558. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  559. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  560. { LLM_TENSOR_OUTPUT, "output"},
  561. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  562. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  563. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  564. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  565. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  566. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  567. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  568. { LLM_TENSOR_POS_EMBD, "position_embd" },
  569. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  570. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  571. },
  572. },
  573. {
  574. LLM_ARCH_STARCODER,
  575. {
  576. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  577. { LLM_TENSOR_POS_EMBD, "position_embd" },
  578. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  579. { LLM_TENSOR_OUTPUT, "output" },
  580. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  581. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  582. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  583. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  584. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  585. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  586. },
  587. },
  588. {
  589. LLM_ARCH_REFACT,
  590. {
  591. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  592. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  593. { LLM_TENSOR_OUTPUT, "output" },
  594. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  595. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  596. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  597. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  598. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  599. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  600. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  601. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  602. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  603. },
  604. },
  605. {
  606. LLM_ARCH_BERT,
  607. {
  608. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  609. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  610. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  611. { LLM_TENSOR_POS_EMBD, "position_embd" },
  612. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  613. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  614. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  615. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  616. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  617. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  618. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  619. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  620. },
  621. },
  622. {
  623. LLM_ARCH_NOMIC_BERT,
  624. {
  625. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  626. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  627. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  628. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  629. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  630. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  631. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  632. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  633. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  634. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  635. },
  636. },
  637. {
  638. LLM_ARCH_JINA_BERT_V2,
  639. {
  640. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  641. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  642. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  643. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  644. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  645. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  646. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  647. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  648. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  649. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  650. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  651. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  652. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  653. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  654. },
  655. },
  656. {
  657. LLM_ARCH_BLOOM,
  658. {
  659. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  660. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  661. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  662. { LLM_TENSOR_OUTPUT, "output" },
  663. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  664. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  665. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  666. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  667. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  668. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  669. },
  670. },
  671. {
  672. LLM_ARCH_STABLELM,
  673. {
  674. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  675. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  676. { LLM_TENSOR_OUTPUT, "output" },
  677. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  678. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  679. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  680. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  681. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  682. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  683. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  684. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  685. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  686. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  687. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  688. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  689. },
  690. },
  691. {
  692. LLM_ARCH_QWEN,
  693. {
  694. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  695. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  696. { LLM_TENSOR_OUTPUT, "output" },
  697. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  698. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  699. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  700. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  701. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  702. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  703. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  704. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  705. },
  706. },
  707. {
  708. LLM_ARCH_QWEN2,
  709. {
  710. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  711. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  712. { LLM_TENSOR_OUTPUT, "output" },
  713. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  714. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  715. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  716. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  717. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  718. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  719. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  720. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  721. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  722. },
  723. },
  724. {
  725. LLM_ARCH_QWEN2MOE,
  726. {
  727. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  728. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  729. { LLM_TENSOR_OUTPUT, "output" },
  730. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  731. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  732. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  733. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  734. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  735. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  736. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  737. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  738. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  739. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  740. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  741. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  742. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  743. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  744. },
  745. },
  746. {
  747. LLM_ARCH_PHI2,
  748. {
  749. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  750. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  751. { LLM_TENSOR_OUTPUT, "output" },
  752. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  753. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  754. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  755. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  756. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  757. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  758. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  759. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  760. },
  761. },
  762. {
  763. LLM_ARCH_PHI3,
  764. {
  765. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  766. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  767. { LLM_TENSOR_OUTPUT, "output" },
  768. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  769. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  770. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  771. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  772. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  773. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  774. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  775. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  776. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  777. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  778. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  779. },
  780. },
  781. {
  782. LLM_ARCH_PLAMO,
  783. {
  784. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  785. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  786. { LLM_TENSOR_OUTPUT, "output" },
  787. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  788. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  789. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  790. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  791. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  792. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  793. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  794. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  795. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  796. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  797. },
  798. },
  799. {
  800. LLM_ARCH_CODESHELL,
  801. {
  802. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  803. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  804. { LLM_TENSOR_OUTPUT, "output" },
  805. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  806. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  807. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  808. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  809. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  810. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  811. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  812. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  813. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  814. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  815. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  816. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  817. },
  818. },
  819. {
  820. LLM_ARCH_ORION,
  821. {
  822. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  823. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  824. { LLM_TENSOR_OUTPUT, "output" },
  825. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  826. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  827. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  828. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  829. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  830. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  831. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  832. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  833. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  834. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  835. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  836. },
  837. },
  838. {
  839. LLM_ARCH_INTERNLM2,
  840. {
  841. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  842. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  843. { LLM_TENSOR_OUTPUT, "output" },
  844. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  845. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  846. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  847. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  848. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  849. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  850. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  851. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  852. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  853. },
  854. },
  855. {
  856. LLM_ARCH_MINICPM,
  857. {
  858. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  859. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  860. { LLM_TENSOR_OUTPUT, "output" },
  861. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  862. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  863. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  864. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  865. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  866. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  867. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  868. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  869. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  870. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  871. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  872. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  873. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  874. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  875. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  876. },
  877. },
  878. {
  879. LLM_ARCH_GEMMA,
  880. {
  881. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  882. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  883. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  884. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  885. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  886. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  887. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  888. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  889. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  890. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  891. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  892. },
  893. },
  894. {
  895. LLM_ARCH_STARCODER2,
  896. {
  897. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  898. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  899. { LLM_TENSOR_OUTPUT, "output" },
  900. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  901. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  902. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  903. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  904. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  905. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  906. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  907. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  908. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  909. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  910. },
  911. },
  912. {
  913. LLM_ARCH_MAMBA,
  914. {
  915. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  916. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  917. { LLM_TENSOR_OUTPUT, "output" },
  918. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  919. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  920. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  921. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  922. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  923. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  924. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  925. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  926. },
  927. },
  928. {
  929. LLM_ARCH_XVERSE,
  930. {
  931. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  932. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  933. { LLM_TENSOR_OUTPUT, "output" },
  934. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  935. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  936. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  937. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  938. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  939. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  940. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  941. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  942. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  943. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  944. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  945. },
  946. },
  947. {
  948. LLM_ARCH_COMMAND_R,
  949. {
  950. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  951. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  952. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  953. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  954. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  955. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  956. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  957. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  958. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  959. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  960. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  961. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  962. },
  963. },
  964. {
  965. LLM_ARCH_DBRX,
  966. {
  967. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  968. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  969. { LLM_TENSOR_OUTPUT, "output" },
  970. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  971. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  972. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  973. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  974. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  975. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  976. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  977. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  978. },
  979. },
  980. {
  981. LLM_ARCH_OLMO,
  982. {
  983. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  984. { LLM_TENSOR_OUTPUT, "output" },
  985. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  986. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  987. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  988. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  989. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  990. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  991. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  992. },
  993. },
  994. {
  995. LLM_ARCH_UNKNOWN,
  996. {
  997. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  998. },
  999. },
  1000. };
  1001. static llm_arch llm_arch_from_string(const std::string & name) {
  1002. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1003. if (kv.second == name) {
  1004. return kv.first;
  1005. }
  1006. }
  1007. return LLM_ARCH_UNKNOWN;
  1008. }
  1009. // helper to handle gguf constants
  1010. // usage:
  1011. //
  1012. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1013. //
  1014. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1015. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1016. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1017. //
  1018. struct LLM_TN {
  1019. LLM_TN(llm_arch arch) : arch(arch) {}
  1020. llm_arch arch;
  1021. std::string operator()(llm_tensor tensor) const {
  1022. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1023. return "__missing__";
  1024. }
  1025. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1026. }
  1027. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1028. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1029. return "__missing__";
  1030. }
  1031. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1032. }
  1033. std::string operator()(llm_tensor tensor, int bid) const {
  1034. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1035. return "__missing__";
  1036. }
  1037. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1038. }
  1039. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1040. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1041. return "__missing__";
  1042. }
  1043. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1044. }
  1045. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1046. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1047. return "__missing__";
  1048. }
  1049. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1050. }
  1051. };
  1052. //
  1053. // gguf helpers
  1054. //
  1055. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1056. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1057. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1058. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1059. };
  1060. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1061. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1062. if (kv.second == name) {
  1063. return (llama_rope_scaling_type) kv.first;
  1064. }
  1065. }
  1066. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1067. }
  1068. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1069. switch (type) {
  1070. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1071. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1072. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1073. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1074. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1075. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1076. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1077. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1078. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1079. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1080. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1081. default: return format("unknown type %d", type);
  1082. }
  1083. }
  1084. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1085. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1086. switch (type) {
  1087. case GGUF_TYPE_STRING:
  1088. return gguf_get_val_str(ctx_gguf, i);
  1089. case GGUF_TYPE_ARRAY:
  1090. {
  1091. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1092. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1093. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1094. std::stringstream ss;
  1095. ss << "[";
  1096. for (int j = 0; j < arr_n; j++) {
  1097. if (arr_type == GGUF_TYPE_STRING) {
  1098. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1099. // escape quotes
  1100. replace_all(val, "\\", "\\\\");
  1101. replace_all(val, "\"", "\\\"");
  1102. ss << '"' << val << '"';
  1103. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1104. ss << "???";
  1105. } else {
  1106. ss << gguf_data_to_str(arr_type, data, j);
  1107. }
  1108. if (j < arr_n - 1) {
  1109. ss << ", ";
  1110. }
  1111. }
  1112. ss << "]";
  1113. return ss.str();
  1114. }
  1115. default:
  1116. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1117. }
  1118. }
  1119. //
  1120. // llama helpers
  1121. //
  1122. #if defined(_WIN32)
  1123. static std::string llama_format_win_err(DWORD err) {
  1124. LPSTR buf;
  1125. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1126. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1127. if (!size) {
  1128. return "FormatMessageA failed";
  1129. }
  1130. std::string ret(buf, size);
  1131. LocalFree(buf);
  1132. return ret;
  1133. }
  1134. #endif
  1135. template <typename T>
  1136. struct no_init {
  1137. T value;
  1138. no_init() { /* do nothing */ }
  1139. };
  1140. struct llama_file {
  1141. // use FILE * so we don't have to re-open the file to mmap
  1142. FILE * fp;
  1143. size_t size;
  1144. llama_file(const char * fname, const char * mode) {
  1145. fp = ggml_fopen(fname, mode);
  1146. if (fp == NULL) {
  1147. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1148. }
  1149. seek(0, SEEK_END);
  1150. size = tell();
  1151. seek(0, SEEK_SET);
  1152. }
  1153. size_t tell() const {
  1154. #ifdef _WIN32
  1155. __int64 ret = _ftelli64(fp);
  1156. #else
  1157. long ret = std::ftell(fp);
  1158. #endif
  1159. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1160. return (size_t) ret;
  1161. }
  1162. void seek(size_t offset, int whence) const {
  1163. #ifdef _WIN32
  1164. int ret = _fseeki64(fp, (__int64) offset, whence);
  1165. #else
  1166. int ret = std::fseek(fp, (long) offset, whence);
  1167. #endif
  1168. GGML_ASSERT(ret == 0); // same
  1169. }
  1170. void read_raw(void * ptr, size_t len) const {
  1171. if (len == 0) {
  1172. return;
  1173. }
  1174. errno = 0;
  1175. std::size_t ret = std::fread(ptr, len, 1, fp);
  1176. if (ferror(fp)) {
  1177. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1178. }
  1179. if (ret != 1) {
  1180. throw std::runtime_error("unexpectedly reached end of file");
  1181. }
  1182. }
  1183. uint32_t read_u32() const {
  1184. uint32_t ret;
  1185. read_raw(&ret, sizeof(ret));
  1186. return ret;
  1187. }
  1188. void write_raw(const void * ptr, size_t len) const {
  1189. if (len == 0) {
  1190. return;
  1191. }
  1192. errno = 0;
  1193. size_t ret = std::fwrite(ptr, len, 1, fp);
  1194. if (ret != 1) {
  1195. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1196. }
  1197. }
  1198. void write_u32(std::uint32_t val) const {
  1199. write_raw(&val, sizeof(val));
  1200. }
  1201. ~llama_file() {
  1202. if (fp) {
  1203. std::fclose(fp);
  1204. }
  1205. }
  1206. };
  1207. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1208. struct llama_mmap {
  1209. void * addr;
  1210. size_t size;
  1211. llama_mmap(const llama_mmap &) = delete;
  1212. #ifdef _POSIX_MAPPED_FILES
  1213. static constexpr bool SUPPORTED = true;
  1214. // list of mapped fragments (first_offset, last_offset)
  1215. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1216. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1217. size = file->size;
  1218. int fd = fileno(file->fp);
  1219. int flags = MAP_SHARED;
  1220. // prefetch/readahead impairs performance on NUMA systems
  1221. if (numa) { prefetch = 0; }
  1222. #ifdef __linux__
  1223. // advise the kernel to read the file sequentially (increases readahead)
  1224. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1225. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1226. strerror(errno));
  1227. }
  1228. if (prefetch) { flags |= MAP_POPULATE; }
  1229. #endif
  1230. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1231. if (addr == MAP_FAILED) { // NOLINT
  1232. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1233. }
  1234. if (prefetch > 0) {
  1235. // advise the kernel to preload the mapped memory
  1236. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1237. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1238. strerror(errno));
  1239. }
  1240. }
  1241. if (numa) {
  1242. // advise the kernel not to use readahead
  1243. // (because the next page might not belong on the same node)
  1244. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1245. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1246. strerror(errno));
  1247. }
  1248. }
  1249. // initialize list of mapped_fragments
  1250. mapped_fragments.emplace_back(0, file->size);
  1251. }
  1252. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1253. // align first to the next page
  1254. size_t offset_in_page = *first & (page_size - 1);
  1255. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1256. *first += offset_to_page;
  1257. // align last to the previous page
  1258. *last = *last & ~(page_size - 1);
  1259. if (*last <= *first) {
  1260. *last = *first;
  1261. }
  1262. }
  1263. // partially unmap the file in the range [first, last)
  1264. void unmap_fragment(size_t first, size_t last) {
  1265. // note: this function must not be called multiple times with overlapping ranges
  1266. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1267. int page_size = sysconf(_SC_PAGESIZE);
  1268. align_range(&first, &last, page_size);
  1269. size_t len = last - first;
  1270. if (len == 0) {
  1271. return;
  1272. }
  1273. GGML_ASSERT(first % page_size == 0);
  1274. GGML_ASSERT(last % page_size == 0);
  1275. GGML_ASSERT(last > first);
  1276. void * next_page_start = (uint8_t *) addr + first;
  1277. // unmap the range
  1278. if (munmap(next_page_start, len)) {
  1279. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1280. }
  1281. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1282. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1283. for (const auto & frag : mapped_fragments) {
  1284. if (frag.first < first && frag.second > last) {
  1285. // the range is in the middle of the fragment, split it
  1286. new_mapped_fragments.emplace_back(frag.first, first);
  1287. new_mapped_fragments.emplace_back(last, frag.second);
  1288. } else if (frag.first < first && frag.second > first) {
  1289. // the range starts in the middle of the fragment
  1290. new_mapped_fragments.emplace_back(frag.first, first);
  1291. } else if (frag.first < last && frag.second > last) {
  1292. // the range ends in the middle of the fragment
  1293. new_mapped_fragments.emplace_back(last, frag.second);
  1294. } else if (frag.first >= first && frag.second <= last) {
  1295. // the range covers the entire fragment
  1296. } else {
  1297. // the range is outside the fragment
  1298. new_mapped_fragments.push_back(frag);
  1299. }
  1300. }
  1301. mapped_fragments = std::move(new_mapped_fragments);
  1302. }
  1303. ~llama_mmap() {
  1304. for (const auto & frag : mapped_fragments) {
  1305. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1306. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1307. }
  1308. }
  1309. }
  1310. #elif defined(_WIN32)
  1311. static constexpr bool SUPPORTED = true;
  1312. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1313. GGML_UNUSED(numa);
  1314. size = file->size;
  1315. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1316. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1317. if (hMapping == NULL) {
  1318. DWORD error = GetLastError();
  1319. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1320. }
  1321. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1322. DWORD error = GetLastError();
  1323. CloseHandle(hMapping);
  1324. if (addr == NULL) {
  1325. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1326. }
  1327. if (prefetch > 0) {
  1328. #if _WIN32_WINNT >= 0x602
  1329. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1330. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1331. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1332. // may fail on pre-Windows 8 systems
  1333. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1334. if (pPrefetchVirtualMemory) {
  1335. // advise the kernel to preload the mapped memory
  1336. WIN32_MEMORY_RANGE_ENTRY range;
  1337. range.VirtualAddress = addr;
  1338. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1339. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1340. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1341. llama_format_win_err(GetLastError()).c_str());
  1342. }
  1343. }
  1344. #else
  1345. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1346. #endif
  1347. }
  1348. }
  1349. void unmap_fragment(size_t first, size_t last) {
  1350. // not supported
  1351. GGML_UNUSED(first);
  1352. GGML_UNUSED(last);
  1353. }
  1354. ~llama_mmap() {
  1355. if (!UnmapViewOfFile(addr)) {
  1356. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1357. llama_format_win_err(GetLastError()).c_str());
  1358. }
  1359. }
  1360. #else
  1361. static constexpr bool SUPPORTED = false;
  1362. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1363. GGML_UNUSED(file);
  1364. GGML_UNUSED(prefetch);
  1365. GGML_UNUSED(numa);
  1366. throw std::runtime_error("mmap not supported");
  1367. }
  1368. void unmap_fragment(size_t first, size_t last) {
  1369. GGML_UNUSED(first);
  1370. GGML_UNUSED(last);
  1371. throw std::runtime_error("mmap not supported");
  1372. }
  1373. #endif
  1374. };
  1375. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1376. // Represents some region of memory being locked using mlock or VirtualLock;
  1377. // will automatically unlock on destruction.
  1378. struct llama_mlock {
  1379. void * addr = NULL;
  1380. size_t size = 0;
  1381. bool failed_already = false;
  1382. llama_mlock() {}
  1383. llama_mlock(const llama_mlock &) = delete;
  1384. ~llama_mlock() {
  1385. if (size) {
  1386. raw_unlock(addr, size);
  1387. }
  1388. }
  1389. void init(void * ptr) {
  1390. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1391. addr = ptr;
  1392. }
  1393. void grow_to(size_t target_size) {
  1394. GGML_ASSERT(addr);
  1395. if (failed_already) {
  1396. return;
  1397. }
  1398. size_t granularity = lock_granularity();
  1399. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1400. if (target_size > size) {
  1401. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1402. size = target_size;
  1403. } else {
  1404. failed_already = true;
  1405. }
  1406. }
  1407. }
  1408. #ifdef _POSIX_MEMLOCK_RANGE
  1409. static constexpr bool SUPPORTED = true;
  1410. static size_t lock_granularity() {
  1411. return (size_t) sysconf(_SC_PAGESIZE);
  1412. }
  1413. #ifdef __APPLE__
  1414. #define MLOCK_SUGGESTION \
  1415. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1416. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1417. #else
  1418. #define MLOCK_SUGGESTION \
  1419. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1420. #endif
  1421. bool raw_lock(const void * addr, size_t size) const {
  1422. if (!mlock(addr, size)) {
  1423. return true;
  1424. }
  1425. char* errmsg = std::strerror(errno);
  1426. bool suggest = (errno == ENOMEM);
  1427. // Check if the resource limit is fine after all
  1428. struct rlimit lock_limit;
  1429. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1430. suggest = false;
  1431. }
  1432. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1433. suggest = false;
  1434. }
  1435. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1436. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1437. return false;
  1438. }
  1439. #undef MLOCK_SUGGESTION
  1440. static void raw_unlock(void * addr, size_t size) {
  1441. if (munlock(addr, size)) {
  1442. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1443. }
  1444. }
  1445. #elif defined(_WIN32)
  1446. static constexpr bool SUPPORTED = true;
  1447. static size_t lock_granularity() {
  1448. SYSTEM_INFO si;
  1449. GetSystemInfo(&si);
  1450. return (size_t) si.dwPageSize;
  1451. }
  1452. bool raw_lock(void * ptr, size_t len) const {
  1453. for (int tries = 1; ; tries++) {
  1454. if (VirtualLock(ptr, len)) {
  1455. return true;
  1456. }
  1457. if (tries == 2) {
  1458. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1459. len, size, llama_format_win_err(GetLastError()).c_str());
  1460. return false;
  1461. }
  1462. // It failed but this was only the first try; increase the working
  1463. // set size and try again.
  1464. SIZE_T min_ws_size, max_ws_size;
  1465. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1466. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1467. llama_format_win_err(GetLastError()).c_str());
  1468. return false;
  1469. }
  1470. // Per MSDN: "The maximum number of pages that a process can lock
  1471. // is equal to the number of pages in its minimum working set minus
  1472. // a small overhead."
  1473. // Hopefully a megabyte is enough overhead:
  1474. size_t increment = len + 1048576;
  1475. // The minimum must be <= the maximum, so we need to increase both:
  1476. min_ws_size += increment;
  1477. max_ws_size += increment;
  1478. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1479. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1480. llama_format_win_err(GetLastError()).c_str());
  1481. return false;
  1482. }
  1483. }
  1484. }
  1485. static void raw_unlock(void * ptr, size_t len) {
  1486. if (!VirtualUnlock(ptr, len)) {
  1487. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1488. llama_format_win_err(GetLastError()).c_str());
  1489. }
  1490. }
  1491. #else
  1492. static constexpr bool SUPPORTED = false;
  1493. static size_t lock_granularity() {
  1494. return (size_t) 65536;
  1495. }
  1496. bool raw_lock(const void * addr, size_t len) const {
  1497. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1498. return false;
  1499. }
  1500. static void raw_unlock(const void * addr, size_t len) {}
  1501. #endif
  1502. };
  1503. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1504. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1505. std::vector<char> result(8, 0);
  1506. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1507. if (n_tokens < 0) {
  1508. result.resize(-n_tokens);
  1509. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1510. GGML_ASSERT(check == -n_tokens);
  1511. }
  1512. else {
  1513. result.resize(n_tokens);
  1514. }
  1515. return std::string(result.data(), result.size());
  1516. }
  1517. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1518. ggml_backend_buffer_type_t buft = nullptr;
  1519. #if defined(GGML_USE_CUDA)
  1520. // host buffers should only be used when data is expected to be copied to/from the GPU
  1521. if (host_buffer) {
  1522. buft = ggml_backend_cuda_host_buffer_type();
  1523. }
  1524. #elif defined(GGML_USE_SYCL)
  1525. if (host_buffer) {
  1526. buft = ggml_backend_sycl_host_buffer_type();
  1527. }
  1528. #elif defined(GGML_USE_CPU_HBM)
  1529. buft = ggml_backend_cpu_hbm_buffer_type();
  1530. #elif defined(GGML_USE_VULKAN)
  1531. if (host_buffer) {
  1532. buft = ggml_backend_vk_host_buffer_type();
  1533. }
  1534. #endif
  1535. if (buft == nullptr) {
  1536. buft = ggml_backend_cpu_buffer_type();
  1537. }
  1538. return buft;
  1539. GGML_UNUSED(host_buffer);
  1540. }
  1541. //
  1542. // globals
  1543. //
  1544. struct llama_state {
  1545. llama_state() {
  1546. #ifdef GGML_USE_METAL
  1547. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1548. #elif defined(GGML_USE_CUDA)
  1549. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1550. #endif
  1551. }
  1552. // We save the log callback globally
  1553. ggml_log_callback log_callback = llama_log_callback_default;
  1554. void * log_callback_user_data = nullptr;
  1555. };
  1556. static llama_state g_state;
  1557. // available llama models
  1558. enum e_model {
  1559. MODEL_UNKNOWN,
  1560. MODEL_17M,
  1561. MODEL_22M,
  1562. MODEL_33M,
  1563. MODEL_109M,
  1564. MODEL_137M,
  1565. MODEL_335M,
  1566. MODEL_0_5B,
  1567. MODEL_1B,
  1568. MODEL_2B,
  1569. MODEL_3B,
  1570. MODEL_4B,
  1571. MODEL_7B,
  1572. MODEL_8B,
  1573. MODEL_12B,
  1574. MODEL_13B,
  1575. MODEL_14B,
  1576. MODEL_15B,
  1577. MODEL_20B,
  1578. MODEL_30B,
  1579. MODEL_34B,
  1580. MODEL_35B,
  1581. MODEL_40B,
  1582. MODEL_65B,
  1583. MODEL_70B,
  1584. MODEL_314B,
  1585. MODEL_SMALL,
  1586. MODEL_MEDIUM,
  1587. MODEL_LARGE,
  1588. MODEL_XL,
  1589. MODEL_A2_7B,
  1590. MODEL_8x7B,
  1591. MODEL_8x22B,
  1592. MODEL_16x12B,
  1593. };
  1594. static const size_t kiB = 1024;
  1595. static const size_t MiB = 1024*kiB;
  1596. static const size_t GiB = 1024*MiB;
  1597. struct llama_hparams {
  1598. bool vocab_only;
  1599. bool rope_finetuned;
  1600. uint32_t n_vocab;
  1601. uint32_t n_ctx_train; // context size the model was trained on
  1602. uint32_t n_embd;
  1603. uint32_t n_head;
  1604. uint32_t n_head_kv;
  1605. uint32_t n_layer;
  1606. uint32_t n_rot;
  1607. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1608. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1609. uint32_t n_ff;
  1610. uint32_t n_expert = 0;
  1611. uint32_t n_expert_used = 0;
  1612. uint32_t n_vocab_type = 0; // for BERT-style token types
  1613. float f_norm_eps;
  1614. float f_norm_rms_eps;
  1615. float rope_attn_factor = 1.0f;
  1616. float rope_freq_base_train;
  1617. float rope_freq_scale_train;
  1618. uint32_t n_yarn_orig_ctx;
  1619. // for State Space Models
  1620. uint32_t ssm_d_conv = 0;
  1621. uint32_t ssm_d_inner = 0;
  1622. uint32_t ssm_d_state = 0;
  1623. uint32_t ssm_dt_rank = 0;
  1624. float f_clamp_kqv = 0.0f;
  1625. float f_max_alibi_bias = 0.0f;
  1626. float f_logit_scale = 0.0f;
  1627. bool causal_attn = true;
  1628. bool use_alibi = false;
  1629. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1630. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1631. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1632. bool operator!=(const llama_hparams & other) const {
  1633. if (this->vocab_only != other.vocab_only) return true;
  1634. if (this->n_vocab != other.n_vocab) return true;
  1635. if (this->n_ctx_train != other.n_ctx_train) return true;
  1636. if (this->n_embd != other.n_embd) return true;
  1637. if (this->n_head != other.n_head) return true;
  1638. if (this->n_head_kv != other.n_head_kv) return true;
  1639. if (this->n_layer != other.n_layer) return true;
  1640. if (this->n_rot != other.n_rot) return true;
  1641. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1642. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1643. if (this->n_ff != other.n_ff) return true;
  1644. if (this->n_expert != other.n_expert) return true;
  1645. if (this->n_expert_used != other.n_expert_used) return true;
  1646. if (this->rope_finetuned != other.rope_finetuned) return true;
  1647. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1648. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1649. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1650. if (this->ssm_d_state != other.ssm_d_state) return true;
  1651. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1652. const float EPSILON = 1e-9f;
  1653. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1654. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1655. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1656. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1657. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1658. return false;
  1659. }
  1660. uint32_t n_gqa() const {
  1661. if (n_head_kv == 0) {
  1662. return 0;
  1663. }
  1664. return n_head/n_head_kv;
  1665. }
  1666. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1667. return n_embd_head_k * n_head_kv;
  1668. }
  1669. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1670. return n_embd_head_v * n_head_kv;
  1671. }
  1672. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1673. // corresponds to Mamba's conv_states size
  1674. // TODO: maybe support other convolution strides than 1
  1675. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1676. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1677. }
  1678. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1679. // corresponds to Mamba's ssm_states size
  1680. return ssm_d_state * ssm_d_inner;
  1681. }
  1682. };
  1683. struct llama_cparams {
  1684. uint32_t n_ctx; // context size used during inference
  1685. uint32_t n_batch;
  1686. uint32_t n_ubatch;
  1687. uint32_t n_seq_max;
  1688. uint32_t n_threads; // number of threads to use for generation
  1689. uint32_t n_threads_batch; // number of threads to use for batch processing
  1690. float rope_freq_base;
  1691. float rope_freq_scale;
  1692. uint32_t n_yarn_orig_ctx;
  1693. // These hyperparameters are not exposed in GGUF, because all
  1694. // existing YaRN models use the same values for them.
  1695. float yarn_ext_factor;
  1696. float yarn_attn_factor;
  1697. float yarn_beta_fast;
  1698. float yarn_beta_slow;
  1699. float defrag_thold;
  1700. bool embeddings;
  1701. bool causal_attn;
  1702. bool offload_kqv;
  1703. bool flash_attn;
  1704. enum llama_pooling_type pooling_type;
  1705. ggml_backend_sched_eval_callback cb_eval;
  1706. void * cb_eval_user_data;
  1707. };
  1708. struct llama_layer {
  1709. // normalization
  1710. struct ggml_tensor * attn_norm;
  1711. struct ggml_tensor * attn_norm_b;
  1712. struct ggml_tensor * attn_norm_2;
  1713. struct ggml_tensor * attn_norm_2_b;
  1714. struct ggml_tensor * attn_q_norm;
  1715. struct ggml_tensor * attn_q_norm_b;
  1716. struct ggml_tensor * attn_k_norm;
  1717. struct ggml_tensor * attn_k_norm_b;
  1718. struct ggml_tensor * attn_out_norm;
  1719. struct ggml_tensor * attn_out_norm_b;
  1720. // attention
  1721. struct ggml_tensor * wq;
  1722. struct ggml_tensor * wk;
  1723. struct ggml_tensor * wv;
  1724. struct ggml_tensor * wo;
  1725. struct ggml_tensor * wqkv;
  1726. // attention bias
  1727. struct ggml_tensor * bq;
  1728. struct ggml_tensor * bk;
  1729. struct ggml_tensor * bv;
  1730. struct ggml_tensor * bo;
  1731. struct ggml_tensor * bqkv;
  1732. // normalization
  1733. struct ggml_tensor * ffn_norm;
  1734. struct ggml_tensor * ffn_norm_b;
  1735. struct ggml_tensor * layer_out_norm;
  1736. struct ggml_tensor * layer_out_norm_b;
  1737. // ff
  1738. struct ggml_tensor * ffn_gate; // w1
  1739. struct ggml_tensor * ffn_down; // w2
  1740. struct ggml_tensor * ffn_up; // w3
  1741. // ff MoE
  1742. struct ggml_tensor * ffn_gate_inp;
  1743. struct ggml_tensor * ffn_gate_exps;
  1744. struct ggml_tensor * ffn_down_exps;
  1745. struct ggml_tensor * ffn_up_exps ;
  1746. // ff shared expert (shexp)
  1747. struct ggml_tensor * ffn_gate_inp_shexp;
  1748. struct ggml_tensor * ffn_gate_shexp;
  1749. struct ggml_tensor * ffn_down_shexp;
  1750. struct ggml_tensor * ffn_up_shexp;
  1751. // ff bias
  1752. struct ggml_tensor * ffn_down_b; // b2
  1753. struct ggml_tensor * ffn_up_b; // b3
  1754. struct ggml_tensor * ffn_act;
  1755. // mamba proj
  1756. struct ggml_tensor * ssm_in;
  1757. struct ggml_tensor * ssm_x;
  1758. struct ggml_tensor * ssm_dt;
  1759. struct ggml_tensor * ssm_out;
  1760. // mamba
  1761. struct ggml_tensor * ssm_conv1d;
  1762. struct ggml_tensor * ssm_a;
  1763. struct ggml_tensor * ssm_d;
  1764. // mamba bias
  1765. struct ggml_tensor * ssm_conv1d_b;
  1766. struct ggml_tensor * ssm_dt_b;
  1767. };
  1768. struct llama_kv_cell {
  1769. llama_pos pos = -1;
  1770. llama_pos delta = 0;
  1771. int32_t src = 0; // used by recurrent state models to copy states
  1772. std::set<llama_seq_id> seq_id;
  1773. bool has_seq_id(const llama_seq_id & id) const {
  1774. return seq_id.find(id) != seq_id.end();
  1775. }
  1776. bool is_empty() const {
  1777. return seq_id.empty();
  1778. }
  1779. bool is_same_seq(const llama_kv_cell & other) const {
  1780. return seq_id == other.seq_id;
  1781. }
  1782. };
  1783. // ring-buffer of cached KV data
  1784. struct llama_kv_cache {
  1785. bool has_shift = false;
  1786. bool do_defrag = false;
  1787. bool do_copy = false;
  1788. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1789. bool v_trans = true; // the value tensor is transposed
  1790. // Note: The value of head isn't only used to optimize searching
  1791. // for a free KV slot. llama_decode_internal also uses it, so it
  1792. // cannot be freely changed after a slot has been allocated.
  1793. uint32_t head = 0;
  1794. uint32_t size = 0;
  1795. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1796. // computed before each graph build
  1797. uint32_t n = 0;
  1798. ggml_type type_k = GGML_TYPE_F16;
  1799. ggml_type type_v = GGML_TYPE_F16;
  1800. std::vector<llama_kv_cell> cells;
  1801. std::vector<struct ggml_tensor *> k_l; // per layer
  1802. std::vector<struct ggml_tensor *> v_l;
  1803. std::vector<struct ggml_context *> ctxs;
  1804. std::vector<ggml_backend_buffer_t> bufs;
  1805. size_t total_size() const {
  1806. size_t size = 0;
  1807. for (ggml_backend_buffer_t buf : bufs) {
  1808. size += ggml_backend_buffer_get_size(buf);
  1809. }
  1810. return size;
  1811. }
  1812. ~llama_kv_cache() {
  1813. for (struct ggml_context * ctx : ctxs) {
  1814. ggml_free(ctx);
  1815. }
  1816. for (ggml_backend_buffer_t buf : bufs) {
  1817. ggml_backend_buffer_free(buf);
  1818. }
  1819. }
  1820. };
  1821. struct llama_control_vector {
  1822. std::vector<struct ggml_tensor *> tensors; // per layer
  1823. std::vector<struct ggml_context *> ctxs;
  1824. std::vector<ggml_backend_buffer_t> bufs;
  1825. int32_t layer_start = -1;
  1826. int32_t layer_end = -1;
  1827. ggml_tensor * tensor_for(int il) const {
  1828. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1829. return nullptr;
  1830. }
  1831. return tensors[il];
  1832. }
  1833. ~llama_control_vector() {
  1834. for (struct ggml_context * ctx : ctxs) {
  1835. ggml_free(ctx);
  1836. }
  1837. for (ggml_backend_buffer_t buf : bufs) {
  1838. ggml_backend_buffer_free(buf);
  1839. }
  1840. }
  1841. };
  1842. struct llama_vocab {
  1843. using id = int32_t;
  1844. using token = std::string;
  1845. using ttype = llama_token_type;
  1846. struct token_data {
  1847. token text;
  1848. float score;
  1849. ttype type;
  1850. };
  1851. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1852. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1853. std::unordered_map<token, id> token_to_id;
  1854. std::vector<token_data> id_to_token;
  1855. std::unordered_map<token, id> special_tokens_cache;
  1856. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1857. // default LLaMA special tokens
  1858. id special_bos_id = 1;
  1859. id special_eos_id = 2;
  1860. id special_unk_id = 0;
  1861. id special_sep_id = -1;
  1862. id special_pad_id = -1;
  1863. id special_cls_id = -1;
  1864. id special_mask_id = -1;
  1865. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1866. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1867. id linefeed_id = 13;
  1868. id special_prefix_id = -1;
  1869. id special_suffix_id = -1;
  1870. id special_middle_id = -1;
  1871. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1872. bool add_space_prefix = true;
  1873. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1874. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1875. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1876. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1877. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1878. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1879. if (it == bpe_ranks.end()) {
  1880. return -1;
  1881. }
  1882. return it->second;
  1883. }
  1884. };
  1885. struct llama_model {
  1886. e_model type = MODEL_UNKNOWN;
  1887. llm_arch arch = LLM_ARCH_UNKNOWN;
  1888. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1889. std::string name = "n/a";
  1890. llama_hparams hparams = {};
  1891. llama_vocab vocab;
  1892. struct ggml_tensor * tok_embd;
  1893. struct ggml_tensor * type_embd;
  1894. struct ggml_tensor * pos_embd;
  1895. struct ggml_tensor * tok_norm;
  1896. struct ggml_tensor * tok_norm_b;
  1897. struct ggml_tensor * output_norm;
  1898. struct ggml_tensor * output_norm_b;
  1899. struct ggml_tensor * output;
  1900. struct ggml_tensor * output_b;
  1901. // long rope factors
  1902. struct ggml_tensor * rope_long = nullptr;
  1903. struct ggml_tensor * rope_short = nullptr;
  1904. std::vector<llama_layer> layers;
  1905. llama_split_mode split_mode;
  1906. int main_gpu;
  1907. int n_gpu_layers;
  1908. std::vector<std::string> rpc_servers;
  1909. // gguf metadata
  1910. std::unordered_map<std::string, std::string> gguf_kv;
  1911. // layer -> buffer type mapping
  1912. struct layer_buft {
  1913. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1914. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1915. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1916. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1917. ggml_backend_buffer_type_t buft; // everything else
  1918. };
  1919. layer_buft buft_input;
  1920. layer_buft buft_output;
  1921. std::vector<layer_buft> buft_layer;
  1922. // contexts where the model tensors metadata is stored
  1923. std::vector<struct ggml_context *> ctxs;
  1924. // the model memory buffers for the tensor data
  1925. std::vector<ggml_backend_buffer_t> bufs;
  1926. // model memory mapped files
  1927. llama_mmaps mappings;
  1928. // objects representing data potentially being locked in memory
  1929. llama_mlocks mlock_bufs;
  1930. llama_mlocks mlock_mmaps;
  1931. // for quantize-stats only
  1932. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1933. int64_t t_load_us = 0;
  1934. int64_t t_start_us = 0;
  1935. ~llama_model() {
  1936. for (struct ggml_context * ctx : ctxs) {
  1937. ggml_free(ctx);
  1938. }
  1939. for (ggml_backend_buffer_t buf : bufs) {
  1940. #ifdef GGML_USE_CUDA
  1941. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1942. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1943. }
  1944. #endif
  1945. ggml_backend_buffer_free(buf);
  1946. }
  1947. }
  1948. };
  1949. struct llama_context {
  1950. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1951. ~llama_context() {
  1952. ggml_backend_sched_free(sched);
  1953. for (ggml_backend_t backend : backends) {
  1954. ggml_backend_free(backend);
  1955. }
  1956. ggml_backend_buffer_free(buf_output);
  1957. }
  1958. llama_cparams cparams;
  1959. std::vector<ggml_backend_t> backends;
  1960. #ifdef GGML_USE_METAL
  1961. ggml_backend_t backend_metal = nullptr;
  1962. #endif
  1963. ggml_backend_t backend_cpu = nullptr;
  1964. const llama_model & model;
  1965. // key + value cache for the self attention
  1966. struct llama_kv_cache kv_self;
  1967. std::mt19937 rng;
  1968. bool has_evaluated_once = false;
  1969. int64_t t_start_us;
  1970. int64_t t_load_us;
  1971. int64_t t_sample_us = 0;
  1972. int64_t t_p_eval_us = 0;
  1973. int64_t t_eval_us = 0;
  1974. int64_t t_compute_start_us = 0;
  1975. int64_t n_queued_tokens = 0;
  1976. int32_t n_sample = 0; // number of tokens sampled
  1977. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1978. int32_t n_eval = 0; // number of eval calls
  1979. // host buffer for the model output (logits and embeddings)
  1980. ggml_backend_buffer_t buf_output = nullptr;
  1981. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1982. size_t logits_size = 0; // capacity (of floats) for logits
  1983. float * logits = nullptr;
  1984. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1985. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1986. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  1987. bool logits_all = false;
  1988. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  1989. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1990. size_t embd_size = 0; // capacity (of floats) for embeddings
  1991. float * embd = nullptr;
  1992. // sequence embeddings output (map of [n_embd] vectors)
  1993. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  1994. std::map<llama_seq_id, std::vector<float>> embd_seq;
  1995. // memory buffers used to evaluate the model
  1996. std::vector<uint8_t> buf_compute_meta;
  1997. ggml_backend_sched_t sched = nullptr;
  1998. ggml_abort_callback abort_callback = nullptr;
  1999. void * abort_callback_data = nullptr;
  2000. // input tensors
  2001. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2002. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2003. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2004. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2005. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2006. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2007. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2008. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2009. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2010. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2011. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2012. // control vectors
  2013. struct llama_control_vector cvec;
  2014. };
  2015. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2016. ggml_backend_buffer_type_t buft = nullptr;
  2017. #ifdef GGML_USE_RPC
  2018. std::string endpoint = model.rpc_servers[gpu];
  2019. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2020. #elif defined(GGML_USE_METAL)
  2021. buft = ggml_backend_metal_buffer_type();
  2022. #elif defined(GGML_USE_CUDA)
  2023. buft = ggml_backend_cuda_buffer_type(gpu);
  2024. #elif defined(GGML_USE_VULKAN)
  2025. buft = ggml_backend_vk_buffer_type(gpu);
  2026. #elif defined(GGML_USE_SYCL)
  2027. buft = ggml_backend_sycl_buffer_type(gpu);
  2028. #elif defined(GGML_USE_CLBLAST)
  2029. buft = ggml_backend_opencl_buffer_type();
  2030. #elif defined(GGML_USE_KOMPUTE)
  2031. buft = ggml_backend_kompute_buffer_type(gpu);
  2032. if (buft == nullptr) {
  2033. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2034. }
  2035. #endif
  2036. if (buft == nullptr) {
  2037. buft = llama_default_buffer_type_cpu(true);
  2038. }
  2039. return buft;
  2040. GGML_UNUSED(model);
  2041. GGML_UNUSED(gpu);
  2042. }
  2043. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2044. ggml_backend_buffer_type_t buft = nullptr;
  2045. #ifdef GGML_USE_CUDA
  2046. if (ggml_backend_cuda_get_device_count() > 1) {
  2047. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2048. }
  2049. #endif
  2050. #ifdef GGML_USE_SYCL
  2051. if (ggml_backend_sycl_get_device_count() > 1) {
  2052. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2053. }
  2054. #endif
  2055. if (buft == nullptr) {
  2056. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2057. }
  2058. return buft;
  2059. GGML_UNUSED(tensor_split);
  2060. }
  2061. static size_t llama_get_device_count(const llama_model & model) {
  2062. #if defined(GGML_USE_RPC)
  2063. return model.rpc_servers.size();
  2064. #elif defined(GGML_USE_CUDA)
  2065. return ggml_backend_cuda_get_device_count();
  2066. #elif defined(GGML_USE_SYCL)
  2067. return ggml_backend_sycl_get_device_count();
  2068. #elif defined(GGML_USE_VULKAN)
  2069. return ggml_backend_vk_get_device_count();
  2070. #else
  2071. return 1;
  2072. #endif
  2073. GGML_UNUSED(model);
  2074. }
  2075. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2076. #if defined(GGML_USE_RPC)
  2077. size_t total;
  2078. size_t free;
  2079. std::string endpoint = model.rpc_servers[device];
  2080. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2081. return free;
  2082. #elif defined(GGML_USE_CUDA)
  2083. size_t total;
  2084. size_t free;
  2085. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2086. return free;
  2087. #elif defined(GGML_USE_SYCL)
  2088. size_t total;
  2089. size_t free;
  2090. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2091. return free;
  2092. #elif defined(GGML_USE_VULKAN)
  2093. size_t total;
  2094. size_t free;
  2095. ggml_backend_vk_get_device_memory(device, &free, &total);
  2096. return free;
  2097. #else
  2098. return 1;
  2099. #endif
  2100. GGML_UNUSED(model);
  2101. GGML_UNUSED(device);
  2102. }
  2103. //
  2104. // kv cache helpers
  2105. //
  2106. static bool llama_kv_cache_init(
  2107. struct llama_kv_cache & cache,
  2108. const llama_context * ctx,
  2109. ggml_type type_k,
  2110. ggml_type type_v,
  2111. uint32_t kv_size,
  2112. bool offload) {
  2113. const llama_model & model = ctx->model;
  2114. const llama_cparams & cparams = ctx->cparams;
  2115. const struct llama_hparams & hparams = model.hparams;
  2116. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2117. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2118. const int64_t n_layer = hparams.n_layer;
  2119. cache.has_shift = false;
  2120. // TODO: find a nicer way to add other recurrent model architectures
  2121. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2122. cache.v_trans = !cparams.flash_attn;
  2123. // TODO: support mixed recurrent Transformer architectures
  2124. // NOTE: (!a || b) is a logical implication (a -> b)
  2125. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2126. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2127. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2128. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2129. cache.head = 0;
  2130. cache.size = kv_size;
  2131. cache.used = 0;
  2132. cache.type_k = type_k;
  2133. cache.type_v = type_v;
  2134. cache.cells.clear();
  2135. cache.cells.resize(kv_size);
  2136. if (cache.recurrent) {
  2137. // init state copy sources
  2138. for (uint32_t i = 0; i < cache.size; ++i) {
  2139. cache.cells[i].src = i;
  2140. }
  2141. }
  2142. #ifdef GGML_USE_CLBLAST
  2143. offload = false;
  2144. #endif
  2145. // count used buffer types
  2146. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2147. if (offload) {
  2148. for (int64_t i = 0; i < n_layer; ++i) {
  2149. buft_layer_count[model.buft_layer[i].buft]++;
  2150. }
  2151. } else {
  2152. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2153. }
  2154. // create a context for each buffer type
  2155. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2156. for (auto & it : buft_layer_count) {
  2157. int n_layers = it.second;
  2158. struct ggml_init_params params = {
  2159. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2160. /*.mem_buffer =*/ NULL,
  2161. /*.no_alloc =*/ true,
  2162. };
  2163. ggml_context * ctx = ggml_init(params);
  2164. if (!ctx) {
  2165. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2166. return false;
  2167. }
  2168. ctx_map[it.first] = ctx;
  2169. cache.ctxs.push_back(ctx);
  2170. }
  2171. cache.k_l.reserve(n_layer);
  2172. cache.v_l.reserve(n_layer);
  2173. for (int i = 0; i < (int) n_layer; i++) {
  2174. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2175. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2176. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2177. ggml_format_name(k, "cache_k_l%d", i);
  2178. ggml_format_name(v, "cache_v_l%d", i);
  2179. cache.k_l.push_back(k);
  2180. cache.v_l.push_back(v);
  2181. }
  2182. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2183. for (auto it : ctx_map) {
  2184. ggml_backend_buffer_type_t buft = it.first;
  2185. ggml_context * ctx = it.second;
  2186. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2187. if (!buf) {
  2188. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2189. return false;
  2190. }
  2191. ggml_backend_buffer_clear(buf, 0);
  2192. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2193. cache.bufs.push_back(buf);
  2194. }
  2195. return true;
  2196. }
  2197. // find an empty slot of size "n_tokens" in the cache
  2198. // updates the cache head
  2199. // Note: On success, it's important that cache.head points
  2200. // to the first cell of the slot.
  2201. static bool llama_kv_cache_find_slot(
  2202. struct llama_kv_cache & cache,
  2203. const struct llama_batch & batch) {
  2204. const uint32_t n_ctx = cache.size;
  2205. const uint32_t n_tokens = batch.n_tokens;
  2206. if (cache.recurrent) {
  2207. // For recurrent state architectures (like Mamba),
  2208. // each KV cache cell can store the state for a whole sequence.
  2209. llama_seq_id min = cache.size - 1;
  2210. llama_seq_id max = 0;
  2211. for (uint32_t i = 0; i < n_tokens; ++i) {
  2212. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2213. llama_seq_id seq_id = batch.seq_id[i][j];
  2214. // make sure it's a valid seq_id
  2215. if ((uint32_t) seq_id < cache.size) {
  2216. if (seq_id > max) {
  2217. max = seq_id;
  2218. }
  2219. if (seq_id < min) {
  2220. min = seq_id;
  2221. }
  2222. // Assuming the tokens are in-order
  2223. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2224. // What should happen when the pos backtracks or skips a value?
  2225. // Clearing the state mid-batch would require special-casing which isn't done.
  2226. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2227. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2228. }
  2229. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2230. cache.used += 1;
  2231. }
  2232. cache.cells[seq_id].pos = batch.pos[i];
  2233. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2234. } else {
  2235. // too big seq_id
  2236. // TODO: would it be possible to resize the KV cache size instead?
  2237. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2238. return false;
  2239. }
  2240. }
  2241. }
  2242. // allow getting the range of used cells, from head to head + n
  2243. cache.head = min;
  2244. cache.n = max - min + 1;
  2245. // sanity check
  2246. return max >= min;
  2247. }
  2248. // otherwise, one cell per token.
  2249. if (n_tokens > n_ctx) {
  2250. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2251. return false;
  2252. }
  2253. uint32_t n_tested = 0;
  2254. while (true) {
  2255. if (cache.head + n_tokens > n_ctx) {
  2256. n_tested += n_ctx - cache.head;
  2257. cache.head = 0;
  2258. continue;
  2259. }
  2260. bool found = true;
  2261. for (uint32_t i = 0; i < n_tokens; i++) {
  2262. if (cache.cells[cache.head + i].pos >= 0) {
  2263. found = false;
  2264. cache.head += i + 1;
  2265. n_tested += i + 1;
  2266. break;
  2267. }
  2268. }
  2269. if (found) {
  2270. break;
  2271. }
  2272. if (n_tested >= n_ctx) {
  2273. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2274. return false;
  2275. }
  2276. }
  2277. for (uint32_t i = 0; i < n_tokens; i++) {
  2278. cache.cells[cache.head + i].pos = batch.pos[i];
  2279. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2280. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2281. }
  2282. }
  2283. cache.used += n_tokens;
  2284. return true;
  2285. }
  2286. // find how many cells are currently in use
  2287. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2288. for (uint32_t i = cache.size; i > 0; --i) {
  2289. const llama_kv_cell & cell = cache.cells[i - 1];
  2290. if (cell.pos >= 0 && !cell.is_empty()) {
  2291. return i;
  2292. }
  2293. }
  2294. return 0;
  2295. }
  2296. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2297. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2298. cache.cells[i].pos = -1;
  2299. cache.cells[i].seq_id.clear();
  2300. }
  2301. cache.head = 0;
  2302. cache.used = 0;
  2303. for (auto & buf : cache.bufs) {
  2304. ggml_backend_buffer_clear(buf, 0);
  2305. }
  2306. }
  2307. static bool llama_kv_cache_seq_rm(
  2308. struct llama_kv_cache & cache,
  2309. llama_seq_id seq_id,
  2310. llama_pos p0,
  2311. llama_pos p1) {
  2312. uint32_t new_head = cache.size;
  2313. if (p0 < 0) p0 = 0;
  2314. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2315. // models like Mamba can't have a state partially erased
  2316. if (cache.recurrent) {
  2317. if (seq_id >= (int64_t) cache.size) {
  2318. // could be fatal
  2319. return false;
  2320. }
  2321. if (0 <= seq_id) {
  2322. // partial intersection is invalid
  2323. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2324. return false;
  2325. }
  2326. } else {
  2327. // seq_id is negative, then the range should include everything or nothing
  2328. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2329. return false;
  2330. }
  2331. }
  2332. }
  2333. for (uint32_t i = 0; i < cache.size; ++i) {
  2334. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2335. if (seq_id < 0) {
  2336. cache.cells[i].seq_id.clear();
  2337. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2338. cache.cells[i].seq_id.erase(seq_id);
  2339. } else {
  2340. continue;
  2341. }
  2342. if (cache.cells[i].is_empty()) {
  2343. // keep count of the number of used cells
  2344. if (cache.cells[i].pos >= 0) cache.used--;
  2345. cache.cells[i].pos = -1;
  2346. if (new_head == cache.size) new_head = i;
  2347. }
  2348. }
  2349. }
  2350. // If we freed up a slot, set head to it so searching can start there.
  2351. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2352. return true;
  2353. }
  2354. static void llama_kv_cache_seq_cp(
  2355. struct llama_kv_cache & cache,
  2356. llama_seq_id seq_id_src,
  2357. llama_seq_id seq_id_dst,
  2358. llama_pos p0,
  2359. llama_pos p1) {
  2360. if (p0 < 0) p0 = 0;
  2361. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2362. if (cache.recurrent) {
  2363. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2364. seq_id_src = cache.cells[seq_id_src].src;
  2365. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2366. // intent to "copy from"
  2367. // supports copy chains thanks to taking the source of the source
  2368. cache.cells[seq_id_dst].src = seq_id_src;
  2369. // preserve the "keep or clear" status of the copied sequence
  2370. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2371. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2372. } else {
  2373. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2374. }
  2375. cache.do_copy = true;
  2376. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2377. }
  2378. return;
  2379. }
  2380. // otherwise, this is the KV cache of a Transformer-like model
  2381. cache.head = 0;
  2382. for (uint32_t i = 0; i < cache.size; ++i) {
  2383. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2384. cache.cells[i].seq_id.insert(seq_id_dst);
  2385. }
  2386. }
  2387. }
  2388. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2389. uint32_t new_head = cache.size;
  2390. for (uint32_t i = 0; i < cache.size; ++i) {
  2391. if (!cache.cells[i].has_seq_id(seq_id)) {
  2392. if (cache.cells[i].pos >= 0) cache.used--;
  2393. cache.cells[i].pos = -1;
  2394. cache.cells[i].seq_id.clear();
  2395. if (new_head == cache.size) new_head = i;
  2396. } else {
  2397. cache.cells[i].seq_id.clear();
  2398. cache.cells[i].seq_id.insert(seq_id);
  2399. }
  2400. }
  2401. // If we freed up a slot, set head to it so searching can start there.
  2402. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2403. }
  2404. static void llama_kv_cache_seq_add(
  2405. struct llama_kv_cache & cache,
  2406. llama_seq_id seq_id,
  2407. llama_pos p0,
  2408. llama_pos p1,
  2409. llama_pos delta) {
  2410. uint32_t new_head = cache.size;
  2411. if (p0 < 0) p0 = 0;
  2412. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2413. if (cache.recurrent) {
  2414. // for Mamba-like models, only the pos needs to be shifted
  2415. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2416. llama_kv_cell & cell = cache.cells[seq_id];
  2417. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2418. cell.pos += delta;
  2419. }
  2420. }
  2421. return;
  2422. }
  2423. for (uint32_t i = 0; i < cache.size; ++i) {
  2424. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2425. cache.has_shift = true;
  2426. cache.cells[i].pos += delta;
  2427. cache.cells[i].delta += delta;
  2428. if (cache.cells[i].pos < 0) {
  2429. if (!cache.cells[i].is_empty()) {
  2430. cache.used--;
  2431. }
  2432. cache.cells[i].pos = -1;
  2433. cache.cells[i].seq_id.clear();
  2434. if (new_head == cache.size) {
  2435. new_head = i;
  2436. }
  2437. }
  2438. }
  2439. }
  2440. // If we freed up a slot, set head to it so searching can start there.
  2441. // Otherwise we just start the next search from the beginning.
  2442. cache.head = new_head != cache.size ? new_head : 0;
  2443. }
  2444. static void llama_kv_cache_seq_div(
  2445. struct llama_kv_cache & cache,
  2446. llama_seq_id seq_id,
  2447. llama_pos p0,
  2448. llama_pos p1,
  2449. int d) {
  2450. if (p0 < 0) p0 = 0;
  2451. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2452. if (cache.recurrent) {
  2453. // for Mamba-like models, only the pos needs to be changed
  2454. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2455. llama_kv_cell & cell = cache.cells[seq_id];
  2456. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2457. cell.pos /= d;
  2458. }
  2459. }
  2460. return;
  2461. }
  2462. for (uint32_t i = 0; i < cache.size; ++i) {
  2463. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2464. cache.has_shift = true;
  2465. {
  2466. llama_pos p_old = cache.cells[i].pos;
  2467. cache.cells[i].pos /= d;
  2468. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2469. }
  2470. }
  2471. }
  2472. }
  2473. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2474. llama_pos result = 0;
  2475. for (uint32_t i = 0; i < cache.size; ++i) {
  2476. if (cache.cells[i].has_seq_id(seq_id)) {
  2477. result = std::max(result, cache.cells[i].pos);
  2478. }
  2479. }
  2480. return result;
  2481. }
  2482. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2483. cache.do_defrag = true;
  2484. }
  2485. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2486. // the FA kernels require padding to avoid extra runtime boundary checks
  2487. return cparams.flash_attn ? 256u : 32u;
  2488. }
  2489. //
  2490. // model loading and saving
  2491. //
  2492. enum llama_fver {
  2493. GGUF_FILE_VERSION_V1 = 1,
  2494. GGUF_FILE_VERSION_V2 = 2,
  2495. GGUF_FILE_VERSION_V3 = 3,
  2496. };
  2497. static const char * llama_file_version_name(llama_fver version) {
  2498. switch (version) {
  2499. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2500. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2501. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2502. }
  2503. return "unknown";
  2504. }
  2505. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2506. char buf[256];
  2507. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2508. for (size_t i = 1; i < ne.size(); i++) {
  2509. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2510. }
  2511. return buf;
  2512. }
  2513. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2514. char buf[256];
  2515. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2516. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2517. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2518. }
  2519. return buf;
  2520. }
  2521. namespace GGUFMeta {
  2522. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2523. struct GKV_Base_Type {
  2524. static constexpr gguf_type gt = gt_;
  2525. static T getter(const gguf_context * ctx, const int kid) {
  2526. return gfun(ctx, kid);
  2527. }
  2528. };
  2529. template<typename T> struct GKV_Base;
  2530. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2531. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2532. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2533. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2534. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2535. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2536. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2537. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2538. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2539. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2540. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2541. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2542. template<> struct GKV_Base<std::string> {
  2543. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2544. static std::string getter(const gguf_context * ctx, const int kid) {
  2545. return gguf_get_val_str(ctx, kid);
  2546. }
  2547. };
  2548. struct ArrayInfo {
  2549. const gguf_type gt;
  2550. const size_t length;
  2551. const void * data;
  2552. };
  2553. template<> struct GKV_Base<ArrayInfo> {
  2554. public:
  2555. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2556. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2557. return ArrayInfo {
  2558. gguf_get_arr_type(ctx, k),
  2559. size_t(gguf_get_arr_n(ctx, k)),
  2560. gguf_get_arr_data(ctx, k),
  2561. };
  2562. }
  2563. };
  2564. template<typename T>
  2565. class GKV : public GKV_Base<T> {
  2566. GKV() = delete;
  2567. public:
  2568. static T get_kv(const gguf_context * ctx, const int k) {
  2569. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2570. if (kt != GKV::gt) {
  2571. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2572. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2573. }
  2574. return GKV::getter(ctx, k);
  2575. }
  2576. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2577. switch (ty) {
  2578. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2579. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2580. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2581. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2582. }
  2583. return "unknown";
  2584. }
  2585. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2586. if (!ovrd) { return false; }
  2587. if (ovrd->tag == expected_type) {
  2588. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2589. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2590. switch (ovrd->tag) {
  2591. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2592. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2593. } break;
  2594. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2595. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2596. } break;
  2597. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2598. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2599. } break;
  2600. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2601. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2602. } break;
  2603. default:
  2604. // Shouldn't be possible to end up here, but just in case...
  2605. throw std::runtime_error(
  2606. format("Unsupported attempt to override %s type for metadata key %s\n",
  2607. override_type_to_str(ovrd->tag), ovrd->key));
  2608. }
  2609. return true;
  2610. }
  2611. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2612. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2613. return false;
  2614. }
  2615. template<typename OT>
  2616. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2617. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2618. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2619. target = ovrd->val_bool;
  2620. return true;
  2621. }
  2622. return false;
  2623. }
  2624. template<typename OT>
  2625. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2626. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2627. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2628. target = ovrd->val_i64;
  2629. return true;
  2630. }
  2631. return false;
  2632. }
  2633. template<typename OT>
  2634. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2635. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2636. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2637. target = ovrd->val_f64;
  2638. return true;
  2639. }
  2640. return false;
  2641. }
  2642. template<typename OT>
  2643. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2644. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2645. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2646. target = ovrd->val_str;
  2647. return true;
  2648. }
  2649. return false;
  2650. }
  2651. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2652. if (try_override<T>(target, ovrd)) {
  2653. return true;
  2654. }
  2655. if (k < 0) { return false; }
  2656. target = get_kv(ctx, k);
  2657. return true;
  2658. }
  2659. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2660. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2661. }
  2662. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2663. return set(ctx, key.c_str(), target, ovrd);
  2664. }
  2665. };
  2666. }
  2667. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2668. struct llama_model_loader {
  2669. int n_kv = 0;
  2670. int n_tensors = 0;
  2671. int n_created = 0;
  2672. int64_t n_elements = 0;
  2673. size_t n_bytes = 0;
  2674. bool use_mmap = false;
  2675. bool check_tensors;
  2676. llama_files files;
  2677. llama_ftype ftype;
  2678. llama_fver fver;
  2679. llama_mmaps mappings;
  2680. // Holds information on a model weight
  2681. struct llama_tensor_weight {
  2682. uint16_t idx; // source file index
  2683. size_t offs; // tensor data offset in the original file
  2684. ggml_tensor * tensor;
  2685. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2686. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2687. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2688. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2689. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2690. }
  2691. }
  2692. };
  2693. std::vector<llama_tensor_weight> weights;
  2694. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2695. struct gguf_context * meta = NULL;
  2696. std::vector<ggml_context *> contexts;
  2697. std::string arch_name;
  2698. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2699. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2700. int trace = 0;
  2701. if (getenv("LLAMA_TRACE")) {
  2702. trace = atoi(getenv("LLAMA_TRACE"));
  2703. }
  2704. if (param_overrides_p != nullptr) {
  2705. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2706. kv_overrides.insert({std::string(p->key), *p});
  2707. }
  2708. }
  2709. struct ggml_context * ctx = NULL;
  2710. struct gguf_init_params params = {
  2711. /*.no_alloc = */ true,
  2712. /*.ctx = */ &ctx,
  2713. };
  2714. meta = gguf_init_from_file(fname.c_str(), params);
  2715. if (!meta) {
  2716. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2717. }
  2718. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2719. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2720. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2721. contexts.emplace_back(ctx);
  2722. // Save tensors data offset of the main file.
  2723. // For subsidiary files, `meta` tensor data offset must not be used,
  2724. // so we build a unified tensors index for weights.
  2725. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2726. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2727. }
  2728. uint16_t n_split = 0;
  2729. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2730. // Load additional GGML contexts
  2731. if (n_split > 1) {
  2732. uint16_t idx = 0;
  2733. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2734. if (idx != 0) {
  2735. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2736. }
  2737. char split_prefix[PATH_MAX] = {0};
  2738. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2739. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2740. }
  2741. if (trace > 0) {
  2742. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2743. }
  2744. char split_path[PATH_MAX] = {0};
  2745. for (idx = 1; idx < n_split; idx++) {
  2746. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2747. struct gguf_init_params split_params = {
  2748. /*.no_alloc = */ true,
  2749. /*.ctx = */ &ctx,
  2750. };
  2751. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2752. if (!ctx_gguf) {
  2753. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2754. }
  2755. files.emplace_back(new llama_file(split_path, "rb"));
  2756. contexts.emplace_back(ctx);
  2757. // Save tensors data offset info of the shard.
  2758. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2759. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2760. }
  2761. gguf_free(ctx_gguf);
  2762. }
  2763. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2764. // sanity check
  2765. {
  2766. const int n_tensors_loaded = (int) weights.size();
  2767. if (n_tensors != n_tensors_loaded) {
  2768. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2769. }
  2770. }
  2771. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2772. }
  2773. n_kv = gguf_get_n_kv(meta);
  2774. n_tensors = weights.size();
  2775. fver = (enum llama_fver) gguf_get_version(meta);
  2776. std::set<std::string> tensor_names;
  2777. for (auto & w : weights) {
  2778. n_elements += ggml_nelements(w.tensor);
  2779. n_bytes += ggml_nbytes(w.tensor);
  2780. // make sure there is no duplicated tensor names
  2781. const std::string name(w.tensor->name);
  2782. auto found = tensor_names.find(name);
  2783. if (found != tensor_names.end()) {
  2784. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2785. }
  2786. tensor_names.insert(name);
  2787. }
  2788. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2789. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2790. // determine file type based on the number of tensors for each quantization and print meta data
  2791. // TODO: make optional
  2792. {
  2793. std::map<enum ggml_type, uint32_t> n_type;
  2794. uint32_t n_type_max = 0;
  2795. enum ggml_type type_max = GGML_TYPE_F32;
  2796. for (int i = 0; i < n_tensors; i++) {
  2797. const ggml_tensor * tensor = weights.at(i).tensor;
  2798. enum ggml_type type = tensor->type;
  2799. n_type[type]++;
  2800. if (n_type_max < n_type[type]) {
  2801. n_type_max = n_type[type];
  2802. type_max = type;
  2803. }
  2804. if (trace > 0) {
  2805. const uint16_t sid = weights.at(i).idx;
  2806. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2807. }
  2808. }
  2809. switch (type_max) {
  2810. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2811. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2812. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2813. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2814. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2815. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2816. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2817. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2818. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2819. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2820. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2821. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2822. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2823. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2824. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2825. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2826. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2827. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2828. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2829. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2830. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2831. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2832. default:
  2833. {
  2834. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2835. ftype = LLAMA_FTYPE_ALL_F32;
  2836. } break;
  2837. }
  2838. // this is a way to mark that we have "guessed" the file type
  2839. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2840. {
  2841. const int kid = gguf_find_key(meta, "general.file_type");
  2842. if (kid >= 0) {
  2843. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2844. }
  2845. }
  2846. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2847. for (int i = 0; i < n_kv; i++) {
  2848. const char * name = gguf_get_key(meta, i);
  2849. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2850. const std::string type_name =
  2851. type == GGUF_TYPE_ARRAY
  2852. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2853. : gguf_type_name(type);
  2854. std::string value = gguf_kv_to_str(meta, i);
  2855. const size_t MAX_VALUE_LEN = 40;
  2856. if (value.size() > MAX_VALUE_LEN) {
  2857. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2858. }
  2859. replace_all(value, "\n", "\\n");
  2860. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2861. }
  2862. // print type counts
  2863. for (auto & kv : n_type) {
  2864. if (kv.second == 0) {
  2865. continue;
  2866. }
  2867. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2868. }
  2869. }
  2870. if (!llama_mmap::SUPPORTED) {
  2871. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2872. use_mmap = false;
  2873. }
  2874. this->use_mmap = use_mmap;
  2875. this->check_tensors = check_tensors;
  2876. }
  2877. ~llama_model_loader() {
  2878. if (meta) {
  2879. gguf_free(meta);
  2880. }
  2881. for (auto * ctx : contexts) {
  2882. ggml_free(ctx);
  2883. }
  2884. }
  2885. template<typename T>
  2886. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2887. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2888. const int kid = gguf_find_key(meta, key.c_str());
  2889. if (kid < 0) {
  2890. if (required) {
  2891. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2892. }
  2893. return false;
  2894. }
  2895. struct GGUFMeta::ArrayInfo arr_info =
  2896. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2897. result = arr_info.length;
  2898. return true;
  2899. }
  2900. template<typename T>
  2901. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2902. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2903. return get_arr_n(llm_kv(kid), result, required);
  2904. }
  2905. template<typename T>
  2906. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  2907. const int kid = gguf_find_key(meta, key.c_str());
  2908. if (kid < 0) {
  2909. if (required) {
  2910. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2911. }
  2912. return false;
  2913. }
  2914. struct GGUFMeta::ArrayInfo arr_info =
  2915. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2916. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  2917. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  2918. }
  2919. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  2920. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  2921. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  2922. result.resize(arr_info.length);
  2923. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  2924. return true;
  2925. }
  2926. template<typename T>
  2927. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  2928. return get_arr(llm_kv(kid), result, required);
  2929. }
  2930. template<typename T>
  2931. bool get_key(const std::string & key, T & result, const bool required = true) {
  2932. auto it = kv_overrides.find(key);
  2933. const struct llama_model_kv_override * override =
  2934. it != kv_overrides.end() ? &it->second : nullptr;
  2935. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2936. if (required && !found) {
  2937. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2938. }
  2939. return found;
  2940. }
  2941. template<typename T>
  2942. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2943. return get_key(llm_kv(kid), result, required);
  2944. }
  2945. std::string get_arch_name() const {
  2946. return arch_name;
  2947. }
  2948. enum llm_arch get_arch() const {
  2949. return llm_kv.arch;
  2950. }
  2951. const char * get_tensor_name(int i) const {
  2952. return weights.at(i).tensor->name;
  2953. }
  2954. const llama_tensor_weight * get_weight(const char * name) const {
  2955. for (const auto & weight : weights) {
  2956. if (strcmp(name, weight.tensor->name) == 0) {
  2957. return &weight;
  2958. }
  2959. }
  2960. return nullptr;
  2961. }
  2962. const llama_tensor_weight * get_weight(int i) const {
  2963. return get_weight(get_tensor_name(i));
  2964. }
  2965. const llama_tensor_weight & require_weight(const char * name) const {
  2966. const llama_tensor_weight * weight = get_weight(name);
  2967. if (!weight) {
  2968. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2969. }
  2970. return *weight;
  2971. }
  2972. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2973. const auto * weight = get_weight(name);
  2974. if (!weight) {
  2975. return nullptr;
  2976. }
  2977. return weight->tensor;
  2978. }
  2979. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2980. struct ggml_tensor * tensor = get_tensor_meta(name);
  2981. if (!tensor) {
  2982. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2983. }
  2984. return tensor;
  2985. }
  2986. struct ggml_tensor * get_tensor_meta(int i) const {
  2987. return get_tensor_meta(get_tensor_name(i));
  2988. }
  2989. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2990. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2991. ggml_set_name(tensor, ggml_get_name(cur));
  2992. n_created++;
  2993. return tensor;
  2994. }
  2995. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2996. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2997. if (cur == NULL) {
  2998. if (!required) {
  2999. return NULL;
  3000. }
  3001. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3002. }
  3003. {
  3004. bool is_ok = true;
  3005. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3006. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3007. is_ok = false;
  3008. break;
  3009. }
  3010. }
  3011. if (!is_ok) {
  3012. throw std::runtime_error(
  3013. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3014. __func__, name.c_str(),
  3015. llama_format_tensor_shape(ne).c_str(),
  3016. llama_format_tensor_shape(cur).c_str()));
  3017. }
  3018. }
  3019. return cur;
  3020. }
  3021. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  3022. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3023. if (cur == NULL) {
  3024. return NULL;
  3025. }
  3026. return create_tensor_for(ctx, cur);
  3027. }
  3028. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3029. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3030. if (cur == NULL) {
  3031. return NULL;
  3032. }
  3033. if (cur->type != base->type) {
  3034. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3035. }
  3036. std::array<int64_t, GGML_MAX_DIMS> dims;
  3037. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3038. dims[i] = i < ne.size() ? ne[i] : 1;
  3039. }
  3040. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3041. dims[0], dims[1], dims[2], dims[3],
  3042. cur->nb[1], cur->nb[2], cur->nb[3],
  3043. offset);
  3044. ggml_set_name(tensor, name.c_str());
  3045. n_created++;
  3046. return tensor;
  3047. }
  3048. void done_getting_tensors() const {
  3049. if (n_created != n_tensors) {
  3050. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3051. }
  3052. }
  3053. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3054. if (use_mmap) {
  3055. mappings.reserve(files.size());
  3056. mmaps_used.reserve(files.size());
  3057. for (const auto & file : files) {
  3058. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3059. mmaps_used.emplace_back(mapping->size, 0);
  3060. if (mlock_mmaps) {
  3061. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3062. mlock_mmap->init(mapping->addr);
  3063. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3064. }
  3065. mappings.emplace_back(std::move(mapping));
  3066. }
  3067. }
  3068. // compute the total size of all tensors for progress reporting
  3069. for (auto & w : weights) {
  3070. size_data += ggml_nbytes(w.tensor);
  3071. }
  3072. }
  3073. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3074. GGML_ASSERT(!mappings.empty());
  3075. const auto & mapping = mappings.at(idx);
  3076. *first = mapping->size;
  3077. *last = 0;
  3078. *addr = mapping->addr;
  3079. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3080. try {
  3081. const auto * weight = get_weight(ggml_get_name(tensor));
  3082. if (!weight) {
  3083. continue;
  3084. }
  3085. if (weight->idx != idx) {
  3086. continue;
  3087. }
  3088. *first = std::min(*first, weight->offs);
  3089. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3090. } catch(...) {
  3091. // the tensor is not in the model
  3092. }
  3093. }
  3094. }
  3095. // for backwards compatibility, does not support ggml-backend
  3096. void load_data_for(struct ggml_tensor * cur) const {
  3097. const auto & w = require_weight(ggml_get_name(cur));
  3098. if (use_mmap) {
  3099. const auto & mapping = mappings.at(w.idx);
  3100. if (cur->data == nullptr) {
  3101. cur->data = (uint8_t *)mapping->addr + w.offs;
  3102. } else {
  3103. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3104. }
  3105. } else {
  3106. GGML_ASSERT(cur->data != nullptr);
  3107. GGML_ASSERT(w.idx < files.size());
  3108. const auto & file = files.at(w.idx);
  3109. file->seek(w.offs, SEEK_SET);
  3110. file->read_raw(cur->data, ggml_nbytes(cur));
  3111. }
  3112. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3113. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3114. }
  3115. }
  3116. size_t size_done = 0;
  3117. size_t size_data = 0;
  3118. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3119. // Returns false if cancelled by progress_callback
  3120. bool load_all_data(
  3121. struct ggml_context * ctx,
  3122. llama_buf_map & bufs_mmap,
  3123. llama_mlocks * lmlocks,
  3124. llama_progress_callback progress_callback,
  3125. void * progress_callback_user_data) {
  3126. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3127. std::vector<no_init<uint8_t>> read_buf;
  3128. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3129. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3130. const auto * weight = get_weight(ggml_get_name(cur));
  3131. if (weight == nullptr) {
  3132. // this can happen with split experts models
  3133. continue;
  3134. }
  3135. if (progress_callback) {
  3136. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3137. return false;
  3138. }
  3139. }
  3140. size_t n_size = ggml_nbytes(cur);
  3141. if (use_mmap) {
  3142. const auto & mapping = mappings.at(weight->idx);
  3143. ggml_backend_buffer_t buf_mmap = nullptr;
  3144. if (bufs_mmap.count(weight->idx)) {
  3145. buf_mmap = bufs_mmap.at(weight->idx);
  3146. }
  3147. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3148. if (check_tensors) {
  3149. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3150. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3151. }));
  3152. }
  3153. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3154. if (buf_mmap && cur->data == nullptr) {
  3155. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3156. if (lmlocks) {
  3157. const auto & lmlock = lmlocks->at(weight->idx);
  3158. lmlock->grow_to(weight->offs + n_size);
  3159. }
  3160. auto & mmap_used = mmaps_used[weight->idx];
  3161. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3162. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3163. } else {
  3164. ggml_backend_tensor_set(cur, data, 0, n_size);
  3165. }
  3166. } else {
  3167. GGML_ASSERT(weight->idx < files.size());
  3168. const auto & file = files.at(weight->idx);
  3169. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3170. file->seek(weight->offs, SEEK_SET);
  3171. file->read_raw(cur->data, n_size);
  3172. if (check_tensors) {
  3173. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3174. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3175. }));
  3176. }
  3177. } else {
  3178. read_buf.resize(n_size);
  3179. file->seek(weight->offs, SEEK_SET);
  3180. file->read_raw(read_buf.data(), n_size);
  3181. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3182. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3183. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3184. }
  3185. }
  3186. }
  3187. size_done += n_size;
  3188. }
  3189. // check validation results
  3190. bool validation_failed = false;
  3191. for (auto & future : validation_result) {
  3192. auto result = future.get();
  3193. if (!result.second) {
  3194. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3195. validation_failed = true;
  3196. }
  3197. }
  3198. if (validation_failed) {
  3199. throw std::runtime_error("found tensors with invalid data");
  3200. }
  3201. // check if this is the last call and do final cleanup
  3202. if (size_done >= size_data) {
  3203. // unmap offloaded tensors and metadata
  3204. if (use_mmap) {
  3205. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3206. const auto & mmap_used = mmaps_used.at(idx);
  3207. auto & mapping = mappings.at(idx);
  3208. mapping->unmap_fragment(0, mmap_used.first);
  3209. if (mmap_used.second != 0) {
  3210. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3211. }
  3212. }
  3213. }
  3214. if (progress_callback) {
  3215. // Even though the model is done loading, we still honor
  3216. // cancellation since we need to free allocations.
  3217. return progress_callback(1.0f, progress_callback_user_data);
  3218. }
  3219. }
  3220. return true;
  3221. }
  3222. };
  3223. template<>
  3224. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3225. uint32_t tmp;
  3226. const bool found = get_key(kid, tmp, required);
  3227. if (found) {
  3228. result = (enum llama_pooling_type) tmp;
  3229. } else {
  3230. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3231. }
  3232. return found;
  3233. }
  3234. //
  3235. // load LLaMA models
  3236. //
  3237. static const char * llama_model_arch_name(llm_arch arch) {
  3238. auto it = LLM_ARCH_NAMES.find(arch);
  3239. if (it == LLM_ARCH_NAMES.end()) {
  3240. return "unknown";
  3241. }
  3242. return it->second;
  3243. }
  3244. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3245. if (ftype & LLAMA_FTYPE_GUESSED) {
  3246. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3247. }
  3248. switch (ftype) {
  3249. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3250. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3251. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3252. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3253. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3254. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3255. return "Q4_1, some F16";
  3256. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3257. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3258. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3259. // K-quants
  3260. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3261. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3262. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3263. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3264. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3265. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3266. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3267. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3268. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3269. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3270. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3271. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3272. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3273. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3274. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3275. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3276. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3277. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3278. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3279. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3280. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3281. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3282. default: return "unknown, may not work";
  3283. }
  3284. }
  3285. static const char * llama_model_type_name(e_model type) {
  3286. switch (type) {
  3287. case MODEL_17M: return "17M";
  3288. case MODEL_22M: return "22M";
  3289. case MODEL_33M: return "33M";
  3290. case MODEL_109M: return "109M";
  3291. case MODEL_137M: return "137M";
  3292. case MODEL_335M: return "335M";
  3293. case MODEL_0_5B: return "0.5B";
  3294. case MODEL_1B: return "1B";
  3295. case MODEL_2B: return "2B";
  3296. case MODEL_3B: return "3B";
  3297. case MODEL_4B: return "4B";
  3298. case MODEL_7B: return "7B";
  3299. case MODEL_8B: return "8B";
  3300. case MODEL_12B: return "12B";
  3301. case MODEL_13B: return "13B";
  3302. case MODEL_14B: return "14B";
  3303. case MODEL_15B: return "15B";
  3304. case MODEL_20B: return "20B";
  3305. case MODEL_30B: return "30B";
  3306. case MODEL_34B: return "34B";
  3307. case MODEL_35B: return "35B";
  3308. case MODEL_40B: return "40B";
  3309. case MODEL_65B: return "65B";
  3310. case MODEL_70B: return "70B";
  3311. case MODEL_314B: return "314B";
  3312. case MODEL_SMALL: return "0.1B";
  3313. case MODEL_MEDIUM: return "0.4B";
  3314. case MODEL_LARGE: return "0.8B";
  3315. case MODEL_XL: return "1.5B";
  3316. case MODEL_A2_7B: return "A2.7B";
  3317. case MODEL_8x7B: return "8x7B";
  3318. case MODEL_8x22B: return "8x22B";
  3319. case MODEL_16x12B: return "16x12B";
  3320. default: return "?B";
  3321. }
  3322. }
  3323. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3324. switch (type) {
  3325. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3326. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3327. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3328. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3329. default: return "unknown";
  3330. }
  3331. }
  3332. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3333. model.arch = ml.get_arch();
  3334. if (model.arch == LLM_ARCH_UNKNOWN) {
  3335. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3336. }
  3337. }
  3338. static void llm_load_hparams(
  3339. llama_model_loader & ml,
  3340. llama_model & model) {
  3341. auto & hparams = model.hparams;
  3342. const gguf_context * ctx = ml.meta;
  3343. // get metadata as string
  3344. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3345. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3346. if (type == GGUF_TYPE_ARRAY) {
  3347. continue;
  3348. }
  3349. const char * name = gguf_get_key(ctx, i);
  3350. const std::string value = gguf_kv_to_str(ctx, i);
  3351. model.gguf_kv.emplace(name, value);
  3352. }
  3353. // get general kv
  3354. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3355. // get hparams kv
  3356. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3357. // everything past this point is not vocab-related
  3358. if (hparams.vocab_only) {
  3359. return;
  3360. }
  3361. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3362. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3363. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3364. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3365. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3366. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3367. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3368. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3369. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3370. if (hparams.n_expert > 0) {
  3371. GGML_ASSERT(hparams.n_expert_used > 0);
  3372. } else {
  3373. GGML_ASSERT(hparams.n_expert_used == 0);
  3374. }
  3375. // n_head_kv is optional, default to n_head
  3376. hparams.n_head_kv = hparams.n_head;
  3377. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3378. bool rope_finetuned = false;
  3379. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3380. hparams.rope_finetuned = rope_finetuned;
  3381. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3382. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3383. // rope_freq_base (optional)
  3384. hparams.rope_freq_base_train = 10000.0f;
  3385. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3386. std::string rope_scaling("linear");
  3387. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3388. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3389. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3390. // rope_freq_scale (inverse of the kv) is optional
  3391. float ropescale = 0.0f;
  3392. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3393. // try the old key name
  3394. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3395. }
  3396. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3397. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3398. // sanity check for n_rot (optional)
  3399. {
  3400. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3401. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3402. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3403. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3404. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3405. }
  3406. }
  3407. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3408. // gpt-j n_rot = rotary_dim
  3409. }
  3410. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3411. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3412. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3413. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3414. // arch-specific KVs
  3415. switch (model.arch) {
  3416. case LLM_ARCH_LLAMA:
  3417. {
  3418. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3419. if (hparams.n_expert == 8) {
  3420. switch (hparams.n_layer) {
  3421. case 32: model.type = e_model::MODEL_8x7B; break;
  3422. case 56: model.type = e_model::MODEL_8x22B; break;
  3423. default: model.type = e_model::MODEL_UNKNOWN;
  3424. }
  3425. } else {
  3426. switch (hparams.n_layer) {
  3427. case 22: model.type = e_model::MODEL_1B; break;
  3428. case 26: model.type = e_model::MODEL_3B; break;
  3429. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3430. case 40: model.type = e_model::MODEL_13B; break;
  3431. case 48: model.type = e_model::MODEL_34B; break;
  3432. case 60: model.type = e_model::MODEL_30B; break;
  3433. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3434. default: model.type = e_model::MODEL_UNKNOWN;
  3435. }
  3436. }
  3437. } break;
  3438. case LLM_ARCH_MINICPM:
  3439. {
  3440. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3441. switch (hparams.n_layer) {
  3442. case 40: model.type = e_model::MODEL_2B; break;
  3443. default: model.type = e_model::MODEL_UNKNOWN;
  3444. }
  3445. } break;
  3446. case LLM_ARCH_GROK:
  3447. {
  3448. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3449. switch (hparams.n_layer) {
  3450. case 64: model.type = e_model::MODEL_314B; break;
  3451. default: model.type = e_model::MODEL_UNKNOWN;
  3452. }
  3453. } break;
  3454. case LLM_ARCH_FALCON:
  3455. {
  3456. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3457. switch (hparams.n_layer) {
  3458. case 32: model.type = e_model::MODEL_7B; break;
  3459. case 60: model.type = e_model::MODEL_40B; break;
  3460. default: model.type = e_model::MODEL_UNKNOWN;
  3461. }
  3462. } break;
  3463. case LLM_ARCH_BAICHUAN:
  3464. {
  3465. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3466. switch (hparams.n_layer) {
  3467. case 32: model.type = e_model::MODEL_7B; break;
  3468. case 40: model.type = e_model::MODEL_13B; break;
  3469. default: model.type = e_model::MODEL_UNKNOWN;
  3470. }
  3471. if (model.type == e_model::MODEL_13B) {
  3472. // TODO: become GGUF KV parameter
  3473. hparams.f_max_alibi_bias = 8.0f;
  3474. }
  3475. } break;
  3476. case LLM_ARCH_STARCODER:
  3477. {
  3478. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3479. switch (hparams.n_layer) {
  3480. case 24: model.type = e_model::MODEL_1B; break;
  3481. case 36: model.type = e_model::MODEL_3B; break;
  3482. case 42: model.type = e_model::MODEL_7B; break;
  3483. case 40: model.type = e_model::MODEL_15B; break;
  3484. default: model.type = e_model::MODEL_UNKNOWN;
  3485. }
  3486. } break;
  3487. case LLM_ARCH_REFACT:
  3488. {
  3489. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3490. switch (hparams.n_layer) {
  3491. case 32: model.type = e_model::MODEL_1B; break;
  3492. default: model.type = e_model::MODEL_UNKNOWN;
  3493. }
  3494. // TODO: become GGUF KV parameter
  3495. hparams.f_max_alibi_bias = 8.0f;
  3496. } break;
  3497. case LLM_ARCH_BERT:
  3498. {
  3499. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3500. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3501. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3502. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3503. switch (hparams.n_layer) {
  3504. case 3:
  3505. model.type = e_model::MODEL_17M; break; // bge-micro
  3506. case 6:
  3507. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3508. case 12:
  3509. switch (hparams.n_embd) {
  3510. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3511. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3512. } break;
  3513. case 24:
  3514. model.type = e_model::MODEL_335M; break; // bge-large
  3515. }
  3516. } break;
  3517. case LLM_ARCH_JINA_BERT_V2:
  3518. {
  3519. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3520. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3521. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3522. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3523. hparams.f_max_alibi_bias = 8.0f;
  3524. switch (hparams.n_layer) {
  3525. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3526. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3527. }
  3528. } break;
  3529. case LLM_ARCH_NOMIC_BERT:
  3530. {
  3531. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3532. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3533. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3534. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3535. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3536. model.type = e_model::MODEL_137M;
  3537. }
  3538. } break;
  3539. case LLM_ARCH_BLOOM:
  3540. {
  3541. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3542. switch (hparams.n_layer) {
  3543. case 24: model.type = e_model::MODEL_1B; break;
  3544. case 30:
  3545. switch (hparams.n_embd) {
  3546. case 2560: model.type = e_model::MODEL_3B; break;
  3547. case 4096: model.type = e_model::MODEL_7B; break;
  3548. } break;
  3549. }
  3550. // TODO: become GGUF KV parameter
  3551. hparams.f_max_alibi_bias = 8.0f;
  3552. } break;
  3553. case LLM_ARCH_MPT:
  3554. {
  3555. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3556. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3557. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3558. switch (hparams.n_layer) {
  3559. case 32: model.type = e_model::MODEL_7B; break;
  3560. case 48: model.type = e_model::MODEL_30B; break;
  3561. default: model.type = e_model::MODEL_UNKNOWN;
  3562. }
  3563. } break;
  3564. case LLM_ARCH_STABLELM:
  3565. {
  3566. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3567. switch (hparams.n_layer) {
  3568. case 24: model.type = e_model::MODEL_1B; break;
  3569. case 32: model.type = e_model::MODEL_3B; break;
  3570. case 40: model.type = e_model::MODEL_12B; break;
  3571. default: model.type = e_model::MODEL_UNKNOWN;
  3572. }
  3573. } break;
  3574. case LLM_ARCH_QWEN:
  3575. {
  3576. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3577. switch (hparams.n_layer) {
  3578. case 32: model.type = e_model::MODEL_7B; break;
  3579. case 40: model.type = e_model::MODEL_13B; break;
  3580. default: model.type = e_model::MODEL_UNKNOWN;
  3581. }
  3582. } break;
  3583. case LLM_ARCH_QWEN2:
  3584. {
  3585. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3586. switch (hparams.n_layer) {
  3587. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3588. case 32: model.type = e_model::MODEL_7B; break;
  3589. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3590. case 80: model.type = e_model::MODEL_70B; break;
  3591. default: model.type = e_model::MODEL_UNKNOWN;
  3592. }
  3593. } break;
  3594. case LLM_ARCH_QWEN2MOE:
  3595. {
  3596. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3597. switch (hparams.n_layer) {
  3598. case 24: model.type = e_model::MODEL_A2_7B; break;
  3599. default: model.type = e_model::MODEL_UNKNOWN;
  3600. }
  3601. } break;
  3602. case LLM_ARCH_PHI2:
  3603. {
  3604. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3605. switch (hparams.n_layer) {
  3606. case 24: model.type = e_model::MODEL_1B; break;
  3607. case 32: model.type = e_model::MODEL_3B; break;
  3608. default: model.type = e_model::MODEL_UNKNOWN;
  3609. }
  3610. } break;
  3611. case LLM_ARCH_PHI3:
  3612. {
  3613. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3614. switch (hparams.n_layer) {
  3615. case 24: model.type = e_model::MODEL_1B; break;
  3616. case 32: model.type = e_model::MODEL_3B; break;
  3617. default: model.type = e_model::MODEL_UNKNOWN;
  3618. }
  3619. } break;
  3620. case LLM_ARCH_PLAMO:
  3621. {
  3622. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3623. switch (hparams.n_layer) {
  3624. case 40: model.type = e_model::MODEL_13B; break;
  3625. default: model.type = e_model::MODEL_UNKNOWN;
  3626. }
  3627. } break;
  3628. case LLM_ARCH_GPT2:
  3629. {
  3630. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3631. switch (hparams.n_layer) {
  3632. case 12: model.type = e_model::MODEL_SMALL; break;
  3633. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3634. case 36: model.type = e_model::MODEL_LARGE; break;
  3635. case 48: model.type = e_model::MODEL_XL; break;
  3636. default: model.type = e_model::MODEL_UNKNOWN;
  3637. }
  3638. } break;
  3639. case LLM_ARCH_CODESHELL:
  3640. {
  3641. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3642. switch (hparams.n_layer) {
  3643. case 42: model.type = e_model::MODEL_SMALL; break;
  3644. default: model.type = e_model::MODEL_UNKNOWN;
  3645. }
  3646. } break;
  3647. case LLM_ARCH_ORION:
  3648. {
  3649. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3650. switch (hparams.n_layer) {
  3651. case 40: model.type = e_model::MODEL_14B; break;
  3652. default: model.type = e_model::MODEL_UNKNOWN;
  3653. }
  3654. } break;
  3655. case LLM_ARCH_INTERNLM2:
  3656. {
  3657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3658. switch (hparams.n_layer) {
  3659. case 32: model.type = e_model::MODEL_7B; break;
  3660. case 48: model.type = e_model::MODEL_20B; break;
  3661. default: model.type = e_model::MODEL_UNKNOWN;
  3662. }
  3663. } break;
  3664. case LLM_ARCH_GEMMA:
  3665. {
  3666. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3667. switch (hparams.n_layer) {
  3668. case 18: model.type = e_model::MODEL_2B; break;
  3669. case 28: model.type = e_model::MODEL_7B; break;
  3670. default: model.type = e_model::MODEL_UNKNOWN;
  3671. }
  3672. } break;
  3673. case LLM_ARCH_STARCODER2:
  3674. {
  3675. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3676. switch (hparams.n_layer) {
  3677. case 30: model.type = e_model::MODEL_3B; break;
  3678. case 32: model.type = e_model::MODEL_7B; break;
  3679. case 40: model.type = e_model::MODEL_15B; break;
  3680. default: model.type = e_model::MODEL_UNKNOWN;
  3681. }
  3682. } break;
  3683. case LLM_ARCH_MAMBA:
  3684. {
  3685. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3686. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3687. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3688. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3690. switch (hparams.n_layer) {
  3691. case 24:
  3692. switch (hparams.n_embd) {
  3693. case 768: model.type = e_model::MODEL_SMALL; break;
  3694. default: model.type = e_model::MODEL_UNKNOWN;
  3695. } break;
  3696. case 48:
  3697. switch (hparams.n_embd) {
  3698. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3699. case 1536: model.type = e_model::MODEL_LARGE; break;
  3700. case 2048: model.type = e_model::MODEL_XL; break;
  3701. default: model.type = e_model::MODEL_UNKNOWN;
  3702. } break;
  3703. case 64:
  3704. switch (hparams.n_embd) {
  3705. case 2560: model.type = e_model::MODEL_3B; break;
  3706. default: model.type = e_model::MODEL_UNKNOWN;
  3707. } break;
  3708. default: model.type = e_model::MODEL_UNKNOWN;
  3709. }
  3710. } break;
  3711. case LLM_ARCH_XVERSE:
  3712. {
  3713. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3714. switch (hparams.n_layer) {
  3715. case 32: model.type = e_model::MODEL_7B; break;
  3716. case 40: model.type = e_model::MODEL_13B; break;
  3717. case 80: model.type = e_model::MODEL_65B; break;
  3718. default: model.type = e_model::MODEL_UNKNOWN;
  3719. }
  3720. } break;
  3721. case LLM_ARCH_COMMAND_R:
  3722. {
  3723. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3724. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3725. switch (hparams.n_layer) {
  3726. case 40: model.type = e_model::MODEL_35B; break;
  3727. default: model.type = e_model::MODEL_UNKNOWN;
  3728. }
  3729. } break;
  3730. case LLM_ARCH_DBRX:
  3731. {
  3732. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3733. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3734. switch (hparams.n_layer) {
  3735. case 40: model.type = e_model::MODEL_16x12B; break;
  3736. default: model.type = e_model::MODEL_UNKNOWN;
  3737. }
  3738. } break;
  3739. case LLM_ARCH_OLMO:
  3740. {
  3741. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3742. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3743. switch (hparams.n_layer) {
  3744. case 22: model.type = e_model::MODEL_1B; break;
  3745. case 32: model.type = e_model::MODEL_7B; break;
  3746. case 80: model.type = e_model::MODEL_70B; break;
  3747. default: model.type = e_model::MODEL_UNKNOWN;
  3748. }
  3749. } break;
  3750. default: (void)0;
  3751. }
  3752. model.ftype = ml.ftype;
  3753. if (hparams.f_max_alibi_bias > 0.0f) {
  3754. hparams.use_alibi = true;
  3755. }
  3756. hparams.rope_type = llama_rope_type(&model);
  3757. }
  3758. // TODO: This should probably be in llama.h
  3759. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3760. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3761. );
  3762. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3763. static void llm_load_vocab(
  3764. llama_model_loader & ml,
  3765. llama_model & model) {
  3766. auto & vocab = model.vocab;
  3767. struct gguf_context * ctx = ml.meta;
  3768. const auto kv = LLM_KV(model.arch);
  3769. // determine vocab type
  3770. {
  3771. std::string tokenizer_model;
  3772. std::string tokenizer_pre;
  3773. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3774. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3775. if (tokenizer_model == "no_vocab") {
  3776. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3777. // default special tokens
  3778. vocab.special_bos_id = -1;
  3779. vocab.special_eos_id = -1;
  3780. vocab.special_unk_id = -1;
  3781. vocab.special_sep_id = -1;
  3782. vocab.special_pad_id = -1;
  3783. vocab.special_cls_id = -1;
  3784. vocab.special_mask_id = -1;
  3785. vocab.linefeed_id = -1;
  3786. return;
  3787. } else if (tokenizer_model == "llama") {
  3788. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3789. // default special tokens
  3790. vocab.special_bos_id = 1;
  3791. vocab.special_eos_id = 2;
  3792. vocab.special_unk_id = 0;
  3793. vocab.special_sep_id = -1;
  3794. vocab.special_pad_id = -1;
  3795. vocab.special_cls_id = -1;
  3796. vocab.special_mask_id = -1;
  3797. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3798. // prior to support of FIM special tokens in GGUF, the following
  3799. // will allow those models to continue to work. The general names
  3800. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3801. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3802. // new versions of these models have been published.
  3803. std::string gen_name;
  3804. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3805. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3806. [](unsigned char c){ return std::tolower(c); });
  3807. if (gen_name.find("code") != std::string::npos) {
  3808. if (model.arch == LLM_ARCH_LLAMA) {
  3809. vocab.special_prefix_id = 32007;
  3810. vocab.special_suffix_id = 32008;
  3811. vocab.special_middle_id = 32009;
  3812. vocab.special_eot_id = 32010;
  3813. } else if (model.arch == LLM_ARCH_GEMMA) {
  3814. vocab.special_prefix_id = 67;
  3815. vocab.special_suffix_id = 69;
  3816. vocab.special_middle_id = 68;
  3817. // TODO: this is not EOT, it is "file separator" token, needs fix
  3818. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3819. //vocab.special_eot_id = 70;
  3820. vocab.special_eot_id = 107;
  3821. }
  3822. }
  3823. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3824. if (add_space_prefix_keyidx != -1) {
  3825. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3826. } // The default value of add_space_prefix is true.
  3827. } else if (tokenizer_model == "bert") {
  3828. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3829. // default special tokens
  3830. vocab.special_bos_id = -1;
  3831. vocab.special_eos_id = -1;
  3832. vocab.special_unk_id = 100;
  3833. vocab.special_sep_id = 102;
  3834. vocab.special_pad_id = 0;
  3835. vocab.special_cls_id = 101;
  3836. vocab.special_mask_id = 103;
  3837. vocab.add_space_prefix = false;
  3838. } else {
  3839. if (tokenizer_model == "gpt2") {
  3840. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3841. } else {
  3842. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3843. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3844. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3845. return;
  3846. }
  3847. // read bpe merges and populate bpe ranks
  3848. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3849. if (merges_keyidx == -1) {
  3850. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3851. }
  3852. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3853. for (int i = 0; i < n_merges; i++) {
  3854. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3855. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3856. std::string first;
  3857. std::string second;
  3858. const size_t pos = word.find(' ', 1);
  3859. if (pos != std::string::npos) {
  3860. first = word.substr(0, pos);
  3861. second = word.substr(pos + 1);
  3862. }
  3863. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3864. }
  3865. // default special tokens
  3866. vocab.special_bos_id = 11;
  3867. vocab.special_eos_id = 11;
  3868. vocab.special_unk_id = -1;
  3869. vocab.special_sep_id = -1;
  3870. vocab.special_pad_id = -1;
  3871. vocab.special_cls_id = -1;
  3872. vocab.special_mask_id = -1;
  3873. }
  3874. // for now, only BPE models have pre-tokenizers
  3875. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3876. if (tokenizer_pre.empty()) {
  3877. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3878. LLAMA_LOG_WARN("%s: \n", __func__);
  3879. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3880. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3881. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3882. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3883. LLAMA_LOG_WARN("%s: \n", __func__);
  3884. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3885. } else if (
  3886. tokenizer_pre == "default") {
  3887. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3888. } else if (
  3889. tokenizer_pre == "llama3" ||
  3890. tokenizer_pre == "llama-v3" ||
  3891. tokenizer_pre == "llama-bpe") {
  3892. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3893. } else if (
  3894. tokenizer_pre == "deepseek-llm") {
  3895. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3896. } else if (
  3897. tokenizer_pre == "deepseek-coder") {
  3898. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3899. } else if (
  3900. tokenizer_pre == "falcon") {
  3901. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3902. } else if (
  3903. tokenizer_pre == "mpt") {
  3904. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3905. } else if (
  3906. tokenizer_pre == "starcoder") {
  3907. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3908. } else if (
  3909. tokenizer_pre == "gpt-2" ||
  3910. tokenizer_pre == "jina-es" ||
  3911. tokenizer_pre == "jina-de" ||
  3912. tokenizer_pre == "jina-v2-es" ||
  3913. tokenizer_pre == "jina-v2-de") {
  3914. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3915. } else if (
  3916. tokenizer_pre == "refact") {
  3917. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3918. } else if (
  3919. tokenizer_pre == "command-r") {
  3920. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3921. } else if (
  3922. tokenizer_pre == "qwen2") {
  3923. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3924. } else if (
  3925. tokenizer_pre == "stablelm2") {
  3926. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  3927. } else if (
  3928. tokenizer_pre == "olmo") {
  3929. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3930. } else if (
  3931. tokenizer_pre == "dbrx") {
  3932. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3933. } else {
  3934. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3935. }
  3936. } else {
  3937. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3938. }
  3939. }
  3940. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3941. if (token_idx == -1) {
  3942. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3943. }
  3944. const float * scores = nullptr;
  3945. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3946. if (score_idx != -1) {
  3947. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3948. }
  3949. const int * toktypes = nullptr;
  3950. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3951. if (toktype_idx != -1) {
  3952. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3953. }
  3954. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3955. vocab.id_to_token.resize(n_vocab);
  3956. for (uint32_t i = 0; i < n_vocab; i++) {
  3957. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3958. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3959. vocab.token_to_id[word] = i;
  3960. auto & token_data = vocab.id_to_token[i];
  3961. token_data.text = std::move(word);
  3962. token_data.score = scores ? scores[i] : 0.0f;
  3963. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3964. }
  3965. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3966. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3967. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3968. try {
  3969. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3970. } catch (const std::exception & e) {
  3971. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3972. vocab.linefeed_id = vocab.special_pad_id;
  3973. }
  3974. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3975. vocab.linefeed_id = vocab.special_pad_id;
  3976. } else {
  3977. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3978. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3979. vocab.linefeed_id = ids[0];
  3980. }
  3981. // special tokens
  3982. {
  3983. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3984. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3985. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3986. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3987. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3988. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3989. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3990. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3991. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3992. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3993. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3994. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3995. };
  3996. for (const auto & it : special_token_types) {
  3997. const std::string & key = kv(std::get<0>(it));
  3998. int32_t & id = std::get<1>(it);
  3999. uint32_t new_id;
  4000. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4001. continue;
  4002. }
  4003. if (new_id >= vocab.id_to_token.size()) {
  4004. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4005. __func__, key.c_str(), new_id, id);
  4006. } else {
  4007. id = new_id;
  4008. }
  4009. }
  4010. // Handle add_bos_token and add_eos_token
  4011. {
  4012. bool temp = true;
  4013. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4014. vocab.special_add_bos = int(temp);
  4015. }
  4016. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4017. vocab.special_add_eos = int(temp);
  4018. }
  4019. }
  4020. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4021. //
  4022. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4023. // for now, we apply this workaround to find the EOT token based on its text
  4024. if (vocab.special_eot_id == -1) {
  4025. for (const auto & t : vocab.token_to_id) {
  4026. if (
  4027. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4028. // need to fix convert script
  4029. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4030. (t.first == "<|eot_id|>" ||
  4031. t.first == "<|im_end|>" ||
  4032. t.first == "<|end|>" ||
  4033. t.first == "<end_of_turn>" ||
  4034. t.first == "<|endoftext|>"
  4035. )
  4036. ) {
  4037. vocab.special_eot_id = t.second;
  4038. break;
  4039. }
  4040. }
  4041. }
  4042. }
  4043. // build special tokens cache
  4044. {
  4045. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4046. // and will always be correctly labeled in 'added_tokens.json' etc.
  4047. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4048. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4049. // are special tokens.
  4050. // From testing, this appears to correlate 1:1 with special tokens.
  4051. //
  4052. // Counting special tokens and verifying in only one direction
  4053. // is sufficient to detect difference in those two sets.
  4054. //
  4055. uint32_t special_tokens_count_by_type = 0;
  4056. uint32_t special_tokens_count_from_verification = 0;
  4057. bool special_tokens_definition_mismatch = false;
  4058. for (const auto & t : vocab.token_to_id) {
  4059. const auto & token = t.first;
  4060. const auto & id = t.second;
  4061. // Count all non-normal tokens in the vocab while iterating
  4062. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4063. special_tokens_count_by_type++;
  4064. }
  4065. // Skip single character tokens
  4066. if (token.length() > 1) {
  4067. bool is_tokenizable = false;
  4068. // Split token string representation in two, in all possible ways
  4069. // and check if both halves can be matched to a valid token
  4070. for (unsigned i = 1; i < token.length();) {
  4071. const auto left = token.substr(0, i);
  4072. const auto right = token.substr(i);
  4073. // check if we didnt partition in the middle of a utf sequence
  4074. auto utf = utf8_len(left.at(left.length() - 1));
  4075. if (utf == 1) {
  4076. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4077. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4078. is_tokenizable = true;
  4079. break;
  4080. }
  4081. i++;
  4082. } else {
  4083. // skip over the rest of multibyte utf sequence
  4084. i += utf - 1;
  4085. }
  4086. }
  4087. if (!is_tokenizable) {
  4088. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4089. // it's faster to re-filter them here, since there are way less candidates now
  4090. // Calculate a total "utf" length of a token string representation
  4091. size_t utf8_str_len = 0;
  4092. for (unsigned i = 0; i < token.length();) {
  4093. utf8_str_len++;
  4094. i += utf8_len(token.at(i));
  4095. }
  4096. // And skip the ones which are one character
  4097. if (utf8_str_len > 1) {
  4098. // At this point what we have left are special tokens only
  4099. vocab.special_tokens_cache[token] = id;
  4100. // Count manually found special tokens
  4101. special_tokens_count_from_verification++;
  4102. // If this manually found special token is not marked as such, flag a mismatch
  4103. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4104. special_tokens_definition_mismatch = true;
  4105. }
  4106. }
  4107. }
  4108. }
  4109. }
  4110. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4111. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4112. __func__,
  4113. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4114. special_tokens_count_by_type, vocab.id_to_token.size()
  4115. );
  4116. } else {
  4117. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4118. __func__,
  4119. special_tokens_count_from_verification, vocab.id_to_token.size()
  4120. );
  4121. }
  4122. }
  4123. }
  4124. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4125. const auto & hparams = model.hparams;
  4126. const auto & vocab = model.vocab;
  4127. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4128. // hparams
  4129. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4130. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4131. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4132. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4133. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4134. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4135. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4136. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4137. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4138. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4139. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4140. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4141. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4142. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4143. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4144. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4145. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4146. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4147. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4148. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4149. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4150. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4151. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4152. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4153. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4154. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4155. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4156. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4157. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4158. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4159. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4160. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4161. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4162. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4163. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4164. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4165. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4166. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4167. if (ml.n_elements >= 1e12) {
  4168. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4169. } else if (ml.n_elements >= 1e9) {
  4170. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4171. } else if (ml.n_elements >= 1e6) {
  4172. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4173. } else {
  4174. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4175. }
  4176. if (ml.n_bytes < GiB) {
  4177. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4178. } else {
  4179. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4180. }
  4181. // general kv
  4182. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4183. // special tokens
  4184. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4185. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4186. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4187. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4188. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4189. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4190. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4191. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4192. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4193. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4194. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4195. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4196. }
  4197. // Returns false if cancelled by progress_callback
  4198. static bool llm_load_tensors(
  4199. llama_model_loader & ml,
  4200. llama_model & model,
  4201. int n_gpu_layers,
  4202. enum llama_split_mode split_mode,
  4203. int main_gpu,
  4204. const float * tensor_split,
  4205. bool use_mlock,
  4206. llama_progress_callback progress_callback,
  4207. void * progress_callback_user_data) {
  4208. model.t_start_us = ggml_time_us();
  4209. auto & hparams = model.hparams;
  4210. #ifdef GGML_USE_SYCL
  4211. // disable MoE with SYCL until mul_mat_id is updated
  4212. if (hparams.n_expert > 0) {
  4213. n_gpu_layers = 0;
  4214. }
  4215. #endif
  4216. model.split_mode = split_mode;
  4217. model.main_gpu = main_gpu;
  4218. model.n_gpu_layers = n_gpu_layers;
  4219. const int64_t n_layer = hparams.n_layer;
  4220. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4221. bool use_mmap_buffer = true;
  4222. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4223. model.buft_input = llama_default_buffer_type_cpu(true);
  4224. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4225. model.buft_layer.resize(n_layer);
  4226. // assign cpu layers
  4227. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4228. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4229. }
  4230. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4231. // calculate the split points
  4232. int device_count = llama_get_device_count(model);
  4233. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4234. std::vector<float> splits(device_count);
  4235. if (all_zero) {
  4236. // default split, by free memory
  4237. for (int i = 0; i < device_count; ++i) {
  4238. splits[i] = llama_get_device_memory(model, i);
  4239. }
  4240. } else {
  4241. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4242. }
  4243. // sum and normalize the splits to get the split points
  4244. float split_sum = 0.0f;
  4245. for (int i = 0; i < device_count; ++i) {
  4246. split_sum += splits[i];
  4247. splits[i] = split_sum;
  4248. }
  4249. for (int i = 0; i < device_count; ++i) {
  4250. splits[i] /= split_sum;
  4251. }
  4252. // assign the repeating layers to the devices according to the splits
  4253. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4254. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4255. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4256. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4257. }
  4258. // assign the output layer
  4259. if (n_gpu_layers > n_layer) {
  4260. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4261. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4262. } else {
  4263. model.buft_output = llama_default_buffer_type_cpu(true);
  4264. }
  4265. } else {
  4266. ggml_backend_buffer_type_t split_buft;
  4267. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4268. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4269. } else {
  4270. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4271. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4272. }
  4273. // assign the repeating layers
  4274. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4275. model.buft_layer[i] = {
  4276. split_buft,
  4277. llama_default_buffer_type_offload(model, main_gpu)
  4278. };
  4279. }
  4280. // assign the output layer
  4281. if (n_gpu_layers > n_layer) {
  4282. model.buft_output = {
  4283. split_buft,
  4284. llama_default_buffer_type_offload(model, main_gpu)
  4285. };
  4286. } else {
  4287. model.buft_output = llama_default_buffer_type_cpu(true);
  4288. }
  4289. }
  4290. // count used buffer types
  4291. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4292. buft_layer_count[model.buft_input.buft]++;
  4293. buft_layer_count[model.buft_input.buft_matrix]++;
  4294. buft_layer_count[model.buft_output.buft]++;
  4295. buft_layer_count[model.buft_output.buft_matrix]++;
  4296. for (int64_t i = 0; i < n_layer; ++i) {
  4297. buft_layer_count[model.buft_layer[i].buft]++;
  4298. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4299. }
  4300. // create one context per buffer type
  4301. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4302. // for moe merged tensors
  4303. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4304. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4305. for (auto & it : buft_layer_count) {
  4306. struct ggml_init_params params = {
  4307. /*.mem_size =*/ ctx_size,
  4308. /*.mem_buffer =*/ NULL,
  4309. /*.no_alloc =*/ true,
  4310. };
  4311. ggml_context * ctx = ggml_init(params);
  4312. if (!ctx) {
  4313. throw std::runtime_error(format("failed to create context"));
  4314. }
  4315. ctx_map[it.first] = ctx;
  4316. model.ctxs.push_back(ctx);
  4317. }
  4318. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4319. // create tensors for the weights
  4320. {
  4321. const int64_t n_embd = hparams.n_embd;
  4322. const int64_t n_embd_head = n_embd / hparams.n_head;
  4323. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4324. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4325. const int64_t n_embd_gqa = n_embd_v_gqa;
  4326. const int64_t n_vocab = hparams.n_vocab;
  4327. const int64_t n_vocab_type = hparams.n_vocab_type;
  4328. const int64_t n_ff = hparams.n_ff;
  4329. const int64_t n_expert = hparams.n_expert;
  4330. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4331. throw std::runtime_error("model has expert layers but no expert layers are used");
  4332. }
  4333. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4334. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4335. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4336. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4337. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4338. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4339. model.layers.resize(n_layer);
  4340. const auto tn = LLM_TN(model.arch);
  4341. switch (model.arch) {
  4342. case LLM_ARCH_LLAMA:
  4343. case LLM_ARCH_REFACT:
  4344. case LLM_ARCH_MINICPM:
  4345. {
  4346. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4347. // output
  4348. {
  4349. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4350. if (model.arch != LLM_ARCH_MINICPM){
  4351. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4352. // if output is NULL, init from the input tok embed
  4353. if (model.output == NULL) {
  4354. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4355. ml.n_created--; // artificial tensor
  4356. ml.size_data += ggml_nbytes(model.output);
  4357. }
  4358. }
  4359. }
  4360. for (int i = 0; i < n_layer; ++i) {
  4361. ggml_context * ctx_layer = ctx_for_layer(i);
  4362. ggml_context * ctx_split = ctx_for_layer_split(i);
  4363. auto & layer = model.layers[i];
  4364. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4365. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4366. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4367. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4368. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4369. // optional bias tensors
  4370. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4371. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4372. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4373. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4374. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4375. if (n_expert == 0) {
  4376. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4377. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4378. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4379. } else {
  4380. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4381. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4382. if (layer.ffn_gate_exps) {
  4383. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4384. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4385. } else {
  4386. // merge split expert into a single tensor for compatibility with older models
  4387. // requires disabling mmap
  4388. use_mmap_buffer = false;
  4389. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4390. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4391. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4392. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4393. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4394. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4395. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4396. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4397. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4398. for (uint32_t x = 0; x < n_expert; ++x) {
  4399. // the individual experts are loaded into a view of the merged tensor
  4400. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4401. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4402. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4403. }
  4404. }
  4405. }
  4406. }
  4407. } break;
  4408. case LLM_ARCH_GROK:
  4409. {
  4410. if (n_expert == 0) {
  4411. throw std::runtime_error("Grok model cannot have zero experts");
  4412. }
  4413. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4414. // output
  4415. {
  4416. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4417. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4418. // if output is NULL, init from the input tok embed
  4419. if (model.output == NULL) {
  4420. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4421. ml.n_created--; // artificial tensor
  4422. ml.size_data += ggml_nbytes(model.output);
  4423. }
  4424. }
  4425. for (int i = 0; i < n_layer; ++i) {
  4426. ggml_context * ctx_layer = ctx_for_layer(i);
  4427. ggml_context * ctx_split = ctx_for_layer_split(i);
  4428. auto & layer = model.layers[i];
  4429. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4430. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4431. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4432. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4433. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4434. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4435. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4436. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4437. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4438. if (layer.ffn_gate_exps) {
  4439. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4440. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4441. } else {
  4442. // merge split expert into a single tensor for compatibility with older models
  4443. // requires disabling mmap
  4444. use_mmap_buffer = false;
  4445. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4446. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4447. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4448. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4449. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4450. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4451. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4452. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4453. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4454. for (uint32_t x = 0; x < n_expert; ++x) {
  4455. // the individual experts are loaded into a view of the merged tensor
  4456. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4457. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4458. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4459. }
  4460. }
  4461. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4462. }
  4463. } break;
  4464. case LLM_ARCH_DBRX:
  4465. {
  4466. if (n_expert == 0) {
  4467. throw std::runtime_error("DBRX model cannot have zero experts");
  4468. }
  4469. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4470. // output
  4471. {
  4472. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4473. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4474. }
  4475. for (int i = 0; i < n_layer; ++i) {
  4476. ggml_context * ctx_layer = ctx_for_layer(i);
  4477. ggml_context * ctx_split = ctx_for_layer_split(i);
  4478. auto & layer = model.layers[i];
  4479. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4480. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4481. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4482. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4483. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4484. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4485. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4486. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4487. }
  4488. } break;
  4489. case LLM_ARCH_BAICHUAN:
  4490. {
  4491. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4492. {
  4493. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4494. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4495. }
  4496. for (int i = 0; i < n_layer; ++i) {
  4497. ggml_context * ctx_layer = ctx_for_layer(i);
  4498. ggml_context * ctx_split = ctx_for_layer_split(i);
  4499. auto & layer = model.layers[i];
  4500. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4501. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4502. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4503. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4504. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4505. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4506. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4507. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4508. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4509. }
  4510. } break;
  4511. case LLM_ARCH_FALCON:
  4512. {
  4513. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4514. // output
  4515. {
  4516. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4517. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4518. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4519. if (!model.output) {
  4520. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4521. ml.n_created--; // artificial tensor
  4522. ml.size_data += ggml_nbytes(model.output);
  4523. }
  4524. }
  4525. for (int i = 0; i < n_layer; ++i) {
  4526. ggml_context * ctx_layer = ctx_for_layer(i);
  4527. ggml_context * ctx_split = ctx_for_layer_split(i);
  4528. auto & layer = model.layers[i];
  4529. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4530. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4531. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4532. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4533. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4534. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4535. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4536. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4537. }
  4538. } break;
  4539. case LLM_ARCH_STARCODER:
  4540. {
  4541. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4542. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4543. // output
  4544. {
  4545. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4546. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4547. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4548. if (!model.output) {
  4549. // needs to be on GPU
  4550. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4551. ml.n_created--; // artificial tensor
  4552. ml.size_data += ggml_nbytes(model.output);
  4553. }
  4554. }
  4555. for (int i = 0; i < n_layer; ++i) {
  4556. ggml_context * ctx_layer = ctx_for_layer(i);
  4557. ggml_context * ctx_split = ctx_for_layer_split(i);
  4558. auto & layer = model.layers[i];
  4559. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4560. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4561. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4562. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4563. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4564. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4565. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4566. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4567. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4568. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4569. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4570. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4571. }
  4572. } break;
  4573. case LLM_ARCH_BERT:
  4574. case LLM_ARCH_NOMIC_BERT:
  4575. {
  4576. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4577. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4578. if (model.arch == LLM_ARCH_BERT) {
  4579. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4580. }
  4581. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4582. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4583. for (int i = 0; i < n_layer; ++i) {
  4584. ggml_context * ctx_layer = ctx_for_layer(i);
  4585. ggml_context * ctx_split = ctx_for_layer_split(i);
  4586. auto & layer = model.layers[i];
  4587. if (model.arch == LLM_ARCH_BERT) {
  4588. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4589. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4590. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4591. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4592. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4593. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4594. } else {
  4595. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4596. }
  4597. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4598. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4599. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4600. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4601. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4602. if (model.arch == LLM_ARCH_BERT) {
  4603. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4604. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4605. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4606. } else {
  4607. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4608. }
  4609. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4610. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4611. }
  4612. } break;
  4613. case LLM_ARCH_JINA_BERT_V2:
  4614. {
  4615. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4616. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4617. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4618. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4619. for (int i = 0; i < n_layer; ++i) {
  4620. ggml_context * ctx_layer = ctx_for_layer(i);
  4621. ggml_context * ctx_split = ctx_for_layer_split(i);
  4622. auto & layer = model.layers[i]; // JinaBertLayer
  4623. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4624. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4625. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4626. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4627. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4628. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4629. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4630. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4631. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4632. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4633. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4634. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4635. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4636. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4637. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4638. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4639. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4640. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4641. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4642. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4643. }
  4644. } break;
  4645. case LLM_ARCH_BLOOM:
  4646. {
  4647. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4648. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4649. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4650. // output
  4651. {
  4652. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4653. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4654. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4655. }
  4656. for (int i = 0; i < n_layer; ++i) {
  4657. ggml_context * ctx_layer = ctx_for_layer(i);
  4658. ggml_context * ctx_split = ctx_for_layer_split(i);
  4659. auto & layer = model.layers[i];
  4660. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4661. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4662. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4663. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4664. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4665. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4666. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4667. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4668. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4669. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4670. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4671. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4672. }
  4673. } break;
  4674. case LLM_ARCH_MPT:
  4675. {
  4676. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4677. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4678. // output
  4679. {
  4680. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4681. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4682. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4683. if (!model.output) {
  4684. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4685. ml.n_created--; // artificial tensor
  4686. ml.size_data += ggml_nbytes(model.output);
  4687. }
  4688. }
  4689. for (int i = 0; i < n_layer; ++i) {
  4690. ggml_context * ctx_layer = ctx_for_layer(i);
  4691. ggml_context * ctx_split = ctx_for_layer_split(i);
  4692. auto & layer = model.layers[i];
  4693. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4694. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4695. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4696. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4697. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4698. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4699. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4700. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4701. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4702. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4703. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4704. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4705. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4706. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4707. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4708. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4709. // AWQ ScaleActivation layer
  4710. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4711. }
  4712. } break;
  4713. case LLM_ARCH_STABLELM:
  4714. {
  4715. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4716. // output
  4717. {
  4718. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4719. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4720. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4721. }
  4722. for (int i = 0; i < n_layer; ++i) {
  4723. ggml_context * ctx_layer = ctx_for_layer(i);
  4724. ggml_context * ctx_split = ctx_for_layer_split(i);
  4725. auto & layer = model.layers[i];
  4726. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4727. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4728. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4729. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4730. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4731. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4732. // optional bias tensors, present in Stable LM 2 1.6B
  4733. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4734. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4735. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4736. // optional q and k layernorms, present in StableLM 2 12B
  4737. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4738. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4739. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4740. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4741. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4742. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4743. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4744. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4745. }
  4746. } break;
  4747. case LLM_ARCH_QWEN:
  4748. {
  4749. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4750. // output
  4751. {
  4752. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4753. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4754. }
  4755. for (int i = 0; i < n_layer; ++i) {
  4756. ggml_context * ctx_layer = ctx_for_layer(i);
  4757. ggml_context * ctx_split = ctx_for_layer_split(i);
  4758. auto & layer = model.layers[i];
  4759. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4760. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4761. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4762. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4763. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4764. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4765. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4766. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4767. }
  4768. } break;
  4769. case LLM_ARCH_QWEN2:
  4770. {
  4771. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4772. // output
  4773. {
  4774. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4775. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4776. // if output is NULL, init from the input tok embed
  4777. if (model.output == NULL) {
  4778. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4779. ml.n_created--; // artificial tensor
  4780. ml.size_data += ggml_nbytes(model.output);
  4781. }
  4782. }
  4783. for (int i = 0; i < n_layer; ++i) {
  4784. ggml_context * ctx_layer = ctx_for_layer(i);
  4785. ggml_context * ctx_split = ctx_for_layer_split(i);
  4786. auto & layer = model.layers[i];
  4787. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4788. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4789. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4790. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4791. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4792. // optional bias tensors
  4793. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4794. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4795. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4796. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4797. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4798. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4799. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4800. }
  4801. } break;
  4802. case LLM_ARCH_QWEN2MOE:
  4803. {
  4804. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4805. // output
  4806. {
  4807. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4808. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4809. }
  4810. for (int i = 0; i < n_layer; ++i) {
  4811. ggml_context * ctx_layer = ctx_for_layer(i);
  4812. ggml_context * ctx_split = ctx_for_layer_split(i);
  4813. auto & layer = model.layers[i];
  4814. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4815. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4816. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4817. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4818. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4819. // optional bias tensors
  4820. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4821. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4822. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4823. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4824. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4825. GGML_ASSERT(hparams.n_expert > 0);
  4826. GGML_ASSERT(hparams.n_expert_used > 0);
  4827. // MoE branch
  4828. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4829. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4830. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4831. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4832. // Shared expert branch
  4833. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4834. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4835. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4836. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4837. }
  4838. } break;
  4839. case LLM_ARCH_PHI2:
  4840. {
  4841. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4842. // output
  4843. {
  4844. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4845. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4846. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4847. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4848. }
  4849. for (int i = 0; i < n_layer; ++i) {
  4850. ggml_context * ctx_layer = ctx_for_layer(i);
  4851. ggml_context * ctx_split = ctx_for_layer_split(i);
  4852. auto & layer = model.layers[i];
  4853. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4854. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4855. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4856. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4857. if (layer.wqkv == nullptr) {
  4858. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4859. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4860. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4861. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4862. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4863. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4864. }
  4865. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4866. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4867. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4868. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4869. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4870. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4871. }
  4872. } break;
  4873. case LLM_ARCH_PHI3:
  4874. {
  4875. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4876. model.rope_long = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, false);
  4877. model.rope_short = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, false);
  4878. // output
  4879. {
  4880. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4881. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4882. }
  4883. for (int i = 0; i < n_layer; ++i) {
  4884. ggml_context* ctx_layer = ctx_for_layer(i);
  4885. ggml_context* ctx_split = ctx_for_layer_split(i);
  4886. auto & layer = model.layers[i];
  4887. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4888. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4889. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4890. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4891. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4892. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4893. }
  4894. } break;
  4895. case LLM_ARCH_PLAMO:
  4896. {
  4897. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4898. // output
  4899. {
  4900. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4901. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4902. }
  4903. for (int i = 0; i < n_layer; ++i) {
  4904. ggml_context * ctx_layer = ctx_for_layer(i);
  4905. ggml_context * ctx_split = ctx_for_layer_split(i);
  4906. auto & layer = model.layers[i];
  4907. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4908. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4909. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4910. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4911. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4912. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4913. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4914. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4915. }
  4916. } break;
  4917. case LLM_ARCH_GPT2:
  4918. {
  4919. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4920. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4921. // output
  4922. {
  4923. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4924. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4925. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4926. }
  4927. for (int i = 0; i < n_layer; ++i) {
  4928. ggml_context * ctx_layer = ctx_for_layer(i);
  4929. ggml_context * ctx_split = ctx_for_layer_split(i);
  4930. auto & layer = model.layers[i];
  4931. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4932. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4933. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4934. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4935. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4936. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4937. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4938. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4939. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4940. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4941. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4942. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4943. }
  4944. } break;
  4945. case LLM_ARCH_CODESHELL:
  4946. {
  4947. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4948. // output
  4949. {
  4950. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4951. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4952. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4953. }
  4954. for (int i = 0; i < n_layer; ++i) {
  4955. ggml_context * ctx_layer = ctx_for_layer(i);
  4956. ggml_context * ctx_split = ctx_for_layer_split(i);
  4957. auto & layer = model.layers[i];
  4958. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4959. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4960. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4961. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4962. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4963. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4964. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4965. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4966. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4967. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4968. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4969. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4970. }
  4971. } break;
  4972. case LLM_ARCH_ORION:
  4973. {
  4974. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4975. {
  4976. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4977. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4978. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4979. }
  4980. for (int i = 0; i < n_layer; ++i) {
  4981. ggml_context * ctx_layer = ctx_for_layer(i);
  4982. ggml_context * ctx_split = ctx_for_layer_split(i);
  4983. auto & layer = model.layers[i];
  4984. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4985. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4986. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4987. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4988. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4989. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4990. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4991. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4992. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4993. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4994. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4995. }
  4996. } break;
  4997. case LLM_ARCH_INTERNLM2:
  4998. {
  4999. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5000. // output
  5001. {
  5002. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5003. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5004. }
  5005. for (int i = 0; i < n_layer; ++i) {
  5006. ggml_context * ctx_layer = ctx_for_layer(i);
  5007. ggml_context * ctx_split = ctx_for_layer_split(i);
  5008. auto & layer = model.layers[i];
  5009. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5010. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5011. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5012. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5013. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5014. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5015. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5016. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5017. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5018. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5019. }
  5020. } break;
  5021. case LLM_ARCH_GEMMA:
  5022. {
  5023. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5024. // output
  5025. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5026. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  5027. ml.n_created--; // artificial tensor
  5028. ml.size_data += ggml_nbytes(model.output);
  5029. const int64_t n_ff = hparams.n_ff;
  5030. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5031. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5032. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5033. for (uint32_t i = 0; i < n_layer; ++i) {
  5034. ggml_context * ctx_layer = ctx_for_layer(i);
  5035. ggml_context * ctx_split = ctx_for_layer_split(i);
  5036. auto & layer = model.layers[i];
  5037. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5038. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5039. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5040. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5041. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5042. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5043. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5044. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5045. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5046. }
  5047. } break;
  5048. case LLM_ARCH_STARCODER2:
  5049. {
  5050. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5051. // output
  5052. {
  5053. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5054. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5055. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5056. // if output is NULL, init from the input tok embed
  5057. if (model.output == NULL) {
  5058. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5059. ml.n_created--; // artificial tensor
  5060. ml.size_data += ggml_nbytes(model.output);
  5061. }
  5062. }
  5063. for (int i = 0; i < n_layer; ++i) {
  5064. ggml_context * ctx_layer = ctx_for_layer(i);
  5065. ggml_context * ctx_split = ctx_for_layer_split(i);
  5066. auto & layer = model.layers[i];
  5067. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5068. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5069. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5070. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5071. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5072. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5073. // optional bias tensors
  5074. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5075. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5076. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5077. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5078. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5079. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5080. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5081. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5082. // optional bias tensors
  5083. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5084. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5085. }
  5086. } break;
  5087. case LLM_ARCH_MAMBA:
  5088. {
  5089. const int64_t d_conv = hparams.ssm_d_conv;
  5090. const int64_t d_inner = hparams.ssm_d_inner;
  5091. const int64_t d_state = hparams.ssm_d_state;
  5092. const int64_t dt_rank = hparams.ssm_dt_rank;
  5093. // only an expansion factor of 2 is supported for now
  5094. GGML_ASSERT(2 * n_embd == d_inner);
  5095. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5096. // output
  5097. {
  5098. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5099. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5100. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5101. if (model.output == NULL) {
  5102. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5103. ml.n_created--; // artificial tensor
  5104. ml.size_data += ggml_nbytes(model.output);
  5105. }
  5106. }
  5107. for (int i = 0; i < n_layer; ++i) {
  5108. ggml_context * ctx_layer = ctx_for_layer(i);
  5109. ggml_context * ctx_split = ctx_for_layer_split(i);
  5110. auto & layer = model.layers[i];
  5111. // norm
  5112. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5113. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5114. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5115. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5116. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5117. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5118. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5119. // no "weight" suffix for these
  5120. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5121. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5122. // out_proj
  5123. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5124. }
  5125. } break;
  5126. case LLM_ARCH_XVERSE:
  5127. {
  5128. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5129. {
  5130. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5131. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5132. }
  5133. for (int i = 0; i < n_layer; ++i) {
  5134. ggml_context * ctx_layer = ctx_for_layer(i);
  5135. ggml_context * ctx_split = ctx_for_layer_split(i);
  5136. auto & layer = model.layers[i];
  5137. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5138. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5139. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5140. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5141. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5142. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5143. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5144. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5145. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5146. }
  5147. } break;
  5148. case LLM_ARCH_COMMAND_R:
  5149. {
  5150. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5151. // output
  5152. {
  5153. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5154. // init output from the input tok embed
  5155. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5156. ml.n_created--; // artificial tensor
  5157. ml.size_data += ggml_nbytes(model.output);
  5158. }
  5159. for (int i = 0; i < n_layer; ++i) {
  5160. ggml_context * ctx_layer = ctx_for_layer(i);
  5161. ggml_context * ctx_split = ctx_for_layer_split(i);
  5162. auto & layer = model.layers[i];
  5163. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5164. if (n_layer >= 64){
  5165. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5166. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5167. }
  5168. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5169. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5170. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5171. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5172. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5173. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5174. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5175. }
  5176. } break;
  5177. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5178. {
  5179. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5180. // output
  5181. {
  5182. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5183. // if output is NULL, init from the input tok embed
  5184. if (model.output == NULL) {
  5185. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5186. ml.n_created--; // artificial tensor
  5187. ml.size_data += ggml_nbytes(model.output);
  5188. }
  5189. }
  5190. for (int i = 0; i < n_layer; ++i) {
  5191. ggml_context * ctx_split = ctx_for_layer_split(i);
  5192. auto & layer = model.layers[i];
  5193. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5194. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5195. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5196. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5197. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5198. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5199. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5200. }
  5201. } break;
  5202. default:
  5203. throw std::runtime_error("unknown architecture");
  5204. }
  5205. }
  5206. ml.done_getting_tensors();
  5207. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5208. model.mappings.reserve(ml.mappings.size());
  5209. // create the backend buffers
  5210. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5211. ctx_bufs.reserve(ctx_map.size());
  5212. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5213. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5214. model.bufs.reserve(n_max_backend_buffer);
  5215. for (auto & it : ctx_map) {
  5216. ggml_backend_buffer_type_t buft = it.first;
  5217. ggml_context * ctx = it.second;
  5218. llama_buf_map bufs;
  5219. bufs.reserve(n_max_backend_buffer);
  5220. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5221. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5222. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5223. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5224. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5225. void * addr = nullptr;
  5226. size_t first, last;
  5227. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5228. if (first >= last) {
  5229. continue;
  5230. }
  5231. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5232. if (buf == nullptr) {
  5233. throw std::runtime_error("unable to allocate backend CPU buffer");
  5234. }
  5235. model.bufs.push_back(buf);
  5236. bufs.emplace(idx, buf);
  5237. #ifdef GGML_USE_CUDA
  5238. if (n_layer >= n_gpu_layers) {
  5239. ggml_backend_cuda_register_host_buffer(
  5240. ggml_backend_buffer_get_base(buf),
  5241. ggml_backend_buffer_get_size(buf));
  5242. }
  5243. #endif
  5244. }
  5245. }
  5246. #ifdef GGML_USE_METAL
  5247. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5248. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5249. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5250. void * addr = nullptr;
  5251. size_t first, last;
  5252. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5253. if (first >= last) {
  5254. continue;
  5255. }
  5256. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5257. if (buf == nullptr) {
  5258. throw std::runtime_error("unable to allocate backend metal buffer");
  5259. }
  5260. model.bufs.push_back(buf);
  5261. bufs.emplace(idx, buf);
  5262. }
  5263. }
  5264. #endif
  5265. else {
  5266. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5267. if (buf == nullptr) {
  5268. throw std::runtime_error("unable to allocate backend buffer");
  5269. }
  5270. model.bufs.push_back(buf);
  5271. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5272. model.mlock_bufs.emplace_back(new llama_mlock);
  5273. auto & mlock_buf = model.mlock_bufs.back();
  5274. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5275. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5276. }
  5277. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5278. bufs.emplace(idx, buf);
  5279. }
  5280. }
  5281. if (bufs.empty()) {
  5282. throw std::runtime_error("failed to allocate buffer");
  5283. }
  5284. for (auto & buf : bufs) {
  5285. // indicate that this buffer contains weights
  5286. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5287. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5288. }
  5289. ctx_bufs.emplace_back(ctx, bufs);
  5290. }
  5291. if (llama_supports_gpu_offload()) {
  5292. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5293. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5294. if (n_gpu_layers > (int) hparams.n_layer) {
  5295. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5296. }
  5297. const int max_backend_supported_layers = hparams.n_layer + 1;
  5298. const int max_offloadable_layers = hparams.n_layer + 1;
  5299. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5300. }
  5301. // print memory requirements
  5302. for (ggml_backend_buffer_t buf : model.bufs) {
  5303. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5304. }
  5305. // populate tensors_by_name
  5306. for (ggml_context * ctx : model.ctxs) {
  5307. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5308. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5309. }
  5310. }
  5311. // load tensor data
  5312. for (auto & it : ctx_bufs) {
  5313. ggml_context * ctx = it.first;
  5314. auto & bufs = it.second;
  5315. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5316. return false;
  5317. }
  5318. }
  5319. if (use_mmap_buffer) {
  5320. for (auto & mapping : ml.mappings) {
  5321. model.mappings.emplace_back(std::move(mapping));
  5322. }
  5323. }
  5324. // loading time will be recalculate after the first eval, so
  5325. // we take page faults deferred by mmap() into consideration
  5326. model.t_load_us = ggml_time_us() - model.t_start_us;
  5327. return true;
  5328. }
  5329. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5330. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5331. try {
  5332. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5333. model.hparams.vocab_only = params.vocab_only;
  5334. try {
  5335. llm_load_arch(ml, model);
  5336. } catch(const std::exception & e) {
  5337. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5338. }
  5339. try {
  5340. llm_load_hparams(ml, model);
  5341. } catch(const std::exception & e) {
  5342. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5343. }
  5344. try {
  5345. llm_load_vocab(ml, model);
  5346. } catch(const std::exception & e) {
  5347. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5348. }
  5349. llm_load_print_meta(ml, model);
  5350. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5351. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5352. throw std::runtime_error("vocab size mismatch");
  5353. }
  5354. if (params.vocab_only) {
  5355. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5356. return 0;
  5357. }
  5358. #ifdef GGML_USE_KOMPUTE
  5359. if (params.n_gpu_layers > 0 && (
  5360. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5361. || !(
  5362. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5363. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5364. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5365. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5366. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5367. )
  5368. )) {
  5369. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5370. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5371. params.n_gpu_layers = 0;
  5372. }
  5373. #endif
  5374. #ifdef GGML_USE_SYCL
  5375. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5376. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5377. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5378. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5379. } else {
  5380. ggml_backend_sycl_set_mul_device_mode();
  5381. }
  5382. #endif
  5383. if (!llm_load_tensors(
  5384. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5385. params.progress_callback, params.progress_callback_user_data
  5386. )) {
  5387. return -2;
  5388. }
  5389. } catch (const std::exception & err) {
  5390. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5391. return -1;
  5392. }
  5393. return 0;
  5394. }
  5395. //
  5396. // llm_build
  5397. //
  5398. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5399. enum llm_ffn_op_type {
  5400. LLM_FFN_SILU,
  5401. LLM_FFN_GELU,
  5402. LLM_FFN_RELU,
  5403. LLM_FFN_RELU_SQR,
  5404. };
  5405. enum llm_ffn_gate_type {
  5406. LLM_FFN_SEQ,
  5407. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5408. };
  5409. enum llm_norm_type {
  5410. LLM_NORM,
  5411. LLM_NORM_RMS,
  5412. };
  5413. static struct ggml_tensor * llm_build_inp_embd(
  5414. struct ggml_context * ctx,
  5415. struct llama_context & lctx,
  5416. const llama_hparams & hparams,
  5417. const llama_batch & batch,
  5418. struct ggml_tensor * tok_embd,
  5419. const llm_build_cb & cb) {
  5420. const int64_t n_embd = hparams.n_embd;
  5421. struct ggml_tensor * inpL;
  5422. if (batch.token) {
  5423. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5424. cb(lctx.inp_tokens, "inp_tokens", -1);
  5425. ggml_set_input(lctx.inp_tokens);
  5426. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5427. } else {
  5428. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5429. inpL = lctx.inp_embd;
  5430. ggml_set_input(lctx.inp_embd);
  5431. }
  5432. cb(inpL, "inp_embd", -1);
  5433. return inpL;
  5434. }
  5435. static void llm_build_kv_store(
  5436. struct ggml_context * ctx,
  5437. const llama_hparams & hparams,
  5438. const llama_cparams & cparams,
  5439. const llama_kv_cache & kv,
  5440. struct ggml_cgraph * graph,
  5441. struct ggml_tensor * k_cur,
  5442. struct ggml_tensor * v_cur,
  5443. int32_t n_tokens,
  5444. int32_t kv_head,
  5445. const llm_build_cb & cb,
  5446. int64_t il) {
  5447. const int64_t n_ctx = cparams.n_ctx;
  5448. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5449. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5450. GGML_ASSERT(kv.size == n_ctx);
  5451. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5452. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5453. cb(k_cache_view, "k_cache_view", il);
  5454. // note: storing RoPE-ed version of K in the KV cache
  5455. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5456. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5457. struct ggml_tensor * v_cache_view = nullptr;
  5458. if (cparams.flash_attn) {
  5459. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5460. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5461. } else {
  5462. // note: the V cache is transposed when not using flash attention
  5463. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5464. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5465. (kv_head)*ggml_element_size(kv.v_l[il]));
  5466. v_cur = ggml_transpose(ctx, v_cur);
  5467. }
  5468. cb(v_cache_view, "v_cache_view", il);
  5469. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5470. }
  5471. static struct ggml_tensor * llm_build_norm(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * cur,
  5474. const llama_hparams & hparams,
  5475. struct ggml_tensor * mw,
  5476. struct ggml_tensor * mb,
  5477. llm_norm_type type,
  5478. const llm_build_cb & cb,
  5479. int il) {
  5480. switch (type) {
  5481. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5482. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5483. }
  5484. if (mw || mb) {
  5485. cb(cur, "norm", il);
  5486. }
  5487. if (mw) {
  5488. cur = ggml_mul(ctx, cur, mw);
  5489. if (mb) {
  5490. cb(cur, "norm_w", il);
  5491. }
  5492. }
  5493. if (mb) {
  5494. cur = ggml_add(ctx, cur, mb);
  5495. }
  5496. return cur;
  5497. }
  5498. static struct ggml_tensor * llm_build_ffn(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * cur,
  5501. struct ggml_tensor * up,
  5502. struct ggml_tensor * up_b,
  5503. struct ggml_tensor * gate,
  5504. struct ggml_tensor * gate_b,
  5505. struct ggml_tensor * down,
  5506. struct ggml_tensor * down_b,
  5507. struct ggml_tensor * act_scales,
  5508. llm_ffn_op_type type_op,
  5509. llm_ffn_gate_type type_gate,
  5510. const llm_build_cb & cb,
  5511. int il) {
  5512. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5513. cb(tmp, "ffn_up", il);
  5514. if (up_b) {
  5515. tmp = ggml_add(ctx, tmp, up_b);
  5516. cb(tmp, "ffn_up_b", il);
  5517. }
  5518. if (gate) {
  5519. switch (type_gate) {
  5520. case LLM_FFN_SEQ:
  5521. {
  5522. cur = ggml_mul_mat(ctx, gate, tmp);
  5523. cb(cur, "ffn_gate", il);
  5524. } break;
  5525. case LLM_FFN_PAR:
  5526. {
  5527. cur = ggml_mul_mat(ctx, gate, cur);
  5528. cb(cur, "ffn_gate", il);
  5529. } break;
  5530. }
  5531. if (gate_b) {
  5532. cur = ggml_add(ctx, cur, gate_b);
  5533. cb(cur, "ffn_gate_b", il);
  5534. }
  5535. } else {
  5536. cur = tmp;
  5537. }
  5538. switch (type_op) {
  5539. case LLM_FFN_SILU:
  5540. {
  5541. cur = ggml_silu(ctx, cur);
  5542. cb(cur, "ffn_silu", il);
  5543. } break;
  5544. case LLM_FFN_GELU:
  5545. {
  5546. cur = ggml_gelu(ctx, cur);
  5547. cb(cur, "ffn_gelu", il);
  5548. if (act_scales != NULL) {
  5549. cur = ggml_div(ctx, cur, act_scales);
  5550. cb(cur, "ffn_act", il);
  5551. }
  5552. } break;
  5553. case LLM_FFN_RELU:
  5554. {
  5555. cur = ggml_relu(ctx, cur);
  5556. cb(cur, "ffn_relu", il);
  5557. } break;
  5558. case LLM_FFN_RELU_SQR:
  5559. {
  5560. cur = ggml_relu(ctx, cur);
  5561. cb(cur, "ffn_relu", il);
  5562. cur = ggml_sqr(ctx, cur);
  5563. cb(cur, "ffn_sqr(relu)", il);
  5564. } break;
  5565. }
  5566. if (type_gate == LLM_FFN_PAR) {
  5567. cur = ggml_mul(ctx, cur, tmp);
  5568. cb(cur, "ffn_gate_par", il);
  5569. }
  5570. cur = ggml_mul_mat(ctx, down, cur);
  5571. if (down_b) {
  5572. cb(cur, "ffn_down", il);
  5573. }
  5574. if (down_b) {
  5575. cur = ggml_add(ctx, cur, down_b);
  5576. }
  5577. return cur;
  5578. }
  5579. static struct ggml_tensor * llm_build_moe_ffn(
  5580. struct ggml_context * ctx,
  5581. struct ggml_tensor * cur,
  5582. struct ggml_tensor * gate_inp,
  5583. struct ggml_tensor * up_exps,
  5584. struct ggml_tensor * gate_exps,
  5585. struct ggml_tensor * down_exps,
  5586. int64_t n_expert,
  5587. int64_t n_expert_used,
  5588. llm_ffn_op_type type_op,
  5589. bool norm_w,
  5590. const llm_build_cb & cb,
  5591. int il) {
  5592. int64_t n_embd = cur->ne[0];
  5593. int64_t n_tokens = cur->ne[1];
  5594. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5595. cb(logits, "ffn_moe_logits", il);
  5596. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5597. cb(probs, "ffn_moe_probs", il);
  5598. // select experts
  5599. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5600. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5601. cb(selected_experts, "ffn_moe_topk", il);
  5602. ggml_tensor * weights = ggml_get_rows(ctx,
  5603. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5604. cb(weights, "ffn_moe_weights", il);
  5605. if (norm_w) {
  5606. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5607. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5608. cb(weights_sum, "ffn_moe_weights_sum", il);
  5609. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5610. cb(weights, "ffn_moe_weights_norm", il);
  5611. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5612. }
  5613. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5614. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5615. cb(up, "ffn_moe_up", il);
  5616. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5617. cb(gate, "ffn_moe_gate", il);
  5618. switch (type_op) {
  5619. case LLM_FFN_SILU:
  5620. {
  5621. gate = ggml_silu(ctx, gate);
  5622. cb(gate, "ffn_moe_silu", il);
  5623. } break;
  5624. case LLM_FFN_GELU:
  5625. {
  5626. gate = ggml_gelu(ctx, gate);
  5627. cb(gate, "ffn_moe_gelu", il);
  5628. } break;
  5629. default:
  5630. GGML_ASSERT(false);
  5631. }
  5632. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5633. cb(par, "ffn_moe_gate_par", il);
  5634. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5635. cb(experts, "ffn_moe_down", il);
  5636. experts = ggml_mul(ctx, experts, weights);
  5637. // aggregate experts
  5638. ggml_tensor * moe_out = nullptr;
  5639. for (int i = 0; i < n_expert_used; ++i) {
  5640. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5641. experts->nb[2], i*experts->nb[1]);
  5642. if (i == 0) {
  5643. moe_out = cur_expert;
  5644. } else {
  5645. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5646. }
  5647. }
  5648. if (n_expert_used == 1) {
  5649. // avoid returning a non-contiguous tensor
  5650. moe_out = ggml_cont(ctx, moe_out);
  5651. }
  5652. return moe_out;
  5653. }
  5654. static struct ggml_tensor * llm_build_kqv(
  5655. struct ggml_context * ctx,
  5656. const llama_model & model,
  5657. const llama_hparams & hparams,
  5658. const llama_cparams & cparams,
  5659. const llama_kv_cache & kv,
  5660. struct ggml_cgraph * graph,
  5661. struct ggml_tensor * wo,
  5662. struct ggml_tensor * wo_b,
  5663. struct ggml_tensor * q_cur,
  5664. struct ggml_tensor * kq_mask,
  5665. int32_t n_tokens,
  5666. int32_t n_kv,
  5667. float kq_scale,
  5668. const llm_build_cb & cb,
  5669. int il) {
  5670. const int64_t n_ctx = cparams.n_ctx;
  5671. const int64_t n_head = hparams.n_head;
  5672. const int64_t n_head_kv = hparams.n_head_kv;
  5673. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5674. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5675. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5676. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5677. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5678. cb(q, "q", il);
  5679. struct ggml_tensor * k =
  5680. ggml_view_3d(ctx, kv.k_l[il],
  5681. n_embd_head_k, n_kv, n_head_kv,
  5682. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5683. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5684. 0);
  5685. cb(k, "k", il);
  5686. struct ggml_tensor * cur;
  5687. if (cparams.flash_attn) {
  5688. GGML_UNUSED(model);
  5689. GGML_UNUSED(n_ctx);
  5690. // split cached v into n_head heads (not transposed)
  5691. struct ggml_tensor * v =
  5692. ggml_view_3d(ctx, kv.v_l[il],
  5693. n_embd_head_v, n_kv, n_head_kv,
  5694. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5695. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5696. 0);
  5697. cb(v, "v", il);
  5698. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5699. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5700. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5701. }
  5702. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5703. } else {
  5704. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5705. cb(kq, "kq", il);
  5706. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5707. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5708. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5709. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5710. }
  5711. if (model.arch == LLM_ARCH_GROK) {
  5712. // need to do the following:
  5713. // multiply by attn_output_multiplyer of 0.08838834764831845
  5714. // and then :
  5715. // kq = 30 * tanh(kq / 30)
  5716. // before the softmax below
  5717. //try from phi2
  5718. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5719. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5720. kq = ggml_scale(ctx, kq, 30);
  5721. }
  5722. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5723. cb(kq, "kq_soft_max_ext", il);
  5724. GGML_ASSERT(kv.size == n_ctx);
  5725. // split cached v into n_head heads
  5726. struct ggml_tensor * v =
  5727. ggml_view_3d(ctx, kv.v_l[il],
  5728. n_kv, n_embd_head_v, n_head_kv,
  5729. ggml_element_size(kv.v_l[il])*n_ctx,
  5730. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5731. 0);
  5732. cb(v, "v", il);
  5733. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5734. cb(kqv, "kqv", il);
  5735. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5736. cb(kqv_merged, "kqv_merged", il);
  5737. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5738. cb(cur, "kqv_merged_cont", il);
  5739. }
  5740. ggml_build_forward_expand(graph, cur);
  5741. cur = ggml_mul_mat(ctx, wo, cur);
  5742. if (wo_b) {
  5743. cb(cur, "kqv_wo", il);
  5744. }
  5745. if (wo_b) {
  5746. cur = ggml_add(ctx, cur, wo_b);
  5747. }
  5748. return cur;
  5749. }
  5750. static struct ggml_tensor * llm_build_kv(
  5751. struct ggml_context * ctx,
  5752. const llama_model & model,
  5753. const llama_hparams & hparams,
  5754. const llama_cparams & cparams,
  5755. const llama_kv_cache & kv,
  5756. struct ggml_cgraph * graph,
  5757. struct ggml_tensor * wo,
  5758. struct ggml_tensor * wo_b,
  5759. struct ggml_tensor * k_cur,
  5760. struct ggml_tensor * v_cur,
  5761. struct ggml_tensor * q_cur,
  5762. struct ggml_tensor * kq_mask,
  5763. int32_t n_tokens,
  5764. int32_t kv_head,
  5765. int32_t n_kv,
  5766. float kq_scale,
  5767. const llm_build_cb & cb,
  5768. int il) {
  5769. // these nodes are added to the graph together so that they are not reordered
  5770. // by doing so, the number of splits in the graph is reduced
  5771. ggml_build_forward_expand(graph, q_cur);
  5772. ggml_build_forward_expand(graph, k_cur);
  5773. ggml_build_forward_expand(graph, v_cur);
  5774. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5775. struct ggml_tensor * cur;
  5776. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5777. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5778. cb(cur, "kqv_out", il);
  5779. return cur;
  5780. }
  5781. struct llm_build_context {
  5782. const llama_model & model;
  5783. llama_context & lctx;
  5784. const llama_hparams & hparams;
  5785. const llama_cparams & cparams;
  5786. const llama_batch & batch;
  5787. const llama_kv_cache & kv_self;
  5788. const int64_t n_embd;
  5789. const int64_t n_layer;
  5790. const int64_t n_rot;
  5791. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5792. const int64_t n_head;
  5793. const int64_t n_head_kv;
  5794. const int64_t n_embd_head_k;
  5795. const int64_t n_embd_k_gqa;
  5796. const int64_t n_embd_head_v;
  5797. const int64_t n_embd_v_gqa;
  5798. const int64_t n_expert;
  5799. const int64_t n_expert_used;
  5800. const float freq_base;
  5801. const float freq_scale;
  5802. const float ext_factor;
  5803. const float attn_factor;
  5804. const float beta_fast;
  5805. const float beta_slow;
  5806. const float norm_eps;
  5807. const float norm_rms_eps;
  5808. const int32_t n_tokens;
  5809. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5810. const int32_t n_outputs;
  5811. const int32_t kv_head; // index of where we store new KV data in the cache
  5812. const int32_t n_orig_ctx;
  5813. const bool flash_attn;
  5814. const enum llama_pooling_type pooling_type;
  5815. const enum llama_rope_type rope_type;
  5816. const llm_build_cb & cb;
  5817. std::vector<uint8_t> & buf_compute_meta;
  5818. struct ggml_context * ctx0 = nullptr;
  5819. // TODO: consider making the entire interface noexcept
  5820. llm_build_context(
  5821. llama_context & lctx,
  5822. const llama_batch & batch,
  5823. const llm_build_cb & cb,
  5824. bool worst_case) :
  5825. model (lctx.model),
  5826. lctx (lctx),
  5827. hparams (model.hparams),
  5828. cparams (lctx.cparams),
  5829. batch (batch),
  5830. kv_self (lctx.kv_self),
  5831. n_embd (hparams.n_embd),
  5832. n_layer (hparams.n_layer),
  5833. n_rot (hparams.n_rot),
  5834. n_ctx (cparams.n_ctx),
  5835. n_head (hparams.n_head),
  5836. n_head_kv (hparams.n_head_kv),
  5837. n_embd_head_k (hparams.n_embd_head_k),
  5838. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5839. n_embd_head_v (hparams.n_embd_head_v),
  5840. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5841. n_expert (hparams.n_expert),
  5842. n_expert_used (hparams.n_expert_used),
  5843. freq_base (cparams.rope_freq_base),
  5844. freq_scale (cparams.rope_freq_scale),
  5845. ext_factor (cparams.yarn_ext_factor),
  5846. attn_factor (cparams.yarn_attn_factor),
  5847. beta_fast (cparams.yarn_beta_fast),
  5848. beta_slow (cparams.yarn_beta_slow),
  5849. norm_eps (hparams.f_norm_eps),
  5850. norm_rms_eps (hparams.f_norm_rms_eps),
  5851. n_tokens (batch.n_tokens),
  5852. n_kv (worst_case ? kv_self.size : kv_self.n),
  5853. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5854. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5855. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5856. flash_attn (cparams.flash_attn),
  5857. pooling_type (cparams.pooling_type),
  5858. rope_type (hparams.rope_type),
  5859. cb (cb),
  5860. buf_compute_meta (lctx.buf_compute_meta) {
  5861. // all initializations should be done in init()
  5862. }
  5863. void init() {
  5864. struct ggml_init_params params = {
  5865. /*.mem_size =*/ buf_compute_meta.size(),
  5866. /*.mem_buffer =*/ buf_compute_meta.data(),
  5867. /*.no_alloc =*/ true,
  5868. };
  5869. ctx0 = ggml_init(params);
  5870. lctx.inp_tokens = nullptr;
  5871. lctx.inp_embd = nullptr;
  5872. lctx.inp_pos = nullptr;
  5873. lctx.inp_out_ids = nullptr;
  5874. lctx.inp_KQ_mask = nullptr;
  5875. lctx.inp_K_shift = nullptr;
  5876. lctx.inp_mean = nullptr;
  5877. lctx.inp_cls = nullptr;
  5878. lctx.inp_s_copy = nullptr;
  5879. lctx.inp_s_mask = nullptr;
  5880. lctx.inp_s_seq = nullptr;
  5881. }
  5882. void free() {
  5883. if (ctx0) {
  5884. ggml_free(ctx0);
  5885. ctx0 = nullptr;
  5886. }
  5887. }
  5888. struct ggml_cgraph * build_k_shift() {
  5889. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5890. GGML_ASSERT(kv_self.size == n_ctx);
  5891. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5892. cb(lctx.inp_K_shift, "K_shift", -1);
  5893. ggml_set_input(lctx.inp_K_shift);
  5894. struct ggml_tensor * rope_factors = build_rope_factors();
  5895. for (int il = 0; il < n_layer; ++il) {
  5896. struct ggml_tensor * tmp =
  5897. // we rotate only the first n_rot dimensions
  5898. ggml_rope_ext_inplace(ctx0,
  5899. ggml_view_3d(ctx0, kv_self.k_l[il],
  5900. n_embd_head_k, n_head_kv, n_ctx,
  5901. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5902. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5903. 0),
  5904. lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5905. ext_factor, attn_factor, beta_fast, beta_slow);
  5906. cb(tmp, "K_shifted", il);
  5907. ggml_build_forward_expand(gf, tmp);
  5908. }
  5909. return gf;
  5910. }
  5911. struct ggml_cgraph * build_s_copy() {
  5912. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5913. GGML_ASSERT(kv_self.recurrent);
  5914. struct ggml_tensor * state_copy = build_inp_s_copy();
  5915. for (int il = 0; il < n_layer; ++il) {
  5916. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5917. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5918. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5919. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5920. // TODO: name the intermediate tensors with cb()
  5921. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5922. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5923. }
  5924. return gf;
  5925. }
  5926. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5927. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5928. for (uint32_t i = 0; i < ids.size(); ++i) {
  5929. const uint32_t id = ids[i];
  5930. if (i == id || id == ids.size()) {
  5931. continue;
  5932. }
  5933. uint32_t nm = 1;
  5934. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5935. nm++;
  5936. }
  5937. for (int il = 0; il < n_layer; ++il) {
  5938. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5939. n_embd_k_gqa, nm,
  5940. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5941. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5942. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5943. n_embd_k_gqa, nm,
  5944. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5945. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5946. ggml_tensor * view_v_src;
  5947. ggml_tensor * view_v_dst;
  5948. if (flash_attn) {
  5949. // NOTE: the V cache is not transposed when using flash attention
  5950. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5951. n_embd_v_gqa, nm,
  5952. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5953. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  5954. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5955. n_embd_v_gqa, nm,
  5956. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5957. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  5958. } else {
  5959. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5960. nm, n_embd_v_gqa,
  5961. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5962. ggml_row_size(kv_self.v_l[il]->type, i));
  5963. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5964. nm, n_embd_v_gqa,
  5965. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5966. ggml_row_size(kv_self.v_l[il]->type, id));
  5967. }
  5968. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5969. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5970. }
  5971. i += nm - 1;
  5972. }
  5973. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5974. return gf;
  5975. }
  5976. struct ggml_tensor * build_inp_pos() {
  5977. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5978. cb(lctx.inp_pos, "inp_pos", -1);
  5979. ggml_set_input(lctx.inp_pos);
  5980. return lctx.inp_pos;
  5981. }
  5982. struct ggml_tensor * build_rope_factors() {
  5983. // choose long/short freq factors based on the context size
  5984. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  5985. if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
  5986. return model.rope_long;
  5987. }
  5988. return model.rope_short;
  5989. }
  5990. struct ggml_tensor * build_inp_out_ids() {
  5991. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5992. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5993. ggml_set_input(lctx.inp_out_ids);
  5994. return lctx.inp_out_ids;
  5995. }
  5996. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5997. if (causal) {
  5998. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  5999. } else {
  6000. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6001. }
  6002. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6003. ggml_set_input(lctx.inp_KQ_mask);
  6004. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6005. }
  6006. struct ggml_tensor * build_inp_mean() {
  6007. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6008. cb(lctx.inp_mean, "inp_mean", -1);
  6009. ggml_set_input(lctx.inp_mean);
  6010. return lctx.inp_mean;
  6011. }
  6012. struct ggml_tensor * build_inp_cls() {
  6013. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6014. cb(lctx.inp_cls, "inp_cls", -1);
  6015. ggml_set_input(lctx.inp_cls);
  6016. return lctx.inp_cls;
  6017. }
  6018. struct ggml_tensor * build_inp_s_copy() {
  6019. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6020. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6021. ggml_set_input(lctx.inp_s_copy);
  6022. return lctx.inp_s_copy;
  6023. }
  6024. struct ggml_tensor * build_inp_s_mask() {
  6025. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6026. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6027. ggml_set_input(lctx.inp_s_mask);
  6028. return lctx.inp_s_mask;
  6029. }
  6030. struct ggml_tensor * build_inp_s_seq() {
  6031. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6032. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6033. ggml_set_input(lctx.inp_s_seq);
  6034. return lctx.inp_s_seq;
  6035. }
  6036. struct ggml_cgraph * build_llama() {
  6037. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6038. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6039. int32_t n_tokens = this->n_tokens;
  6040. const int64_t n_embd_head = hparams.n_embd_head_v;
  6041. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6042. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6043. struct ggml_tensor * cur;
  6044. struct ggml_tensor * inpL;
  6045. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6046. // inp_pos - contains the positions
  6047. struct ggml_tensor * inp_pos = build_inp_pos();
  6048. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6049. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6050. for (int il = 0; il < n_layer; ++il) {
  6051. struct ggml_tensor * inpSA = inpL;
  6052. // norm
  6053. cur = llm_build_norm(ctx0, inpL, hparams,
  6054. model.layers[il].attn_norm, NULL,
  6055. LLM_NORM_RMS, cb, il);
  6056. cb(cur, "attn_norm", il);
  6057. // self-attention
  6058. {
  6059. // compute Q and K and RoPE them
  6060. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6061. cb(Qcur, "Qcur", il);
  6062. if (model.layers[il].bq) {
  6063. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6064. cb(Qcur, "Qcur", il);
  6065. }
  6066. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6067. cb(Kcur, "Kcur", il);
  6068. if (model.layers[il].bk) {
  6069. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6070. cb(Kcur, "Kcur", il);
  6071. }
  6072. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6073. cb(Vcur, "Vcur", il);
  6074. if (model.layers[il].bv) {
  6075. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6076. cb(Vcur, "Vcur", il);
  6077. }
  6078. Qcur = ggml_rope_ext(
  6079. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6080. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6081. ext_factor, attn_factor, beta_fast, beta_slow
  6082. );
  6083. cb(Qcur, "Qcur", il);
  6084. Kcur = ggml_rope_ext(
  6085. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6086. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6087. ext_factor, attn_factor, beta_fast, beta_slow
  6088. );
  6089. cb(Kcur, "Kcur", il);
  6090. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6091. model.layers[il].wo, model.layers[il].bo,
  6092. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6093. }
  6094. if (il == n_layer - 1) {
  6095. // skip computing output for unused tokens
  6096. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6097. n_tokens = n_outputs;
  6098. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6099. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6100. }
  6101. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6102. cb(ffn_inp, "ffn_inp", il);
  6103. // feed-forward network
  6104. if (model.layers[il].ffn_gate_inp == nullptr) {
  6105. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6106. model.layers[il].ffn_norm, NULL,
  6107. LLM_NORM_RMS, cb, il);
  6108. cb(cur, "ffn_norm", il);
  6109. cur = llm_build_ffn(ctx0, cur,
  6110. model.layers[il].ffn_up, NULL,
  6111. model.layers[il].ffn_gate, NULL,
  6112. model.layers[il].ffn_down, NULL,
  6113. NULL,
  6114. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6115. cb(cur, "ffn_out", il);
  6116. } else {
  6117. // MoE branch
  6118. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6119. model.layers[il].ffn_norm, NULL,
  6120. LLM_NORM_RMS, cb, il);
  6121. cb(cur, "ffn_norm", il);
  6122. cur = llm_build_moe_ffn(ctx0, cur,
  6123. model.layers[il].ffn_gate_inp,
  6124. model.layers[il].ffn_up_exps,
  6125. model.layers[il].ffn_gate_exps,
  6126. model.layers[il].ffn_down_exps,
  6127. n_expert, n_expert_used,
  6128. LLM_FFN_SILU, true,
  6129. cb, il);
  6130. cb(cur, "ffn_moe_out", il);
  6131. }
  6132. cur = ggml_add(ctx0, cur, ffn_inp);
  6133. cb(cur, "ffn_out", il);
  6134. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6135. if (layer_dir != nullptr) {
  6136. cur = ggml_add(ctx0, cur, layer_dir);
  6137. }
  6138. cb(cur, "l_out", il);
  6139. // input for next layer
  6140. inpL = cur;
  6141. }
  6142. cur = inpL;
  6143. cur = llm_build_norm(ctx0, cur, hparams,
  6144. model.output_norm, NULL,
  6145. LLM_NORM_RMS, cb, -1);
  6146. cb(cur, "result_norm", -1);
  6147. // lm_head
  6148. cur = ggml_mul_mat(ctx0, model.output, cur);
  6149. cb(cur, "result_output", -1);
  6150. ggml_build_forward_expand(gf, cur);
  6151. return gf;
  6152. }
  6153. struct ggml_cgraph * build_baichuan() {
  6154. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6155. const int64_t n_embd_head = hparams.n_embd_head_v;
  6156. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6157. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6158. struct ggml_tensor * cur;
  6159. struct ggml_tensor * inpL;
  6160. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6161. // inp_pos - contains the positions
  6162. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6163. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6164. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6165. for (int il = 0; il < n_layer; ++il) {
  6166. struct ggml_tensor * inpSA = inpL;
  6167. cur = llm_build_norm(ctx0, inpL, hparams,
  6168. model.layers[il].attn_norm, NULL,
  6169. LLM_NORM_RMS, cb, il);
  6170. cb(cur, "attn_norm", il);
  6171. // self-attention
  6172. {
  6173. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6174. cb(Qcur, "Qcur", il);
  6175. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6176. cb(Kcur, "Kcur", il);
  6177. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6178. cb(Vcur, "Vcur", il);
  6179. switch (model.type) {
  6180. case MODEL_7B:
  6181. Qcur = ggml_rope_ext(
  6182. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6183. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6184. ext_factor, attn_factor, beta_fast, beta_slow
  6185. );
  6186. Kcur = ggml_rope_ext(
  6187. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6188. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6189. ext_factor, attn_factor, beta_fast, beta_slow
  6190. );
  6191. break;
  6192. case MODEL_13B:
  6193. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6194. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6195. break;
  6196. default:
  6197. GGML_ASSERT(false);
  6198. }
  6199. cb(Qcur, "Qcur", il);
  6200. cb(Kcur, "Kcur", il);
  6201. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6202. model.layers[il].wo, NULL,
  6203. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6204. }
  6205. if (il == n_layer - 1) {
  6206. // skip computing output for unused tokens
  6207. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6208. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6209. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6210. }
  6211. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6212. cb(ffn_inp, "ffn_inp", il);
  6213. // feed-forward network
  6214. {
  6215. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6216. model.layers[il].ffn_norm, NULL,
  6217. LLM_NORM_RMS, cb, il);
  6218. cb(cur, "ffn_norm", il);
  6219. cur = llm_build_ffn(ctx0, cur,
  6220. model.layers[il].ffn_up, NULL,
  6221. model.layers[il].ffn_gate, NULL,
  6222. model.layers[il].ffn_down, NULL,
  6223. NULL,
  6224. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6225. cb(cur, "ffn_out", il);
  6226. }
  6227. cur = ggml_add(ctx0, cur, ffn_inp);
  6228. cb(cur, "l_out", il);
  6229. // input for next layer
  6230. inpL = cur;
  6231. }
  6232. cur = inpL;
  6233. cur = llm_build_norm(ctx0, cur, hparams,
  6234. model.output_norm, NULL,
  6235. LLM_NORM_RMS, cb, -1);
  6236. cb(cur, "result_norm", -1);
  6237. // lm_head
  6238. cur = ggml_mul_mat(ctx0, model.output, cur);
  6239. cb(cur, "result_output", -1);
  6240. ggml_build_forward_expand(gf, cur);
  6241. return gf;
  6242. }
  6243. struct ggml_cgraph * build_xverse() {
  6244. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6245. const int64_t n_embd_head = hparams.n_embd_head_v;
  6246. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6247. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6248. struct ggml_tensor * cur;
  6249. struct ggml_tensor * inpL;
  6250. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6251. // inp_pos - contains the positions
  6252. struct ggml_tensor * inp_pos = build_inp_pos();
  6253. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6254. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6255. for (int il = 0; il < n_layer; ++il) {
  6256. struct ggml_tensor * inpSA = inpL;
  6257. cur = llm_build_norm(ctx0, inpL, hparams,
  6258. model.layers[il].attn_norm, NULL,
  6259. LLM_NORM_RMS, cb, il);
  6260. cb(cur, "attn_norm", il);
  6261. // self-attention
  6262. {
  6263. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6264. cb(Qcur, "Qcur", il);
  6265. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6266. cb(Kcur, "Kcur", il);
  6267. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6268. cb(Vcur, "Vcur", il);
  6269. Qcur = ggml_rope_ext(
  6270. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6271. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6272. ext_factor, attn_factor, beta_fast, beta_slow
  6273. );
  6274. cb(Qcur, "Qcur", il);
  6275. Kcur = ggml_rope_ext(
  6276. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6277. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6278. ext_factor, attn_factor, beta_fast, beta_slow
  6279. );
  6280. cb(Kcur, "Kcur", il);
  6281. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6282. model.layers[il].wo, NULL,
  6283. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6284. }
  6285. if (il == n_layer - 1) {
  6286. // skip computing output for unused tokens
  6287. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6288. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6289. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6290. }
  6291. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6292. cb(ffn_inp, "ffn_inp", il);
  6293. // feed-forward network
  6294. {
  6295. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6296. model.layers[il].ffn_norm, NULL,
  6297. LLM_NORM_RMS, cb, il);
  6298. cb(cur, "ffn_norm", il);
  6299. cur = llm_build_ffn(ctx0, cur,
  6300. model.layers[il].ffn_up, NULL,
  6301. model.layers[il].ffn_gate, NULL,
  6302. model.layers[il].ffn_down, NULL,
  6303. NULL,
  6304. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6305. cb(cur, "ffn_out", il);
  6306. }
  6307. cur = ggml_add(ctx0, cur, ffn_inp);
  6308. cb(cur, "l_out", il);
  6309. // input for next layer
  6310. inpL = cur;
  6311. }
  6312. cur = inpL;
  6313. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6314. cb(cur, "result_norm", -1);
  6315. // lm_head
  6316. cur = ggml_mul_mat(ctx0, model.output, cur);
  6317. cb(cur, "result_output", -1);
  6318. ggml_build_forward_expand(gf, cur);
  6319. return gf;
  6320. }
  6321. struct ggml_cgraph * build_falcon() {
  6322. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6323. const int64_t n_embd_head = hparams.n_embd_head_v;
  6324. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6325. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6326. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6327. struct ggml_tensor * cur;
  6328. struct ggml_tensor * inpL;
  6329. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6330. // inp_pos - contains the positions
  6331. struct ggml_tensor * inp_pos = build_inp_pos();
  6332. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6333. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6334. for (int il = 0; il < n_layer; ++il) {
  6335. struct ggml_tensor * attn_norm;
  6336. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6337. model.layers[il].attn_norm,
  6338. model.layers[il].attn_norm_b,
  6339. LLM_NORM, cb, il);
  6340. cb(attn_norm, "attn_norm", il);
  6341. // self-attention
  6342. {
  6343. if (model.layers[il].attn_norm_2) {
  6344. // Falcon-40B
  6345. cur = llm_build_norm(ctx0, inpL, hparams,
  6346. model.layers[il].attn_norm_2,
  6347. model.layers[il].attn_norm_2_b,
  6348. LLM_NORM, cb, il);
  6349. cb(cur, "attn_norm_2", il);
  6350. } else {
  6351. cur = attn_norm;
  6352. }
  6353. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6354. cb(cur, "wqkv", il);
  6355. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6356. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6357. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6358. cb(Qcur, "Qcur", il);
  6359. cb(Kcur, "Kcur", il);
  6360. cb(Vcur, "Vcur", il);
  6361. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6362. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6363. // using mode = 2 for neox mode
  6364. Qcur = ggml_rope_ext(
  6365. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6366. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6367. );
  6368. cb(Qcur, "Qcur", il);
  6369. Kcur = ggml_rope_ext(
  6370. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6371. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6372. );
  6373. cb(Kcur, "Kcur", il);
  6374. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6375. model.layers[il].wo, NULL,
  6376. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6377. }
  6378. if (il == n_layer - 1) {
  6379. // skip computing output for unused tokens
  6380. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6381. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6382. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6383. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6384. }
  6385. struct ggml_tensor * ffn_inp = cur;
  6386. // feed forward
  6387. {
  6388. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6389. model.layers[il].ffn_up, NULL,
  6390. NULL, NULL,
  6391. model.layers[il].ffn_down, NULL,
  6392. NULL,
  6393. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6394. cb(cur, "ffn_out", il);
  6395. }
  6396. cur = ggml_add(ctx0, cur, ffn_inp);
  6397. cb(cur, "l_out", il);
  6398. cur = ggml_add(ctx0, cur, inpL);
  6399. cb(cur, "l_out", il);
  6400. // input for next layer
  6401. inpL = cur;
  6402. }
  6403. cur = inpL;
  6404. // norm
  6405. cur = llm_build_norm(ctx0, cur, hparams,
  6406. model.output_norm,
  6407. model.output_norm_b,
  6408. LLM_NORM, cb, -1);
  6409. cb(cur, "result_norm", -1);
  6410. cur = ggml_mul_mat(ctx0, model.output, cur);
  6411. cb(cur, "result_output", -1);
  6412. ggml_build_forward_expand(gf, cur);
  6413. return gf;
  6414. }
  6415. struct ggml_cgraph * build_grok() {
  6416. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6417. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6418. int32_t n_tokens = this->n_tokens;
  6419. const int64_t n_embd_head = hparams.n_embd_head_v;
  6420. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6421. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6422. struct ggml_tensor * cur;
  6423. struct ggml_tensor * inpL;
  6424. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6425. // multiply by embedding_multiplier_scale of 78.38367176906169
  6426. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6427. // inp_pos - contains the positions
  6428. struct ggml_tensor * inp_pos = build_inp_pos();
  6429. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6430. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6431. for (int il = 0; il < n_layer; ++il) {
  6432. struct ggml_tensor * inpSA = inpL;
  6433. // norm
  6434. cur = llm_build_norm(ctx0, inpL, hparams,
  6435. model.layers[il].attn_norm, NULL,
  6436. LLM_NORM_RMS, cb, il);
  6437. cb(cur, "attn_norm", il);
  6438. // self-attention
  6439. {
  6440. // compute Q and K and RoPE them
  6441. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6442. cb(Qcur, "Qcur", il);
  6443. if (model.layers[il].bq) {
  6444. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6445. cb(Qcur, "Qcur", il);
  6446. }
  6447. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6448. cb(Kcur, "Kcur", il);
  6449. if (model.layers[il].bk) {
  6450. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6451. cb(Kcur, "Kcur", il);
  6452. }
  6453. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6454. cb(Vcur, "Vcur", il);
  6455. if (model.layers[il].bv) {
  6456. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6457. cb(Vcur, "Vcur", il);
  6458. }
  6459. Qcur = ggml_rope_ext(
  6460. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6461. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6462. ext_factor, attn_factor, beta_fast, beta_slow
  6463. );
  6464. cb(Qcur, "Qcur", il);
  6465. Kcur = ggml_rope_ext(
  6466. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6467. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6468. ext_factor, attn_factor, beta_fast, beta_slow
  6469. );
  6470. cb(Kcur, "Kcur", il);
  6471. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6472. model.layers[il].wo, model.layers[il].bo,
  6473. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6474. }
  6475. if (il == n_layer - 1) {
  6476. // skip computing output for unused tokens
  6477. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6478. n_tokens = n_outputs;
  6479. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6480. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6481. }
  6482. // Grok
  6483. // if attn_out_norm is present then apply it before adding the input
  6484. if (model.layers[il].attn_out_norm) {
  6485. cur = llm_build_norm(ctx0, cur, hparams,
  6486. model.layers[il].attn_out_norm, NULL,
  6487. LLM_NORM_RMS, cb, il);
  6488. cb(cur, "attn_out_norm", il);
  6489. }
  6490. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6491. cb(ffn_inp, "ffn_inp", il);
  6492. // feed-forward network
  6493. // MoE branch
  6494. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6495. model.layers[il].ffn_norm, NULL,
  6496. LLM_NORM_RMS, cb, il);
  6497. cb(cur, "ffn_norm", il);
  6498. cur = llm_build_moe_ffn(ctx0, cur,
  6499. model.layers[il].ffn_gate_inp,
  6500. model.layers[il].ffn_up_exps,
  6501. model.layers[il].ffn_gate_exps,
  6502. model.layers[il].ffn_down_exps,
  6503. n_expert, n_expert_used,
  6504. LLM_FFN_GELU, true,
  6505. cb, il);
  6506. cb(cur, "ffn_moe_out", il);
  6507. // Grok
  6508. // if layer_out_norm is present then apply it before adding the input
  6509. // Idea: maybe ffn_out_norm is a better name
  6510. if (model.layers[il].layer_out_norm) {
  6511. cur = llm_build_norm(ctx0, cur, hparams,
  6512. model.layers[il].layer_out_norm, NULL,
  6513. LLM_NORM_RMS, cb, il);
  6514. cb(cur, "layer_out_norm", il);
  6515. }
  6516. cur = ggml_add(ctx0, cur, ffn_inp);
  6517. cb(cur, "ffn_out", il);
  6518. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6519. if (layer_dir != nullptr) {
  6520. cur = ggml_add(ctx0, cur, layer_dir);
  6521. }
  6522. cb(cur, "l_out", il);
  6523. // input for next layer
  6524. inpL = cur;
  6525. }
  6526. cur = inpL;
  6527. cur = llm_build_norm(ctx0, cur, hparams,
  6528. model.output_norm, NULL,
  6529. LLM_NORM_RMS, cb, -1);
  6530. cb(cur, "result_norm", -1);
  6531. // lm_head
  6532. cur = ggml_mul_mat(ctx0, model.output, cur);
  6533. // Grok
  6534. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6535. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6536. cb(cur, "result_output", -1);
  6537. ggml_build_forward_expand(gf, cur);
  6538. return gf;
  6539. }
  6540. struct ggml_cgraph * build_dbrx() {
  6541. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6542. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6543. int32_t n_tokens = this->n_tokens;
  6544. const int64_t n_embd_head = hparams.n_embd_head_v;
  6545. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6546. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6547. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6548. struct ggml_tensor * cur;
  6549. struct ggml_tensor * inpL;
  6550. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6551. // inp_pos - contains the positions
  6552. struct ggml_tensor * inp_pos = build_inp_pos();
  6553. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6554. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6555. for (int il = 0; il < n_layer; ++il) {
  6556. struct ggml_tensor * inpSA = inpL;
  6557. // norm
  6558. cur = llm_build_norm(ctx0, inpL, hparams,
  6559. model.layers[il].attn_norm, NULL,
  6560. LLM_NORM, cb, il);
  6561. cb(cur, "attn_norm", il);
  6562. // self-attention
  6563. {
  6564. struct ggml_tensor * Qcur = nullptr;
  6565. struct ggml_tensor * Kcur = nullptr;
  6566. struct ggml_tensor * Vcur = nullptr;
  6567. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6568. cb(cur, "wqkv", il);
  6569. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6570. cb(cur, "wqkv_clamped", il);
  6571. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6572. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6573. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6574. cb(Qcur, "Qcur", il);
  6575. cb(Kcur, "Kcur", il);
  6576. cb(Vcur, "Vcur", il);
  6577. Qcur = ggml_rope_ext(
  6578. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6579. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6580. ext_factor, attn_factor, beta_fast, beta_slow
  6581. );
  6582. cb(Qcur, "Qcur", il);
  6583. Kcur = ggml_rope_ext(
  6584. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6585. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6586. ext_factor, attn_factor, beta_fast, beta_slow
  6587. );
  6588. cb(Kcur, "Kcur", il);
  6589. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6590. model.layers[il].wo, NULL,
  6591. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6592. }
  6593. if (il == n_layer - 1) {
  6594. // skip computing output for unused tokens
  6595. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6596. n_tokens = n_outputs;
  6597. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6598. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6599. }
  6600. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6601. cb(ffn_inp, "ffn_inp", il);
  6602. // feed-forward network
  6603. // MoE branch
  6604. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6605. model.layers[il].attn_out_norm, NULL,
  6606. LLM_NORM, cb, il);
  6607. cb(cur, "attn_out_norm", il);
  6608. cur = llm_build_moe_ffn(ctx0, cur,
  6609. model.layers[il].ffn_gate_inp,
  6610. model.layers[il].ffn_up_exps,
  6611. model.layers[il].ffn_gate_exps,
  6612. model.layers[il].ffn_down_exps,
  6613. n_expert, n_expert_used,
  6614. LLM_FFN_SILU, true,
  6615. cb, il);
  6616. cb(cur, "ffn_moe_out", il);
  6617. cur = ggml_add(ctx0, cur, ffn_inp);
  6618. cb(cur, "ffn_out", il);
  6619. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6620. if (layer_dir != nullptr) {
  6621. cur = ggml_add(ctx0, cur, layer_dir);
  6622. }
  6623. cb(cur, "l_out", il);
  6624. // input for next layer
  6625. inpL = cur;
  6626. }
  6627. cur = inpL;
  6628. cur = llm_build_norm(ctx0, cur, hparams,
  6629. model.output_norm, NULL,
  6630. LLM_NORM, cb, -1);
  6631. cb(cur, "result_norm", -1);
  6632. // lm_head
  6633. cur = ggml_mul_mat(ctx0, model.output, cur);
  6634. cb(cur, "result_output", -1);
  6635. ggml_build_forward_expand(gf, cur);
  6636. return gf;
  6637. }
  6638. struct ggml_cgraph * build_starcoder() {
  6639. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6640. const int64_t n_embd_head = hparams.n_embd_head_v;
  6641. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6642. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6643. struct ggml_tensor * cur;
  6644. struct ggml_tensor * inpL;
  6645. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6646. // inp_pos - contains the positions
  6647. struct ggml_tensor * inp_pos = build_inp_pos();
  6648. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6649. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6650. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6651. cb(pos, "pos_embd", -1);
  6652. inpL = ggml_add(ctx0, inpL, pos);
  6653. cb(inpL, "inpL", -1);
  6654. for (int il = 0; il < n_layer; ++il) {
  6655. cur = llm_build_norm(ctx0, inpL, hparams,
  6656. model.layers[il].attn_norm,
  6657. model.layers[il].attn_norm_b,
  6658. LLM_NORM, cb, il);
  6659. cb(cur, "attn_norm", il);
  6660. // self-attention
  6661. {
  6662. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6663. cb(cur, "wqkv", il);
  6664. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6665. cb(cur, "bqkv", il);
  6666. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6667. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6668. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6669. cb(Qcur, "Qcur", il);
  6670. cb(Kcur, "Kcur", il);
  6671. cb(Vcur, "Vcur", il);
  6672. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6673. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6674. model.layers[il].wo, model.layers[il].bo,
  6675. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6676. }
  6677. if (il == n_layer - 1) {
  6678. // skip computing output for unused tokens
  6679. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6680. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6681. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6682. }
  6683. // add the input
  6684. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6685. cb(ffn_inp, "ffn_inp", il);
  6686. // FF
  6687. {
  6688. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6689. model.layers[il].ffn_norm,
  6690. model.layers[il].ffn_norm_b,
  6691. LLM_NORM, cb, il);
  6692. cb(cur, "ffn_norm", il);
  6693. cur = llm_build_ffn(ctx0, cur,
  6694. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6695. NULL, NULL,
  6696. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6697. NULL,
  6698. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6699. cb(cur, "ffn_out", il);
  6700. }
  6701. inpL = ggml_add(ctx0, cur, ffn_inp);
  6702. cb(inpL, "l_out", il);
  6703. }
  6704. cur = llm_build_norm(ctx0, inpL, hparams,
  6705. model.output_norm,
  6706. model.output_norm_b,
  6707. LLM_NORM, cb, -1);
  6708. cb(cur, "result_norm", -1);
  6709. cur = ggml_mul_mat(ctx0, model.output, cur);
  6710. cb(cur, "result_output", -1);
  6711. ggml_build_forward_expand(gf, cur);
  6712. return gf;
  6713. }
  6714. struct ggml_cgraph * build_refact() {
  6715. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6716. const int64_t n_embd_head = hparams.n_embd_head_v;
  6717. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6718. struct ggml_tensor * cur;
  6719. struct ggml_tensor * inpL;
  6720. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6721. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6722. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6723. for (int il = 0; il < n_layer; ++il) {
  6724. struct ggml_tensor * inpSA = inpL;
  6725. cur = llm_build_norm(ctx0, inpL, hparams,
  6726. model.layers[il].attn_norm, NULL,
  6727. LLM_NORM_RMS, cb, il);
  6728. cb(cur, "attn_norm", il);
  6729. // self-attention
  6730. {
  6731. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6732. cb(Qcur, "Qcur", il);
  6733. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6734. cb(Kcur, "Kcur", il);
  6735. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6736. cb(Vcur, "Vcur", il);
  6737. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6738. cb(Kcur, "Kcur", il);
  6739. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6740. cb(Qcur, "Qcur", il);
  6741. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6742. model.layers[il].wo, NULL,
  6743. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6744. }
  6745. if (il == n_layer - 1) {
  6746. // skip computing output for unused tokens
  6747. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6748. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6749. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6750. }
  6751. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6752. cb(ffn_inp, "ffn_inp", il);
  6753. // feed-forward network
  6754. {
  6755. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6756. model.layers[il].ffn_norm, NULL,
  6757. LLM_NORM_RMS, cb, il);
  6758. cb(cur, "ffn_norm", il);
  6759. cur = llm_build_ffn(ctx0, cur,
  6760. model.layers[il].ffn_up, NULL,
  6761. model.layers[il].ffn_gate, NULL,
  6762. model.layers[il].ffn_down, NULL,
  6763. NULL,
  6764. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6765. cb(cur, "ffn_out", il);
  6766. }
  6767. cur = ggml_add(ctx0, cur, ffn_inp);
  6768. cb(cur, "l_out", il);
  6769. // input for next layer
  6770. inpL = cur;
  6771. }
  6772. cur = inpL;
  6773. cur = llm_build_norm(ctx0, cur, hparams,
  6774. model.output_norm, NULL,
  6775. LLM_NORM_RMS, cb, -1);
  6776. cb(cur, "result_norm", -1);
  6777. // lm_head
  6778. cur = ggml_mul_mat(ctx0, model.output, cur);
  6779. cb(cur, "result_output", -1);
  6780. ggml_build_forward_expand(gf, cur);
  6781. return gf;
  6782. }
  6783. struct ggml_cgraph * build_bert() {
  6784. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6785. const int64_t n_embd_head = hparams.n_embd_head_v;
  6786. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6787. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6788. struct ggml_tensor * cur;
  6789. struct ggml_tensor * inpL;
  6790. struct ggml_tensor * inp_pos = nullptr;
  6791. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6792. inp_pos = build_inp_pos();
  6793. }
  6794. struct ggml_tensor * inp_mean = build_inp_mean();
  6795. struct ggml_tensor * inp_cls = build_inp_cls();
  6796. // construct input embeddings (token, type, position)
  6797. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6798. // token types are hardcoded to zero ("Sentence A")
  6799. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6800. inpL = ggml_add(ctx0, inpL, type_row0);
  6801. if (model.arch == LLM_ARCH_BERT) {
  6802. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6803. }
  6804. cb(inpL, "inp_embd", -1);
  6805. // embed layer norm
  6806. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6807. cb(inpL, "inp_norm", -1);
  6808. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6809. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6810. // iterate layers
  6811. for (int il = 0; il < n_layer; ++il) {
  6812. struct ggml_tensor * cur = inpL;
  6813. struct ggml_tensor * Qcur;
  6814. struct ggml_tensor * Kcur;
  6815. struct ggml_tensor * Vcur;
  6816. // self-attention
  6817. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  6818. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6819. cb(Qcur, "Qcur", il);
  6820. if (model.layers[il].attn_q_norm) {
  6821. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6822. model.layers[il].attn_q_norm,
  6823. model.layers[il].attn_q_norm_b,
  6824. LLM_NORM, cb, il);
  6825. }
  6826. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6827. cb(Kcur, "Kcur", il);
  6828. if (model.layers[il].attn_k_norm) {
  6829. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6830. model.layers[il].attn_k_norm,
  6831. model.layers[il].attn_k_norm_b,
  6832. LLM_NORM, cb, il);
  6833. }
  6834. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6835. cb(Vcur, "Vcur", il);
  6836. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6837. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6838. } else {
  6839. // compute Q and K and RoPE them
  6840. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6841. cb(cur, "wqkv", il);
  6842. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6843. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6844. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6845. cb(Qcur, "Qcur", il);
  6846. cb(Kcur, "Kcur", il);
  6847. cb(Vcur, "Vcur", il);
  6848. Qcur = ggml_rope_ext(
  6849. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6850. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6851. ext_factor, attn_factor, beta_fast, beta_slow
  6852. );
  6853. cb(Qcur, "Qcur", il);
  6854. Kcur = ggml_rope_ext(
  6855. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6856. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6857. ext_factor, attn_factor, beta_fast, beta_slow
  6858. );
  6859. cb(Kcur, "Kcur", il);
  6860. }
  6861. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6862. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6863. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6864. cb(kq, "kq", il);
  6865. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6866. cb(kq, "kq_soft_max_ext", il);
  6867. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6868. cb(v, "v", il);
  6869. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6870. cb(kqv, "kqv", il);
  6871. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6872. cb(kqv_merged, "kqv_merged", il);
  6873. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6874. cb(cur, "kqv_merged_cont", il);
  6875. ggml_build_forward_expand(gf, cur);
  6876. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6877. if (model.layers[il].bo) {
  6878. cb(cur, "kqv_wo", il);
  6879. }
  6880. if (model.layers[il].bo) {
  6881. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6882. }
  6883. cb(cur, "kqv_out", il);
  6884. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6885. // skip computing output for unused tokens
  6886. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6887. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6888. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6889. }
  6890. // re-add the layer input
  6891. cur = ggml_add(ctx0, cur, inpL);
  6892. // attention layer norm
  6893. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6894. struct ggml_tensor * ffn_inp = cur;
  6895. cb(ffn_inp, "ffn_inp", il);
  6896. // feed-forward network
  6897. if (model.arch == LLM_ARCH_BERT) {
  6898. cur = llm_build_ffn(ctx0, cur,
  6899. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6900. NULL, NULL,
  6901. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6902. NULL,
  6903. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6904. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  6905. cur = llm_build_ffn(ctx0, cur,
  6906. model.layers[il].ffn_up, NULL,
  6907. model.layers[il].ffn_gate, NULL,
  6908. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6909. NULL,
  6910. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  6911. } else {
  6912. cur = llm_build_ffn(ctx0, cur,
  6913. model.layers[il].ffn_up, NULL,
  6914. model.layers[il].ffn_gate, NULL,
  6915. model.layers[il].ffn_down, NULL,
  6916. NULL,
  6917. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6918. }
  6919. cb(cur, "ffn_out", il);
  6920. // attentions bypass the intermediate layer
  6921. cur = ggml_add(ctx0, cur, ffn_inp);
  6922. // output layer norm
  6923. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6924. // input for next layer
  6925. inpL = cur;
  6926. }
  6927. // final output
  6928. cur = inpL;
  6929. cb(cur, "result_embd", -1);
  6930. // pooling layer
  6931. switch (pooling_type) {
  6932. case LLAMA_POOLING_TYPE_NONE:
  6933. {
  6934. // nop
  6935. } break;
  6936. case LLAMA_POOLING_TYPE_MEAN:
  6937. {
  6938. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6939. cb(cur, "result_embd_pooled", -1);
  6940. } break;
  6941. case LLAMA_POOLING_TYPE_CLS:
  6942. {
  6943. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6944. cb(cur, "result_embd_pooled", -1);
  6945. } break;
  6946. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6947. {
  6948. GGML_ASSERT(false && "Invalid pooling type");
  6949. } break;
  6950. }
  6951. ggml_build_forward_expand(gf, cur);
  6952. return gf;
  6953. }
  6954. struct ggml_cgraph * build_bloom() {
  6955. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6956. const int64_t n_embd_head = hparams.n_embd_head_v;
  6957. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6958. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6959. struct ggml_tensor * cur;
  6960. struct ggml_tensor * inpL;
  6961. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6962. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6963. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6964. inpL = llm_build_norm(ctx0, inpL, hparams,
  6965. model.tok_norm,
  6966. model.tok_norm_b,
  6967. LLM_NORM, cb, -1);
  6968. cb(inpL, "inp_norm", -1);
  6969. for (int il = 0; il < n_layer; ++il) {
  6970. cur = llm_build_norm(ctx0, inpL, hparams,
  6971. model.layers[il].attn_norm,
  6972. model.layers[il].attn_norm_b,
  6973. LLM_NORM, cb, il);
  6974. cb(cur, "attn_norm", il);
  6975. // self-attention
  6976. {
  6977. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6978. cb(cur, "wqkv", il);
  6979. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6980. cb(cur, "bqkv", il);
  6981. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6982. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6983. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6984. cb(Qcur, "Qcur", il);
  6985. cb(Kcur, "Kcur", il);
  6986. cb(Vcur, "Vcur", il);
  6987. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6988. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6989. model.layers[il].wo, model.layers[il].bo,
  6990. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6991. }
  6992. if (il == n_layer - 1) {
  6993. // skip computing output for unused tokens
  6994. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6995. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6996. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6997. }
  6998. // Add the input
  6999. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7000. cb(ffn_inp, "ffn_inp", il);
  7001. // FF
  7002. {
  7003. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7004. model.layers[il].ffn_norm,
  7005. model.layers[il].ffn_norm_b,
  7006. LLM_NORM, cb, il);
  7007. cb(cur, "ffn_norm", il);
  7008. cur = llm_build_ffn(ctx0, cur,
  7009. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7010. NULL, NULL,
  7011. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7012. NULL,
  7013. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7014. cb(cur, "ffn_out", il);
  7015. }
  7016. inpL = ggml_add(ctx0, cur, ffn_inp);
  7017. cb(inpL, "l_out", il);
  7018. }
  7019. cur = llm_build_norm(ctx0, inpL, hparams,
  7020. model.output_norm,
  7021. model.output_norm_b,
  7022. LLM_NORM, cb, -1);
  7023. cb(cur, "result_norm", -1);
  7024. cur = ggml_mul_mat(ctx0, model.output, cur);
  7025. cb(cur, "result_output", -1);
  7026. ggml_build_forward_expand(gf, cur);
  7027. return gf;
  7028. }
  7029. struct ggml_cgraph * build_mpt() {
  7030. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7031. const int64_t n_embd_head = hparams.n_embd_head_v;
  7032. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7033. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7034. struct ggml_tensor * cur;
  7035. struct ggml_tensor * pos;
  7036. struct ggml_tensor * inpL;
  7037. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7038. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7039. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7040. if (model.pos_embd) {
  7041. // inp_pos - contains the positions
  7042. struct ggml_tensor * inp_pos = build_inp_pos();
  7043. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7044. cb(pos, "pos_embd", -1);
  7045. inpL = ggml_add(ctx0, inpL, pos);
  7046. cb(inpL, "inpL", -1);
  7047. }
  7048. for (int il = 0; il < n_layer; ++il) {
  7049. struct ggml_tensor * attn_norm;
  7050. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7051. model.layers[il].attn_norm,
  7052. model.layers[il].attn_norm_b,
  7053. LLM_NORM, cb, il);
  7054. cb(attn_norm, "attn_norm", il);
  7055. // self-attention
  7056. {
  7057. cur = attn_norm;
  7058. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7059. cb(cur, "wqkv", il);
  7060. if (model.layers[il].bqkv){
  7061. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7062. cb(cur, "bqkv", il);
  7063. }
  7064. if (hparams.f_clamp_kqv > 0.0f) {
  7065. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7066. cb(cur, "wqkv_clamped", il);
  7067. }
  7068. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7069. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7070. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7071. cb(Qcur, "Qcur", il);
  7072. cb(Kcur, "Kcur", il);
  7073. cb(Vcur, "Vcur", il);
  7074. // Q/K Layernorm
  7075. if (model.layers[il].attn_q_norm) {
  7076. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7077. model.layers[il].attn_q_norm,
  7078. model.layers[il].attn_q_norm_b,
  7079. LLM_NORM, cb, il);
  7080. cb(Qcur, "Qcur", il);
  7081. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7082. model.layers[il].attn_k_norm,
  7083. model.layers[il].attn_k_norm_b,
  7084. LLM_NORM, cb, il);
  7085. cb(Kcur, "Kcur", il);
  7086. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7087. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7088. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7089. model.layers[il].wo, model.layers[il].bo,
  7090. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7091. } else {
  7092. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7093. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7094. model.layers[il].wo, model.layers[il].bo,
  7095. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7096. }
  7097. }
  7098. if (il == n_layer - 1) {
  7099. // skip computing output for unused tokens
  7100. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7101. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7102. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7103. }
  7104. // Add the input
  7105. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7106. cb(ffn_inp, "ffn_inp", il);
  7107. // feed forward
  7108. {
  7109. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7110. model.layers[il].ffn_norm,
  7111. model.layers[il].ffn_norm_b,
  7112. LLM_NORM, cb, il);
  7113. cb(cur, "ffn_norm", il);
  7114. cur = llm_build_ffn(ctx0, cur,
  7115. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7116. NULL, NULL,
  7117. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7118. model.layers[il].ffn_act,
  7119. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7120. cb(cur, "ffn_out", il);
  7121. }
  7122. cur = ggml_add(ctx0, cur, ffn_inp);
  7123. cb(cur, "l_out", il);
  7124. // input for next layer
  7125. inpL = cur;
  7126. }
  7127. cur = inpL;
  7128. cur = llm_build_norm(ctx0, cur, hparams,
  7129. model.output_norm,
  7130. model.output_norm_b,
  7131. LLM_NORM, cb, -1);
  7132. cb(cur, "result_norm", -1);
  7133. cur = ggml_mul_mat(ctx0, model.output, cur);
  7134. cb(cur, "result_output", -1);
  7135. ggml_build_forward_expand(gf, cur);
  7136. return gf;
  7137. }
  7138. struct ggml_cgraph * build_stablelm() {
  7139. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7140. const int64_t n_embd_head = hparams.n_embd_head_v;
  7141. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7142. struct ggml_tensor * cur;
  7143. struct ggml_tensor * inpL;
  7144. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7145. // inp_pos - contains the positions
  7146. struct ggml_tensor * inp_pos = build_inp_pos();
  7147. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7148. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7149. for (int il = 0; il < n_layer; ++il) {
  7150. // norm
  7151. cur = llm_build_norm(ctx0, inpL, hparams,
  7152. model.layers[il].attn_norm,
  7153. model.layers[il].attn_norm_b,
  7154. LLM_NORM, cb, il);
  7155. cb(cur, "attn_norm", il);
  7156. struct ggml_tensor * inpSA = cur;
  7157. // self-attention
  7158. {
  7159. // compute Q and K and RoPE them
  7160. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7161. cb(Qcur, "Qcur", il);
  7162. if (model.layers[il].bq) {
  7163. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7164. cb(Qcur, "Qcur", il);
  7165. }
  7166. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7167. cb(Kcur, "Kcur", il);
  7168. if (model.layers[il].bk) {
  7169. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7170. cb(Kcur, "Kcur", il);
  7171. }
  7172. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7173. cb(Vcur, "Vcur", il);
  7174. if (model.layers[il].bv) {
  7175. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7176. cb(Vcur, "Vcur", il);
  7177. }
  7178. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7179. cb(Qcur, "Qcur", il);
  7180. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7181. cb(Kcur, "Kcur", il);
  7182. if (model.layers[il].attn_q_norm) {
  7183. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7184. model.layers[il].attn_q_norm,
  7185. NULL,
  7186. LLM_NORM, cb, il);
  7187. cb(Qcur, "Qcur", il);
  7188. }
  7189. if (model.layers[il].attn_k_norm) {
  7190. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7191. model.layers[il].attn_k_norm,
  7192. NULL,
  7193. LLM_NORM, cb, il);
  7194. cb(Kcur, "Kcur", il);
  7195. }
  7196. Qcur = ggml_rope_ext(
  7197. ctx0, Qcur, inp_pos, nullptr,
  7198. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7199. ext_factor, attn_factor, beta_fast, beta_slow
  7200. );
  7201. cb(Qcur, "Qcur", il);
  7202. Kcur = ggml_rope_ext(
  7203. ctx0, Kcur, inp_pos, nullptr,
  7204. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7205. ext_factor, attn_factor, beta_fast, beta_slow
  7206. );
  7207. cb(Kcur, "Kcur", il);
  7208. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7209. model.layers[il].wo, NULL,
  7210. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7211. }
  7212. if (il == n_layer - 1) {
  7213. // skip computing output for unused tokens
  7214. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7215. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7216. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7217. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7218. }
  7219. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7220. cb(ffn_inp, "ffn_inp", il);
  7221. // feed-forward network
  7222. {
  7223. if (model.layers[il].ffn_norm) {
  7224. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7225. model.layers[il].ffn_norm,
  7226. model.layers[il].ffn_norm_b,
  7227. LLM_NORM, cb, il);
  7228. cb(cur, "ffn_norm", il);
  7229. } else {
  7230. // parallel residual
  7231. cur = inpSA;
  7232. }
  7233. cur = llm_build_ffn(ctx0, cur,
  7234. model.layers[il].ffn_up, NULL,
  7235. model.layers[il].ffn_gate, NULL,
  7236. model.layers[il].ffn_down, NULL,
  7237. NULL,
  7238. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7239. cb(cur, "ffn_out", il);
  7240. }
  7241. cur = ggml_add(ctx0, cur, ffn_inp);
  7242. cb(cur, "l_out", il);
  7243. // input for next layer
  7244. inpL = cur;
  7245. }
  7246. cur = inpL;
  7247. cur = llm_build_norm(ctx0, cur, hparams,
  7248. model.output_norm,
  7249. model.output_norm_b,
  7250. LLM_NORM, cb, -1);
  7251. cb(cur, "result_norm", -1);
  7252. // lm_head
  7253. cur = ggml_mul_mat(ctx0, model.output, cur);
  7254. cb(cur, "result_output", -1);
  7255. ggml_build_forward_expand(gf, cur);
  7256. return gf;
  7257. }
  7258. struct ggml_cgraph * build_qwen() {
  7259. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7260. const int64_t n_embd_head = hparams.n_embd_head_v;
  7261. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7262. struct ggml_tensor * cur;
  7263. struct ggml_tensor * inpL;
  7264. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7265. // inp_pos - contains the positions
  7266. struct ggml_tensor * inp_pos = build_inp_pos();
  7267. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7268. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7269. for (int il = 0; il < n_layer; ++il) {
  7270. struct ggml_tensor * inpSA = inpL;
  7271. cur = llm_build_norm(ctx0, inpL, hparams,
  7272. model.layers[il].attn_norm, NULL,
  7273. LLM_NORM_RMS, cb, il);
  7274. cb(cur, "attn_norm", il);
  7275. // self-attention
  7276. {
  7277. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7278. cb(cur, "wqkv", il);
  7279. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7280. cb(cur, "bqkv", il);
  7281. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7282. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7283. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7284. cb(Qcur, "Qcur", il);
  7285. cb(Kcur, "Kcur", il);
  7286. cb(Vcur, "Vcur", il);
  7287. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7288. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7289. // using mode = 2 for neox mode
  7290. Qcur = ggml_rope_ext(
  7291. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7292. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7293. );
  7294. cb(Qcur, "Qcur", il);
  7295. Kcur = ggml_rope_ext(
  7296. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7297. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7298. );
  7299. cb(Kcur, "Kcur", il);
  7300. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7301. model.layers[il].wo, NULL,
  7302. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7303. }
  7304. if (il == n_layer - 1) {
  7305. // skip computing output for unused tokens
  7306. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7307. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7308. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7309. }
  7310. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7311. cb(ffn_inp, "ffn_inp", il);
  7312. // feed-forward forward
  7313. {
  7314. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7315. model.layers[il].ffn_norm, NULL,
  7316. LLM_NORM_RMS, cb, il);
  7317. cb(cur, "ffn_norm", il);
  7318. cur = llm_build_ffn(ctx0, cur,
  7319. model.layers[il].ffn_up, NULL,
  7320. model.layers[il].ffn_gate, NULL,
  7321. model.layers[il].ffn_down, NULL,
  7322. NULL,
  7323. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7324. cb(cur, "ffn_out", il);
  7325. }
  7326. cur = ggml_add(ctx0, cur, ffn_inp);
  7327. cb(cur, "l_out", il);
  7328. // input for next layer
  7329. inpL = cur;
  7330. }
  7331. cur = inpL;
  7332. cur = llm_build_norm(ctx0, cur, hparams,
  7333. model.output_norm, NULL,
  7334. LLM_NORM_RMS, cb, -1);
  7335. cb(cur, "result_norm", -1);
  7336. // lm_head
  7337. cur = ggml_mul_mat(ctx0, model.output, cur);
  7338. cb(cur, "result_output", -1);
  7339. ggml_build_forward_expand(gf, cur);
  7340. return gf;
  7341. }
  7342. struct ggml_cgraph * build_qwen2() {
  7343. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7344. const int64_t n_embd_head = hparams.n_embd_head_v;
  7345. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7346. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7347. struct ggml_tensor * cur;
  7348. struct ggml_tensor * inpL;
  7349. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7350. // inp_pos - contains the positions
  7351. struct ggml_tensor * inp_pos = build_inp_pos();
  7352. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7353. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7354. for (int il = 0; il < n_layer; ++il) {
  7355. struct ggml_tensor * inpSA = inpL;
  7356. // norm
  7357. cur = llm_build_norm(ctx0, inpL, hparams,
  7358. model.layers[il].attn_norm, NULL,
  7359. LLM_NORM_RMS, cb, il);
  7360. cb(cur, "attn_norm", il);
  7361. // self-attention
  7362. {
  7363. // compute Q and K and RoPE them
  7364. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7365. cb(Qcur, "Qcur", il);
  7366. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7367. cb(Qcur, "Qcur", il);
  7368. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7369. cb(Kcur, "Kcur", il);
  7370. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7371. cb(Kcur, "Kcur", il);
  7372. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7373. cb(Vcur, "Vcur", il);
  7374. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7375. cb(Vcur, "Vcur", il);
  7376. Qcur = ggml_rope_ext(
  7377. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7378. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7379. ext_factor, attn_factor, beta_fast, beta_slow
  7380. );
  7381. cb(Qcur, "Qcur", il);
  7382. Kcur = ggml_rope_ext(
  7383. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7384. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7385. ext_factor, attn_factor, beta_fast, beta_slow
  7386. );
  7387. cb(Kcur, "Kcur", il);
  7388. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7389. model.layers[il].wo, model.layers[il].bo,
  7390. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7391. }
  7392. if (il == n_layer - 1) {
  7393. // skip computing output for unused tokens
  7394. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7395. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7396. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7397. }
  7398. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7399. cb(ffn_inp, "ffn_inp", il);
  7400. // feed-forward network
  7401. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7402. model.layers[il].ffn_norm, NULL,
  7403. LLM_NORM_RMS, cb, il);
  7404. cb(cur, "ffn_norm", il);
  7405. cur = llm_build_ffn(ctx0, cur,
  7406. model.layers[il].ffn_up, NULL,
  7407. model.layers[il].ffn_gate, NULL,
  7408. model.layers[il].ffn_down, NULL,
  7409. NULL,
  7410. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7411. cb(cur, "ffn_out", il);
  7412. cur = ggml_add(ctx0, cur, ffn_inp);
  7413. cb(cur, "l_out", il);
  7414. // input for next layer
  7415. inpL = cur;
  7416. }
  7417. cur = inpL;
  7418. cur = llm_build_norm(ctx0, cur, hparams,
  7419. model.output_norm, NULL,
  7420. LLM_NORM_RMS, cb, -1);
  7421. cb(cur, "result_norm", -1);
  7422. // lm_head
  7423. cur = ggml_mul_mat(ctx0, model.output, cur);
  7424. cb(cur, "result_output", -1);
  7425. ggml_build_forward_expand(gf, cur);
  7426. return gf;
  7427. }
  7428. struct ggml_cgraph * build_qwen2moe() {
  7429. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7430. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7431. int32_t n_tokens = this->n_tokens;
  7432. const int64_t n_embd_head = hparams.n_embd_head_v;
  7433. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7434. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7435. struct ggml_tensor * cur;
  7436. struct ggml_tensor * inpL;
  7437. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7438. // inp_pos - contains the positions
  7439. struct ggml_tensor * inp_pos = build_inp_pos();
  7440. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7441. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7442. for (int il = 0; il < n_layer; ++il) {
  7443. struct ggml_tensor * inpSA = inpL;
  7444. // norm
  7445. cur = llm_build_norm(ctx0, inpL, hparams,
  7446. model.layers[il].attn_norm, NULL,
  7447. LLM_NORM_RMS, cb, il);
  7448. cb(cur, "attn_norm", il);
  7449. // self_attention
  7450. {
  7451. // compute Q and K and RoPE them
  7452. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7453. cb(Qcur, "Qcur", il);
  7454. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7455. cb(Qcur, "Qcur", il);
  7456. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7457. cb(Kcur, "Kcur", il);
  7458. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7459. cb(Kcur, "Kcur", il);
  7460. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7461. cb(Vcur, "Vcur", il);
  7462. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7463. cb(Vcur, "Vcur", il);
  7464. Qcur = ggml_rope_ext(
  7465. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7466. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7467. ext_factor, attn_factor, beta_fast, beta_slow
  7468. );
  7469. cb(Qcur, "Qcur", il);
  7470. Kcur = ggml_rope_ext(
  7471. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7472. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7473. ext_factor, attn_factor, beta_fast, beta_slow
  7474. );
  7475. cb(Kcur, "Kcur", il);
  7476. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7477. model.layers[il].wo, model.layers[il].bo,
  7478. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7479. }
  7480. if (il == n_layer - 1) {
  7481. // skip computing output for unused tokens
  7482. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7483. n_tokens = n_outputs;
  7484. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7485. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7486. }
  7487. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7488. cb(ffn_inp, "ffn_inp", il);
  7489. // MoE branch
  7490. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7491. model.layers[il].ffn_norm, NULL,
  7492. LLM_NORM_RMS, cb, il);
  7493. cb(cur, "ffn_norm", il);
  7494. ggml_tensor * moe_out =
  7495. llm_build_moe_ffn(ctx0, cur,
  7496. model.layers[il].ffn_gate_inp,
  7497. model.layers[il].ffn_up_exps,
  7498. model.layers[il].ffn_gate_exps,
  7499. model.layers[il].ffn_down_exps,
  7500. n_expert, n_expert_used,
  7501. LLM_FFN_SILU, false,
  7502. cb, il);
  7503. cb(cur, "ffn_moe_out", il);
  7504. // FFN shared expert
  7505. {
  7506. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7507. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7508. // sigmoid
  7509. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7510. cb(cur_gate, "ffn_shexp_gate", il);
  7511. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7512. model.layers[il].ffn_up_shexp, NULL,
  7513. model.layers[il].ffn_gate_shexp, NULL,
  7514. model.layers[il].ffn_down_shexp, NULL,
  7515. NULL,
  7516. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7517. cb(cur_ffn, "ffn_shexp", il);
  7518. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7519. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7520. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7521. cb(moe_out, "ffn_out", il);
  7522. cur = moe_out;
  7523. }
  7524. cur = ggml_add(ctx0, cur, ffn_inp);
  7525. cb(cur, "l_out", il);
  7526. // input for next layer
  7527. inpL = cur;
  7528. }
  7529. cur = inpL;
  7530. cur = llm_build_norm(ctx0, cur, hparams,
  7531. model.output_norm, NULL,
  7532. LLM_NORM_RMS, cb, -1);
  7533. cb(cur, "result_norm", -1);
  7534. // lm_head
  7535. cur = ggml_mul_mat(ctx0, model.output, cur);
  7536. cb(cur, "result_output", -1);
  7537. ggml_build_forward_expand(gf, cur);
  7538. return gf;
  7539. }
  7540. struct ggml_cgraph * build_phi2() {
  7541. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7542. const int64_t n_embd_head = hparams.n_embd_head_v;
  7543. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7544. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7545. struct ggml_tensor * cur;
  7546. struct ggml_tensor * attn_norm_output;
  7547. struct ggml_tensor * ffn_output;
  7548. struct ggml_tensor * inpL;
  7549. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7550. // inp_pos - contains the positions
  7551. struct ggml_tensor * inp_pos = build_inp_pos();
  7552. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7553. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7554. for (int il = 0; il < n_layer; ++il) {
  7555. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7556. model.layers[il].attn_norm,
  7557. model.layers[il].attn_norm_b,
  7558. LLM_NORM, cb, il);
  7559. cb(attn_norm_output, "attn_norm", il);
  7560. // self-attention
  7561. {
  7562. struct ggml_tensor * Qcur = nullptr;
  7563. struct ggml_tensor * Kcur = nullptr;
  7564. struct ggml_tensor * Vcur = nullptr;
  7565. if (model.layers[il].wqkv) {
  7566. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7567. cb(cur, "wqkv", il);
  7568. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7569. cb(cur, "bqkv", il);
  7570. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7571. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7572. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7573. } else {
  7574. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7575. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7576. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7577. }
  7578. cb(Qcur, "Qcur", il);
  7579. cb(Kcur, "Kcur", il);
  7580. cb(Vcur, "Vcur", il);
  7581. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7582. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7583. Qcur = ggml_rope_ext(
  7584. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7585. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7586. );
  7587. cb(Qcur, "Qcur", il);
  7588. // with phi2, we scale the Q to avoid precision issues
  7589. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7590. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7591. cb(Qcur, "Qcur", il);
  7592. Kcur = ggml_rope_ext(
  7593. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7594. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7595. );
  7596. cb(Kcur, "Kcur", il);
  7597. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7598. model.layers[il].wo, model.layers[il].bo,
  7599. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7600. }
  7601. if (il == n_layer - 1) {
  7602. // skip computing output for unused tokens
  7603. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7604. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7605. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7606. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7607. }
  7608. // FF
  7609. {
  7610. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7611. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7612. NULL, NULL,
  7613. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7614. NULL,
  7615. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7616. cb(ffn_output, "ffn_out", il);
  7617. }
  7618. cur = ggml_add(ctx0, cur, ffn_output);
  7619. cb(cur, "l_out", il);
  7620. cur = ggml_add(ctx0, cur, inpL);
  7621. cb(cur, "l_out", il);
  7622. inpL = cur;
  7623. }
  7624. cur = llm_build_norm(ctx0, inpL, hparams,
  7625. model.output_norm,
  7626. model.output_norm_b,
  7627. LLM_NORM, cb, -1);
  7628. cb(cur, "result_norm", -1);
  7629. cur = ggml_mul_mat(ctx0, model.output, cur);
  7630. cb(cur, "result_output_no_bias", -1);
  7631. cur = ggml_add(ctx0, cur, model.output_b);
  7632. cb(cur, "result_output", -1);
  7633. ggml_build_forward_expand(gf, cur);
  7634. return gf;
  7635. }
  7636. struct ggml_cgraph * build_phi3() {
  7637. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7638. const int64_t n_embd_head = hparams.n_embd_head_v;
  7639. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7640. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7641. struct ggml_tensor * cur;
  7642. struct ggml_tensor * inpL;
  7643. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7644. // inp_pos - contains the positions
  7645. struct ggml_tensor * inp_pos = build_inp_pos();
  7646. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7647. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7648. // rope freq factors for 128k context
  7649. struct ggml_tensor * rope_factors = build_rope_factors();
  7650. for (int il = 0; il < n_layer; ++il) {
  7651. auto residual = inpL;
  7652. // self-attention
  7653. {
  7654. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7655. model.layers[il].attn_norm,
  7656. NULL,
  7657. LLM_NORM_RMS, cb, il);
  7658. cb(attn_norm_output, "attn_norm", il);
  7659. struct ggml_tensor * Qcur = nullptr;
  7660. struct ggml_tensor * Kcur = nullptr;
  7661. struct ggml_tensor * Vcur = nullptr;
  7662. if (model.layers[il].wqkv) {
  7663. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7664. cb(cur, "wqkv", il);
  7665. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7666. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7667. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7668. }
  7669. else {
  7670. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7671. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7672. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7673. }
  7674. cb(Qcur, "Qcur", il);
  7675. cb(Kcur, "Kcur", il);
  7676. cb(Vcur, "Vcur", il);
  7677. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7678. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7679. Qcur = ggml_rope_ext(
  7680. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7681. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7682. );
  7683. cb(Qcur, "Qcur", il);
  7684. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7685. cb(Qcur, "Qcur", il);
  7686. Kcur = ggml_rope_ext(
  7687. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7688. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7689. );
  7690. cb(Kcur, "Kcur", il);
  7691. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7692. model.layers[il].wo, model.layers[il].bo,
  7693. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7694. }
  7695. if (il == n_layer - 1) {
  7696. // skip computing output for unused tokens
  7697. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7698. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7699. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7700. }
  7701. cur = ggml_add(ctx0, cur, residual);
  7702. residual = cur;
  7703. cur = llm_build_norm(ctx0, cur, hparams,
  7704. model.layers[il].ffn_norm, NULL,
  7705. LLM_NORM_RMS, cb, il);
  7706. cb(cur, "ffn_norm", il);
  7707. // FF
  7708. // special-case: the up and gate tensors are merged into a single tensor
  7709. // TOOD: support into llm_build_ffn
  7710. {
  7711. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7712. cb(up, "ffn_up", il);
  7713. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7714. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7715. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7716. cb(y, "ffn_gate", il);
  7717. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7718. cb(down, "ffn_down", il);
  7719. cur = down;
  7720. cb(cur, "ffn_out", il);
  7721. }
  7722. cur = ggml_add(ctx0, residual, cur);
  7723. cb(cur, "l_out", il);
  7724. inpL = cur;
  7725. }
  7726. cur = llm_build_norm(ctx0, inpL, hparams,
  7727. model.output_norm,
  7728. NULL,
  7729. LLM_NORM_RMS, cb, -1);
  7730. cb(cur, "result_norm", -1);
  7731. cur = ggml_mul_mat(ctx0, model.output, cur);
  7732. cb(cur, "result_output", -1);
  7733. ggml_build_forward_expand(gf, cur);
  7734. return gf;
  7735. }
  7736. struct ggml_cgraph * build_plamo() {
  7737. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7738. const int64_t n_embd_head = hparams.n_embd_head_v;
  7739. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7740. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7741. struct ggml_tensor * cur;
  7742. struct ggml_tensor * inpL;
  7743. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7744. // inp_pos - contains the positions
  7745. struct ggml_tensor * inp_pos = build_inp_pos();
  7746. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7747. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7748. for (int il = 0; il < n_layer; ++il) {
  7749. // norm
  7750. cur = llm_build_norm(ctx0, inpL, hparams,
  7751. model.layers[il].attn_norm, NULL,
  7752. LLM_NORM_RMS, cb, il);
  7753. cb(cur, "attn_norm", il);
  7754. struct ggml_tensor * attention_norm = cur;
  7755. // self-attention
  7756. {
  7757. // compute Q and K and RoPE them
  7758. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7759. cb(Qcur, "Qcur", il);
  7760. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7761. cb(Kcur, "Kcur", il);
  7762. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7763. cb(Vcur, "Vcur", il);
  7764. Qcur = ggml_rope_ext(
  7765. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  7766. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7767. ext_factor, attn_factor, beta_fast, beta_slow);
  7768. cb(Qcur, "Qcur", il);
  7769. Kcur = ggml_rope_ext(
  7770. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  7771. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7772. ext_factor, attn_factor, beta_fast, beta_slow);
  7773. cb(Kcur, "Kcur", il);
  7774. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7775. model.layers[il].wo, NULL,
  7776. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7777. }
  7778. struct ggml_tensor * sa_out = cur;
  7779. cur = attention_norm;
  7780. if (il == n_layer - 1) {
  7781. // skip computing output for unused tokens
  7782. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7783. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7784. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7785. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7786. }
  7787. // feed-forward network
  7788. {
  7789. cur = llm_build_ffn(ctx0, cur,
  7790. model.layers[il].ffn_up, NULL,
  7791. model.layers[il].ffn_gate, NULL,
  7792. model.layers[il].ffn_down, NULL,
  7793. NULL,
  7794. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7795. cb(cur, "ffn_out", il);
  7796. }
  7797. cur = ggml_add(ctx0, cur, sa_out);
  7798. cb(cur, "l_out", il);
  7799. cur = ggml_add(ctx0, cur, inpL);
  7800. cb(cur, "l_out", il);
  7801. // input for next layer
  7802. inpL = cur;
  7803. }
  7804. cur = inpL;
  7805. cur = llm_build_norm(ctx0, cur, hparams,
  7806. model.output_norm, NULL,
  7807. LLM_NORM_RMS, cb, -1);
  7808. cb(cur, "result_norm", -1);
  7809. // lm_head
  7810. cur = ggml_mul_mat(ctx0, model.output, cur);
  7811. cb(cur, "result_output", -1);
  7812. ggml_build_forward_expand(gf, cur);
  7813. return gf;
  7814. }
  7815. struct ggml_cgraph * build_gpt2() {
  7816. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7817. const int64_t n_embd_head = hparams.n_embd_head_v;
  7818. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7819. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7820. struct ggml_tensor * cur;
  7821. struct ggml_tensor * pos;
  7822. struct ggml_tensor * inpL;
  7823. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7824. // inp_pos - contains the positions
  7825. struct ggml_tensor * inp_pos = build_inp_pos();
  7826. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7827. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7828. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7829. cb(pos, "pos_embd", -1);
  7830. inpL = ggml_add(ctx0, inpL, pos);
  7831. cb(inpL, "inpL", -1);
  7832. for (int il = 0; il < n_layer; ++il) {
  7833. cur = llm_build_norm(ctx0, inpL, hparams,
  7834. model.layers[il].attn_norm,
  7835. model.layers[il].attn_norm_b,
  7836. LLM_NORM, cb, il);
  7837. cb(cur, "attn_norm", il);
  7838. // self-attention
  7839. {
  7840. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7841. cb(cur, "wqkv", il);
  7842. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7843. cb(cur, "bqkv", il);
  7844. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7845. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7846. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7847. cb(Qcur, "Qcur", il);
  7848. cb(Kcur, "Kcur", il);
  7849. cb(Vcur, "Vcur", il);
  7850. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7851. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7852. model.layers[il].wo, model.layers[il].bo,
  7853. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7854. }
  7855. if (il == n_layer - 1) {
  7856. // skip computing output for unused tokens
  7857. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7858. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7859. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7860. }
  7861. // add the input
  7862. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7863. cb(ffn_inp, "ffn_inp", il);
  7864. // FF
  7865. {
  7866. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7867. model.layers[il].ffn_norm,
  7868. model.layers[il].ffn_norm_b,
  7869. LLM_NORM, cb, il);
  7870. cb(cur, "ffn_norm", il);
  7871. cur = llm_build_ffn(ctx0, cur,
  7872. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7873. NULL, NULL,
  7874. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7875. NULL,
  7876. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7877. cb(cur, "ffn_out", il);
  7878. }
  7879. inpL = ggml_add(ctx0, cur, ffn_inp);
  7880. cb(inpL, "l_out", il);
  7881. }
  7882. cur = llm_build_norm(ctx0, inpL, hparams,
  7883. model.output_norm,
  7884. model.output_norm_b,
  7885. LLM_NORM, cb, -1);
  7886. cb(cur, "result_norm", -1);
  7887. cur = ggml_mul_mat(ctx0, model.output, cur);
  7888. cb(cur, "result_output", -1);
  7889. ggml_build_forward_expand(gf, cur);
  7890. return gf;
  7891. }
  7892. struct ggml_cgraph * build_codeshell() {
  7893. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7894. const int64_t n_embd_head = hparams.n_embd_head_v;
  7895. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7896. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7897. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7898. struct ggml_tensor * cur;
  7899. struct ggml_tensor * inpL;
  7900. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7901. // inp_pos - contains the positions
  7902. struct ggml_tensor * inp_pos = build_inp_pos();
  7903. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7904. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7905. for (int il = 0; il < n_layer; ++il) {
  7906. cur = llm_build_norm(ctx0, inpL, hparams,
  7907. model.layers[il].attn_norm,
  7908. model.layers[il].attn_norm_b,
  7909. LLM_NORM, cb, il);
  7910. cb(cur, "attn_norm", il);
  7911. // self-attention
  7912. {
  7913. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7914. cb(cur, "wqkv", il);
  7915. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7916. cb(cur, "bqkv", il);
  7917. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7918. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7919. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7920. cb(tmpq, "tmpq", il);
  7921. cb(tmpk, "tmpk", il);
  7922. cb(Vcur, "Vcur", il);
  7923. struct ggml_tensor * Qcur = ggml_rope_ext(
  7924. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7925. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7926. ext_factor, attn_factor, beta_fast, beta_slow
  7927. );
  7928. cb(Qcur, "Qcur", il);
  7929. struct ggml_tensor * Kcur = ggml_rope_ext(
  7930. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7931. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7932. ext_factor, attn_factor, beta_fast, beta_slow
  7933. );
  7934. cb(Kcur, "Kcur", il);
  7935. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7936. model.layers[il].wo, model.layers[il].bo,
  7937. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7938. }
  7939. if (il == n_layer - 1) {
  7940. // skip computing output for unused tokens
  7941. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7942. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7943. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7944. }
  7945. // add the input
  7946. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7947. cb(ffn_inp, "ffn_inp", il);
  7948. // FF
  7949. {
  7950. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7951. model.layers[il].ffn_norm,
  7952. model.layers[il].ffn_norm_b,
  7953. LLM_NORM, cb, il);
  7954. cb(cur, "ffn_norm", il);
  7955. cur = llm_build_ffn(ctx0, cur,
  7956. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7957. NULL, NULL,
  7958. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7959. NULL,
  7960. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7961. cb(cur, "ffn_out", il);
  7962. }
  7963. inpL = ggml_add(ctx0, cur, ffn_inp);
  7964. cb(inpL, "l_out", il);
  7965. }
  7966. cur = llm_build_norm(ctx0, inpL, hparams,
  7967. model.output_norm,
  7968. model.output_norm_b,
  7969. LLM_NORM, cb, -1);
  7970. cb(cur, "result_norm", -1);
  7971. cur = ggml_mul_mat(ctx0, model.output, cur);
  7972. cb(cur, "result_output", -1);
  7973. ggml_build_forward_expand(gf, cur);
  7974. return gf;
  7975. }
  7976. struct ggml_cgraph * build_orion() {
  7977. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7978. const int64_t n_embd_head = hparams.n_embd_head_v;
  7979. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7980. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7981. struct ggml_tensor * cur;
  7982. struct ggml_tensor * inpL;
  7983. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7984. // inp_pos - contains the positions
  7985. struct ggml_tensor * inp_pos = build_inp_pos();
  7986. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7987. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7988. for (int il = 0; il < n_layer; ++il) {
  7989. struct ggml_tensor * inpSA = inpL;
  7990. // norm
  7991. cur = llm_build_norm(ctx0, inpL, hparams,
  7992. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7993. LLM_NORM, cb, il);
  7994. cb(cur, "attn_norm", il);
  7995. // self-attention
  7996. {
  7997. // compute Q and K and RoPE them
  7998. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7999. cb(Qcur, "Qcur", il);
  8000. // if (model.layers[il].bq) {
  8001. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8002. // cb(Qcur, "Qcur", il);
  8003. // }
  8004. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8005. cb(Kcur, "Kcur", il);
  8006. // if (model.layers[il].bk) {
  8007. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8008. // cb(Kcur, "Kcur", il);
  8009. // }
  8010. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8011. cb(Vcur, "Vcur", il);
  8012. // if (model.layers[il].bv) {
  8013. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8014. // cb(Vcur, "Vcur", il);
  8015. // }
  8016. Qcur = ggml_rope_ext(
  8017. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8018. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8019. ext_factor, attn_factor, beta_fast, beta_slow
  8020. );
  8021. cb(Qcur, "Qcur", il);
  8022. Kcur = ggml_rope_ext(
  8023. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8024. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8025. ext_factor, attn_factor, beta_fast, beta_slow
  8026. );
  8027. cb(Kcur, "Kcur", il);
  8028. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8029. model.layers[il].wo, NULL,
  8030. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8031. }
  8032. if (il == n_layer - 1) {
  8033. // skip computing output for unused tokens
  8034. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8035. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8036. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8037. }
  8038. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8039. cb(ffn_inp, "ffn_inp", il);
  8040. // feed-forward network
  8041. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8042. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8043. LLM_NORM, cb, il);
  8044. cb(cur, "ffn_norm", il);
  8045. cur = llm_build_ffn(ctx0, cur,
  8046. model.layers[il].ffn_up, NULL,
  8047. model.layers[il].ffn_gate, NULL,
  8048. model.layers[il].ffn_down, NULL,
  8049. NULL,
  8050. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8051. cb(cur, "ffn_out", il);
  8052. cur = ggml_add(ctx0, cur, ffn_inp);
  8053. cb(cur, "l_out", il);
  8054. // input for next layer
  8055. inpL = cur;
  8056. }
  8057. cur = inpL;
  8058. cur = llm_build_norm(ctx0, cur, hparams,
  8059. model.output_norm, model.output_norm_b,
  8060. LLM_NORM, cb, -1);
  8061. cb(cur, "result_norm", -1);
  8062. // lm_head
  8063. cur = ggml_mul_mat(ctx0, model.output, cur);
  8064. cb(cur, "result_output", -1);
  8065. ggml_build_forward_expand(gf, cur);
  8066. return gf;
  8067. }
  8068. struct ggml_cgraph * build_internlm2() {
  8069. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8070. const int64_t n_embd_head = hparams.n_embd_head_v;
  8071. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8072. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8073. struct ggml_tensor * cur;
  8074. struct ggml_tensor * inpL;
  8075. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8076. // inp_pos - contains the positions
  8077. struct ggml_tensor * inp_pos = build_inp_pos();
  8078. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8079. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8080. for (int il = 0; il < n_layer; ++il) {
  8081. struct ggml_tensor * inpSA = inpL;
  8082. // norm
  8083. cur = llm_build_norm(ctx0, inpL, hparams,
  8084. model.layers[il].attn_norm, NULL,
  8085. LLM_NORM_RMS, cb, il);
  8086. cb(cur, "attn_norm", il);
  8087. // self-attention
  8088. {
  8089. // compute Q and K and RoPE them
  8090. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8091. cb(Qcur, "Qcur", il);
  8092. if (model.layers[il].bq) {
  8093. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8094. cb(Qcur, "Qcur", il);
  8095. }
  8096. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8097. cb(Kcur, "Kcur", il);
  8098. if (model.layers[il].bk) {
  8099. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8100. cb(Kcur, "Kcur", il);
  8101. }
  8102. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8103. cb(Vcur, "Vcur", il);
  8104. if (model.layers[il].bv) {
  8105. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8106. cb(Vcur, "Vcur", il);
  8107. }
  8108. Qcur = ggml_rope_ext(
  8109. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8110. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8111. ext_factor, attn_factor, beta_fast, beta_slow
  8112. );
  8113. cb(Qcur, "Qcur", il);
  8114. Kcur = ggml_rope_ext(
  8115. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8116. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8117. ext_factor, attn_factor, beta_fast, beta_slow
  8118. );
  8119. cb(Kcur, "Kcur", il);
  8120. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8121. model.layers[il].wo, model.layers[il].bo,
  8122. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8123. }
  8124. if (il == n_layer - 1) {
  8125. // skip computing output for unused tokens
  8126. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8127. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8128. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8129. }
  8130. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8131. cb(ffn_inp, "ffn_inp", il);
  8132. // feed-forward network
  8133. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8134. model.layers[il].ffn_norm, NULL,
  8135. LLM_NORM_RMS, cb, il);
  8136. cb(cur, "ffn_norm", il);
  8137. cur = llm_build_ffn(ctx0, cur,
  8138. model.layers[il].ffn_up, NULL,
  8139. model.layers[il].ffn_gate, NULL,
  8140. model.layers[il].ffn_down, NULL,
  8141. NULL,
  8142. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8143. cb(cur, "ffn_out", il);
  8144. cur = ggml_add(ctx0, cur, ffn_inp);
  8145. cb(cur, "l_out", il);
  8146. // input for next layer
  8147. inpL = cur;
  8148. }
  8149. cur = inpL;
  8150. cur = llm_build_norm(ctx0, cur, hparams,
  8151. model.output_norm, NULL,
  8152. LLM_NORM_RMS, cb, -1);
  8153. cb(cur, "result_norm", -1);
  8154. // lm_head
  8155. cur = ggml_mul_mat(ctx0, model.output, cur);
  8156. cb(cur, "result_output", -1);
  8157. ggml_build_forward_expand(gf, cur);
  8158. return gf;
  8159. }
  8160. // ref: https://arxiv.org/abs/2203.03466
  8161. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8162. // based on the original build_llama() function
  8163. struct ggml_cgraph * build_minicpm() {
  8164. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8165. const int64_t n_embd_head = hparams.n_embd_head_v;
  8166. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8167. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8168. const int64_t n_embd = hparams.n_embd;
  8169. //TODO: if the model varies, these parameters need to be read from the model
  8170. const int64_t n_embd_base = 256;
  8171. const float scale_embd = 12.0f;
  8172. const float scale_depth = 1.4f;
  8173. struct ggml_tensor * cur;
  8174. struct ggml_tensor * inpL;
  8175. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8176. // scale the input embeddings
  8177. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8178. cb(inpL, "inp_scaled", -1);
  8179. // inp_pos - contains the positions
  8180. struct ggml_tensor * inp_pos = build_inp_pos();
  8181. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8182. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8183. for (int il = 0; il < n_layer; ++il) {
  8184. struct ggml_tensor * inpSA = inpL;
  8185. // norm
  8186. cur = llm_build_norm(ctx0, inpL, hparams,
  8187. model.layers[il].attn_norm, NULL,
  8188. LLM_NORM_RMS, cb, il);
  8189. cb(cur, "attn_norm", il);
  8190. // self-attention
  8191. {
  8192. // compute Q and K and RoPE them
  8193. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8194. cb(Qcur, "Qcur", il);
  8195. if (model.layers[il].bq) {
  8196. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8197. cb(Qcur, "Qcur", il);
  8198. }
  8199. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8200. cb(Kcur, "Kcur", il);
  8201. if (model.layers[il].bk) {
  8202. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8203. cb(Kcur, "Kcur", il);
  8204. }
  8205. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8206. cb(Vcur, "Vcur", il);
  8207. if (model.layers[il].bv) {
  8208. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8209. cb(Vcur, "Vcur", il);
  8210. }
  8211. Qcur = ggml_rope_ext(
  8212. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8213. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8214. ext_factor, attn_factor, beta_fast, beta_slow
  8215. );
  8216. cb(Qcur, "Qcur", il);
  8217. Kcur = ggml_rope_ext(
  8218. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8219. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8220. ext_factor, attn_factor, beta_fast, beta_slow
  8221. );
  8222. cb(Kcur, "Kcur", il);
  8223. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8224. model.layers[il].wo, model.layers[il].bo,
  8225. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8226. }
  8227. if (il == n_layer - 1) {
  8228. // skip computing output for unused tokens
  8229. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8230. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8231. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8232. }
  8233. // scale_res - scale the hidden states for residual connection
  8234. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8235. cur = ggml_scale(ctx0, cur, scale_res);
  8236. cb(cur, "hidden_scaled", -1);
  8237. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8238. cb(ffn_inp, "ffn_inp", il);
  8239. // feed-forward network
  8240. {
  8241. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8242. model.layers[il].ffn_norm, NULL,
  8243. LLM_NORM_RMS, cb, il);
  8244. cb(cur, "ffn_norm", il);
  8245. cur = llm_build_ffn(ctx0, cur,
  8246. model.layers[il].ffn_up, NULL,
  8247. model.layers[il].ffn_gate, NULL,
  8248. model.layers[il].ffn_down, NULL,
  8249. NULL,
  8250. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8251. cb(cur, "ffn_out", il);
  8252. }
  8253. // scale the hidden states for residual connection
  8254. cur = ggml_scale(ctx0, cur, scale_res);
  8255. cb(cur, "hidden_scaled_ffn", -1);
  8256. cur = ggml_add(ctx0, cur, ffn_inp);
  8257. cb(cur, "l_out", il);
  8258. // input for next layer
  8259. inpL = cur;
  8260. }
  8261. cur = inpL;
  8262. cur = llm_build_norm(ctx0, cur, hparams,
  8263. model.output_norm, NULL,
  8264. LLM_NORM_RMS, cb, -1);
  8265. cb(cur, "result_norm", -1);
  8266. // lm_head scaling
  8267. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8268. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8269. cb(cur, "lmhead_scaling", -1);
  8270. // lm_head
  8271. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8272. cb(cur, "result_output", -1);
  8273. ggml_build_forward_expand(gf, cur);
  8274. return gf;
  8275. }
  8276. struct ggml_cgraph * build_gemma() {
  8277. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8278. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8279. struct ggml_tensor * cur;
  8280. struct ggml_tensor * inpL;
  8281. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8282. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8283. cb(inpL, "inp_scaled", -1);
  8284. // inp_pos - contains the positions
  8285. struct ggml_tensor * inp_pos = build_inp_pos();
  8286. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8287. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8288. for (int il = 0; il < n_layer; ++il) {
  8289. // norm
  8290. cur = llm_build_norm(ctx0, inpL, hparams,
  8291. model.layers[il].attn_norm, NULL,
  8292. LLM_NORM_RMS, cb, il);
  8293. cb(cur, "attn_norm", il);
  8294. // self-attention
  8295. {
  8296. // compute Q and K and RoPE them
  8297. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8298. cb(Qcur, "Qcur", il);
  8299. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8300. cb(Kcur, "Kcur", il);
  8301. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8302. cb(Vcur, "Vcur", il);
  8303. Qcur = ggml_rope_ext(
  8304. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8305. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8306. ext_factor, attn_factor, beta_fast, beta_slow);
  8307. cb(Qcur, "Qcur", il);
  8308. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8309. cb(Qcur, "Qcur_scaled", il);
  8310. Kcur = ggml_rope_ext(
  8311. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8312. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8313. ext_factor, attn_factor, beta_fast, beta_slow);
  8314. cb(Kcur, "Kcur", il);
  8315. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8316. model.layers[il].wo, NULL,
  8317. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8318. }
  8319. if (il == n_layer - 1) {
  8320. // skip computing output for unused tokens
  8321. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8322. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8323. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8324. }
  8325. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8326. cb(sa_out, "sa_out", il);
  8327. cur = llm_build_norm(ctx0, sa_out, hparams,
  8328. model.layers[il].ffn_norm, NULL,
  8329. LLM_NORM_RMS, cb, il);
  8330. cb(cur, "ffn_norm", il);
  8331. // feed-forward network
  8332. {
  8333. cur = llm_build_ffn(ctx0, cur,
  8334. model.layers[il].ffn_up, NULL,
  8335. model.layers[il].ffn_gate, NULL,
  8336. model.layers[il].ffn_down, NULL,
  8337. NULL,
  8338. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8339. cb(cur, "ffn_out", il);
  8340. }
  8341. cur = ggml_add(ctx0, cur, sa_out);
  8342. cb(cur, "l_out", il);
  8343. // input for next layer
  8344. inpL = cur;
  8345. }
  8346. cur = inpL;
  8347. cur = llm_build_norm(ctx0, cur, hparams,
  8348. model.output_norm, NULL,
  8349. LLM_NORM_RMS, cb, -1);
  8350. cb(cur, "result_norm", -1);
  8351. // lm_head
  8352. cur = ggml_mul_mat(ctx0, model.output, cur);
  8353. cb(cur, "result_output", -1);
  8354. ggml_build_forward_expand(gf, cur);
  8355. return gf;
  8356. }
  8357. struct ggml_cgraph * build_starcoder2() {
  8358. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8359. const int64_t n_embd_head = hparams.n_embd_head_v;
  8360. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8361. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8362. struct ggml_tensor * cur;
  8363. struct ggml_tensor * inpL;
  8364. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8365. // inp_pos - contains the positions
  8366. struct ggml_tensor * inp_pos = build_inp_pos();
  8367. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8368. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8369. for (int il = 0; il < n_layer; ++il) {
  8370. struct ggml_tensor * inpSA = inpL;
  8371. // norm
  8372. cur = llm_build_norm(ctx0, inpL, hparams,
  8373. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8374. LLM_NORM, cb, il);
  8375. cb(cur, "attn_norm", il);
  8376. // self-attention
  8377. {
  8378. // compute Q and K and RoPE them
  8379. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8380. cb(Qcur, "Qcur", il);
  8381. if (model.layers[il].bq) {
  8382. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8383. cb(Qcur, "Qcur", il);
  8384. }
  8385. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8386. cb(Kcur, "Kcur", il);
  8387. if (model.layers[il].bk) {
  8388. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8389. cb(Kcur, "Kcur", il);
  8390. }
  8391. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8392. cb(Vcur, "Vcur", il);
  8393. if (model.layers[il].bv) {
  8394. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8395. cb(Vcur, "Vcur", il);
  8396. }
  8397. Qcur = ggml_rope_ext(
  8398. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8399. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8400. ext_factor, attn_factor, beta_fast, beta_slow
  8401. );
  8402. cb(Qcur, "Qcur", il);
  8403. Kcur = ggml_rope_ext(
  8404. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8405. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8406. ext_factor, attn_factor, beta_fast, beta_slow
  8407. );
  8408. cb(Kcur, "Kcur", il);
  8409. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8410. model.layers[il].wo, model.layers[il].bo,
  8411. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8412. }
  8413. if (il == n_layer - 1) {
  8414. // skip computing output for unused tokens
  8415. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8416. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8417. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8418. }
  8419. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8420. cb(ffn_inp, "ffn_inp", il);
  8421. // feed-forward network
  8422. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8423. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8424. LLM_NORM, cb, il);
  8425. cb(cur, "ffn_norm", il);
  8426. cur = llm_build_ffn(ctx0, cur,
  8427. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8428. NULL, NULL,
  8429. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8430. NULL,
  8431. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8432. cb(cur, "ffn_out", il);
  8433. cur = ggml_add(ctx0, cur, ffn_inp);
  8434. cb(cur, "l_out", il);
  8435. // input for next layer
  8436. inpL = cur;
  8437. }
  8438. cur = inpL;
  8439. cur = llm_build_norm(ctx0, cur, hparams,
  8440. model.output_norm, model.output_norm_b,
  8441. LLM_NORM, cb, -1);
  8442. cb(cur, "result_norm", -1);
  8443. // lm_head
  8444. cur = ggml_mul_mat(ctx0, model.output, cur);
  8445. cb(cur, "result_output", -1);
  8446. ggml_build_forward_expand(gf, cur);
  8447. return gf;
  8448. }
  8449. struct ggml_cgraph * build_mamba() {
  8450. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8451. const int64_t d_model = n_embd;
  8452. const int64_t d_conv = hparams.ssm_d_conv;
  8453. const int64_t d_inner = hparams.ssm_d_inner;
  8454. GGML_ASSERT(2 * d_model == d_inner);
  8455. const int64_t d_state = hparams.ssm_d_state;
  8456. const int64_t dt_rank = hparams.ssm_dt_rank;
  8457. struct ggml_tensor * cur;
  8458. struct ggml_tensor * inpL;
  8459. // {n_embd, n_tokens}
  8460. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8461. struct ggml_tensor * state_mask = build_inp_s_mask();
  8462. struct ggml_tensor * state_seq = build_inp_s_seq();
  8463. for (int il = 0; il < n_layer; ++il) {
  8464. // (ab)using the KV cache to store the states
  8465. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8466. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8467. // clear states of sequences which are starting at the beginning of this batch
  8468. {
  8469. conv_states = ggml_mul(ctx0,
  8470. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8471. state_mask);
  8472. ssm_states = ggml_mul(ctx0,
  8473. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8474. state_mask);
  8475. }
  8476. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8477. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8478. // norm
  8479. cur = llm_build_norm(ctx0, inpL, hparams,
  8480. model.layers[il].attn_norm, NULL,
  8481. LLM_NORM_RMS, cb, il);
  8482. cb(cur, "attn_norm", il);
  8483. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8484. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8485. // split the above in two
  8486. // => {d_inner, n_tokens}
  8487. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8488. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8489. // conv
  8490. {
  8491. // Custom operator which is needed only to ease simultaneous sequence processing.
  8492. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8493. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8494. // then element-wise multiply that with the conv1d weigth,
  8495. // then sum the elements of each row,
  8496. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8497. // then permute away the ne[0] dimension,
  8498. // and then you're left with the resulting x tensor.
  8499. // The new conv_states is the last (d_conv - 1) columns
  8500. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8501. // For simultaneous sequences, it's more complicated.
  8502. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8503. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8504. ggml_build_forward_expand(gf,
  8505. ggml_cpy(ctx0,
  8506. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8507. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8508. // extract x from x_conv
  8509. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8510. // bias
  8511. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8512. x = ggml_silu(ctx0, x);
  8513. }
  8514. // ssm
  8515. {
  8516. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8517. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8518. // split
  8519. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8520. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8521. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8522. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8523. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8524. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8525. // Custom operator to optimize the parallel associative scan
  8526. // as described in the Annex D of the Mamba paper.
  8527. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8528. // because only a single tensor can be returned.
  8529. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8530. // store last states (the second part of y_ssm_states)
  8531. ggml_build_forward_expand(gf,
  8532. ggml_cpy(ctx0,
  8533. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8534. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8535. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8536. if (il == n_layer - 1) {
  8537. // skip computing output for unused tokens
  8538. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8539. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8540. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8541. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8542. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8543. }
  8544. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8545. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8546. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8547. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8548. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8549. }
  8550. // residual
  8551. cur = ggml_add(ctx0, cur, inpL);
  8552. cb(cur, "l_out", il);
  8553. // input for next layer
  8554. inpL = cur;
  8555. }
  8556. // final rmsnorm
  8557. cur = llm_build_norm(ctx0, inpL, hparams,
  8558. model.output_norm, NULL,
  8559. LLM_NORM_RMS, cb, -1);
  8560. cb(cur, "result_norm", -1);
  8561. // lm_head
  8562. cur = ggml_mul_mat(ctx0, model.output, cur);
  8563. cb(cur, "result_output", -1);
  8564. ggml_build_forward_expand(gf, cur);
  8565. return gf;
  8566. }
  8567. struct ggml_cgraph * build_command_r() {
  8568. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8569. const int64_t n_embd_head = hparams.n_embd_head_v;
  8570. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8571. const float f_logit_scale = hparams.f_logit_scale;
  8572. struct ggml_tensor * cur;
  8573. struct ggml_tensor * inpL;
  8574. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8575. // inp_pos - contains the positions
  8576. struct ggml_tensor * inp_pos = build_inp_pos();
  8577. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8578. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8579. for (int il = 0; il < n_layer; ++il) {
  8580. // norm
  8581. cur = llm_build_norm(ctx0, inpL, hparams,
  8582. model.layers[il].attn_norm, NULL,
  8583. LLM_NORM, cb, il);
  8584. cb(cur, "attn_norm", il);
  8585. struct ggml_tensor * ffn_inp = cur;
  8586. // self-attention
  8587. {
  8588. // compute Q and K and RoPE them
  8589. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8590. cb(Qcur, "Qcur", il);
  8591. if (model.layers[il].bq) {
  8592. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8593. cb(Qcur, "Qcur", il);
  8594. }
  8595. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8596. cb(Kcur, "Kcur", il);
  8597. if (model.layers[il].bk) {
  8598. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8599. cb(Kcur, "Kcur", il);
  8600. }
  8601. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8602. cb(Vcur, "Vcur", il);
  8603. if (model.layers[il].bv) {
  8604. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8605. cb(Vcur, "Vcur", il);
  8606. }
  8607. if (model.layers[il].attn_q_norm) {
  8608. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8609. ggml_element_size(Qcur) * n_embd_head,
  8610. ggml_element_size(Qcur) * n_embd_head * n_head,
  8611. 0);
  8612. cb(Qcur, "Qcur", il);
  8613. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8614. ggml_element_size(Kcur) * n_embd_head,
  8615. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8616. 0);
  8617. cb(Kcur, "Kcur", il);
  8618. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8619. model.layers[il].attn_q_norm,
  8620. NULL,
  8621. LLM_NORM, cb, il);
  8622. cb(Qcur, "Qcur", il);
  8623. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8624. model.layers[il].attn_k_norm,
  8625. NULL,
  8626. LLM_NORM, cb, il);
  8627. cb(Kcur, "Kcur", il);
  8628. }
  8629. Qcur = ggml_rope_ext(
  8630. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8631. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8632. ext_factor, attn_factor, beta_fast, beta_slow
  8633. );
  8634. cb(Qcur, "Qcur", il);
  8635. Kcur = ggml_rope_ext(
  8636. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8637. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8638. ext_factor, attn_factor, beta_fast, beta_slow
  8639. );
  8640. cb(Kcur, "Kcur", il);
  8641. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8642. model.layers[il].wo, model.layers[il].bo,
  8643. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8644. }
  8645. if (il == n_layer - 1) {
  8646. // skip computing output for unused tokens
  8647. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8648. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8649. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8650. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8651. }
  8652. struct ggml_tensor * attn_out = cur;
  8653. // feed-forward network
  8654. {
  8655. cur = llm_build_ffn(ctx0, ffn_inp,
  8656. model.layers[il].ffn_up, NULL,
  8657. model.layers[il].ffn_gate, NULL,
  8658. model.layers[il].ffn_down, NULL,
  8659. NULL,
  8660. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8661. cb(cur, "ffn_out", il);
  8662. }
  8663. // add together residual + FFN + self-attention
  8664. cur = ggml_add(ctx0, cur, inpL);
  8665. cur = ggml_add(ctx0, cur, attn_out);
  8666. cb(cur, "l_out", il);
  8667. // input for next layer
  8668. inpL = cur;
  8669. }
  8670. cur = inpL;
  8671. cur = llm_build_norm(ctx0, cur, hparams,
  8672. model.output_norm, NULL,
  8673. LLM_NORM, cb, -1);
  8674. cb(cur, "result_norm", -1);
  8675. // lm_head
  8676. cur = ggml_mul_mat(ctx0, model.output, cur);
  8677. if (f_logit_scale) {
  8678. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8679. }
  8680. cb(cur, "result_output", -1);
  8681. ggml_build_forward_expand(gf, cur);
  8682. return gf;
  8683. }
  8684. // ref: https://allenai.org/olmo
  8685. // based on the original build_llama() function, changes:
  8686. // * non-parametric layer norm
  8687. // * clamp qkv
  8688. // * removed bias
  8689. // * removed MoE
  8690. struct ggml_cgraph * build_olmo() {
  8691. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8692. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8693. int32_t n_tokens = this->n_tokens;
  8694. const int64_t n_embd_head = hparams.n_embd_head_v;
  8695. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8696. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8697. struct ggml_tensor * cur;
  8698. struct ggml_tensor * inpL;
  8699. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8700. // inp_pos - contains the positions
  8701. struct ggml_tensor * inp_pos = build_inp_pos();
  8702. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8703. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8704. for (int il = 0; il < n_layer; ++il) {
  8705. struct ggml_tensor * inpSA = inpL;
  8706. // norm
  8707. cur = llm_build_norm(ctx0, inpL, hparams,
  8708. NULL, NULL,
  8709. LLM_NORM, cb, il);
  8710. cb(cur, "attn_norm", il);
  8711. // self-attention
  8712. {
  8713. // compute Q and K and RoPE them
  8714. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8715. cb(Qcur, "Qcur", il);
  8716. if (hparams.f_clamp_kqv > 0.0f) {
  8717. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8718. cb(Qcur, "Qcur", il);
  8719. }
  8720. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8721. cb(Kcur, "Kcur", il);
  8722. if (hparams.f_clamp_kqv > 0.0f) {
  8723. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8724. cb(Kcur, "Kcur", il);
  8725. }
  8726. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8727. cb(Vcur, "Vcur", il);
  8728. if (hparams.f_clamp_kqv > 0.0f) {
  8729. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8730. cb(Vcur, "Vcur", il);
  8731. }
  8732. Qcur = ggml_rope_ext(
  8733. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8734. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8735. ext_factor, attn_factor, beta_fast, beta_slow
  8736. );
  8737. cb(Qcur, "Qcur", il);
  8738. Kcur = ggml_rope_ext(
  8739. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8740. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8741. ext_factor, attn_factor, beta_fast, beta_slow
  8742. );
  8743. cb(Kcur, "Kcur", il);
  8744. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8745. model.layers[il].wo, nullptr,
  8746. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8747. }
  8748. if (il == n_layer - 1) {
  8749. // skip computing output for unused tokens
  8750. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8751. n_tokens = n_outputs;
  8752. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8753. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8754. }
  8755. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8756. cb(ffn_inp, "ffn_inp", il);
  8757. // feed-forward network
  8758. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8759. NULL, NULL,
  8760. LLM_NORM, cb, il);
  8761. cb(cur, "ffn_norm", il);
  8762. cur = llm_build_ffn(ctx0, cur,
  8763. model.layers[il].ffn_up, NULL,
  8764. model.layers[il].ffn_gate, NULL,
  8765. model.layers[il].ffn_down, NULL,
  8766. NULL,
  8767. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8768. cb(cur, "ffn_out", il);
  8769. cur = ggml_add(ctx0, cur, ffn_inp);
  8770. cb(cur, "ffn_out", il);
  8771. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8772. if (layer_dir != nullptr) {
  8773. cur = ggml_add(ctx0, cur, layer_dir);
  8774. }
  8775. cb(cur, "l_out", il);
  8776. // input for next layer
  8777. inpL = cur;
  8778. }
  8779. cur = inpL;
  8780. cur = llm_build_norm(ctx0, cur, hparams,
  8781. NULL, NULL,
  8782. LLM_NORM, cb, -1);
  8783. cb(cur, "result_norm", -1);
  8784. // lm_head
  8785. cur = ggml_mul_mat(ctx0, model.output, cur);
  8786. cb(cur, "result_output", -1);
  8787. ggml_build_forward_expand(gf, cur);
  8788. return gf;
  8789. }
  8790. };
  8791. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8792. llama_batch dummy;
  8793. dummy.n_tokens = 0;
  8794. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8795. struct llm_build_context llm(lctx, dummy, cb, false);
  8796. llm.init();
  8797. struct ggml_cgraph * result = llm.build_defrag(ids);
  8798. llm.free();
  8799. return result;
  8800. }
  8801. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8802. llama_batch dummy;
  8803. dummy.n_tokens = 0;
  8804. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8805. struct llm_build_context llm(lctx, dummy, cb, false);
  8806. llm.init();
  8807. struct ggml_cgraph * result = llm.build_k_shift();
  8808. llm.free();
  8809. return result;
  8810. }
  8811. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8812. llama_batch dummy;
  8813. dummy.n_tokens = 0;
  8814. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8815. struct llm_build_context llm(lctx, dummy, cb, false);
  8816. llm.init();
  8817. struct ggml_cgraph * result = llm.build_s_copy();
  8818. llm.free();
  8819. return result;
  8820. }
  8821. static struct ggml_cgraph * llama_build_graph(
  8822. llama_context & lctx,
  8823. const llama_batch & batch,
  8824. bool worst_case) {
  8825. const auto & model = lctx.model;
  8826. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8827. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8828. if (il >= 0) {
  8829. ggml_format_name(cur, "%s-%d", name, il);
  8830. } else {
  8831. ggml_set_name(cur, name);
  8832. }
  8833. if (!lctx.cparams.offload_kqv) {
  8834. if (strcmp(name, "kqv_merged_cont") == 0) {
  8835. // all nodes between the KV store and the attention output are run on the CPU
  8836. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8837. }
  8838. }
  8839. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8840. // FIXME: fix in ggml_backend_sched
  8841. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8842. if (batch.n_tokens < 32 || full_offload) {
  8843. if (il != -1 && strcmp(name, "norm") == 0) {
  8844. for (auto * backend : lctx.backends) {
  8845. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8846. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8847. break;
  8848. }
  8849. }
  8850. }
  8851. }
  8852. };
  8853. struct ggml_cgraph * result = NULL;
  8854. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8855. llm.init();
  8856. switch (model.arch) {
  8857. case LLM_ARCH_LLAMA:
  8858. {
  8859. result = llm.build_llama();
  8860. } break;
  8861. case LLM_ARCH_BAICHUAN:
  8862. {
  8863. result = llm.build_baichuan();
  8864. } break;
  8865. case LLM_ARCH_FALCON:
  8866. {
  8867. result = llm.build_falcon();
  8868. } break;
  8869. case LLM_ARCH_GROK:
  8870. {
  8871. result = llm.build_grok();
  8872. } break;
  8873. case LLM_ARCH_STARCODER:
  8874. {
  8875. result = llm.build_starcoder();
  8876. } break;
  8877. case LLM_ARCH_REFACT:
  8878. {
  8879. result = llm.build_refact();
  8880. } break;
  8881. case LLM_ARCH_BERT:
  8882. case LLM_ARCH_JINA_BERT_V2:
  8883. case LLM_ARCH_NOMIC_BERT:
  8884. {
  8885. result = llm.build_bert();
  8886. } break;
  8887. case LLM_ARCH_BLOOM:
  8888. {
  8889. result = llm.build_bloom();
  8890. } break;
  8891. case LLM_ARCH_MPT:
  8892. {
  8893. result = llm.build_mpt();
  8894. } break;
  8895. case LLM_ARCH_STABLELM:
  8896. {
  8897. result = llm.build_stablelm();
  8898. } break;
  8899. case LLM_ARCH_QWEN:
  8900. {
  8901. result = llm.build_qwen();
  8902. } break;
  8903. case LLM_ARCH_QWEN2:
  8904. {
  8905. result = llm.build_qwen2();
  8906. } break;
  8907. case LLM_ARCH_QWEN2MOE:
  8908. {
  8909. result = llm.build_qwen2moe();
  8910. } break;
  8911. case LLM_ARCH_PHI2:
  8912. {
  8913. result = llm.build_phi2();
  8914. } break;
  8915. case LLM_ARCH_PHI3:
  8916. {
  8917. result = llm.build_phi3();
  8918. } break;
  8919. case LLM_ARCH_PLAMO:
  8920. {
  8921. result = llm.build_plamo();
  8922. } break;
  8923. case LLM_ARCH_GPT2:
  8924. {
  8925. result = llm.build_gpt2();
  8926. } break;
  8927. case LLM_ARCH_CODESHELL:
  8928. {
  8929. result = llm.build_codeshell();
  8930. } break;
  8931. case LLM_ARCH_ORION:
  8932. {
  8933. result = llm.build_orion();
  8934. } break;
  8935. case LLM_ARCH_INTERNLM2:
  8936. {
  8937. result = llm.build_internlm2();
  8938. } break;
  8939. case LLM_ARCH_MINICPM:
  8940. {
  8941. result = llm.build_minicpm();
  8942. } break;
  8943. case LLM_ARCH_GEMMA:
  8944. {
  8945. result = llm.build_gemma();
  8946. } break;
  8947. case LLM_ARCH_STARCODER2:
  8948. {
  8949. result = llm.build_starcoder2();
  8950. } break;
  8951. case LLM_ARCH_MAMBA:
  8952. {
  8953. result = llm.build_mamba();
  8954. } break;
  8955. case LLM_ARCH_XVERSE:
  8956. {
  8957. result = llm.build_xverse();
  8958. } break;
  8959. case LLM_ARCH_COMMAND_R:
  8960. {
  8961. result = llm.build_command_r();
  8962. } break;
  8963. case LLM_ARCH_DBRX:
  8964. {
  8965. result = llm.build_dbrx();
  8966. } break;
  8967. case LLM_ARCH_OLMO:
  8968. {
  8969. result = llm.build_olmo();
  8970. } break;
  8971. default:
  8972. GGML_ASSERT(false);
  8973. }
  8974. llm.free();
  8975. return result;
  8976. }
  8977. static void llama_set_k_shift(llama_context & lctx) {
  8978. const int64_t kv_size = lctx.kv_self.size;
  8979. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8980. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8981. for (int i = 0; i < kv_size; ++i) {
  8982. data[i] = lctx.kv_self.cells[i].delta;
  8983. }
  8984. }
  8985. static void llama_set_s_copy(llama_context & lctx) {
  8986. const int64_t kv_size = lctx.kv_self.size;
  8987. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8988. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8989. for (int i = 0; i < kv_size; ++i) {
  8990. data[i] = lctx.kv_self.cells[i].src;
  8991. }
  8992. }
  8993. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8994. //
  8995. // set input data
  8996. //
  8997. const auto & hparams = lctx.model.hparams;
  8998. const auto & cparams = lctx.cparams;
  8999. const auto & kv_self = lctx.kv_self;
  9000. if (batch.token) {
  9001. const int64_t n_tokens = batch.n_tokens;
  9002. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9003. }
  9004. if (batch.embd) {
  9005. const int64_t n_embd = hparams.n_embd;
  9006. const int64_t n_tokens = batch.n_tokens;
  9007. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9008. }
  9009. if (batch.pos && lctx.inp_pos) {
  9010. const int64_t n_tokens = batch.n_tokens;
  9011. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9012. }
  9013. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9014. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9015. const int64_t n_tokens = batch.n_tokens;
  9016. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9017. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9018. if (lctx.n_outputs == n_tokens) {
  9019. for (int i = 0; i < n_tokens; ++i) {
  9020. data[i] = i;
  9021. }
  9022. } else if (batch.logits) {
  9023. int32_t n_outputs = 0;
  9024. for (int i = 0; i < n_tokens; ++i) {
  9025. if (batch.logits[i]) {
  9026. data[n_outputs++] = i;
  9027. }
  9028. }
  9029. // the graph needs to have been passed the correct number of outputs
  9030. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9031. } else if (lctx.n_outputs == 1) {
  9032. // only keep last output
  9033. data[0] = n_tokens - 1;
  9034. } else {
  9035. GGML_ASSERT(lctx.n_outputs == 0);
  9036. }
  9037. }
  9038. GGML_ASSERT(
  9039. // (!a || b) is a logical implication (a -> b)
  9040. // !hparams.causal_attn -> !cparams.causal_attn
  9041. (hparams.causal_attn || !cparams.causal_attn) &&
  9042. "causal attention with embedding models is not supported"
  9043. );
  9044. if (lctx.inp_KQ_mask) {
  9045. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9046. if (cparams.causal_attn) {
  9047. const int64_t n_kv = kv_self.n;
  9048. const int64_t n_tokens = batch.n_tokens;
  9049. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9050. float * data = (float *) lctx.inp_KQ_mask->data;
  9051. // For causal attention, use only the previous KV cells
  9052. // of the correct sequence for each token of the batch.
  9053. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9054. for (int h = 0; h < 1; ++h) {
  9055. for (int j = 0; j < n_tokens; ++j) {
  9056. const llama_pos pos = batch.pos[j];
  9057. const llama_seq_id seq_id = batch.seq_id[j][0];
  9058. for (int i = 0; i < n_kv; ++i) {
  9059. float f;
  9060. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9061. f = -INFINITY;
  9062. } else {
  9063. if (hparams.use_alibi) {
  9064. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9065. } else {
  9066. f = 0.0f;
  9067. }
  9068. }
  9069. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9070. }
  9071. }
  9072. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9073. for (int j = 0; j < n_kv; ++j) {
  9074. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9075. }
  9076. }
  9077. }
  9078. } else {
  9079. // when using kv cache, the mask needs to match the kv cache size
  9080. const int64_t n_tokens = batch.n_tokens;
  9081. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9082. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9083. float * data = (float *) lctx.inp_KQ_mask->data;
  9084. for (int h = 0; h < 1; ++h) {
  9085. for (int j = 0; j < n_tokens; ++j) {
  9086. const llama_seq_id seq_id = batch.seq_id[j][0];
  9087. for (int i = 0; i < n_tokens; ++i) {
  9088. float f = -INFINITY;
  9089. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9090. if (batch.seq_id[i][s] == seq_id) {
  9091. if (hparams.use_alibi) {
  9092. f = -fabs(batch.pos[i] - batch.pos[j]);
  9093. } else {
  9094. f = 0.0f;
  9095. }
  9096. break;
  9097. }
  9098. }
  9099. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9100. }
  9101. for (int i = n_tokens; i < n_stride; ++i) {
  9102. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9103. }
  9104. }
  9105. }
  9106. }
  9107. }
  9108. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9109. const int64_t n_tokens = batch.n_tokens;
  9110. GGML_ASSERT(lctx.inp_mean);
  9111. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9112. float * data = (float *) lctx.inp_mean->data;
  9113. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9114. std::vector<uint64_t> sum(n_tokens, 0);
  9115. for (int i = 0; i < n_tokens; ++i) {
  9116. const llama_seq_id seq_id = batch.seq_id[i][0];
  9117. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9118. sum[seq_id] += 1;
  9119. }
  9120. std::vector<float> div(n_tokens, 0.0f);
  9121. for (int i = 0; i < n_tokens; ++i) {
  9122. const uint64_t s = sum[i];
  9123. if (s > 0) {
  9124. div[i] = 1.0f/float(s);
  9125. }
  9126. }
  9127. for (int i = 0; i < n_tokens; ++i) {
  9128. const llama_seq_id seq_id = batch.seq_id[i][0];
  9129. data[seq_id*n_tokens + i] = div[seq_id];
  9130. }
  9131. }
  9132. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9133. const int64_t n_tokens = batch.n_tokens;
  9134. GGML_ASSERT(lctx.inp_cls);
  9135. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9136. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9137. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9138. for (int i = 0; i < n_tokens; ++i) {
  9139. const llama_seq_id seq_id = batch.seq_id[i][0];
  9140. const llama_pos pos = batch.pos[i];
  9141. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9142. if (pos == 0) {
  9143. data[seq_id] = i;
  9144. }
  9145. }
  9146. }
  9147. if (kv_self.recurrent) {
  9148. const int64_t n_kv = kv_self.n;
  9149. if (lctx.inp_s_mask) {
  9150. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9151. float * data = (float *) lctx.inp_s_mask->data;
  9152. // states which are not affected by the current batch are left untouched
  9153. for (int i = 0; i < n_kv; ++i) {
  9154. llama_seq_id seq_id = i + lctx.kv_self.head;
  9155. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9156. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9157. data[i] = (float) has_self_seq;
  9158. // ensure current sequences will be kept
  9159. if (!has_self_seq && kv_cell.pos >= 0) {
  9160. kv_cell.seq_id.insert(seq_id);
  9161. }
  9162. }
  9163. }
  9164. // For Mamba (and other recurrent architectures),
  9165. // update the correct state(s)/sequence(s) for each token of the batch.
  9166. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9167. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9168. if (lctx.inp_s_seq) {
  9169. const int64_t n_tokens = batch.n_tokens;
  9170. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9171. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9172. for (int j = 0; j < n_tokens; ++j) {
  9173. const int32_t n_seq = batch.n_seq_id[j];
  9174. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9175. for (int i = 0; i < n_kv; ++i) {
  9176. if (i < n_seq) {
  9177. // for this type of model, the head is the minimum seq_id of the batch
  9178. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9179. } else {
  9180. data[j*n_kv + i] = -1;
  9181. }
  9182. }
  9183. }
  9184. }
  9185. }
  9186. }
  9187. // Make sure enough space is available for outputs.
  9188. // Returns max number of outputs for which space was reserved.
  9189. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9190. const auto & cparams = lctx.cparams;
  9191. const auto & hparams = lctx.model.hparams;
  9192. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9193. const auto n_batch = cparams.n_batch;
  9194. const auto n_vocab = hparams.n_vocab;
  9195. const auto n_embd = hparams.n_embd;
  9196. // TODO: use a per-batch flag for logits presence instead
  9197. const bool has_logits = cparams.causal_attn;
  9198. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9199. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9200. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9201. if (lctx.output_ids.empty()) {
  9202. // init, never resized afterwards
  9203. lctx.output_ids.resize(n_batch);
  9204. }
  9205. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9206. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9207. // alloc only when more than the current capacity is required
  9208. // TODO: also consider shrinking the buffer
  9209. if (!lctx.buf_output || prev_size < new_size) {
  9210. if (lctx.buf_output) {
  9211. #ifndef NDEBUG
  9212. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9213. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9214. #endif
  9215. ggml_backend_buffer_free(lctx.buf_output);
  9216. lctx.buf_output = nullptr;
  9217. lctx.logits = nullptr;
  9218. lctx.embd = nullptr;
  9219. }
  9220. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9221. if (lctx.buf_output == nullptr) {
  9222. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9223. return 0;
  9224. }
  9225. }
  9226. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9227. lctx.logits = has_logits ? output_base : nullptr;
  9228. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9229. lctx.output_size = n_outputs_max;
  9230. lctx.logits_size = logits_size;
  9231. lctx.embd_size = embd_size;
  9232. // set all ids as invalid (negative)
  9233. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9234. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9235. lctx.n_outputs = 0;
  9236. return n_outputs_max;
  9237. }
  9238. static void llama_graph_compute(
  9239. llama_context & lctx,
  9240. ggml_cgraph * gf,
  9241. int n_threads) {
  9242. #ifdef GGML_USE_METAL
  9243. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9244. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9245. }
  9246. #endif
  9247. if (lctx.backend_cpu != nullptr) {
  9248. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9249. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9250. }
  9251. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9252. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9253. }
  9254. // decode a batch of tokens by evaluating the transformer
  9255. //
  9256. // - lctx: llama context
  9257. // - batch: batch to evaluate
  9258. //
  9259. // return 0 on success
  9260. // return positive int on warning
  9261. // return negative int on error
  9262. //
  9263. static int llama_decode_internal(
  9264. llama_context & lctx,
  9265. llama_batch batch_all) { // TODO: rename back to batch
  9266. const uint32_t n_tokens_all = batch_all.n_tokens;
  9267. if (n_tokens_all == 0) {
  9268. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9269. return -1;
  9270. }
  9271. const auto & model = lctx.model;
  9272. const auto & hparams = model.hparams;
  9273. const auto & cparams = lctx.cparams;
  9274. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9275. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9276. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9277. if (lctx.t_compute_start_us == 0) {
  9278. lctx.t_compute_start_us = ggml_time_us();
  9279. }
  9280. lctx.n_queued_tokens += n_tokens_all;
  9281. auto & kv_self = lctx.kv_self;
  9282. const int64_t n_embd = hparams.n_embd;
  9283. const int64_t n_vocab = hparams.n_vocab;
  9284. uint32_t n_outputs = 0;
  9285. uint32_t n_outputs_prev = 0;
  9286. const auto n_ubatch = cparams.n_ubatch;
  9287. std::vector<llama_pos> pos;
  9288. std::vector<int32_t> n_seq_id;
  9289. std::vector<llama_seq_id *> seq_id_arr;
  9290. std::vector<std::vector<llama_seq_id>> seq_id;
  9291. // count outputs
  9292. if (batch_all.logits) {
  9293. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9294. n_outputs += batch_all.logits[i] != 0;
  9295. }
  9296. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9297. n_outputs = n_tokens_all;
  9298. } else {
  9299. // keep last output only
  9300. n_outputs = 1;
  9301. }
  9302. // reserve output buffer
  9303. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9304. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9305. return -2;
  9306. };
  9307. // set output mappings
  9308. if (batch_all.logits) {
  9309. int32_t i_logits = 0;
  9310. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9311. if (batch_all.logits[i]) {
  9312. lctx.output_ids[i] = i_logits++;
  9313. }
  9314. }
  9315. } else {
  9316. for (uint32_t i = 0; i < n_outputs; ++i) {
  9317. lctx.output_ids[i] = i;
  9318. }
  9319. }
  9320. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9321. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9322. llama_batch u_batch = {
  9323. /* .n_tokens = */ (int32_t) n_tokens,
  9324. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9325. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9326. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9327. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9328. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9329. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9330. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9331. /* .all_pos_1 = */ batch_all.all_pos_1,
  9332. /* .all_seq_id = */ batch_all.all_seq_id,
  9333. };
  9334. // count the outputs in this u_batch
  9335. {
  9336. int32_t n_outputs_new = 0;
  9337. if (u_batch.logits) {
  9338. for (uint32_t i = 0; i < n_tokens; i++) {
  9339. n_outputs_new += u_batch.logits[i] != 0;
  9340. }
  9341. } else if (n_outputs == n_tokens_all) {
  9342. n_outputs_new = n_tokens;
  9343. } else {
  9344. // keep last output only
  9345. if (cur_token + n_tokens >= n_tokens_all) {
  9346. n_outputs_new = 1;
  9347. }
  9348. }
  9349. // needs to happen before the graph is built
  9350. lctx.n_outputs = n_outputs_new;
  9351. }
  9352. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9353. GGML_ASSERT(n_threads > 0);
  9354. // helpers for smoother batch API transition
  9355. // after deprecating the llama_eval calls, these will be removed
  9356. if (u_batch.pos == nullptr) {
  9357. pos.resize(n_tokens);
  9358. for (uint32_t i = 0; i < n_tokens; i++) {
  9359. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9360. }
  9361. u_batch.pos = pos.data();
  9362. }
  9363. if (u_batch.seq_id == nullptr) {
  9364. n_seq_id.resize(n_tokens);
  9365. seq_id.resize(n_tokens);
  9366. seq_id_arr.resize(n_tokens);
  9367. for (uint32_t i = 0; i < n_tokens; i++) {
  9368. n_seq_id[i] = 1;
  9369. seq_id[i].resize(1);
  9370. seq_id[i][0] = u_batch.all_seq_id;
  9371. seq_id_arr[i] = seq_id[i].data();
  9372. }
  9373. u_batch.n_seq_id = n_seq_id.data();
  9374. u_batch.seq_id = seq_id_arr.data();
  9375. }
  9376. // non-causal masks do not use the KV cache
  9377. if (hparams.causal_attn) {
  9378. llama_kv_cache_update(&lctx);
  9379. // if we have enough unused cells before the current head ->
  9380. // better to start searching from the beginning of the cache, hoping to fill it
  9381. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9382. kv_self.head = 0;
  9383. }
  9384. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9385. return 1;
  9386. }
  9387. if (!kv_self.recurrent) {
  9388. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9389. // after enough generations, the benefit from this heuristic disappears
  9390. // if we start defragmenting the cache, the benefit from this will be more important
  9391. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9392. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9393. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9394. }
  9395. }
  9396. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9397. ggml_backend_sched_reset(lctx.sched);
  9398. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9399. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9400. // the output is always the last tensor in the graph
  9401. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9402. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9403. if (lctx.n_outputs == 0) {
  9404. // no output
  9405. res = nullptr;
  9406. embd = nullptr;
  9407. } else if (!hparams.causal_attn) {
  9408. res = nullptr; // do not extract logits for embedding models such as BERT
  9409. // token or sequence embeddings
  9410. embd = gf->nodes[gf->n_nodes - 1];
  9411. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9412. } else if (cparams.embeddings) {
  9413. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9414. int i_embd = gf->n_nodes - 2;
  9415. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9416. i_embd = gf->n_nodes - i;
  9417. if (i_embd < 0) { break; }
  9418. embd = gf->nodes[i_embd];
  9419. }
  9420. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9421. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9422. if (!cparams.causal_attn) {
  9423. res = nullptr; // do not extract logits when not needed
  9424. // skip computing logits
  9425. // TODO: is this safe?
  9426. gf->n_nodes = i_embd + 1;
  9427. }
  9428. } else {
  9429. embd = nullptr; // do not extract embeddings when not needed
  9430. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9431. }
  9432. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9433. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9434. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9435. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9436. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9437. // with the BLAS calls. need a better solution
  9438. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9439. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9440. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9441. n_threads = std::min(4, n_threads);
  9442. }
  9443. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9444. llama_set_inputs(lctx, u_batch);
  9445. llama_graph_compute(lctx, gf, n_threads);
  9446. // update the kv ring buffer
  9447. {
  9448. kv_self.head += n_tokens;
  9449. // Ensure kv cache head points to a valid index.
  9450. if (kv_self.head >= kv_self.size) {
  9451. kv_self.head = 0;
  9452. }
  9453. }
  9454. #ifdef GGML_PERF
  9455. // print timing information per ggml operation (for debugging purposes)
  9456. // requires GGML_PERF to be defined
  9457. ggml_graph_print(gf);
  9458. #endif
  9459. // plot the computation graph in dot format (for debugging purposes)
  9460. //if (n_past%100 == 0) {
  9461. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9462. //}
  9463. // extract logits
  9464. if (res) {
  9465. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9466. GGML_ASSERT(backend_res != nullptr);
  9467. GGML_ASSERT(lctx.logits != nullptr);
  9468. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9469. const int32_t n_outputs_new = lctx.n_outputs;
  9470. if (n_outputs_new) {
  9471. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9472. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9473. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9474. }
  9475. }
  9476. // extract embeddings
  9477. if (embd) {
  9478. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9479. GGML_ASSERT(backend_embd != nullptr);
  9480. switch (cparams.pooling_type) {
  9481. case LLAMA_POOLING_TYPE_NONE:
  9482. {
  9483. // extract token embeddings
  9484. GGML_ASSERT(lctx.embd != nullptr);
  9485. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9486. const int32_t n_outputs_new = lctx.n_outputs;
  9487. if (n_outputs_new) {
  9488. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9489. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9490. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9491. }
  9492. } break;
  9493. case LLAMA_POOLING_TYPE_CLS:
  9494. case LLAMA_POOLING_TYPE_MEAN:
  9495. {
  9496. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9497. // extract sequence embeddings
  9498. auto & embd_seq_out = lctx.embd_seq;
  9499. embd_seq_out.clear();
  9500. for (uint32_t i = 0; i < n_tokens; i++) {
  9501. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9502. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9503. continue;
  9504. }
  9505. embd_seq_out[seq_id].resize(n_embd);
  9506. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9507. }
  9508. } break;
  9509. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9510. {
  9511. GGML_ASSERT(false && "unknown pooling type");
  9512. } break;
  9513. }
  9514. }
  9515. n_outputs_prev += lctx.n_outputs;
  9516. }
  9517. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9518. lctx.n_outputs = n_outputs;
  9519. // wait for the computation to finish (automatically done when obtaining the model output)
  9520. //llama_synchronize(&lctx);
  9521. // decide if we need to defrag the kv cache
  9522. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9523. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9524. // queue defragmentation for next llama_kv_cache_update
  9525. if (fragmentation > cparams.defrag_thold) {
  9526. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9527. llama_kv_cache_defrag(kv_self);
  9528. }
  9529. }
  9530. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9531. // overlap with device computation.
  9532. ggml_backend_sched_reset(lctx.sched);
  9533. return 0;
  9534. }
  9535. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9536. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9537. auto & kv_self = lctx.kv_self;
  9538. const auto & hparams = lctx.model.hparams;
  9539. const uint32_t n_layer = hparams.n_layer;
  9540. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9541. const uint32_t n_used = kv_self.used;
  9542. assert(n_used <= n_kv);
  9543. //const int64_t t_start = ggml_time_us();
  9544. // number of cells moved
  9545. uint32_t n_moves = 0;
  9546. // each move requires 6*n_layer tensors (see build_defrag)
  9547. // - source view, destination view, copy operation
  9548. // - x2 for keys and values
  9549. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9550. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9551. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9552. // determine which KV cells to move where
  9553. //
  9554. // cell i moves to ids[i]
  9555. //
  9556. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9557. //
  9558. std::vector<uint32_t> ids(n_kv, n_kv);
  9559. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9560. const auto & cell0 = kv_self.cells[i0];
  9561. if (!cell0.is_empty()) {
  9562. ids[i0] = i0;
  9563. continue;
  9564. }
  9565. // found a hole - fill it with data from the end of the cache
  9566. uint32_t nh = 1;
  9567. // determine the size of the hole
  9568. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9569. nh++;
  9570. }
  9571. uint32_t nf = 0;
  9572. uint32_t is = n_kv - 1;
  9573. // starting from the end, find nh non-empty cells
  9574. for (; is > i0; --is) {
  9575. const auto & cell1 = kv_self.cells[is];
  9576. if (cell1.is_empty() || ids[is] != n_kv) {
  9577. continue;
  9578. }
  9579. // non-empty cell which is not yet moved
  9580. nf++;
  9581. if (nf == nh) {
  9582. break;
  9583. }
  9584. }
  9585. // this can only happen if `n_used` is not accurate, which would be a bug
  9586. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9587. nf = 0;
  9588. uint32_t i1 = is;
  9589. // are we moving a continuous block of memory?
  9590. bool cont = false;
  9591. // should we stop searching for the next move?
  9592. bool stop = false;
  9593. // go back and move the nf cells to the hole
  9594. for (; i1 < n_kv; ++i1) {
  9595. auto & cell1 = kv_self.cells[i1];
  9596. if (cell1.is_empty() || ids[i1] != n_kv) {
  9597. if (n_moves == max_moves) {
  9598. stop = true;
  9599. break;
  9600. }
  9601. cont = false;
  9602. continue;
  9603. }
  9604. // this cell goes to (i0 + nf)
  9605. ids[i1] = i0 + nf;
  9606. // move the cell meta data
  9607. kv_self.cells[i0 + nf] = cell1;
  9608. // clear the old cell and move the head there
  9609. cell1 = llama_kv_cell();
  9610. kv_self.head = n_used;
  9611. if (!cont) {
  9612. n_moves++;
  9613. cont = true;
  9614. }
  9615. nf++;
  9616. if (nf == nh) {
  9617. break;
  9618. }
  9619. }
  9620. if (stop || n_moves == max_moves) {
  9621. break;
  9622. }
  9623. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9624. i0 += nh - 1;
  9625. }
  9626. if (n_moves == 0) {
  9627. return;
  9628. }
  9629. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9630. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9631. #if 0
  9632. // CPU defrag
  9633. //
  9634. // TODO: optimizations are possible:
  9635. // - multiple threads
  9636. // - avoid copying to the host memory when already there
  9637. //
  9638. // likely not worth the effort, as we have ggml_graph based defrag
  9639. //
  9640. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9641. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9642. const uint32_t kv_size = kv_self.size;
  9643. std::vector<uint8_t> buf_k;
  9644. std::vector<uint8_t> buf_v;
  9645. for (uint32_t il = 0; il < n_layer; ++il) {
  9646. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9647. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9648. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9649. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9650. buf_k.resize(k_size);
  9651. buf_v.resize(v_size);
  9652. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9653. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9654. // batch move [i, i+nm) to [id, id+nm)
  9655. // note: cells can move only to a lower index
  9656. for (uint32_t i = 0; i < n_kv; ++i) {
  9657. const uint32_t id = ids[i];
  9658. if (i == id || id == n_kv) {
  9659. continue;
  9660. }
  9661. uint32_t nm = 1;
  9662. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9663. nm++;
  9664. }
  9665. // move keys
  9666. {
  9667. const int64_t os = i*k_size_row;
  9668. const int64_t od = id*k_size_row;
  9669. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9670. }
  9671. // move values (note: they are transposed)
  9672. {
  9673. const int64_t os = i;
  9674. const int64_t od = id;
  9675. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9676. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9677. }
  9678. }
  9679. i += nm - 1;
  9680. }
  9681. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9682. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9683. }
  9684. #else
  9685. // ggml_graph defrag
  9686. ggml_backend_sched_reset(lctx.sched);
  9687. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9688. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9689. #endif
  9690. //const int64_t t_end = ggml_time_us();
  9691. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9692. }
  9693. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9694. bool need_reserve = false;
  9695. // apply K-shift if needed
  9696. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9697. {
  9698. ggml_backend_sched_reset(lctx.sched);
  9699. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9700. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9701. llama_set_k_shift(lctx);
  9702. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9703. need_reserve = true;
  9704. }
  9705. {
  9706. auto & kv_self = lctx.kv_self;
  9707. kv_self.has_shift = false;
  9708. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9709. kv_self.cells[i].delta = 0;
  9710. }
  9711. }
  9712. }
  9713. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9714. {
  9715. ggml_backend_sched_reset(lctx.sched);
  9716. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9717. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9718. llama_set_s_copy(lctx);
  9719. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9720. need_reserve = true;
  9721. }
  9722. {
  9723. auto & kv_self = lctx.kv_self;
  9724. kv_self.do_copy = false;
  9725. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9726. kv_self.cells[i].src = i;
  9727. }
  9728. }
  9729. }
  9730. // defragment the KV cache if needed
  9731. if (lctx.kv_self.do_defrag) {
  9732. llama_kv_cache_defrag_internal(lctx);
  9733. need_reserve = true;
  9734. lctx.kv_self.do_defrag = false;
  9735. }
  9736. // reserve a worst case graph again
  9737. if (need_reserve) {
  9738. // TODO: extract to a function
  9739. // build worst-case graph
  9740. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9741. int n_past = lctx.cparams.n_ctx - n_tokens;
  9742. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9743. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9744. // initialize scheduler with the worst-case graph
  9745. ggml_backend_sched_reset(lctx.sched);
  9746. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9747. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9748. }
  9749. }
  9750. }
  9751. //
  9752. // tokenizer
  9753. //
  9754. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9755. return vocab.type;
  9756. }
  9757. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9758. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9759. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9760. }
  9761. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9762. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9763. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9764. }
  9765. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9766. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9767. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9768. }
  9769. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9770. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9771. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9772. }
  9773. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9774. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9775. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9776. }
  9777. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9778. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9779. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9780. const auto & token_data = vocab.id_to_token.at(id);
  9781. switch (llama_vocab_get_type(vocab)) {
  9782. case LLAMA_VOCAB_TYPE_SPM: {
  9783. auto buf = token_data.text.substr(3, 2);
  9784. return strtol(buf.c_str(), NULL, 16);
  9785. }
  9786. case LLAMA_VOCAB_TYPE_BPE: {
  9787. GGML_ASSERT(false);
  9788. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9789. }
  9790. case LLAMA_VOCAB_TYPE_WPM: {
  9791. GGML_ASSERT(false);
  9792. }
  9793. default:
  9794. GGML_ASSERT(false);
  9795. }
  9796. }
  9797. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9798. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9799. static const char * hex = "0123456789ABCDEF";
  9800. switch (llama_vocab_get_type(vocab)) {
  9801. case LLAMA_VOCAB_TYPE_SPM: {
  9802. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9803. auto token = vocab.token_to_id.find(buf);
  9804. if (token != vocab.token_to_id.end()) {
  9805. return (*token).second;
  9806. }
  9807. // Try to fall back to just the byte as a string
  9808. const char buf2[2] = { (char)ch, 0 };
  9809. return vocab.token_to_id.at(buf2);
  9810. }
  9811. case LLAMA_VOCAB_TYPE_WPM:
  9812. case LLAMA_VOCAB_TYPE_BPE: {
  9813. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9814. }
  9815. default:
  9816. GGML_ASSERT(false);
  9817. }
  9818. }
  9819. static void llama_escape_whitespace(std::string & text) {
  9820. replace_all(text, " ", "\xe2\x96\x81");
  9821. }
  9822. static void llama_unescape_whitespace(std::string & word) {
  9823. replace_all(word, "\xe2\x96\x81", " ");
  9824. }
  9825. struct llm_symbol {
  9826. using index = int;
  9827. index prev;
  9828. index next;
  9829. const char * text;
  9830. size_t n;
  9831. };
  9832. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9833. // SPM tokenizer
  9834. // original implementation:
  9835. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9836. struct llm_bigram_spm {
  9837. struct comparator {
  9838. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9839. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9840. }
  9841. };
  9842. using queue_storage = std::vector<llm_bigram_spm>;
  9843. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9844. llm_symbol::index left;
  9845. llm_symbol::index right;
  9846. float score;
  9847. size_t size;
  9848. };
  9849. struct llm_tokenizer_spm {
  9850. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9851. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9852. // split string into utf8 chars
  9853. int index = 0;
  9854. size_t offs = 0;
  9855. while (offs < text.size()) {
  9856. llm_symbol sym;
  9857. size_t len = utf8_len(text[offs]);
  9858. sym.text = text.c_str() + offs;
  9859. sym.n = std::min(len, text.size() - offs);
  9860. offs += sym.n;
  9861. sym.prev = index - 1;
  9862. sym.next = offs == text.size() ? -1 : index + 1;
  9863. index++;
  9864. symbols.emplace_back(sym);
  9865. }
  9866. // seed the work queue with all possible 2-character tokens.
  9867. for (size_t i = 1; i < symbols.size(); ++i) {
  9868. try_add_bigram(i - 1, i);
  9869. }
  9870. // keep substituting the highest frequency pairs for as long as we can.
  9871. while (!work_queue.empty()) {
  9872. auto bigram = work_queue.top();
  9873. work_queue.pop();
  9874. auto & left_sym = symbols[bigram.left];
  9875. auto & right_sym = symbols[bigram.right];
  9876. // if one of the symbols already got merged, skip it.
  9877. if (left_sym.n == 0 || right_sym.n == 0 ||
  9878. left_sym.n + right_sym.n != bigram.size) {
  9879. continue;
  9880. }
  9881. // merge the right sym into the left one
  9882. left_sym.n += right_sym.n;
  9883. right_sym.n = 0;
  9884. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9885. // remove the right sym from the chain
  9886. left_sym.next = right_sym.next;
  9887. if (right_sym.next >= 0) {
  9888. symbols[right_sym.next].prev = bigram.left;
  9889. }
  9890. // find more substitutions
  9891. try_add_bigram(left_sym.prev, bigram.left);
  9892. try_add_bigram(bigram.left, left_sym.next);
  9893. }
  9894. for (int i = 0; i != -1; i = symbols[i].next) {
  9895. auto & symbol = symbols[i];
  9896. resegment(symbol, output);
  9897. }
  9898. }
  9899. private:
  9900. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9901. auto text = std::string(symbol.text, symbol.n);
  9902. auto token = vocab.token_to_id.find(text);
  9903. // Do we need to support is_unused?
  9904. if (token != vocab.token_to_id.end()) {
  9905. output.push_back((*token).second);
  9906. return;
  9907. }
  9908. const auto p = rev_merge.find(text);
  9909. if (p == rev_merge.end()) {
  9910. // output any symbols that did not form tokens as bytes.
  9911. output.reserve(output.size() + symbol.n);
  9912. for (int j = 0; j < (int)symbol.n; ++j) {
  9913. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9914. output.push_back(token_id);
  9915. }
  9916. return;
  9917. }
  9918. resegment(symbols[p->second.first], output);
  9919. resegment(symbols[p->second.second], output);
  9920. }
  9921. void try_add_bigram(int left, int right) {
  9922. if (left == -1 || right == -1) {
  9923. return;
  9924. }
  9925. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9926. auto token = vocab.token_to_id.find(text);
  9927. if (token == vocab.token_to_id.end()) {
  9928. return;
  9929. }
  9930. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9931. return;
  9932. }
  9933. const auto & tok_data = vocab.id_to_token[(*token).second];
  9934. llm_bigram_spm bigram;
  9935. bigram.left = left;
  9936. bigram.right = right;
  9937. bigram.score = tok_data.score;
  9938. bigram.size = text.size();
  9939. work_queue.push(bigram);
  9940. // Do we need to support is_unused?
  9941. rev_merge[text] = std::make_pair(left, right);
  9942. }
  9943. const llama_vocab & vocab;
  9944. std::vector<llm_symbol> symbols;
  9945. llm_bigram_spm::queue work_queue;
  9946. std::map<std::string, std::pair<int, int>> rev_merge;
  9947. };
  9948. // BPE tokenizer
  9949. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9950. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9951. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9952. struct llm_bigram_bpe {
  9953. struct comparator {
  9954. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9955. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9956. }
  9957. };
  9958. using queue_storage = std::vector<llm_bigram_bpe>;
  9959. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9960. llm_symbol::index left;
  9961. llm_symbol::index right;
  9962. std::string text;
  9963. int rank;
  9964. size_t size;
  9965. };
  9966. struct llm_tokenizer_bpe {
  9967. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9968. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9969. int final_prev_index = -1;
  9970. bool ignore_merges = false;
  9971. std::vector<std::string> word_collection;
  9972. switch (vocab.type) {
  9973. case LLAMA_VOCAB_TYPE_BPE:
  9974. switch (vocab.type_pre) {
  9975. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  9976. ignore_merges = true;
  9977. word_collection = unicode_regex_split(text, {
  9978. // original regex from tokenizer.json
  9979. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  9980. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  9981. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  9982. });
  9983. break;
  9984. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  9985. word_collection = unicode_regex_split(text, {
  9986. // same as llama3
  9987. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  9988. });
  9989. break;
  9990. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  9991. word_collection = unicode_regex_split(text, {
  9992. "[\r\n]",
  9993. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  9994. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  9995. "\\s+$",
  9996. "[一-龥ࠀ-一가-퟿]+",
  9997. "\\p{N}+",
  9998. });
  9999. break;
  10000. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10001. word_collection = unicode_regex_split(text, {
  10002. "[\r\n]",
  10003. "\\s?\\p{L}+",
  10004. "\\s?\\p{P}+",
  10005. "[一-龥ࠀ-一가-퟿]+",
  10006. "\\p{N}",
  10007. });
  10008. break;
  10009. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10010. word_collection = unicode_regex_split(text, {
  10011. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10012. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10013. "[0-9][0-9][0-9]",
  10014. });
  10015. break;
  10016. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10017. // TODO: MPT pre-tokenization regexes are unknown
  10018. // the following are close, but not exact. run the following:
  10019. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10020. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10021. word_collection = unicode_regex_split(text, {
  10022. "\\s?\\p{L}+",
  10023. "\\s?\\p{P}+",
  10024. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10025. });
  10026. break;
  10027. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10028. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10029. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10030. word_collection = unicode_regex_split(text, {
  10031. "\\p{N}",
  10032. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10033. });
  10034. break;
  10035. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10036. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10037. word_collection = unicode_regex_split(text, {
  10038. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10039. });
  10040. break;
  10041. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10042. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10043. word_collection = unicode_regex_split(text, {
  10044. // original regex from tokenizer.json
  10045. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10046. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10047. });
  10048. break;
  10049. default:
  10050. // default regex for BPE tokenization pre-processing
  10051. word_collection = unicode_regex_split(text, {
  10052. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10053. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10054. "\\p{N}+",
  10055. "[0-9][0-9][0-9]",
  10056. });
  10057. break;
  10058. }
  10059. break;
  10060. default:
  10061. GGML_ASSERT(false);
  10062. break;
  10063. }
  10064. symbols_final.clear();
  10065. for (auto & word : word_collection) {
  10066. work_queue = llm_bigram_bpe::queue();
  10067. symbols.clear();
  10068. int index = 0;
  10069. size_t offset = 0;
  10070. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10071. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10072. offset = word.size();
  10073. }
  10074. while (offset < word.size()) {
  10075. llm_symbol sym;
  10076. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10077. sym.text = word.c_str() + offset;
  10078. sym.n = char_len;
  10079. offset += sym.n;
  10080. sym.prev = index - 1;
  10081. sym.next = offset == word.size() ? -1 : index + 1;
  10082. index++;
  10083. symbols.emplace_back(sym);
  10084. }
  10085. for (size_t i = 1; i < symbols.size(); ++i) {
  10086. add_new_bigram(i - 1, i);
  10087. }
  10088. // build token(s)
  10089. while (!work_queue.empty()) {
  10090. auto bigram = work_queue.top();
  10091. work_queue.pop();
  10092. auto & left_symbol = symbols[bigram.left];
  10093. auto & right_symbol = symbols[bigram.right];
  10094. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10095. continue;
  10096. }
  10097. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10098. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10099. if (left_token + right_token != bigram.text) {
  10100. continue; // Skip this bigram if it's outdated
  10101. }
  10102. // merge the right sym into the left one
  10103. left_symbol.n += right_symbol.n;
  10104. right_symbol.n = 0;
  10105. // remove the right sym from the chain
  10106. left_symbol.next = right_symbol.next;
  10107. if (right_symbol.next >= 0) {
  10108. symbols[right_symbol.next].prev = bigram.left;
  10109. }
  10110. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10111. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10112. }
  10113. // add the finished tokens to the final list keeping correct order for next and prev
  10114. for (auto & sym : symbols) {
  10115. if (sym.n > 0) {
  10116. sym.prev = final_prev_index;
  10117. sym.next = -1;
  10118. if (final_prev_index != -1) {
  10119. symbols_final[final_prev_index].next = symbols_final.size();
  10120. }
  10121. symbols_final.emplace_back(sym);
  10122. final_prev_index = symbols_final.size() - 1;
  10123. }
  10124. }
  10125. }
  10126. symbols = symbols_final;
  10127. if (!symbols.empty()) {
  10128. for (int i = 0; i != -1; i = symbols[i].next) {
  10129. auto & symbol = symbols[i];
  10130. if (symbol.n == 0) {
  10131. continue;
  10132. }
  10133. const std::string str = std::string(symbol.text, symbol.n);
  10134. const auto token = vocab.token_to_id.find(str);
  10135. if (token == vocab.token_to_id.end()) {
  10136. for (auto j = str.begin(); j != str.end(); ++j) {
  10137. std::string byte_str(1, *j);
  10138. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10139. if (token_multibyte == vocab.token_to_id.end()) {
  10140. throw std::runtime_error("ERROR: byte not found in vocab");
  10141. }
  10142. output.push_back((*token_multibyte).second);
  10143. }
  10144. } else {
  10145. output.push_back((*token).second);
  10146. }
  10147. }
  10148. }
  10149. }
  10150. private:
  10151. void add_new_bigram(int left, int right) {
  10152. if (left == -1 || right == -1) {
  10153. return;
  10154. }
  10155. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10156. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10157. int rank_found = -1;
  10158. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10159. if (rank_found < 0) {
  10160. return;
  10161. }
  10162. llm_bigram_bpe bigram;
  10163. bigram.left = left;
  10164. bigram.right = right;
  10165. bigram.text = left_token + right_token;
  10166. bigram.size = left_token.size() + right_token.size();
  10167. bigram.rank = rank_found;
  10168. work_queue.push(bigram);
  10169. }
  10170. const llama_vocab & vocab;
  10171. std::vector<llm_symbol> symbols;
  10172. std::vector<llm_symbol> symbols_final;
  10173. llm_bigram_bpe::queue work_queue;
  10174. };
  10175. struct llm_tokenizer_wpm {
  10176. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10177. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10178. auto * token_map = &vocab.token_to_id;
  10179. // normalize and split by whitespace
  10180. std::vector<std::string> words = preprocess(text);
  10181. // bos token prepended already
  10182. // find the longest tokens that form the words
  10183. for (const std::string &word : words) {
  10184. // skip empty words
  10185. if (word.size() == 0) {
  10186. continue;
  10187. }
  10188. // prepend phantom space
  10189. std::string word1 = "\xe2\x96\x81" + word;
  10190. int n = word1.size();
  10191. // we're at the start of a new word
  10192. int i = 0;
  10193. bool match_any = false;
  10194. // move through character position in word
  10195. while (i < n) {
  10196. // loop through possible match length
  10197. bool match = false;
  10198. for (int j = n; j > i; j--) {
  10199. auto it = token_map->find(word1.substr(i, j - i));
  10200. if (it != token_map->end()) {
  10201. output.push_back(it->second);
  10202. match = true;
  10203. match_any = true;
  10204. i = j;
  10205. break;
  10206. }
  10207. }
  10208. // must be an unknown character
  10209. if (!match) {
  10210. i++;
  10211. }
  10212. }
  10213. // we didn't find any matches for this word
  10214. if (!match_any) {
  10215. output.push_back(vocab.special_unk_id);
  10216. }
  10217. }
  10218. }
  10219. std::vector<std::string> preprocess(const std::string & text) {
  10220. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10221. // strip accents, strip control, uniformize whitespace,
  10222. // to lowercase, pad chinese characters, pad punctuation
  10223. std::string new_str = "";
  10224. for (uint32_t code : cpts_nfd) {
  10225. const codepoint_flags flags = unicode_cpt_flags(code);
  10226. if (flags.is_accent_mark || flags.is_control) {
  10227. continue;
  10228. }
  10229. code = unicode_tolower(code);
  10230. if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
  10231. code = ' ';
  10232. }
  10233. std::string s = unicode_cpt_to_utf8(code);
  10234. if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
  10235. new_str += " ";
  10236. new_str += s;
  10237. new_str += " ";
  10238. } else {
  10239. new_str += s;
  10240. }
  10241. }
  10242. // split by whitespace
  10243. uint64_t l = 0;
  10244. uint64_t r = 0;
  10245. std::vector<std::string> words;
  10246. while (r < new_str.size()) {
  10247. // if is whitespace
  10248. if (isspace(new_str[r], std::locale::classic())) {
  10249. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10250. l = r + 1;
  10251. r = l;
  10252. } else {
  10253. r += 1;
  10254. }
  10255. }
  10256. if (r > l) {
  10257. words.push_back(new_str.substr(l, (r - l)));
  10258. }
  10259. return words;
  10260. }
  10261. bool is_ascii_punct(uint32_t code) {
  10262. if (code > 0xFF) {
  10263. return false;
  10264. }
  10265. auto c = char(static_cast<unsigned char>(code));
  10266. return ispunct(c, std::locale::classic());
  10267. }
  10268. bool is_chinese_char(uint32_t cpt) {
  10269. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10270. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10271. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10272. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10273. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10274. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10275. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10276. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10277. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10278. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10279. return true; // NOLINT
  10280. }
  10281. return false;
  10282. }
  10283. const llama_vocab & vocab;
  10284. };
  10285. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10286. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10287. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10288. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10289. struct fragment_buffer_variant {
  10290. fragment_buffer_variant(llama_vocab::id _token)
  10291. :
  10292. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10293. token(_token),
  10294. raw_text(_dummy),
  10295. offset(0),
  10296. length(0) {}
  10297. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10298. :
  10299. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10300. token((llama_vocab::id) - 1),
  10301. raw_text(_raw_text),
  10302. offset(_offset),
  10303. length(_length){
  10304. GGML_ASSERT(_offset >= 0);
  10305. GGML_ASSERT(_length >= 1);
  10306. GGML_ASSERT(offset + length <= raw_text.length());
  10307. }
  10308. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10309. const llama_vocab::id token;
  10310. const std::string _dummy;
  10311. const std::string & raw_text;
  10312. const uint64_t offset;
  10313. const uint64_t length;
  10314. };
  10315. // #define PRETOKENIZERDEBUG
  10316. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10317. // for each special token
  10318. for (const auto & st: vocab.special_tokens_cache) {
  10319. const auto & special_token = st.first;
  10320. const auto & special_id = st.second;
  10321. // for each text fragment
  10322. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10323. while (it != buffer.end()) {
  10324. auto & fragment = (*it);
  10325. // if a fragment is text ( not yet processed )
  10326. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10327. auto * raw_text = &(fragment.raw_text);
  10328. auto raw_text_base_offset = fragment.offset;
  10329. auto raw_text_base_length = fragment.length;
  10330. // loop over the text
  10331. while (true) {
  10332. // find the first occurrence of a given special token in this fragment
  10333. // passing offset argument only limit the "search area" but match coordinates
  10334. // are still relative to the source full raw_text
  10335. auto match = raw_text->find(special_token, raw_text_base_offset);
  10336. // no occurrences found, stop processing this fragment for a given special token
  10337. if (match == std::string::npos) break;
  10338. // check if match is within bounds of offset <-> length
  10339. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10340. #ifdef PRETOKENIZERDEBUG
  10341. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10342. #endif
  10343. auto source = std::distance(buffer.begin(), it);
  10344. // if match is further than base offset
  10345. // then we have some text to the left of it
  10346. if (match > raw_text_base_offset) {
  10347. // left
  10348. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10349. const int64_t left_reminder_length = match - raw_text_base_offset;
  10350. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10351. #ifdef PRETOKENIZERDEBUG
  10352. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10353. #endif
  10354. it++;
  10355. }
  10356. // special token
  10357. buffer.emplace_after(it, special_id);
  10358. it++;
  10359. // right
  10360. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10361. const int64_t right_reminder_offset = match + special_token.length();
  10362. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10363. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10364. #ifdef PRETOKENIZERDEBUG
  10365. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10366. #endif
  10367. it++;
  10368. if (source == 0) {
  10369. buffer.erase_after(buffer.before_begin());
  10370. } else {
  10371. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10372. }
  10373. // repeat for the right side
  10374. raw_text_base_offset = right_reminder_offset;
  10375. raw_text_base_length = right_reminder_length;
  10376. #ifdef PRETOKENIZERDEBUG
  10377. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10378. #endif
  10379. } else {
  10380. if (source == 0) {
  10381. buffer.erase_after(buffer.before_begin());
  10382. } else {
  10383. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10384. }
  10385. break;
  10386. }
  10387. }
  10388. }
  10389. it++;
  10390. }
  10391. }
  10392. }
  10393. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10394. std::vector<llama_vocab::id> output;
  10395. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10396. if (!raw_text.empty()) {
  10397. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10398. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10399. }
  10400. switch (vocab.type) {
  10401. case LLAMA_VOCAB_TYPE_SPM:
  10402. {
  10403. // OG tokenizer behavior:
  10404. //
  10405. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10406. // tokenizer.encode('', add_special_tokens=False) returns []
  10407. static const bool rtrim = true; //TODO: as param
  10408. bool is_prev_special = false;
  10409. bool special_token_rtrim = false;
  10410. if (add_special && vocab.special_add_bos != 0) {
  10411. GGML_ASSERT(vocab.special_bos_id != -1);
  10412. output.push_back(vocab.special_bos_id);
  10413. is_prev_special = true;
  10414. }
  10415. for (const auto & fragment : fragment_buffer) {
  10416. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10417. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10418. // TODO: It's likely possible to get rid of this string copy entirely
  10419. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10420. // and passing 'add space prefix' as bool argument
  10421. //
  10422. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10423. if (special_token_rtrim) {
  10424. size_t num_whitespaces = 0;
  10425. while (isspace(raw_text[num_whitespaces])) {
  10426. num_whitespaces++;
  10427. }
  10428. if (num_whitespaces == raw_text.size()) {
  10429. continue; // skip if all whitespaces
  10430. }
  10431. raw_text = raw_text.substr(num_whitespaces);
  10432. }
  10433. if (vocab.add_space_prefix) {
  10434. if (!output.size() || is_prev_special) { // prefix with space if first token
  10435. raw_text = " " + raw_text;
  10436. }
  10437. }
  10438. #ifdef PRETOKENIZERDEBUG
  10439. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10440. #endif
  10441. llm_tokenizer_spm tokenizer(vocab);
  10442. llama_escape_whitespace(raw_text);
  10443. tokenizer.tokenize(raw_text, output);
  10444. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10445. output.push_back(fragment.token);
  10446. is_prev_special = true;
  10447. // phi-3 special tokens without rtrim, works fine for llama-spm too
  10448. special_token_rtrim = rtrim
  10449. && fragment.token != vocab.special_bos_id
  10450. && fragment.token != vocab.special_unk_id
  10451. && fragment.token != vocab.special_eos_id;
  10452. }
  10453. }
  10454. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10455. LLAMA_LOG_WARN(
  10456. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10457. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10458. "Are you sure this is what you want?\n", __FUNCTION__);
  10459. }
  10460. if (add_special && vocab.special_add_eos == 1) {
  10461. GGML_ASSERT(vocab.special_eos_id != -1);
  10462. output.push_back(vocab.special_eos_id);
  10463. }
  10464. } break;
  10465. case LLAMA_VOCAB_TYPE_BPE:
  10466. {
  10467. if (add_special && vocab.special_add_bos != 0) {
  10468. GGML_ASSERT(vocab.special_bos_id != -1);
  10469. output.push_back(vocab.special_bos_id);
  10470. }
  10471. for (const auto & fragment : fragment_buffer) {
  10472. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10473. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10474. #ifdef PRETOKENIZERDEBUG
  10475. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10476. #endif
  10477. llm_tokenizer_bpe tokenizer(vocab);
  10478. tokenizer.tokenize(raw_text, output);
  10479. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10480. output.push_back(fragment.token);
  10481. }
  10482. }
  10483. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10484. LLAMA_LOG_WARN(
  10485. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10486. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10487. "Are you sure this is what you want?\n", __FUNCTION__);
  10488. }
  10489. if (add_special && vocab.special_add_eos == 1) {
  10490. GGML_ASSERT(vocab.special_add_eos != -1);
  10491. output.push_back(vocab.special_eos_id);
  10492. }
  10493. } break;
  10494. case LLAMA_VOCAB_TYPE_WPM:
  10495. {
  10496. if (add_special) {
  10497. GGML_ASSERT(vocab.special_cls_id != -1);
  10498. output.push_back(vocab.special_cls_id);
  10499. }
  10500. for (const auto & fragment : fragment_buffer) {
  10501. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10502. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10503. #ifdef PRETOKENIZERDEBUG
  10504. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10505. #endif
  10506. llm_tokenizer_wpm tokenizer(vocab);
  10507. tokenizer.tokenize(raw_text, output);
  10508. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10509. output.push_back(fragment.token);
  10510. }
  10511. }
  10512. if (add_special) {
  10513. GGML_ASSERT(vocab.special_sep_id != -1);
  10514. output.push_back(vocab.special_sep_id);
  10515. }
  10516. } break;
  10517. case LLAMA_VOCAB_TYPE_NONE:
  10518. GGML_ASSERT(false);
  10519. }
  10520. return output;
  10521. }
  10522. //
  10523. // grammar - internal
  10524. //
  10525. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10526. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10527. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10528. const std::string & src,
  10529. llama_partial_utf8 partial_start) {
  10530. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10531. const char * pos = src.c_str();
  10532. std::vector<uint32_t> code_points;
  10533. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10534. code_points.reserve(src.size() + 1);
  10535. uint32_t value = partial_start.value;
  10536. int n_remain = partial_start.n_remain;
  10537. // continue previous decode, if applicable
  10538. while (*pos != 0 && n_remain > 0) {
  10539. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10540. if ((next_byte >> 6) != 2) {
  10541. // invalid sequence, abort
  10542. code_points.push_back(0);
  10543. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10544. }
  10545. value = (value << 6) + (next_byte & 0x3F);
  10546. ++pos;
  10547. --n_remain;
  10548. }
  10549. if (partial_start.n_remain > 0 && n_remain == 0) {
  10550. code_points.push_back(value);
  10551. }
  10552. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10553. while (*pos != 0) {
  10554. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10555. uint8_t highbits = first_byte >> 4;
  10556. n_remain = lookup[highbits] - 1;
  10557. if (n_remain < 0) {
  10558. // invalid sequence, abort
  10559. code_points.clear();
  10560. code_points.push_back(0);
  10561. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10562. }
  10563. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10564. value = first_byte & mask;
  10565. ++pos;
  10566. while (*pos != 0 && n_remain > 0) {
  10567. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10568. ++pos;
  10569. --n_remain;
  10570. }
  10571. if (n_remain == 0) {
  10572. code_points.push_back(value);
  10573. }
  10574. }
  10575. code_points.push_back(0);
  10576. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10577. }
  10578. // returns true iff pos points to the end of one of the definitions of a rule
  10579. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10580. switch (pos->type) {
  10581. case LLAMA_GRETYPE_END: return true; // NOLINT
  10582. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10583. default: return false;
  10584. }
  10585. }
  10586. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10587. // asserts that pos is pointing to a char range element
  10588. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10589. const llama_grammar_element * pos,
  10590. const uint32_t chr) {
  10591. bool found = false;
  10592. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10593. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10594. do {
  10595. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10596. // inclusive range, e.g. [a-z]
  10597. found = found || (pos->value <= chr && chr <= pos[1].value);
  10598. pos += 2;
  10599. } else {
  10600. // exact char match, e.g. [a] or "a"
  10601. found = found || pos->value == chr;
  10602. pos += 1;
  10603. }
  10604. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10605. return std::make_pair(found == is_positive_char, pos);
  10606. }
  10607. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10608. // range at pos (regular or inverse range)
  10609. // asserts that pos is pointing to a char range element
  10610. static bool llama_grammar_match_partial_char(
  10611. const llama_grammar_element * pos,
  10612. const llama_partial_utf8 partial_utf8) {
  10613. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10614. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10615. uint32_t partial_value = partial_utf8.value;
  10616. int n_remain = partial_utf8.n_remain;
  10617. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10618. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10619. return false;
  10620. }
  10621. // range of possible code points this partial UTF-8 sequence could complete to
  10622. uint32_t low = partial_value << (n_remain * 6);
  10623. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10624. if (low == 0) {
  10625. if (n_remain == 2) {
  10626. low = 1 << 11;
  10627. } else if (n_remain == 3) {
  10628. low = 1 << 16;
  10629. }
  10630. }
  10631. do {
  10632. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10633. // inclusive range, e.g. [a-z]
  10634. if (pos->value <= high && low <= pos[1].value) {
  10635. return is_positive_char;
  10636. }
  10637. pos += 2;
  10638. } else {
  10639. // exact char match, e.g. [a] or "a"
  10640. if (low <= pos->value && pos->value <= high) {
  10641. return is_positive_char;
  10642. }
  10643. pos += 1;
  10644. }
  10645. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10646. return !is_positive_char;
  10647. }
  10648. // transforms a grammar pushdown stack into N possible stacks, all ending
  10649. // at a character range (terminal element)
  10650. static void llama_grammar_advance_stack(
  10651. const std::vector<std::vector<llama_grammar_element>> & rules,
  10652. const std::vector<const llama_grammar_element *> & stack,
  10653. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10654. if (stack.empty()) {
  10655. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10656. new_stacks.emplace_back(stack);
  10657. }
  10658. return;
  10659. }
  10660. const llama_grammar_element * pos = stack.back();
  10661. switch (pos->type) {
  10662. case LLAMA_GRETYPE_RULE_REF: {
  10663. const size_t rule_id = static_cast<size_t>(pos->value);
  10664. const llama_grammar_element * subpos = rules[rule_id].data();
  10665. do {
  10666. // init new stack without the top (pos)
  10667. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10668. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10669. // if this rule ref is followed by another element, add that to stack
  10670. new_stack.push_back(pos + 1);
  10671. }
  10672. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10673. // if alternate is nonempty, add to stack
  10674. new_stack.push_back(subpos);
  10675. }
  10676. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10677. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10678. // scan to end of alternate def
  10679. subpos++;
  10680. }
  10681. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10682. // there's another alternate def of this rule to process
  10683. subpos++;
  10684. } else {
  10685. break;
  10686. }
  10687. } while (true);
  10688. break;
  10689. }
  10690. case LLAMA_GRETYPE_CHAR:
  10691. case LLAMA_GRETYPE_CHAR_NOT:
  10692. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10693. // only add the stack if it's not a duplicate of one we already have
  10694. new_stacks.emplace_back(stack);
  10695. }
  10696. break;
  10697. default:
  10698. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10699. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10700. // those
  10701. GGML_ASSERT(false);
  10702. }
  10703. }
  10704. // takes a set of possible pushdown stacks on a grammar, which are required to
  10705. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10706. // produces the N possible stacks if the given char is accepted at those
  10707. // positions
  10708. void llama_grammar_accept(
  10709. const std::vector<std::vector<llama_grammar_element>> & rules,
  10710. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10711. const uint32_t chr,
  10712. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10713. new_stacks.clear();
  10714. for (const auto & stack : stacks) {
  10715. if (stack.empty()) {
  10716. continue;
  10717. }
  10718. auto match = llama_grammar_match_char(stack.back(), chr);
  10719. if (match.first) {
  10720. const llama_grammar_element * pos = match.second;
  10721. // update top of stack to next element, if any
  10722. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10723. if (!llama_grammar_is_end_of_sequence(pos)) {
  10724. new_stack.push_back(pos);
  10725. }
  10726. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10727. }
  10728. }
  10729. }
  10730. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10731. const std::vector<std::vector<llama_grammar_element>> & rules,
  10732. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10733. const std::vector<llama_grammar_candidate> & candidates);
  10734. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10735. const std::vector<std::vector<llama_grammar_element>> & rules,
  10736. const std::vector<const llama_grammar_element *> & stack,
  10737. const std::vector<llama_grammar_candidate> & candidates) {
  10738. std::vector<llama_grammar_candidate> rejects;
  10739. rejects.reserve(candidates.size());
  10740. if (stack.empty()) {
  10741. for (const auto & tok : candidates) {
  10742. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10743. rejects.push_back(tok);
  10744. }
  10745. }
  10746. return rejects;
  10747. }
  10748. const llama_grammar_element * stack_pos = stack.back();
  10749. std::vector<llama_grammar_candidate> next_candidates;
  10750. next_candidates.reserve(candidates.size());
  10751. for (const auto & tok : candidates) {
  10752. if (*tok.code_points == 0) {
  10753. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10754. // that cannot satisfy this position in grammar
  10755. if (tok.partial_utf8.n_remain != 0 &&
  10756. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10757. rejects.push_back(tok);
  10758. }
  10759. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10760. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10761. } else {
  10762. rejects.push_back(tok);
  10763. }
  10764. }
  10765. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10766. // update top of stack to next element, if any
  10767. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10768. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10769. stack_after.push_back(stack_pos_after);
  10770. }
  10771. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10772. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10773. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10774. for (const auto & tok : next_rejects) {
  10775. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10776. }
  10777. return rejects;
  10778. }
  10779. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10780. const std::vector<std::vector<llama_grammar_element>> & rules,
  10781. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10782. const std::vector<llama_grammar_candidate> & candidates) {
  10783. GGML_ASSERT(!stacks.empty()); // REVIEW
  10784. if (candidates.empty()) {
  10785. return std::vector<llama_grammar_candidate>();
  10786. }
  10787. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10788. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10789. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10790. }
  10791. return rejects;
  10792. }
  10793. static bool llama_grammar_detect_left_recursion(
  10794. const std::vector<std::vector<llama_grammar_element>> & rules,
  10795. size_t rule_index,
  10796. std::vector<bool> * rules_visited,
  10797. std::vector<bool> * rules_in_progress,
  10798. std::vector<bool> * rules_may_be_empty) {
  10799. if ((*rules_in_progress)[rule_index]) {
  10800. return true;
  10801. }
  10802. (*rules_in_progress)[rule_index] = true;
  10803. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  10804. // First check if the rule might produce the empty string. This could be done combined with the second
  10805. // step but it's more readable as two steps.
  10806. bool at_rule_start = true;
  10807. for (size_t i = 0; i < rule.size(); i++) {
  10808. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10809. if (at_rule_start) {
  10810. (*rules_may_be_empty)[rule_index] = true;
  10811. break;
  10812. }
  10813. at_rule_start = true;
  10814. } else {
  10815. at_rule_start = false;
  10816. }
  10817. }
  10818. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  10819. // be empty)
  10820. bool recurse_into_nonterminal = true;
  10821. for (size_t i = 0; i < rule.size(); i++) {
  10822. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  10823. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  10824. return true;
  10825. }
  10826. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  10827. recurse_into_nonterminal = false;
  10828. }
  10829. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10830. recurse_into_nonterminal = true;
  10831. } else {
  10832. recurse_into_nonterminal = false;
  10833. }
  10834. }
  10835. (*rules_in_progress)[rule_index] = false;
  10836. (*rules_visited)[rule_index] = true;
  10837. return false;
  10838. }
  10839. //
  10840. // grammar - external
  10841. //
  10842. struct llama_grammar * llama_grammar_init(
  10843. const llama_grammar_element ** rules,
  10844. size_t n_rules,
  10845. size_t start_rule_index) {
  10846. const llama_grammar_element * pos;
  10847. // copy rule definitions into vectors
  10848. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10849. for (size_t i = 0; i < n_rules; i++) {
  10850. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10851. vec_rules[i].push_back(*pos);
  10852. }
  10853. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10854. }
  10855. // Check for left recursion
  10856. std::vector<bool> rules_visited(n_rules);
  10857. std::vector<bool> rules_in_progress(n_rules);
  10858. std::vector<bool> rules_may_be_empty(n_rules);
  10859. for (size_t i = 0; i < n_rules; i++) {
  10860. if (rules_visited[i]) {
  10861. continue;
  10862. }
  10863. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  10864. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  10865. }
  10866. }
  10867. // loop over alternates of start rule to build initial stacks
  10868. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10869. pos = vec_rules[start_rule_index].data();
  10870. do {
  10871. std::vector<const llama_grammar_element *> stack;
  10872. if (!llama_grammar_is_end_of_sequence(pos)) {
  10873. // if alternate is nonempty, add to stack
  10874. stack.push_back(pos);
  10875. }
  10876. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10877. while (!llama_grammar_is_end_of_sequence(pos)) {
  10878. // scan to end of alternate def
  10879. pos++;
  10880. }
  10881. if (pos->type == LLAMA_GRETYPE_ALT) {
  10882. // there's another alternate def of this rule to process
  10883. pos++;
  10884. } else {
  10885. break;
  10886. }
  10887. } while (true);
  10888. // Important: vec_rules has to be moved here, not copied, because stacks contains
  10889. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  10890. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  10891. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10892. }
  10893. void llama_grammar_free(struct llama_grammar * grammar) {
  10894. delete grammar;
  10895. }
  10896. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10897. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10898. // redirect elements in stacks to point to new rules
  10899. for (size_t is = 0; is < result->stacks.size(); is++) {
  10900. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10901. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10902. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10903. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10904. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10905. }
  10906. }
  10907. }
  10908. }
  10909. }
  10910. return result;
  10911. }
  10912. //
  10913. // sampling
  10914. //
  10915. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10916. if (seed == LLAMA_DEFAULT_SEED) {
  10917. seed = time(NULL);
  10918. }
  10919. ctx->rng.seed(seed);
  10920. }
  10921. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10922. GGML_ASSERT(candidates->size > 0);
  10923. const int64_t t_start_sample_us = ggml_time_us();
  10924. // Sort the logits in descending order
  10925. if (!candidates->sorted) {
  10926. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10927. return a.logit > b.logit;
  10928. });
  10929. candidates->sorted = true;
  10930. }
  10931. float max_l = candidates->data[0].logit;
  10932. float cum_sum = 0.0f;
  10933. for (size_t i = 0; i < candidates->size; ++i) {
  10934. float p = expf(candidates->data[i].logit - max_l);
  10935. candidates->data[i].p = p;
  10936. cum_sum += p;
  10937. }
  10938. for (size_t i = 0; i < candidates->size; ++i) {
  10939. candidates->data[i].p /= cum_sum;
  10940. }
  10941. if (ctx) {
  10942. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10943. }
  10944. }
  10945. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10946. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10947. // if (k >= (int32_t)candidates->size) {
  10948. // return;
  10949. // }
  10950. const int64_t t_start_sample_us = ggml_time_us();
  10951. if (k <= 0) {
  10952. k = candidates->size;
  10953. }
  10954. k = std::max(k, (int) min_keep);
  10955. k = std::min(k, (int) candidates->size);
  10956. // Sort scores in descending order
  10957. if (!candidates->sorted) {
  10958. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10959. return a.logit > b.logit;
  10960. };
  10961. if (k <= 128) {
  10962. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10963. } else {
  10964. constexpr int nbuckets = 128;
  10965. constexpr float bucket_low = -10.0f;
  10966. constexpr float bucket_high = 10.0f;
  10967. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10968. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10969. std::vector<int> bucket_idx(candidates->size);
  10970. std::vector<int> histo(nbuckets, 0);
  10971. for (int i = 0; i < (int)candidates->size; ++i) {
  10972. const float val = candidates->data[i].logit;
  10973. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10974. ib = std::max(0, std::min(nbuckets-1, ib));
  10975. bucket_idx[i] = ib;
  10976. ++histo[ib];
  10977. }
  10978. int nhave = 0;
  10979. int ib = nbuckets - 1;
  10980. for ( ; ib >= 0; --ib) {
  10981. nhave += histo[ib];
  10982. if (nhave >= k) break;
  10983. }
  10984. std::vector<llama_token_data> tmp_tokens(nhave);
  10985. auto ptr = tmp_tokens.data();
  10986. std::vector<llama_token_data*> bucket_ptrs;
  10987. bucket_ptrs.reserve(nbuckets - ib);
  10988. for (int j = nbuckets - 1; j >= ib; --j) {
  10989. bucket_ptrs.push_back(ptr);
  10990. ptr += histo[j];
  10991. }
  10992. for (int i = 0; i < (int)candidates->size; ++i) {
  10993. int j = bucket_idx[i];
  10994. if (j >= ib) {
  10995. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10996. }
  10997. }
  10998. ptr = tmp_tokens.data();
  10999. int ndone = 0;
  11000. for (int j = nbuckets-1; j > ib; --j) {
  11001. std::sort(ptr, ptr + histo[j], comp);
  11002. ptr += histo[j];
  11003. ndone += histo[j];
  11004. }
  11005. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11006. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11007. }
  11008. candidates->sorted = true;
  11009. }
  11010. candidates->size = k;
  11011. if (ctx) {
  11012. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11013. }
  11014. }
  11015. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11016. if (p >= 1.0f) {
  11017. return;
  11018. }
  11019. llama_sample_softmax(ctx, candidates);
  11020. const int64_t t_start_sample_us = ggml_time_us();
  11021. // Compute the cumulative probabilities
  11022. float cum_sum = 0.0f;
  11023. size_t last_idx = candidates->size;
  11024. for (size_t i = 0; i < candidates->size; ++i) {
  11025. cum_sum += candidates->data[i].p;
  11026. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11027. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11028. if (cum_sum >= p && i + 1 >= min_keep) {
  11029. last_idx = i + 1;
  11030. break;
  11031. }
  11032. }
  11033. // Resize the output vector to keep only the top-p tokens
  11034. candidates->size = last_idx;
  11035. if (ctx) {
  11036. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11037. }
  11038. }
  11039. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11040. if (p <= 0.0f || !candidates->size) {
  11041. return;
  11042. }
  11043. const int64_t t_start_sample_us = ggml_time_us();
  11044. bool min_p_applied = false;
  11045. // if the candidates aren't sorted, try the unsorted implementation first
  11046. if (!candidates->sorted) {
  11047. std::vector<llama_token_data> filtered_tokens;
  11048. float max_logit = -FLT_MAX;
  11049. for (size_t i = 0; i < candidates->size; ++i) {
  11050. max_logit = std::max(max_logit, candidates->data[i].logit);
  11051. }
  11052. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11053. for (size_t i = 0; i < candidates->size; ++i) {
  11054. if (candidates->data[i].logit >= min_logit) {
  11055. filtered_tokens.push_back(candidates->data[i]);
  11056. }
  11057. }
  11058. // if we have enough values the operation was a success
  11059. if (filtered_tokens.size() >= min_keep) {
  11060. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11061. candidates->size = filtered_tokens.size();
  11062. min_p_applied = true;
  11063. }
  11064. }
  11065. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11066. if (!min_p_applied) {
  11067. // Sort the logits in descending order
  11068. if (!candidates->sorted) {
  11069. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11070. return a.logit > b.logit;
  11071. });
  11072. candidates->sorted = true;
  11073. }
  11074. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11075. size_t i = 1; // first token always matches
  11076. for (; i < candidates->size; ++i) {
  11077. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11078. break; // prob too small
  11079. }
  11080. }
  11081. // Resize the output vector to keep only the matching tokens
  11082. candidates->size = i;
  11083. }
  11084. if (ctx) {
  11085. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11086. }
  11087. }
  11088. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11089. if (z >= 1.0f || candidates->size <= 2) {
  11090. return;
  11091. }
  11092. llama_sample_softmax(nullptr, candidates);
  11093. const int64_t t_start_sample_us = ggml_time_us();
  11094. // Compute the first and second derivatives
  11095. std::vector<float> first_derivatives(candidates->size - 1);
  11096. std::vector<float> second_derivatives(candidates->size - 2);
  11097. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11098. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11099. }
  11100. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11101. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11102. }
  11103. // Calculate absolute value of second derivatives
  11104. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11105. second_derivatives[i] = std::abs(second_derivatives[i]);
  11106. }
  11107. // Normalize the second derivatives
  11108. {
  11109. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11110. if (second_derivatives_sum > 1e-6f) {
  11111. for (float & value : second_derivatives) {
  11112. value /= second_derivatives_sum;
  11113. }
  11114. } else {
  11115. for (float & value : second_derivatives) {
  11116. value = 1.0f / second_derivatives.size();
  11117. }
  11118. }
  11119. }
  11120. float cum_sum = 0.0f;
  11121. size_t last_idx = candidates->size;
  11122. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11123. cum_sum += second_derivatives[i];
  11124. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11125. if (cum_sum > z && i >= min_keep) {
  11126. last_idx = i;
  11127. break;
  11128. }
  11129. }
  11130. // Resize the output vector to keep only the tokens above the tail location
  11131. candidates->size = last_idx;
  11132. if (ctx) {
  11133. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11134. }
  11135. }
  11136. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11137. // Reference implementation:
  11138. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11139. if (p >= 1.0f) {
  11140. return;
  11141. }
  11142. // Compute the softmax of logits and calculate entropy
  11143. llama_sample_softmax(nullptr, candidates);
  11144. const int64_t t_start_sample_us = ggml_time_us();
  11145. float entropy = 0.0f;
  11146. for (size_t i = 0; i < candidates->size; ++i) {
  11147. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11148. }
  11149. // Compute the absolute difference between negative log probability and entropy for each candidate
  11150. std::vector<float> shifted_scores;
  11151. for (size_t i = 0; i < candidates->size; ++i) {
  11152. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11153. shifted_scores.push_back(shifted_score);
  11154. }
  11155. // Sort tokens based on the shifted_scores and their corresponding indices
  11156. std::vector<size_t> indices(candidates->size);
  11157. std::iota(indices.begin(), indices.end(), 0);
  11158. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11159. return shifted_scores[a] < shifted_scores[b];
  11160. });
  11161. // Compute the cumulative probabilities
  11162. float cum_sum = 0.0f;
  11163. size_t last_idx = indices.size();
  11164. for (size_t i = 0; i < indices.size(); ++i) {
  11165. size_t idx = indices[i];
  11166. cum_sum += candidates->data[idx].p;
  11167. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11168. if (cum_sum > p && i >= min_keep - 1) {
  11169. last_idx = i + 1;
  11170. break;
  11171. }
  11172. }
  11173. // Resize the output vector to keep only the locally typical tokens
  11174. std::vector<llama_token_data> new_candidates;
  11175. for (size_t i = 0; i < last_idx; ++i) {
  11176. size_t idx = indices[i];
  11177. new_candidates.push_back(candidates->data[idx]);
  11178. }
  11179. // Replace the data in candidates with the new_candidates data
  11180. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11181. candidates->size = new_candidates.size();
  11182. candidates->sorted = false;
  11183. if (ctx) {
  11184. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11185. }
  11186. }
  11187. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11188. const int64_t t_start_sample_us = ggml_time_us();
  11189. // no need to do anything if there is only one (or zero) candidates
  11190. if(candidates_p->size <= 1) {
  11191. return;
  11192. }
  11193. // Calculate maximum possible entropy
  11194. float max_entropy = -logf(1.0f / candidates_p->size);
  11195. llama_sample_softmax(nullptr, candidates_p);
  11196. // Calculate entropy of the softmax probabilities
  11197. float entropy = 0.0f;
  11198. for (size_t i = 0; i < candidates_p->size; ++i) {
  11199. float prob = candidates_p->data[i].p;
  11200. if (prob > 0.0f) { // Ensure no log(0)
  11201. entropy -= prob * logf(prob);
  11202. }
  11203. }
  11204. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11205. float normalized_entropy = entropy / max_entropy;
  11206. // Map the normalized entropy to the desired temperature range using the power function
  11207. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11208. #ifdef DEBUG
  11209. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11210. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11211. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11212. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11213. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11214. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11215. #endif
  11216. // Apply the dynamically calculated temperature scaling
  11217. for (size_t i = 0; i < candidates_p->size; ++i) {
  11218. candidates_p->data[i].logit /= dyn_temp;
  11219. }
  11220. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11221. double max_l_double = candidates_p->data[0].logit;
  11222. double cum_sum_double = 0.0;
  11223. for (size_t i = 0; i < candidates_p->size; ++i) {
  11224. double p = exp(candidates_p->data[i].logit - max_l_double);
  11225. candidates_p->data[i].p = p; // Store the scaled probability
  11226. cum_sum_double += p;
  11227. }
  11228. for (size_t i = 0; i < candidates_p->size; ++i) {
  11229. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11230. }
  11231. #ifdef DEBUG
  11232. // Print the updated top 25 probabilities after temperature scaling
  11233. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11234. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11235. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11236. }
  11237. #endif
  11238. if (ctx) {
  11239. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11240. }
  11241. }
  11242. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11243. const int64_t t_start_sample_us = ggml_time_us();
  11244. for (size_t i = 0; i < candidates_p->size; ++i) {
  11245. candidates_p->data[i].logit /= temp;
  11246. }
  11247. if (ctx) {
  11248. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11249. }
  11250. }
  11251. void llama_sample_repetition_penalties(
  11252. struct llama_context * ctx,
  11253. llama_token_data_array * candidates,
  11254. const llama_token * last_tokens,
  11255. size_t penalty_last_n,
  11256. float penalty_repeat,
  11257. float penalty_freq,
  11258. float penalty_present) {
  11259. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11260. return;
  11261. }
  11262. const int64_t t_start_sample_us = ggml_time_us();
  11263. // Create a frequency map to count occurrences of each token in last_tokens
  11264. std::unordered_map<llama_token, int> token_count;
  11265. for (size_t i = 0; i < penalty_last_n; ++i) {
  11266. token_count[last_tokens[i]]++;
  11267. }
  11268. // Apply frequency and presence penalties to the candidates
  11269. for (size_t i = 0; i < candidates->size; ++i) {
  11270. const auto token_iter = token_count.find(candidates->data[i].id);
  11271. if (token_iter == token_count.end()) {
  11272. continue;
  11273. }
  11274. const int count = token_iter->second;
  11275. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11276. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11277. if (candidates->data[i].logit <= 0) {
  11278. candidates->data[i].logit *= penalty_repeat;
  11279. } else {
  11280. candidates->data[i].logit /= penalty_repeat;
  11281. }
  11282. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11283. }
  11284. candidates->sorted = false;
  11285. if (ctx) {
  11286. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11287. }
  11288. }
  11289. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11290. GGML_ASSERT(ctx);
  11291. const int64_t t_start_sample_us = ggml_time_us();
  11292. bool allow_eog = false;
  11293. for (const auto & stack : grammar->stacks) {
  11294. if (stack.empty()) {
  11295. allow_eog = true;
  11296. break;
  11297. }
  11298. }
  11299. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11300. candidates_decoded.reserve(candidates->size);
  11301. std::vector<llama_grammar_candidate> candidates_grammar;
  11302. candidates_grammar.reserve(candidates->size);
  11303. for (size_t i = 0; i < candidates->size; ++i) {
  11304. const llama_token id = candidates->data[i].id;
  11305. const std::string piece = llama_token_to_piece(ctx, id, false);
  11306. if (llama_token_is_eog(&ctx->model, id)) {
  11307. if (!allow_eog) {
  11308. candidates->data[i].logit = -INFINITY;
  11309. }
  11310. } else if (piece.empty() || piece[0] == 0) {
  11311. candidates->data[i].logit = -INFINITY;
  11312. } else {
  11313. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11314. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11315. }
  11316. }
  11317. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11318. for (const auto & reject : rejects) {
  11319. candidates->data[reject.index].logit = -INFINITY;
  11320. }
  11321. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11322. }
  11323. static void llama_log_softmax(float * array, size_t size) {
  11324. float max_l = *std::max_element(array, array + size);
  11325. float sum = 0.f;
  11326. for (size_t i = 0; i < size; ++i) {
  11327. float p = expf(array[i] - max_l);
  11328. sum += p;
  11329. array[i] = p;
  11330. }
  11331. for (size_t i = 0; i < size; ++i) {
  11332. array[i] = logf(array[i] / sum);
  11333. }
  11334. }
  11335. void llama_sample_apply_guidance(
  11336. struct llama_context * ctx,
  11337. float * logits,
  11338. float * logits_guidance,
  11339. float scale) {
  11340. GGML_ASSERT(ctx);
  11341. const auto t_start_sample_us = ggml_time_us();
  11342. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11343. llama_log_softmax(logits, n_vocab);
  11344. llama_log_softmax(logits_guidance, n_vocab);
  11345. for (int i = 0; i < n_vocab; ++i) {
  11346. auto & l = logits[i];
  11347. const auto & g = logits_guidance[i];
  11348. l = scale * (l - g) + g;
  11349. }
  11350. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11351. }
  11352. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11353. GGML_ASSERT(ctx);
  11354. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11355. int64_t t_start_sample_us;
  11356. t_start_sample_us = ggml_time_us();
  11357. llama_sample_softmax(nullptr, candidates);
  11358. // Estimate s_hat using the most probable m tokens
  11359. float s_hat = 0.0;
  11360. float sum_ti_bi = 0.0;
  11361. float sum_ti_sq = 0.0;
  11362. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11363. float t_i = logf(float(i + 2) / float(i + 1));
  11364. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11365. sum_ti_bi += t_i * b_i;
  11366. sum_ti_sq += t_i * t_i;
  11367. }
  11368. s_hat = sum_ti_bi / sum_ti_sq;
  11369. // Compute k from the estimated s_hat and target surprise value
  11370. float epsilon_hat = s_hat - 1;
  11371. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11372. // Sample the next word X using top-k sampling
  11373. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11374. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11375. llama_token X = llama_sample_token(ctx, candidates);
  11376. t_start_sample_us = ggml_time_us();
  11377. // Compute error as the difference between observed surprise and target surprise value
  11378. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11379. return candidate.id == X;
  11380. }));
  11381. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11382. float e = observed_surprise - tau;
  11383. // Update mu using the learning rate and error
  11384. *mu = *mu - eta * e;
  11385. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11386. return X;
  11387. }
  11388. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11389. int64_t t_start_sample_us;
  11390. t_start_sample_us = ggml_time_us();
  11391. llama_sample_softmax(ctx, candidates);
  11392. // Truncate the words with surprise values greater than mu
  11393. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11394. return -log2f(candidate.p) > *mu;
  11395. }));
  11396. if (candidates->size == 0) {
  11397. candidates->size = 1;
  11398. }
  11399. if (ctx) {
  11400. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11401. }
  11402. // Normalize the probabilities of the remaining words
  11403. llama_sample_softmax(ctx, candidates);
  11404. // Sample the next word X from the remaining words
  11405. llama_token X = llama_sample_token(ctx, candidates);
  11406. t_start_sample_us = ggml_time_us();
  11407. // Compute error as the difference between observed surprise and target surprise value
  11408. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11409. return candidate.id == X;
  11410. }));
  11411. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11412. float e = observed_surprise - tau;
  11413. // Update mu using the learning rate and error
  11414. *mu = *mu - eta * e;
  11415. if (ctx) {
  11416. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11417. }
  11418. return X;
  11419. }
  11420. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11421. const int64_t t_start_sample_us = ggml_time_us();
  11422. // Find max element
  11423. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11424. return a.logit < b.logit;
  11425. });
  11426. llama_token result = max_iter->id;
  11427. if (ctx) {
  11428. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11429. ctx->n_sample++;
  11430. }
  11431. return result;
  11432. }
  11433. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11434. GGML_ASSERT(ctx);
  11435. const int64_t t_start_sample_us = ggml_time_us();
  11436. llama_sample_softmax(nullptr, candidates);
  11437. std::vector<float> probs;
  11438. probs.reserve(candidates->size);
  11439. for (size_t i = 0; i < candidates->size; ++i) {
  11440. probs.push_back(candidates->data[i].p);
  11441. }
  11442. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11443. int idx = dist(rng);
  11444. llama_token result = candidates->data[idx].id;
  11445. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11446. ctx->n_sample++;
  11447. return result;
  11448. }
  11449. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11450. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11451. }
  11452. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11453. const int64_t t_start_sample_us = ggml_time_us();
  11454. if (llama_token_is_eog(&ctx->model, token)) {
  11455. for (const auto & stack : grammar->stacks) {
  11456. if (stack.empty()) {
  11457. return;
  11458. }
  11459. }
  11460. GGML_ASSERT(false);
  11461. }
  11462. const std::string piece = llama_token_to_piece(ctx, token, false);
  11463. // Note terminating 0 in decoded string
  11464. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11465. const auto & code_points = decoded.first;
  11466. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11467. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11468. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11469. grammar->stacks = tmp_new_stacks;
  11470. }
  11471. grammar->partial_utf8 = decoded.second;
  11472. GGML_ASSERT(!grammar->stacks.empty());
  11473. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11474. }
  11475. //
  11476. // Beam search
  11477. //
  11478. struct llama_beam {
  11479. std::vector<llama_token> tokens;
  11480. float p; // Cumulative beam probability (renormalized relative to all beams)
  11481. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11482. // Sort beams by probability. In case of ties, prefer beams at eob.
  11483. bool operator<(const llama_beam & rhs) const {
  11484. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11485. }
  11486. // Shift off first n tokens and discard them.
  11487. void shift_tokens(const size_t n) {
  11488. if (n) {
  11489. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11490. tokens.resize(tokens.size() - n);
  11491. }
  11492. }
  11493. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11494. };
  11495. // A struct for calculating logit-related info.
  11496. struct llama_logit_info {
  11497. const float * const logits;
  11498. const int n_vocab;
  11499. const float max_l;
  11500. const float normalizer;
  11501. struct sum_exp {
  11502. float max_l;
  11503. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11504. };
  11505. llama_logit_info(llama_context * ctx)
  11506. : logits(llama_get_logits(ctx))
  11507. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11508. , max_l(*std::max_element(logits, logits + n_vocab))
  11509. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11510. { }
  11511. llama_token_data get_token_data(const llama_token token_id) const {
  11512. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11513. return {token_id, logits[token_id], p};
  11514. }
  11515. // Return top k token_data by logit.
  11516. std::vector<llama_token_data> top_k(size_t k) {
  11517. std::vector<llama_token_data> min_heap; // min-heap by logit
  11518. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11519. min_heap.reserve(k_min);
  11520. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11521. min_heap.push_back(get_token_data(token_id));
  11522. }
  11523. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11524. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11525. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11526. if (min_heap.front().logit < logits[token_id]) {
  11527. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11528. min_heap.back().id = token_id;
  11529. min_heap.back().logit = logits[token_id];
  11530. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11531. }
  11532. }
  11533. return min_heap;
  11534. }
  11535. float probability_from_logit(float logit) const {
  11536. return normalizer * std::exp(logit - max_l);
  11537. }
  11538. };
  11539. struct llama_beam_search_data {
  11540. llama_context * ctx;
  11541. size_t n_beams;
  11542. int n_past;
  11543. int n_predict;
  11544. std::vector<llama_beam> beams;
  11545. std::vector<llama_beam> next_beams;
  11546. // Re-calculated on each loop iteration
  11547. size_t common_prefix_length;
  11548. // Used to communicate to/from callback on beams state.
  11549. std::vector<llama_beam_view> beam_views;
  11550. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11551. : ctx(ctx)
  11552. , n_beams(n_beams)
  11553. , n_past(n_past)
  11554. , n_predict(n_predict)
  11555. , beam_views(n_beams) {
  11556. beams.reserve(n_beams);
  11557. next_beams.reserve(n_beams);
  11558. }
  11559. // Collapse beams to a single beam given by index.
  11560. void collapse_beams(const size_t beam_idx) {
  11561. if (0u < beam_idx) {
  11562. std::swap(beams[0], beams[beam_idx]);
  11563. }
  11564. beams.resize(1);
  11565. }
  11566. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11567. // The repetitive patterns below reflect the 2 stages of heaps:
  11568. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11569. // * If the heap is full and a new element is found that should be included, pop the
  11570. // least element to the back(), replace it with the new, then push it into the heap.
  11571. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11572. // Min-heaps use a greater-than comparator.
  11573. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11574. if (beam.eob) {
  11575. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11576. if (next_beams.size() < n_beams) {
  11577. next_beams.push_back(std::move(beam));
  11578. if (next_beams.size() == n_beams) {
  11579. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11580. }
  11581. } else if (next_beams.front().p < beam.p) {
  11582. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11583. next_beams.back() = std::move(beam);
  11584. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11585. }
  11586. } else {
  11587. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11588. if (!beam.tokens.empty()) {
  11589. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11590. }
  11591. llama_logit_info logit_info(ctx);
  11592. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11593. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11594. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11595. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11596. size_t i=0;
  11597. if (next_beams.size() < n_beams) {
  11598. for (; next_beams.size() < n_beams ; ++i) {
  11599. llama_beam next_beam = beam;
  11600. next_beam.tokens.push_back(next_tokens[i].id);
  11601. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11602. next_beams.push_back(std::move(next_beam));
  11603. }
  11604. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11605. } else {
  11606. for (; next_beams.front().p == 0.0f ; ++i) {
  11607. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11608. next_beams.back() = beam;
  11609. next_beams.back().tokens.push_back(next_tokens[i].id);
  11610. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11611. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11612. }
  11613. }
  11614. for (; i < n_beams ; ++i) {
  11615. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11616. if (next_beams.front().p < next_p) {
  11617. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11618. next_beams.back() = beam;
  11619. next_beams.back().tokens.push_back(next_tokens[i].id);
  11620. next_beams.back().p = next_p;
  11621. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11622. }
  11623. }
  11624. }
  11625. }
  11626. // Find common_prefix_length based on beams.
  11627. // Requires beams is not empty.
  11628. size_t find_common_prefix_length() {
  11629. size_t common_prefix_length = beams[0].tokens.size();
  11630. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11631. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11632. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11633. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11634. common_prefix_length = j;
  11635. break;
  11636. }
  11637. }
  11638. }
  11639. return common_prefix_length;
  11640. }
  11641. // Construct beams_state to send back to caller via the callback function.
  11642. // Side effect: set common_prefix_length = find_common_prefix_length();
  11643. llama_beams_state get_beams_state(const bool last_call) {
  11644. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11645. beam_views[i] = beams[i].view();
  11646. }
  11647. common_prefix_length = find_common_prefix_length();
  11648. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11649. }
  11650. // Loop:
  11651. // * while i < n_predict, AND
  11652. // * any of the beams have not yet reached end-of-beam (eob), AND
  11653. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11654. // (since all other beam probabilities can only decrease)
  11655. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11656. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11657. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11658. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11659. !beams[top_beam_index()].eob ; ++i) {
  11660. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11661. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11662. if (common_prefix_length) {
  11663. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11664. n_past += common_prefix_length;
  11665. }
  11666. // Zero-out next_beam probabilities to place them last in following min-heap.
  11667. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11668. for (llama_beam & beam : beams) {
  11669. beam.shift_tokens(common_prefix_length);
  11670. fill_next_beams_by_top_probabilities(beam);
  11671. }
  11672. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11673. beams.swap(next_beams);
  11674. renormalize_beam_probabilities(beams);
  11675. }
  11676. collapse_beams(top_beam_index());
  11677. callback(callback_data, get_beams_state(true));
  11678. }
  11679. // As beams grow, the cumulative probabilities decrease.
  11680. // Renormalize them to avoid floating point underflow.
  11681. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11682. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11683. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11684. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11685. }
  11686. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11687. size_t top_beam_index() {
  11688. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11689. }
  11690. // Copy (p,eob) for each beam which may have been changed by the callback.
  11691. void update_beams_from_beam_views() {
  11692. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11693. beams[i].p = beam_views[i].p;
  11694. beams[i].eob = beam_views[i].eob;
  11695. }
  11696. }
  11697. };
  11698. void llama_beam_search(llama_context * ctx,
  11699. llama_beam_search_callback_fn_t callback, void * callback_data,
  11700. size_t n_beams, int n_past, int n_predict) {
  11701. assert(ctx);
  11702. const int64_t t_start_sample_us = ggml_time_us();
  11703. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11704. beam_search_data.loop(callback, callback_data);
  11705. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11706. ctx->n_sample++;
  11707. }
  11708. //
  11709. // quantization
  11710. //
  11711. struct quantize_state_internal {
  11712. const llama_model & model;
  11713. const llama_model_quantize_params * params;
  11714. int n_attention_wv = 0;
  11715. int n_ffn_down = 0;
  11716. int n_ffn_gate = 0;
  11717. int n_ffn_up = 0;
  11718. int i_attention_wv = 0;
  11719. int i_ffn_down = 0;
  11720. int i_ffn_gate = 0;
  11721. int i_ffn_up = 0;
  11722. int n_k_quantized = 0;
  11723. int n_fallback = 0;
  11724. bool has_imatrix = false;
  11725. // used to figure out if a model shares tok_embd with the output weight
  11726. bool has_output = false;
  11727. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11728. : model(model)
  11729. , params(params)
  11730. {}
  11731. };
  11732. static void llama_tensor_dequantize_internal(
  11733. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11734. const size_t nelements, const int nthread
  11735. ) {
  11736. if (output.size() < nelements) {
  11737. output.resize(nelements);
  11738. }
  11739. float * f32_output = (float *) output.data();
  11740. ggml_type_traits_t qtype;
  11741. if (ggml_is_quantized(tensor->type)) {
  11742. qtype = ggml_internal_get_type_traits(tensor->type);
  11743. if (qtype.to_float == NULL) {
  11744. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11745. }
  11746. } else if (tensor->type != GGML_TYPE_F16 &&
  11747. tensor->type != GGML_TYPE_BF16) {
  11748. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11749. }
  11750. if (nthread < 2) {
  11751. if (tensor->type == GGML_TYPE_F16) {
  11752. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11753. } else if (tensor->type == GGML_TYPE_BF16) {
  11754. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11755. } else if (ggml_is_quantized(tensor->type)) {
  11756. qtype.to_float(tensor->data, f32_output, nelements);
  11757. } else {
  11758. GGML_ASSERT(false); // unreachable
  11759. }
  11760. return;
  11761. }
  11762. size_t block_size;
  11763. if (tensor->type == GGML_TYPE_F16 ||
  11764. tensor->type == GGML_TYPE_BF16) {
  11765. block_size = 1;
  11766. } else {
  11767. block_size = (size_t)ggml_blck_size(tensor->type);
  11768. }
  11769. size_t block_size_bytes = ggml_type_size(tensor->type);
  11770. GGML_ASSERT(nelements % block_size == 0);
  11771. size_t nblocks = nelements / block_size;
  11772. size_t blocks_per_thread = nblocks / nthread;
  11773. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11774. size_t in_buff_offs = 0;
  11775. size_t out_buff_offs = 0;
  11776. for (int tnum = 0; tnum < nthread; tnum++) {
  11777. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11778. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11779. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11780. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11781. if (typ == GGML_TYPE_F16) {
  11782. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11783. } else if (typ == GGML_TYPE_BF16) {
  11784. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11785. } else {
  11786. qtype.to_float(inbuf, outbuf, nels);
  11787. }
  11788. };
  11789. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11790. in_buff_offs += thr_block_bytes;
  11791. out_buff_offs += thr_elems;
  11792. }
  11793. for (auto & w : workers) { w.join(); }
  11794. workers.clear();
  11795. }
  11796. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11797. const std::string name = ggml_get_name(tensor);
  11798. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11799. const llm_arch arch = qs.model.arch;
  11800. const auto tn = LLM_TN(arch);
  11801. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11802. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11803. };
  11804. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11805. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11806. if (n_expert > 1) {
  11807. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11808. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11809. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11810. // tensor name.
  11811. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11812. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11813. }
  11814. if (i_layer < 0 || i_layer >= n_layer) {
  11815. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11816. }
  11817. }
  11818. return std::make_pair(i_layer, n_layer);
  11819. };
  11820. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11821. // with the quantization of the output tensor
  11822. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11823. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11824. new_type = qs.params->output_tensor_type;
  11825. } else {
  11826. int nx = tensor->ne[0];
  11827. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11828. new_type = GGML_TYPE_Q8_0;
  11829. }
  11830. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11831. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11832. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11833. new_type = GGML_TYPE_Q5_K;
  11834. }
  11835. else if (new_type != GGML_TYPE_Q8_0) {
  11836. new_type = GGML_TYPE_Q6_K;
  11837. }
  11838. }
  11839. } else if (name == "token_embd.weight") {
  11840. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11841. new_type = qs.params->token_embedding_type;
  11842. } else {
  11843. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11844. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11845. new_type = GGML_TYPE_Q2_K;
  11846. }
  11847. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11848. new_type = GGML_TYPE_IQ3_S;
  11849. }
  11850. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11851. new_type = GGML_TYPE_IQ3_S;
  11852. }
  11853. }
  11854. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11855. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11856. if (name.find("attn_v.weight") != std::string::npos) {
  11857. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11858. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11859. ++qs.i_attention_wv;
  11860. }
  11861. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11862. new_type = GGML_TYPE_Q4_K;
  11863. }
  11864. else if (name.find("ffn_down") != std::string::npos) {
  11865. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11866. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11867. }
  11868. ++qs.i_ffn_down;
  11869. }
  11870. else if (name.find("attn_output.weight") != std::string::npos) {
  11871. if (qs.model.hparams.n_expert == 8) {
  11872. new_type = GGML_TYPE_Q5_K;
  11873. } else {
  11874. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11875. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11876. }
  11877. }
  11878. } else if (name.find("attn_v.weight") != std::string::npos) {
  11879. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11880. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11881. }
  11882. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11883. new_type = GGML_TYPE_Q4_K;
  11884. }
  11885. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11886. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11887. }
  11888. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11889. new_type = GGML_TYPE_Q4_K;
  11890. }
  11891. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11892. new_type = GGML_TYPE_Q4_K;
  11893. }
  11894. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11895. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11896. }
  11897. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11898. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11899. new_type = GGML_TYPE_Q5_K;
  11900. }
  11901. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11902. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11903. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11904. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11905. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11906. if (qs.model.type == MODEL_70B) {
  11907. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11908. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11909. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11910. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11911. }
  11912. if (qs.model.hparams.n_expert == 8) {
  11913. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11914. // TODO: explore better strategies
  11915. new_type = GGML_TYPE_Q8_0;
  11916. }
  11917. ++qs.i_attention_wv;
  11918. } else if (name.find("attn_k.weight") != std::string::npos) {
  11919. if (qs.model.hparams.n_expert == 8) {
  11920. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11921. // TODO: explore better strategies
  11922. new_type = GGML_TYPE_Q8_0;
  11923. }
  11924. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11925. new_type = GGML_TYPE_IQ3_XXS;
  11926. }
  11927. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11928. new_type = GGML_TYPE_IQ2_S;
  11929. }
  11930. } else if (name.find("attn_q.weight") != std::string::npos) {
  11931. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11932. new_type = GGML_TYPE_IQ3_XXS;
  11933. }
  11934. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11935. new_type = GGML_TYPE_IQ2_S;
  11936. }
  11937. } else if (name.find("ffn_down") != std::string::npos) {
  11938. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11939. int i_layer = info.first, n_layer = info.second;
  11940. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11941. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11942. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11943. }
  11944. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11945. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11946. }
  11947. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11948. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11949. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11950. : GGML_TYPE_Q3_K;
  11951. }
  11952. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11953. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11954. new_type = GGML_TYPE_Q4_K;
  11955. }
  11956. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11957. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11958. }
  11959. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11960. if (arch == LLM_ARCH_FALCON) {
  11961. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11962. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11963. } else {
  11964. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11965. }
  11966. }
  11967. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11968. new_type = GGML_TYPE_Q5_K;
  11969. }
  11970. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11971. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11972. new_type = GGML_TYPE_Q5_K;
  11973. }
  11974. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11975. && qs.has_imatrix && i_layer < n_layer/8) {
  11976. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11977. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11978. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11979. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11980. }
  11981. ++qs.i_ffn_down;
  11982. } else if (name.find("attn_output.weight") != std::string::npos) {
  11983. if (arch != LLM_ARCH_FALCON) {
  11984. if (qs.model.hparams.n_expert == 8) {
  11985. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11986. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11987. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11988. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11989. new_type = GGML_TYPE_Q5_K;
  11990. }
  11991. } else {
  11992. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11993. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11994. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11995. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11996. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11997. }
  11998. } else {
  11999. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12000. }
  12001. }
  12002. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12003. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12004. new_type = GGML_TYPE_Q4_K;
  12005. }
  12006. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12007. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12008. }
  12009. else if (name.find("ffn_gate") != std::string::npos) {
  12010. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12011. int i_layer = info.first, n_layer = info.second;
  12012. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12013. new_type = GGML_TYPE_IQ3_XXS;
  12014. }
  12015. ++qs.i_ffn_gate;
  12016. }
  12017. else if (name.find("ffn_up") != std::string::npos) {
  12018. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12019. int i_layer = info.first, n_layer = info.second;
  12020. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12021. new_type = GGML_TYPE_IQ3_XXS;
  12022. }
  12023. ++qs.i_ffn_up;
  12024. }
  12025. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12026. //}
  12027. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12028. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12029. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12030. //}
  12031. // This can be used to reduce the size of the Q5_K_S model.
  12032. // The associated PPL increase is fully in line with the size reduction
  12033. //else {
  12034. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12035. //}
  12036. bool convert_incompatible_tensor = false;
  12037. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12038. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12039. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12040. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12041. new_type == GGML_TYPE_IQ1_M) {
  12042. int nx = tensor->ne[0];
  12043. int ny = tensor->ne[1];
  12044. if (nx % QK_K != 0) {
  12045. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12046. convert_incompatible_tensor = true;
  12047. } else {
  12048. ++qs.n_k_quantized;
  12049. }
  12050. }
  12051. if (convert_incompatible_tensor) {
  12052. switch (new_type) {
  12053. case GGML_TYPE_IQ2_XXS:
  12054. case GGML_TYPE_IQ2_XS:
  12055. case GGML_TYPE_IQ2_S:
  12056. case GGML_TYPE_IQ3_XXS:
  12057. case GGML_TYPE_IQ3_S:
  12058. case GGML_TYPE_IQ1_S:
  12059. case GGML_TYPE_IQ1_M:
  12060. case GGML_TYPE_Q2_K:
  12061. case GGML_TYPE_Q3_K:
  12062. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12063. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12064. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12065. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12066. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12067. }
  12068. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12069. ++qs.n_fallback;
  12070. }
  12071. return new_type;
  12072. }
  12073. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12074. if (nthread < 2) {
  12075. // single-thread
  12076. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12077. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12078. throw std::runtime_error("quantized data validation failed");
  12079. }
  12080. return new_size;
  12081. }
  12082. std::mutex mutex;
  12083. int64_t counter = 0;
  12084. size_t new_size = 0;
  12085. bool valid = true;
  12086. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12087. nrows, n_per_row, imatrix]() {
  12088. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12089. size_t local_size = 0;
  12090. while (true) {
  12091. std::unique_lock<std::mutex> lock(mutex);
  12092. int64_t first_row = counter; counter += nrows_per_chunk;
  12093. if (first_row >= nrows) {
  12094. if (local_size > 0) {
  12095. new_size += local_size;
  12096. }
  12097. break;
  12098. }
  12099. lock.unlock();
  12100. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12101. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12102. local_size += this_size;
  12103. // validate the quantized data
  12104. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12105. void * this_data = (char *) new_data + first_row * row_size;
  12106. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12107. std::unique_lock<std::mutex> lock(mutex);
  12108. valid = false;
  12109. break;
  12110. }
  12111. }
  12112. };
  12113. for (int it = 0; it < nthread - 1; ++it) {
  12114. workers.emplace_back(compute);
  12115. }
  12116. compute();
  12117. for (auto & w : workers) { w.join(); }
  12118. workers.clear();
  12119. if (!valid) {
  12120. throw std::runtime_error("quantized data validation failed");
  12121. }
  12122. return new_size;
  12123. }
  12124. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12125. ggml_type default_type;
  12126. llama_ftype ftype = params->ftype;
  12127. switch (params->ftype) {
  12128. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12129. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12130. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12131. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12132. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12133. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12134. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12135. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12136. // K-quants
  12137. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12138. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12139. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12140. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12141. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12142. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12143. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12144. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12145. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12146. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12147. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12148. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12149. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12150. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12151. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12152. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12153. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12154. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12155. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12156. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12157. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12158. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12159. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12160. }
  12161. int nthread = params->nthread;
  12162. if (nthread <= 0) {
  12163. nthread = std::thread::hardware_concurrency();
  12164. }
  12165. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12166. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12167. #if defined(__linux__) || defined(_WIN32)
  12168. constexpr bool use_mmap = true;
  12169. #else
  12170. constexpr bool use_mmap = false;
  12171. #endif
  12172. llama_model_kv_override * kv_overrides = nullptr;
  12173. if (params->kv_overrides) {
  12174. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12175. kv_overrides = v->data();
  12176. }
  12177. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12178. ml.init_mappings(false); // no prefetching
  12179. llama_model model;
  12180. llm_load_arch(ml, model);
  12181. llm_load_hparams(ml, model);
  12182. struct quantize_state_internal qs(model, params);
  12183. if (params->only_copy) {
  12184. ftype = model.ftype;
  12185. }
  12186. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12187. if (params->imatrix) {
  12188. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12189. if (imatrix_data) {
  12190. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12191. qs.has_imatrix = true;
  12192. }
  12193. }
  12194. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12195. struct gguf_context * ctx_out = gguf_init_empty();
  12196. // copy the KV pairs from the input file
  12197. gguf_set_kv (ctx_out, ml.meta);
  12198. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12199. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12200. // Remove split metadata
  12201. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12202. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12203. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12204. if (params->kv_overrides) {
  12205. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12206. for (auto & o : overrides) {
  12207. if (o.key[0] == 0) break;
  12208. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12209. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12210. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12211. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12212. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12213. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12214. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12215. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12216. } else {
  12217. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12218. }
  12219. }
  12220. }
  12221. for (int i = 0; i < ml.n_tensors; ++i) {
  12222. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12223. const std::string name = ggml_get_name(meta);
  12224. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12225. if (name.find("attn_v.weight") != std::string::npos ||
  12226. name.find("attn_qkv.weight") != std::string::npos) {
  12227. ++qs.n_attention_wv;
  12228. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12229. qs.has_output = true;
  12230. }
  12231. }
  12232. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12233. // sanity checks
  12234. //
  12235. // - qs.n_attention_wv == 0 for Mamba models
  12236. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12237. //
  12238. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12239. size_t total_size_org = 0;
  12240. size_t total_size_new = 0;
  12241. std::vector<std::thread> workers;
  12242. workers.reserve(nthread);
  12243. int idx = 0;
  12244. std::vector<no_init<uint8_t>> read_data;
  12245. std::vector<no_init<uint8_t>> work;
  12246. std::vector<no_init<float>> f32_conv_buf;
  12247. uint16_t n_split = 1;
  12248. // Assume split index is continuous
  12249. if (params->keep_split) {
  12250. for (int i = 0; i < ml.n_tensors; ++i) {
  12251. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12252. }
  12253. }
  12254. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12255. ctx_outs[0] = ctx_out;
  12256. // populate the original tensors so we get an initial meta data
  12257. for (int i = 0; i < ml.n_tensors; ++i) {
  12258. auto weight = ml.get_weight(i);
  12259. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12260. struct ggml_tensor * tensor = weight->tensor;
  12261. if (ctx_outs[i_split] == NULL) {
  12262. ctx_outs[i_split] = gguf_init_empty();
  12263. }
  12264. gguf_add_tensor(ctx_outs[i_split], tensor);
  12265. }
  12266. // Set split info if needed
  12267. if (n_split > 1) {
  12268. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12269. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12270. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12271. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12272. }
  12273. }
  12274. int cur_split = -1;
  12275. std::ofstream fout;
  12276. auto close_ofstream = [&]() {
  12277. // Write metadata and close file handler
  12278. if (fout.is_open()) {
  12279. fout.seekp(0);
  12280. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12281. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12282. fout.write((const char *) data.data(), data.size());
  12283. fout.close();
  12284. }
  12285. };
  12286. auto new_ofstream = [&](int index) {
  12287. cur_split = index;
  12288. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12289. std::string fname = fname_out;
  12290. if (params->keep_split) {
  12291. char split_path[PATH_MAX] = {0};
  12292. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12293. fname = std::string(split_path);
  12294. }
  12295. fout = std::ofstream(fname, std::ios::binary);
  12296. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12297. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12298. // placeholder for the meta data
  12299. ::zeros(fout, meta_size);
  12300. };
  12301. const auto tn = LLM_TN(model.arch);
  12302. new_ofstream(0);
  12303. for (int i = 0; i < ml.n_tensors; ++i) {
  12304. auto weight = ml.get_weight(i);
  12305. struct ggml_tensor * tensor = weight->tensor;
  12306. if (weight->idx != cur_split && params->keep_split) {
  12307. close_ofstream();
  12308. new_ofstream(weight->idx);
  12309. }
  12310. const std::string name = ggml_get_name(tensor);
  12311. if (!ml.use_mmap) {
  12312. if (read_data.size() < ggml_nbytes(tensor)) {
  12313. read_data.resize(ggml_nbytes(tensor));
  12314. }
  12315. tensor->data = read_data.data();
  12316. }
  12317. ml.load_data_for(tensor);
  12318. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12319. ++idx, ml.n_tensors,
  12320. ggml_get_name(tensor),
  12321. llama_format_tensor_shape(tensor).c_str(),
  12322. ggml_type_name(tensor->type));
  12323. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12324. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12325. // quantize only 2D and 3D tensors (experts)
  12326. quantize &= (ggml_n_dims(tensor) >= 2);
  12327. // do not quantize norm tensors
  12328. quantize &= name.find("_norm.weight") == std::string::npos;
  12329. quantize &= params->quantize_output_tensor || name != "output.weight";
  12330. quantize &= !params->only_copy;
  12331. // do not quantize expert gating tensors
  12332. // NOTE: can't use LLM_TN here because the layer number is not known
  12333. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12334. // do not quantize positional embeddings and token types (BERT)
  12335. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12336. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12337. // do not quantize Mamba's small yet 2D weights
  12338. // NOTE: can't use LLM_TN here because the layer number is not known
  12339. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12340. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12341. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12342. enum ggml_type new_type;
  12343. void * new_data;
  12344. size_t new_size;
  12345. if (quantize) {
  12346. new_type = default_type;
  12347. // get more optimal quantization type based on the tensor shape, layer, etc.
  12348. if (!params->pure && ggml_is_quantized(default_type)) {
  12349. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12350. }
  12351. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12352. new_type = params->token_embedding_type;
  12353. }
  12354. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12355. new_type = params->output_tensor_type;
  12356. }
  12357. // If we've decided to quantize to the same type the tensor is already
  12358. // in then there's nothing to do.
  12359. quantize = tensor->type != new_type;
  12360. }
  12361. if (!quantize) {
  12362. new_type = tensor->type;
  12363. new_data = tensor->data;
  12364. new_size = ggml_nbytes(tensor);
  12365. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12366. } else {
  12367. const int64_t nelements = ggml_nelements(tensor);
  12368. const float * imatrix = nullptr;
  12369. if (imatrix_data) {
  12370. auto it = imatrix_data->find(tensor->name);
  12371. if (it == imatrix_data->end()) {
  12372. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12373. } else {
  12374. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12375. imatrix = it->second.data();
  12376. } else {
  12377. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12378. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12379. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12380. // this is a significant error and it may be good idea to abort the process if this happens,
  12381. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12382. // tok_embd should be ignored in this case, since it always causes this warning
  12383. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12384. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12385. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12386. }
  12387. }
  12388. }
  12389. }
  12390. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12391. new_type == GGML_TYPE_IQ2_XS ||
  12392. new_type == GGML_TYPE_IQ2_S ||
  12393. new_type == GGML_TYPE_IQ1_S ||
  12394. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12395. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12396. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12397. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12398. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12399. LLAMA_LOG_ERROR("============================================================\n\n");
  12400. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12401. }
  12402. float * f32_data;
  12403. if (tensor->type == GGML_TYPE_F32) {
  12404. f32_data = (float *) tensor->data;
  12405. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12406. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12407. } else {
  12408. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12409. f32_data = (float *) f32_conv_buf.data();
  12410. }
  12411. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12412. fflush(stdout);
  12413. if (work.size() < (size_t)nelements * 4) {
  12414. work.resize(nelements * 4); // upper bound on size
  12415. }
  12416. new_data = work.data();
  12417. const int64_t n_per_row = tensor->ne[0];
  12418. const int64_t nrows = tensor->ne[1];
  12419. static const int64_t min_chunk_size = 32 * 512;
  12420. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12421. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12422. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12423. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12424. // quantize each expert separately since they have different importance matrices
  12425. new_size = 0;
  12426. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12427. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12428. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12429. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12430. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12431. }
  12432. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12433. }
  12434. total_size_org += ggml_nbytes(tensor);
  12435. total_size_new += new_size;
  12436. // update the gguf meta data as we go
  12437. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12438. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12439. // write tensor data + padding
  12440. fout.write((const char *) new_data, new_size);
  12441. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12442. }
  12443. close_ofstream();
  12444. for (auto & c:ctx_outs) {
  12445. gguf_free(c);
  12446. }
  12447. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12448. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12449. if (qs.n_fallback > 0) {
  12450. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12451. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12452. }
  12453. }
  12454. static int llama_apply_lora_from_file_internal(
  12455. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12456. ) {
  12457. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12458. const int64_t t_start_lora_us = ggml_time_us();
  12459. llama_file fin(path_lora, "rb");
  12460. // verify magic and version
  12461. {
  12462. uint32_t magic = fin.read_u32();
  12463. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12464. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12465. return 1;
  12466. }
  12467. uint32_t format_version = fin.read_u32();
  12468. if (format_version != 1) {
  12469. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12470. return 1;
  12471. }
  12472. }
  12473. int32_t lora_r = fin.read_u32();
  12474. int32_t lora_alpha = fin.read_u32();
  12475. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12476. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12477. // load base model
  12478. std::unique_ptr<llama_model_loader> ml;
  12479. if (path_base_model) {
  12480. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12481. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12482. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12483. }
  12484. struct tensor_meta {
  12485. std::string name;
  12486. ggml_type type;
  12487. int32_t ne[2];
  12488. size_t offset;
  12489. };
  12490. std::map<std::string, tensor_meta> tensor_meta_map;
  12491. // load all tensor meta
  12492. while (true) {
  12493. if (fin.tell() == fin.size) {
  12494. // eof
  12495. break;
  12496. }
  12497. int32_t n_dims;
  12498. int32_t name_len;
  12499. int32_t ftype;
  12500. fin.read_raw(&n_dims, sizeof(n_dims));
  12501. fin.read_raw(&name_len, sizeof(name_len));
  12502. fin.read_raw(&ftype, sizeof(ftype));
  12503. if (n_dims != 1 && n_dims != 2) {
  12504. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12505. return 1;
  12506. }
  12507. int32_t ne[2] = { 1, 1 };
  12508. for (int i = 0; i < n_dims; ++i) {
  12509. fin.read_raw(&ne[i], sizeof(ne[i]));
  12510. }
  12511. std::string name;
  12512. {
  12513. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12514. char buf[GGML_MAX_NAME];
  12515. fin.read_raw(buf, name_len);
  12516. name = std::string(buf, name_len);
  12517. }
  12518. // check for lora suffix
  12519. std::string lora_suffix;
  12520. if (name.length() > 6) {
  12521. lora_suffix = name.substr(name.length() - 6);
  12522. }
  12523. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12524. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12525. return 1;
  12526. }
  12527. // tensor type
  12528. ggml_type wtype;
  12529. switch (ftype) {
  12530. case 0: wtype = GGML_TYPE_F32; break;
  12531. case 1: wtype = GGML_TYPE_F16; break;
  12532. default:
  12533. {
  12534. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12535. __func__, ftype);
  12536. return 1;
  12537. }
  12538. }
  12539. // data offset
  12540. size_t offset = fin.tell();
  12541. offset = (offset + 31) & -32;
  12542. // skip tensor data
  12543. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12544. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12545. }
  12546. bool warned = false;
  12547. int n_tensors = 0;
  12548. // apply
  12549. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12550. if (backend_cpu == nullptr) {
  12551. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12552. return 1;
  12553. }
  12554. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12555. std::vector<no_init<uint8_t>> read_buf;
  12556. for (const auto & it : model.tensors_by_name) {
  12557. const std::string & base_name = it.first;
  12558. ggml_tensor * model_t = it.second;
  12559. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12560. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12561. continue;
  12562. }
  12563. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12564. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12565. ggml_init_params lora_init_params = {
  12566. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12567. /* .mem_buffer */ nullptr,
  12568. /* .no_alloc */ true,
  12569. };
  12570. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12571. if (lora_ctx == nullptr) {
  12572. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12573. ggml_backend_free(backend_cpu);
  12574. return 1;
  12575. }
  12576. // create tensors
  12577. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12578. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12579. ggml_set_name(loraA, metaA.name.c_str());
  12580. ggml_set_name(loraB, metaB.name.c_str());
  12581. ggml_tensor * base_t;
  12582. if (ml) {
  12583. if (!ml->get_tensor_meta(base_name.c_str())) {
  12584. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12585. return 1;
  12586. }
  12587. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12588. } else {
  12589. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12590. }
  12591. ggml_set_name(base_t, base_name.c_str());
  12592. // allocate in backend buffer
  12593. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12594. if (lora_buf == nullptr) {
  12595. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12596. return 1;
  12597. }
  12598. // load tensor data
  12599. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12600. read_buf.resize(ggml_nbytes(tensor));
  12601. fin.seek(tensor_meta.offset, SEEK_SET);
  12602. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12603. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12604. };
  12605. load_tensor(metaA, loraA);
  12606. load_tensor(metaB, loraB);
  12607. // load base model tensor data
  12608. if (ml) {
  12609. ml->load_data_for(base_t);
  12610. } else {
  12611. ggml_backend_tensor_copy(model_t, base_t);
  12612. }
  12613. if (ggml_is_quantized(base_t->type) && !warned) {
  12614. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12615. "use a f16 or f32 base model with --lora-base\n", __func__);
  12616. warned = true;
  12617. }
  12618. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12619. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12620. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12621. ggml_free(lora_ctx);
  12622. ggml_backend_buffer_free(lora_buf);
  12623. ggml_backend_free(backend_cpu);
  12624. return 1;
  12625. }
  12626. auto build_lora_graph = [&]() {
  12627. // w = w + BA*s
  12628. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12629. ggml_set_name(BA, "BA");
  12630. if (scaling != 1.0f) {
  12631. BA = ggml_scale(lora_ctx, BA, scaling);
  12632. ggml_set_name(BA, "BA_scaled");
  12633. }
  12634. ggml_tensor * r;
  12635. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12636. ggml_set_name(r, "r_add");
  12637. if (base_t->type != model_t->type) {
  12638. // convert the result to the model type
  12639. r = ggml_cast(lora_ctx, r, model_t->type);
  12640. ggml_set_name(r, "r_cast");
  12641. }
  12642. return r;
  12643. };
  12644. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12645. ggml_tensor * r = build_lora_graph();
  12646. ggml_build_forward_expand(gf, r);
  12647. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12648. if (graph_buf == nullptr) {
  12649. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12650. ggml_free(lora_ctx);
  12651. ggml_backend_buffer_free(lora_buf);
  12652. ggml_backend_free(backend_cpu);
  12653. return 1;
  12654. }
  12655. ggml_backend_graph_compute(backend_cpu, gf);
  12656. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12657. #if 0
  12658. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12659. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12660. // sched compute
  12661. ggml_build_forward_expand(gf, build_graph());
  12662. ggml_backend_sched_init_measure(sched, gf);
  12663. // create the graph again, since the previous one was destroyed by the measure
  12664. ggml_graph_clear(gf);
  12665. ggml_build_forward_expand(gf, build_graph());
  12666. ggml_backend_sched_graph_compute(sched, gf);
  12667. ggml_backend_sched_free(sched);
  12668. #endif
  12669. ggml_backend_buffer_free(lora_buf);
  12670. ggml_backend_buffer_free(graph_buf);
  12671. ggml_free(lora_ctx);
  12672. n_tensors++;
  12673. if (n_tensors % 4 == 0) {
  12674. LLAMA_LOG_INFO(".");
  12675. }
  12676. }
  12677. ggml_backend_free(backend_cpu);
  12678. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12679. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12680. return 0;
  12681. }
  12682. //
  12683. // interface implementation
  12684. //
  12685. struct llama_model_params llama_model_default_params() {
  12686. struct llama_model_params result = {
  12687. /*.n_gpu_layers =*/ 0,
  12688. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12689. /*.main_gpu =*/ 0,
  12690. /*.tensor_split =*/ nullptr,
  12691. /*.rpc_servers =*/ nullptr,
  12692. /*.progress_callback =*/ nullptr,
  12693. /*.progress_callback_user_data =*/ nullptr,
  12694. /*.kv_overrides =*/ nullptr,
  12695. /*.vocab_only =*/ false,
  12696. /*.use_mmap =*/ true,
  12697. /*.use_mlock =*/ false,
  12698. /*.check_tensors =*/ false,
  12699. };
  12700. #ifdef GGML_USE_METAL
  12701. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12702. result.n_gpu_layers = 999;
  12703. #endif
  12704. return result;
  12705. }
  12706. struct llama_context_params llama_context_default_params() {
  12707. struct llama_context_params result = {
  12708. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12709. /*.n_ctx =*/ 512,
  12710. /*.n_batch =*/ 2048,
  12711. /*.n_ubatch =*/ 512,
  12712. /*.n_seq_max =*/ 1,
  12713. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12714. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12715. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12716. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12717. /*.rope_freq_base =*/ 0.0f,
  12718. /*.rope_freq_scale =*/ 0.0f,
  12719. /*.yarn_ext_factor =*/ -1.0f,
  12720. /*.yarn_attn_factor =*/ 1.0f,
  12721. /*.yarn_beta_fast =*/ 32.0f,
  12722. /*.yarn_beta_slow =*/ 1.0f,
  12723. /*.yarn_orig_ctx =*/ 0,
  12724. /*.defrag_thold =*/ -1.0f,
  12725. /*.cb_eval =*/ nullptr,
  12726. /*.cb_eval_user_data =*/ nullptr,
  12727. /*.type_k =*/ GGML_TYPE_F16,
  12728. /*.type_v =*/ GGML_TYPE_F16,
  12729. /*.logits_all =*/ false,
  12730. /*.embeddings =*/ false,
  12731. /*.offload_kqv =*/ true,
  12732. /*.flash_attn =*/ false,
  12733. /*.abort_callback =*/ nullptr,
  12734. /*.abort_callback_data =*/ nullptr,
  12735. };
  12736. return result;
  12737. }
  12738. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12739. struct llama_model_quantize_params result = {
  12740. /*.nthread =*/ 0,
  12741. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12742. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12743. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12744. /*.allow_requantize =*/ false,
  12745. /*.quantize_output_tensor =*/ true,
  12746. /*.only_copy =*/ false,
  12747. /*.pure =*/ false,
  12748. /*.keep_split =*/ false,
  12749. /*.imatrix =*/ nullptr,
  12750. /*.kv_overrides =*/ nullptr,
  12751. };
  12752. return result;
  12753. }
  12754. size_t llama_max_devices(void) {
  12755. #if defined(GGML_USE_RPC)
  12756. return GGML_RPC_MAX_SERVERS;
  12757. #elif defined(GGML_USE_METAL)
  12758. return 1;
  12759. #elif defined(GGML_USE_CUDA)
  12760. return GGML_CUDA_MAX_DEVICES;
  12761. #elif defined(GGML_USE_SYCL)
  12762. return GGML_SYCL_MAX_DEVICES;
  12763. #elif defined(GGML_USE_VULKAN)
  12764. return GGML_VK_MAX_DEVICES;
  12765. #else
  12766. return 1;
  12767. #endif
  12768. }
  12769. bool llama_supports_mmap(void) {
  12770. return llama_mmap::SUPPORTED;
  12771. }
  12772. bool llama_supports_mlock(void) {
  12773. return llama_mlock::SUPPORTED;
  12774. }
  12775. bool llama_supports_gpu_offload(void) {
  12776. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12777. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  12778. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12779. return true;
  12780. #else
  12781. return false;
  12782. #endif
  12783. }
  12784. void llama_backend_init(void) {
  12785. ggml_time_init();
  12786. // needed to initialize f16 tables
  12787. {
  12788. struct ggml_init_params params = { 0, NULL, false };
  12789. struct ggml_context * ctx = ggml_init(params);
  12790. ggml_free(ctx);
  12791. }
  12792. }
  12793. void llama_numa_init(enum ggml_numa_strategy numa) {
  12794. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12795. ggml_numa_init(numa);
  12796. }
  12797. }
  12798. void llama_backend_free(void) {
  12799. ggml_quantize_free();
  12800. }
  12801. int64_t llama_time_us(void) {
  12802. return ggml_time_us();
  12803. }
  12804. struct llama_model * llama_load_model_from_file(
  12805. const char * path_model,
  12806. struct llama_model_params params) {
  12807. ggml_time_init();
  12808. llama_model * model = new llama_model;
  12809. unsigned cur_percentage = 0;
  12810. if (params.progress_callback == NULL) {
  12811. params.progress_callback_user_data = &cur_percentage;
  12812. params.progress_callback = [](float progress, void * ctx) {
  12813. unsigned * cur_percentage_p = (unsigned *) ctx;
  12814. unsigned percentage = (unsigned) (100 * progress);
  12815. while (percentage > *cur_percentage_p) {
  12816. *cur_percentage_p = percentage;
  12817. LLAMA_LOG_INFO(".");
  12818. if (percentage >= 100) {
  12819. LLAMA_LOG_INFO("\n");
  12820. }
  12821. }
  12822. return true;
  12823. };
  12824. }
  12825. if (params.rpc_servers != nullptr) {
  12826. // split the servers set them into model->rpc_servers
  12827. std::string servers(params.rpc_servers);
  12828. size_t pos = 0;
  12829. while ((pos = servers.find(",")) != std::string::npos) {
  12830. std::string server = servers.substr(0, pos);
  12831. model->rpc_servers.push_back(server);
  12832. servers.erase(0, pos + 1);
  12833. }
  12834. model->rpc_servers.push_back(servers);
  12835. }
  12836. int status = llama_model_load(path_model, *model, params);
  12837. GGML_ASSERT(status <= 0);
  12838. if (status < 0) {
  12839. if (status == -1) {
  12840. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12841. } else if (status == -2) {
  12842. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12843. }
  12844. delete model;
  12845. return nullptr;
  12846. }
  12847. return model;
  12848. }
  12849. void llama_free_model(struct llama_model * model) {
  12850. delete model;
  12851. }
  12852. struct llama_context * llama_new_context_with_model(
  12853. struct llama_model * model,
  12854. struct llama_context_params params) {
  12855. if (!model) {
  12856. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12857. return nullptr;
  12858. }
  12859. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12860. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12861. return nullptr;
  12862. }
  12863. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12864. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12865. return nullptr;
  12866. }
  12867. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  12868. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  12869. params.flash_attn = false;
  12870. }
  12871. llama_context * ctx = new llama_context(*model);
  12872. const auto & hparams = model->hparams;
  12873. auto & cparams = ctx->cparams;
  12874. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12875. cparams.n_threads = params.n_threads;
  12876. cparams.n_threads_batch = params.n_threads_batch;
  12877. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12878. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12879. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12880. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12881. cparams.defrag_thold = params.defrag_thold;
  12882. cparams.embeddings = params.embeddings;
  12883. cparams.offload_kqv = params.offload_kqv;
  12884. cparams.flash_attn = params.flash_attn;
  12885. cparams.pooling_type = params.pooling_type;
  12886. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12887. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12888. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12889. // this is necessary due to kv_self.n being padded later during inference
  12890. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  12891. // with causal attention, the batch size is limited by the context size
  12892. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12893. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  12894. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  12895. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  12896. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  12897. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  12898. cparams.n_batch = GGML_KQ_MASK_PAD;
  12899. }
  12900. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12901. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12902. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12903. hparams.n_ctx_train;
  12904. cparams.cb_eval = params.cb_eval;
  12905. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12906. auto rope_scaling_type = params.rope_scaling_type;
  12907. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12908. rope_scaling_type = hparams.rope_scaling_type_train;
  12909. }
  12910. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12911. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12912. }
  12913. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12914. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12915. }
  12916. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  12917. cparams.causal_attn = hparams.causal_attn;
  12918. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12919. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12920. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12921. } else {
  12922. cparams.pooling_type = hparams.pooling_type;
  12923. }
  12924. }
  12925. if (params.seed == LLAMA_DEFAULT_SEED) {
  12926. params.seed = time(NULL);
  12927. }
  12928. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12929. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12930. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12931. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  12932. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12933. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12934. ctx->abort_callback = params.abort_callback;
  12935. ctx->abort_callback_data = params.abort_callback_data;
  12936. ctx->rng = std::mt19937(params.seed);
  12937. ctx->logits_all = params.logits_all;
  12938. uint32_t kv_size = cparams.n_ctx;
  12939. ggml_type type_k = params.type_k;
  12940. ggml_type type_v = params.type_v;
  12941. // Mamba only needs a constant number of KV cache cells per sequence
  12942. if (model->arch == LLM_ARCH_MAMBA) {
  12943. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12944. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12945. // it's probably best to keep as much precision as possible for the states
  12946. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12947. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12948. }
  12949. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12950. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12951. if (!hparams.vocab_only) {
  12952. // initialize backends
  12953. #if defined(GGML_USE_RPC)
  12954. for (auto & server : model->rpc_servers) {
  12955. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  12956. if (backend == nullptr) {
  12957. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  12958. llama_free(ctx);
  12959. return nullptr;
  12960. }
  12961. ctx->backends.push_back(backend);
  12962. }
  12963. #elif defined(GGML_USE_METAL)
  12964. if (model->n_gpu_layers > 0) {
  12965. ctx->backend_metal = ggml_backend_metal_init();
  12966. if (ctx->backend_metal == nullptr) {
  12967. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12968. llama_free(ctx);
  12969. return nullptr;
  12970. }
  12971. ctx->backends.push_back(ctx->backend_metal);
  12972. }
  12973. #elif defined(GGML_USE_CUDA)
  12974. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12975. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12976. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12977. if (backend == nullptr) {
  12978. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12979. llama_free(ctx);
  12980. return nullptr;
  12981. }
  12982. ctx->backends.push_back(backend);
  12983. } else {
  12984. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12985. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12986. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12987. if (backend == nullptr) {
  12988. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12989. llama_free(ctx);
  12990. return nullptr;
  12991. }
  12992. ctx->backends.push_back(backend);
  12993. }
  12994. }
  12995. #elif defined(GGML_USE_VULKAN)
  12996. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12997. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12998. llama_free(ctx);
  12999. return nullptr;
  13000. }
  13001. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13002. ggml_backend_t backend = ggml_backend_vk_init(0);
  13003. if (backend == nullptr) {
  13004. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13005. llama_free(ctx);
  13006. return nullptr;
  13007. }
  13008. ctx->backends.push_back(backend);
  13009. } else {
  13010. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13011. ggml_backend_t backend = ggml_backend_vk_init(device);
  13012. if (backend == nullptr) {
  13013. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13014. llama_free(ctx);
  13015. return nullptr;
  13016. }
  13017. ctx->backends.push_back(backend);
  13018. }
  13019. }
  13020. #elif defined(GGML_USE_SYCL)
  13021. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13022. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13023. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13024. if (backend == nullptr) {
  13025. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13026. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13027. llama_free(ctx);
  13028. return nullptr;
  13029. }
  13030. ctx->backends.push_back(backend);
  13031. } else {
  13032. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13033. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13034. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13035. if (backend == nullptr) {
  13036. int id_list[GGML_SYCL_MAX_DEVICES];
  13037. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13038. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13039. llama_free(ctx);
  13040. return nullptr;
  13041. }
  13042. ctx->backends.push_back(backend);
  13043. }
  13044. }
  13045. #elif defined(GGML_USE_KOMPUTE)
  13046. if (model->n_gpu_layers > 0) {
  13047. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13048. if (backend == nullptr) {
  13049. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13050. llama_free(ctx);
  13051. return nullptr;
  13052. }
  13053. ctx->backends.push_back(backend);
  13054. }
  13055. #endif
  13056. ctx->backend_cpu = ggml_backend_cpu_init();
  13057. if (ctx->backend_cpu == nullptr) {
  13058. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13059. llama_free(ctx);
  13060. return nullptr;
  13061. }
  13062. ctx->backends.push_back(ctx->backend_cpu);
  13063. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13064. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13065. llama_free(ctx);
  13066. return nullptr;
  13067. }
  13068. {
  13069. size_t memory_size_k = 0;
  13070. size_t memory_size_v = 0;
  13071. for (auto & k : ctx->kv_self.k_l) {
  13072. memory_size_k += ggml_nbytes(k);
  13073. }
  13074. for (auto & v : ctx->kv_self.v_l) {
  13075. memory_size_v += ggml_nbytes(v);
  13076. }
  13077. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13078. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13079. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13080. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13081. }
  13082. // graph outputs buffer
  13083. {
  13084. // resized during inference when a batch uses more outputs
  13085. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13086. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13087. llama_free(ctx);
  13088. return nullptr;
  13089. }
  13090. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13091. ggml_backend_buffer_name(ctx->buf_output),
  13092. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13093. }
  13094. // scheduler and compute buffers
  13095. {
  13096. // buffer types used for the compute buffer of each backend
  13097. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13098. for (auto * backend : ctx->backends) {
  13099. if (ggml_backend_is_cpu(backend)) {
  13100. // use host buffers for the CPU backend compute buffer
  13101. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13102. } else {
  13103. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13104. }
  13105. }
  13106. // buffer used to store the computation graph and the tensor meta data
  13107. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13108. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13109. bool pipeline_parallel =
  13110. llama_get_device_count(*model) > 1 &&
  13111. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13112. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13113. params.offload_kqv;
  13114. #ifndef GGML_USE_CUDA
  13115. // pipeline parallelism requires support for async compute and events
  13116. // currently this is only implemented in the CUDA backend
  13117. pipeline_parallel = false;
  13118. #endif
  13119. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13120. if (pipeline_parallel) {
  13121. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13122. }
  13123. // build worst-case graph
  13124. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13125. int n_past = cparams.n_ctx - n_tokens;
  13126. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13127. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13128. // initialize scheduler with the worst-case graph
  13129. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13130. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13131. llama_free(ctx);
  13132. return nullptr;
  13133. }
  13134. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13135. ggml_backend_t backend = ctx->backends[i];
  13136. ggml_backend_buffer_type_t buft = backend_buft[i];
  13137. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13138. if (size > 1) {
  13139. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13140. ggml_backend_buft_name(buft),
  13141. size / 1024.0 / 1024.0);
  13142. }
  13143. }
  13144. // note: the number of splits during measure is higher than during inference due to the kv shift
  13145. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13146. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13147. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13148. }
  13149. }
  13150. return ctx;
  13151. }
  13152. void llama_free(struct llama_context * ctx) {
  13153. delete ctx;
  13154. }
  13155. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13156. return &ctx->model;
  13157. }
  13158. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13159. return ctx->cparams.n_ctx;
  13160. }
  13161. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13162. return ctx->cparams.n_batch;
  13163. }
  13164. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13165. return ctx->cparams.n_ubatch;
  13166. }
  13167. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13168. return ctx->kv_self.size;
  13169. }
  13170. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13171. return model->vocab.type;
  13172. }
  13173. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13174. switch (model->arch) {
  13175. // these models do not use RoPE
  13176. case LLM_ARCH_GPT2:
  13177. case LLM_ARCH_GPTJ:
  13178. case LLM_ARCH_GPTNEOX:
  13179. case LLM_ARCH_MPT:
  13180. case LLM_ARCH_REFACT:
  13181. case LLM_ARCH_BLOOM:
  13182. case LLM_ARCH_MAMBA:
  13183. case LLM_ARCH_JINA_BERT_V2:
  13184. return LLAMA_ROPE_TYPE_NONE;
  13185. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13186. case LLM_ARCH_LLAMA:
  13187. case LLM_ARCH_BAICHUAN:
  13188. case LLM_ARCH_STARCODER:
  13189. case LLM_ARCH_PLAMO:
  13190. case LLM_ARCH_CODESHELL:
  13191. case LLM_ARCH_ORION:
  13192. case LLM_ARCH_INTERNLM2:
  13193. case LLM_ARCH_MINICPM:
  13194. case LLM_ARCH_XVERSE:
  13195. case LLM_ARCH_COMMAND_R:
  13196. case LLM_ARCH_OLMO:
  13197. return LLAMA_ROPE_TYPE_NORM;
  13198. // the pairs of head values are offset by n_rot/2
  13199. case LLM_ARCH_FALCON:
  13200. case LLM_ARCH_GROK:
  13201. case LLM_ARCH_DBRX:
  13202. case LLM_ARCH_BERT:
  13203. case LLM_ARCH_NOMIC_BERT:
  13204. case LLM_ARCH_STABLELM:
  13205. case LLM_ARCH_QWEN:
  13206. case LLM_ARCH_QWEN2:
  13207. case LLM_ARCH_QWEN2MOE:
  13208. case LLM_ARCH_PHI2:
  13209. case LLM_ARCH_PHI3:
  13210. case LLM_ARCH_GEMMA:
  13211. case LLM_ARCH_STARCODER2:
  13212. return LLAMA_ROPE_TYPE_NEOX;
  13213. // all model arches should be listed explicitly here
  13214. case LLM_ARCH_UNKNOWN:
  13215. GGML_ASSERT(false && "unknown architecture");
  13216. break;
  13217. }
  13218. return LLAMA_ROPE_TYPE_NONE;
  13219. }
  13220. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13221. return ctx->cparams.pooling_type;
  13222. }
  13223. int32_t llama_n_vocab(const struct llama_model * model) {
  13224. return model->hparams.n_vocab;
  13225. }
  13226. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13227. return model->hparams.n_ctx_train;
  13228. }
  13229. int32_t llama_n_embd(const struct llama_model * model) {
  13230. return model->hparams.n_embd;
  13231. }
  13232. int32_t llama_n_layer(const struct llama_model * model) {
  13233. return model->hparams.n_layer;
  13234. }
  13235. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13236. return model->hparams.rope_freq_scale_train;
  13237. }
  13238. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13239. const auto & it = model->gguf_kv.find(key);
  13240. if (it == model->gguf_kv.end()) {
  13241. if (buf_size > 0) {
  13242. buf[0] = '\0';
  13243. }
  13244. return -1;
  13245. }
  13246. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13247. }
  13248. int32_t llama_model_meta_count(const struct llama_model * model) {
  13249. return (int)model->gguf_kv.size();
  13250. }
  13251. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13252. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13253. if (buf_size > 0) {
  13254. buf[0] = '\0';
  13255. }
  13256. return -1;
  13257. }
  13258. auto it = model->gguf_kv.begin();
  13259. std::advance(it, i);
  13260. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13261. }
  13262. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13263. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13264. if (buf_size > 0) {
  13265. buf[0] = '\0';
  13266. }
  13267. return -1;
  13268. }
  13269. auto it = model->gguf_kv.begin();
  13270. std::advance(it, i);
  13271. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13272. }
  13273. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13274. return snprintf(buf, buf_size, "%s %s %s",
  13275. llama_model_arch_name(model->arch),
  13276. llama_model_type_name(model->type),
  13277. llama_model_ftype_name(model->ftype).c_str());
  13278. }
  13279. uint64_t llama_model_size(const struct llama_model * model) {
  13280. uint64_t size = 0;
  13281. for (const auto & it : model->tensors_by_name) {
  13282. size += ggml_nbytes(it.second);
  13283. }
  13284. return size;
  13285. }
  13286. uint64_t llama_model_n_params(const struct llama_model * model) {
  13287. uint64_t nparams = 0;
  13288. for (const auto & it : model->tensors_by_name) {
  13289. nparams += ggml_nelements(it.second);
  13290. }
  13291. return nparams;
  13292. }
  13293. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13294. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13295. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13296. return it.first == name;
  13297. });
  13298. if (it == model->tensors_by_name.end()) {
  13299. return nullptr;
  13300. }
  13301. return it->second;
  13302. }
  13303. uint32_t llama_model_quantize(
  13304. const char * fname_inp,
  13305. const char * fname_out,
  13306. const llama_model_quantize_params * params) {
  13307. try {
  13308. llama_model_quantize_internal(fname_inp, fname_out, params);
  13309. return 0;
  13310. } catch (const std::exception & err) {
  13311. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13312. return 1;
  13313. }
  13314. }
  13315. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13316. try {
  13317. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13318. } catch (const std::exception & err) {
  13319. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13320. return 1;
  13321. }
  13322. }
  13323. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13324. GGML_ASSERT(cvec.tensors.empty());
  13325. GGML_ASSERT(cvec.ctxs.empty());
  13326. GGML_ASSERT(cvec.bufs.empty());
  13327. // count layer buffer types
  13328. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13329. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13330. buft_layer_count[model.buft_layer[i].buft]++;
  13331. }
  13332. // allocate contexts
  13333. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13334. for (auto & it : buft_layer_count) {
  13335. int n_layers = it.second;
  13336. struct ggml_init_params params = {
  13337. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13338. /*.mem_buffer =*/ NULL,
  13339. /*.no_alloc =*/ true,
  13340. };
  13341. ggml_context * ctx = ggml_init(params);
  13342. if (!ctx) {
  13343. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13344. return 1;
  13345. }
  13346. ctx_map[it.first] = ctx;
  13347. }
  13348. // make tensors
  13349. cvec.tensors.reserve(model.hparams.n_layer);
  13350. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13351. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13352. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13353. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13354. cvec.tensors.push_back(tensor);
  13355. }
  13356. // allocate tensors / buffers and zero
  13357. cvec.ctxs.reserve(ctx_map.size());
  13358. cvec.bufs.reserve(ctx_map.size());
  13359. for (auto it : ctx_map) {
  13360. ggml_backend_buffer_type_t buft = it.first;
  13361. ggml_context * ctx = it.second;
  13362. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13363. if (!buf) {
  13364. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13365. return false;
  13366. }
  13367. ggml_backend_buffer_clear(buf, 0);
  13368. cvec.ctxs.push_back(ctx);
  13369. cvec.bufs.push_back(buf);
  13370. }
  13371. return true;
  13372. }
  13373. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13374. const llama_model & model = lctx->model;
  13375. llama_control_vector & cvec = lctx->cvec;
  13376. if (data == nullptr) {
  13377. // disable the current control vector (but leave allocated for later)
  13378. cvec.layer_start = -1;
  13379. cvec.layer_end = -1;
  13380. return 0;
  13381. }
  13382. if (n_embd != (int) model.hparams.n_embd) {
  13383. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13384. return 1;
  13385. }
  13386. if (cvec.tensors.empty()) {
  13387. if (!llama_control_vector_init(cvec, model)) {
  13388. return 1;
  13389. }
  13390. }
  13391. cvec.layer_start = il_start;
  13392. cvec.layer_end = il_end;
  13393. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13394. assert(cvec.tensors[il] != nullptr);
  13395. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13396. if (off + n_embd <= len) {
  13397. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13398. }
  13399. }
  13400. return 0;
  13401. }
  13402. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13403. struct llama_kv_cache_view result = {
  13404. /*.n_cells = */ 0,
  13405. /*.n_seq_max = */ n_seq_max,
  13406. /*.token_count = */ 0,
  13407. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13408. /*.max_contiguous = */ 0,
  13409. /*.max_contiguous_idx = */ -1,
  13410. /*.cells = */ nullptr,
  13411. /*.cells_sequences = */ nullptr,
  13412. };
  13413. return result;
  13414. }
  13415. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13416. if (view->cells != nullptr) {
  13417. free(view->cells);
  13418. view->cells = nullptr;
  13419. }
  13420. if (view->cells_sequences != nullptr) {
  13421. free(view->cells_sequences);
  13422. view->cells_sequences = nullptr;
  13423. }
  13424. }
  13425. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13426. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13427. view->n_cells = int32_t(ctx->kv_self.size);
  13428. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13429. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13430. view->cells = (struct llama_kv_cache_view_cell *)p;
  13431. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13432. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13433. view->cells_sequences = (llama_seq_id *)p;
  13434. }
  13435. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13436. llama_kv_cache_view_cell * c_curr = view->cells;
  13437. llama_seq_id * cs_curr = view->cells_sequences;
  13438. int32_t used_cells = 0;
  13439. int32_t token_count = 0;
  13440. int32_t curr_contig_idx = -1;
  13441. uint32_t max_contig = 0;
  13442. int32_t max_contig_idx = -1;
  13443. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13444. const size_t curr_size = kv_cells[i].seq_id.size();
  13445. token_count += curr_size;
  13446. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13447. if (curr_size > 0) {
  13448. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13449. max_contig = i - curr_contig_idx;
  13450. max_contig_idx = curr_contig_idx;
  13451. }
  13452. curr_contig_idx = -1;
  13453. } else if (curr_contig_idx < 0) {
  13454. curr_contig_idx = i;
  13455. }
  13456. int seq_idx = 0;
  13457. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13458. if (seq_idx >= view->n_seq_max) {
  13459. break;
  13460. }
  13461. cs_curr[seq_idx] = it;
  13462. seq_idx++;
  13463. }
  13464. if (seq_idx != 0) {
  13465. used_cells++;
  13466. }
  13467. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13468. cs_curr[seq_idx] = -1;
  13469. }
  13470. }
  13471. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13472. max_contig_idx = curr_contig_idx;
  13473. max_contig = kv_cells.size() - curr_contig_idx;
  13474. }
  13475. view->max_contiguous = max_contig;
  13476. view->max_contiguous_idx = max_contig_idx;
  13477. view->token_count = token_count;
  13478. view->used_cells = used_cells;
  13479. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13480. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13481. __func__, ctx->kv_self.used, used_cells);
  13482. }
  13483. }
  13484. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13485. int result = 0;
  13486. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13487. result += ctx->kv_self.cells[i].seq_id.size();
  13488. }
  13489. return result;
  13490. }
  13491. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13492. return ctx->kv_self.used;
  13493. }
  13494. void llama_kv_cache_clear(struct llama_context * ctx) {
  13495. llama_kv_cache_clear(ctx->kv_self);
  13496. }
  13497. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13498. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13499. }
  13500. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13501. if (seq_id_src == seq_id_dst) {
  13502. return;
  13503. }
  13504. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13505. }
  13506. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13507. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13508. }
  13509. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13510. if (delta == 0) {
  13511. return;
  13512. }
  13513. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13514. }
  13515. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13516. if (d == 1) {
  13517. return;
  13518. }
  13519. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13520. }
  13521. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13522. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13523. }
  13524. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13525. llama_kv_cache_defrag(ctx->kv_self);
  13526. }
  13527. void llama_kv_cache_update(struct llama_context * ctx) {
  13528. llama_kv_cache_update_internal(*ctx);
  13529. }
  13530. // deprecated
  13531. size_t llama_get_state_size(const struct llama_context * ctx) {
  13532. return llama_state_get_size(ctx);
  13533. }
  13534. // deprecated
  13535. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13536. return llama_state_get_data(ctx, dst);
  13537. }
  13538. // deprecated
  13539. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13540. return llama_state_set_data(ctx, src);
  13541. }
  13542. // deprecated
  13543. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13544. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13545. }
  13546. // deprecated
  13547. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13548. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13549. }
  13550. // Returns the *maximum* size of the state
  13551. size_t llama_state_get_size(const struct llama_context * ctx) {
  13552. const auto & cparams = ctx->cparams;
  13553. const auto & hparams = ctx->model.hparams;
  13554. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13555. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13556. const size_t s_rng_size = sizeof(size_t);
  13557. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13558. const size_t s_n_outputs = sizeof(size_t);
  13559. // assume worst case for outputs although only currently set ones are serialized
  13560. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13561. const size_t s_logits_size = sizeof(size_t);
  13562. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13563. const size_t s_embedding_size = sizeof(size_t);
  13564. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13565. const size_t s_kv_buf_size = sizeof(size_t);
  13566. const size_t s_kv_head = sizeof(uint32_t);
  13567. const size_t s_kv_size = sizeof(uint32_t);
  13568. const size_t s_kv_used = sizeof(uint32_t);
  13569. const size_t s_v_trans = sizeof(uint32_t);
  13570. const size_t s_kv = ctx->kv_self.total_size();
  13571. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13572. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13573. const size_t s_total = (
  13574. + s_rng_size
  13575. + s_rng
  13576. + s_n_outputs
  13577. + s_output_pos
  13578. + s_logits_size
  13579. + s_logits
  13580. + s_embedding_size
  13581. + s_embedding
  13582. + s_kv_buf_size
  13583. + s_kv_head
  13584. + s_kv_size
  13585. + s_kv_used
  13586. + s_v_trans
  13587. + s_kv
  13588. + s_kv_cells
  13589. );
  13590. // on session change it is very likely that the state size has changed - so we need to update this function
  13591. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13592. return s_total;
  13593. }
  13594. // llama_context_data
  13595. struct llama_data_context {
  13596. virtual void write(const void * src, size_t size) = 0;
  13597. virtual size_t get_size_written() = 0;
  13598. virtual ~llama_data_context() = default;
  13599. };
  13600. struct llama_data_buffer_context : llama_data_context {
  13601. uint8_t * ptr;
  13602. size_t size_written = 0;
  13603. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13604. void write(const void * src, size_t size) override {
  13605. memcpy(ptr, src, size);
  13606. ptr += size;
  13607. size_written += size;
  13608. }
  13609. size_t get_size_written() override {
  13610. return size_written;
  13611. }
  13612. };
  13613. struct llama_data_file_context : llama_data_context {
  13614. llama_file * file;
  13615. size_t size_written = 0;
  13616. llama_data_file_context(llama_file * f) : file(f) {}
  13617. void write(const void * src, size_t size) override {
  13618. file->write_raw(src, size);
  13619. size_written += size;
  13620. }
  13621. size_t get_size_written() override {
  13622. return size_written;
  13623. }
  13624. };
  13625. /** copy state data into either a buffer or file depending on the passed in context
  13626. *
  13627. * file context:
  13628. * llama_file file("/path", "wb");
  13629. * llama_data_file_context data_ctx(&file);
  13630. * llama_state_get_data(ctx, &data_ctx);
  13631. *
  13632. * buffer context:
  13633. * std::vector<uint8_t> buf(max_size, 0);
  13634. * llama_data_buffer_context data_ctx(&buf.data());
  13635. * llama_state_get_data(ctx, &data_ctx);
  13636. *
  13637. */
  13638. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13639. llama_synchronize(ctx);
  13640. // copy rng
  13641. {
  13642. std::ostringstream rng_ss;
  13643. rng_ss << ctx->rng;
  13644. const std::string & rng_str = rng_ss.str();
  13645. const size_t rng_size = rng_str.size();
  13646. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13647. data_ctx->write(&rng_size, sizeof(rng_size));
  13648. data_ctx->write(rng_str.data(), rng_size);
  13649. }
  13650. // copy outputs
  13651. {
  13652. // Can't use ctx->n_outputs because it's not for the
  13653. // entire last batch when n_ubatch is smaller than n_batch
  13654. size_t n_outputs = 0;
  13655. // copy output ids
  13656. {
  13657. std::vector<int32_t> output_pos;
  13658. const size_t n_batch = ctx->cparams.n_batch;
  13659. const auto & output_ids = ctx->output_ids;
  13660. output_pos.resize(ctx->output_size);
  13661. // build a more compact representation of the output ids
  13662. for (size_t i = 0; i < n_batch; ++i) {
  13663. // map an output id to a position in the batch
  13664. int32_t pos = output_ids[i];
  13665. if (pos >= 0) {
  13666. if ((size_t) pos >= n_outputs) {
  13667. n_outputs = pos + 1;
  13668. }
  13669. GGML_ASSERT((size_t) pos < ctx->output_size);
  13670. output_pos[pos] = i;
  13671. }
  13672. }
  13673. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13674. if (n_outputs) {
  13675. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13676. }
  13677. }
  13678. // copy logits
  13679. {
  13680. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13681. data_ctx->write(&logits_size, sizeof(logits_size));
  13682. if (logits_size) {
  13683. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13684. }
  13685. }
  13686. // copy embeddings
  13687. {
  13688. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13689. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13690. if (embeddings_size) {
  13691. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13692. }
  13693. }
  13694. }
  13695. // copy kv cache
  13696. {
  13697. const auto & kv_self = ctx->kv_self;
  13698. const auto & hparams = ctx->model.hparams;
  13699. const uint32_t n_layer = hparams.n_layer;
  13700. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13701. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13702. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13703. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13704. const uint32_t kv_size = kv_self.size;
  13705. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13706. const uint32_t kv_used = kv_self.used;
  13707. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13708. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13709. data_ctx->write(&kv_head, sizeof(kv_head));
  13710. data_ctx->write(&kv_size, sizeof(kv_size));
  13711. data_ctx->write(&kv_used, sizeof(kv_used));
  13712. data_ctx->write(&v_trans, sizeof(v_trans));
  13713. if (kv_buf_size) {
  13714. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13715. std::vector<uint8_t> tmp_buf;
  13716. for (int il = 0; il < (int) n_layer; ++il) {
  13717. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13718. tmp_buf.resize(k_size);
  13719. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13720. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13721. if (kv_self.recurrent || !kv_self.v_trans) {
  13722. // v is contiguous for recurrent models
  13723. // TODO: use other tensors for state models than k and v
  13724. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13725. tmp_buf.resize(v_size);
  13726. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13727. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13728. continue;
  13729. }
  13730. // v is not contiguous, copy row by row
  13731. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13732. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13733. tmp_buf.resize(v_row_size);
  13734. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13735. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13736. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13737. }
  13738. }
  13739. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13740. }
  13741. for (uint32_t i = 0; i < kv_head; ++i) {
  13742. const auto & cell = kv_self.cells[i];
  13743. const llama_pos pos = cell.pos;
  13744. const size_t seq_id_size = cell.seq_id.size();
  13745. data_ctx->write(&pos, sizeof(pos));
  13746. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13747. for (auto seq_id : cell.seq_id) {
  13748. data_ctx->write(&seq_id, sizeof(seq_id));
  13749. }
  13750. }
  13751. }
  13752. }
  13753. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13754. llama_data_buffer_context data_ctx(dst);
  13755. llama_state_get_data_internal(ctx, &data_ctx);
  13756. return data_ctx.get_size_written();
  13757. }
  13758. // Sets the state reading from the specified source address
  13759. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13760. llama_synchronize(ctx);
  13761. const uint8_t * inp = src;
  13762. // set rng
  13763. {
  13764. size_t rng_size;
  13765. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13766. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13767. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13768. std::istringstream rng_ss(rng_str);
  13769. rng_ss >> ctx->rng;
  13770. GGML_ASSERT(!rng_ss.fail());
  13771. }
  13772. // set output ids
  13773. {
  13774. size_t n_outputs;
  13775. std::vector<int32_t> output_pos;
  13776. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13777. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13778. if (n_outputs) {
  13779. output_pos.resize(n_outputs);
  13780. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13781. inp += n_outputs * sizeof(int32_t);
  13782. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13783. int32_t id = output_pos[i];
  13784. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13785. ctx->output_ids[id] = i;
  13786. }
  13787. ctx->n_outputs = n_outputs;
  13788. }
  13789. }
  13790. // set logits
  13791. {
  13792. size_t logits_size;
  13793. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13794. GGML_ASSERT(ctx->logits_size >= logits_size);
  13795. if (logits_size) {
  13796. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13797. inp += logits_size * sizeof(float);
  13798. }
  13799. }
  13800. // set embeddings
  13801. {
  13802. size_t embeddings_size;
  13803. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13804. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13805. if (embeddings_size) {
  13806. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13807. inp += embeddings_size * sizeof(float);
  13808. }
  13809. }
  13810. // set kv cache
  13811. {
  13812. const auto & kv_self = ctx->kv_self;
  13813. const auto & hparams = ctx->model.hparams;
  13814. const uint32_t n_layer = hparams.n_layer;
  13815. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13816. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13817. size_t kv_buf_size;
  13818. uint32_t kv_head;
  13819. uint32_t kv_size;
  13820. uint32_t kv_used;
  13821. uint32_t v_trans;
  13822. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13823. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13824. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13825. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13826. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  13827. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  13828. if (kv_self.size != kv_size) {
  13829. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13830. GGML_ASSERT(kv_self.size >= kv_head);
  13831. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13832. __func__, kv_head, kv_size, kv_self.size);
  13833. }
  13834. llama_kv_cache_clear(ctx);
  13835. if (kv_buf_size) {
  13836. const size_t pre_kv_buf_size = inp - src;
  13837. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13838. for (int il = 0; il < (int) n_layer; ++il) {
  13839. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13840. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13841. inp += k_size;
  13842. if (kv_self.recurrent || !kv_self.v_trans) {
  13843. // v is contiguous for recurrent models
  13844. // TODO: use other tensors for state models than k and v
  13845. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13846. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13847. inp += v_size;
  13848. continue;
  13849. }
  13850. // v is not contiguous, copy row by row
  13851. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13852. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13853. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13854. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13855. inp += v_row_size;
  13856. }
  13857. }
  13858. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13859. }
  13860. ctx->kv_self.head = kv_head;
  13861. ctx->kv_self.used = kv_used;
  13862. for (uint32_t i = 0; i < kv_head; ++i) {
  13863. llama_pos pos;
  13864. size_t seq_id_size;
  13865. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13866. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13867. ctx->kv_self.cells[i].pos = pos;
  13868. llama_seq_id seq_id;
  13869. for (size_t j = 0; j < seq_id_size; ++j) {
  13870. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13871. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13872. }
  13873. }
  13874. }
  13875. const size_t nread = inp - src;
  13876. const size_t max_size = llama_state_get_size(ctx);
  13877. GGML_ASSERT(nread <= max_size);
  13878. return nread;
  13879. }
  13880. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13881. llama_file file(path_session, "rb");
  13882. // sanity checks
  13883. {
  13884. const uint32_t magic = file.read_u32();
  13885. const uint32_t version = file.read_u32();
  13886. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13887. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13888. return false;
  13889. }
  13890. llama_hparams session_hparams;
  13891. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13892. if (session_hparams != ctx->model.hparams) {
  13893. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13894. return false;
  13895. }
  13896. }
  13897. // load the prompt
  13898. {
  13899. const uint32_t n_token_count = file.read_u32();
  13900. if (n_token_count > n_token_capacity) {
  13901. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13902. return false;
  13903. }
  13904. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13905. *n_token_count_out = n_token_count;
  13906. }
  13907. // restore the context state
  13908. {
  13909. const size_t n_state_size_cur = file.size - file.tell();
  13910. const size_t n_state_size_max = llama_state_get_size(ctx);
  13911. if (n_state_size_cur > n_state_size_max) {
  13912. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13913. return false;
  13914. }
  13915. std::vector<uint8_t> state_data(n_state_size_max);
  13916. file.read_raw(state_data.data(), n_state_size_cur);
  13917. llama_state_set_data(ctx, state_data.data());
  13918. }
  13919. return true;
  13920. }
  13921. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13922. try {
  13923. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13924. } catch (const std::exception & err) {
  13925. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13926. return false;
  13927. }
  13928. }
  13929. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13930. llama_file file(path_session, "wb");
  13931. file.write_u32(LLAMA_SESSION_MAGIC);
  13932. file.write_u32(LLAMA_SESSION_VERSION);
  13933. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13934. // save the prompt
  13935. file.write_u32((uint32_t) n_token_count);
  13936. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13937. // save the context state using stream saving
  13938. llama_data_file_context data_ctx(&file);
  13939. llama_state_get_data_internal(ctx, &data_ctx);
  13940. return true;
  13941. }
  13942. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13943. try {
  13944. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13945. } catch (const std::exception & err) {
  13946. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13947. return false;
  13948. }
  13949. }
  13950. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13951. // save the size of size_t as a uint32_t for safety check
  13952. const size_t size_t_size_size = sizeof(uint32_t);
  13953. // other values
  13954. const size_t s_cell_count_size = sizeof(uint32_t);
  13955. const size_t s_layer_count_size = sizeof(uint32_t);
  13956. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13957. size_t s_cell_count = 0;
  13958. size_t s_cell_data_size = 0;
  13959. const auto & kv_self = ctx->kv_self;
  13960. const auto & hparams = ctx->model.hparams;
  13961. const uint32_t n_layer = hparams.n_layer;
  13962. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13963. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13964. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13965. const auto & cell = kv_self.cells[i];
  13966. if (cell.seq_id.count(seq_id) > 0) {
  13967. ++s_cell_count;
  13968. s_cell_data_size += sizeof(llama_pos);
  13969. }
  13970. }
  13971. for (int il = 0; il < (int)n_layer; ++il) {
  13972. // types of keys and values
  13973. s_cell_data_size += sizeof(int32_t) * 2;
  13974. // k_size_row and v_size_el values of layer
  13975. s_cell_data_size += sizeof(size_t) * 2;
  13976. // keys
  13977. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13978. s_cell_data_size += k_size_row * s_cell_count;
  13979. // values (transposed)
  13980. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13981. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13982. }
  13983. const size_t s_total = (
  13984. size_t_size_size +
  13985. s_cell_count_size +
  13986. s_layer_count_size +
  13987. n_embd_v_gqa_size +
  13988. s_cell_data_size
  13989. );
  13990. return s_total;
  13991. }
  13992. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13993. llama_synchronize(ctx);
  13994. const auto & kv_self = ctx->kv_self;
  13995. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13996. // Save the size of size_t as a uint32_t for safety check
  13997. const uint32_t size_t_size = sizeof(size_t);
  13998. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13999. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14000. uint32_t cell_count = 0;
  14001. // Count the number of cells with the specified seq_id
  14002. // Find all the ranges of cells with this seq id
  14003. {
  14004. uint32_t cell_range_begin = kv_self.size;
  14005. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14006. const auto & cell = kv_self.cells[i];
  14007. if (cell.has_seq_id(seq_id)) {
  14008. ++cell_count;
  14009. if (cell_range_begin == kv_self.size) {
  14010. cell_range_begin = i;
  14011. }
  14012. }
  14013. else {
  14014. if (cell_range_begin != kv_self.size) {
  14015. cell_ranges.emplace_back(cell_range_begin, i);
  14016. cell_range_begin = kv_self.size;
  14017. }
  14018. }
  14019. }
  14020. if (cell_range_begin != kv_self.size) {
  14021. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14022. }
  14023. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14024. uint32_t cell_count_check = 0;
  14025. for (const auto & range : cell_ranges) {
  14026. cell_count_check += range.second - range.first;
  14027. }
  14028. GGML_ASSERT(cell_count == cell_count_check);
  14029. }
  14030. // Write the cell count
  14031. data_ctx.write(&cell_count, sizeof(cell_count));
  14032. const auto & hparams = ctx->model.hparams;
  14033. const uint32_t n_layer = hparams.n_layer;
  14034. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14035. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14036. // Write the layer count
  14037. data_ctx.write(&n_layer, sizeof(n_layer));
  14038. // Write n_embd_v_gqa
  14039. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14040. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14041. for (const auto & range : cell_ranges) {
  14042. for (uint32_t i = range.first; i < range.second; ++i) {
  14043. const auto & cell = kv_self.cells[i];
  14044. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14045. }
  14046. }
  14047. // Iterate and write all the keys first, each row is a cell
  14048. // Get whole range at a time
  14049. std::vector<uint8_t> tmp_buf;
  14050. for (int il = 0; il < (int)n_layer; ++il) {
  14051. // Write key type
  14052. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14053. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14054. // Write row size of key
  14055. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14056. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14057. // Read each range of cells of k_size length each into tmp_buf and write out
  14058. for (const auto & range : cell_ranges) {
  14059. const size_t range_size = range.second - range.first;
  14060. tmp_buf.resize(range_size * k_size_row);
  14061. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14062. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14063. }
  14064. }
  14065. // TODO: simplify, reduce copy-paste
  14066. if (!kv_self.v_trans) {
  14067. for (int il = 0; il < (int)n_layer; ++il) {
  14068. // Write value type
  14069. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14070. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14071. // Write row size of value
  14072. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14073. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14074. // Read each range of cells of v_size length each into tmp_buf and write out
  14075. for (const auto & range : cell_ranges) {
  14076. const size_t range_size = range.second - range.first;
  14077. tmp_buf.resize(range_size * v_size_row);
  14078. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14079. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14080. }
  14081. }
  14082. } else {
  14083. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14084. const uint32_t kv_size = kv_self.size;
  14085. for (int il = 0; il < (int)n_layer; ++il) {
  14086. // Write value type
  14087. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14088. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14089. // Write element size
  14090. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14091. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14092. // For each row, we get the element values of each cell
  14093. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14094. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14095. for (const auto & range : cell_ranges) {
  14096. const size_t range_size = range.second - range.first;
  14097. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14098. tmp_buf.resize(range_size * v_size_el);
  14099. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14100. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14101. }
  14102. }
  14103. }
  14104. }
  14105. return data_ctx.get_size_written();
  14106. }
  14107. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14108. llama_data_buffer_context data_ctx(dst);
  14109. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14110. }
  14111. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14112. llama_synchronize(ctx);
  14113. auto & kv_self = ctx->kv_self;
  14114. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14115. // Wipe the slot
  14116. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14117. const uint8_t * inp = src;
  14118. // Read size of size_t
  14119. uint32_t size_t_size;
  14120. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14121. inp += sizeof(size_t_size);
  14122. if (size_t_size != sizeof(size_t)) {
  14123. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14124. return 0;
  14125. }
  14126. // Read the cell count
  14127. uint32_t cell_count;
  14128. memcpy(&cell_count, inp, sizeof(cell_count));
  14129. inp += sizeof(cell_count);
  14130. // Read the layer count
  14131. uint32_t n_layer_ref;
  14132. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14133. inp += sizeof(n_layer_ref);
  14134. // Read n_embd_v_gqa
  14135. uint32_t n_embd_v_gqa_ref;
  14136. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14137. inp += sizeof(n_embd_v_gqa_ref);
  14138. // Sanity check model compatibility
  14139. const auto & hparams = ctx->model.hparams;
  14140. const uint32_t n_layer = hparams.n_layer;
  14141. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14142. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14143. if (n_layer != n_layer_ref) {
  14144. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14145. return 0;
  14146. }
  14147. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14148. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14149. return 0;
  14150. }
  14151. // Allocate the new cells for the slot
  14152. if (cell_count) {
  14153. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14154. batch.n_tokens = cell_count;
  14155. for (uint32_t i = 0; i < cell_count; ++i) {
  14156. llama_pos pos;
  14157. memcpy(&pos, inp, sizeof(pos));
  14158. inp += sizeof(pos);
  14159. batch.pos[i] = pos;
  14160. batch.n_seq_id[i] = 1;
  14161. batch.seq_id[i][0] = dest_seq_id;
  14162. }
  14163. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14164. llama_batch_free(batch);
  14165. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14166. return 0;
  14167. }
  14168. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14169. // Assume that this is one contiguous block of cells
  14170. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14171. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14172. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14173. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14174. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14175. // Cleanup
  14176. llama_batch_free(batch);
  14177. }
  14178. const uint32_t kv_size = kv_self.size;
  14179. const uint32_t kv_head = kv_self.head;
  14180. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14181. for (int il = 0; il < (int)n_layer; ++il) {
  14182. // Read type of key
  14183. int32_t k_type_i_ref;
  14184. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14185. inp += sizeof(k_type_i_ref);
  14186. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14187. if (k_type_i != k_type_i_ref) {
  14188. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14189. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14190. return 0;
  14191. }
  14192. // Read row size of key
  14193. size_t k_size_row_ref;
  14194. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14195. inp += sizeof(k_size_row_ref);
  14196. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14197. if (k_size_row != k_size_row_ref) {
  14198. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14199. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14200. return 0;
  14201. }
  14202. if (cell_count) {
  14203. // Read and set the keys for the whole cell range
  14204. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14205. inp += cell_count * k_size_row;
  14206. }
  14207. }
  14208. // TODO: simplify, reduce copy-paste
  14209. if (!kv_self.v_trans) {
  14210. for (int il = 0; il < (int)n_layer; ++il) {
  14211. // Read type of value
  14212. int32_t v_type_i_ref;
  14213. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14214. inp += sizeof(v_type_i_ref);
  14215. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14216. if (v_type_i != v_type_i_ref) {
  14217. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14218. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14219. return 0;
  14220. }
  14221. // Read row size of value
  14222. size_t v_size_row_ref;
  14223. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14224. inp += sizeof(v_size_row_ref);
  14225. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14226. if (v_size_row != v_size_row_ref) {
  14227. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14228. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14229. return 0;
  14230. }
  14231. if (cell_count) {
  14232. // Read and set the values for the whole cell range
  14233. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14234. inp += cell_count * v_size_row;
  14235. }
  14236. }
  14237. } else {
  14238. // For each layer, read the values for each cell (transposed)
  14239. for (int il = 0; il < (int)n_layer; ++il) {
  14240. // Read type of value
  14241. int32_t v_type_i_ref;
  14242. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14243. inp += sizeof(v_type_i_ref);
  14244. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14245. if (v_type_i != v_type_i_ref) {
  14246. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14247. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14248. return 0;
  14249. }
  14250. // Read element size of value
  14251. size_t v_size_el_ref;
  14252. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14253. inp += sizeof(v_size_el_ref);
  14254. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14255. if (v_size_el != v_size_el_ref) {
  14256. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14257. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14258. return 0;
  14259. }
  14260. if (cell_count) {
  14261. // For each row in the transposed matrix, read the values for the whole cell range
  14262. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14263. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14264. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14265. inp += cell_count * v_size_el;
  14266. }
  14267. }
  14268. }
  14269. }
  14270. const size_t nread = inp - src;
  14271. return nread;
  14272. }
  14273. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14274. llama_file file(filepath, "wb");
  14275. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14276. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14277. // save the prompt
  14278. file.write_u32((uint32_t)n_token_count);
  14279. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14280. // save the context state using stream saving
  14281. llama_data_file_context data_ctx(&file);
  14282. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14283. const size_t res = file.tell();
  14284. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14285. return res;
  14286. }
  14287. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14288. llama_file file(filepath, "rb");
  14289. // version checks
  14290. {
  14291. const uint32_t magic = file.read_u32();
  14292. const uint32_t version = file.read_u32();
  14293. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14294. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14295. return 0;
  14296. }
  14297. }
  14298. // load the prompt
  14299. {
  14300. const uint32_t n_token_count = file.read_u32();
  14301. if (n_token_count > n_token_capacity) {
  14302. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14303. return 0;
  14304. }
  14305. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14306. *n_token_count_out = n_token_count;
  14307. }
  14308. // restore the context state
  14309. {
  14310. const size_t state_size = file.size - file.tell();
  14311. std::vector<uint8_t> state_data(state_size);
  14312. file.read_raw(state_data.data(), state_size);
  14313. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14314. if (!nread) {
  14315. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14316. return 0;
  14317. }
  14318. GGML_ASSERT(nread <= state_size);
  14319. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14320. }
  14321. return file.tell();
  14322. }
  14323. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14324. try {
  14325. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14326. } catch (const std::exception & err) {
  14327. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14328. return 0;
  14329. }
  14330. }
  14331. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14332. try {
  14333. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14334. } catch (const std::exception & err) {
  14335. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14336. return 0;
  14337. }
  14338. }
  14339. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14340. ctx->cparams.n_threads = n_threads;
  14341. ctx->cparams.n_threads_batch = n_threads_batch;
  14342. }
  14343. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14344. ctx->abort_callback = abort_callback;
  14345. ctx->abort_callback_data = abort_callback_data;
  14346. }
  14347. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14348. ctx->cparams.causal_attn = causal_attn;
  14349. }
  14350. struct llama_batch llama_batch_get_one(
  14351. llama_token * tokens,
  14352. int32_t n_tokens,
  14353. llama_pos pos_0,
  14354. llama_seq_id seq_id) {
  14355. return {
  14356. /*n_tokens =*/ n_tokens,
  14357. /*tokens =*/ tokens,
  14358. /*embd =*/ nullptr,
  14359. /*pos =*/ nullptr,
  14360. /*n_seq_id =*/ nullptr,
  14361. /*seq_id =*/ nullptr,
  14362. /*logits =*/ nullptr,
  14363. /*all_pos_0 =*/ pos_0,
  14364. /*all_pos_1 =*/ 1,
  14365. /*all_seq_id =*/ seq_id,
  14366. };
  14367. }
  14368. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14369. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14370. if (embd) {
  14371. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14372. } else {
  14373. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14374. }
  14375. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14376. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14377. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14378. for (int i = 0; i < n_tokens_alloc; ++i) {
  14379. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14380. }
  14381. batch.seq_id[n_tokens_alloc] = nullptr;
  14382. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14383. return batch;
  14384. }
  14385. void llama_batch_free(struct llama_batch batch) {
  14386. if (batch.token) free(batch.token);
  14387. if (batch.embd) free(batch.embd);
  14388. if (batch.pos) free(batch.pos);
  14389. if (batch.n_seq_id) free(batch.n_seq_id);
  14390. if (batch.seq_id) {
  14391. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14392. free(batch.seq_id[i]);
  14393. }
  14394. free(batch.seq_id);
  14395. }
  14396. if (batch.logits) free(batch.logits);
  14397. }
  14398. int32_t llama_decode(
  14399. struct llama_context * ctx,
  14400. struct llama_batch batch) {
  14401. const int ret = llama_decode_internal(*ctx, batch);
  14402. if (ret < 0) {
  14403. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14404. }
  14405. return ret;
  14406. }
  14407. void llama_synchronize(struct llama_context * ctx) {
  14408. ggml_backend_sched_synchronize(ctx->sched);
  14409. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14410. // the stats will be added to the prompt evaluation stats
  14411. // this should only happen when using batch size 1 to evaluate a batch
  14412. // add the evaluation to the stats
  14413. if (ctx->n_queued_tokens == 1) {
  14414. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14415. ctx->n_eval++;
  14416. } else if (ctx->n_queued_tokens > 1) {
  14417. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14418. ctx->n_p_eval += ctx->n_queued_tokens;
  14419. }
  14420. // get a more accurate load time, upon first eval
  14421. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14422. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14423. ctx->has_evaluated_once = true;
  14424. }
  14425. ctx->n_queued_tokens = 0;
  14426. ctx->t_compute_start_us = 0;
  14427. }
  14428. float * llama_get_logits(struct llama_context * ctx) {
  14429. llama_synchronize(ctx);
  14430. return ctx->logits;
  14431. }
  14432. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14433. int32_t j = -1;
  14434. llama_synchronize(ctx);
  14435. try {
  14436. if (ctx->logits == nullptr) {
  14437. throw std::runtime_error("no logits");
  14438. }
  14439. if (i < 0) {
  14440. j = ctx->n_outputs + i;
  14441. if (j < 0) {
  14442. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14443. }
  14444. } else if ((size_t) i >= ctx->output_ids.size()) {
  14445. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14446. } else {
  14447. j = ctx->output_ids[i];
  14448. }
  14449. if (j < 0) {
  14450. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14451. }
  14452. if (j >= ctx->n_outputs) {
  14453. // This should not happen
  14454. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14455. }
  14456. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14457. } catch (const std::exception & err) {
  14458. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14459. #ifndef NDEBUG
  14460. GGML_ASSERT(false);
  14461. #endif
  14462. return nullptr;
  14463. }
  14464. }
  14465. float * llama_get_embeddings(struct llama_context * ctx) {
  14466. llama_synchronize(ctx);
  14467. return ctx->embd;
  14468. }
  14469. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14470. int32_t j = -1;
  14471. llama_synchronize(ctx);
  14472. try {
  14473. if (ctx->embd == nullptr) {
  14474. throw std::runtime_error("no embeddings");
  14475. }
  14476. if (i < 0) {
  14477. j = ctx->n_outputs + i;
  14478. if (j < 0) {
  14479. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14480. }
  14481. } else if ((size_t) i >= ctx->output_ids.size()) {
  14482. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14483. } else {
  14484. j = ctx->output_ids[i];
  14485. }
  14486. if (j < 0) {
  14487. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14488. }
  14489. if (j >= ctx->n_outputs) {
  14490. // This should not happen
  14491. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14492. }
  14493. return ctx->embd + j*ctx->model.hparams.n_embd;
  14494. } catch (const std::exception & err) {
  14495. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14496. #ifndef NDEBUG
  14497. GGML_ASSERT(false);
  14498. #endif
  14499. return nullptr;
  14500. }
  14501. }
  14502. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14503. llama_synchronize(ctx);
  14504. auto it = ctx->embd_seq.find(seq_id);
  14505. if (it == ctx->embd_seq.end()) {
  14506. return nullptr;
  14507. }
  14508. return it->second.data();
  14509. }
  14510. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14511. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14512. return model->vocab.id_to_token[token].text.c_str();
  14513. }
  14514. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14515. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14516. return model->vocab.id_to_token[token].score;
  14517. }
  14518. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14519. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14520. return model->vocab.id_to_token[token].type;
  14521. }
  14522. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14523. return token != -1 && (
  14524. token == llama_token_eos(model) ||
  14525. token == llama_token_eot(model)
  14526. );
  14527. }
  14528. llama_token llama_token_bos(const struct llama_model * model) {
  14529. return model->vocab.special_bos_id;
  14530. }
  14531. llama_token llama_token_eos(const struct llama_model * model) {
  14532. return model->vocab.special_eos_id;
  14533. }
  14534. llama_token llama_token_cls(const struct llama_model * model) {
  14535. return model->vocab.special_cls_id;
  14536. }
  14537. llama_token llama_token_sep(const struct llama_model * model) {
  14538. return model->vocab.special_sep_id;
  14539. }
  14540. llama_token llama_token_nl(const struct llama_model * model) {
  14541. return model->vocab.linefeed_id;
  14542. }
  14543. int32_t llama_add_bos_token(const struct llama_model * model) {
  14544. return model->vocab.special_add_bos;
  14545. }
  14546. int32_t llama_add_eos_token(const struct llama_model * model) {
  14547. return model->vocab.special_add_eos;
  14548. }
  14549. llama_token llama_token_prefix(const struct llama_model * model) {
  14550. return model->vocab.special_prefix_id;
  14551. }
  14552. llama_token llama_token_middle(const struct llama_model * model) {
  14553. return model->vocab.special_middle_id;
  14554. }
  14555. llama_token llama_token_suffix(const struct llama_model * model) {
  14556. return model->vocab.special_suffix_id;
  14557. }
  14558. llama_token llama_token_eot(const struct llama_model * model) {
  14559. return model->vocab.special_eot_id;
  14560. }
  14561. int32_t llama_tokenize(
  14562. const struct llama_model * model,
  14563. const char * text,
  14564. int32_t text_len,
  14565. llama_token * tokens,
  14566. int32_t n_tokens_max,
  14567. bool add_special,
  14568. bool parse_special) {
  14569. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14570. if (n_tokens_max < (int) res.size()) {
  14571. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14572. return -((int) res.size());
  14573. }
  14574. for (size_t i = 0; i < res.size(); i++) {
  14575. tokens[i] = res[i];
  14576. }
  14577. return res.size();
  14578. }
  14579. static std::string llama_decode_text(const std::string & text) {
  14580. std::string decoded_text;
  14581. const auto cpts = unicode_cpts_from_utf8(text);
  14582. for (const auto cpt : cpts) {
  14583. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14584. }
  14585. return decoded_text;
  14586. }
  14587. // does not write null-terminator to buf
  14588. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14589. if (0 <= token && token < llama_n_vocab(model)) {
  14590. switch (llama_vocab_get_type(model->vocab)) {
  14591. case LLAMA_VOCAB_TYPE_WPM:
  14592. case LLAMA_VOCAB_TYPE_SPM: {
  14593. // NOTE: we accept all unsupported token types,
  14594. // suppressing them like CONTROL tokens.
  14595. if (llama_is_normal_token(model->vocab, token)) {
  14596. std::string result = model->vocab.id_to_token[token].text;
  14597. llama_unescape_whitespace(result);
  14598. if (length < (int) result.length()) {
  14599. return -(int) result.length();
  14600. }
  14601. memcpy(buf, result.c_str(), result.length());
  14602. return result.length();
  14603. } else if (
  14604. (llama_is_user_defined_token(model->vocab, token)) ||
  14605. (llama_is_control_token (model->vocab, token) && special)) {
  14606. std::string result = model->vocab.id_to_token[token].text;
  14607. if (length < (int) result.length()) {
  14608. return -(int) result.length();
  14609. }
  14610. memcpy(buf, result.c_str(), result.length());
  14611. return result.length();
  14612. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14613. if (length < 3) {
  14614. return -3;
  14615. }
  14616. memcpy(buf, "\xe2\x96\x85", 3);
  14617. return 3;
  14618. } else if (llama_is_byte_token(model->vocab, token)) {
  14619. if (length < 1) {
  14620. return -1;
  14621. }
  14622. buf[0] = llama_token_to_byte(model->vocab, token);
  14623. return 1;
  14624. }
  14625. break;
  14626. }
  14627. case LLAMA_VOCAB_TYPE_BPE: {
  14628. // NOTE: we accept all unsupported token types,
  14629. // suppressing them like CONTROL tokens.
  14630. if (llama_is_normal_token(model->vocab, token)) {
  14631. std::string result = model->vocab.id_to_token[token].text;
  14632. result = llama_decode_text(result);
  14633. if (length < (int) result.length()) {
  14634. return -(int) result.length();
  14635. }
  14636. memcpy(buf, result.c_str(), result.length());
  14637. return result.length();
  14638. } else if (
  14639. (llama_is_user_defined_token(model->vocab, token)) ||
  14640. (llama_is_control_token (model->vocab, token) && special)) {
  14641. std::string result = model->vocab.id_to_token[token].text;
  14642. if (length < (int) result.length()) {
  14643. return -(int) result.length();
  14644. }
  14645. memcpy(buf, result.c_str(), result.length());
  14646. return result.length();
  14647. }
  14648. break;
  14649. }
  14650. default:
  14651. GGML_ASSERT(false);
  14652. }
  14653. }
  14654. return 0;
  14655. }
  14656. // trim whitespace from the beginning and end of a string
  14657. static std::string trim(const std::string & str) {
  14658. size_t start = 0;
  14659. size_t end = str.size();
  14660. while (start < end && isspace(str[start])) {
  14661. start += 1;
  14662. }
  14663. while (end > start && isspace(str[end - 1])) {
  14664. end -= 1;
  14665. }
  14666. return str.substr(start, end - start);
  14667. }
  14668. // Simple version of "llama_apply_chat_template" that only works with strings
  14669. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14670. static int32_t llama_chat_apply_template_internal(
  14671. const std::string & tmpl,
  14672. const std::vector<const llama_chat_message *> & chat,
  14673. std::string & dest, bool add_ass) {
  14674. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14675. std::stringstream ss;
  14676. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14677. // chatml template
  14678. for (auto message : chat) {
  14679. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14680. }
  14681. if (add_ass) {
  14682. ss << "<|im_start|>assistant\n";
  14683. }
  14684. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14685. // llama2 template and its variants
  14686. // [variant] support system message
  14687. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14688. // [variant] space before + after response
  14689. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14690. // [variant] add BOS inside history
  14691. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14692. // [variant] trim spaces from the input message
  14693. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14694. // construct the prompt
  14695. bool is_inside_turn = true; // skip BOS at the beginning
  14696. ss << "[INST] ";
  14697. for (auto message : chat) {
  14698. std::string content = strip_message ? trim(message->content) : message->content;
  14699. std::string role(message->role);
  14700. if (!is_inside_turn) {
  14701. is_inside_turn = true;
  14702. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14703. }
  14704. if (role == "system") {
  14705. if (support_system_message) {
  14706. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14707. } else {
  14708. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14709. ss << content << "\n";
  14710. }
  14711. } else if (role == "user") {
  14712. ss << content << " [/INST]";
  14713. } else {
  14714. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14715. is_inside_turn = false;
  14716. }
  14717. }
  14718. // llama2 templates seem to not care about "add_generation_prompt"
  14719. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14720. // zephyr template
  14721. for (auto message : chat) {
  14722. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14723. }
  14724. if (add_ass) {
  14725. ss << "<|assistant|>\n";
  14726. }
  14727. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14728. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14729. for (auto message : chat) {
  14730. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14731. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14732. }
  14733. if (add_ass) {
  14734. ss << "<s>assistant\n";
  14735. }
  14736. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14737. // google/gemma-7b-it
  14738. std::string system_prompt = "";
  14739. for (auto message : chat) {
  14740. std::string role(message->role);
  14741. if (role == "system") {
  14742. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14743. system_prompt = trim(message->content);
  14744. continue;
  14745. }
  14746. // in gemma, "assistant" is "model"
  14747. role = role == "assistant" ? "model" : message->role;
  14748. ss << "<start_of_turn>" << role << "\n";
  14749. if (!system_prompt.empty() && role != "model") {
  14750. ss << system_prompt << "\n\n";
  14751. system_prompt = "";
  14752. }
  14753. ss << trim(message->content) << "<end_of_turn>\n";
  14754. }
  14755. if (add_ass) {
  14756. ss << "<start_of_turn>model\n";
  14757. }
  14758. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14759. // OrionStarAI/Orion-14B-Chat
  14760. std::string system_prompt = "";
  14761. for (auto message : chat) {
  14762. std::string role(message->role);
  14763. if (role == "system") {
  14764. // there is no system message support, we will merge it with user prompt
  14765. system_prompt = message->content;
  14766. continue;
  14767. } else if (role == "user") {
  14768. ss << "Human: ";
  14769. if (!system_prompt.empty()) {
  14770. ss << system_prompt << "\n\n";
  14771. system_prompt = "";
  14772. }
  14773. ss << message->content << "\n\nAssistant: </s>";
  14774. } else {
  14775. ss << message->content << "</s>";
  14776. }
  14777. }
  14778. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14779. // openchat/openchat-3.5-0106,
  14780. for (auto message : chat) {
  14781. std::string role(message->role);
  14782. if (role == "system") {
  14783. ss << message->content << "<|end_of_turn|>";
  14784. } else {
  14785. role[0] = toupper(role[0]);
  14786. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14787. }
  14788. }
  14789. if (add_ass) {
  14790. ss << "GPT4 Correct Assistant:";
  14791. }
  14792. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14793. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14794. for (auto message : chat) {
  14795. std::string role(message->role);
  14796. if (role == "system") {
  14797. // Orca-Vicuna variant uses a system prefix
  14798. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14799. ss << "SYSTEM: " << message->content << "\n";
  14800. } else {
  14801. ss << message->content << "\n\n";
  14802. }
  14803. } else if (role == "user") {
  14804. ss << "USER: " << message->content << "\n";
  14805. } else if (role == "assistant") {
  14806. ss << "ASSISTANT: " << message->content << "</s>\n";
  14807. }
  14808. }
  14809. if (add_ass) {
  14810. ss << "ASSISTANT:";
  14811. }
  14812. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14813. // deepseek-ai/deepseek-coder-33b-instruct
  14814. for (auto message : chat) {
  14815. std::string role(message->role);
  14816. if (role == "system") {
  14817. ss << message->content;
  14818. } else if (role == "user") {
  14819. ss << "### Instruction:\n" << message->content << "\n";
  14820. } else if (role == "assistant") {
  14821. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14822. }
  14823. }
  14824. if (add_ass) {
  14825. ss << "### Response:\n";
  14826. }
  14827. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14828. // CohereForAI/c4ai-command-r-plus
  14829. for (auto message : chat) {
  14830. std::string role(message->role);
  14831. if (role == "system") {
  14832. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14833. } else if (role == "user") {
  14834. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14835. } else if (role == "assistant") {
  14836. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14837. }
  14838. }
  14839. if (add_ass) {
  14840. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14841. }
  14842. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14843. // Llama 3
  14844. for (auto message : chat) {
  14845. std::string role(message->role);
  14846. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14847. }
  14848. if (add_ass) {
  14849. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14850. }
  14851. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14852. // Phi 3
  14853. for (auto message : chat) {
  14854. std::string role(message->role);
  14855. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14856. }
  14857. if (add_ass) {
  14858. ss << "<|assistant|>\n";
  14859. }
  14860. } else {
  14861. // template not supported
  14862. return -1;
  14863. }
  14864. dest = ss.str();
  14865. return dest.size();
  14866. }
  14867. LLAMA_API int32_t llama_chat_apply_template(
  14868. const struct llama_model * model,
  14869. const char * tmpl,
  14870. const struct llama_chat_message * chat,
  14871. size_t n_msg,
  14872. bool add_ass,
  14873. char * buf,
  14874. int32_t length) {
  14875. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14876. if (tmpl == nullptr) {
  14877. GGML_ASSERT(model != nullptr);
  14878. // load template from model
  14879. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14880. std::string template_key = "tokenizer.chat_template";
  14881. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14882. if (res < 0) {
  14883. // worst case: there is no information about template, we will use chatml by default
  14884. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14885. } else {
  14886. curr_tmpl = std::string(model_template.data(), model_template.size());
  14887. }
  14888. }
  14889. // format the chat to string
  14890. std::vector<const llama_chat_message *> chat_vec;
  14891. chat_vec.resize(n_msg);
  14892. for (size_t i = 0; i < n_msg; i++) {
  14893. chat_vec[i] = &chat[i];
  14894. }
  14895. std::string formatted_chat;
  14896. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14897. if (res < 0) {
  14898. return res;
  14899. }
  14900. if (buf && length > 0) {
  14901. strncpy(buf, formatted_chat.c_str(), length);
  14902. }
  14903. return res;
  14904. }
  14905. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14906. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14907. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14908. return strlen(split_path);
  14909. }
  14910. return 0;
  14911. }
  14912. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14913. std::string str_split_path(split_path);
  14914. char postfix[32];
  14915. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14916. std::string str_postfix(postfix);
  14917. // check if dest ends with postfix
  14918. int size_prefix = str_split_path.size() - str_postfix.size();
  14919. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14920. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14921. return size_prefix;
  14922. }
  14923. return 0;
  14924. }
  14925. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14926. struct llama_timings result = {
  14927. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14928. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14929. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14930. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14931. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14932. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14933. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14934. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  14935. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14936. };
  14937. return result;
  14938. }
  14939. void llama_print_timings(struct llama_context * ctx) {
  14940. const llama_timings timings = llama_get_timings(ctx);
  14941. LLAMA_LOG_INFO("\n");
  14942. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14943. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14944. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14945. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14946. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14947. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14948. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14949. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14950. }
  14951. void llama_reset_timings(struct llama_context * ctx) {
  14952. ctx->t_start_us = ggml_time_us();
  14953. ctx->t_sample_us = ctx->n_sample = 0;
  14954. ctx->t_eval_us = ctx->n_eval = 0;
  14955. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14956. }
  14957. const char * llama_print_system_info(void) {
  14958. static std::string s;
  14959. s = "";
  14960. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14961. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14962. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14963. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14964. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14965. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14966. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  14967. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14968. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14969. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14970. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14971. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14972. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14973. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14974. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14975. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14976. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14977. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14978. #ifdef GGML_USE_LLAMAFILE
  14979. s += "LLAMAFILE = 1 | ";
  14980. #else
  14981. s += "LLAMAFILE = 0 | ";
  14982. #endif
  14983. return s.c_str();
  14984. }
  14985. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14986. fprintf(stream, "\n");
  14987. fprintf(stream, "###########\n");
  14988. fprintf(stream, "# Timings #\n");
  14989. fprintf(stream, "###########\n");
  14990. fprintf(stream, "\n");
  14991. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14992. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14993. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14994. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14995. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14996. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14997. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14998. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14999. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15000. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15001. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15002. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15003. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15004. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15005. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15006. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15007. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15008. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15009. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15010. }
  15011. // For internal test use
  15012. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15013. struct llama_context * ctx
  15014. ) {
  15015. return ctx->model.tensors_by_name;
  15016. }
  15017. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15018. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15019. g_state.log_callback_user_data = user_data;
  15020. #ifdef GGML_USE_METAL
  15021. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15022. #elif defined(GGML_USE_CUDA)
  15023. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15024. #endif
  15025. }
  15026. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15027. va_list args_copy;
  15028. va_copy(args_copy, args);
  15029. char buffer[128];
  15030. int len = vsnprintf(buffer, 128, format, args);
  15031. if (len < 128) {
  15032. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15033. } else {
  15034. char* buffer2 = new char[len+1];
  15035. vsnprintf(buffer2, len+1, format, args_copy);
  15036. buffer2[len] = 0;
  15037. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15038. delete[] buffer2;
  15039. }
  15040. va_end(args_copy);
  15041. }
  15042. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15043. va_list args;
  15044. va_start(args, format);
  15045. llama_log_internal_v(level, format, args);
  15046. va_end(args);
  15047. }
  15048. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15049. (void) level;
  15050. (void) user_data;
  15051. fputs(text, stderr);
  15052. fflush(stderr);
  15053. }