ggml-quants.c 706 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940
  1. #define GGML_COMMON_IMPL_C
  2. #include "ggml-common.h"
  3. #include "ggml-quants.h"
  4. #include "ggml-impl.h"
  5. #define GGML_COMMON_IMPL_C
  6. #include "ggml-common.h"
  7. #include <math.h>
  8. #include <string.h>
  9. #include <assert.h>
  10. #include <float.h>
  11. #include <stdlib.h> // for qsort
  12. #include <stdio.h> // for GGML_ASSERT
  13. #define GROUP_MAX_EPS 1e-15f
  14. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  15. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  16. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  17. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  18. #if defined(_MSC_VER)
  19. // disable "possible loss of data" to avoid warnings for hundreds of casts
  20. // we should just be careful :)
  21. #pragma warning(disable: 4244 4267)
  22. #endif
  23. #define UNUSED GGML_UNUSED
  24. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  25. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  26. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  27. // multiply int8_t, add results pairwise twice
  28. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  29. // Get absolute values of x vectors
  30. const __m128i ax = _mm_sign_epi8(x, x);
  31. // Sign the values of the y vectors
  32. const __m128i sy = _mm_sign_epi8(y, x);
  33. // Perform multiplication and create 16-bit values
  34. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  35. const __m128i ones = _mm_set1_epi16(1);
  36. return _mm_madd_epi16(ones, dot);
  37. }
  38. #if __AVX__ || __AVX2__ || __AVX512F__
  39. // horizontally add 8 floats
  40. static inline float hsum_float_8(const __m256 x) {
  41. __m128 res = _mm256_extractf128_ps(x, 1);
  42. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  43. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  44. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  45. return _mm_cvtss_f32(res);
  46. }
  47. // horizontally add 8 int32_t
  48. static inline int hsum_i32_8(const __m256i a) {
  49. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  50. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  51. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  52. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  53. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  54. }
  55. // horizontally add 4 int32_t
  56. static inline int hsum_i32_4(const __m128i a) {
  57. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  58. const __m128i sum64 = _mm_add_epi32(hi64, a);
  59. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  60. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  61. }
  62. #if defined(__AVX2__) || defined(__AVX512F__)
  63. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  64. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  65. uint32_t x32;
  66. memcpy(&x32, x, sizeof(uint32_t));
  67. const __m256i shuf_mask = _mm256_set_epi64x(
  68. 0x0303030303030303, 0x0202020202020202,
  69. 0x0101010101010101, 0x0000000000000000);
  70. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  71. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  72. bytes = _mm256_or_si256(bytes, bit_mask);
  73. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  74. }
  75. // Unpack 32 4-bit fields into 32 bytes
  76. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  77. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  78. {
  79. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  80. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  81. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  82. return _mm256_and_si256(lowMask, bytes);
  83. }
  84. // add int16_t pairwise and return as float vector
  85. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  86. const __m256i ones = _mm256_set1_epi16(1);
  87. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  88. return _mm256_cvtepi32_ps(summed_pairs);
  89. }
  90. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  91. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  92. const __m256i zero = _mm256_setzero_si256();
  93. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  94. return _mm256_cvtepi32_ps(summed_pairs);
  95. #else
  96. // Perform multiplication and create 16-bit values
  97. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  98. return sum_i16_pairs_float(dot);
  99. #endif
  100. }
  101. // multiply int8_t, add results pairwise twice and return as float vector
  102. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  103. #if __AVXVNNIINT8__
  104. const __m256i zero = _mm256_setzero_si256();
  105. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  106. return _mm256_cvtepi32_ps(summed_pairs);
  107. #else
  108. // Get absolute values of x vectors
  109. const __m256i ax = _mm256_sign_epi8(x, x);
  110. // Sign the values of the y vectors
  111. const __m256i sy = _mm256_sign_epi8(y, x);
  112. return mul_sum_us8_pairs_float(ax, sy);
  113. #endif
  114. }
  115. static inline __m128i packNibbles( __m256i bytes )
  116. {
  117. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  118. #if __AVX512F__
  119. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  120. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  121. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  122. #else
  123. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  124. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  125. __m256i low = _mm256_and_si256( lowByte, bytes );
  126. high = _mm256_srli_epi16( high, 4 );
  127. bytes = _mm256_or_si256( low, high );
  128. // Compress uint16_t lanes into bytes
  129. __m128i r0 = _mm256_castsi256_si128( bytes );
  130. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  131. return _mm_packus_epi16( r0, r1 );
  132. #endif
  133. }
  134. #elif defined(__AVX__)
  135. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  136. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  137. uint32_t x32;
  138. memcpy(&x32, x, sizeof(uint32_t));
  139. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  140. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  141. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  142. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  143. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  144. bytesl = _mm_or_si128(bytesl, bit_mask);
  145. bytesh = _mm_or_si128(bytesh, bit_mask);
  146. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  147. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  148. return MM256_SET_M128I(bytesh, bytesl);
  149. }
  150. // Unpack 32 4-bit fields into 32 bytes
  151. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  152. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  153. {
  154. // Load 16 bytes from memory
  155. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  156. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  157. const __m128i lowMask = _mm_set1_epi8(0xF);
  158. tmpl = _mm_and_si128(lowMask, tmpl);
  159. tmph = _mm_and_si128(lowMask, tmph);
  160. return MM256_SET_M128I(tmph, tmpl);
  161. }
  162. // add int16_t pairwise and return as float vector
  163. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  164. const __m128i ones = _mm_set1_epi16(1);
  165. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  166. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  167. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  168. return _mm256_cvtepi32_ps(summed_pairs);
  169. }
  170. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  171. const __m128i axl = _mm256_castsi256_si128(ax);
  172. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  173. const __m128i syl = _mm256_castsi256_si128(sy);
  174. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  175. // Perform multiplication and create 16-bit values
  176. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  177. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  178. return sum_i16_pairs_float(doth, dotl);
  179. }
  180. // multiply int8_t, add results pairwise twice and return as float vector
  181. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  182. const __m128i xl = _mm256_castsi256_si128(x);
  183. const __m128i xh = _mm256_extractf128_si256(x, 1);
  184. const __m128i yl = _mm256_castsi256_si128(y);
  185. const __m128i yh = _mm256_extractf128_si256(y, 1);
  186. // Get absolute values of x vectors
  187. const __m128i axl = _mm_sign_epi8(xl, xl);
  188. const __m128i axh = _mm_sign_epi8(xh, xh);
  189. // Sign the values of the y vectors
  190. const __m128i syl = _mm_sign_epi8(yl, xl);
  191. const __m128i syh = _mm_sign_epi8(yh, xh);
  192. // Perform multiplication and create 16-bit values
  193. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  194. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  195. return sum_i16_pairs_float(doth, dotl);
  196. }
  197. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  198. {
  199. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  200. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  201. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  202. __m128i low = _mm_and_si128( lowByte, bytes1 );
  203. high = _mm_srli_epi16( high, 4 );
  204. bytes1 = _mm_or_si128( low, high );
  205. high = _mm_andnot_si128( lowByte, bytes2 );
  206. low = _mm_and_si128( lowByte, bytes2 );
  207. high = _mm_srli_epi16( high, 4 );
  208. bytes2 = _mm_or_si128( low, high );
  209. return _mm_packus_epi16( bytes1, bytes2);
  210. }
  211. #endif
  212. #elif defined(__SSSE3__)
  213. // horizontally add 4x4 floats
  214. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  215. __m128 res_0 =_mm_hadd_ps(a, b);
  216. __m128 res_1 =_mm_hadd_ps(c, d);
  217. __m128 res =_mm_hadd_ps(res_0, res_1);
  218. res =_mm_hadd_ps(res, res);
  219. res =_mm_hadd_ps(res, res);
  220. return _mm_cvtss_f32(res);
  221. }
  222. #endif // __AVX__ || __AVX2__ || __AVX512F__
  223. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  224. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  225. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  226. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  227. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  228. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  229. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  230. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  231. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  232. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  233. // precomputed tables for expanding 8bits to 8 bytes:
  234. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  235. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  236. #endif
  237. #if defined(__loongarch_asx)
  238. #ifdef __clang__
  239. #define VREGS_PREFIX "$vr"
  240. #define XREGS_PREFIX "$xr"
  241. #else // GCC
  242. #define VREGS_PREFIX "$f"
  243. #define XREGS_PREFIX "$f"
  244. #endif
  245. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  246. // Convert __m128i to __m256i
  247. static inline __m256i ____m256i(__m128i in) {
  248. __m256i out = __lasx_xvldi(0);
  249. __asm__ volatile (
  250. ".irp i," __ALL_REGS "\n\t"
  251. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  252. " .irp j," __ALL_REGS "\n\t"
  253. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  254. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  255. " .endif \n\t"
  256. " .endr \n\t"
  257. " .endif \n\t"
  258. ".endr \n\t"
  259. : [out] "+f" (out) : [in] "f" (in)
  260. );
  261. return out;
  262. }
  263. // Convert two __m128i to __m256i
  264. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  265. __m256i out;
  266. __asm__ volatile (
  267. ".irp i," __ALL_REGS "\n\t"
  268. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  269. " .irp j," __ALL_REGS "\n\t"
  270. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  271. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  272. " .endif \n\t"
  273. " .endr \n\t"
  274. " .endif \n\t"
  275. ".endr \n\t"
  276. ".ifnc %[out], %[hi] \n\t"
  277. ".irp i," __ALL_REGS "\n\t"
  278. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  279. " .irp j," __ALL_REGS "\n\t"
  280. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  281. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  282. " .endif \n\t"
  283. " .endr \n\t"
  284. " .endif \n\t"
  285. ".endr \n\t"
  286. ".endif \n\t"
  287. : [out] "=f" (out), [hi] "+f" (inhi)
  288. : [lo] "f" (inlo)
  289. );
  290. return out;
  291. }
  292. // Convert __m256i low part to __m128i
  293. static inline __m128i lasx_extracti128_lo(__m256i in) {
  294. __m128i out;
  295. __asm__ volatile (
  296. ".ifnc %[out], %[in] \n\t"
  297. ".irp i," __ALL_REGS "\n\t"
  298. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  299. " .irp j," __ALL_REGS "\n\t"
  300. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  301. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  302. " .endif \n\t"
  303. " .endr \n\t"
  304. " .endif \n\t"
  305. ".endr \n\t"
  306. ".endif \n\t"
  307. : [out] "=f" (out) : [in] "f" (in)
  308. );
  309. return out;
  310. }
  311. // Convert __m256i high part to __m128i
  312. static inline __m128i lasx_extracti128_hi(__m256i in) {
  313. __m128i out;
  314. __asm__ volatile (
  315. ".irp i," __ALL_REGS "\n\t"
  316. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  317. " .irp j," __ALL_REGS "\n\t"
  318. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  319. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  320. " .endif \n\t"
  321. " .endr \n\t"
  322. " .endif \n\t"
  323. ".endr \n\t"
  324. : [out] "=f" (out) : [in] "f" (in)
  325. );
  326. return out;
  327. }
  328. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  329. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  330. return (__m256i)__ret;
  331. }
  332. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  333. v4i32 __ret = {d, c, b, a};
  334. return (__m128i)__ret;
  335. }
  336. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  337. v4i64 __ret = {d, c, b, a};
  338. return (__m256i)__ret;
  339. }
  340. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  341. return lasx_set_q(x, y);
  342. }
  343. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  344. __m128i mask_f, zero, tmp0, tmp2, mask;
  345. int f = 0x8f;
  346. mask_f = __lsx_vreplgr2vr_b(f);
  347. zero = __lsx_vldi(0);
  348. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  349. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  350. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  351. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  352. return __lsx_vshuf_b(a, zero, tmp2);
  353. }
  354. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  355. __m256i mask_f, zero, tmp0, tmp2, mask;
  356. int f = 0x8f;
  357. mask_f = __lasx_xvreplgr2vr_b(f);
  358. zero = __lasx_xvldi(0);
  359. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  360. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  361. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  362. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  363. return __lasx_xvshuf_b(a, zero, tmp2);
  364. }
  365. static __m256i lasx_extu8_16(__m128i a) {
  366. __m128i zero = __lsx_vldi(0);
  367. __m128i vlo = __lsx_vilvl_b(zero, a);
  368. __m128i vhi = __lsx_vilvh_b(zero, a);
  369. return lasx_set_q(vhi, vlo);
  370. }
  371. static __m256i lasx_ext8_16(__m128i a) {
  372. __m128i sign = __lsx_vslti_b(a, 0);
  373. __m128i vlo = __lsx_vilvl_b(sign, a);
  374. __m128i vhi = __lsx_vilvh_b(sign, a);
  375. return lasx_set_q(vhi, vlo);
  376. }
  377. static __m256i lasx_ext16_32(__m128i a) {
  378. __m256i tmp1;
  379. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  380. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  381. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  382. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  383. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  384. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  385. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  386. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  387. return tmp1;
  388. }
  389. static __m128i lasx_extracti128( __m256i a, int pos) {
  390. __m128i ret;
  391. if( pos == 0)
  392. {
  393. ret = lasx_extracti128_lo(a);
  394. } else {
  395. ret = lasx_extracti128_hi(a);
  396. }
  397. return ret;
  398. }
  399. static __m128 lasx_extractf128( __m256 a, int pos) {
  400. __m128 ret;
  401. if( pos == 0)
  402. {
  403. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  404. } else {
  405. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  406. }
  407. return ret;
  408. }
  409. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  410. __m128i tmp1 = __lsx_vpickev_h(b, a);
  411. __m128i tmp2 = __lsx_vpickod_h(b, a);
  412. return __lsx_vadd_h(tmp1, tmp2);
  413. }
  414. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  415. __m128i tmp1 = __lsx_vpickev_w(b, a);
  416. __m128i tmp2 = __lsx_vpickod_w(b, a);
  417. return __lsx_vadd_w(tmp1, tmp2);
  418. }
  419. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  420. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  421. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  422. return __lsx_vfadd_s(tmp1, tmp2);
  423. }
  424. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  425. __m256i tmp1, tmp2;
  426. tmp1 = __lasx_xvmulwev_h_b(a, b);
  427. tmp2 = __lasx_xvmulwod_h_b(a, b);
  428. return __lasx_xvsadd_h(tmp1, tmp2);
  429. }
  430. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  431. __m256i tmp1, tmp2;
  432. tmp1 = __lasx_xvmulwev_w_h(a, b);
  433. tmp2 = __lasx_xvmulwod_w_h(a, b);
  434. return __lasx_xvadd_w(tmp1, tmp2);
  435. }
  436. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  437. __m256i tmp, tmp1;
  438. tmp = __lasx_xvsat_w(a, 15);
  439. tmp1 = __lasx_xvsat_w(b, 15);
  440. return __lasx_xvpickev_h(tmp1, tmp);
  441. }
  442. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  443. __m256i tmp, tmp1;
  444. tmp = __lasx_xvsat_h(a, 7);
  445. tmp1 = __lasx_xvsat_h(b, 7);
  446. return __lasx_xvpickev_b(tmp1, tmp);
  447. }
  448. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  449. __m128i tmp, tmp1;
  450. tmp = __lsx_vsat_w(a, 15);
  451. tmp1 = __lsx_vsat_w(b, 15);
  452. return __lsx_vpickev_h(tmp1, tmp);
  453. }
  454. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  455. __m128i tmp, tmp1;
  456. tmp = __lsx_vsat_h(a, 7);
  457. tmp1 = __lsx_vsat_h(b, 7);
  458. return __lsx_vpickev_b(tmp1, tmp);
  459. }
  460. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  461. __m128i tmp, tmp1;
  462. tmp = __lsx_vsat_hu(a, 7);
  463. tmp1 = __lsx_vsat_hu(b, 7);
  464. return __lsx_vpickev_b(tmp1, tmp);
  465. }
  466. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  467. __m128i tmp1, tmp2;
  468. tmp1 = __lsx_vmulwev_h_b(a, b);
  469. tmp2 = __lsx_vmulwod_h_b(a, b);
  470. return __lsx_vsadd_h(tmp1, tmp2);
  471. }
  472. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  473. __m128i tmp1, tmp2;
  474. tmp1 = __lsx_vmulwev_w_h(a, b);
  475. tmp2 = __lsx_vmulwod_w_h(a, b);
  476. return __lsx_vadd_w(tmp1, tmp2);
  477. }
  478. // multiply int8_t, add results pairwise twice
  479. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  480. // Get absolute values of x vectors
  481. const __m128i ax = __lsx_vsigncov_b(x, x);
  482. // Sign the values of the y vectors
  483. const __m128i sy = __lsx_vsigncov_b(x, y);
  484. // Perform multiplication and create 16-bit values
  485. const __m128i dot = lsx_maddubs_h(ax, sy);
  486. const __m128i ones = __lsx_vreplgr2vr_h(1);
  487. return lsx_madd_h(ones, dot);
  488. }
  489. // horizontally add 8 floats
  490. static inline float hsum_float_8(const __m256 x) {
  491. __m128 res = lasx_extractf128(x, 1);
  492. ft_union tmp;
  493. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  494. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  495. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  496. tmp.i = __lsx_vpickve2gr_w(res, 0);
  497. return tmp.f;
  498. }
  499. // horizontally add 8 int32_t
  500. static inline int hsum_i32_8(const __m256i a) {
  501. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  502. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  503. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  504. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  505. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  506. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  507. __m128i od = __lsx_vpickod_w(sum128, sum128);
  508. __m128i sum64 = __lsx_vadd_w(ev, od);
  509. int sum64_1, sum64_2;
  510. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  511. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  512. return sum64_1 + sum64_2;
  513. }
  514. // horizontally add 4 int32_t
  515. static inline int hsum_i32_4(const __m128i a) {
  516. __m128i ev = __lsx_vpickev_w(a, a);
  517. __m128i od = __lsx_vpickod_w(a, a);
  518. __m128i sum64 = __lsx_vadd_w(ev, od);
  519. int sum64_1, sum64_2;
  520. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  521. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  522. return sum64_1 + sum64_2;
  523. }
  524. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  525. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  526. uint32_t x32;
  527. memcpy(&x32, x, sizeof(uint32_t));
  528. const __m256i shuf_mask = lasx_set_d(
  529. 0x0303030303030303, 0x0202020202020202,
  530. 0x0101010101010101, 0x0000000000000000);
  531. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  532. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  533. bytes = __lasx_xvor_v(bytes, bit_mask);
  534. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  535. }
  536. // Unpack 32 4-bit fields into 32 bytes
  537. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  538. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  539. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  540. __m128i hi = __lsx_vsrli_h(lo, 4);
  541. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  542. }
  543. // add int16_t pairwise and return as float vector
  544. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  545. __m256i v = __lasx_xvpackod_h(x, x);
  546. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  547. return __lasx_xvffint_s_w(summed_pairs);
  548. }
  549. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  550. // Perform multiplication and create 16-bit values
  551. const __m256i dot = lasx_maddubs_h(ax, sy);
  552. return sum_i16_pairs_float(dot);
  553. }
  554. // multiply int8_t, add results pairwise twice and return as float vector
  555. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  556. // Get absolute values of x vectors
  557. const __m256i ax = __lasx_xvsigncov_b(x, x);
  558. // Sign the values of the y vectors
  559. const __m256i sy = __lasx_xvsigncov_b(x, y);
  560. return mul_sum_us8_pairs_float(ax, sy);
  561. }
  562. static inline __m128i packNibbles( __m256i bytes ) {
  563. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  564. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  565. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  566. __m256i low = __lasx_xvand_v(lowByte, bytes);
  567. high = __lasx_xvsrli_h(high, 4);
  568. bytes = __lasx_xvor_v(low, high);
  569. // Compress uint16_t lanes into bytes
  570. __m128i *r0 = (__m128i *)&bytes;
  571. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  572. __m128i *r1 = (__m128i *)&tmp_h128;
  573. __m128i zero = __lsx_vldi(0);
  574. __m128i tmp, tmp2, tmp3;
  575. tmp = __lsx_vmax_h(zero, *r0);
  576. tmp2 = __lsx_vsat_hu(tmp, 7);
  577. tmp = __lsx_vmax_h(zero, *r1);
  578. tmp3 = __lsx_vsat_hu(tmp, 7);
  579. return __lsx_vpickev_b(tmp3, tmp2);
  580. }
  581. #endif //__loongarch_asx
  582. // reference implementation for deterministic creation of model files
  583. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  584. static const int qk = QK4_0;
  585. assert(k % qk == 0);
  586. const int nb = k / qk;
  587. for (int i = 0; i < nb; i++) {
  588. float amax = 0.0f; // absolute max
  589. float max = 0.0f;
  590. for (int j = 0; j < qk; j++) {
  591. const float v = x[i*qk + j];
  592. if (amax < fabsf(v)) {
  593. amax = fabsf(v);
  594. max = v;
  595. }
  596. }
  597. const float d = max / -8;
  598. const float id = d ? 1.0f/d : 0.0f;
  599. y[i].d = GGML_FP32_TO_FP16(d);
  600. for (int j = 0; j < qk/2; ++j) {
  601. const float x0 = x[i*qk + 0 + j]*id;
  602. const float x1 = x[i*qk + qk/2 + j]*id;
  603. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  604. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  605. y[i].qs[j] = xi0;
  606. y[i].qs[j] |= xi1 << 4;
  607. }
  608. }
  609. }
  610. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  611. quantize_row_q4_0_reference(x, y, k);
  612. }
  613. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  614. const int qk = QK4_1;
  615. assert(k % qk == 0);
  616. const int nb = k / qk;
  617. for (int i = 0; i < nb; i++) {
  618. float min = FLT_MAX;
  619. float max = -FLT_MAX;
  620. for (int j = 0; j < qk; j++) {
  621. const float v = x[i*qk + j];
  622. if (v < min) min = v;
  623. if (v > max) max = v;
  624. }
  625. const float d = (max - min) / ((1 << 4) - 1);
  626. const float id = d ? 1.0f/d : 0.0f;
  627. y[i].d = GGML_FP32_TO_FP16(d);
  628. y[i].m = GGML_FP32_TO_FP16(min);
  629. for (int j = 0; j < qk/2; ++j) {
  630. const float x0 = (x[i*qk + 0 + j] - min)*id;
  631. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  632. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  633. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  634. y[i].qs[j] = xi0;
  635. y[i].qs[j] |= xi1 << 4;
  636. }
  637. }
  638. }
  639. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  640. quantize_row_q4_1_reference(x, y, k);
  641. }
  642. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  643. static const int qk = QK5_0;
  644. assert(k % qk == 0);
  645. const int nb = k / qk;
  646. for (int i = 0; i < nb; i++) {
  647. float amax = 0.0f; // absolute max
  648. float max = 0.0f;
  649. for (int j = 0; j < qk; j++) {
  650. const float v = x[i*qk + j];
  651. if (amax < fabsf(v)) {
  652. amax = fabsf(v);
  653. max = v;
  654. }
  655. }
  656. const float d = max / -16;
  657. const float id = d ? 1.0f/d : 0.0f;
  658. y[i].d = GGML_FP32_TO_FP16(d);
  659. uint32_t qh = 0;
  660. for (int j = 0; j < qk/2; ++j) {
  661. const float x0 = x[i*qk + 0 + j]*id;
  662. const float x1 = x[i*qk + qk/2 + j]*id;
  663. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  664. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  665. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  666. // get the 5-th bit and store it in qh at the right position
  667. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  668. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  669. }
  670. memcpy(&y[i].qh, &qh, sizeof(qh));
  671. }
  672. }
  673. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  674. quantize_row_q5_0_reference(x, y, k);
  675. }
  676. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  677. const int qk = QK5_1;
  678. assert(k % qk == 0);
  679. const int nb = k / qk;
  680. for (int i = 0; i < nb; i++) {
  681. float min = FLT_MAX;
  682. float max = -FLT_MAX;
  683. for (int j = 0; j < qk; j++) {
  684. const float v = x[i*qk + j];
  685. if (v < min) min = v;
  686. if (v > max) max = v;
  687. }
  688. const float d = (max - min) / ((1 << 5) - 1);
  689. const float id = d ? 1.0f/d : 0.0f;
  690. y[i].d = GGML_FP32_TO_FP16(d);
  691. y[i].m = GGML_FP32_TO_FP16(min);
  692. uint32_t qh = 0;
  693. for (int j = 0; j < qk/2; ++j) {
  694. const float x0 = (x[i*qk + 0 + j] - min)*id;
  695. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  696. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  697. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  698. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  699. // get the 5-th bit and store it in qh at the right position
  700. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  701. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  702. }
  703. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  704. }
  705. }
  706. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  707. quantize_row_q5_1_reference(x, y, k);
  708. }
  709. // reference implementation for deterministic creation of model files
  710. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  711. assert(k % QK8_0 == 0);
  712. const int nb = k / QK8_0;
  713. for (int i = 0; i < nb; i++) {
  714. float amax = 0.0f; // absolute max
  715. for (int j = 0; j < QK8_0; j++) {
  716. const float v = x[i*QK8_0 + j];
  717. amax = MAX(amax, fabsf(v));
  718. }
  719. const float d = amax / ((1 << 7) - 1);
  720. const float id = d ? 1.0f/d : 0.0f;
  721. y[i].d = GGML_FP32_TO_FP16(d);
  722. for (int j = 0; j < QK8_0; ++j) {
  723. const float x0 = x[i*QK8_0 + j]*id;
  724. y[i].qs[j] = roundf(x0);
  725. }
  726. }
  727. }
  728. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  729. assert(QK8_0 == 32);
  730. assert(k % QK8_0 == 0);
  731. const int nb = k / QK8_0;
  732. block_q8_0 * restrict y = vy;
  733. #if defined(__ARM_NEON)
  734. for (int i = 0; i < nb; i++) {
  735. float32x4_t srcv [8];
  736. float32x4_t asrcv[8];
  737. float32x4_t amaxv[8];
  738. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  739. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  740. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  741. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  742. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  743. const float amax = vmaxvq_f32(amaxv[0]);
  744. const float d = amax / ((1 << 7) - 1);
  745. const float id = d ? 1.0f/d : 0.0f;
  746. y[i].d = GGML_FP32_TO_FP16(d);
  747. for (int j = 0; j < 8; j++) {
  748. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  749. const int32x4_t vi = vcvtnq_s32_f32(v);
  750. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  751. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  752. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  753. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  754. }
  755. }
  756. #elif defined(__wasm_simd128__)
  757. for (int i = 0; i < nb; i++) {
  758. v128_t srcv [8];
  759. v128_t asrcv[8];
  760. v128_t amaxv[8];
  761. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  762. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  763. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  764. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  765. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  766. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  767. wasm_f32x4_extract_lane(amaxv[0], 1)),
  768. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  769. wasm_f32x4_extract_lane(amaxv[0], 3)));
  770. const float d = amax / ((1 << 7) - 1);
  771. const float id = d ? 1.0f/d : 0.0f;
  772. y[i].d = GGML_FP32_TO_FP16(d);
  773. for (int j = 0; j < 8; j++) {
  774. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  775. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  776. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  777. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  778. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  779. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  780. }
  781. }
  782. #elif defined(__AVX2__) || defined(__AVX__)
  783. for (int i = 0; i < nb; i++) {
  784. // Load elements into 4 AVX vectors
  785. __m256 v0 = _mm256_loadu_ps( x );
  786. __m256 v1 = _mm256_loadu_ps( x + 8 );
  787. __m256 v2 = _mm256_loadu_ps( x + 16 );
  788. __m256 v3 = _mm256_loadu_ps( x + 24 );
  789. x += 32;
  790. // Compute max(abs(e)) for the block
  791. const __m256 signBit = _mm256_set1_ps( -0.0f );
  792. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  793. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  794. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  795. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  796. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  797. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  798. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  799. const float maxScalar = _mm_cvtss_f32( max4 );
  800. // Quantize these floats
  801. const float d = maxScalar / 127.f;
  802. y[i].d = GGML_FP32_TO_FP16(d);
  803. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  804. const __m256 mul = _mm256_set1_ps( id );
  805. // Apply the multiplier
  806. v0 = _mm256_mul_ps( v0, mul );
  807. v1 = _mm256_mul_ps( v1, mul );
  808. v2 = _mm256_mul_ps( v2, mul );
  809. v3 = _mm256_mul_ps( v3, mul );
  810. // Round to nearest integer
  811. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  812. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  813. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  814. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  815. // Convert floats to integers
  816. __m256i i0 = _mm256_cvtps_epi32( v0 );
  817. __m256i i1 = _mm256_cvtps_epi32( v1 );
  818. __m256i i2 = _mm256_cvtps_epi32( v2 );
  819. __m256i i3 = _mm256_cvtps_epi32( v3 );
  820. #if defined(__AVX2__)
  821. // Convert int32 to int16
  822. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  823. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  824. // Convert int16 to int8
  825. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  826. // We got our precious signed bytes, but the order is now wrong
  827. // These AVX2 pack instructions process 16-byte pieces independently
  828. // The following instruction is fixing the order
  829. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  830. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  831. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  832. #else
  833. // Since we don't have in AVX some necessary functions,
  834. // we split the registers in half and call AVX2 analogs from SSE
  835. __m128i ni0 = _mm256_castsi256_si128( i0 );
  836. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  837. __m128i ni2 = _mm256_castsi256_si128( i1 );
  838. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  839. __m128i ni4 = _mm256_castsi256_si128( i2 );
  840. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  841. __m128i ni6 = _mm256_castsi256_si128( i3 );
  842. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  843. // Convert int32 to int16
  844. ni0 = _mm_packs_epi32( ni0, ni1 );
  845. ni2 = _mm_packs_epi32( ni2, ni3 );
  846. ni4 = _mm_packs_epi32( ni4, ni5 );
  847. ni6 = _mm_packs_epi32( ni6, ni7 );
  848. // Convert int16 to int8
  849. ni0 = _mm_packs_epi16( ni0, ni2 );
  850. ni4 = _mm_packs_epi16( ni4, ni6 );
  851. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  852. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  853. #endif
  854. }
  855. #elif defined(__riscv_v_intrinsic)
  856. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  857. for (int i = 0; i < nb; i++) {
  858. // load elements
  859. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  860. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  861. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  862. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  863. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  864. const float d = amax / ((1 << 7) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = GGML_FP32_TO_FP16(d);
  867. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  868. // convert to integer
  869. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  870. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  871. // store result
  872. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  873. }
  874. #elif defined(__POWER9_VECTOR__)
  875. for (int i = 0; i < nb; i++) {
  876. vector float srcv [8];
  877. vector float asrcv[8];
  878. vector float amaxv[8];
  879. vector signed int vi[8];
  880. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  881. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  882. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  883. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  884. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  885. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  886. vec_extract(amaxv[0], 1)),
  887. MAX(vec_extract(amaxv[0], 2),
  888. vec_extract(amaxv[0], 3)));
  889. const float d = amax / ((1 << 7) - 1);
  890. const float id = d ? 1.0f/d : 0.0f;
  891. const vector float vid = vec_splats(id);
  892. y[i].d = GGML_FP32_TO_FP16(d);
  893. for (int j = 0; j < 8; j++) {
  894. const vector float v = vec_round(vec_mul(srcv[j], vid));
  895. vi[j] = vec_cts(v, 0);
  896. }
  897. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  898. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  899. #elif defined(__loongarch_asx)
  900. for (int i = 0; i < nb; i++) {
  901. ft_union fi;
  902. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  903. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  904. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  905. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  906. x += 32;
  907. // Compute max(abs(e)) for the block
  908. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  909. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  910. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  911. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  912. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  913. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  914. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  915. __m128 tmp = max4;
  916. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  917. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  918. const float max_scalar = fi.f;
  919. // Quantize these floats
  920. const float d = max_scalar / 127.f;
  921. y[i].d = GGML_FP32_TO_FP16(d);
  922. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  923. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  924. // Apply the multiplier
  925. v0 = __lasx_xvfmul_s( v0, mul );
  926. v1 = __lasx_xvfmul_s( v1, mul );
  927. v2 = __lasx_xvfmul_s( v2, mul );
  928. v3 = __lasx_xvfmul_s( v3, mul );
  929. // Round to nearest integer
  930. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  931. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  932. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  933. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  934. __m128i ni0 = lasx_extracti128( i0, 0 );
  935. __m128i ni1 = lasx_extracti128( i0, 1);
  936. __m128i ni2 = lasx_extracti128( i1, 0);
  937. __m128i ni3 = lasx_extracti128( i1, 1);
  938. __m128i ni4 = lasx_extracti128( i2, 0);
  939. __m128i ni5 = lasx_extracti128( i2, 1);
  940. __m128i ni6 = lasx_extracti128( i3, 0);
  941. __m128i ni7 = lasx_extracti128( i3, 1);
  942. // Convert int32 to int16
  943. ni0 = lsx_packs_w( ni0, ni1 );
  944. ni2 = lsx_packs_w( ni2, ni3 );
  945. ni4 = lsx_packs_w( ni4, ni5 );
  946. ni6 = lsx_packs_w( ni6, ni7 );
  947. // Convert int16 to int8
  948. ni0 = lsx_packs_h( ni0, ni2 );
  949. ni4 = lsx_packs_h( ni4, ni6 );
  950. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  951. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  952. }
  953. #else
  954. GGML_UNUSED(nb);
  955. // scalar
  956. quantize_row_q8_0_reference(x, y, k);
  957. #endif
  958. }
  959. // reference implementation for deterministic creation of model files
  960. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  961. assert(QK8_1 == 32);
  962. assert(k % QK8_1 == 0);
  963. const int nb = k / QK8_1;
  964. for (int i = 0; i < nb; i++) {
  965. float amax = 0.0f; // absolute max
  966. for (int j = 0; j < QK8_1; j++) {
  967. const float v = x[i*QK8_1 + j];
  968. amax = MAX(amax, fabsf(v));
  969. }
  970. const float d = amax / ((1 << 7) - 1);
  971. const float id = d ? 1.0f/d : 0.0f;
  972. y[i].d = GGML_FP32_TO_FP16(d);
  973. int sum = 0;
  974. for (int j = 0; j < QK8_1/2; ++j) {
  975. const float v0 = x[i*QK8_1 + j]*id;
  976. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  977. y[i].qs[ j] = roundf(v0);
  978. y[i].qs[QK8_1/2 + j] = roundf(v1);
  979. sum += y[i].qs[ j];
  980. sum += y[i].qs[QK8_1/2 + j];
  981. }
  982. y[i].s = GGML_FP32_TO_FP16(sum*d);
  983. }
  984. }
  985. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  986. assert(k % QK8_1 == 0);
  987. const int nb = k / QK8_1;
  988. block_q8_1 * restrict y = vy;
  989. #if defined(__ARM_NEON)
  990. for (int i = 0; i < nb; i++) {
  991. float32x4_t srcv [8];
  992. float32x4_t asrcv[8];
  993. float32x4_t amaxv[8];
  994. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  995. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  996. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  997. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  998. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  999. const float amax = vmaxvq_f32(amaxv[0]);
  1000. const float d = amax / ((1 << 7) - 1);
  1001. const float id = d ? 1.0f/d : 0.0f;
  1002. y[i].d = GGML_FP32_TO_FP16(d);
  1003. int32x4_t accv = vdupq_n_s32(0);
  1004. for (int j = 0; j < 8; j++) {
  1005. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1006. const int32x4_t vi = vcvtnq_s32_f32(v);
  1007. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1008. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1009. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1010. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1011. accv = vaddq_s32(accv, vi);
  1012. }
  1013. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1014. }
  1015. #elif defined(__wasm_simd128__)
  1016. for (int i = 0; i < nb; i++) {
  1017. v128_t srcv [8];
  1018. v128_t asrcv[8];
  1019. v128_t amaxv[8];
  1020. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1021. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1022. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1023. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1024. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1025. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1026. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1027. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1028. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1029. const float d = amax / ((1 << 7) - 1);
  1030. const float id = d ? 1.0f/d : 0.0f;
  1031. y[i].d = GGML_FP32_TO_FP16(d);
  1032. v128_t accv = wasm_i32x4_splat(0);
  1033. for (int j = 0; j < 8; j++) {
  1034. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1035. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1036. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1037. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1038. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1039. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1040. accv = wasm_i32x4_add(accv, vi);
  1041. }
  1042. y[i].s = GGML_FP32_TO_FP16(
  1043. d * (wasm_i32x4_extract_lane(accv, 0) +
  1044. wasm_i32x4_extract_lane(accv, 1) +
  1045. wasm_i32x4_extract_lane(accv, 2) +
  1046. wasm_i32x4_extract_lane(accv, 3)));
  1047. }
  1048. #elif defined(__AVX2__) || defined(__AVX__)
  1049. for (int i = 0; i < nb; i++) {
  1050. // Load elements into 4 AVX vectors
  1051. __m256 v0 = _mm256_loadu_ps( x );
  1052. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1053. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1054. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1055. x += 32;
  1056. // Compute max(abs(e)) for the block
  1057. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1058. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1059. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1060. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1061. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1062. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1063. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1064. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1065. const float max_scalar = _mm_cvtss_f32( max4 );
  1066. // Quantize these floats
  1067. const float d = max_scalar / 127.f;
  1068. y[i].d = GGML_FP32_TO_FP16(d);
  1069. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1070. const __m256 mul = _mm256_set1_ps( id );
  1071. // Apply the multiplier
  1072. v0 = _mm256_mul_ps( v0, mul );
  1073. v1 = _mm256_mul_ps( v1, mul );
  1074. v2 = _mm256_mul_ps( v2, mul );
  1075. v3 = _mm256_mul_ps( v3, mul );
  1076. // Round to nearest integer
  1077. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1078. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1079. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1080. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1081. // Convert floats to integers
  1082. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1083. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1084. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1085. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1086. #if defined(__AVX2__)
  1087. // Compute the sum of the quants and set y[i].s
  1088. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1089. // Convert int32 to int16
  1090. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1091. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1092. // Convert int16 to int8
  1093. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1094. // We got our precious signed bytes, but the order is now wrong
  1095. // These AVX2 pack instructions process 16-byte pieces independently
  1096. // The following instruction is fixing the order
  1097. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1098. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1099. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1100. #else
  1101. // Since we don't have in AVX some necessary functions,
  1102. // we split the registers in half and call AVX2 analogs from SSE
  1103. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1104. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1105. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1106. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1107. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1108. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1109. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1110. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1111. // Compute the sum of the quants and set y[i].s
  1112. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1113. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1114. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1115. // Convert int32 to int16
  1116. ni0 = _mm_packs_epi32( ni0, ni1 );
  1117. ni2 = _mm_packs_epi32( ni2, ni3 );
  1118. ni4 = _mm_packs_epi32( ni4, ni5 );
  1119. ni6 = _mm_packs_epi32( ni6, ni7 );
  1120. // Convert int16 to int8
  1121. ni0 = _mm_packs_epi16( ni0, ni2 );
  1122. ni4 = _mm_packs_epi16( ni4, ni6 );
  1123. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1124. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1125. #endif
  1126. }
  1127. #elif defined(__riscv_v_intrinsic)
  1128. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1129. for (int i = 0; i < nb; i++) {
  1130. // load elements
  1131. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1132. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1133. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1134. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1135. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1136. const float d = amax / ((1 << 7) - 1);
  1137. const float id = d ? 1.0f/d : 0.0f;
  1138. y[i].d = GGML_FP32_TO_FP16(d);
  1139. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1140. // convert to integer
  1141. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1142. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1143. // store result
  1144. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1145. // compute sum for y[i].s
  1146. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1147. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1148. // set y[i].s
  1149. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1150. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1151. }
  1152. #elif defined(__POWER9_VECTOR__)
  1153. for (int i = 0; i < nb; i++) {
  1154. vector float srcv [8];
  1155. vector float asrcv[8];
  1156. vector float amaxv[8];
  1157. vector signed int vi[8];
  1158. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1159. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1160. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1161. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1162. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1163. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1164. vec_extract(amaxv[0], 1)),
  1165. MAX(vec_extract(amaxv[0], 2),
  1166. vec_extract(amaxv[0], 3)));
  1167. const float d = amax / ((1 << 7) - 1);
  1168. const float id = d ? 1.0f/d : 0.0f;
  1169. const vector float vid = vec_splats(id);
  1170. y[i].d = GGML_FP32_TO_FP16(d);
  1171. vector int accv = vec_splats(0);
  1172. for (int j = 0; j < 8; j++) {
  1173. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1174. vi[j] = vec_cts(v, 0);
  1175. accv = vec_add(accv, vi[j]);
  1176. }
  1177. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1178. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1179. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1180. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1181. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1182. #elif defined(__loongarch_asx)
  1183. for (int i = 0; i < nb; i++) {
  1184. ft_union ft;
  1185. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1186. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1187. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1188. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1189. x += 32;
  1190. // Compute max(abs(e)) for the block
  1191. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1192. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1193. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1194. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1195. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1196. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1197. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1198. __m128 tmp = max4;
  1199. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1200. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1201. const float max_scalar = ft.f;
  1202. // Quantize these floats
  1203. const float d = max_scalar / 127.f;
  1204. y[i].d = GGML_FP32_TO_FP16(d);
  1205. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1206. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1207. // Apply the multiplier
  1208. v0 = __lasx_xvfmul_s( v0, mul );
  1209. v1 = __lasx_xvfmul_s( v1, mul );
  1210. v2 = __lasx_xvfmul_s( v2, mul );
  1211. v3 = __lasx_xvfmul_s( v3, mul );
  1212. // Round to nearest integer
  1213. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1214. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1215. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1216. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1217. __m128i ni0 = lasx_extracti128(i0, 0);
  1218. __m128i ni1 = lasx_extracti128( i0, 1);
  1219. __m128i ni2 = lasx_extracti128( i1, 0);
  1220. __m128i ni3 = lasx_extracti128( i1, 1);
  1221. __m128i ni4 = lasx_extracti128( i2, 0 );
  1222. __m128i ni5 = lasx_extracti128( i2, 1);
  1223. __m128i ni6 = lasx_extracti128( i3, 0);
  1224. __m128i ni7 = lasx_extracti128( i3, 1);
  1225. // Compute the sum of the quants and set y[i].s
  1226. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1227. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1228. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1229. // Convert int32 to int16
  1230. ni0 = lsx_packs_w( ni0, ni1 );
  1231. ni2 = lsx_packs_w( ni2, ni3 );
  1232. ni4 = lsx_packs_w( ni4, ni5 );
  1233. ni6 = lsx_packs_w( ni6, ni7 );
  1234. // Convert int16 to int8
  1235. ni0 = lsx_packs_h( ni0, ni2 );
  1236. ni4 = lsx_packs_h( ni4, ni6 );
  1237. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1238. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1239. }
  1240. #else
  1241. GGML_UNUSED(nb);
  1242. // scalar
  1243. quantize_row_q8_1_reference(x, y, k);
  1244. #endif
  1245. }
  1246. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1247. static const int qk = QK4_0;
  1248. assert(k % qk == 0);
  1249. const int nb = k / qk;
  1250. for (int i = 0; i < nb; i++) {
  1251. const float d = GGML_FP16_TO_FP32(x[i].d);
  1252. for (int j = 0; j < qk/2; ++j) {
  1253. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1254. const int x1 = (x[i].qs[j] >> 4) - 8;
  1255. y[i*qk + j + 0 ] = x0*d;
  1256. y[i*qk + j + qk/2] = x1*d;
  1257. }
  1258. }
  1259. }
  1260. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1261. static const int qk = QK4_1;
  1262. assert(k % qk == 0);
  1263. const int nb = k / qk;
  1264. for (int i = 0; i < nb; i++) {
  1265. const float d = GGML_FP16_TO_FP32(x[i].d);
  1266. const float m = GGML_FP16_TO_FP32(x[i].m);
  1267. for (int j = 0; j < qk/2; ++j) {
  1268. const int x0 = (x[i].qs[j] & 0x0F);
  1269. const int x1 = (x[i].qs[j] >> 4);
  1270. y[i*qk + j + 0 ] = x0*d + m;
  1271. y[i*qk + j + qk/2] = x1*d + m;
  1272. }
  1273. }
  1274. }
  1275. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1276. static const int qk = QK5_0;
  1277. assert(k % qk == 0);
  1278. const int nb = k / qk;
  1279. for (int i = 0; i < nb; i++) {
  1280. const float d = GGML_FP16_TO_FP32(x[i].d);
  1281. uint32_t qh;
  1282. memcpy(&qh, x[i].qh, sizeof(qh));
  1283. for (int j = 0; j < qk/2; ++j) {
  1284. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1285. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1286. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1287. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1288. y[i*qk + j + 0 ] = x0*d;
  1289. y[i*qk + j + qk/2] = x1*d;
  1290. }
  1291. }
  1292. }
  1293. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1294. static const int qk = QK5_1;
  1295. assert(k % qk == 0);
  1296. const int nb = k / qk;
  1297. for (int i = 0; i < nb; i++) {
  1298. const float d = GGML_FP16_TO_FP32(x[i].d);
  1299. const float m = GGML_FP16_TO_FP32(x[i].m);
  1300. uint32_t qh;
  1301. memcpy(&qh, x[i].qh, sizeof(qh));
  1302. for (int j = 0; j < qk/2; ++j) {
  1303. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1304. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1305. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1306. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1307. y[i*qk + j + 0 ] = x0*d + m;
  1308. y[i*qk + j + qk/2] = x1*d + m;
  1309. }
  1310. }
  1311. }
  1312. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1313. static const int qk = QK8_0;
  1314. assert(k % qk == 0);
  1315. const int nb = k / qk;
  1316. for (int i = 0; i < nb; i++) {
  1317. const float d = GGML_FP16_TO_FP32(x[i].d);
  1318. for (int j = 0; j < qk; ++j) {
  1319. y[i*qk + j] = x[i].qs[j]*d;
  1320. }
  1321. }
  1322. }
  1323. //
  1324. // 2-6 bit quantization in super-blocks
  1325. //
  1326. //
  1327. // ===================== Helper functions
  1328. //
  1329. static inline int nearest_int(float fval) {
  1330. assert(fval <= 4194303.f);
  1331. float val = fval + 12582912.f;
  1332. int i; memcpy(&i, &val, sizeof(int));
  1333. return (i & 0x007fffff) - 0x00400000;
  1334. }
  1335. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1336. const float * restrict qw) {
  1337. float max = 0;
  1338. float amax = 0;
  1339. for (int i = 0; i < n; ++i) {
  1340. float ax = fabsf(x[i]);
  1341. if (ax > amax) { amax = ax; max = x[i]; }
  1342. }
  1343. if (amax < GROUP_MAX_EPS) { // all zero
  1344. for (int i = 0; i < n; ++i) {
  1345. L[i] = 0;
  1346. }
  1347. return 0.f;
  1348. }
  1349. float iscale = -nmax / max;
  1350. if (rmse_type == 0) {
  1351. for (int i = 0; i < n; ++i) {
  1352. int l = nearest_int(iscale * x[i]);
  1353. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1354. }
  1355. return 1/iscale;
  1356. }
  1357. bool return_early = false;
  1358. if (rmse_type < 0) {
  1359. rmse_type = -rmse_type;
  1360. return_early = true;
  1361. }
  1362. float sumlx = 0;
  1363. float suml2 = 0;
  1364. #ifdef HAVE_BUGGY_APPLE_LINKER
  1365. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1366. for (volatile int i = 0; i < n; ++i) {
  1367. #else
  1368. for (int i = 0; i < n; ++i) {
  1369. #endif
  1370. int l = nearest_int(iscale * x[i]);
  1371. l = MAX(-nmax, MIN(nmax-1, l));
  1372. L[i] = l + nmax;
  1373. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1374. sumlx += w*x[i]*l;
  1375. suml2 += w*l*l;
  1376. }
  1377. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1378. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1379. float best = scale * sumlx;
  1380. for (int is = -9; is <= 9; ++is) {
  1381. if (is == 0) {
  1382. continue;
  1383. }
  1384. iscale = -(nmax + 0.1f*is) / max;
  1385. sumlx = suml2 = 0;
  1386. for (int i = 0; i < n; ++i) {
  1387. int l = nearest_int(iscale * x[i]);
  1388. l = MAX(-nmax, MIN(nmax-1, l));
  1389. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1390. sumlx += w*x[i]*l;
  1391. suml2 += w*l*l;
  1392. }
  1393. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1394. for (int i = 0; i < n; ++i) {
  1395. int l = nearest_int(iscale * x[i]);
  1396. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1397. }
  1398. scale = sumlx/suml2; best = scale*sumlx;
  1399. }
  1400. }
  1401. return scale;
  1402. }
  1403. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1404. float max = 0;
  1405. float amax = 0;
  1406. for (int i = 0; i < n; ++i) {
  1407. float ax = fabsf(x[i]);
  1408. if (ax > amax) { amax = ax; max = x[i]; }
  1409. }
  1410. if (amax < GROUP_MAX_EPS) { // all zero
  1411. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1412. return 0.f;
  1413. }
  1414. float iscale = -nmax / max;
  1415. if (do_rmse) {
  1416. float sumlx = 0;
  1417. float suml2 = 0;
  1418. for (int i = 0; i < n; ++i) {
  1419. int l = nearest_int(iscale * x[i]);
  1420. l = MAX(-nmax, MIN(nmax-1, l));
  1421. L[i] = l;
  1422. float w = x[i]*x[i];
  1423. sumlx += w*x[i]*l;
  1424. suml2 += w*l*l;
  1425. }
  1426. for (int itry = 0; itry < 5; ++itry) {
  1427. int n_changed = 0;
  1428. for (int i = 0; i < n; ++i) {
  1429. float w = x[i]*x[i];
  1430. float slx = sumlx - w*x[i]*L[i];
  1431. if (slx > 0) {
  1432. float sl2 = suml2 - w*L[i]*L[i];
  1433. int new_l = nearest_int(x[i] * sl2 / slx);
  1434. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1435. if (new_l != L[i]) {
  1436. slx += w*x[i]*new_l;
  1437. sl2 += w*new_l*new_l;
  1438. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1439. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1440. ++n_changed;
  1441. }
  1442. }
  1443. }
  1444. }
  1445. if (!n_changed) {
  1446. break;
  1447. }
  1448. }
  1449. for (int i = 0; i < n; ++i) {
  1450. L[i] += nmax;
  1451. }
  1452. return sumlx / suml2;
  1453. }
  1454. for (int i = 0; i < n; ++i) {
  1455. int l = nearest_int(iscale * x[i]);
  1456. l = MAX(-nmax, MIN(nmax-1, l));
  1457. L[i] = l + nmax;
  1458. }
  1459. return 1/iscale;
  1460. }
  1461. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1462. int ntry, float alpha) {
  1463. float min = x[0];
  1464. float max = x[0];
  1465. for (int i = 1; i < n; ++i) {
  1466. if (x[i] < min) min = x[i];
  1467. if (x[i] > max) max = x[i];
  1468. }
  1469. if (max == min) {
  1470. for (int i = 0; i < n; ++i) L[i] = 0;
  1471. *the_min = 0;
  1472. return 0.f;
  1473. }
  1474. if (min > 0) min = 0;
  1475. float iscale = nmax/(max - min);
  1476. float scale = 1/iscale;
  1477. for (int itry = 0; itry < ntry; ++itry) {
  1478. float sumlx = 0; int suml2 = 0;
  1479. bool did_change = false;
  1480. for (int i = 0; i < n; ++i) {
  1481. int l = nearest_int(iscale*(x[i] - min));
  1482. l = MAX(0, MIN(nmax, l));
  1483. if (l != L[i]) {
  1484. L[i] = l;
  1485. did_change = true;
  1486. }
  1487. sumlx += (x[i] - min)*l;
  1488. suml2 += l*l;
  1489. }
  1490. scale = sumlx/suml2;
  1491. float sum = 0;
  1492. for (int i = 0; i < n; ++i) {
  1493. sum += x[i] - scale*L[i];
  1494. }
  1495. min = alpha*min + (1 - alpha)*sum/n;
  1496. if (min > 0) min = 0;
  1497. iscale = 1/scale;
  1498. if (!did_change) break;
  1499. }
  1500. *the_min = -min;
  1501. return scale;
  1502. }
  1503. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1504. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1505. float rmin, float rdelta, int nstep, bool use_mad) {
  1506. float min = x[0];
  1507. float max = x[0];
  1508. float sum_w = weights[0];
  1509. float sum_x = sum_w * x[0];
  1510. #ifdef HAVE_BUGGY_APPLE_LINKER
  1511. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1512. for (volatile int i = 1; i < n; ++i) {
  1513. #else
  1514. for (int i = 1; i < n; ++i) {
  1515. #endif
  1516. if (x[i] < min) min = x[i];
  1517. if (x[i] > max) max = x[i];
  1518. float w = weights[i];
  1519. sum_w += w;
  1520. sum_x += w * x[i];
  1521. }
  1522. if (min > 0) min = 0;
  1523. if (max == min) {
  1524. for (int i = 0; i < n; ++i) L[i] = 0;
  1525. *the_min = -min;
  1526. return 0.f;
  1527. }
  1528. float iscale = nmax/(max - min);
  1529. float scale = 1/iscale;
  1530. float best_mad = 0;
  1531. for (int i = 0; i < n; ++i) {
  1532. int l = nearest_int(iscale*(x[i] - min));
  1533. L[i] = MAX(0, MIN(nmax, l));
  1534. float diff = scale * L[i] + min - x[i];
  1535. diff = use_mad ? fabsf(diff) : diff * diff;
  1536. float w = weights[i];
  1537. best_mad += w * diff;
  1538. }
  1539. if (nstep < 1) {
  1540. *the_min = -min;
  1541. return scale;
  1542. }
  1543. for (int is = 0; is <= nstep; ++is) {
  1544. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1545. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1546. for (int i = 0; i < n; ++i) {
  1547. int l = nearest_int(iscale*(x[i] - min));
  1548. l = MAX(0, MIN(nmax, l));
  1549. Laux[i] = l;
  1550. float w = weights[i];
  1551. sum_l += w*l;
  1552. sum_l2 += w*l*l;
  1553. sum_xl += w*l*x[i];
  1554. }
  1555. float D = sum_w * sum_l2 - sum_l * sum_l;
  1556. if (D > 0) {
  1557. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1558. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1559. if (this_min > 0) {
  1560. this_min = 0;
  1561. this_scale = sum_xl / sum_l2;
  1562. }
  1563. float mad = 0;
  1564. for (int i = 0; i < n; ++i) {
  1565. float diff = this_scale * Laux[i] + this_min - x[i];
  1566. diff = use_mad ? fabsf(diff) : diff * diff;
  1567. float w = weights[i];
  1568. mad += w * diff;
  1569. }
  1570. if (mad < best_mad) {
  1571. for (int i = 0; i < n; ++i) {
  1572. L[i] = Laux[i];
  1573. }
  1574. best_mad = mad;
  1575. scale = this_scale;
  1576. min = this_min;
  1577. }
  1578. }
  1579. }
  1580. *the_min = -min;
  1581. return scale;
  1582. }
  1583. #if QK_K == 256
  1584. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1585. if (j < 4) {
  1586. *d = q[j] & 63; *m = q[j + 4] & 63;
  1587. } else {
  1588. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1589. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1590. }
  1591. }
  1592. #endif
  1593. //========================- 2-bit (de)-quantization
  1594. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1595. assert(k % QK_K == 0);
  1596. const int nb = k / QK_K;
  1597. uint8_t L[QK_K];
  1598. uint8_t Laux[16];
  1599. float weights[16];
  1600. float mins[QK_K/16];
  1601. float scales[QK_K/16];
  1602. const float q4scale = 15.f;
  1603. for (int i = 0; i < nb; i++) {
  1604. float max_scale = 0; // as we are deducting the min, scales are always positive
  1605. float max_min = 0;
  1606. for (int j = 0; j < QK_K/16; ++j) {
  1607. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1608. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1609. float scale = scales[j];
  1610. if (scale > max_scale) {
  1611. max_scale = scale;
  1612. }
  1613. float min = mins[j];
  1614. if (min > max_min) {
  1615. max_min = min;
  1616. }
  1617. }
  1618. if (max_scale > 0) {
  1619. float iscale = q4scale/max_scale;
  1620. for (int j = 0; j < QK_K/16; ++j) {
  1621. int l = nearest_int(iscale*scales[j]);
  1622. y[i].scales[j] = l;
  1623. }
  1624. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1625. } else {
  1626. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1627. y[i].d = GGML_FP32_TO_FP16(0.f);
  1628. }
  1629. if (max_min > 0) {
  1630. float iscale = q4scale/max_min;
  1631. for (int j = 0; j < QK_K/16; ++j) {
  1632. int l = nearest_int(iscale*mins[j]);
  1633. y[i].scales[j] |= (l << 4);
  1634. }
  1635. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1636. } else {
  1637. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1638. }
  1639. for (int j = 0; j < QK_K/16; ++j) {
  1640. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1641. if (!d) continue;
  1642. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1643. for (int ii = 0; ii < 16; ++ii) {
  1644. int l = nearest_int((x[16*j + ii] + dm)/d);
  1645. l = MAX(0, MIN(3, l));
  1646. L[16*j + ii] = l;
  1647. }
  1648. }
  1649. #if QK_K == 256
  1650. for (int j = 0; j < QK_K; j += 128) {
  1651. for (int l = 0; l < 32; ++l) {
  1652. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1653. }
  1654. }
  1655. #else
  1656. for (int l = 0; l < 16; ++l) {
  1657. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1658. }
  1659. #endif
  1660. x += QK_K;
  1661. }
  1662. }
  1663. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1664. assert(k % QK_K == 0);
  1665. const int nb = k / QK_K;
  1666. for (int i = 0; i < nb; i++) {
  1667. const float d = GGML_FP16_TO_FP32(x[i].d);
  1668. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1669. const uint8_t * q = x[i].qs;
  1670. #if QK_K == 256
  1671. int is = 0;
  1672. float dl, ml;
  1673. for (int n = 0; n < QK_K; n += 128) {
  1674. int shift = 0;
  1675. for (int j = 0; j < 4; ++j) {
  1676. uint8_t sc = x[i].scales[is++];
  1677. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1678. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1679. sc = x[i].scales[is++];
  1680. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1681. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1682. shift += 2;
  1683. }
  1684. q += 32;
  1685. }
  1686. #else
  1687. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1688. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1689. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1690. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1691. for (int l = 0; l < 16; ++l) {
  1692. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1693. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1694. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1695. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1696. }
  1697. y += QK_K;
  1698. #endif
  1699. }
  1700. }
  1701. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1702. quantize_row_q2_K_reference(x, vy, k);
  1703. }
  1704. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1705. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1706. float rmin, float rdelta, int nstep, bool use_mad) {
  1707. float min = x[0];
  1708. float max = x[0];
  1709. float sum_w = weights ? weights[0] : x[0]*x[0];
  1710. float sum_x = sum_w * x[0];
  1711. #ifdef HAVE_BUGGY_APPLE_LINKER
  1712. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1713. for (volatile int i = 1; i < n; ++i) {
  1714. #else
  1715. for (int i = 1; i < n; ++i) {
  1716. #endif
  1717. if (x[i] < min) min = x[i];
  1718. if (x[i] > max) max = x[i];
  1719. float w = weights ? weights[i] : x[i]*x[i];
  1720. sum_w += w;
  1721. sum_x += w * x[i];
  1722. }
  1723. if (min > 0) {
  1724. min = 0;
  1725. }
  1726. if (max <= min) {
  1727. memset(L, 0, n);
  1728. *the_min = -min;
  1729. return 0.f;
  1730. }
  1731. float iscale = nmax/(max - min);
  1732. float scale = 1/iscale;
  1733. float best_mad = 0;
  1734. for (int i = 0; i < n; ++i) {
  1735. int l = nearest_int(iscale*(x[i] - min));
  1736. L[i] = MAX(0, MIN(nmax, l));
  1737. float diff = scale * L[i] + min - x[i];
  1738. diff = use_mad ? fabsf(diff) : diff*diff;
  1739. float w = weights ? weights[i] : x[i]*x[i];
  1740. best_mad += w * diff;
  1741. }
  1742. if (nstep < 1) {
  1743. *the_min = -min;
  1744. return scale;
  1745. }
  1746. for (int is = 0; is <= nstep; ++is) {
  1747. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1748. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1749. for (int i = 0; i < n; ++i) {
  1750. int l = nearest_int(iscale*(x[i] - min));
  1751. l = MAX(0, MIN(nmax, l));
  1752. Laux[i] = l;
  1753. float w = weights ? weights[i] : x[i]*x[i];
  1754. sum_l += w*l;
  1755. sum_l2 += w*l*l;
  1756. sum_xl += w*l*x[i];
  1757. }
  1758. float D = sum_w * sum_l2 - sum_l * sum_l;
  1759. if (D > 0) {
  1760. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1761. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1762. if (this_min > 0) {
  1763. this_min = 0;
  1764. this_scale = sum_xl / sum_l2;
  1765. }
  1766. float mad = 0;
  1767. for (int i = 0; i < n; ++i) {
  1768. float diff = this_scale * Laux[i] + this_min - x[i];
  1769. diff = use_mad ? fabsf(diff) : diff*diff;
  1770. float w = weights ? weights[i] : x[i]*x[i];
  1771. mad += w * diff;
  1772. }
  1773. if (mad < best_mad) {
  1774. for (int i = 0; i < n; ++i) {
  1775. L[i] = Laux[i];
  1776. }
  1777. best_mad = mad;
  1778. scale = this_scale;
  1779. min = this_min;
  1780. }
  1781. }
  1782. }
  1783. *the_min = -min;
  1784. return scale;
  1785. }
  1786. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1787. float max = 0;
  1788. for (int i = 0; i < n; ++i) {
  1789. max = MAX(max, x[i]);
  1790. }
  1791. if (!max) { // all zero
  1792. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1793. return 0.f;
  1794. }
  1795. float iscale = nmax / max;
  1796. for (int i = 0; i < n; ++i) {
  1797. L[i] = nearest_int(iscale * x[i]);
  1798. }
  1799. float scale = 1/iscale;
  1800. float best_mse = 0;
  1801. for (int i = 0; i < n; ++i) {
  1802. float diff = x[i] - scale*L[i];
  1803. float w = quant_weights[i];
  1804. best_mse += w*diff*diff;
  1805. }
  1806. for (int is = -4; is <= 4; ++is) {
  1807. if (is == 0) continue;
  1808. float iscale_is = (0.1f*is + nmax)/max;
  1809. float scale_is = 1/iscale_is;
  1810. float mse = 0;
  1811. for (int i = 0; i < n; ++i) {
  1812. int l = nearest_int(iscale_is*x[i]);
  1813. l = MIN(nmax, l);
  1814. float diff = x[i] - scale_is*l;
  1815. float w = quant_weights[i];
  1816. mse += w*diff*diff;
  1817. }
  1818. if (mse < best_mse) {
  1819. best_mse = mse;
  1820. iscale = iscale_is;
  1821. }
  1822. }
  1823. float sumlx = 0;
  1824. float suml2 = 0;
  1825. for (int i = 0; i < n; ++i) {
  1826. int l = nearest_int(iscale * x[i]);
  1827. l = MIN(nmax, l);
  1828. L[i] = l;
  1829. float w = quant_weights[i];
  1830. sumlx += w*x[i]*l;
  1831. suml2 += w*l*l;
  1832. }
  1833. for (int itry = 0; itry < 5; ++itry) {
  1834. int n_changed = 0;
  1835. for (int i = 0; i < n; ++i) {
  1836. float w = quant_weights[i];
  1837. float slx = sumlx - w*x[i]*L[i];
  1838. float sl2 = suml2 - w*L[i]*L[i];
  1839. if (slx > 0 && sl2 > 0) {
  1840. int new_l = nearest_int(x[i] * sl2 / slx);
  1841. new_l = MIN(nmax, new_l);
  1842. if (new_l != L[i]) {
  1843. slx += w*x[i]*new_l;
  1844. sl2 += w*new_l*new_l;
  1845. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1846. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1847. ++n_changed;
  1848. }
  1849. }
  1850. }
  1851. }
  1852. if (!n_changed) {
  1853. break;
  1854. }
  1855. }
  1856. return sumlx/suml2;
  1857. }
  1858. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1859. GGML_ASSERT(quant_weights);
  1860. assert(k % QK_K == 0);
  1861. const int nb = k / QK_K;
  1862. const bool requantize = true;
  1863. uint8_t L[QK_K];
  1864. uint8_t Laux[16];
  1865. float mins[QK_K/16];
  1866. float scales[QK_K/16];
  1867. float sw[QK_K/16];
  1868. float weight[16];
  1869. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1870. for (int i = 0; i < nb; i++) {
  1871. memset(sw, 0, QK_K/16*sizeof(float));
  1872. float sumx2 = 0;
  1873. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1874. float sigma2 = sumx2/QK_K;
  1875. for (int j = 0; j < QK_K/16; ++j) {
  1876. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1877. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1878. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1879. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1880. }
  1881. float dm, mm;
  1882. #if QK_K == 64
  1883. float max_scale = 0, max_min = 0;
  1884. for (int j = 0; j < QK_K/16; ++j) {
  1885. max_scale = MAX(max_scale, scales[j]);
  1886. max_min = MAX(max_min, mins[j]);
  1887. }
  1888. dm = max_scale/15;
  1889. mm = max_min/15;
  1890. if (max_scale) {
  1891. float id = 1/dm;
  1892. for (int j = 0; j < QK_K/16; ++j) {
  1893. int l = nearest_int(id*scales[j]);
  1894. Ls[j] = MAX(0, MIN(15, l));
  1895. }
  1896. } else {
  1897. memset(Ls, 0, QK_K/16);
  1898. }
  1899. if (max_min) {
  1900. float id = 1/mm;
  1901. for (int j = 0; j < QK_K/16; ++j) {
  1902. int l = nearest_int(id*mins[j]);
  1903. Lm[j] = MAX(0, MIN(15, l));
  1904. }
  1905. } else {
  1906. memset(Lm, 0, QK_K/16);
  1907. }
  1908. #else
  1909. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1910. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1911. #endif
  1912. y[i].d = GGML_FP32_TO_FP16(dm);
  1913. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1914. dm = GGML_FP16_TO_FP32(y[i].d);
  1915. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1916. for (int j = 0; j < QK_K/16; ++j) {
  1917. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1918. }
  1919. if (requantize) {
  1920. for (int j = 0; j < QK_K/16; ++j) {
  1921. const float d = dm * (y[i].scales[j] & 0xF);
  1922. if (!d) continue;
  1923. const float m = mm * (y[i].scales[j] >> 4);
  1924. for (int ii = 0; ii < 16; ++ii) {
  1925. int l = nearest_int((x[16*j + ii] + m)/d);
  1926. l = MAX(0, MIN(3, l));
  1927. L[16*j + ii] = l;
  1928. }
  1929. }
  1930. }
  1931. #if QK_K == 256
  1932. for (int j = 0; j < QK_K; j += 128) {
  1933. for (int l = 0; l < 32; ++l) {
  1934. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1935. }
  1936. }
  1937. #else
  1938. for (int l = 0; l < 16; ++l) {
  1939. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1940. }
  1941. #endif
  1942. x += QK_K;
  1943. }
  1944. }
  1945. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1946. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1947. if (!quant_weights) {
  1948. quantize_row_q2_K_reference(src, dst, (int64_t)nrow*n_per_row);
  1949. }
  1950. else {
  1951. char * qrow = (char *)dst;
  1952. for (int64_t row = 0; row < nrow; ++row) {
  1953. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1954. src += n_per_row;
  1955. qrow += row_size;
  1956. }
  1957. }
  1958. return nrow * row_size;
  1959. }
  1960. //========================= 3-bit (de)-quantization
  1961. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1962. assert(k % QK_K == 0);
  1963. const int nb = k / QK_K;
  1964. int8_t L[QK_K];
  1965. float scales[QK_K / 16];
  1966. for (int i = 0; i < nb; i++) {
  1967. float max_scale = 0;
  1968. float amax = 0;
  1969. for (int j = 0; j < QK_K/16; ++j) {
  1970. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1971. float scale = fabsf(scales[j]);
  1972. if (scale > amax) {
  1973. amax = scale; max_scale = scales[j];
  1974. }
  1975. }
  1976. #if QK_K == 256
  1977. memset(y[i].scales, 0, 12);
  1978. if (max_scale) {
  1979. float iscale = -32.f/max_scale;
  1980. for (int j = 0; j < QK_K/16; ++j) {
  1981. int8_t l = nearest_int(iscale*scales[j]);
  1982. l = MAX(-32, MIN(31, l)) + 32;
  1983. if (j < 8) {
  1984. y[i].scales[j] = l & 0xF;
  1985. } else {
  1986. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1987. }
  1988. l >>= 4;
  1989. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1990. }
  1991. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1992. } else {
  1993. y[i].d = GGML_FP32_TO_FP16(0.f);
  1994. }
  1995. int8_t sc;
  1996. for (int j = 0; j < QK_K/16; ++j) {
  1997. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1998. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1999. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2000. if (!d) {
  2001. continue;
  2002. }
  2003. for (int ii = 0; ii < 16; ++ii) {
  2004. int l = nearest_int(x[16*j + ii]/d);
  2005. l = MAX(-4, MIN(3, l));
  2006. L[16*j + ii] = l + 4;
  2007. }
  2008. }
  2009. #else
  2010. if (max_scale) {
  2011. float iscale = -8.f/max_scale;
  2012. for (int j = 0; j < QK_K/16; j+=2) {
  2013. int l1 = nearest_int(iscale*scales[j]);
  2014. l1 = 8 + MAX(-8, MIN(7, l1));
  2015. int l2 = nearest_int(iscale*scales[j+1]);
  2016. l2 = 8 + MAX(-8, MIN(7, l2));
  2017. y[i].scales[j/2] = l1 | (l2 << 4);
  2018. }
  2019. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2020. } else {
  2021. for (int j = 0; j < QK_K/16; j+=2) {
  2022. y[i].scales[j/2] = 0;
  2023. }
  2024. y[i].d = GGML_FP32_TO_FP16(0.f);
  2025. }
  2026. for (int j = 0; j < QK_K/16; ++j) {
  2027. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  2028. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  2029. if (!d) {
  2030. continue;
  2031. }
  2032. for (int ii = 0; ii < 16; ++ii) {
  2033. int l = nearest_int(x[16*j + ii]/d);
  2034. l = MAX(-4, MIN(3, l));
  2035. L[16*j + ii] = l + 4;
  2036. }
  2037. }
  2038. #endif
  2039. memset(y[i].hmask, 0, QK_K/8);
  2040. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2041. int m = 0;
  2042. uint8_t hm = 1;
  2043. for (int j = 0; j < QK_K; ++j) {
  2044. if (L[j] > 3) {
  2045. y[i].hmask[m] |= hm;
  2046. L[j] -= 4;
  2047. }
  2048. if (++m == QK_K/8) {
  2049. m = 0; hm <<= 1;
  2050. }
  2051. }
  2052. #if QK_K == 256
  2053. for (int j = 0; j < QK_K; j += 128) {
  2054. for (int l = 0; l < 32; ++l) {
  2055. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2056. }
  2057. }
  2058. #else
  2059. for (int l = 0; l < 16; ++l) {
  2060. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  2061. }
  2062. #endif
  2063. x += QK_K;
  2064. }
  2065. }
  2066. #if QK_K == 256
  2067. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  2068. assert(k % QK_K == 0);
  2069. const int nb = k / QK_K;
  2070. const uint32_t kmask1 = 0x03030303;
  2071. const uint32_t kmask2 = 0x0f0f0f0f;
  2072. uint32_t aux[4];
  2073. const int8_t * scales = (const int8_t*)aux;
  2074. for (int i = 0; i < nb; i++) {
  2075. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  2076. const uint8_t * restrict q = x[i].qs;
  2077. const uint8_t * restrict hm = x[i].hmask;
  2078. uint8_t m = 1;
  2079. memcpy(aux, x[i].scales, 12);
  2080. uint32_t tmp = aux[2];
  2081. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  2082. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  2083. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  2084. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  2085. int is = 0;
  2086. float dl;
  2087. for (int n = 0; n < QK_K; n += 128) {
  2088. int shift = 0;
  2089. for (int j = 0; j < 4; ++j) {
  2090. dl = d_all * (scales[is++] - 32);
  2091. for (int l = 0; l < 16; ++l) {
  2092. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  2093. }
  2094. dl = d_all * (scales[is++] - 32);
  2095. for (int l = 0; l < 16; ++l) {
  2096. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2097. }
  2098. shift += 2;
  2099. m <<= 1;
  2100. }
  2101. q += 32;
  2102. }
  2103. }
  2104. }
  2105. #else
  2106. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  2107. assert(k % QK_K == 0);
  2108. assert(QK_K == 64);
  2109. const int nb = k / QK_K;
  2110. for (int i = 0; i < nb; i++) {
  2111. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  2112. const uint8_t * restrict q = x[i].qs;
  2113. const uint8_t * restrict hm = x[i].hmask;
  2114. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  2115. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  2116. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  2117. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  2118. for (int l=0; l<8; ++l) {
  2119. uint8_t h = hm[l];
  2120. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  2121. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  2122. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  2123. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  2124. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  2125. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  2126. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  2127. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  2128. }
  2129. y += QK_K;
  2130. }
  2131. }
  2132. #endif
  2133. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2134. quantize_row_q3_K_reference(x, vy, k);
  2135. }
  2136. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2137. #if QK_K != 256
  2138. (void)quant_weights;
  2139. quantize_row_q3_K_reference(x, y, n_per_row);
  2140. #else
  2141. assert(n_per_row % QK_K == 0);
  2142. const int nb = n_per_row / QK_K;
  2143. int8_t L[QK_K];
  2144. float scales[QK_K / 16];
  2145. float weight[16];
  2146. float sw[QK_K / 16];
  2147. int8_t Ls[QK_K / 16];
  2148. for (int i = 0; i < nb; i++) {
  2149. float sumx2 = 0;
  2150. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2151. float sigma2 = 2*sumx2/QK_K;
  2152. for (int j = 0; j < QK_K/16; ++j) {
  2153. if (quant_weights) {
  2154. const float * qw = quant_weights + QK_K * i + 16*j;
  2155. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2156. } else {
  2157. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2158. }
  2159. float sumw = 0;
  2160. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2161. sw[j] = sumw;
  2162. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2163. }
  2164. memset(y[i].scales, 0, 12);
  2165. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2166. for (int j = 0; j < QK_K/16; ++j) {
  2167. int l = Ls[j];
  2168. if (j < 8) {
  2169. y[i].scales[j] = l & 0xF;
  2170. } else {
  2171. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2172. }
  2173. l >>= 4;
  2174. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2175. }
  2176. y[i].d = GGML_FP32_TO_FP16(d_block);
  2177. int8_t sc;
  2178. for (int j = 0; j < QK_K/16; ++j) {
  2179. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2180. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2181. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2182. if (!d) {
  2183. continue;
  2184. }
  2185. for (int ii = 0; ii < 16; ++ii) {
  2186. int l = nearest_int(x[16*j + ii]/d);
  2187. l = MAX(-4, MIN(3, l));
  2188. L[16*j + ii] = l + 4;
  2189. }
  2190. }
  2191. memset(y[i].hmask, 0, QK_K/8);
  2192. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2193. int m = 0;
  2194. uint8_t hm = 1;
  2195. for (int j = 0; j < QK_K; ++j) {
  2196. if (L[j] > 3) {
  2197. y[i].hmask[m] |= hm;
  2198. L[j] -= 4;
  2199. }
  2200. if (++m == QK_K/8) {
  2201. m = 0; hm <<= 1;
  2202. }
  2203. }
  2204. for (int j = 0; j < QK_K; j += 128) {
  2205. for (int l = 0; l < 32; ++l) {
  2206. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2207. }
  2208. }
  2209. x += QK_K;
  2210. }
  2211. #endif
  2212. }
  2213. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2214. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2215. if (!quant_weights) {
  2216. quantize_row_q3_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2217. }
  2218. else {
  2219. char * qrow = (char *)dst;
  2220. for (int64_t row = 0; row < nrow; ++row) {
  2221. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2222. src += n_per_row;
  2223. qrow += row_size;
  2224. }
  2225. }
  2226. return nrow * row_size;
  2227. }
  2228. // ====================== 4-bit (de)-quantization
  2229. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2230. assert(k % QK_K == 0);
  2231. const int nb = k / QK_K;
  2232. uint8_t L[QK_K];
  2233. uint8_t Laux[32];
  2234. float weights[32];
  2235. float mins[QK_K/32];
  2236. float scales[QK_K/32];
  2237. for (int i = 0; i < nb; i++) {
  2238. float max_scale = 0; // as we are deducting the min, scales are always positive
  2239. float max_min = 0;
  2240. for (int j = 0; j < QK_K/32; ++j) {
  2241. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2242. float sum_x2 = 0;
  2243. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2244. float av_x = sqrtf(sum_x2/32);
  2245. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2246. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2247. float scale = scales[j];
  2248. if (scale > max_scale) {
  2249. max_scale = scale;
  2250. }
  2251. float min = mins[j];
  2252. if (min > max_min) {
  2253. max_min = min;
  2254. }
  2255. }
  2256. #if QK_K == 256
  2257. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2258. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2259. for (int j = 0; j < QK_K/32; ++j) {
  2260. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2261. uint8_t lm = nearest_int(inv_min*mins[j]);
  2262. ls = MIN(63, ls);
  2263. lm = MIN(63, lm);
  2264. if (j < 4) {
  2265. y[i].scales[j] = ls;
  2266. y[i].scales[j+4] = lm;
  2267. } else {
  2268. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2269. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2270. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2271. }
  2272. }
  2273. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2274. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2275. uint8_t sc, m;
  2276. for (int j = 0; j < QK_K/32; ++j) {
  2277. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2278. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2279. if (!d) continue;
  2280. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2281. for (int ii = 0; ii < 32; ++ii) {
  2282. int l = nearest_int((x[32*j + ii] + dm)/d);
  2283. l = MAX(0, MIN(15, l));
  2284. L[32*j + ii] = l;
  2285. }
  2286. }
  2287. #else
  2288. const float s_factor = 15.f;
  2289. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  2290. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  2291. int d1 = nearest_int(inv_scale*scales[0]);
  2292. int m1 = nearest_int(inv_min*mins[0]);
  2293. int d2 = nearest_int(inv_scale*scales[1]);
  2294. int m2 = nearest_int(inv_min*mins[1]);
  2295. y[i].scales[0] = d1 | (m1 << 4);
  2296. y[i].scales[1] = d2 | (m2 << 4);
  2297. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  2298. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  2299. float sumlx = 0;
  2300. int suml2 = 0;
  2301. for (int j = 0; j < QK_K/32; ++j) {
  2302. const uint8_t sd = y[i].scales[j] & 0xF;
  2303. const uint8_t sm = y[i].scales[j] >> 4;
  2304. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  2305. if (!d) continue;
  2306. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  2307. for (int ii = 0; ii < 32; ++ii) {
  2308. int l = nearest_int((x[32*j + ii] + m)/d);
  2309. l = MAX(0, MIN(15, l));
  2310. L[32*j + ii] = l;
  2311. sumlx += (x[32*j + ii] + m)*l*sd;
  2312. suml2 += l*l*sd*sd;
  2313. }
  2314. }
  2315. if (suml2) {
  2316. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  2317. }
  2318. #endif
  2319. uint8_t * q = y[i].qs;
  2320. for (int j = 0; j < QK_K; j += 64) {
  2321. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2322. q += 32;
  2323. }
  2324. x += QK_K;
  2325. }
  2326. }
  2327. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2328. assert(k % QK_K == 0);
  2329. const int nb = k / QK_K;
  2330. for (int i = 0; i < nb; i++) {
  2331. const uint8_t * q = x[i].qs;
  2332. #if QK_K == 256
  2333. const float d = GGML_FP16_TO_FP32(x[i].d);
  2334. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2335. int is = 0;
  2336. uint8_t sc, m;
  2337. for (int j = 0; j < QK_K; j += 64) {
  2338. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2339. const float d1 = d * sc; const float m1 = min * m;
  2340. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2341. const float d2 = d * sc; const float m2 = min * m;
  2342. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2343. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2344. q += 32; is += 2;
  2345. }
  2346. #else
  2347. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  2348. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  2349. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  2350. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  2351. for (int l = 0; l < 32; ++l) {
  2352. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  2353. y[l+32] = d2 * (q[l] >> 4) - m2;
  2354. }
  2355. y += QK_K;
  2356. #endif
  2357. }
  2358. }
  2359. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2360. assert(k % QK_K == 0);
  2361. block_q4_K * restrict y = vy;
  2362. quantize_row_q4_K_reference(x, y, k);
  2363. }
  2364. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2365. #if QK_K != 256
  2366. (void)quant_weights;
  2367. quantize_row_q4_K_reference(x, y, n_per_row);
  2368. #else
  2369. assert(n_per_row % QK_K == 0);
  2370. const int64_t nb = n_per_row / QK_K;
  2371. uint8_t L[QK_K];
  2372. uint8_t Laux[32];
  2373. uint8_t Ls[QK_K/32];
  2374. uint8_t Lm[QK_K/32];
  2375. float weights[32];
  2376. float sw[QK_K/32];
  2377. float mins[QK_K/32];
  2378. float scales[QK_K/32];
  2379. for (int i = 0; i < nb; i++) {
  2380. float sum_x2 = 0;
  2381. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2382. float sigma2 = 2*sum_x2/QK_K;
  2383. float av_x = sqrtf(sigma2);
  2384. for (int j = 0; j < QK_K/32; ++j) {
  2385. if (quant_weights) {
  2386. const float * qw = quant_weights + QK_K*i + 32*j;
  2387. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2388. } else {
  2389. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2390. }
  2391. float sumw = 0;
  2392. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2393. sw[j] = sumw;
  2394. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2395. }
  2396. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2397. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2398. for (int j = 0; j < QK_K/32; ++j) {
  2399. uint8_t ls = Ls[j];
  2400. uint8_t lm = Lm[j];
  2401. if (j < 4) {
  2402. y[i].scales[j] = ls;
  2403. y[i].scales[j+4] = lm;
  2404. } else {
  2405. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2406. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2407. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2408. }
  2409. }
  2410. y[i].d = GGML_FP32_TO_FP16(d_block);
  2411. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2412. uint8_t sc, m;
  2413. for (int j = 0; j < QK_K/32; ++j) {
  2414. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2415. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2416. if (!d) continue;
  2417. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2418. for (int ii = 0; ii < 32; ++ii) {
  2419. int l = nearest_int((x[32*j + ii] + dm)/d);
  2420. l = MAX(0, MIN(15, l));
  2421. L[32*j + ii] = l;
  2422. }
  2423. }
  2424. uint8_t * q = y[i].qs;
  2425. for (int j = 0; j < QK_K; j += 64) {
  2426. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2427. q += 32;
  2428. }
  2429. x += QK_K;
  2430. }
  2431. #endif
  2432. }
  2433. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2434. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2435. if (!quant_weights) {
  2436. quantize_row_q4_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2437. }
  2438. else {
  2439. char * qrow = (char *)dst;
  2440. for (int64_t row = 0; row < nrow; ++row) {
  2441. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2442. src += n_per_row;
  2443. qrow += row_size;
  2444. }
  2445. }
  2446. return nrow * row_size;
  2447. }
  2448. // ====================== 5-bit (de)-quantization
  2449. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2450. assert(k % QK_K == 0);
  2451. const int64_t nb = k / QK_K;
  2452. #if QK_K == 256
  2453. uint8_t L[QK_K];
  2454. float mins[QK_K/32];
  2455. float scales[QK_K/32];
  2456. float weights[32];
  2457. uint8_t Laux[32];
  2458. #else
  2459. int8_t L[QK_K];
  2460. float scales[QK_K/16];
  2461. #endif
  2462. for (int i = 0; i < nb; i++) {
  2463. #if QK_K == 256
  2464. float max_scale = 0; // as we are deducting the min, scales are always positive
  2465. float max_min = 0;
  2466. for (int j = 0; j < QK_K/32; ++j) {
  2467. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2468. float sum_x2 = 0;
  2469. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2470. float av_x = sqrtf(sum_x2/32);
  2471. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2472. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2473. float scale = scales[j];
  2474. if (scale > max_scale) {
  2475. max_scale = scale;
  2476. }
  2477. float min = mins[j];
  2478. if (min > max_min) {
  2479. max_min = min;
  2480. }
  2481. }
  2482. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2483. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2484. for (int j = 0; j < QK_K/32; ++j) {
  2485. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2486. uint8_t lm = nearest_int(inv_min*mins[j]);
  2487. ls = MIN(63, ls);
  2488. lm = MIN(63, lm);
  2489. if (j < 4) {
  2490. y[i].scales[j] = ls;
  2491. y[i].scales[j+4] = lm;
  2492. } else {
  2493. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2494. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2495. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2496. }
  2497. }
  2498. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2499. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2500. uint8_t sc, m;
  2501. for (int j = 0; j < QK_K/32; ++j) {
  2502. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2503. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2504. if (!d) continue;
  2505. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2506. for (int ii = 0; ii < 32; ++ii) {
  2507. int l = nearest_int((x[32*j + ii] + dm)/d);
  2508. l = MAX(0, MIN(31, l));
  2509. L[32*j + ii] = l;
  2510. }
  2511. }
  2512. uint8_t * restrict qh = y[i].qh;
  2513. uint8_t * restrict ql = y[i].qs;
  2514. memset(qh, 0, QK_K/8);
  2515. uint8_t m1 = 1, m2 = 2;
  2516. for (int n = 0; n < QK_K; n += 64) {
  2517. for (int j = 0; j < 32; ++j) {
  2518. int l1 = L[n + j];
  2519. if (l1 > 15) {
  2520. l1 -= 16; qh[j] |= m1;
  2521. }
  2522. int l2 = L[n + j + 32];
  2523. if (l2 > 15) {
  2524. l2 -= 16; qh[j] |= m2;
  2525. }
  2526. ql[j] = l1 | (l2 << 4);
  2527. }
  2528. m1 <<= 2; m2 <<= 2;
  2529. ql += 32;
  2530. }
  2531. #else
  2532. float max_scale = 0, amax = 0;
  2533. for (int j = 0; j < QK_K/16; ++j) {
  2534. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2535. float abs_scale = fabsf(scales[j]);
  2536. if (abs_scale > amax) {
  2537. amax = abs_scale;
  2538. max_scale = scales[j];
  2539. }
  2540. }
  2541. float iscale = -128.f/max_scale;
  2542. for (int j = 0; j < QK_K/16; ++j) {
  2543. int l = nearest_int(iscale*scales[j]);
  2544. y[i].scales[j] = MAX(-128, MIN(127, l));
  2545. }
  2546. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2547. for (int j = 0; j < QK_K/16; ++j) {
  2548. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2549. if (!d) continue;
  2550. for (int ii = 0; ii < 16; ++ii) {
  2551. int l = nearest_int(x[16*j + ii]/d);
  2552. l = MAX(-16, MIN(15, l));
  2553. L[16*j + ii] = l + 16;
  2554. }
  2555. }
  2556. uint8_t * restrict qh = y[i].qh;
  2557. uint8_t * restrict ql = y[i].qs;
  2558. memset(qh, 0, QK_K/8);
  2559. for (int j = 0; j < 32; ++j) {
  2560. int jm = j%8;
  2561. int is = j/8;
  2562. int l1 = L[j];
  2563. if (l1 > 15) {
  2564. l1 -= 16; qh[jm] |= (1 << is);
  2565. }
  2566. int l2 = L[j + 32];
  2567. if (l2 > 15) {
  2568. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2569. }
  2570. ql[j] = l1 | (l2 << 4);
  2571. }
  2572. #endif
  2573. x += QK_K;
  2574. }
  2575. }
  2576. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2577. assert(k % QK_K == 0);
  2578. const int64_t nb = k / QK_K;
  2579. for (int i = 0; i < nb; i++) {
  2580. const uint8_t * ql = x[i].qs;
  2581. const uint8_t * qh = x[i].qh;
  2582. #if QK_K == 256
  2583. const float d = GGML_FP16_TO_FP32(x[i].d);
  2584. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2585. int is = 0;
  2586. uint8_t sc, m;
  2587. uint8_t u1 = 1, u2 = 2;
  2588. for (int j = 0; j < QK_K; j += 64) {
  2589. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2590. const float d1 = d * sc; const float m1 = min * m;
  2591. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2592. const float d2 = d * sc; const float m2 = min * m;
  2593. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2594. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2595. ql += 32; is += 2;
  2596. u1 <<= 2; u2 <<= 2;
  2597. }
  2598. #else
  2599. float d = GGML_FP16_TO_FP32(x[i].d);
  2600. const int8_t * restrict s = x[i].scales;
  2601. for (int l = 0; l < 8; ++l) {
  2602. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2603. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2604. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2605. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2606. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2607. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2608. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2609. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2610. }
  2611. y += QK_K;
  2612. #endif
  2613. }
  2614. }
  2615. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2616. assert(k % QK_K == 0);
  2617. block_q5_K * restrict y = vy;
  2618. quantize_row_q5_K_reference(x, y, k);
  2619. }
  2620. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2621. #if QK_K != 256
  2622. (void)quant_weights;
  2623. quantize_row_q5_K_reference(x, y, n_per_row);
  2624. #else
  2625. assert(n_per_row % QK_K == 0);
  2626. const int64_t nb = n_per_row / QK_K;
  2627. uint8_t L[QK_K];
  2628. uint8_t Laux[32];
  2629. uint8_t Ls[QK_K/32];
  2630. uint8_t Lm[QK_K/32];
  2631. float mins[QK_K/32];
  2632. float scales[QK_K/32];
  2633. float sw[QK_K/32];
  2634. float weights[32];
  2635. for (int i = 0; i < nb; i++) {
  2636. float sum_x2 = 0;
  2637. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2638. float sigma2 = 2*sum_x2/QK_K;
  2639. float av_x = sqrtf(sigma2);
  2640. for (int j = 0; j < QK_K/32; ++j) {
  2641. if (quant_weights) {
  2642. const float * qw = quant_weights + QK_K*i + 32*j;
  2643. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2644. } else {
  2645. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2646. }
  2647. float sumw = 0;
  2648. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2649. sw[j] = sumw;
  2650. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2651. }
  2652. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2653. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2654. for (int j = 0; j < QK_K/32; ++j) {
  2655. uint8_t ls = Ls[j];
  2656. uint8_t lm = Lm[j];
  2657. ls = MIN(63, ls);
  2658. lm = MIN(63, lm);
  2659. if (j < 4) {
  2660. y[i].scales[j] = ls;
  2661. y[i].scales[j+4] = lm;
  2662. } else {
  2663. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2664. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2665. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2666. }
  2667. }
  2668. y[i].d = GGML_FP32_TO_FP16(d_block);
  2669. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2670. uint8_t sc, m;
  2671. for (int j = 0; j < QK_K/32; ++j) {
  2672. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2673. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2674. if (!d) continue;
  2675. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2676. for (int ii = 0; ii < 32; ++ii) {
  2677. int l = nearest_int((x[32*j + ii] + dm)/d);
  2678. l = MAX(0, MIN(31, l));
  2679. L[32*j + ii] = l;
  2680. }
  2681. }
  2682. uint8_t * restrict qh = y[i].qh;
  2683. uint8_t * restrict ql = y[i].qs;
  2684. memset(qh, 0, QK_K/8);
  2685. uint8_t m1 = 1, m2 = 2;
  2686. for (int n = 0; n < QK_K; n += 64) {
  2687. for (int j = 0; j < 32; ++j) {
  2688. int l1 = L[n + j];
  2689. if (l1 > 15) {
  2690. l1 -= 16; qh[j] |= m1;
  2691. }
  2692. int l2 = L[n + j + 32];
  2693. if (l2 > 15) {
  2694. l2 -= 16; qh[j] |= m2;
  2695. }
  2696. ql[j] = l1 | (l2 << 4);
  2697. }
  2698. m1 <<= 2; m2 <<= 2;
  2699. ql += 32;
  2700. }
  2701. x += QK_K;
  2702. }
  2703. #endif
  2704. }
  2705. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2706. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2707. if (!quant_weights) {
  2708. quantize_row_q5_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2709. }
  2710. else {
  2711. char * qrow = (char *)dst;
  2712. for (int64_t row = 0; row < nrow; ++row) {
  2713. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2714. src += n_per_row;
  2715. qrow += row_size;
  2716. }
  2717. }
  2718. return nrow * row_size;
  2719. }
  2720. // ====================== 6-bit (de)-quantization
  2721. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2722. assert(k % QK_K == 0);
  2723. const int64_t nb = k / QK_K;
  2724. int8_t L[QK_K];
  2725. float scales[QK_K/16];
  2726. for (int i = 0; i < nb; i++) {
  2727. float max_scale = 0;
  2728. float max_abs_scale = 0;
  2729. for (int ib = 0; ib < QK_K/16; ++ib) {
  2730. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2731. scales[ib] = scale;
  2732. const float abs_scale = fabsf(scale);
  2733. if (abs_scale > max_abs_scale) {
  2734. max_abs_scale = abs_scale;
  2735. max_scale = scale;
  2736. }
  2737. }
  2738. if (max_abs_scale < GROUP_MAX_EPS) {
  2739. memset(&y[i], 0, sizeof(block_q6_K));
  2740. y[i].d = GGML_FP32_TO_FP16(0.f);
  2741. x += QK_K;
  2742. continue;
  2743. }
  2744. float iscale = -128.f/max_scale;
  2745. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2746. for (int ib = 0; ib < QK_K/16; ++ib) {
  2747. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2748. }
  2749. for (int j = 0; j < QK_K/16; ++j) {
  2750. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2751. if (!d) {
  2752. continue;
  2753. }
  2754. for (int ii = 0; ii < 16; ++ii) {
  2755. int l = nearest_int(x[16*j + ii]/d);
  2756. l = MAX(-32, MIN(31, l));
  2757. L[16*j + ii] = l + 32;
  2758. }
  2759. }
  2760. uint8_t * restrict ql = y[i].ql;
  2761. uint8_t * restrict qh = y[i].qh;
  2762. #if QK_K == 256
  2763. for (int j = 0; j < QK_K; j += 128) {
  2764. for (int l = 0; l < 32; ++l) {
  2765. const uint8_t q1 = L[j + l + 0] & 0xF;
  2766. const uint8_t q2 = L[j + l + 32] & 0xF;
  2767. const uint8_t q3 = L[j + l + 64] & 0xF;
  2768. const uint8_t q4 = L[j + l + 96] & 0xF;
  2769. ql[l+ 0] = q1 | (q3 << 4);
  2770. ql[l+32] = q2 | (q4 << 4);
  2771. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2772. }
  2773. ql += 64;
  2774. qh += 32;
  2775. }
  2776. #else
  2777. for (int l = 0; l < 32; ++l) {
  2778. const uint8_t q1 = L[l + 0] & 0xF;
  2779. const uint8_t q2 = L[l + 32] & 0xF;
  2780. ql[l] = q1 | (q2 << 4);
  2781. }
  2782. for (int l = 0; l < 16; ++l) {
  2783. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2784. }
  2785. #endif
  2786. x += QK_K;
  2787. }
  2788. }
  2789. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2790. assert(k % QK_K == 0);
  2791. const int64_t nb = k / QK_K;
  2792. for (int i = 0; i < nb; i++) {
  2793. const float d = GGML_FP16_TO_FP32(x[i].d);
  2794. const uint8_t * restrict ql = x[i].ql;
  2795. const uint8_t * restrict qh = x[i].qh;
  2796. const int8_t * restrict sc = x[i].scales;
  2797. #if QK_K == 256
  2798. for (int n = 0; n < QK_K; n += 128) {
  2799. for (int l = 0; l < 32; ++l) {
  2800. int is = l/16;
  2801. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2802. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2803. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2804. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2805. y[l + 0] = d * sc[is + 0] * q1;
  2806. y[l + 32] = d * sc[is + 2] * q2;
  2807. y[l + 64] = d * sc[is + 4] * q3;
  2808. y[l + 96] = d * sc[is + 6] * q4;
  2809. }
  2810. y += 128;
  2811. ql += 64;
  2812. qh += 32;
  2813. sc += 8;
  2814. }
  2815. #else
  2816. for (int l = 0; l < 16; ++l) {
  2817. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2818. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2819. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2820. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2821. y[l+ 0] = d * sc[0] * q1;
  2822. y[l+16] = d * sc[1] * q2;
  2823. y[l+32] = d * sc[2] * q3;
  2824. y[l+48] = d * sc[3] * q4;
  2825. }
  2826. y += 64;
  2827. #endif
  2828. }
  2829. }
  2830. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2831. assert(k % QK_K == 0);
  2832. block_q6_K * restrict y = vy;
  2833. quantize_row_q6_K_reference(x, y, k);
  2834. }
  2835. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2836. #if QK_K != 256
  2837. (void)quant_weights;
  2838. quantize_row_q6_K_reference(x, y, n_per_row);
  2839. #else
  2840. assert(n_per_row % QK_K == 0);
  2841. const int64_t nb = n_per_row / QK_K;
  2842. int8_t L[QK_K];
  2843. float scales[QK_K/16];
  2844. //float weights[16];
  2845. for (int i = 0; i < nb; i++) {
  2846. //float sum_x2 = 0;
  2847. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2848. //float sigma2 = sum_x2/QK_K;
  2849. float max_scale = 0;
  2850. float max_abs_scale = 0;
  2851. for (int ib = 0; ib < QK_K/16; ++ib) {
  2852. float scale;
  2853. if (quant_weights) {
  2854. const float * qw = quant_weights + QK_K*i + 16*ib;
  2855. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2856. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2857. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2858. } else {
  2859. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2860. }
  2861. scales[ib] = scale;
  2862. const float abs_scale = fabsf(scale);
  2863. if (abs_scale > max_abs_scale) {
  2864. max_abs_scale = abs_scale;
  2865. max_scale = scale;
  2866. }
  2867. }
  2868. if (max_abs_scale < GROUP_MAX_EPS) {
  2869. memset(&y[i], 0, sizeof(block_q6_K));
  2870. y[i].d = GGML_FP32_TO_FP16(0.f);
  2871. x += QK_K;
  2872. continue;
  2873. }
  2874. float iscale = -128.f/max_scale;
  2875. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2876. for (int ib = 0; ib < QK_K/16; ++ib) {
  2877. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2878. }
  2879. for (int j = 0; j < QK_K/16; ++j) {
  2880. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2881. if (!d) {
  2882. continue;
  2883. }
  2884. for (int ii = 0; ii < 16; ++ii) {
  2885. int l = nearest_int(x[16*j + ii]/d);
  2886. l = MAX(-32, MIN(31, l));
  2887. L[16*j + ii] = l + 32;
  2888. }
  2889. }
  2890. uint8_t * restrict ql = y[i].ql;
  2891. uint8_t * restrict qh = y[i].qh;
  2892. for (int j = 0; j < QK_K; j += 128) {
  2893. for (int l = 0; l < 32; ++l) {
  2894. const uint8_t q1 = L[j + l + 0] & 0xF;
  2895. const uint8_t q2 = L[j + l + 32] & 0xF;
  2896. const uint8_t q3 = L[j + l + 64] & 0xF;
  2897. const uint8_t q4 = L[j + l + 96] & 0xF;
  2898. ql[l+ 0] = q1 | (q3 << 4);
  2899. ql[l+32] = q2 | (q4 << 4);
  2900. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2901. }
  2902. ql += 64;
  2903. qh += 32;
  2904. }
  2905. x += QK_K;
  2906. }
  2907. #endif
  2908. }
  2909. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2910. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2911. if (!quant_weights) {
  2912. quantize_row_q6_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2913. }
  2914. else {
  2915. char * qrow = (char *)dst;
  2916. for (int64_t row = 0; row < nrow; ++row) {
  2917. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2918. src += n_per_row;
  2919. qrow += row_size;
  2920. }
  2921. }
  2922. return nrow * row_size;
  2923. }
  2924. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2925. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2926. if (!quant_weights) {
  2927. quantize_row_q4_0_reference(x, y, n_per_row);
  2928. return;
  2929. }
  2930. float weight[QK4_0];
  2931. int8_t L[QK4_0];
  2932. float sum_x2 = 0;
  2933. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2934. float sigma2 = sum_x2/n_per_row;
  2935. const int64_t nb = n_per_row/QK4_0;
  2936. for (int ib = 0; ib < nb; ++ib) {
  2937. const float * xb = x + QK4_0 * ib;
  2938. const float * qw = quant_weights + QK4_0 * ib;
  2939. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2940. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2941. y[ib].d = GGML_FP32_TO_FP16(d);
  2942. for (int j = 0; j < 16; ++j) {
  2943. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2944. }
  2945. }
  2946. }
  2947. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2948. if (!quant_weights) {
  2949. quantize_row_q4_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2950. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2951. }
  2952. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2953. char * qrow = (char *)dst;
  2954. for (int64_t row = 0; row < nrow; ++row) {
  2955. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2956. src += n_per_row;
  2957. qrow += row_size;
  2958. }
  2959. return nrow * row_size;
  2960. }
  2961. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2962. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2963. if (!quant_weights) {
  2964. quantize_row_q4_1_reference(x, y, n_per_row);
  2965. return;
  2966. }
  2967. float weight[QK4_1];
  2968. uint8_t L[QK4_1], Laux[QK4_1];
  2969. float sum_x2 = 0;
  2970. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2971. float sigma2 = sum_x2/n_per_row;
  2972. const int64_t nb = n_per_row/QK4_1;
  2973. for (int ib = 0; ib < nb; ++ib) {
  2974. const float * xb = x + QK4_1 * ib;
  2975. const float * qw = quant_weights + QK4_1 * ib;
  2976. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2977. float min;
  2978. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2979. y[ib].d = GGML_FP32_TO_FP16(d);
  2980. y[ib].m = GGML_FP32_TO_FP16(-min);
  2981. for (int j = 0; j < 16; ++j) {
  2982. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2983. }
  2984. }
  2985. }
  2986. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2987. if (!quant_weights) {
  2988. quantize_row_q4_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2989. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2990. }
  2991. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2992. char * qrow = (char *)dst;
  2993. for (int64_t row = 0; row < nrow; ++row) {
  2994. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2995. src += n_per_row;
  2996. qrow += row_size;
  2997. }
  2998. return nrow * row_size;
  2999. }
  3000. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  3001. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  3002. if (!quant_weights) {
  3003. quantize_row_q5_0_reference(x, y, n_per_row);
  3004. return;
  3005. }
  3006. float weight[QK5_0];
  3007. int8_t L[QK5_0];
  3008. float sum_x2 = 0;
  3009. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  3010. float sigma2 = sum_x2/n_per_row;
  3011. const int64_t nb = n_per_row/QK5_0;
  3012. for (int ib = 0; ib < nb; ++ib) {
  3013. const float * xb = x + QK5_0 * ib;
  3014. const float * qw = quant_weights + QK5_0 * ib;
  3015. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  3016. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  3017. y[ib].d = GGML_FP32_TO_FP16(d);
  3018. uint32_t qh = 0;
  3019. for (int j = 0; j < 16; ++j) {
  3020. const uint8_t xi0 = L[j];
  3021. const uint8_t xi1 = L[j+16];
  3022. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  3023. // get the 5-th bit and store it in qh at the right position
  3024. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  3025. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  3026. }
  3027. memcpy(&y[ib].qh, &qh, sizeof(qh));
  3028. }
  3029. }
  3030. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  3031. if (!quant_weights) {
  3032. quantize_row_q5_0_reference(src, dst, (int64_t)nrow*n_per_row);
  3033. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  3034. }
  3035. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  3036. char * qrow = (char *)dst;
  3037. for (int64_t row = 0; row < nrow; ++row) {
  3038. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  3039. src += n_per_row;
  3040. qrow += row_size;
  3041. }
  3042. return nrow * row_size;
  3043. }
  3044. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  3045. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  3046. if (!quant_weights) {
  3047. quantize_row_q5_1_reference(x, y, n_per_row);
  3048. return;
  3049. }
  3050. float weight[QK5_1];
  3051. uint8_t L[QK5_1], Laux[QK5_1];
  3052. float sum_x2 = 0;
  3053. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  3054. float sigma2 = sum_x2/n_per_row;
  3055. const int64_t nb = n_per_row/QK5_1;
  3056. for (int ib = 0; ib < nb; ++ib) {
  3057. const float * xb = x + QK5_1 * ib;
  3058. const float * qw = quant_weights + QK5_1 * ib;
  3059. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  3060. float min;
  3061. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  3062. y[ib].d = GGML_FP32_TO_FP16(d);
  3063. y[ib].m = GGML_FP32_TO_FP16(-min);
  3064. uint32_t qh = 0;
  3065. for (int j = 0; j < 16; ++j) {
  3066. const uint8_t xi0 = L[j];
  3067. const uint8_t xi1 = L[j+16];
  3068. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  3069. // get the 5-th bit and store it in qh at the right position
  3070. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  3071. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  3072. }
  3073. memcpy(&y[ib].qh, &qh, sizeof(qh));
  3074. }
  3075. }
  3076. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  3077. if (!quant_weights) {
  3078. quantize_row_q5_1_reference(src, dst, (int64_t)nrow*n_per_row);
  3079. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  3080. }
  3081. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  3082. char * qrow = (char *)dst;
  3083. for (int64_t row = 0; row < nrow; ++row) {
  3084. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  3085. src += n_per_row;
  3086. qrow += row_size;
  3087. }
  3088. return nrow * row_size;
  3089. }
  3090. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  3091. (void)quant_weights; // not used
  3092. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  3093. quantize_row_q8_0_reference(src, dst, (int64_t)nrow*n_per_row);
  3094. return nrow * row_size;
  3095. }
  3096. // ====================== "True" 2-bit (de)-quantization
  3097. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  3098. assert(k % QK_K == 0);
  3099. const int64_t nb = k / QK_K;
  3100. uint32_t aux32[2];
  3101. const uint8_t * aux8 = (const uint8_t *)aux32;
  3102. for (int i = 0; i < nb; i++) {
  3103. const float d = GGML_FP16_TO_FP32(x[i].d);
  3104. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3105. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  3106. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  3107. for (int l = 0; l < 4; ++l) {
  3108. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  3109. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  3110. for (int j = 0; j < 8; ++j) {
  3111. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3112. }
  3113. y += 8;
  3114. }
  3115. }
  3116. }
  3117. }
  3118. // ====================== 2.3125 bpw (de)-quantization
  3119. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  3120. assert(k % QK_K == 0);
  3121. const int64_t nb = k / QK_K;
  3122. float db[2];
  3123. for (int i = 0; i < nb; i++) {
  3124. const float d = GGML_FP16_TO_FP32(x[i].d);
  3125. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3126. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3127. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3128. for (int l = 0; l < 4; ++l) {
  3129. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3130. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3131. for (int j = 0; j < 8; ++j) {
  3132. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3133. }
  3134. y += 8;
  3135. }
  3136. }
  3137. }
  3138. }
  3139. // ====================== 2.5625 bpw (de)-quantization
  3140. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  3141. assert(k % QK_K == 0);
  3142. const int64_t nb = k / QK_K;
  3143. float db[2];
  3144. for (int i = 0; i < nb; i++) {
  3145. const float d = GGML_FP16_TO_FP32(x[i].d);
  3146. const uint8_t * qs = x[i].qs;
  3147. const uint8_t * qh = x[i].qh;
  3148. const uint8_t * signs = qs + QK_K/8;
  3149. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3150. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3151. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3152. for (int l = 0; l < 4; ++l) {
  3153. const float dl = db[l/2];
  3154. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  3155. for (int j = 0; j < 8; ++j) {
  3156. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  3157. }
  3158. y += 8;
  3159. }
  3160. qs += 4;
  3161. signs += 4;
  3162. }
  3163. }
  3164. }
  3165. // ====================== 3.0625 bpw (de)-quantization
  3166. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  3167. assert(k % QK_K == 0);
  3168. const int64_t nb = k / QK_K;
  3169. uint32_t aux32;
  3170. for (int i = 0; i < nb; i++) {
  3171. const float d = GGML_FP16_TO_FP32(x[i].d);
  3172. const uint8_t * qs = x[i].qs;
  3173. const uint8_t * scales_and_signs = qs + QK_K/4;
  3174. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3175. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3176. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3177. for (int l = 0; l < 4; ++l) {
  3178. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3179. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3180. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3181. for (int j = 0; j < 4; ++j) {
  3182. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3183. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3184. }
  3185. y += 8;
  3186. }
  3187. qs += 8;
  3188. }
  3189. }
  3190. }
  3191. // ====================== 3.3125 bpw (de)-quantization
  3192. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  3193. assert(k % QK_K == 0);
  3194. const int64_t nb = k / QK_K;
  3195. for (int i = 0; i < nb; i++) {
  3196. const float d = GGML_FP16_TO_FP32(x[i].d);
  3197. const uint8_t * qs = x[i].qs;
  3198. const uint8_t * qh = x[i].qh;
  3199. const uint8_t * signs = x[i].signs;
  3200. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  3201. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  3202. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  3203. for (int l = 0; l < 4; ++l) {
  3204. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  3205. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  3206. for (int j = 0; j < 4; ++j) {
  3207. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3208. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3209. }
  3210. y += 8;
  3211. }
  3212. qs += 8;
  3213. signs += 4;
  3214. for (int l = 0; l < 4; ++l) {
  3215. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  3216. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  3217. for (int j = 0; j < 4; ++j) {
  3218. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3219. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3220. }
  3221. y += 8;
  3222. }
  3223. qh += 2;
  3224. qs += 8;
  3225. signs += 4;
  3226. }
  3227. }
  3228. }
  3229. // ====================== 1.5625 bpw (de)-quantization
  3230. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  3231. assert(k % QK_K == 0);
  3232. const int64_t nb = k / QK_K;
  3233. for (int i = 0; i < nb; i++) {
  3234. const float d = GGML_FP16_TO_FP32(x[i].d);
  3235. const uint8_t * qs = x[i].qs;
  3236. const uint16_t * qh = x[i].qh;
  3237. for (int ib = 0; ib < QK_K/32; ++ib) {
  3238. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  3239. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  3240. for (int l = 0; l < 4; ++l) {
  3241. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  3242. for (int j = 0; j < 8; ++j) {
  3243. y[j] = dl * (grid[j] + delta);
  3244. }
  3245. y += 8;
  3246. }
  3247. qs += 4;
  3248. }
  3249. }
  3250. }
  3251. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  3252. assert(k % QK_K == 0);
  3253. const int64_t nb = k / QK_K;
  3254. float delta[4];
  3255. uint16_t idx[4];
  3256. #if QK_K != 64
  3257. iq1m_scale_t scale;
  3258. #endif
  3259. for (int i = 0; i < nb; i++) {
  3260. const uint16_t * sc = (const uint16_t *)x[i].scales;
  3261. #if QK_K == 64
  3262. const float d = GGML_FP16_TO_FP32(x[i].d);
  3263. #else
  3264. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  3265. const float d = GGML_FP16_TO_FP32(scale.f16);
  3266. #endif
  3267. const uint8_t * qs = x[i].qs;
  3268. const uint8_t * qh = x[i].qh;
  3269. for (int ib = 0; ib < QK_K/32; ++ib) {
  3270. #if QK_K == 64
  3271. const float dl1 = d * (2*((sc[ib/2] >> (8*(ib%2)+0)) & 0xf) + 1);
  3272. const float dl2 = d * (2*((sc[ib/2] >> (8*(ib%2)+4)) & 0xf) + 1);
  3273. #else
  3274. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  3275. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  3276. #endif
  3277. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  3278. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  3279. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  3280. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  3281. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3282. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3283. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3284. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3285. for (int l = 0; l < 2; ++l) {
  3286. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3287. for (int j = 0; j < 8; ++j) {
  3288. y[j] = dl1 * (grid[j] + delta[l]);
  3289. }
  3290. y += 8;
  3291. }
  3292. for (int l = 2; l < 4; ++l) {
  3293. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3294. for (int j = 0; j < 8; ++j) {
  3295. y[j] = dl2 * (grid[j] + delta[l]);
  3296. }
  3297. y += 8;
  3298. }
  3299. qs += 4;
  3300. qh += 2;
  3301. }
  3302. }
  3303. }
  3304. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3305. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3306. assert(k % QK4_NL == 0);
  3307. const int64_t nb = k / QK4_NL;
  3308. for (int i = 0; i < nb; i++) {
  3309. const uint8_t * qs = x[i].qs;
  3310. const float d = GGML_FP16_TO_FP32(x[i].d);
  3311. for (int j = 0; j < QK4_NL/2; ++j) {
  3312. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3313. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3314. }
  3315. y += QK4_NL;
  3316. qs += QK4_NL/2;
  3317. }
  3318. }
  3319. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3320. assert(k % QK_K == 0);
  3321. #if QK_K == 64
  3322. dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k);
  3323. #else
  3324. const int64_t nb = k / QK_K;
  3325. for (int i = 0; i < nb; i++) {
  3326. const uint8_t * qs = x[i].qs;
  3327. const float d = GGML_FP16_TO_FP32(x[i].d);
  3328. for (int ib = 0; ib < QK_K/32; ++ib) {
  3329. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3330. const float dl = d * (ls - 32);
  3331. for (int j = 0; j < 16; ++j) {
  3332. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3333. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3334. }
  3335. y += 32;
  3336. qs += 16;
  3337. }
  3338. }
  3339. #endif
  3340. }
  3341. //===================================== Q8_K ==============================================
  3342. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3343. assert(k % QK_K == 0);
  3344. const int64_t nb = k / QK_K;
  3345. for (int i = 0; i < nb; i++) {
  3346. float max = 0;
  3347. float amax = 0;
  3348. for (int j = 0; j < QK_K; ++j) {
  3349. float ax = fabsf(x[j]);
  3350. if (ax > amax) {
  3351. amax = ax; max = x[j];
  3352. }
  3353. }
  3354. if (!amax) {
  3355. y[i].d = 0;
  3356. memset(y[i].qs, 0, QK_K);
  3357. x += QK_K;
  3358. continue;
  3359. }
  3360. //const float iscale = -128.f/max;
  3361. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3362. const float iscale = -127.f/max;
  3363. for (int j = 0; j < QK_K; ++j) {
  3364. int v = nearest_int(iscale*x[j]);
  3365. y[i].qs[j] = MIN(127, v);
  3366. }
  3367. for (int j = 0; j < QK_K/16; ++j) {
  3368. int sum = 0;
  3369. for (int ii = 0; ii < 16; ++ii) {
  3370. sum += y[i].qs[j*16 + ii];
  3371. }
  3372. y[i].bsums[j] = sum;
  3373. }
  3374. y[i].d = 1/iscale;
  3375. x += QK_K;
  3376. }
  3377. }
  3378. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3379. assert(k % QK_K == 0);
  3380. const int64_t nb = k / QK_K;
  3381. for (int i = 0; i < nb; i++) {
  3382. for (int j = 0; j < QK_K; ++j) {
  3383. *y++ = x[i].d * x[i].qs[j];
  3384. }
  3385. }
  3386. }
  3387. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3388. quantize_row_q8_K_reference(x, y, k);
  3389. }
  3390. //===================================== Dot ptoducts =================================
  3391. //
  3392. // Helper functions
  3393. //
  3394. #if __AVX__ || __AVX2__ || __AVX512F__
  3395. // shuffles to pick the required scales in dot products
  3396. static inline __m256i get_scale_shuffle_q3k(int i) {
  3397. static const uint8_t k_shuffle[128] = {
  3398. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3399. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3400. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3401. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3402. };
  3403. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3404. }
  3405. static inline __m256i get_scale_shuffle_k4(int i) {
  3406. static const uint8_t k_shuffle[256] = {
  3407. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3408. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3409. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3410. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3411. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3412. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3413. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3414. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3415. };
  3416. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3417. }
  3418. static inline __m128i get_scale_shuffle(int i) {
  3419. static const uint8_t k_shuffle[128] = {
  3420. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3421. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3422. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3423. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3424. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3425. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3426. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3427. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3428. };
  3429. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3430. }
  3431. #elif defined(__loongarch_asx)
  3432. // shuffles to pick the required scales in dot products
  3433. static inline __m256i get_scale_shuffle_q3k(int i) {
  3434. static const uint8_t k_shuffle[128] = {
  3435. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3436. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3437. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3438. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3439. };
  3440. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3441. }
  3442. static inline __m256i get_scale_shuffle_k4(int i) {
  3443. static const uint8_t k_shuffle[256] = {
  3444. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3445. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3446. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3447. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3448. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3449. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3450. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3451. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3452. };
  3453. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3454. }
  3455. static inline __m128i get_scale_shuffle(int i) {
  3456. static const uint8_t k_shuffle[128] = {
  3457. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3458. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3459. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3460. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3461. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3462. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3463. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3464. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3465. };
  3466. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3467. }
  3468. #endif
  3469. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3470. const int qk = QK8_0;
  3471. const int nb = n / qk;
  3472. assert(n % qk == 0);
  3473. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3474. assert((nrc == 2) || (nrc == 1));
  3475. #else
  3476. assert(nrc == 1);
  3477. #endif
  3478. UNUSED(nrc);
  3479. UNUSED(bx);
  3480. UNUSED(by);
  3481. UNUSED(bs);
  3482. const block_q4_0 * restrict x = vx;
  3483. const block_q8_0 * restrict y = vy;
  3484. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3485. if (nrc == 2) {
  3486. const block_q4_0 * restrict vx0 = vx;
  3487. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3488. const block_q8_0 * restrict vy0 = vy;
  3489. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3490. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3491. for (int i = 0; i < nb; i++) {
  3492. const block_q4_0 * restrict b_x0 = &vx0[i];
  3493. const block_q4_0 * restrict b_x1 = &vx1[i];
  3494. const block_q8_0 * restrict b_y0 = &vy0[i];
  3495. const block_q8_0 * restrict b_y1 = &vy1[i];
  3496. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3497. const int8x16_t s8b = vdupq_n_s8(0x8);
  3498. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3499. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3500. // 4-bit -> 8-bit
  3501. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3502. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3503. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3504. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3505. // sub 8
  3506. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3507. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3508. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3509. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3510. // load y
  3511. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3512. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3513. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3514. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3515. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3516. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3517. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3518. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3519. float32x4_t scale = vld1q_f32(_scale);
  3520. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3521. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3522. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3523. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3524. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3525. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3526. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3527. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3528. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3529. l1, r1)), l2, r2)), l3, r3))), scale);
  3530. }
  3531. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3532. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3533. vst1_f32(s, vget_low_f32(sumv2));
  3534. vst1_f32(s + bs, vget_high_f32(sumv2));
  3535. return;
  3536. }
  3537. #endif
  3538. #if defined(__ARM_NEON)
  3539. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3540. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3541. assert(nb % 2 == 0); // TODO: handle odd nb
  3542. for (int i = 0; i < nb; i += 2) {
  3543. const block_q4_0 * restrict x0 = &x[i + 0];
  3544. const block_q4_0 * restrict x1 = &x[i + 1];
  3545. const block_q8_0 * restrict y0 = &y[i + 0];
  3546. const block_q8_0 * restrict y1 = &y[i + 1];
  3547. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3548. const int8x16_t s8b = vdupq_n_s8(0x8);
  3549. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3550. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3551. // 4-bit -> 8-bit
  3552. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3553. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3554. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3555. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3556. // sub 8
  3557. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3558. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3559. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3560. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3561. // load y
  3562. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3563. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3564. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3565. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3566. // dot product into int32x4_t
  3567. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3568. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3569. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3570. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3571. }
  3572. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3573. #elif defined(__AVX2__)
  3574. // Initialize accumulator with zeros
  3575. __m256 acc = _mm256_setzero_ps();
  3576. // Main loop
  3577. for (int i = 0; i < nb; ++i) {
  3578. /* Compute combined scale for the block */
  3579. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3580. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3581. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3582. const __m256i off = _mm256_set1_epi8( 8 );
  3583. qx = _mm256_sub_epi8( qx, off );
  3584. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3585. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3586. /* Multiply q with scale and accumulate */
  3587. acc = _mm256_fmadd_ps( d, q, acc );
  3588. }
  3589. *s = hsum_float_8(acc);
  3590. #elif defined(__AVX__)
  3591. // Initialize accumulator with zeros
  3592. __m256 acc = _mm256_setzero_ps();
  3593. // Main loop
  3594. for (int i = 0; i < nb; ++i) {
  3595. // Compute combined scale for the block
  3596. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3597. const __m128i lowMask = _mm_set1_epi8(0xF);
  3598. const __m128i off = _mm_set1_epi8(8);
  3599. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3600. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3601. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3602. bx_0 = _mm_sub_epi8(bx_0, off);
  3603. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3604. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3605. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3606. bx_0 = _mm_sub_epi8(bx_0, off);
  3607. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3608. // Convert int32_t to float
  3609. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3610. // Apply the scale, and accumulate
  3611. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3612. }
  3613. *s = hsum_float_8(acc);
  3614. #elif defined(__SSSE3__)
  3615. // set constants
  3616. const __m128i lowMask = _mm_set1_epi8(0xF);
  3617. const __m128i off = _mm_set1_epi8(8);
  3618. // Initialize accumulator with zeros
  3619. __m128 acc_0 = _mm_setzero_ps();
  3620. __m128 acc_1 = _mm_setzero_ps();
  3621. __m128 acc_2 = _mm_setzero_ps();
  3622. __m128 acc_3 = _mm_setzero_ps();
  3623. // First round without accumulation
  3624. {
  3625. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3626. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3627. // Compute combined scale for the block 0 and 1
  3628. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3629. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3630. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3631. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3632. bx_0 = _mm_sub_epi8(bx_0, off);
  3633. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3634. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3635. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3636. bx_1 = _mm_sub_epi8(bx_1, off);
  3637. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3638. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3639. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3640. // Compute combined scale for the block 2 and 3
  3641. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3642. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3643. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3644. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3645. bx_2 = _mm_sub_epi8(bx_2, off);
  3646. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3647. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3648. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3649. bx_3 = _mm_sub_epi8(bx_3, off);
  3650. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3651. // Convert int32_t to float
  3652. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3653. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3654. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3655. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3656. // Apply the scale
  3657. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3658. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3659. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3660. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3661. }
  3662. assert(nb % 2 == 0); // TODO: handle odd nb
  3663. // Main loop
  3664. for (int i = 2; i < nb; i+=2) {
  3665. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3666. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3667. // Compute combined scale for the block 0 and 1
  3668. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3669. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3670. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3671. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3672. bx_0 = _mm_sub_epi8(bx_0, off);
  3673. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3674. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3675. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3676. bx_1 = _mm_sub_epi8(bx_1, off);
  3677. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3678. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3679. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3680. // Compute combined scale for the block 2 and 3
  3681. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3682. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3683. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3684. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3685. bx_2 = _mm_sub_epi8(bx_2, off);
  3686. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3687. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3688. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3689. bx_3 = _mm_sub_epi8(bx_3, off);
  3690. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3691. // Convert int32_t to float
  3692. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3693. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3694. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3695. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3696. // Apply the scale
  3697. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3698. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3699. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3700. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3701. // Acummulate
  3702. acc_0 = _mm_add_ps(p0_d, acc_0);
  3703. acc_1 = _mm_add_ps(p1_d, acc_1);
  3704. acc_2 = _mm_add_ps(p2_d, acc_2);
  3705. acc_3 = _mm_add_ps(p3_d, acc_3);
  3706. }
  3707. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3708. #elif defined(__riscv_v_intrinsic)
  3709. float sumf = 0.0;
  3710. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3711. for (int i = 0; i < nb; i++) {
  3712. // load elements
  3713. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3714. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3715. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3716. // mask and store lower part of x, and then upper part
  3717. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3718. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3719. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3720. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3721. // subtract offset
  3722. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3723. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3724. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3725. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3726. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3727. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3728. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3729. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3730. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3731. }
  3732. *s = sumf;
  3733. #elif defined(__POWER9_VECTOR__)
  3734. const vector signed char lowMask = vec_splats((signed char)0xF);
  3735. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3736. const vector signed char v8 = vec_splats((signed char)0x8);
  3737. vector float vsumf0 = vec_splats(0.0f);
  3738. #pragma GCC unroll 4
  3739. for (int i = 0; i < nb; i++) {
  3740. __builtin_prefetch(x[i].qs, 0, 1);
  3741. __builtin_prefetch(y[i].qs, 0, 1);
  3742. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3743. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3744. vector float vd = vec_mul(vxd, vyd);
  3745. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3746. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3747. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3748. vector signed char q4x0 = vec_and(qxs, lowMask);
  3749. vector signed char q4x1 = vec_sr(qxs, v4);
  3750. q4x0 = vec_sub(q4x0, v8);
  3751. q4x1 = vec_sub(q4x1, v8);
  3752. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3753. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3754. qv0 = vec_add(qv0, qv1);
  3755. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  3756. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3757. }
  3758. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3759. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3760. *s = vec_extract(vsumf0, 0);
  3761. #elif defined(__loongarch_asx)
  3762. // Initialize accumulator with zeros
  3763. __m256 acc = (__m256)__lasx_xvldi(0);
  3764. // Main loop
  3765. for (int i = 0; i < nb; ++i) {
  3766. /* Compute combined scale for the block */
  3767. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3768. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3769. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3770. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3771. qx = __lasx_xvsub_b( qx, off );
  3772. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  3773. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3774. /* Multiply q with scale and accumulate */
  3775. acc = __lasx_xvfmadd_s( d, q, acc );
  3776. }
  3777. *s = hsum_float_8(acc);
  3778. #elif defined(__loongarch_sx)
  3779. // set constants
  3780. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3781. const __m128i off = __lsx_vreplgr2vr_b(8);
  3782. // Initialize accumulator with zeros
  3783. __m128 acc_0 = __lsx_vldi(0);
  3784. __m128 acc_1 = __lsx_vldi(0);
  3785. __m128 acc_2 = __lsx_vldi(0);
  3786. __m128 acc_3 = __lsx_vldi(0);
  3787. // First round without accumulation
  3788. {
  3789. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3790. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3791. // Compute combined scale for the block 0 and 1
  3792. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3793. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[0].qs, 0);
  3794. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3795. __m128i by_0 = __lsx_vld((const __m128i *)y[0].qs, 0);
  3796. bx_0 = __lsx_vsub_b(bx_0, off);
  3797. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3798. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3799. __m128i by_1 = __lsx_vld((const __m128i *)(y[0].qs + 16), 0);
  3800. bx_1 = __lsx_vsub_b(bx_1, off);
  3801. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3802. // Compute combined scale for the block 2 and 3
  3803. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3804. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[1].qs, 0);
  3805. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3806. __m128i by_2 = __lsx_vld((const __m128i *)y[1].qs, 0);
  3807. bx_2 = __lsx_vsub_b(bx_2, off);
  3808. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3809. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3810. __m128i by_3 = __lsx_vld((const __m128i *)(y[1].qs + 16), 0);
  3811. bx_3 = __lsx_vsub_b(bx_3, off);
  3812. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3813. // Convert int32_t to float
  3814. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3815. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3816. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3817. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3818. // Apply the scale
  3819. acc_0 = __lsx_vfmul_s( d_0_1, p0 );
  3820. acc_1 = __lsx_vfmul_s( d_0_1, p1 );
  3821. acc_2 = __lsx_vfmul_s( d_2_3, p2 );
  3822. acc_3 = __lsx_vfmul_s( d_2_3, p3 );
  3823. }
  3824. assert(nb % 2 == 0); // TODO: handle odd nb
  3825. // Main loop
  3826. for (int i = 2; i < nb; i+=2) {
  3827. // Compute combined scale for the block 0 and 1
  3828. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3829. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[i].qs, 0);
  3830. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3831. __m128i by_0 = __lsx_vld((const __m128i *)y[i].qs, 0);
  3832. bx_0 = __lsx_vsub_b(bx_0, off);
  3833. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3834. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3835. __m128i by_1 = __lsx_vld((const __m128i *)(y[i].qs + 16), 0);
  3836. bx_1 = __lsx_vsub_b(bx_1, off);
  3837. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3838. //_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3839. //_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3840. // Compute combined scale for the block 2 and 3
  3841. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3842. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[i + 1].qs, 0);
  3843. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3844. __m128i by_2 = __lsx_vld((const __m128i *)y[i + 1].qs, 0);
  3845. bx_2 = __lsx_vsub_b(bx_2, off);
  3846. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3847. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3848. __m128i by_3 = __lsx_vld((const __m128i *)(y[i + 1].qs + 16), 0);
  3849. bx_3 = __lsx_vsub_b(bx_3, off);
  3850. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3851. // Convert int32_t to float
  3852. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3853. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3854. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3855. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3856. // Apply the scale
  3857. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3858. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3859. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3860. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3861. // Acummulate
  3862. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3863. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3864. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3865. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3866. }
  3867. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3868. #else
  3869. // scalar
  3870. float sumf = 0.0;
  3871. for (int i = 0; i < nb; i++) {
  3872. int sumi = 0;
  3873. for (int j = 0; j < qk/2; ++j) {
  3874. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3875. const int v1 = (x[i].qs[j] >> 4) - 8;
  3876. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3877. }
  3878. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3879. }
  3880. *s = sumf;
  3881. #endif
  3882. }
  3883. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3884. const int qk = QK8_1;
  3885. const int nb = n / qk;
  3886. assert(n % qk == 0);
  3887. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3888. assert((nrc == 2) || (nrc == 1));
  3889. #else
  3890. assert(nrc == 1);
  3891. #endif
  3892. UNUSED(nrc);
  3893. UNUSED(bx);
  3894. UNUSED(by);
  3895. UNUSED(bs);
  3896. const block_q4_1 * restrict x = vx;
  3897. const block_q8_1 * restrict y = vy;
  3898. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3899. if (nrc == 2) {
  3900. const block_q4_1 * restrict vx0 = vx;
  3901. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3902. const block_q8_1 * restrict vy0 = vy;
  3903. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3904. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3905. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3906. for (int i = 0; i < nb; i++) {
  3907. const block_q4_1 * restrict b_x0 = &vx0[i];
  3908. const block_q4_1 * restrict b_x1 = &vx1[i];
  3909. const block_q8_1 * restrict b_y0 = &vy0[i];
  3910. const block_q8_1 * restrict b_y1 = &vy1[i];
  3911. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3912. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3913. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3914. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3915. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3916. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3917. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3918. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3919. // 4-bit -> 8-bit
  3920. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3921. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3922. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3923. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3924. // load y
  3925. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3926. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3927. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3928. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3929. // mmla into int32x4_t
  3930. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3931. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3932. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3933. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3934. float32x4_t scale = vld1q_f32(_scale);
  3935. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3936. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3937. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3938. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3939. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3940. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3941. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3942. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3943. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3944. l1, r1)), l2, r2)), l3, r3))), scale);
  3945. }
  3946. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3947. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3948. sumv2 = vaddq_f32(sumv2, summs0);
  3949. vst1_f32(s, vget_low_f32(sumv2));
  3950. vst1_f32(s + bs, vget_high_f32(sumv2));
  3951. return;
  3952. }
  3953. #endif
  3954. // TODO: add WASM SIMD
  3955. #if defined(__ARM_NEON)
  3956. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3957. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3958. float summs = 0;
  3959. assert(nb % 2 == 0); // TODO: handle odd nb
  3960. for (int i = 0; i < nb; i += 2) {
  3961. const block_q4_1 * restrict x0 = &x[i + 0];
  3962. const block_q4_1 * restrict x1 = &x[i + 1];
  3963. const block_q8_1 * restrict y0 = &y[i + 0];
  3964. const block_q8_1 * restrict y1 = &y[i + 1];
  3965. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3966. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3967. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3968. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3969. // 4-bit -> 8-bit
  3970. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3971. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3972. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3973. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3974. // load y
  3975. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3976. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3977. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3978. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3979. // dot product into int32x4_t
  3980. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3981. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3982. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3983. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3984. }
  3985. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3986. #elif defined(__AVX2__) || defined(__AVX__)
  3987. // Initialize accumulator with zeros
  3988. __m256 acc = _mm256_setzero_ps();
  3989. float summs = 0;
  3990. // Main loop
  3991. for (int i = 0; i < nb; ++i) {
  3992. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3993. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3994. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3995. const __m256 d0v = _mm256_set1_ps( d0 );
  3996. const __m256 d1v = _mm256_set1_ps( d1 );
  3997. // Compute combined scales
  3998. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3999. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  4000. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4001. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  4002. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  4003. // Accumulate d0*d1*x*y
  4004. #if defined(__AVX2__)
  4005. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  4006. #else
  4007. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  4008. #endif
  4009. }
  4010. *s = hsum_float_8(acc) + summs;
  4011. #elif defined(__riscv_v_intrinsic)
  4012. float sumf = 0.0;
  4013. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4014. for (int i = 0; i < nb; i++) {
  4015. // load elements
  4016. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4017. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4018. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4019. // mask and store lower part of x, and then upper part
  4020. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4021. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4022. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4023. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4024. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4025. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4026. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4027. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4028. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4029. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4030. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4031. }
  4032. *s = sumf;
  4033. #elif defined(__POWER9_VECTOR__)
  4034. const vector signed char lowMask = vec_splats((signed char)0xF);
  4035. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4036. vector float vsumf0 = vec_splats(0.0f);
  4037. #pragma GCC unroll 4
  4038. for (int i = 0; i < nb; i++) {
  4039. __builtin_prefetch(x[i].qs, 0, 1);
  4040. __builtin_prefetch(y[i].qs, 0, 1);
  4041. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4042. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4043. vector float vd = vec_mul(vxd, vyd);
  4044. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  4045. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.0f, 0.0f, 0.0f};
  4046. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4047. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4048. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4049. vector signed char q8y1 = vec_xl(16, y[i].qs);
  4050. vector signed char q4x0 = vec_and(qxs, lowMask);
  4051. vector signed char q4x1 = vec_sr(qxs, v4);
  4052. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  4053. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  4054. qv0 = vec_add(qv0, qv1);
  4055. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4056. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4057. }
  4058. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4059. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4060. *s = vec_extract(vsumf0, 0);
  4061. #elif defined(__loongarch_asx)
  4062. // Initialize accumulator with zeros
  4063. __m256 acc = (__m256)__lasx_xvldi(0);
  4064. float summs = 0;
  4065. // Main loop
  4066. for (int i = 0; i < nb; ++i) {
  4067. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  4068. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  4069. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4070. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  4071. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  4072. // Compute combined scales
  4073. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  4074. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  4075. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4076. const __m256i qy = __lasx_xvld( (const __m256i *)y[i].qs, 0);
  4077. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  4078. // Accumulate d0*d1*x*y
  4079. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  4080. }
  4081. *s = hsum_float_8(acc) + summs;
  4082. #else
  4083. // scalar
  4084. float sumf = 0.0;
  4085. for (int i = 0; i < nb; i++) {
  4086. int sumi = 0;
  4087. for (int j = 0; j < qk/2; ++j) {
  4088. const int v0 = (x[i].qs[j] & 0x0F);
  4089. const int v1 = (x[i].qs[j] >> 4);
  4090. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  4091. }
  4092. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4093. }
  4094. *s = sumf;
  4095. #endif
  4096. }
  4097. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4098. const int qk = QK8_0;
  4099. const int nb = n / qk;
  4100. assert(n % qk == 0);
  4101. assert(qk == QK5_0);
  4102. assert(nrc == 1);
  4103. UNUSED(nrc);
  4104. UNUSED(bx);
  4105. UNUSED(by);
  4106. UNUSED(bs);
  4107. const block_q5_0 * restrict x = vx;
  4108. const block_q8_0 * restrict y = vy;
  4109. #if defined(__ARM_NEON)
  4110. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4111. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4112. uint32_t qh0;
  4113. uint32_t qh1;
  4114. uint64_t tmp0[4];
  4115. uint64_t tmp1[4];
  4116. assert(nb % 2 == 0); // TODO: handle odd nb
  4117. for (int i = 0; i < nb; i += 2) {
  4118. const block_q5_0 * restrict x0 = &x[i];
  4119. const block_q5_0 * restrict x1 = &x[i + 1];
  4120. const block_q8_0 * restrict y0 = &y[i];
  4121. const block_q8_0 * restrict y1 = &y[i + 1];
  4122. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4123. // extract the 5th bit via lookup table ((!b) << 4)
  4124. memcpy(&qh0, x0->qh, sizeof(qh0));
  4125. memcpy(&qh1, x1->qh, sizeof(qh1));
  4126. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  4127. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  4128. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  4129. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  4130. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  4131. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  4132. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  4133. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  4134. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4135. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4136. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4137. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4138. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4139. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4140. // 4-bit -> 8-bit
  4141. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4142. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4143. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4144. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4145. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4146. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  4147. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  4148. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  4149. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  4150. // load y
  4151. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4152. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4153. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4154. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4155. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4156. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4157. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4158. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4159. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4160. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4161. }
  4162. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4163. #elif defined(__wasm_simd128__)
  4164. v128_t sumv = wasm_f32x4_splat(0.0f);
  4165. uint32_t qh;
  4166. uint64_t tmp[4];
  4167. // TODO: check if unrolling this is better
  4168. for (int i = 0; i < nb; ++i) {
  4169. const block_q5_0 * restrict x0 = &x[i];
  4170. const block_q8_0 * restrict y0 = &y[i];
  4171. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4172. // extract the 5th bit
  4173. memcpy(&qh, x0->qh, sizeof(qh));
  4174. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  4175. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  4176. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  4177. tmp[3] = table_b2b_1[(qh >> 24) ];
  4178. const v128_t qhl = wasm_v128_load(tmp + 0);
  4179. const v128_t qhh = wasm_v128_load(tmp + 2);
  4180. const v128_t v0 = wasm_v128_load(x0->qs);
  4181. // 4-bit -> 8-bit
  4182. const v128_t v0l = wasm_v128_and (v0, m4b);
  4183. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4184. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4185. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  4186. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  4187. // load y
  4188. const v128_t v1l = wasm_v128_load(y0->qs);
  4189. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4190. // int8x16 -> int16x8
  4191. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4192. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4193. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4194. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4195. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4196. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4197. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4198. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4199. // dot product
  4200. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  4201. wasm_i32x4_add(
  4202. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4203. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4204. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4205. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4206. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4207. }
  4208. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4209. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  4210. #elif defined(__AVX2__)
  4211. // Initialize accumulator with zeros
  4212. __m256 acc = _mm256_setzero_ps();
  4213. // Main loop
  4214. for (int i = 0; i < nb; i++) {
  4215. /* Compute combined scale for the block */
  4216. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4217. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4218. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4219. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  4220. qx = _mm256_or_si256(qx, bxhi);
  4221. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4222. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4223. /* Multiply q with scale and accumulate */
  4224. acc = _mm256_fmadd_ps(d, q, acc);
  4225. }
  4226. *s = hsum_float_8(acc);
  4227. #elif defined(__AVX__)
  4228. // Initialize accumulator with zeros
  4229. __m256 acc = _mm256_setzero_ps();
  4230. __m128i mask = _mm_set1_epi8((char)0xF0);
  4231. // Main loop
  4232. for (int i = 0; i < nb; i++) {
  4233. /* Compute combined scale for the block */
  4234. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4235. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4236. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4237. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4238. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4239. bxhil = _mm_andnot_si128(bxhil, mask);
  4240. bxhih = _mm_andnot_si128(bxhih, mask);
  4241. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4242. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4243. bxl = _mm_or_si128(bxl, bxhil);
  4244. bxh = _mm_or_si128(bxh, bxhih);
  4245. bx_0 = MM256_SET_M128I(bxh, bxl);
  4246. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4247. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  4248. /* Multiply q with scale and accumulate */
  4249. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  4250. }
  4251. *s = hsum_float_8(acc);
  4252. #elif defined(__riscv_v_intrinsic)
  4253. float sumf = 0.0;
  4254. uint32_t qh;
  4255. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4256. // These temporary registers are for masking and shift operations
  4257. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4258. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  4259. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  4260. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4261. for (int i = 0; i < nb; i++) {
  4262. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4263. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4264. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4265. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4266. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4267. // ((qh & (1u << (j + 16))) >> (j + 12));
  4268. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4269. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4270. // narrowing
  4271. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4272. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4273. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4274. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4275. // load
  4276. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4277. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4278. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4279. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4280. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4281. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4282. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4283. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4284. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4285. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4286. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4287. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4288. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4289. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4290. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4291. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4292. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4293. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4294. }
  4295. *s = sumf;
  4296. #elif defined(__POWER9_VECTOR__)
  4297. const vector signed char lowMask = vec_splats((signed char)0xF);
  4298. const vector unsigned char v4 = vec_splats((unsigned char)4);
  4299. vector float vsumf0 = vec_splats(0.0f);
  4300. #pragma GCC unroll 4
  4301. for (int i = 0; i < nb; ++i) {
  4302. __builtin_prefetch(x[i].qs, 0, 1);
  4303. __builtin_prefetch(y[i].qs, 0, 1);
  4304. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4305. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4306. vector float vd = vec_mul(vxd, vyd);
  4307. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[i].qh[0]]), (uint64_t)(table_b2b_1[x[i].qh[1]])};
  4308. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[i].qh[2]]), (uint64_t)(table_b2b_1[x[i].qh[3]])};
  4309. vector signed char qh0 = (vector signed char)aux64x2_0;
  4310. vector signed char qh1 = (vector signed char)aux64x2_1;
  4311. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4312. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  4313. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  4314. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4315. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4316. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4317. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4318. qv0 = vec_add(qv0, qv1);
  4319. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4320. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4321. }
  4322. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4323. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4324. *s = vec_extract(vsumf0, 0);
  4325. #elif defined(__loongarch_asx)
  4326. // Initialize accumulator with zeros
  4327. __m256 acc = (__m256)__lasx_xvldi(0);
  4328. // Main loop
  4329. for (int i = 0; i < nb; i++) {
  4330. /* Compute combined scale for the block */
  4331. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); //FIXME
  4332. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4333. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4334. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4335. qx = __lasx_xvor_v(qx, bxhi);
  4336. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4337. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4338. /* Multiply q with scale and accumulate */
  4339. acc = __lasx_xvfmadd_s(d, q, acc);
  4340. }
  4341. *s = hsum_float_8(acc);
  4342. #else
  4343. // scalar
  4344. float sumf = 0.0;
  4345. for (int i = 0; i < nb; i++) {
  4346. uint32_t qh;
  4347. memcpy(&qh, x[i].qh, sizeof(qh));
  4348. int sumi = 0;
  4349. for (int j = 0; j < qk/2; ++j) {
  4350. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4351. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4352. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4353. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4354. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4355. }
  4356. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4357. }
  4358. *s = sumf;
  4359. #endif
  4360. }
  4361. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4362. const int qk = QK8_1;
  4363. const int nb = n / qk;
  4364. assert(n % qk == 0);
  4365. assert(qk == QK5_1);
  4366. assert(nrc == 1);
  4367. UNUSED(nrc);
  4368. UNUSED(bx);
  4369. UNUSED(by);
  4370. UNUSED(bs);
  4371. const block_q5_1 * restrict x = vx;
  4372. const block_q8_1 * restrict y = vy;
  4373. #if defined(__ARM_NEON)
  4374. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4375. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4376. float summs0 = 0.0f;
  4377. float summs1 = 0.0f;
  4378. uint32_t qh0;
  4379. uint32_t qh1;
  4380. uint64_t tmp0[4];
  4381. uint64_t tmp1[4];
  4382. assert(nb % 2 == 0); // TODO: handle odd nb
  4383. for (int i = 0; i < nb; i += 2) {
  4384. const block_q5_1 * restrict x0 = &x[i];
  4385. const block_q5_1 * restrict x1 = &x[i + 1];
  4386. const block_q8_1 * restrict y0 = &y[i];
  4387. const block_q8_1 * restrict y1 = &y[i + 1];
  4388. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4389. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4390. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4391. // extract the 5th bit via lookup table ((b) << 4)
  4392. memcpy(&qh0, x0->qh, sizeof(qh0));
  4393. memcpy(&qh1, x1->qh, sizeof(qh1));
  4394. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4395. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4396. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4397. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4398. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4399. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4400. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4401. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4402. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4403. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4404. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4405. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4406. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4407. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4408. // 4-bit -> 8-bit
  4409. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4410. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4411. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4412. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4413. // add high bit
  4414. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4415. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4416. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4417. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4418. // load y
  4419. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4420. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4421. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4422. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4423. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4424. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4425. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4426. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4427. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4428. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4429. }
  4430. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4431. #elif defined(__wasm_simd128__)
  4432. v128_t sumv = wasm_f32x4_splat(0.0f);
  4433. float summs = 0.0f;
  4434. uint32_t qh;
  4435. uint64_t tmp[4];
  4436. // TODO: check if unrolling this is better
  4437. for (int i = 0; i < nb; ++i) {
  4438. const block_q5_1 * restrict x0 = &x[i];
  4439. const block_q8_1 * restrict y0 = &y[i];
  4440. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4441. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4442. // extract the 5th bit
  4443. memcpy(&qh, x0->qh, sizeof(qh));
  4444. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4445. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4446. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4447. tmp[3] = table_b2b_0[(qh >> 24) ];
  4448. const v128_t qhl = wasm_v128_load(tmp + 0);
  4449. const v128_t qhh = wasm_v128_load(tmp + 2);
  4450. const v128_t v0 = wasm_v128_load(x0->qs);
  4451. // 4-bit -> 8-bit
  4452. const v128_t v0l = wasm_v128_and (v0, m4b);
  4453. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4454. // add high bit
  4455. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4456. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4457. // load y
  4458. const v128_t v1l = wasm_v128_load(y0->qs);
  4459. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4460. // int8x16 -> int16x8
  4461. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4462. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4463. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4464. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4465. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4466. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4467. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4468. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4469. // dot product
  4470. sumv = wasm_f32x4_add(sumv,
  4471. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4472. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4473. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4474. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4475. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4476. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4477. }
  4478. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4479. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4480. #elif defined(__AVX2__)
  4481. // Initialize accumulator with zeros
  4482. __m256 acc = _mm256_setzero_ps();
  4483. float summs = 0.0f;
  4484. // Main loop
  4485. for (int i = 0; i < nb; i++) {
  4486. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4487. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4488. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4489. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4490. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4491. qx = _mm256_or_si256(qx, bxhi);
  4492. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4493. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4494. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4495. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4496. }
  4497. *s = hsum_float_8(acc) + summs;
  4498. #elif defined(__AVX__)
  4499. // Initialize accumulator with zeros
  4500. __m256 acc = _mm256_setzero_ps();
  4501. __m128i mask = _mm_set1_epi8(0x10);
  4502. float summs = 0.0f;
  4503. // Main loop
  4504. for (int i = 0; i < nb; i++) {
  4505. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4506. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4507. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4508. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4509. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4510. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4511. bxhil = _mm_and_si128(bxhil, mask);
  4512. bxhih = _mm_and_si128(bxhih, mask);
  4513. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4514. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4515. bxl = _mm_or_si128(bxl, bxhil);
  4516. bxh = _mm_or_si128(bxh, bxhih);
  4517. bx_0 = MM256_SET_M128I(bxh, bxl);
  4518. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4519. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4520. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4521. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4522. }
  4523. *s = hsum_float_8(acc) + summs;
  4524. #elif defined(__riscv_v_intrinsic)
  4525. float sumf = 0.0;
  4526. uint32_t qh;
  4527. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4528. // temporary registers for shift operations
  4529. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4530. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4531. for (int i = 0; i < nb; i++) {
  4532. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4533. // load qh
  4534. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4535. // ((qh >> (j + 0)) << 4) & 0x10;
  4536. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4537. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4538. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4539. // ((qh >> (j + 12)) ) & 0x10;
  4540. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4541. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4542. // narrowing
  4543. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4544. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4545. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4546. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4547. // load
  4548. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4549. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4550. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4551. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4552. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4553. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4554. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4555. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4556. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4557. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4558. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4559. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4560. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4561. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4562. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4563. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4564. }
  4565. *s = sumf;
  4566. #elif defined(__POWER9_VECTOR__)
  4567. const vector signed char lowMask = vec_splats((signed char)0xF);
  4568. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4569. vector float vsumf0 = vec_splats(0.0f);
  4570. #pragma GCC unroll 4
  4571. for (int i = 0; i < nb; ++i) {
  4572. __builtin_prefetch(x[i].qs, 0, 1);
  4573. __builtin_prefetch(y[i].qs, 0, 1);
  4574. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4575. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4576. vector float vd = vec_mul(vxd, vyd);
  4577. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  4578. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.f, 0.f, 0.f};
  4579. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4580. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[i].qh[0]]), (uint64_t)(table_b2b_0[x[i].qh[1]])};
  4581. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[i].qh[2]]), (uint64_t)(table_b2b_0[x[i].qh[3]])};
  4582. vector signed char qh0 = (vector signed char)aux64x2_0;
  4583. vector signed char qh1 = (vector signed char)aux64x2_1;
  4584. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4585. vector signed char q5x0 = vec_or(vec_and(qxs, lowMask), qh0);
  4586. vector signed char q5x1 = vec_or(vec_sr(qxs, v4), qh1);
  4587. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4588. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4589. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4590. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4591. qv0 = vec_add(qv0, qv1);
  4592. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4593. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4594. }
  4595. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4596. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4597. *s = vec_extract(vsumf0, 0);
  4598. #elif defined(__loongarch_asx)
  4599. // Initialize accumulator with zeros
  4600. __m256 acc = (__m256)__lasx_xvldi(0);
  4601. float summs = 0.0f;
  4602. // Main loop
  4603. for (int i = 0; i < nb; i++) {
  4604. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d));
  4605. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4606. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4607. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4608. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4609. qx = __lasx_xvor_v(qx, bxhi);
  4610. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[i].d));
  4611. const __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4612. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4613. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4614. }
  4615. *s = hsum_float_8(acc) + summs;
  4616. #else
  4617. // scalar
  4618. float sumf = 0.0;
  4619. for (int i = 0; i < nb; i++) {
  4620. uint32_t qh;
  4621. memcpy(&qh, x[i].qh, sizeof(qh));
  4622. int sumi = 0;
  4623. for (int j = 0; j < qk/2; ++j) {
  4624. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4625. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4626. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4627. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4628. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4629. }
  4630. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4631. }
  4632. *s = sumf;
  4633. #endif
  4634. }
  4635. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4636. const int qk = QK8_0;
  4637. const int nb = n / qk;
  4638. assert(n % qk == 0);
  4639. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4640. assert((nrc == 2) || (nrc == 1));
  4641. #else
  4642. assert(nrc == 1);
  4643. #endif
  4644. UNUSED(nrc);
  4645. UNUSED(bx);
  4646. UNUSED(by);
  4647. UNUSED(bs);
  4648. const block_q8_0 * restrict x = vx;
  4649. const block_q8_0 * restrict y = vy;
  4650. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4651. if (nrc == 2) {
  4652. const block_q8_0 * restrict vx0 = vx;
  4653. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4654. const block_q8_0 * restrict vy0 = vy;
  4655. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4656. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4657. for (int i = 0; i < nb; i++) {
  4658. const block_q8_0 * restrict b_x0 = &vx0[i];
  4659. const block_q8_0 * restrict b_y0 = &vy0[i];
  4660. const block_q8_0 * restrict b_x1 = &vx1[i];
  4661. const block_q8_0 * restrict b_y1 = &vy1[i];
  4662. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4663. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4664. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4665. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4666. // load y
  4667. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4668. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4669. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4670. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4671. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4672. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4673. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4674. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4675. float32x4_t scale = vld1q_f32(_scale);
  4676. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4677. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4678. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4679. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4680. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4681. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4682. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4683. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4684. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4685. l1, r1)), l2, r2)), l3, r3))), scale);
  4686. }
  4687. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4688. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4689. vst1_f32(s, vget_low_f32(sumv2));
  4690. vst1_f32(s + bs, vget_high_f32(sumv2));
  4691. return;
  4692. }
  4693. #endif
  4694. #if defined(__ARM_NEON)
  4695. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4696. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4697. assert(nb % 2 == 0); // TODO: handle odd nb
  4698. for (int i = 0; i < nb; i += 2) {
  4699. const block_q8_0 * restrict x0 = &x[i + 0];
  4700. const block_q8_0 * restrict x1 = &x[i + 1];
  4701. const block_q8_0 * restrict y0 = &y[i + 0];
  4702. const block_q8_0 * restrict y1 = &y[i + 1];
  4703. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4704. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4705. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4706. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4707. // load y
  4708. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4709. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4710. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4711. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4712. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4713. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4714. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4715. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4716. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4717. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4718. }
  4719. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4720. #elif defined(__AVX2__) || defined(__AVX__)
  4721. // Initialize accumulator with zeros
  4722. __m256 acc = _mm256_setzero_ps();
  4723. // Main loop
  4724. for (int i = 0; i < nb; ++i) {
  4725. // Compute combined scale for the block
  4726. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4727. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4728. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4729. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4730. // Multiply q with scale and accumulate
  4731. #if defined(__AVX2__)
  4732. acc = _mm256_fmadd_ps( d, q, acc );
  4733. #else
  4734. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4735. #endif
  4736. }
  4737. *s = hsum_float_8(acc);
  4738. #elif defined(__riscv_v_intrinsic)
  4739. float sumf = 0.0;
  4740. size_t vl = __riscv_vsetvl_e8m1(qk);
  4741. for (int i = 0; i < nb; i++) {
  4742. // load elements
  4743. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4744. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4745. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4746. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4747. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4748. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4749. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4750. }
  4751. *s = sumf;
  4752. #elif defined(__POWER9_VECTOR__)
  4753. vector float vsumf0 = vec_splats(0.0f);
  4754. #pragma GCC unroll 4
  4755. for (int i = 0; i < nb; i++) {
  4756. __builtin_prefetch(x[i].qs, 0, 1);
  4757. __builtin_prefetch(y[i].qs, 0, 1);
  4758. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4759. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4760. vector float vd = vec_mul(vxd, vyd);
  4761. vector signed char q8x0 = vec_xl( 0, x[i].qs);
  4762. vector signed char q8x1 = vec_xl(16, x[i].qs);
  4763. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4764. vector signed char q8y1 = vec_xl(16, y[i].qs);
  4765. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4766. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4767. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4768. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4769. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackh(qv1));
  4770. vector signed int vsumi1 = vec_add(vec_unpackl(qv0), vec_unpackl(qv1));
  4771. vector signed int vsumi2 = vec_add(vec_unpackh(qv2), vec_unpackh(qv3));
  4772. vector signed int vsumi3 = vec_add(vec_unpackl(qv2), vec_unpackl(qv3));
  4773. vsumi0 = vec_add(vsumi0, vsumi2);
  4774. vsumi1 = vec_add(vsumi1, vsumi3);
  4775. vsumi0 = vec_add(vsumi0, vsumi1);
  4776. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4777. }
  4778. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4779. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4780. *s = vec_extract(vsumf0, 0);
  4781. #elif defined(__loongarch_asx)
  4782. // Initialize accumulator with zeros
  4783. __m256 acc = (__m256)__lasx_xvldi(0);
  4784. // Main loop
  4785. for (int i = 0; i < nb; ++i) {
  4786. // Compute combined scale for the block
  4787. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4788. __m256i qx = __lasx_xvld((const __m256i *)x[i].qs, 0);
  4789. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4790. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4791. // Multiply q with scale and accumulate
  4792. acc = __lasx_xvfmadd_s( d, q, acc );
  4793. }
  4794. *s = hsum_float_8(acc);
  4795. #else
  4796. // scalar
  4797. float sumf = 0.0;
  4798. for (int i = 0; i < nb; i++) {
  4799. int sumi = 0;
  4800. for (int j = 0; j < qk; j++) {
  4801. sumi += x[i].qs[j]*y[i].qs[j];
  4802. }
  4803. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4804. }
  4805. *s = sumf;
  4806. #endif
  4807. }
  4808. #if QK_K == 256
  4809. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4810. assert(nrc == 1);
  4811. UNUSED(nrc);
  4812. UNUSED(bx);
  4813. UNUSED(by);
  4814. UNUSED(bs);
  4815. const block_q2_K * restrict x = vx;
  4816. const block_q8_K * restrict y = vy;
  4817. const int nb = n / QK_K;
  4818. #ifdef __ARM_NEON
  4819. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4820. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4821. const int32x4_t vzero = vdupq_n_s32(0);
  4822. ggml_int8x16x2_t q2bytes;
  4823. uint8_t aux[16];
  4824. float sum = 0;
  4825. for (int i = 0; i < nb; ++i) {
  4826. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4827. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4828. const uint8_t * restrict q2 = x[i].qs;
  4829. const int8_t * restrict q8 = y[i].qs;
  4830. const uint8_t * restrict sc = x[i].scales;
  4831. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4832. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4833. vst1q_u8(aux, scales);
  4834. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4835. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4836. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4837. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4838. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4839. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4840. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4841. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4842. int isum = 0;
  4843. int is = 0;
  4844. // We use this macro instead of a function call because for some reason
  4845. // the code runs 2-3% slower, even if the function is declared inline
  4846. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4847. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4848. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4849. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4850. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4851. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4852. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4853. MULTIPLY_ACCUM_WITH_SCALE((index));
  4854. for (int j = 0; j < QK_K/128; ++j) {
  4855. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4856. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4857. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4858. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4859. MULTIPLY_ACCUM_WITH_SCALE(0);
  4860. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4861. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4862. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4863. is += 8;
  4864. }
  4865. sum += d * isum;
  4866. }
  4867. *s = sum;
  4868. #elif defined __AVX2__
  4869. const __m256i m3 = _mm256_set1_epi8(3);
  4870. const __m128i m4 = _mm_set1_epi8(0xF);
  4871. __m256 acc = _mm256_setzero_ps();
  4872. for (int i = 0; i < nb; ++i) {
  4873. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4874. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4875. const uint8_t * restrict q2 = x[i].qs;
  4876. const int8_t * restrict q8 = y[i].qs;
  4877. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4878. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4879. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4880. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4881. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4882. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4883. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4884. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4885. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4886. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4887. __m256i sumi = _mm256_setzero_si256();
  4888. for (int j = 0; j < QK_K/128; ++j) {
  4889. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4890. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4891. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4892. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4893. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4894. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4895. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4896. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4897. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4898. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4899. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4900. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4901. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4902. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4903. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4904. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4905. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4906. p0 = _mm256_add_epi32(p0, p1);
  4907. p2 = _mm256_add_epi32(p2, p3);
  4908. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4909. }
  4910. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4911. }
  4912. *s = hsum_float_8(acc);
  4913. #elif defined __AVX__
  4914. const __m128i m3 = _mm_set1_epi8(0x3);
  4915. const __m128i m4 = _mm_set1_epi8(0xF);
  4916. const __m128i m2 = _mm_set1_epi8(0x2);
  4917. __m256 acc = _mm256_setzero_ps();
  4918. for (int i = 0; i < nb; ++i) {
  4919. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4920. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4921. const uint8_t * restrict q2 = x[i].qs;
  4922. const int8_t * restrict q8 = y[i].qs;
  4923. // load mins and scales from block_q2_K.scales[QK_K/16]
  4924. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4925. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4926. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4927. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4928. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4929. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4930. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4931. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4932. // sumf += -dmin * summs in 32bits*8
  4933. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4934. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4935. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4936. const __m128i scales[2] = { scales_0, scales_1 };
  4937. __m128i sumi_0 = _mm_setzero_si128();
  4938. __m128i sumi_1 = _mm_setzero_si128();
  4939. for (int j = 0; j < QK_K/128; ++j) {
  4940. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4941. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4942. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4943. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4944. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4945. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4946. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4947. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4948. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4949. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4950. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4951. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4952. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4953. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4954. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4955. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4956. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4957. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4958. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4959. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4960. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4961. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4962. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4963. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4964. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4965. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4966. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4967. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4968. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4969. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4970. __m128i shuffle = _mm_set1_epi16(0x0100);
  4971. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4972. shuffle = _mm_add_epi16(shuffle, m2);
  4973. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4974. shuffle = _mm_add_epi16(shuffle, m2);
  4975. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4976. shuffle = _mm_add_epi16(shuffle, m2);
  4977. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4978. shuffle = _mm_add_epi16(shuffle, m2);
  4979. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4980. shuffle = _mm_add_epi16(shuffle, m2);
  4981. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4982. shuffle = _mm_add_epi16(shuffle, m2);
  4983. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4984. shuffle = _mm_add_epi16(shuffle, m2);
  4985. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4986. p0 = _mm_add_epi32(p0, p1);
  4987. p2 = _mm_add_epi32(p2, p3);
  4988. p4 = _mm_add_epi32(p4, p5);
  4989. p6 = _mm_add_epi32(p6, p7);
  4990. // isum in 32bits*4*2
  4991. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4992. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4993. }
  4994. // sumf += dall * isum - dmin * summs in 32bits
  4995. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4996. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4997. }
  4998. *s = hsum_float_8(acc);
  4999. #elif defined __riscv_v_intrinsic
  5000. float sumf = 0;
  5001. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5002. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  5003. for (int i = 0; i < nb; ++i) {
  5004. const uint8_t * q2 = x[i].qs;
  5005. const int8_t * q8 = y[i].qs;
  5006. const uint8_t * sc = x[i].scales;
  5007. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5008. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5009. size_t vl = 16;
  5010. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  5011. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  5012. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  5013. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  5014. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  5015. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  5016. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  5017. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5018. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  5019. vl = 32;
  5020. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5021. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  5022. uint8_t is=0;
  5023. int isum=0;
  5024. for (int j = 0; j < QK_K/128; ++j) {
  5025. // load Q2
  5026. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  5027. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  5028. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  5029. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  5030. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  5031. // duplicate scale elements for product
  5032. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  5033. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  5034. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  5035. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  5036. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  5037. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  5038. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  5039. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  5040. // load Q8
  5041. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5042. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5043. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  5044. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  5045. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  5046. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  5047. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  5048. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  5049. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  5050. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  5051. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  5052. q2+=32; q8+=128; is=8;
  5053. }
  5054. sumf += dall * isum;
  5055. }
  5056. *s = sumf;
  5057. #elif defined(__POWER9_VECTOR__)
  5058. const vector signed char lowMask = vec_splats((signed char)0x3);
  5059. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  5060. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5061. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5062. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5063. vector float vsumf0 = vec_splats(0.0f);
  5064. vector float vsumf1 = vec_splats(0.0f);
  5065. vector float vsumf2 = vec_splats(0.0f);
  5066. vector float vsumf3 = vec_splats(0.0f);
  5067. for (int i = 0; i < nb; ++i) {
  5068. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5069. vector float vyd = vec_splats(y[i].d);
  5070. vector float vd = vec_mul(vxd, vyd);
  5071. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5072. vector float vdmin = vec_mul(vxmin, vyd);
  5073. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5074. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5075. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  5076. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  5077. q2xmins = vec_sr(q2xmins, v4);
  5078. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  5079. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  5080. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  5081. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  5082. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  5083. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  5084. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5085. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5086. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5087. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5088. vector signed int vsumi0 = vec_splats((int32_t)0);
  5089. vector signed int vsumi1 = vec_splats((int32_t)0);
  5090. vector signed int vsumi2 = vec_splats((int32_t)0);
  5091. vector signed int vsumi3 = vec_splats((int32_t)0);
  5092. vector signed int vsumi4 = vec_splats((int32_t)0);
  5093. vector signed int vsumi5 = vec_splats((int32_t)0);
  5094. vector signed int vsumi6 = vec_splats((int32_t)0);
  5095. vector signed int vsumi7 = vec_splats((int32_t)0);
  5096. for (int j = 0; j < QK_K/128; ++j) {
  5097. __builtin_prefetch(q2, 0, 1);
  5098. __builtin_prefetch(q8, 0, 1);
  5099. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  5100. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  5101. q2 += 32;
  5102. vector signed char q2x00 = vec_and(qxs0, lowMask);
  5103. vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5104. vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5105. vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5106. vector signed char q2x10 = vec_and(qxs1, lowMask);
  5107. vector signed char q2x11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5108. vector signed char q2x12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5109. vector signed char q2x13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5110. vector signed char q8y00 = vec_xl( 0, q8);
  5111. vector signed char q8y10 = vec_xl( 16, q8);
  5112. vector signed char q8y01 = vec_xl( 32, q8);
  5113. vector signed char q8y11 = vec_xl( 48, q8);
  5114. vector signed char q8y02 = vec_xl( 64, q8);
  5115. vector signed char q8y12 = vec_xl( 80, q8);
  5116. vector signed char q8y03 = vec_xl( 96, q8);
  5117. vector signed char q8y13 = vec_xl(112, q8);
  5118. q8 += 128;
  5119. vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00));
  5120. vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01));
  5121. vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02));
  5122. vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03));
  5123. vector signed short qv4 = vec_add(vec_mule(q2x10, q8y10), vec_mulo(q2x10, q8y10));
  5124. vector signed short qv5 = vec_add(vec_mule(q2x11, q8y11), vec_mulo(q2x11, q8y11));
  5125. vector signed short qv6 = vec_add(vec_mule(q2x12, q8y12), vec_mulo(q2x12, q8y12));
  5126. vector signed short qv7 = vec_add(vec_mule(q2x13, q8y13), vec_mulo(q2x13, q8y13));
  5127. vector signed short vscales_h = vec_unpackh(vscales);
  5128. vector signed short vs0 = vec_splat(vscales_h, 0);
  5129. vector signed short vs1 = vec_splat(vscales_h, 1);
  5130. vector signed short vs2 = vec_splat(vscales_h, 2);
  5131. vector signed short vs3 = vec_splat(vscales_h, 3);
  5132. vector signed short vs4 = vec_splat(vscales_h, 4);
  5133. vector signed short vs5 = vec_splat(vscales_h, 5);
  5134. vector signed short vs6 = vec_splat(vscales_h, 6);
  5135. vector signed short vs7 = vec_splat(vscales_h, 7);
  5136. vscales = vec_sld(vscales, vscales, 8);
  5137. qv0 = vec_mul(qv0, vs0);
  5138. qv1 = vec_mul(qv1, vs2);
  5139. qv2 = vec_mul(qv2, vs4);
  5140. qv3 = vec_mul(qv3, vs6);
  5141. qv0 = vec_madd(qv4, vs1, qv0);
  5142. qv1 = vec_madd(qv5, vs3, qv1);
  5143. qv2 = vec_madd(qv6, vs5, qv2);
  5144. qv3 = vec_madd(qv7, vs7, qv3);
  5145. vsumi0 = vec_add(vec_unpackh(qv0), vsumi0);
  5146. vsumi1 = vec_add(vec_unpackh(qv1), vsumi1);
  5147. vsumi2 = vec_add(vec_unpackh(qv2), vsumi2);
  5148. vsumi3 = vec_add(vec_unpackh(qv3), vsumi3);
  5149. vsumi4 = vec_add(vec_unpackl(qv0), vsumi4);
  5150. vsumi5 = vec_add(vec_unpackl(qv1), vsumi5);
  5151. vsumi6 = vec_add(vec_unpackl(qv2), vsumi6);
  5152. vsumi7 = vec_add(vec_unpackl(qv3), vsumi7);
  5153. }
  5154. vsumi0 = vec_add(vsumi0, vsumi4);
  5155. vsumi1 = vec_add(vsumi1, vsumi5);
  5156. vsumi2 = vec_add(vsumi2, vsumi6);
  5157. vsumi3 = vec_add(vsumi3, vsumi7);
  5158. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5159. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5160. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5161. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5162. }
  5163. vsumf0 = vec_add(vsumf0, vsumf2);
  5164. vsumf1 = vec_add(vsumf1, vsumf3);
  5165. vsumf0 = vec_add(vsumf0, vsumf1);
  5166. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5167. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5168. *s = vec_extract(vsumf0, 0);
  5169. #elif defined __loongarch_asx
  5170. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5171. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  5172. __m256 acc = (__m256)__lasx_xvldi(0);
  5173. for (int i = 0; i < nb; ++i) {
  5174. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5175. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5176. const uint8_t * restrict q2 = x[i].qs;
  5177. const int8_t * restrict q8 = y[i].qs;
  5178. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  5179. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  5180. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  5181. const __m256i mins = lasx_ext8_16(mins8);
  5182. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  5183. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  5184. const __m256i all_scales = lasx_ext8_16(scales8);
  5185. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5186. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5187. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5188. __m256i sumi = __lasx_xvldi(0);
  5189. for (int j = 0; j < QK_K/128; ++j) {
  5190. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  5191. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5192. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5193. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5194. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5195. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  5196. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  5197. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  5198. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  5199. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  5200. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  5201. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  5202. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  5203. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  5204. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  5205. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  5206. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  5207. p0 = __lasx_xvadd_w(p0, p1);
  5208. p2 = __lasx_xvadd_w(p2, p3);
  5209. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  5210. }
  5211. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  5212. }
  5213. *s = hsum_float_8(acc);
  5214. #else
  5215. float sumf = 0;
  5216. for (int i = 0; i < nb; ++i) {
  5217. const uint8_t * q2 = x[i].qs;
  5218. const int8_t * q8 = y[i].qs;
  5219. const uint8_t * sc = x[i].scales;
  5220. int summs = 0;
  5221. for (int j = 0; j < 16; ++j) {
  5222. summs += y[i].bsums[j] * (sc[j] >> 4);
  5223. }
  5224. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5225. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5226. int isum = 0;
  5227. int is = 0;
  5228. int d;
  5229. for (int k = 0; k < QK_K/128; ++k) {
  5230. int shift = 0;
  5231. for (int j = 0; j < 4; ++j) {
  5232. d = sc[is++] & 0xF;
  5233. int isuml = 0;
  5234. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5235. isum += d * isuml;
  5236. d = sc[is++] & 0xF;
  5237. isuml = 0;
  5238. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5239. isum += d * isuml;
  5240. shift += 2;
  5241. q8 += 32;
  5242. }
  5243. q2 += 32;
  5244. }
  5245. sumf += dall * isum - dmin * summs;
  5246. }
  5247. *s = sumf;
  5248. #endif
  5249. }
  5250. #else
  5251. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5252. assert(nrc == 1);
  5253. UNUSED(nrc);
  5254. UNUSED(bx);
  5255. UNUSED(by);
  5256. UNUSED(bs);
  5257. const block_q2_K * restrict x = vx;
  5258. const block_q8_K * restrict y = vy;
  5259. const int nb = n / QK_K;
  5260. #ifdef __ARM_NEON
  5261. const uint8x16_t m3 = vdupq_n_u8(0x3);
  5262. const int32x4_t vzero = vdupq_n_s32(0);
  5263. ggml_int8x16x4_t q2bytes;
  5264. uint32_t aux32[2];
  5265. const uint8_t * scales = (const uint8_t *)aux32;
  5266. float sum = 0;
  5267. for (int i = 0; i < nb; ++i) {
  5268. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5269. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5270. const uint8_t * restrict q2 = x[i].qs;
  5271. const int8_t * restrict q8 = y[i].qs;
  5272. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5273. aux32[0] = sc[0] & 0x0f0f0f0f;
  5274. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  5275. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  5276. int isum1 = 0, isum2 = 0;
  5277. const uint8x16_t q2bits = vld1q_u8(q2);
  5278. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  5279. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  5280. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  5281. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  5282. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  5283. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  5284. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  5285. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  5286. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  5287. sum += d * (isum1 + isum2);
  5288. }
  5289. *s = sum;
  5290. #elif defined __AVX2__
  5291. const __m256i m3 = _mm256_set1_epi8(3);
  5292. __m256 acc = _mm256_setzero_ps();
  5293. uint32_t ud, um;
  5294. const uint8_t * restrict db = (const uint8_t *)&ud;
  5295. const uint8_t * restrict mb = (const uint8_t *)&um;
  5296. float summs = 0;
  5297. // TODO: optimize this
  5298. for (int i = 0; i < nb; ++i) {
  5299. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5300. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5301. const uint8_t * restrict q2 = x[i].qs;
  5302. const int8_t * restrict q8 = y[i].qs;
  5303. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5304. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  5305. um = (sc[0] >> 4) & 0x0f0f0f0f;
  5306. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  5307. summs += dmin * smin;
  5308. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  5309. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  5310. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  5311. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5312. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5313. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  5314. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  5315. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  5316. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  5317. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  5318. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  5319. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  5320. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  5321. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  5322. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  5323. }
  5324. *s = hsum_float_8(acc) + summs;
  5325. #elif defined __AVX__
  5326. const __m128i m3 = _mm_set1_epi8(3);
  5327. __m256 acc = _mm256_setzero_ps();
  5328. uint32_t ud, um;
  5329. const uint8_t * restrict db = (const uint8_t *)&ud;
  5330. const uint8_t * restrict mb = (const uint8_t *)&um;
  5331. float summs = 0;
  5332. // TODO: optimize this
  5333. for (int i = 0; i < nb; ++i) {
  5334. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5335. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5336. const uint8_t * restrict q2 = x[i].qs;
  5337. const int8_t * restrict q8 = y[i].qs;
  5338. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5339. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  5340. um = (sc[0] >> 4) & 0x0f0f0f0f;
  5341. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  5342. summs += dmin * smin;
  5343. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  5344. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  5345. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  5346. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  5347. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  5348. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5349. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5350. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  5351. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  5352. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  5353. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  5354. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  5355. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  5356. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  5357. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  5358. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  5359. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  5360. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  5361. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  5362. }
  5363. *s = hsum_float_8(acc) + summs;
  5364. #elif defined __riscv_v_intrinsic
  5365. uint32_t aux32[2];
  5366. const uint8_t * scales = (const uint8_t *)aux32;
  5367. float sumf = 0;
  5368. for (int i = 0; i < nb; ++i) {
  5369. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5370. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5371. const uint8_t * restrict q2 = x[i].qs;
  5372. const int8_t * restrict q8 = y[i].qs;
  5373. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5374. aux32[0] = sc[0] & 0x0f0f0f0f;
  5375. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  5376. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  5377. int isum1 = 0;
  5378. int isum2 = 0;
  5379. size_t vl = 16;
  5380. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5381. // load Q2
  5382. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  5383. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  5384. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  5385. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  5386. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  5387. // load Q8, and take product with Q2
  5388. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5389. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5390. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5391. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5392. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  5393. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  5394. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  5395. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  5396. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  5397. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  5398. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  5399. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  5400. sumf += d * (isum1 + isum2);
  5401. }
  5402. *s = sumf;
  5403. #elif defined(__POWER9_VECTOR__)
  5404. const vector signed char lowMask = vec_splats((signed char)0x3);
  5405. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  5406. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5407. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5408. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5409. vector float vsumf0 = vec_splats(0.0f);
  5410. vector float vsumf1 = vec_splats(0.0f);
  5411. vector float vsumf2 = vec_splats(0.0f);
  5412. vector float vsumf3 = vec_splats(0.0f);
  5413. #pragma GCC unroll 2
  5414. for (int i = 0; i < nb; ++i) {
  5415. __builtin_prefetch(x[i].qs, 0, 1);
  5416. __builtin_prefetch(y[i].qs, 0, 1);
  5417. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5418. vector float vyd = vec_splats(y[i].d);
  5419. vector float vd = vec_mul(vxd, vyd);
  5420. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5421. vector float vdmin = vec_mul(vxmin, vyd);
  5422. vector signed short q8ysums0 = vec_xl_len(y[i].bsums, 8);
  5423. vector signed char q2xmins = (vector signed char)vec_xl_len(x[i].scales, 4);
  5424. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  5425. q2xmins = vec_sr(q2xmins, v4);
  5426. vector signed short q2xmins0 = vec_unpackh((vector signed char)q2xmins);
  5427. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  5428. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  5429. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5430. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5431. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  5432. vector signed char q2x00 = vec_and(qxs0, lowMask);
  5433. vector signed char q2x01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5434. vector signed char q2x02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5435. vector signed char q2x03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5436. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  5437. vector signed char q8y01 = vec_xl( 16, y[i].qs);
  5438. vector signed char q8y02 = vec_xl( 32, y[i].qs);
  5439. vector signed char q8y03 = vec_xl( 48, y[i].qs);
  5440. vector signed short qv0 = vec_add(vec_mule(q2x00, q8y00), vec_mulo(q2x00, q8y00));
  5441. vector signed short qv1 = vec_add(vec_mule(q2x01, q8y01), vec_mulo(q2x01, q8y01));
  5442. vector signed short qv2 = vec_add(vec_mule(q2x02, q8y02), vec_mulo(q2x02, q8y02));
  5443. vector signed short qv3 = vec_add(vec_mule(q2x03, q8y03), vec_mulo(q2x03, q8y03));
  5444. vector signed short vscales_h = vec_unpackh(vscales);
  5445. vector signed short vs0 = vec_splat(vscales_h, 0);
  5446. vector signed short vs1 = vec_splat(vscales_h, 1);
  5447. vector signed short vs2 = vec_splat(vscales_h, 2);
  5448. vector signed short vs3 = vec_splat(vscales_h, 3);
  5449. vector signed int vsumi0 = vec_add(vec_mule(qv0, vs0), vec_mulo(qv0, vs0));
  5450. vector signed int vsumi1 = vec_add(vec_mule(qv1, vs1), vec_mulo(qv1, vs1));
  5451. vector signed int vsumi2 = vec_add(vec_mule(qv2, vs2), vec_mulo(qv2, vs2));
  5452. vector signed int vsumi3 = vec_add(vec_mule(qv3, vs3), vec_mulo(qv3, vs3));
  5453. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5454. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5455. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5456. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5457. }
  5458. vsumf0 = vec_add(vsumf0, vsumf2);
  5459. vsumf1 = vec_add(vsumf1, vsumf3);
  5460. vsumf0 = vec_add(vsumf0, vsumf1);
  5461. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5462. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5463. *s = vec_extract(vsumf0, 0);
  5464. #elif defined __loongarch_asx
  5465. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5466. __m256 acc = (__m256)__lasx_xvldi(0);
  5467. uint32_t ud, um;
  5468. const uint8_t * restrict db = (const uint8_t *)&ud;
  5469. const uint8_t * restrict mb = (const uint8_t *)&um;
  5470. float summs = 0;
  5471. // TODO: optimize this
  5472. for (int i = 0; i < nb; ++i) {
  5473. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5474. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5475. const uint8_t * restrict q2 = x[i].qs;
  5476. const int8_t * restrict q8 = y[i].qs;
  5477. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5478. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  5479. um = (sc[0] >> 4) & 0x0f0f0f0f;
  5480. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  5481. summs += dmin * smin;
  5482. const __m128i q2bits = __lsx_vld((const __m128i*)q2, 0);
  5483. const __m256i q2_0 = __lasx_xvand_v(lasx_insertf128(__lsx_vsrli_h(q2bits, 2), q2bits), m3);
  5484. const __m256i q2_1 = __lasx_xvand_v(lasx_insertf128(__lsx_vsrli_h(q2bits, 6), __lsx_vsrli_h(q2bits, 4)), m3);
  5485. const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0);
  5486. const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0);
  5487. const __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  5488. const __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  5489. const __m256i p_0 = lasx_ext16_32(lasx_extracti128(p0, 0));
  5490. const __m256i p_1 = lasx_ext16_32(lasx_extracti128(p0, 1));
  5491. const __m256i p_2 = lasx_ext16_32(lasx_extracti128(p1, 0));
  5492. const __m256i p_3 = lasx_ext16_32(lasx_extracti128(p1, 1));
  5493. ft_union t0, t1, t2, t3;
  5494. t0.f = d * db[0];
  5495. t1.f = d * db[1];
  5496. t2.f = d * db[2];
  5497. t3.f = d * db[3];
  5498. acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t0.i), __lasx_xvffint_s_w(p_0), acc);
  5499. acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t1.i), __lasx_xvffint_s_w(p_1), acc);
  5500. acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t2.i), __lasx_xvffint_s_w(p_2), acc);
  5501. acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t3.i), __lasx_xvffint_s_w(p_3), acc);
  5502. }
  5503. *s = hsum_float_8(acc) + summs;
  5504. #else
  5505. float sumf = 0;
  5506. int isum[QK_K/16];
  5507. for (int i = 0; i < nb; ++i) {
  5508. const uint8_t * q2 = x[i].qs;
  5509. const int8_t * q8 = y[i].qs;
  5510. const uint8_t * sc = x[i].scales;
  5511. int summs = 0;
  5512. for (int j = 0; j < QK_K/16; ++j) {
  5513. summs += y[i].bsums[j] * (sc[j] >> 4);
  5514. }
  5515. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5516. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5517. memset(isum, 0, (QK_K/16)*sizeof(int));
  5518. for (int l = 0; l < 16; ++l) {
  5519. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  5520. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  5521. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  5522. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  5523. }
  5524. for (int l = 0; l < QK_K/16; ++l) {
  5525. isum[l] *= (sc[l] & 0xF);
  5526. }
  5527. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  5528. }
  5529. *s = sumf;
  5530. #endif
  5531. }
  5532. #endif
  5533. #if QK_K == 256
  5534. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5535. assert(n % QK_K == 0);
  5536. assert(nrc == 1);
  5537. UNUSED(nrc);
  5538. UNUSED(bx);
  5539. UNUSED(by);
  5540. UNUSED(bs);
  5541. const uint32_t kmask1 = 0x03030303;
  5542. const uint32_t kmask2 = 0x0f0f0f0f;
  5543. const block_q3_K * restrict x = vx;
  5544. const block_q8_K * restrict y = vy;
  5545. const int nb = n / QK_K;
  5546. #ifdef __ARM_NEON
  5547. uint32_t aux[3];
  5548. uint32_t utmp[4];
  5549. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5550. const int32x4_t vzero = vdupq_n_s32(0);
  5551. const uint8x16_t m0 = vdupq_n_u8(1);
  5552. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5553. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5554. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5555. const int8_t m32 = 32;
  5556. ggml_int8x16x4_t q3bytes;
  5557. float sum = 0;
  5558. for (int i = 0; i < nb; ++i) {
  5559. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5560. const uint8_t * restrict q3 = x[i].qs;
  5561. const uint8_t * restrict qh = x[i].hmask;
  5562. const int8_t * restrict q8 = y[i].qs;
  5563. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5564. ggml_uint8x16x4_t q3h;
  5565. int32_t isum = 0;
  5566. // Set up scales
  5567. memcpy(aux, x[i].scales, 12);
  5568. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5569. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5570. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5571. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5572. int8_t * scale = (int8_t *)utmp;
  5573. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5574. for (int j = 0; j < QK_K/128; ++j) {
  5575. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5576. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5577. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5578. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5579. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5580. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5581. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5582. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5583. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5584. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5585. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5586. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5587. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5588. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5589. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5590. scale += 4;
  5591. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5592. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5593. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5594. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5595. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5596. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5597. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5598. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5599. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5600. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5601. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5602. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5603. scale += 4;
  5604. if (j == 0) {
  5605. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5606. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5607. }
  5608. }
  5609. sum += d * isum;
  5610. }
  5611. *s = sum;
  5612. #elif defined __AVX2__
  5613. const __m256i m3 = _mm256_set1_epi8(3);
  5614. const __m256i mone = _mm256_set1_epi8(1);
  5615. const __m128i m32 = _mm_set1_epi8(32);
  5616. __m256 acc = _mm256_setzero_ps();
  5617. uint32_t aux[3];
  5618. for (int i = 0; i < nb; ++i) {
  5619. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5620. const uint8_t * restrict q3 = x[i].qs;
  5621. const int8_t * restrict q8 = y[i].qs;
  5622. // Set up scales
  5623. memcpy(aux, x[i].scales, 12);
  5624. __m128i scales128 = _mm_set_epi32(
  5625. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5626. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5627. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5628. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5629. scales128 = _mm_sub_epi8(scales128, m32);
  5630. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5631. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5632. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5633. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5634. // high bit
  5635. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5636. // integer accumulator
  5637. __m256i sumi = _mm256_setzero_si256();
  5638. int bit = 0;
  5639. int is = 0;
  5640. for (int j = 0; j < QK_K/128; ++j) {
  5641. // load low 2 bits
  5642. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5643. // prepare low and high bits
  5644. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5645. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5646. ++bit;
  5647. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5648. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5649. ++bit;
  5650. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5651. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5652. ++bit;
  5653. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5654. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5655. ++bit;
  5656. // load Q8 quants
  5657. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5658. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5659. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5660. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5661. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5662. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5663. // and 2 if the high bit was set)
  5664. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5665. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5666. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5667. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5668. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5669. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5670. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5671. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5672. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5673. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5674. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5675. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5676. // multiply with scales
  5677. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5678. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5679. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5680. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5681. // accumulate
  5682. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5683. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5684. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5685. }
  5686. // multiply with block scale and accumulate
  5687. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5688. }
  5689. *s = hsum_float_8(acc);
  5690. #elif defined __AVX__
  5691. const __m128i m3 = _mm_set1_epi8(3);
  5692. const __m128i mone = _mm_set1_epi8(1);
  5693. const __m128i m32 = _mm_set1_epi8(32);
  5694. const __m128i m2 = _mm_set1_epi8(2);
  5695. __m256 acc = _mm256_setzero_ps();
  5696. const uint32_t *aux;
  5697. for (int i = 0; i < nb; ++i) {
  5698. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5699. const uint8_t * restrict q3 = x[i].qs;
  5700. const int8_t * restrict q8 = y[i].qs;
  5701. // Set up scales
  5702. aux = (const uint32_t *)x[i].scales;
  5703. __m128i scales128 = _mm_set_epi32(
  5704. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5705. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5706. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5707. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5708. scales128 = _mm_sub_epi8(scales128, m32);
  5709. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5710. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5711. const __m128i scales[2] = { scales_0, scales_1 };
  5712. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5713. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5714. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5715. // integer accumulator
  5716. __m128i sumi_0 = _mm_setzero_si128();
  5717. __m128i sumi_1 = _mm_setzero_si128();
  5718. for (int j = 0; j < QK_K/128; ++j) {
  5719. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5720. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5721. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5722. // prepare low and high bits
  5723. const int bit = j << 2;
  5724. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5725. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5726. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5727. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5728. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5729. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5730. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5731. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5732. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5733. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5734. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5735. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5736. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5737. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5738. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5739. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5740. // load Q8 quants from block_q8_K.qs[QK_K]
  5741. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5742. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5743. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5744. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5745. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5746. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5747. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5748. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5749. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5750. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5751. // and 2 if the high bit was set)
  5752. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5753. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5754. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5755. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5756. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5757. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5758. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5759. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5760. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5761. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5762. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5763. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5764. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5765. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5766. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5767. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5768. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5769. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5770. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5771. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5772. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5773. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5774. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5775. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5776. // multiply with scales
  5777. __m128i shuffle = _mm_set1_epi16(0x0100);
  5778. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5779. shuffle = _mm_add_epi16(shuffle, m2);
  5780. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5781. shuffle = _mm_add_epi16(shuffle, m2);
  5782. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5783. shuffle = _mm_add_epi16(shuffle, m2);
  5784. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5785. shuffle = _mm_add_epi16(shuffle, m2);
  5786. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5787. shuffle = _mm_add_epi16(shuffle, m2);
  5788. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5789. shuffle = _mm_add_epi16(shuffle, m2);
  5790. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5791. shuffle = _mm_add_epi16(shuffle, m2);
  5792. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5793. // accumulate
  5794. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5795. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5796. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5797. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5798. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5799. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5800. }
  5801. // multiply with block scale and accumulate
  5802. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5803. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5804. }
  5805. *s = hsum_float_8(acc);
  5806. #elif defined __riscv_v_intrinsic
  5807. uint32_t aux[3];
  5808. uint32_t utmp[4];
  5809. float sumf = 0;
  5810. for (int i = 0; i < nb; ++i) {
  5811. const uint8_t * restrict q3 = x[i].qs;
  5812. const uint8_t * restrict qh = x[i].hmask;
  5813. const int8_t * restrict q8 = y[i].qs;
  5814. memcpy(aux, x[i].scales, 12);
  5815. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5816. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5817. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5818. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5819. int8_t * scale = (int8_t *)utmp;
  5820. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5821. size_t vl = 32;
  5822. uint8_t m = 1;
  5823. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5824. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5825. int sum_t = 0;
  5826. for (int j = 0; j < QK_K; j += 128) {
  5827. vl = 32;
  5828. // load Q3
  5829. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5830. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5831. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5832. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5833. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5834. // compute mask for subtraction
  5835. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5836. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5837. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5838. m <<= 1;
  5839. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5840. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5841. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5842. m <<= 1;
  5843. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5844. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5845. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5846. m <<= 1;
  5847. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5848. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5849. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5850. m <<= 1;
  5851. // load Q8 and take product with Q3
  5852. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5853. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5854. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5855. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5856. vl = 16;
  5857. // retrieve lane to multiply with scale
  5858. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5859. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5860. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5861. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5862. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5863. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5864. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5865. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5866. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5867. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5868. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5869. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5870. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5871. q3 += 32; q8 += 128; scale += 8;
  5872. }
  5873. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5874. sumf += d*sum_t;
  5875. }
  5876. *s = sumf;
  5877. #elif defined(__POWER9_VECTOR__)
  5878. const vector signed char lowMask = vec_splats((signed char)0x3);
  5879. const vector signed char v1 = vec_splats((signed char)0x1);
  5880. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5881. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5882. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5883. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5884. const vector signed char off = vec_splats((signed char)0x20);
  5885. vector float vsumf0 = vec_splats(0.0f);
  5886. vector float vsumf1 = vec_splats(0.0f);
  5887. vector float vsumf2 = vec_splats(0.0f);
  5888. vector float vsumf3 = vec_splats(0.0f);
  5889. for (int i = 0; i < nb; ++i) {
  5890. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5891. vector float vyd = vec_splats(y[i].d);
  5892. vector float vd = vec_mul(vxd, vyd);
  5893. uint32_t aux[3];
  5894. uint32_t utmp[4];
  5895. memcpy(aux, x[i].scales, 12);
  5896. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5897. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5898. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5899. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5900. vector signed char vscales = (vector signed char)vec_xl( 0, utmp);
  5901. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  5902. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  5903. vscales = vec_sub(vscales, off);
  5904. vector signed int vsumi0 = vec_splats((int32_t)0);
  5905. vector signed int vsumi1 = vec_splats((int32_t)0);
  5906. vector signed int vsumi2 = vec_splats((int32_t)0);
  5907. vector signed int vsumi3 = vec_splats((int32_t)0);
  5908. vector signed int vsumi4 = vec_splats((int32_t)0);
  5909. vector signed int vsumi5 = vec_splats((int32_t)0);
  5910. vector signed int vsumi6 = vec_splats((int32_t)0);
  5911. vector signed int vsumi7 = vec_splats((int32_t)0);
  5912. const uint8_t * restrict q3 = x[i].qs;
  5913. const int8_t * restrict q8 = y[i].qs;
  5914. for (int j = 0; j < QK_K/128; ++j) {
  5915. __builtin_prefetch(q3, 0, 1);
  5916. __builtin_prefetch(q8, 0, 1);
  5917. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  5918. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  5919. q3 += 32;
  5920. //the low 2 bits
  5921. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5922. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5923. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5924. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5925. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5926. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5927. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5928. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5929. //the 3rd bit
  5930. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5931. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  5932. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5933. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  5934. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  5935. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  5936. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  5937. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  5938. qxhs0 = vec_sr(qxhs0, v4);
  5939. qxhs1 = vec_sr(qxhs1, v4);
  5940. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5941. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5942. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  5943. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  5944. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  5945. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  5946. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  5947. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  5948. vector signed char q8y00 = vec_xl( 0, q8);
  5949. vector signed char q8y10 = vec_xl( 16, q8);
  5950. vector signed char q8y01 = vec_xl( 32, q8);
  5951. vector signed char q8y11 = vec_xl( 48, q8);
  5952. vector signed char q8y02 = vec_xl( 64, q8);
  5953. vector signed char q8y12 = vec_xl( 80, q8);
  5954. vector signed char q8y03 = vec_xl( 96, q8);
  5955. vector signed char q8y13 = vec_xl(112, q8);
  5956. q8 += 128;
  5957. vector signed short vscales_h = vec_unpackh(vscales);
  5958. vector signed short vs0 = vec_splat(vscales_h, 0);
  5959. vector signed short vs1 = vec_splat(vscales_h, 1);
  5960. vector signed short vs2 = vec_splat(vscales_h, 2);
  5961. vector signed short vs3 = vec_splat(vscales_h, 3);
  5962. vector signed short vs4 = vec_splat(vscales_h, 4);
  5963. vector signed short vs5 = vec_splat(vscales_h, 5);
  5964. vector signed short vs6 = vec_splat(vscales_h, 6);
  5965. vector signed short vs7 = vec_splat(vscales_h, 7);
  5966. vscales = vec_sld(vscales, vscales, 8);
  5967. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5968. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5969. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  5970. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  5971. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5972. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5973. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  5974. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  5975. vector signed int vsum0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  5976. vector signed int vsum1 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  5977. vector signed int vsum2 = vec_add(vec_mule(qv02, vs4), vec_mulo(qv02, vs4));
  5978. vector signed int vsum3 = vec_add(vec_mule(qv03, vs6), vec_mulo(qv03, vs6));
  5979. vector signed int vsum4 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  5980. vector signed int vsum5 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  5981. vector signed int vsum6 = vec_add(vec_mule(qv12, vs5), vec_mulo(qv12, vs5));
  5982. vector signed int vsum7 = vec_add(vec_mule(qv13, vs7), vec_mulo(qv13, vs7));
  5983. vsumi0 = vec_add(vsum0, vsumi0);
  5984. vsumi1 = vec_add(vsum1, vsumi1);
  5985. vsumi2 = vec_add(vsum2, vsumi2);
  5986. vsumi3 = vec_add(vsum3, vsumi3);
  5987. vsumi4 = vec_add(vsum4, vsumi4);
  5988. vsumi5 = vec_add(vsum5, vsumi5);
  5989. vsumi6 = vec_add(vsum6, vsumi6);
  5990. vsumi7 = vec_add(vsum7, vsumi7);
  5991. }
  5992. vsumi0 = vec_add(vsumi0, vsumi4);
  5993. vsumi1 = vec_add(vsumi1, vsumi5);
  5994. vsumi2 = vec_add(vsumi2, vsumi6);
  5995. vsumi3 = vec_add(vsumi3, vsumi7);
  5996. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5997. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5998. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5999. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6000. }
  6001. vsumf0 = vec_add(vsumf0, vsumf2);
  6002. vsumf1 = vec_add(vsumf1, vsumf3);
  6003. vsumf0 = vec_add(vsumf0, vsumf1);
  6004. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6005. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6006. *s = vec_extract(vsumf0, 0);
  6007. #elif defined __loongarch_asx
  6008. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  6009. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6010. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  6011. __m256 acc = (__m256)__lasx_xvldi(0);
  6012. uint32_t aux[3];
  6013. for (int i = 0; i < nb; ++i) {
  6014. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6015. // Set up scales
  6016. memcpy(aux, x[i].scales, 12);
  6017. __m128i scales128 = lsx_set_w(
  6018. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  6019. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  6020. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  6021. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  6022. scales128 = __lsx_vsub_b(scales128, m32);
  6023. const __m256i all_scales = lasx_ext8_16(scales128);
  6024. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  6025. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  6026. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  6027. // high bit
  6028. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  6029. // integer accumulator
  6030. __m256i sumi = __lasx_xvldi(0);
  6031. int bit = 0;
  6032. int is = 0;
  6033. const uint8_t * restrict q3 = x[i].qs;
  6034. const int8_t * restrict q8 = y[i].qs;
  6035. for (int j = 0; j < QK_K/128; ++j) {
  6036. // load low 2 bits
  6037. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  6038. // prepare low and high bits
  6039. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  6040. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
  6041. ++bit;
  6042. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  6043. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
  6044. ++bit;
  6045. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  6046. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
  6047. ++bit;
  6048. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  6049. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
  6050. ++bit;
  6051. // load Q8 quants
  6052. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6053. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6054. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6055. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6056. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  6057. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  6058. // and 2 if the high bit was set)
  6059. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  6060. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  6061. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  6062. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  6063. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  6064. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  6065. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  6066. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  6067. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6068. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6069. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6070. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6071. // multiply with scales
  6072. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  6073. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  6074. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  6075. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  6076. // accumulate
  6077. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  6078. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  6079. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  6080. }
  6081. // multiply with block scale and accumulate
  6082. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  6083. }
  6084. *s = hsum_float_8(acc);
  6085. #else
  6086. // scalar version
  6087. // This function is written like this so the compiler can manage to vectorize most of it
  6088. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  6089. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  6090. // The ideal situation would be if we could just write the code once, and the compiler would
  6091. // automatically produce the best possible set of machine instructions, instead of us having to manually
  6092. // write vectorized versions for AVX, ARM_NEON, etc.
  6093. int8_t aux8[QK_K];
  6094. int16_t aux16[8];
  6095. float sums [8];
  6096. int32_t aux32[8];
  6097. memset(sums, 0, 8*sizeof(float));
  6098. uint32_t auxs[4];
  6099. const int8_t * scales = (const int8_t*)auxs;
  6100. float sumf = 0;
  6101. for (int i = 0; i < nb; ++i) {
  6102. const uint8_t * restrict q3 = x[i].qs;
  6103. const uint8_t * restrict hm = x[i].hmask;
  6104. const int8_t * restrict q8 = y[i].qs;
  6105. memset(aux32, 0, 8*sizeof(int32_t));
  6106. int8_t * restrict a = aux8;
  6107. uint8_t m = 1;
  6108. for (int j = 0; j < QK_K; j += 128) {
  6109. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  6110. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6111. a += 32; m <<= 1;
  6112. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  6113. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6114. a += 32; m <<= 1;
  6115. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  6116. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6117. a += 32; m <<= 1;
  6118. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  6119. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6120. a += 32; m <<= 1;
  6121. q3 += 32;
  6122. }
  6123. a = aux8;
  6124. memcpy(auxs, x[i].scales, 12);
  6125. uint32_t tmp = auxs[2];
  6126. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  6127. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  6128. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  6129. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  6130. for (int j = 0; j < QK_K/16; ++j) {
  6131. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6132. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  6133. q8 += 8; a += 8;
  6134. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6135. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  6136. q8 += 8; a += 8;
  6137. }
  6138. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6139. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6140. }
  6141. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6142. *s = sumf;
  6143. #endif
  6144. }
  6145. #else
  6146. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6147. assert(n % QK_K == 0);
  6148. assert(nrc == 1);
  6149. UNUSED(nrc);
  6150. UNUSED(bx);
  6151. UNUSED(by);
  6152. UNUSED(bs);
  6153. const block_q3_K * restrict x = vx;
  6154. const block_q8_K * restrict y = vy;
  6155. const int nb = n / QK_K;
  6156. #ifdef __ARM_NEON
  6157. const int32x4_t vzero = vdupq_n_s32(0);
  6158. const uint8x16_t m3b = vdupq_n_u8(0x3);
  6159. const uint8x16_t mh = vdupq_n_u8(4);
  6160. ggml_int8x16x4_t q3bytes;
  6161. uint16_t aux16[2];
  6162. int8_t * scales = (int8_t *)aux16;
  6163. float sum = 0;
  6164. for (int i = 0; i < nb; ++i) {
  6165. ggml_uint8x16x4_t q3h;
  6166. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  6167. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  6168. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  6169. const uint16_t a = *(const uint16_t *)x[i].scales;
  6170. aux16[0] = a & 0x0f0f;
  6171. aux16[1] = (a >> 4) & 0x0f0f;
  6172. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  6173. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  6174. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6175. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  6176. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  6177. q3h.val[1] = vandq_u8(mh, htmp);
  6178. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  6179. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  6180. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  6181. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  6182. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  6183. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  6184. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  6185. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  6186. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  6187. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  6188. sum += d * isum;
  6189. }
  6190. *s = sum;
  6191. #elif defined __AVX2__
  6192. const __m256i m3 = _mm256_set1_epi8(3);
  6193. const __m256i m1 = _mm256_set1_epi8(1);
  6194. __m256 acc = _mm256_setzero_ps();
  6195. uint64_t aux64;
  6196. uint16_t aux16[2];
  6197. const int8_t * aux8 = (const int8_t *)aux16;
  6198. for (int i = 0; i < nb; ++i) {
  6199. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6200. const uint8_t * restrict q3 = x[i].qs;
  6201. const int8_t * restrict q8 = y[i].qs;
  6202. const uint16_t a = *(const uint16_t *)x[i].scales;
  6203. aux16[0] = a & 0x0f0f;
  6204. aux16[1] = (a >> 4) & 0x0f0f;
  6205. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  6206. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  6207. memcpy(&aux64, x[i].hmask, 8);
  6208. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  6209. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  6210. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  6211. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  6212. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  6213. // load low 2 bits
  6214. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  6215. // prepare low and high bits
  6216. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  6217. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  6218. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  6219. // load Q8 quants
  6220. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6221. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6222. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  6223. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  6224. // and 2 if the high bit was set)
  6225. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  6226. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  6227. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  6228. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  6229. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6230. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6231. // multiply with scales
  6232. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6233. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6234. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  6235. // multiply with block scale and accumulate
  6236. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  6237. }
  6238. *s = hsum_float_8(acc);
  6239. #elif defined __AVX__
  6240. const __m128i m3 = _mm_set1_epi8(3);
  6241. const __m128i m1 = _mm_set1_epi8(1);
  6242. __m256 acc = _mm256_setzero_ps();
  6243. uint64_t aux64;
  6244. uint16_t aux16[2];
  6245. const int8_t * aux8 = (const int8_t *)aux16;
  6246. for (int i = 0; i < nb; ++i) {
  6247. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6248. const uint8_t * restrict q3 = x[i].qs;
  6249. const int8_t * restrict q8 = y[i].qs;
  6250. const uint16_t a = *(const uint16_t *)x[i].scales;
  6251. aux16[0] = a & 0x0f0f;
  6252. aux16[1] = (a >> 4) & 0x0f0f;
  6253. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  6254. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  6255. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  6256. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  6257. memcpy(&aux64, x[i].hmask, 8);
  6258. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  6259. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  6260. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  6261. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  6262. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  6263. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  6264. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  6265. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  6266. // load low 2 bits
  6267. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  6268. // prepare low and high bits
  6269. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  6270. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  6271. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  6272. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  6273. // load Q8 quants
  6274. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6275. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6276. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  6277. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  6278. // and 2 if the high bit was set)
  6279. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  6280. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  6281. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  6282. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  6283. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  6284. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  6285. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  6286. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  6287. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6288. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6289. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6290. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6291. // multiply with scales
  6292. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6293. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  6294. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  6295. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  6296. p16_0 = _mm_add_epi32(p16_0, p16_2);
  6297. p16_1 = _mm_add_epi32(p16_1, p16_3);
  6298. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  6299. // multiply with block scale and accumulate
  6300. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  6301. }
  6302. *s = hsum_float_8(acc);
  6303. #elif defined __riscv_v_intrinsic
  6304. uint16_t aux16[2];
  6305. int8_t * scales = (int8_t *)aux16;
  6306. float sumf = 0;
  6307. for (int i = 0; i < nb; ++i) {
  6308. const uint8_t * restrict q3 = x[i].qs;
  6309. const int8_t * restrict q8 = y[i].qs;
  6310. const uint16_t a = *(const uint16_t *)x[i].scales;
  6311. aux16[0] = a & 0x0f0f;
  6312. aux16[1] = (a >> 4) & 0x0f0f;
  6313. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  6314. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  6315. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6316. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6317. // load qh
  6318. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  6319. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6320. size_t vl = 16;
  6321. // extend and combine both qh_x1 and qh_x2
  6322. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6323. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  6324. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  6325. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  6326. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  6327. // load Q3
  6328. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  6329. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  6330. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  6331. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  6332. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  6333. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  6334. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  6335. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  6336. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  6337. // load Q8 and take product with Q3
  6338. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6339. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6340. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6341. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6342. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6343. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6344. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6345. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6346. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  6347. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  6348. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  6349. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  6350. sumf += d * isum;
  6351. }
  6352. *s = sumf;
  6353. #elif defined(__POWER9_VECTOR__)
  6354. const vector signed char lowMask = vec_splats((signed char)0x3);
  6355. const vector signed char v1 = vec_splats((signed char)0x1);
  6356. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6357. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6358. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6359. const vector signed char off = vec_splats((signed char)0x8);
  6360. vector float vsumf0 = vec_splats(0.0f);
  6361. vector float vsumf1 = vec_splats(0.0f);
  6362. vector float vsumf2 = vec_splats(0.0f);
  6363. vector float vsumf3 = vec_splats(0.0f);
  6364. #pragma GCC unroll 2
  6365. for (int i = 0; i < nb; ++i) {
  6366. __builtin_prefetch(x[i].qs, 0, 1);
  6367. __builtin_prefetch(y[i].qs, 0, 1);
  6368. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6369. vector float vyd = vec_splats(y[i].d);
  6370. vector float vd = vec_mul(vxd, vyd);
  6371. uint16_t aux16[2];
  6372. int8_t * scales = (int8_t *)aux16;
  6373. const uint16_t a = *(const uint16_t *)x[i].scales;
  6374. aux16[0] = a & 0x0f0f;
  6375. aux16[1] = (a >> 4) & 0x0f0f;
  6376. vector signed char vscales = (vector signed char)vec_xl_len(scales, 8);
  6377. vector signed char qxhs0 = (vector signed char)vec_xl_len(x[i].hmask, 8);
  6378. qxhs0 = vec_or(qxhs0, vec_sr(vec_sld(qxhs0, qxhs0, 8), (vector unsigned char)v1));
  6379. vscales = vec_sub(vscales, off);
  6380. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  6381. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6382. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  6383. vector signed char qxs10 = vec_and(vec_sr(qxs0, v4), lowMask);
  6384. vector signed char qxs11 = vec_and(vec_sr(qxs0, v6), lowMask);
  6385. //the 3rd bit
  6386. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  6387. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  6388. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v4)), v2);
  6389. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v6)), v2);
  6390. qxhs0 = vec_sr(qxhs0, v4);
  6391. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  6392. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  6393. vector signed char q3x10 = vec_sub(qxs10, qxh02);
  6394. vector signed char q3x11 = vec_sub(qxs11, qxh03);
  6395. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  6396. vector signed char q8y01 = vec_xl( 16, y[i].qs);
  6397. vector signed char q8y10 = vec_xl( 32, y[i].qs);
  6398. vector signed char q8y11 = vec_xl( 48, y[i].qs);
  6399. vector signed short vscales_h = vec_unpackh(vscales);
  6400. vector signed short vs0 = vec_splat(vscales_h, 0);
  6401. vector signed short vs1 = vec_splat(vscales_h, 1);
  6402. vector signed short vs2 = vec_splat(vscales_h, 2);
  6403. vector signed short vs3 = vec_splat(vscales_h, 3);
  6404. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  6405. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  6406. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  6407. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  6408. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  6409. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  6410. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  6411. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  6412. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6413. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6414. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6415. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6416. }
  6417. vsumf0 = vec_add(vsumf0, vsumf2);
  6418. vsumf1 = vec_add(vsumf1, vsumf3);
  6419. vsumf0 = vec_add(vsumf0, vsumf1);
  6420. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6421. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6422. *s = vec_extract(vsumf0, 0);
  6423. #elif defined __loongarch_asx
  6424. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  6425. const __m256i m1 = __lasx_xvreplgr2vr_b(1);
  6426. __m256 acc = (__m256)__lasx_xvldi(0);
  6427. uint64_t aux64;
  6428. uint16_t aux16[2];
  6429. const int8_t * aux8 = (const int8_t *)aux16;
  6430. for (int i = 0; i < nb; ++i) {
  6431. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6432. const uint8_t * restrict q3 = x[i].qs;
  6433. const int8_t * restrict q8 = y[i].qs;
  6434. const __m256i scale_0 = lasx_insertf128(__lasx_xvreplgr2vr_h(aux8[2] - 8), __lasx_xvreplgr2vr_h(aux8[0] - 8));
  6435. const __m256i scale_1 = lasx_insertf128(__lasx_xvreplgr2vr_h(aux8[3] - 8), __lasx_xvreplgr2vr_h(aux8[1] - 8));
  6436. memcpy(&aux64, x[i].hmask, 8);
  6437. __m128i haux = __lsx_vinsgr2vr_d(haux, aux64, 0);
  6438. haux = __lsx_vinsgr2vr_d(haux, aux64 >> 1, 1);
  6439. __m256i q3h_0 = lasx_insertf128(__lsx_vsrli_h(haux, 2), haux);
  6440. __m256i q3h_1 = __lasx_xvsrli_h(q3h_0, 4);
  6441. q3h_0 = __lasx_xvslli_h(__lasx_xvandn_v(q3h_0, m1), 2);
  6442. q3h_1 = __lasx_xvslli_h(__lasx_xvandn_v(q3h_1, m1), 2);
  6443. // load low 2 bits
  6444. const __m128i q3bits = __lsx_vld((const __m128i*)q3, 0);
  6445. // prepare low and high bits
  6446. const __m256i q3aux = lasx_insertf128(__lsx_vsrli_h(q3bits, 2), q3bits);
  6447. const __m256i q3l_0 = __lasx_xvand_v(q3aux, m3);
  6448. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3aux, 4), m3);
  6449. // load Q8 quants
  6450. const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0);
  6451. const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0);
  6452. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  6453. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  6454. // and 2 if the high bit was set)
  6455. const __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  6456. const __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  6457. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  6458. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  6459. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6460. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6461. // multiply with scales
  6462. p16_0 = lasx_madd_h(scale_0, p16_0);
  6463. p16_1 = lasx_madd_h(scale_1, p16_1);
  6464. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  6465. // multiply with block scale and accumulate
  6466. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(p16_0), acc);
  6467. }
  6468. *s = hsum_float_8(acc);
  6469. #else
  6470. int8_t aux8[QK_K];
  6471. int16_t aux16[8];
  6472. float sums [8];
  6473. int32_t aux32[8];
  6474. int32_t scales[4];
  6475. memset(sums, 0, 8*sizeof(float));
  6476. float sumf = 0;
  6477. for (int i = 0; i < nb; ++i) {
  6478. const uint8_t * restrict q3 = x[i].qs;
  6479. const uint8_t * restrict hm = x[i].hmask;
  6480. const int8_t * restrict q8 = y[i].qs;
  6481. int8_t * restrict a = aux8;
  6482. for (int l = 0; l < 8; ++l) {
  6483. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  6484. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  6485. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  6486. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  6487. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  6488. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  6489. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  6490. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  6491. }
  6492. scales[0] = (x[i].scales[0] & 0xF) - 8;
  6493. scales[1] = (x[i].scales[0] >> 4) - 8;
  6494. scales[2] = (x[i].scales[1] & 0xF) - 8;
  6495. scales[3] = (x[i].scales[1] >> 4) - 8;
  6496. memset(aux32, 0, 8*sizeof(int32_t));
  6497. for (int j = 0; j < QK_K/16; ++j) {
  6498. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6499. q8 += 8; a += 8;
  6500. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  6501. q8 += 8; a += 8;
  6502. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  6503. }
  6504. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6505. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6506. }
  6507. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6508. *s = sumf;
  6509. #endif
  6510. }
  6511. #endif
  6512. #if QK_K == 256
  6513. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6514. assert(n % QK_K == 0);
  6515. assert(nrc == 1);
  6516. UNUSED(nrc);
  6517. UNUSED(bx);
  6518. UNUSED(by);
  6519. UNUSED(bs);
  6520. const block_q4_K * restrict x = vx;
  6521. const block_q8_K * restrict y = vy;
  6522. const int nb = n / QK_K;
  6523. static const uint32_t kmask1 = 0x3f3f3f3f;
  6524. static const uint32_t kmask2 = 0x0f0f0f0f;
  6525. static const uint32_t kmask3 = 0x03030303;
  6526. uint32_t utmp[4];
  6527. #ifdef __ARM_NEON
  6528. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6529. const int32x4_t mzero = vdupq_n_s32(0);
  6530. ggml_int8x16x2_t q4bytes;
  6531. ggml_int8x16x2_t q8bytes;
  6532. float sumf = 0;
  6533. for (int i = 0; i < nb; ++i) {
  6534. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6535. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6536. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6537. memcpy(utmp, x[i].scales, 12);
  6538. uint32x2_t mins8 = { 0 };
  6539. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  6540. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  6541. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6542. utmp[0] &= kmask1;
  6543. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  6544. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6545. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6546. sumf -= dmin * vaddvq_s32(prod);
  6547. const uint8_t * scales = (const uint8_t *)utmp;
  6548. const uint8_t * restrict q4 = x[i].qs;
  6549. const int8_t * restrict q8 = y[i].qs;
  6550. int32_t sumi1 = 0;
  6551. int32_t sumi2 = 0;
  6552. for (int j = 0; j < QK_K/64; ++j) {
  6553. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  6554. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  6555. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  6556. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  6557. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6558. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  6559. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  6560. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  6561. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  6562. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6563. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  6564. }
  6565. sumf += d * (sumi1 + sumi2);
  6566. }
  6567. *s = sumf;
  6568. #elif defined __AVX2__
  6569. const __m256i m4 = _mm256_set1_epi8(0xF);
  6570. __m256 acc = _mm256_setzero_ps();
  6571. __m128 acc_m = _mm_setzero_ps();
  6572. for (int i = 0; i < nb; ++i) {
  6573. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6574. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6575. memcpy(utmp, x[i].scales, 12);
  6576. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6577. const uint32_t uaux = utmp[1] & kmask1;
  6578. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6579. utmp[2] = uaux;
  6580. utmp[0] &= kmask1;
  6581. const uint8_t * restrict q4 = x[i].qs;
  6582. const int8_t * restrict q8 = y[i].qs;
  6583. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6584. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6585. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6586. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6587. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  6588. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6589. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6590. __m256i sumi = _mm256_setzero_si256();
  6591. for (int j = 0; j < QK_K/64; ++j) {
  6592. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6593. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6594. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6595. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  6596. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  6597. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6598. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  6599. p16l = _mm256_madd_epi16(scale_l, p16l);
  6600. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6601. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  6602. p16h = _mm256_madd_epi16(scale_h, p16h);
  6603. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  6604. sumi = _mm256_add_epi32(sumi, sumj);
  6605. }
  6606. __m256 vd = _mm256_set1_ps(d);
  6607. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6608. }
  6609. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6610. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6611. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6612. #elif defined __AVX__
  6613. const __m128i m4 = _mm_set1_epi8(0xF);
  6614. const __m128i m2 = _mm_set1_epi8(0x2);
  6615. __m256 acc = _mm256_setzero_ps();
  6616. __m128 acc_m = _mm_setzero_ps();
  6617. for (int i = 0; i < nb; ++i) {
  6618. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6619. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6620. const uint8_t * restrict q4 = x[i].qs;
  6621. const int8_t * restrict q8 = y[i].qs;
  6622. memcpy(utmp, x[i].scales, 12);
  6623. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6624. const uint32_t uaux = utmp[1] & kmask1;
  6625. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6626. utmp[2] = uaux;
  6627. utmp[0] &= kmask1;
  6628. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6629. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6630. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6631. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6632. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6633. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6634. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6635. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  6636. __m128i sumi_0 = _mm_setzero_si128();
  6637. __m128i sumi_1 = _mm_setzero_si128();
  6638. __m128i shuffle = _mm_set1_epi16(0x0100);
  6639. for (int j = 0; j < QK_K/64; ++j) {
  6640. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  6641. shuffle = _mm_add_epi16(shuffle, m2);
  6642. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  6643. shuffle = _mm_add_epi16(shuffle, m2);
  6644. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6645. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  6646. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6647. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6648. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  6649. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6650. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6651. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  6652. p16l = _mm_madd_epi16(scale_l, p16l);
  6653. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  6654. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6655. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  6656. p16l = _mm_madd_epi16(scale_l, p16l);
  6657. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  6658. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6659. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  6660. p16h = _mm_madd_epi16(scale_h, p16h);
  6661. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  6662. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6663. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  6664. p16h = _mm_madd_epi16(scale_h, p16h);
  6665. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  6666. }
  6667. __m256 vd = _mm256_set1_ps(d);
  6668. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6669. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6670. }
  6671. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6672. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6673. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6674. #elif defined __riscv_v_intrinsic
  6675. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6676. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6677. float sumf = 0;
  6678. for (int i = 0; i < nb; ++i) {
  6679. size_t vl = 8;
  6680. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6681. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6682. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6683. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6684. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6685. memcpy(utmp, x[i].scales, 12);
  6686. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6687. const uint32_t uaux = utmp[1] & kmask1;
  6688. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6689. utmp[2] = uaux;
  6690. utmp[0] &= kmask1;
  6691. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6692. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6693. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6694. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6695. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6696. const uint8_t * restrict q4 = x[i].qs;
  6697. const int8_t * restrict q8 = y[i].qs;
  6698. vl = 32;
  6699. int32_t sum_1 = 0;
  6700. int32_t sum_2 = 0;
  6701. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6702. for (int j = 0; j < QK_K/64; ++j) {
  6703. // load Q4
  6704. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6705. // load Q8 and multiply it with lower Q4 nibble
  6706. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  6707. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6708. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  6709. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  6710. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  6711. // load Q8 and multiply it with upper Q4 nibble
  6712. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  6713. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6714. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  6715. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  6716. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  6717. q4 += 32; q8 += 64;
  6718. }
  6719. sumf += d*(sum_1 + sum_2);
  6720. }
  6721. *s = sumf;
  6722. #elif defined(__POWER9_VECTOR__)
  6723. const vector signed char lowMask = vec_splats((signed char)0xF);
  6724. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6725. vector float vsumf0 = vec_splats(0.0f);
  6726. vector float vsumf1 = vec_splats(0.0f);
  6727. vector float vsumf2 = vec_splats(0.0f);
  6728. vector float vsumf3 = vec_splats(0.0f);
  6729. for (int i = 0; i < nb; ++i) {
  6730. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6731. vector float vyd = vec_splats(y[i].d);
  6732. vector float vd = vec_mul(vxd, vyd);
  6733. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6734. vector float vdmin = vec_mul(vxmin, vyd);
  6735. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6736. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6737. memcpy(utmp, x[i].scales, 12);
  6738. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6739. const uint32_t uaux = utmp[1] & kmask1;
  6740. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6741. utmp[2] = uaux;
  6742. utmp[0] &= kmask1;
  6743. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  6744. vector signed short vscales = vec_unpackh(utmps);
  6745. vector signed short q4xmins = vec_unpackl(utmps);
  6746. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  6747. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  6748. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  6749. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  6750. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  6751. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  6752. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6753. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6754. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6755. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6756. vector signed int vsumi0 = vec_splats((int32_t)0);
  6757. vector signed int vsumi1 = vec_splats((int32_t)0);
  6758. vector signed int vsumi2 = vec_splats((int32_t)0);
  6759. vector signed int vsumi3 = vec_splats((int32_t)0);
  6760. vector signed int vsumi4 = vec_splats((int32_t)0);
  6761. vector signed int vsumi5 = vec_splats((int32_t)0);
  6762. vector signed int vsumi6 = vec_splats((int32_t)0);
  6763. vector signed int vsumi7 = vec_splats((int32_t)0);
  6764. const uint8_t * restrict q4 = x[i].qs;
  6765. const int8_t * restrict q8 = y[i].qs;
  6766. for (int j = 0; j < QK_K/64; j+=2) {
  6767. __builtin_prefetch(q4, 0, 1);
  6768. __builtin_prefetch(q8, 0, 1);
  6769. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  6770. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  6771. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  6772. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  6773. q4 += 64;
  6774. vector signed char q4x00 = vec_and(qxs0, lowMask);
  6775. vector signed char q4x01 = vec_sr(qxs0, v4);
  6776. vector signed char q4x10 = vec_and(qxs1, lowMask);
  6777. vector signed char q4x11 = vec_sr(qxs1, v4);
  6778. vector signed char q4x20 = vec_and(qxs2, lowMask);
  6779. vector signed char q4x21 = vec_sr(qxs2, v4);
  6780. vector signed char q4x30 = vec_and(qxs3, lowMask);
  6781. vector signed char q4x31 = vec_sr(qxs3, v4);
  6782. vector signed char q8y00 = vec_xl( 0, q8);
  6783. vector signed char q8y10 = vec_xl( 16, q8);
  6784. vector signed char q8y01 = vec_xl( 32, q8);
  6785. vector signed char q8y11 = vec_xl( 48, q8);
  6786. vector signed char q8y20 = vec_xl( 64, q8);
  6787. vector signed char q8y30 = vec_xl( 80, q8);
  6788. vector signed char q8y21 = vec_xl( 96, q8);
  6789. vector signed char q8y31 = vec_xl(112, q8);
  6790. q8 += 128;
  6791. vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00));
  6792. vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01));
  6793. vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10));
  6794. vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11));
  6795. vector signed short qv20 = vec_add(vec_mule(q4x20, q8y20), vec_mulo(q4x20, q8y20));
  6796. vector signed short qv21 = vec_add(vec_mule(q4x21, q8y21), vec_mulo(q4x21, q8y21));
  6797. vector signed short qv30 = vec_add(vec_mule(q4x30, q8y30), vec_mulo(q4x30, q8y30));
  6798. vector signed short qv31 = vec_add(vec_mule(q4x31, q8y31), vec_mulo(q4x31, q8y31));
  6799. vector signed short vs0 = vec_splat(vscales, 0);
  6800. vector signed short vs1 = vec_splat(vscales, 1);
  6801. vector signed short vs2 = vec_splat(vscales, 2);
  6802. vector signed short vs3 = vec_splat(vscales, 3);
  6803. vscales = vec_sld(vscales, vscales, 8);
  6804. qv00 = vec_add(qv00, qv10);
  6805. qv10 = vec_add(qv01, qv11);
  6806. qv20 = vec_add(qv20, qv30);
  6807. qv30 = vec_add(qv21, qv31);
  6808. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  6809. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  6810. vsumi2 = vec_add(vec_mule(qv10, vs1), vsumi2);
  6811. vsumi3 = vec_add(vec_mulo(qv10, vs1), vsumi3);
  6812. vsumi4 = vec_add(vec_mule(qv20, vs2), vsumi4);
  6813. vsumi5 = vec_add(vec_mulo(qv20, vs2), vsumi5);
  6814. vsumi6 = vec_add(vec_mule(qv30, vs3), vsumi6);
  6815. vsumi7 = vec_add(vec_mulo(qv30, vs3), vsumi7);
  6816. }
  6817. vsumi0 = vec_add(vsumi0, vsumi4);
  6818. vsumi1 = vec_add(vsumi1, vsumi5);
  6819. vsumi2 = vec_add(vsumi2, vsumi6);
  6820. vsumi3 = vec_add(vsumi3, vsumi7);
  6821. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6822. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6823. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6824. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6825. }
  6826. vsumf0 = vec_add(vsumf0, vsumf2);
  6827. vsumf1 = vec_add(vsumf1, vsumf3);
  6828. vsumf0 = vec_add(vsumf0, vsumf1);
  6829. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6830. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6831. *s = vec_extract(vsumf0, 0);
  6832. #elif defined __loongarch_asx
  6833. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6834. __m256 acc = (__m256)__lasx_xvldi(0);
  6835. __m128 acc_m = (__m128)__lsx_vldi(0);
  6836. for (int i = 0; i < nb; ++i) {
  6837. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6838. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6839. memcpy(utmp, x[i].scales, 12);
  6840. const uint8_t * restrict q4 = x[i].qs;
  6841. const int8_t * restrict q8 = y[i].qs;
  6842. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6843. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6844. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6845. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6846. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  6847. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6848. const __m256i scales = lasx_insertf128(sc128, sc128);
  6849. __m256i sumi = __lasx_xvldi(0);
  6850. for (int j = 0; j < QK_K/64; ++j) {
  6851. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6852. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6853. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6854. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  6855. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  6856. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6857. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  6858. p16l = lasx_madd_h(scale_l, p16l);
  6859. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6860. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  6861. p16h = lasx_madd_h(scale_h, p16h);
  6862. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  6863. sumi = __lasx_xvadd_w(sumi, sumj);
  6864. }
  6865. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6866. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6867. }
  6868. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  6869. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  6870. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  6871. ft_union fi;
  6872. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  6873. *s = hsum_float_8(acc) + fi.f ;
  6874. #else
  6875. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6876. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6877. int8_t aux8[QK_K];
  6878. int16_t aux16[8];
  6879. float sums [8];
  6880. int32_t aux32[8];
  6881. memset(sums, 0, 8*sizeof(float));
  6882. float sumf = 0;
  6883. for (int i = 0; i < nb; ++i) {
  6884. const uint8_t * restrict q4 = x[i].qs;
  6885. const int8_t * restrict q8 = y[i].qs;
  6886. memset(aux32, 0, 8*sizeof(int32_t));
  6887. int8_t * restrict a = aux8;
  6888. for (int j = 0; j < QK_K/64; ++j) {
  6889. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6890. a += 32;
  6891. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6892. a += 32; q4 += 32;
  6893. }
  6894. memcpy(utmp, x[i].scales, 12);
  6895. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6896. const uint32_t uaux = utmp[1] & kmask1;
  6897. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6898. utmp[2] = uaux;
  6899. utmp[0] &= kmask1;
  6900. int sumi = 0;
  6901. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6902. a = aux8;
  6903. int is = 0;
  6904. for (int j = 0; j < QK_K/32; ++j) {
  6905. int32_t scale = scales[is++];
  6906. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6907. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6908. q8 += 8; a += 8;
  6909. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6910. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6911. q8 += 8; a += 8;
  6912. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6913. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6914. q8 += 8; a += 8;
  6915. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6916. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6917. q8 += 8; a += 8;
  6918. }
  6919. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6920. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6921. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6922. sumf -= dmin * sumi;
  6923. }
  6924. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6925. *s = sumf;
  6926. #endif
  6927. }
  6928. #else
  6929. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6930. assert(n % QK_K == 0);
  6931. assert(nrc == 1);
  6932. UNUSED(nrc);
  6933. UNUSED(bx);
  6934. UNUSED(by);
  6935. UNUSED(bs);
  6936. const block_q4_K * restrict x = vx;
  6937. const block_q8_K * restrict y = vy;
  6938. const int nb = n / QK_K;
  6939. #ifdef __ARM_NEON
  6940. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6941. const int32x4_t mzero = vdupq_n_s32(0);
  6942. float sumf = 0;
  6943. ggml_int8x16x2_t q4bytes;
  6944. ggml_int8x16x4_t q8bytes;
  6945. float sum_mins = 0.f;
  6946. uint16_t aux16[2];
  6947. const uint8_t * restrict scales = (const uint8_t *)aux16;
  6948. for (int i = 0; i < nb; ++i) {
  6949. const uint8_t * restrict q4 = x[i].qs;
  6950. const int8_t * restrict q8 = y[i].qs;
  6951. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  6952. aux16[0] = a[0] & 0x0f0f;
  6953. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6954. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  6955. sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
  6956. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6957. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  6958. q8bytes = ggml_vld1q_s8_x4(q8);
  6959. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  6960. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  6961. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6962. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  6963. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  6964. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  6965. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  6966. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  6967. sumf += d * (sumi1 + sumi2);
  6968. }
  6969. *s = sumf - sum_mins;
  6970. #elif defined __AVX2__
  6971. const __m256i m4 = _mm256_set1_epi8(0xF);
  6972. __m256 acc = _mm256_setzero_ps();
  6973. float summs = 0;
  6974. uint16_t aux16[2];
  6975. const uint8_t * scales = (const uint8_t *)aux16;
  6976. for (int i = 0; i < nb; ++i) {
  6977. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  6978. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  6979. const __m256 vd = _mm256_set1_ps(d);
  6980. const uint16_t * a = (const uint16_t *)x[i].scales;
  6981. aux16[0] = a[0] & 0x0f0f;
  6982. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6983. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6984. const uint8_t * restrict q4 = x[i].qs;
  6985. const int8_t * restrict q8 = y[i].qs;
  6986. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  6987. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  6988. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  6989. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6990. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  6991. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  6992. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  6993. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  6994. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  6995. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  6996. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  6997. }
  6998. *s = hsum_float_8(acc) - summs;
  6999. #elif defined __AVX__
  7000. const __m128i m4 = _mm_set1_epi8(0xF);
  7001. __m256 acc = _mm256_setzero_ps();
  7002. float summs = 0;
  7003. uint16_t aux16[2];
  7004. const uint8_t * scales = (const uint8_t *)aux16;
  7005. for (int i = 0; i < nb; ++i) {
  7006. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  7007. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  7008. const __m256 vd = _mm256_set1_ps(d);
  7009. const uint16_t * a = (const uint16_t *)x[i].scales;
  7010. aux16[0] = a[0] & 0x0f0f;
  7011. aux16[1] = (a[0] >> 4) & 0x0f0f;
  7012. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  7013. const uint8_t * restrict q4 = x[i].qs;
  7014. const int8_t * restrict q8 = y[i].qs;
  7015. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  7016. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  7017. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  7018. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  7019. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  7020. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  7021. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  7022. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7023. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7024. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  7025. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  7026. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  7027. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  7028. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  7029. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  7030. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  7031. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  7032. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  7033. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  7034. }
  7035. *s = hsum_float_8(acc) - summs;
  7036. #elif defined __riscv_v_intrinsic
  7037. uint16_t s16[2];
  7038. const uint8_t * restrict scales = (const uint8_t *)s16;
  7039. float sumf = 0;
  7040. for (int i = 0; i < nb; ++i) {
  7041. const uint8_t * restrict q4 = x[i].qs;
  7042. const int8_t * restrict q8 = y[i].qs;
  7043. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  7044. s16[0] = b[0] & 0x0f0f;
  7045. s16[1] = (b[0] >> 4) & 0x0f0f;
  7046. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  7047. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  7048. size_t vl = 32;
  7049. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  7050. // load Q4
  7051. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  7052. // load Q8 and multiply it with lower Q4 nibble
  7053. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  7054. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  7055. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  7056. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  7057. // load Q8 and multiply it with upper Q4 nibble
  7058. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  7059. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  7060. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  7061. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  7062. }
  7063. *s = sumf;
  7064. #elif defined(__POWER9_VECTOR__)
  7065. const vector signed char lowMask = vec_splats((signed char)0xF);
  7066. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7067. vector float vsumf0 = vec_splats(0.0f);
  7068. vector float vsumf1 = vec_splats(0.0f);
  7069. vector float vsumf2 = vec_splats(0.0f);
  7070. vector float vsumf3 = vec_splats(0.0f);
  7071. #pragma GCC unroll 2
  7072. for (int i = 0; i < nb; ++i) {
  7073. __builtin_prefetch(x[i].qs, 0, 1);
  7074. __builtin_prefetch(y[i].qs, 0, 1);
  7075. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d[1]));
  7076. vector float vyd = vec_splats(y[i].d);
  7077. vector float vd= vec_mul(vxd, vyd);
  7078. uint16_t s16[2];
  7079. const uint8_t * scales = (const uint8_t *)s16;
  7080. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  7081. s16[0] = b[0] & 0x0f0f;
  7082. s16[1] = (b[0] >> 4) & 0x0f0f;
  7083. vector signed char utmps = (vector signed char)vec_xl_len(scales, 4);
  7084. vector signed short vscales = (vector signed short)vec_unpackh(utmps);
  7085. vector signed short q4xmins0 = vec_mergeh(vscales, vscales);
  7086. q4xmins0 = vec_sld(q4xmins0, q4xmins0, 8);
  7087. vector signed short q8ysums0 = vec_xl_len((const int16_t *)(y[i].bsums), 8);
  7088. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  7089. vector signed int prod1 = vec_mulo(q4xmins0, q8ysums0);
  7090. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vd, vsumf0);
  7091. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vd, vsumf1);
  7092. vd = vec_mul(vyd, vec_splats(GGML_FP16_TO_FP32(x[i].d[0])));
  7093. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  7094. vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs);
  7095. vector signed char q4x00 = vec_and(qxs0, lowMask);
  7096. vector signed char q4x01 = vec_sr(qxs0, v4);
  7097. vector signed char q4x10 = vec_and(qxs1, lowMask);
  7098. vector signed char q4x11 = vec_sr(qxs1, v4);
  7099. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  7100. vector signed char q8y10 = vec_xl(16, y[i].qs);
  7101. vector signed char q8y01 = vec_xl(32, y[i].qs);
  7102. vector signed char q8y11 = vec_xl(48, y[i].qs);
  7103. vector signed short qv00 = vec_add(vec_mule(q4x00, q8y00), vec_mulo(q4x00, q8y00));
  7104. vector signed short qv01 = vec_add(vec_mule(q4x01, q8y01), vec_mulo(q4x01, q8y01));
  7105. vector signed short qv10 = vec_add(vec_mule(q4x10, q8y10), vec_mulo(q4x10, q8y10));
  7106. vector signed short qv11 = vec_add(vec_mule(q4x11, q8y11), vec_mulo(q4x11, q8y11));
  7107. vector signed short vs0 = vec_splat(vscales, 0);
  7108. vector signed short vs1 = vec_splat(vscales, 1);
  7109. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  7110. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs0), vec_mulo(qv10, vs0));
  7111. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs1), vec_mulo(qv01, vs1));
  7112. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs1), vec_mulo(qv11, vs1));
  7113. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7114. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7115. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7116. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7117. }
  7118. vsumf0 = vec_add(vsumf0, vsumf2);
  7119. vsumf1 = vec_add(vsumf1, vsumf3);
  7120. vsumf0 = vec_add(vsumf0, vsumf1);
  7121. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7122. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7123. *s = vec_extract(vsumf0, 0);
  7124. #elif defined __loongarch_asx
  7125. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7126. __m256 acc = (__m256)__lasx_xvldi(0);
  7127. float summs = 0;
  7128. uint16_t aux16[2];
  7129. const uint8_t * scales = (const uint8_t *)aux16;
  7130. for (int i = 0; i < nb; ++i) {
  7131. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  7132. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  7133. const __m256 vd = __lasx_xvreplfr2vr_s(d);
  7134. const uint16_t * a = (const uint16_t *)x[i].scales;
  7135. aux16[0] = a[0] & 0x0f0f;
  7136. aux16[1] = (a[0] >> 4) & 0x0f0f;
  7137. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  7138. const uint8_t * restrict q4 = x[i].qs;
  7139. const int8_t * restrict q8 = y[i].qs;
  7140. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0);
  7141. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  7142. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  7143. const __m256i q8l = __lasx_xvld((const __m256i*)(q8+ 0), 0);
  7144. const __m256i q8h = __lasx_xvld((const __m256i*)(q8+32), 0);
  7145. const __m256i p16l = lasx_maddubs_h(q4l, q8l);
  7146. const __m256i p16h = lasx_maddubs_h(q4h, q8h);
  7147. const __m256i p32l = lasx_madd_h(__lasx_xvreplgr2vr_h(scales[0]), p16l);
  7148. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(p32l), acc);
  7149. const __m256i p32h = lasx_madd_h(__lasx_xvreplgr2vr_h(scales[1]), p16h);
  7150. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(p32h), acc);
  7151. }
  7152. *s = hsum_float_8(acc) - summs;
  7153. #else
  7154. uint8_t aux8[QK_K];
  7155. int16_t aux16[16];
  7156. float sums [8];
  7157. memset(sums, 0, 8*sizeof(float));
  7158. uint16_t s16[2];
  7159. const uint8_t * restrict scales = (const uint8_t *)s16;
  7160. float sumf = 0;
  7161. for (int i = 0; i < nb; ++i) {
  7162. const uint8_t * restrict q4 = x[i].qs;
  7163. const int8_t * restrict q8 = y[i].qs;
  7164. uint8_t * restrict a = aux8;
  7165. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  7166. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  7167. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  7168. s16[0] = b[0] & 0x0f0f;
  7169. s16[1] = (b[0] >> 4) & 0x0f0f;
  7170. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  7171. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  7172. for (int j = 0; j < QK_K/32; ++j) {
  7173. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  7174. q8 += 16; a += 16;
  7175. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  7176. q8 += 16; a += 16;
  7177. const float dl = d * scales[j];
  7178. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  7179. }
  7180. }
  7181. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7182. *s = sumf;
  7183. #endif
  7184. }
  7185. #endif
  7186. #if QK_K == 256
  7187. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7188. assert(n % QK_K == 0);
  7189. assert(nrc == 1);
  7190. UNUSED(nrc);
  7191. UNUSED(bx);
  7192. UNUSED(by);
  7193. UNUSED(bs);
  7194. const block_q5_K * restrict x = vx;
  7195. const block_q8_K * restrict y = vy;
  7196. const int nb = n / QK_K;
  7197. static const uint32_t kmask1 = 0x3f3f3f3f;
  7198. static const uint32_t kmask2 = 0x0f0f0f0f;
  7199. static const uint32_t kmask3 = 0x03030303;
  7200. uint32_t utmp[4];
  7201. #ifdef __ARM_NEON
  7202. const uint8x16_t m4b = vdupq_n_u8(0xf);
  7203. const uint8x16_t mone = vdupq_n_u8(1);
  7204. const uint8x16_t mtwo = vdupq_n_u8(2);
  7205. const int32x4_t mzero = vdupq_n_s32(0);
  7206. ggml_int8x16x4_t q5bytes;
  7207. float sumf = 0;
  7208. for (int i = 0; i < nb; ++i) {
  7209. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7210. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  7211. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  7212. memcpy(utmp, x[i].scales, 12);
  7213. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7214. const uint32_t uaux = utmp[1] & kmask1;
  7215. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7216. utmp[2] = uaux;
  7217. utmp[0] &= kmask1;
  7218. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  7219. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  7220. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  7221. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  7222. int32_t sumi_mins = vaddvq_s32(prod);
  7223. const uint8_t * scales = (const uint8_t *)utmp;
  7224. const uint8_t * restrict q5 = x[i].qs;
  7225. const uint8_t * restrict qh = x[i].qh;
  7226. const int8_t * restrict q8 = y[i].qs;
  7227. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  7228. ggml_uint8x16x4_t q5h;
  7229. int32_t sumi = 0;
  7230. for (int j = 0; j < QK_K/64; ++j) {
  7231. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  7232. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7233. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  7234. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  7235. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  7236. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  7237. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  7238. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  7239. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  7240. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  7241. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  7242. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  7243. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  7244. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  7245. }
  7246. sumf += d * sumi - dmin * sumi_mins;
  7247. }
  7248. *s = sumf;
  7249. #elif defined __AVX2__
  7250. const __m256i m4 = _mm256_set1_epi8(0xF);
  7251. const __m128i mzero = _mm_setzero_si128();
  7252. const __m256i mone = _mm256_set1_epi8(1);
  7253. __m256 acc = _mm256_setzero_ps();
  7254. float summs = 0.f;
  7255. for (int i = 0; i < nb; ++i) {
  7256. const uint8_t * restrict q5 = x[i].qs;
  7257. const int8_t * restrict q8 = y[i].qs;
  7258. #if QK_K == 256
  7259. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7260. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  7261. memcpy(utmp, x[i].scales, 12);
  7262. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7263. const uint32_t uaux = utmp[1] & kmask1;
  7264. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7265. utmp[2] = uaux;
  7266. utmp[0] &= kmask1;
  7267. #else
  7268. // TODO
  7269. const float d = 0, dmin = 0;
  7270. #endif
  7271. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  7272. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  7273. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  7274. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  7275. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  7276. summs += dmin * _mm_extract_epi32(hsum, 0);
  7277. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  7278. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  7279. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  7280. __m256i hmask = mone;
  7281. __m256i sumi = _mm256_setzero_si256();
  7282. int bit = 0;
  7283. for (int j = 0; j < QK_K/64; ++j) {
  7284. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  7285. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  7286. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  7287. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  7288. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  7289. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  7290. hmask = _mm256_slli_epi16(hmask, 1);
  7291. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  7292. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  7293. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  7294. hmask = _mm256_slli_epi16(hmask, 1);
  7295. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7296. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7297. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  7298. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  7299. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  7300. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  7301. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  7302. }
  7303. __m256 vd = _mm256_set1_ps(d);
  7304. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  7305. }
  7306. *s = hsum_float_8(acc) + summs;
  7307. #elif defined __AVX__
  7308. const __m128i m4 = _mm_set1_epi8(0xF);
  7309. const __m128i mzero = _mm_setzero_si128();
  7310. const __m128i mone = _mm_set1_epi8(1);
  7311. const __m128i m2 = _mm_set1_epi8(2);
  7312. __m256 acc = _mm256_setzero_ps();
  7313. float summs = 0.f;
  7314. for (int i = 0; i < nb; ++i) {
  7315. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7316. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  7317. const uint8_t * restrict q5 = x[i].qs;
  7318. const int8_t * restrict q8 = y[i].qs;
  7319. memcpy(utmp, x[i].scales, 12);
  7320. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7321. const uint32_t uaux = utmp[1] & kmask1;
  7322. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7323. utmp[2] = uaux;
  7324. utmp[0] &= kmask1;
  7325. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  7326. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  7327. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  7328. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  7329. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  7330. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  7331. const __m128i prod = _mm_madd_epi16(mins, q8s);
  7332. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  7333. summs += dmin * _mm_extract_epi32(hsum, 0);
  7334. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  7335. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  7336. __m128i hmask = mone;
  7337. __m128i sumi_0 = _mm_setzero_si128();
  7338. __m128i sumi_1 = _mm_setzero_si128();
  7339. int bit = 0;
  7340. __m128i shuffle = _mm_set1_epi16(0x0100);
  7341. for (int j = 0; j < QK_K/64; ++j) {
  7342. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  7343. shuffle = _mm_add_epi16(shuffle, m2);
  7344. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  7345. shuffle = _mm_add_epi16(shuffle, m2);
  7346. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  7347. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  7348. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  7349. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  7350. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  7351. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  7352. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  7353. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  7354. hmask = _mm_slli_epi16(hmask, 1);
  7355. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7356. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7357. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  7358. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  7359. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  7360. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  7361. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  7362. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  7363. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  7364. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  7365. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  7366. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  7367. hmask = _mm_slli_epi16(hmask, 1);
  7368. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7369. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7370. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  7371. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  7372. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  7373. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  7374. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7375. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7376. }
  7377. __m256 vd = _mm256_set1_ps(d);
  7378. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  7379. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  7380. }
  7381. *s = hsum_float_8(acc) + summs;
  7382. #elif defined __riscv_v_intrinsic
  7383. const uint8_t * scales = (const uint8_t*)&utmp[0];
  7384. const uint8_t * mins = (const uint8_t*)&utmp[2];
  7385. float sumf = 0;
  7386. float sums = 0.0;
  7387. size_t vl;
  7388. for (int i = 0; i < nb; ++i) {
  7389. vl = 8;
  7390. const uint8_t * restrict q5 = x[i].qs;
  7391. const uint8_t * restrict hm = x[i].qh;
  7392. const int8_t * restrict q8 = y[i].qs;
  7393. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7394. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  7395. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  7396. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  7397. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  7398. memcpy(utmp, x[i].scales, 12);
  7399. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7400. const uint32_t uaux = utmp[1] & kmask1;
  7401. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7402. utmp[2] = uaux;
  7403. utmp[0] &= kmask1;
  7404. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  7405. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  7406. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  7407. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  7408. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  7409. vl = 32;
  7410. int32_t aux32 = 0;
  7411. int is = 0;
  7412. uint8_t m = 1;
  7413. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7414. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  7415. for (int j = 0; j < QK_K/64; ++j) {
  7416. // load Q5 and Q8
  7417. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  7418. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  7419. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  7420. // compute mask for addition
  7421. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  7422. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  7423. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  7424. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  7425. m <<= 1;
  7426. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  7427. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  7428. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  7429. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  7430. m <<= 1;
  7431. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  7432. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  7433. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  7434. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  7435. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  7436. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  7437. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  7438. q5 += 32; q8 += 64;
  7439. }
  7440. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  7441. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  7442. }
  7443. *s = sumf+sums;
  7444. #elif defined(__POWER9_VECTOR__)
  7445. const vector signed char lowMask = vec_splats((signed char)0xF);
  7446. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  7447. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  7448. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  7449. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7450. vector float vsumf0 = vec_splats(0.0f);
  7451. vector float vsumf1 = vec_splats(0.0f);
  7452. vector float vsumf2 = vec_splats(0.0f);
  7453. vector float vsumf3 = vec_splats(0.0f);
  7454. for (int i = 0; i < nb; ++i) {
  7455. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7456. vector float vyd = vec_splats(y[i].d);
  7457. vector float vd = vec_mul(vxd, vyd);
  7458. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  7459. vector float vdmin = vec_mul(vxmin, vyd);
  7460. memcpy(utmp, x[i].scales, 12);
  7461. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7462. const uint32_t uaux = utmp[1] & kmask1;
  7463. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7464. utmp[2] = uaux;
  7465. utmp[0] &= kmask1;
  7466. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  7467. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  7468. vector signed char utmps = (vector signed char)vec_xl( 0, utmp);
  7469. vector signed short vscales = vec_unpackh(utmps);
  7470. vector signed short q5xmins = vec_unpackl(utmps);
  7471. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  7472. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  7473. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  7474. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  7475. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  7476. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  7477. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  7478. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  7479. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  7480. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  7481. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  7482. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  7483. vector signed int vsumi0 = vec_splats((int32_t)0);
  7484. vector signed int vsumi1 = vec_splats((int32_t)0);
  7485. vector signed int vsumi2 = vec_splats((int32_t)0);
  7486. vector signed int vsumi3 = vec_splats((int32_t)0);
  7487. const uint8_t * restrict q5 = x[i].qs;
  7488. const int8_t * restrict q8 = y[i].qs;
  7489. for (int j = 0; j < QK_K/64; ++j) {
  7490. __builtin_prefetch(q5, 0, 1);
  7491. __builtin_prefetch(q8, 0, 1);
  7492. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  7493. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  7494. q5 += 32;
  7495. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7496. vector signed char qxs01 = vec_sr(qxs0, v4);
  7497. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7498. vector signed char qxs11 = vec_sr(qxs1, v4);
  7499. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  7500. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  7501. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  7502. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  7503. qxhs0 = vec_sr(qxhs0, v2);
  7504. qxhs1 = vec_sr(qxhs1, v2);
  7505. vector signed char q5x00 = vec_or(q5h00, qxs00);
  7506. vector signed char q5x01 = vec_or(q5h01, qxs01);
  7507. vector signed char q5x10 = vec_or(q5h10, qxs10);
  7508. vector signed char q5x11 = vec_or(q5h11, qxs11);
  7509. vector signed char q8y00 = vec_xl( 0, q8);
  7510. vector signed char q8y10 = vec_xl(16, q8);
  7511. vector signed char q8y01 = vec_xl(32, q8);
  7512. vector signed char q8y11 = vec_xl(48, q8);
  7513. q8 += 64;
  7514. vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00));
  7515. vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01));
  7516. vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10));
  7517. vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11));
  7518. vector signed short vs0 = vec_splat(vscales, 0);
  7519. vector signed short vs1 = vec_splat(vscales, 1);
  7520. vscales = vec_sld(vscales, vscales, 12);
  7521. qv00 = vec_add(qv00, qv10);
  7522. qv01 = vec_add(qv01, qv11);
  7523. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  7524. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  7525. vsumi2 = vec_add(vec_mule(qv01, vs1), vsumi2);
  7526. vsumi3 = vec_add(vec_mulo(qv01, vs1), vsumi3);
  7527. }
  7528. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7529. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7530. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7531. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7532. }
  7533. vsumf0 = vec_add(vsumf0, vsumf2);
  7534. vsumf1 = vec_add(vsumf1, vsumf3);
  7535. vsumf0 = vec_add(vsumf0, vsumf1);
  7536. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7537. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7538. *s = vec_extract(vsumf0, 0);
  7539. #elif defined __loongarch_asx
  7540. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7541. const __m128i mzero = __lsx_vldi(0);
  7542. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7543. __m256 acc = (__m256)__lasx_xvldi(0);
  7544. float summs = 0.f;
  7545. for (int i = 0; i < nb; ++i) {
  7546. const uint8_t * restrict q5 = x[i].qs;
  7547. const int8_t * restrict q8 = y[i].qs;
  7548. #if QK_K == 256
  7549. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7550. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  7551. memcpy(utmp, x[i].scales, 12);
  7552. #else
  7553. // TODO
  7554. const float d = 0, dmin = 0;
  7555. #endif
  7556. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  7557. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  7558. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  7559. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  7560. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  7561. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  7562. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  7563. const __m256i scales = lasx_insertf128(sc128, sc128);
  7564. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  7565. __m256i hmask = mone;
  7566. __m256i sumi = __lasx_xvldi(0);
  7567. int bit = 0;
  7568. for (int j = 0; j < QK_K/64; ++j) {
  7569. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  7570. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  7571. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  7572. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  7573. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4);
  7574. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  7575. hmask = __lasx_xvslli_h(hmask, 1);
  7576. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  7577. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4);
  7578. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  7579. hmask = __lasx_xvslli_h(hmask, 1);
  7580. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7581. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7582. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  7583. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  7584. p16_0 = lasx_madd_h(scale_0, p16_0);
  7585. p16_1 = lasx_madd_h(scale_1, p16_1);
  7586. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  7587. }
  7588. __m256 vd = __lasx_xvreplfr2vr_s(d);
  7589. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  7590. }
  7591. *s = hsum_float_8(acc) + summs;
  7592. #else
  7593. const uint8_t * scales = (const uint8_t*)&utmp[0];
  7594. const uint8_t * mins = (const uint8_t*)&utmp[2];
  7595. int8_t aux8[QK_K];
  7596. int16_t aux16[8];
  7597. float sums [8];
  7598. int32_t aux32[8];
  7599. memset(sums, 0, 8*sizeof(float));
  7600. float sumf = 0;
  7601. for (int i = 0; i < nb; ++i) {
  7602. const uint8_t * restrict q4 = x[i].qs;
  7603. const uint8_t * restrict hm = x[i].qh;
  7604. const int8_t * restrict q8 = y[i].qs;
  7605. memset(aux32, 0, 8*sizeof(int32_t));
  7606. int8_t * restrict a = aux8;
  7607. uint8_t m = 1;
  7608. for (int j = 0; j < QK_K/64; ++j) {
  7609. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  7610. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  7611. a += 32; m <<= 1;
  7612. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  7613. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  7614. a += 32; m <<= 1;
  7615. q4 += 32;
  7616. }
  7617. memcpy(utmp, x[i].scales, 12);
  7618. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7619. const uint32_t uaux = utmp[1] & kmask1;
  7620. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7621. utmp[2] = uaux;
  7622. utmp[0] &= kmask1;
  7623. int sumi = 0;
  7624. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  7625. a = aux8;
  7626. int is = 0;
  7627. for (int j = 0; j < QK_K/32; ++j) {
  7628. int32_t scale = scales[is++];
  7629. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7630. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7631. q8 += 8; a += 8;
  7632. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7633. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7634. q8 += 8; a += 8;
  7635. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7636. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7637. q8 += 8; a += 8;
  7638. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7639. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7640. q8 += 8; a += 8;
  7641. }
  7642. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7643. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7644. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  7645. sumf -= dmin * sumi;
  7646. }
  7647. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7648. *s = sumf;
  7649. #endif
  7650. }
  7651. #else
  7652. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7653. assert(n % QK_K == 0);
  7654. assert(nrc == 1);
  7655. UNUSED(nrc);
  7656. UNUSED(bx);
  7657. UNUSED(by);
  7658. UNUSED(bs);
  7659. const block_q5_K * restrict x = vx;
  7660. const block_q8_K * restrict y = vy;
  7661. const int nb = n / QK_K;
  7662. #ifdef __ARM_NEON
  7663. const uint8x16_t m4b = vdupq_n_u8(0xf);
  7664. const uint8x16_t mh = vdupq_n_u8(16);
  7665. const int32x4_t mzero = vdupq_n_s32(0);
  7666. ggml_int8x16x4_t q5bytes;
  7667. ggml_uint8x16x4_t q5h;
  7668. float sumf = 0;
  7669. for (int i = 0; i < nb; ++i) {
  7670. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7671. const int8_t * sc = x[i].scales;
  7672. const uint8_t * restrict q5 = x[i].qs;
  7673. const uint8_t * restrict qh = x[i].qh;
  7674. const int8_t * restrict q8 = y[i].qs;
  7675. const uint8x8_t qhbits = vld1_u8(qh);
  7676. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  7677. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  7678. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  7679. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  7680. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  7681. q5h.val[2] = vbicq_u8(mh, htmp);
  7682. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  7683. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  7684. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  7685. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  7686. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  7687. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  7688. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  7689. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  7690. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  7691. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  7692. }
  7693. *s = sumf;
  7694. #elif defined __AVX2__
  7695. const __m256i m4 = _mm256_set1_epi8(0xF);
  7696. const __m256i mone = _mm256_set1_epi8(1);
  7697. __m256 acc = _mm256_setzero_ps();
  7698. for (int i = 0; i < nb; ++i) {
  7699. const uint8_t * restrict q5 = x[i].qs;
  7700. const int8_t * restrict q8 = y[i].qs;
  7701. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7702. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  7703. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  7704. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  7705. int64_t aux64;
  7706. memcpy(&aux64, x[i].qh, 8);
  7707. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  7708. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  7709. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  7710. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  7711. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  7712. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  7713. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7714. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7715. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  7716. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  7717. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  7718. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  7719. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  7720. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  7721. }
  7722. *s = hsum_float_8(acc);
  7723. #elif defined __AVX__
  7724. const __m128i m4 = _mm_set1_epi8(0xF);
  7725. const __m128i mone = _mm_set1_epi8(1);
  7726. __m256 acc = _mm256_setzero_ps();
  7727. for (int i = 0; i < nb; ++i) {
  7728. const uint8_t * restrict q5 = x[i].qs;
  7729. const int8_t * restrict q8 = y[i].qs;
  7730. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7731. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  7732. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  7733. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  7734. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  7735. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  7736. int64_t aux64;
  7737. memcpy(&aux64, x[i].qh, 8);
  7738. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  7739. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  7740. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  7741. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  7742. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  7743. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  7744. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  7745. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  7746. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  7747. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  7748. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7749. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7750. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  7751. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  7752. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  7753. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  7754. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  7755. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  7756. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  7757. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  7758. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  7759. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  7760. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  7761. }
  7762. *s = hsum_float_8(acc);
  7763. #elif defined __riscv_v_intrinsic
  7764. float sumf = 0;
  7765. for (int i = 0; i < nb; ++i) {
  7766. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7767. const int8_t * sc = x[i].scales;
  7768. const uint8_t * restrict q5 = x[i].qs;
  7769. const uint8_t * restrict qh = x[i].qh;
  7770. const int8_t * restrict q8 = y[i].qs;
  7771. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7772. // load qh
  7773. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  7774. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  7775. size_t vl = 16;
  7776. // combine both qh_1 and qh_2
  7777. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  7778. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  7779. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  7780. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  7781. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  7782. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  7783. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  7784. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  7785. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  7786. // load q5
  7787. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  7788. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  7789. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  7790. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  7791. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  7792. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  7793. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  7794. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  7795. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  7796. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  7797. // load Q8 and multiply it with Q5
  7798. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  7799. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  7800. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  7801. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  7802. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  7803. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  7804. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  7805. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  7806. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  7807. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  7808. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  7809. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  7810. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  7811. }
  7812. *s = sumf;
  7813. #elif defined(__POWER9_VECTOR__)
  7814. const vector signed char lowMask = vec_splats((signed char)0xF);
  7815. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  7816. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  7817. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7818. vector float vsumf0 = vec_splats(0.0f);
  7819. vector float vsumf1 = vec_splats(0.0f);
  7820. vector float vsumf2 = vec_splats(0.0f);
  7821. vector float vsumf3 = vec_splats(0.0f);
  7822. #pragma GCC unroll 2
  7823. for (int i = 0; i < nb; ++i) {
  7824. __builtin_prefetch(x[i].qs, 0, 1);
  7825. __builtin_prefetch(y[i].qs, 0, 1);
  7826. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7827. vector float vyd = vec_splats(y[i].d);
  7828. vector float vd= vec_mul(vxd, vyd);
  7829. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].qs);
  7830. vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].qs);
  7831. vector signed char qxs00 = (vector signed char)vec_and(qxs0, lowMask);
  7832. vector signed char qxs01 = (vector signed char)vec_sr(qxs0, v4);
  7833. vector signed char qxs10 = (vector signed char)vec_and(qxs1, lowMask);
  7834. vector signed char qxs11 = (vector signed char)vec_sr(qxs1, v4);
  7835. vector signed char qxhs = (vector signed char)vec_xl_len(x[i].qh, 8);
  7836. vector signed char qxhs0 = vec_or(qxhs, vec_sr(vec_sld(qxhs, qxhs, 8), v1));
  7837. vector signed char qxhs1 = vec_sr(qxhs0, v2);
  7838. vector signed char qxh00 = vec_sl(vec_andc((vector signed char)v1, qxhs0), v4);
  7839. vector signed char qxh10 = vec_sl(vec_andc((vector signed char)v1, qxhs1), v4);
  7840. vector signed char qxh01 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs0, v4)), v4);
  7841. vector signed char qxh11 = vec_sl(vec_andc((vector signed char)v1, vec_sr(qxhs1, v4)), v4);
  7842. vector signed char q5x00 = vec_sub(qxs00, qxh00);
  7843. vector signed char q5x10 = vec_sub(qxs10, qxh10);
  7844. vector signed char q5x01 = vec_sub(qxs01, qxh01);
  7845. vector signed char q5x11 = vec_sub(qxs11, qxh11);
  7846. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  7847. vector signed char q8y10 = vec_xl(16, y[i].qs);
  7848. vector signed char q8y01 = vec_xl(32, y[i].qs);
  7849. vector signed char q8y11 = vec_xl(48, y[i].qs);
  7850. vector signed short qv00 = vec_add(vec_mule(q5x00, q8y00), vec_mulo(q5x00, q8y00));
  7851. vector signed short qv01 = vec_add(vec_mule(q5x01, q8y01), vec_mulo(q5x01, q8y01));
  7852. vector signed short qv10 = vec_add(vec_mule(q5x10, q8y10), vec_mulo(q5x10, q8y10));
  7853. vector signed short qv11 = vec_add(vec_mule(q5x11, q8y11), vec_mulo(q5x11, q8y11));
  7854. vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4));
  7855. vector signed short vs0 = vec_splat(vs, 0);
  7856. vector signed short vs1 = vec_splat(vs, 1);
  7857. vector signed short vs2 = vec_splat(vs, 2);
  7858. vector signed short vs3 = vec_splat(vs, 3);
  7859. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  7860. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  7861. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  7862. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  7863. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7864. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7865. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7866. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7867. }
  7868. vsumf0 = vec_add(vsumf0, vsumf2);
  7869. vsumf1 = vec_add(vsumf1, vsumf3);
  7870. vsumf0 = vec_add(vsumf0, vsumf1);
  7871. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7872. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7873. *s = vec_extract(vsumf0, 0);
  7874. #elif defined __loongarch_asx
  7875. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7876. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7877. __m256 acc = (__m256)__lasx_xvldi(0);
  7878. for (int i = 0; i < nb; ++i) {
  7879. const uint8_t * restrict q5 = x[i].qs;
  7880. const int8_t * restrict q8 = y[i].qs;
  7881. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7882. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0);
  7883. const __m256i scale_l = lasx_insertf128(__lsx_vreplgr2vr_h(x[i].scales[1]), __lsx_vreplgr2vr_h(x[i].scales[0]));
  7884. const __m256i scale_h = lasx_insertf128(__lsx_vreplgr2vr_h(x[i].scales[3]), __lsx_vreplgr2vr_h(x[i].scales[2]));
  7885. int64_t aux64;
  7886. memcpy(&aux64, x[i].qh, 8);
  7887. __m128i haux128 = __lsx_vinsgr2vr_d(haux128, aux64, 0);
  7888. haux128 = __lsx_vinsgr2vr_d(haux128, aux64 >> 1, 1);
  7889. const __m256i haux256 = lasx_insertf128(__lsx_vsrli_h(haux128, 2), haux128);
  7890. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvandn_v(haux256, mone), 4);
  7891. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvandn_v(__lasx_xvsrli_h(haux256, 4), mone), 4);
  7892. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  7893. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  7894. const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0);
  7895. const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0);
  7896. const __m256i p16_0 = lasx_madd_h(scale_l, lasx_maddubs_h(q5l_0, q8_0));
  7897. const __m256i p16_1 = lasx_madd_h(scale_h, lasx_maddubs_h(q5l_1, q8_1));
  7898. const __m256i s16_0 = lasx_madd_h(scale_l, lasx_maddubs_h(q5h_0, q8_0));
  7899. const __m256i s16_1 = lasx_madd_h(scale_h, lasx_maddubs_h(q5h_1, q8_1));
  7900. const __m256i dot = __lasx_xvsub_w(__lasx_xvadd_w(p16_0, p16_1), __lasx_xvadd_w(s16_0, s16_1));
  7901. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(dot), acc);
  7902. }
  7903. *s = hsum_float_8(acc);
  7904. #else
  7905. int8_t aux8[QK_K];
  7906. int16_t aux16[16];
  7907. float sums [8];
  7908. memset(sums, 0, 8*sizeof(float));
  7909. float sumf = 0;
  7910. for (int i = 0; i < nb; ++i) {
  7911. const uint8_t * restrict q4 = x[i].qs;
  7912. const uint8_t * restrict hm = x[i].qh;
  7913. const int8_t * restrict q8 = y[i].qs;
  7914. int8_t * restrict a = aux8;
  7915. for (int l = 0; l < 32; ++l) {
  7916. a[l+ 0] = q4[l] & 0xF;
  7917. a[l+32] = q4[l] >> 4;
  7918. }
  7919. for (int is = 0; is < 8; ++is) {
  7920. uint8_t m = 1 << is;
  7921. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  7922. }
  7923. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7924. const int8_t * restrict sc = x[i].scales;
  7925. for (int j = 0; j < QK_K/16; ++j) {
  7926. const float dl = d * sc[j];
  7927. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  7928. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  7929. q8 += 16; a += 16;
  7930. }
  7931. }
  7932. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7933. *s = sumf;
  7934. #endif
  7935. }
  7936. #endif
  7937. #if QK_K == 256
  7938. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7939. assert(n % QK_K == 0);
  7940. assert(nrc == 1);
  7941. UNUSED(nrc);
  7942. UNUSED(bx);
  7943. UNUSED(by);
  7944. UNUSED(bs);
  7945. const block_q6_K * restrict x = vx;
  7946. const block_q8_K * restrict y = vy;
  7947. const int nb = n / QK_K;
  7948. #ifdef __ARM_NEON
  7949. float sum = 0;
  7950. const uint8x16_t m4b = vdupq_n_u8(0xF);
  7951. const int32x4_t vzero = vdupq_n_s32(0);
  7952. //const int8x16_t m32s = vdupq_n_s8(32);
  7953. const uint8x16_t mone = vdupq_n_u8(3);
  7954. ggml_int8x16x4_t q6bytes;
  7955. ggml_uint8x16x4_t q6h;
  7956. for (int i = 0; i < nb; ++i) {
  7957. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7958. const uint8_t * restrict q6 = x[i].ql;
  7959. const uint8_t * restrict qh = x[i].qh;
  7960. const int8_t * restrict q8 = y[i].qs;
  7961. const int8_t * restrict scale = x[i].scales;
  7962. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  7963. const int8x16_t scales = vld1q_s8(scale);
  7964. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  7965. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  7966. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  7967. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  7968. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  7969. int32_t isum_mins = vaddvq_s32(prod);
  7970. int32_t isum = 0;
  7971. for (int j = 0; j < QK_K/128; ++j) {
  7972. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  7973. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  7974. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7975. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  7976. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  7977. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  7978. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7979. shifted = vshrq_n_u8(qhbits.val[1], 2);
  7980. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7981. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  7982. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  7983. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  7984. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  7985. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  7986. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  7987. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  7988. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  7989. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7990. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7991. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7992. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7993. scale += 4;
  7994. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7995. shifted = vshrq_n_u8(qhbits.val[0], 4);
  7996. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7997. shifted = vshrq_n_u8(qhbits.val[1], 4);
  7998. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7999. shifted = vshrq_n_u8(qhbits.val[0], 6);
  8000. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  8001. shifted = vshrq_n_u8(qhbits.val[1], 6);
  8002. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  8003. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  8004. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  8005. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  8006. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  8007. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  8008. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  8009. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  8010. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  8011. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  8012. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  8013. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  8014. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  8015. scale += 4;
  8016. }
  8017. //sum += isum * d_all * y[i].d;
  8018. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  8019. }
  8020. *s = sum;
  8021. #elif defined __AVX2__
  8022. const __m256i m4 = _mm256_set1_epi8(0xF);
  8023. const __m256i m2 = _mm256_set1_epi8(3);
  8024. const __m256i m32s = _mm256_set1_epi8(32);
  8025. __m256 acc = _mm256_setzero_ps();
  8026. for (int i = 0; i < nb; ++i) {
  8027. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8028. const uint8_t * restrict q4 = x[i].ql;
  8029. const uint8_t * restrict qh = x[i].qh;
  8030. const int8_t * restrict q8 = y[i].qs;
  8031. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  8032. __m256i sumi = _mm256_setzero_si256();
  8033. int is = 0;
  8034. for (int j = 0; j < QK_K/128; ++j) {
  8035. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  8036. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  8037. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  8038. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  8039. is += 4;
  8040. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  8041. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  8042. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  8043. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  8044. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  8045. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  8046. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  8047. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  8048. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  8049. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  8050. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  8051. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8052. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8053. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8054. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8055. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  8056. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  8057. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  8058. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  8059. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  8060. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  8061. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  8062. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  8063. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  8064. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  8065. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  8066. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  8067. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  8068. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  8069. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  8070. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  8071. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  8072. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  8073. }
  8074. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  8075. }
  8076. *s = hsum_float_8(acc);
  8077. #elif defined __AVX__
  8078. const __m128i m4 = _mm_set1_epi8(0xF);
  8079. const __m128i m3 = _mm_set1_epi8(3);
  8080. const __m128i m32s = _mm_set1_epi8(32);
  8081. const __m128i m2 = _mm_set1_epi8(2);
  8082. __m256 acc = _mm256_setzero_ps();
  8083. for (int i = 0; i < nb; ++i) {
  8084. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8085. const uint8_t * restrict q4 = x[i].ql;
  8086. const uint8_t * restrict qh = x[i].qh;
  8087. const int8_t * restrict q8 = y[i].qs;
  8088. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  8089. __m128i sumi_0 = _mm_setzero_si128();
  8090. __m128i sumi_1 = _mm_setzero_si128();
  8091. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  8092. for (int j = 0; j < QK_K/128; ++j) {
  8093. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  8094. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  8095. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  8096. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  8097. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  8098. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  8099. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  8100. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  8101. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  8102. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  8103. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  8104. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  8105. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  8106. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  8107. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  8108. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  8109. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  8110. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  8111. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  8112. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  8113. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  8114. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  8115. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8116. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8117. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8118. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8119. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8120. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8121. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8122. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  8123. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  8124. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  8125. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  8126. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  8127. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  8128. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  8129. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  8130. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  8131. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  8132. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  8133. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  8134. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  8135. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  8136. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  8137. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  8138. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  8139. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  8140. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  8141. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  8142. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  8143. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  8144. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  8145. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  8146. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  8147. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  8148. shuffle = _mm_add_epi8(shuffle, m2);
  8149. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  8150. shuffle = _mm_add_epi8(shuffle, m2);
  8151. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  8152. shuffle = _mm_add_epi8(shuffle, m2);
  8153. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  8154. shuffle = _mm_add_epi8(shuffle, m2);
  8155. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  8156. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  8157. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  8158. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  8159. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  8160. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  8161. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  8162. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  8163. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  8164. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  8165. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  8166. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  8167. }
  8168. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  8169. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  8170. }
  8171. *s = hsum_float_8(acc);
  8172. #elif defined __riscv_v_intrinsic
  8173. float sumf = 0;
  8174. for (int i = 0; i < nb; ++i) {
  8175. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8176. const uint8_t * restrict q6 = x[i].ql;
  8177. const uint8_t * restrict qh = x[i].qh;
  8178. const int8_t * restrict q8 = y[i].qs;
  8179. const int8_t * restrict scale = x[i].scales;
  8180. size_t vl;
  8181. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  8182. int sum_t = 0;
  8183. int is = 0;
  8184. for (int j = 0; j < QK_K/128; ++j) {
  8185. vl = 32;
  8186. // load qh
  8187. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  8188. // load Q6
  8189. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  8190. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  8191. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  8192. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  8193. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  8194. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  8195. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  8196. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  8197. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  8198. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  8199. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  8200. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  8201. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  8202. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  8203. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  8204. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  8205. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  8206. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  8207. // load Q8 and take product
  8208. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  8209. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  8210. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  8211. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  8212. vl = 16;
  8213. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  8214. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  8215. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  8216. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  8217. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  8218. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  8219. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  8220. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  8221. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  8222. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  8223. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  8224. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  8225. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  8226. q6 += 64; qh += 32; q8 += 128; is=8;
  8227. }
  8228. sumf += d * sum_t;
  8229. }
  8230. *s = sumf;
  8231. #elif defined(__POWER9_VECTOR__)
  8232. const vector signed char lowMask = vec_splats((signed char)0xF);
  8233. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  8234. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  8235. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8236. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  8237. const vector signed char off = vec_splats((signed char)0x20);
  8238. vector float vsumf0 = vec_splats(0.0f);
  8239. vector float vsumf1 = vec_splats(0.0f);
  8240. vector float vsumf2 = vec_splats(0.0f);
  8241. vector float vsumf3 = vec_splats(0.0f);
  8242. for (int i = 0; i < nb; ++i) {
  8243. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8244. vector float vyd = vec_splats(y[i].d);
  8245. vector float vd = vec_mul(vxd, vyd);
  8246. vector signed int vsumi0 = vec_splats((int32_t)0);
  8247. vector signed int vsumi1 = vec_splats((int32_t)0);
  8248. vector signed int vsumi2 = vec_splats((int32_t)0);
  8249. vector signed int vsumi3 = vec_splats((int32_t)0);
  8250. vector signed int vsumi4 = vec_splats((int32_t)0);
  8251. vector signed int vsumi5 = vec_splats((int32_t)0);
  8252. vector signed int vsumi6 = vec_splats((int32_t)0);
  8253. vector signed int vsumi7 = vec_splats((int32_t)0);
  8254. const uint8_t * restrict q6 = x[i].ql;
  8255. const uint8_t * restrict qh = x[i].qh;
  8256. const int8_t * restrict qs = x[i].scales;
  8257. const int8_t * restrict q8 = y[i].qs;
  8258. for (int j = 0; j < QK_K/128; ++j) {
  8259. __builtin_prefetch(q6, 0, 0);
  8260. __builtin_prefetch(qh, 0, 0);
  8261. __builtin_prefetch(q8, 0, 0);
  8262. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  8263. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  8264. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  8265. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  8266. q6 += 64;
  8267. vector signed char qxs00 = vec_and(qxs0, lowMask);
  8268. vector signed char qxs01 = vec_sr(qxs0, v4);
  8269. vector signed char qxs10 = vec_and(qxs1, lowMask);
  8270. vector signed char qxs11 = vec_sr(qxs1, v4);
  8271. vector signed char qxs20 = vec_and(qxs2, lowMask);
  8272. vector signed char qxs21 = vec_sr(qxs2, v4);
  8273. vector signed char qxs30 = vec_and(qxs3, lowMask);
  8274. vector signed char qxs31 = vec_sr(qxs3, v4);
  8275. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  8276. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  8277. qh += 32;
  8278. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  8279. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  8280. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  8281. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  8282. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  8283. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  8284. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  8285. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  8286. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  8287. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  8288. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  8289. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  8290. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  8291. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  8292. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  8293. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  8294. vector signed char q8y00 = vec_xl( 0, q8);
  8295. vector signed char q8y10 = vec_xl( 16, q8);
  8296. vector signed char q8y20 = vec_xl( 32, q8);
  8297. vector signed char q8y30 = vec_xl( 48, q8);
  8298. vector signed char q8y01 = vec_xl( 64, q8);
  8299. vector signed char q8y11 = vec_xl( 80, q8);
  8300. vector signed char q8y21 = vec_xl( 96, q8);
  8301. vector signed char q8y31 = vec_xl(112, q8);
  8302. q8 += 128;
  8303. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  8304. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  8305. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  8306. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  8307. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  8308. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  8309. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  8310. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  8311. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  8312. qs += 8;
  8313. vector signed short vs0 = vec_splat(vscales, 0);
  8314. vector signed short vs1 = vec_splat(vscales, 1);
  8315. vector signed short vs2 = vec_splat(vscales, 2);
  8316. vector signed short vs3 = vec_splat(vscales, 3);
  8317. vector signed short vs4 = vec_splat(vscales, 4);
  8318. vector signed short vs5 = vec_splat(vscales, 5);
  8319. vector signed short vs6 = vec_splat(vscales, 6);
  8320. vector signed short vs7 = vec_splat(vscales, 7);
  8321. vsumi0 = vec_add(vec_mule(qv00, vs0), vsumi0);
  8322. vsumi1 = vec_add(vec_mulo(qv00, vs0), vsumi1);
  8323. vsumi2 = vec_add(vec_mule(qv01, vs4), vsumi2);
  8324. vsumi3 = vec_add(vec_mulo(qv01, vs4), vsumi3);
  8325. vsumi4 = vec_add(vec_mule(qv10, vs1), vsumi4);
  8326. vsumi5 = vec_add(vec_mulo(qv10, vs1), vsumi5);
  8327. vsumi6 = vec_add(vec_mule(qv11, vs5), vsumi6);
  8328. vsumi7 = vec_add(vec_mulo(qv11, vs5), vsumi7);
  8329. vsumi0 = vec_add(vec_mule(qv20, vs2), vsumi0);
  8330. vsumi1 = vec_add(vec_mulo(qv20, vs2), vsumi1);
  8331. vsumi2 = vec_add(vec_mule(qv21, vs6), vsumi2);
  8332. vsumi3 = vec_add(vec_mulo(qv21, vs6), vsumi3);
  8333. vsumi4 = vec_add(vec_mule(qv30, vs3), vsumi4);
  8334. vsumi5 = vec_add(vec_mulo(qv30, vs3), vsumi5);
  8335. vsumi6 = vec_add(vec_mule(qv31, vs7), vsumi6);
  8336. vsumi7 = vec_add(vec_mulo(qv31, vs7), vsumi7);
  8337. }
  8338. vsumi0 = vec_add(vsumi0, vsumi4);
  8339. vsumi1 = vec_add(vsumi1, vsumi5);
  8340. vsumi2 = vec_add(vsumi2, vsumi6);
  8341. vsumi3 = vec_add(vsumi3, vsumi7);
  8342. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8343. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8344. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8345. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8346. }
  8347. vsumf0 = vec_add(vsumf0, vsumf2);
  8348. vsumf1 = vec_add(vsumf1, vsumf3);
  8349. vsumf0 = vec_add(vsumf0, vsumf1);
  8350. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8351. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8352. *s = vec_extract(vsumf0, 0);
  8353. #elif defined __loongarch_asx
  8354. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  8355. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  8356. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  8357. __m256 acc = (__m256)__lasx_xvldi(0);
  8358. for (int i = 0; i < nb; ++i) {
  8359. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8360. const uint8_t * restrict q4 = x[i].ql;
  8361. const uint8_t * restrict qh = x[i].qh;
  8362. const int8_t * restrict q8 = y[i].qs;
  8363. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  8364. __m256i sumi = __lasx_xvldi(0);
  8365. int is = 0;
  8366. for (int j = 0; j < QK_K/128; ++j) {
  8367. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  8368. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  8369. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  8370. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  8371. is += 4;
  8372. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  8373. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  8374. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  8375. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  8376. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  8377. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  8378. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  8379. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  8380. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  8381. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  8382. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  8383. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8384. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8385. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8386. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  8387. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  8388. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  8389. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  8390. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  8391. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  8392. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  8393. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  8394. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  8395. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  8396. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  8397. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  8398. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  8399. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  8400. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  8401. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  8402. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  8403. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  8404. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  8405. }
  8406. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  8407. }
  8408. *s = hsum_float_8(acc);
  8409. #else
  8410. int8_t aux8[QK_K];
  8411. int16_t aux16[8];
  8412. float sums [8];
  8413. int32_t aux32[8];
  8414. memset(sums, 0, 8*sizeof(float));
  8415. float sumf = 0;
  8416. for (int i = 0; i < nb; ++i) {
  8417. const uint8_t * restrict q4 = x[i].ql;
  8418. const uint8_t * restrict qh = x[i].qh;
  8419. const int8_t * restrict q8 = y[i].qs;
  8420. memset(aux32, 0, 8*sizeof(int32_t));
  8421. int8_t * restrict a = aux8;
  8422. for (int j = 0; j < QK_K; j += 128) {
  8423. for (int l = 0; l < 32; ++l) {
  8424. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  8425. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  8426. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  8427. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  8428. }
  8429. a += 128;
  8430. q4 += 64;
  8431. qh += 32;
  8432. }
  8433. a = aux8;
  8434. int is = 0;
  8435. for (int j = 0; j < QK_K/16; ++j) {
  8436. int scale = x[i].scales[is++];
  8437. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  8438. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  8439. q8 += 8; a += 8;
  8440. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  8441. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  8442. q8 += 8; a += 8;
  8443. }
  8444. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8445. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  8446. }
  8447. for (int l = 0; l < 8; ++l) sumf += sums[l];
  8448. *s = sumf;
  8449. #endif
  8450. }
  8451. #else
  8452. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8453. assert(n % QK_K == 0);
  8454. assert(nrc == 1);
  8455. UNUSED(nrc);
  8456. UNUSED(bx);
  8457. UNUSED(by);
  8458. UNUSED(bs);
  8459. const block_q6_K * restrict x = vx;
  8460. const block_q8_K * restrict y = vy;
  8461. const int nb = n / QK_K;
  8462. #ifdef __ARM_NEON
  8463. float sum = 0;
  8464. const uint8x16_t m4b = vdupq_n_u8(0xF);
  8465. const int8x16_t m32s = vdupq_n_s8(32);
  8466. const int32x4_t vzero = vdupq_n_s32(0);
  8467. const uint8x16_t mone = vdupq_n_u8(3);
  8468. ggml_int8x16x4_t q6bytes;
  8469. ggml_uint8x16x4_t q6h;
  8470. for (int i = 0; i < nb; ++i) {
  8471. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  8472. const uint8_t * restrict q6 = x[i].ql;
  8473. const uint8_t * restrict qh = x[i].qh;
  8474. const int8_t * restrict q8 = y[i].qs;
  8475. const int8_t * restrict scale = x[i].scales;
  8476. int32_t isum = 0;
  8477. uint8x16_t qhbits = vld1q_u8(qh);
  8478. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  8479. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  8480. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  8481. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  8482. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  8483. shifted = vshrq_n_u8(qhbits, 4);
  8484. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  8485. shifted = vshrq_n_u8(qhbits, 6);
  8486. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  8487. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  8488. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  8489. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  8490. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  8491. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  8492. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  8493. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  8494. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  8495. sum += isum * d_all * y[i].d;
  8496. }
  8497. *s = sum;
  8498. #elif defined __AVX2__
  8499. const __m256i m4 = _mm256_set1_epi8(0xF);
  8500. const __m256i m2 = _mm256_set1_epi8(3);
  8501. const __m256i m32s = _mm256_set1_epi8(32);
  8502. __m256 acc = _mm256_setzero_ps();
  8503. for (int i = 0; i < nb; ++i) {
  8504. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8505. const uint8_t * restrict q4 = x[i].ql;
  8506. const uint8_t * restrict qh = x[i].qh;
  8507. const int8_t * restrict q8 = y[i].qs;
  8508. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  8509. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  8510. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  8511. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  8512. __m256i sumi = _mm256_setzero_si256();
  8513. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  8514. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  8515. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  8516. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  8517. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  8518. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  8519. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  8520. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  8521. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  8522. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  8523. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  8524. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  8525. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  8526. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  8527. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  8528. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  8529. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  8530. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  8531. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  8532. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  8533. }
  8534. *s = hsum_float_8(acc);
  8535. #elif defined __AVX__
  8536. const __m128i m4 = _mm_set1_epi8(0xF);
  8537. const __m128i m2 = _mm_set1_epi8(3);
  8538. const __m128i m32s = _mm_set1_epi8(32);
  8539. __m256 acc = _mm256_setzero_ps();
  8540. for (int i = 0; i < nb; ++i) {
  8541. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8542. const uint8_t * restrict q4 = x[i].ql;
  8543. const uint8_t * restrict qh = x[i].qh;
  8544. const int8_t * restrict q8 = y[i].qs;
  8545. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  8546. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  8547. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  8548. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  8549. __m128i sumi_0 = _mm_setzero_si128();
  8550. __m128i sumi_1 = _mm_setzero_si128();
  8551. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  8552. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  8553. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  8554. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  8555. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  8556. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  8557. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  8558. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  8559. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  8560. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  8561. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  8562. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  8563. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  8564. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  8565. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  8566. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  8567. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  8568. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  8569. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  8570. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  8571. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  8572. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  8573. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  8574. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  8575. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  8576. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  8577. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  8578. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  8579. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  8580. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  8581. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  8582. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  8583. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  8584. }
  8585. *s = hsum_float_8(acc);
  8586. #elif defined __riscv_v_intrinsic
  8587. float sumf = 0;
  8588. for (int i = 0; i < nb; ++i) {
  8589. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  8590. const uint8_t * restrict q6 = x[i].ql;
  8591. const uint8_t * restrict qh = x[i].qh;
  8592. const int8_t * restrict q8 = y[i].qs;
  8593. const int8_t * restrict scale = x[i].scales;
  8594. int32_t isum = 0;
  8595. size_t vl = 16;
  8596. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  8597. // load Q6
  8598. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  8599. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  8600. // load qh
  8601. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  8602. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  8603. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  8604. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  8605. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  8606. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  8607. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  8608. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  8609. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  8610. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  8611. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  8612. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  8613. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  8614. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  8615. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  8616. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  8617. // load Q8 and take product
  8618. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  8619. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  8620. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  8621. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  8622. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  8623. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  8624. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  8625. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  8626. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  8627. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  8628. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  8629. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  8630. sumf += isum * d_all * y[i].d;
  8631. }
  8632. *s = sumf;
  8633. #elif defined(__POWER9_VECTOR__)
  8634. const vector signed char lowMask = vec_splats((signed char)0xF);
  8635. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  8636. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  8637. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8638. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  8639. const vector signed char off = vec_splats((signed char)0x20);
  8640. vector float vsumf0 = vec_splats(0.0f);
  8641. vector float vsumf1 = vec_splats(0.0f);
  8642. vector float vsumf2 = vec_splats(0.0f);
  8643. vector float vsumf3 = vec_splats(0.0f);
  8644. #pragma GCC unroll 2
  8645. for (int i = 0; i < nb; ++i) {
  8646. __builtin_prefetch(x[i].ql, 0, 1);
  8647. __builtin_prefetch(x[i].qh, 0, 1);
  8648. __builtin_prefetch(y[i].qs, 0, 1);
  8649. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8650. vector float vyd = vec_splats(y[i].d);
  8651. vector float vd= vec_mul(vxd, vyd);
  8652. vector signed char qxs0 = (vector signed char)vec_xl( 0, x[i].ql);
  8653. vector signed char qxs1 = (vector signed char)vec_xl(16, x[i].ql);
  8654. vector signed char qxs00 = vec_and(qxs0, lowMask);
  8655. vector signed char qxs01 = vec_sr(qxs0, v4);
  8656. vector signed char qxs10 = vec_and(qxs1, lowMask);
  8657. vector signed char qxs11 = vec_sr(qxs1, v4);
  8658. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  8659. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  8660. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  8661. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  8662. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  8663. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  8664. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  8665. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  8666. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  8667. vector signed char q8y00 = vec_xl( 0, y[i].qs);
  8668. vector signed char q8y10 = vec_xl(16, y[i].qs);
  8669. vector signed char q8y01 = vec_xl(32, y[i].qs);
  8670. vector signed char q8y11 = vec_xl(48, y[i].qs);
  8671. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  8672. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  8673. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  8674. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  8675. vector signed short vs = (vector signed short)vec_unpackh(vec_xl_len(x[i].scales, 4));
  8676. vector signed short vs0 = vec_splat(vs, 0);
  8677. vector signed short vs1 = vec_splat(vs, 1);
  8678. vector signed short vs2 = vec_splat(vs, 2);
  8679. vector signed short vs3 = vec_splat(vs, 3);
  8680. vector signed int vsumi0 = vec_add(vec_mule(qv00, vs0), vec_mulo(qv00, vs0));
  8681. vector signed int vsumi1 = vec_add(vec_mule(qv10, vs1), vec_mulo(qv10, vs1));
  8682. vector signed int vsumi2 = vec_add(vec_mule(qv01, vs2), vec_mulo(qv01, vs2));
  8683. vector signed int vsumi3 = vec_add(vec_mule(qv11, vs3), vec_mulo(qv11, vs3));
  8684. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8685. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8686. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8687. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8688. }
  8689. vsumf0 = vec_add(vsumf0, vsumf2);
  8690. vsumf1 = vec_add(vsumf1, vsumf3);
  8691. vsumf0 = vec_add(vsumf0, vsumf1);
  8692. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8693. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8694. *s = vec_extract(vsumf0, 0);
  8695. #elif defined __loongarch_asx
  8696. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  8697. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  8698. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  8699. __m256 acc = (__m256)__lasx_xvldi(0);
  8700. for (int i = 0; i < nb; ++i) {
  8701. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8702. const uint8_t * restrict q4 = x[i].ql;
  8703. const uint8_t * restrict qh = x[i].qh;
  8704. const int8_t * restrict q8 = y[i].qs;
  8705. const __m64 scales_1 = __lasx_xvreplgr2vr_b(x[i].scales[0]);
  8706. const __m64 scales_2 = __lasx_xvreplgr2vr_b(x[i].scales[1]);
  8707. const __m64 scales_3 = __lasx_xvreplgr2vr_b(x[i].scales[2]);
  8708. const __m64 scales_4 = __lasx_xvreplgr2vr_b(x[i].scales[3]);
  8709. __m256i sumi = __lasx_xvldi(0);
  8710. __m128i scale_0 = __lsx_vinsgr2vr_d(scale_0, scales_1, 0);
  8711. scale_0 = __lsx_vinsgr2vr_d(scale_0, scales_2, 1);
  8712. __m128i scale_1 = __lsx_vinsgr2vr_d(scale_1, scales_3, 0);
  8713. scale_1 = __lsx_vinsgr2vr_d(scale_1, scales_4, 1);
  8714. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0);
  8715. const __m128i q4bitsH = __lsx_vld((const __m128i*)qh, 0);
  8716. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(lasx_insertf128(__lasx_xvsrli_h(q4bitsH, 2), q4bitsH), m2), 4);
  8717. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(lasx_insertf128(__lasx_xvsrli_h(q4bitsH, 6), __lasx_xvsrli_h(q4bitsH, 4)), m2), 4);
  8718. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  8719. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_1);
  8720. const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0);
  8721. const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0);
  8722. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  8723. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  8724. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  8725. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  8726. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  8727. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  8728. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  8729. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  8730. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  8731. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  8732. }
  8733. *s = hsum_float_8(acc);
  8734. #else
  8735. int8_t aux8[QK_K];
  8736. int16_t aux16[8];
  8737. float sums [8];
  8738. int32_t aux32[8];
  8739. memset(sums, 0, 8*sizeof(float));
  8740. float sumf = 0;
  8741. for (int i = 0; i < nb; ++i) {
  8742. const uint8_t * restrict q4 = x[i].ql;
  8743. const uint8_t * restrict qh = x[i].qh;
  8744. const int8_t * restrict q8 = y[i].qs;
  8745. memset(aux32, 0, 8*sizeof(int32_t));
  8746. int8_t * restrict a = aux8;
  8747. for (int l = 0; l < 16; ++l) {
  8748. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  8749. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  8750. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  8751. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  8752. }
  8753. int is = 0;
  8754. for (int j = 0; j < QK_K/16; ++j) {
  8755. int scale = x[i].scales[is++];
  8756. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  8757. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  8758. q8 += 8; a += 8;
  8759. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  8760. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  8761. q8 += 8; a += 8;
  8762. }
  8763. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8764. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  8765. }
  8766. for (int l = 0; l < 8; ++l) sumf += sums[l];
  8767. *s = sumf;
  8768. #endif
  8769. }
  8770. #endif
  8771. #if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  8772. static const int8_t keven_signs_q2xs[1024] = {
  8773. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  8774. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  8775. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  8776. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  8777. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  8778. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  8779. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  8780. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  8781. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  8782. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  8783. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  8784. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  8785. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  8786. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  8787. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  8788. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  8789. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  8790. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  8791. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  8792. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  8793. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  8794. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  8795. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  8796. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  8797. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  8798. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  8799. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  8800. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  8801. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  8802. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  8803. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  8804. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  8805. };
  8806. #endif
  8807. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8808. assert(n % QK_K == 0);
  8809. assert(nrc == 1);
  8810. UNUSED(nrc);
  8811. UNUSED(bx);
  8812. UNUSED(by);
  8813. UNUSED(bs);
  8814. const block_iq2_xxs * restrict x = vx;
  8815. const block_q8_K * restrict y = vy;
  8816. const int nb = n / QK_K;
  8817. #if defined(__ARM_NEON)
  8818. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8819. uint32_t aux32[4];
  8820. const uint8_t * aux8 = (const uint8_t *)aux32;
  8821. ggml_int8x16x4_t q2u;
  8822. ggml_int8x16x4_t q2s;
  8823. ggml_int8x16x4_t q8b;
  8824. float sumf = 0;
  8825. for (int i = 0; i < nb; ++i) {
  8826. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8827. const uint16_t * restrict q2 = x[i].qs;
  8828. const int8_t * restrict q8 = y[i].qs;
  8829. float sumf1 = 0, sumf2 = 0;
  8830. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8831. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8832. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  8833. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  8834. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  8835. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  8836. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  8837. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  8838. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  8839. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  8840. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  8841. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  8842. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  8843. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  8844. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  8845. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  8846. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  8847. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  8848. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  8849. }
  8850. sumf += d*(sumf1 + sumf2);
  8851. }
  8852. *s = 0.25f * sumf;
  8853. #elif defined(__AVX2__)
  8854. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8855. uint32_t aux32[4];
  8856. const uint8_t * aux8 = (const uint8_t *)aux32;
  8857. __m256 accumf = _mm256_setzero_ps();
  8858. for (int i = 0; i < nb; ++i) {
  8859. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8860. const uint16_t * restrict q2 = x[i].qs;
  8861. const int8_t * restrict q8 = y[i].qs;
  8862. __m256i sumi1 = _mm256_setzero_si256();
  8863. __m256i sumi2 = _mm256_setzero_si256();
  8864. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8865. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8866. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8867. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  8868. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  8869. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  8870. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8871. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8872. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  8873. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  8874. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8875. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8876. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8877. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8878. const uint16_t ls1 = aux32[1] >> 28;
  8879. const uint16_t ls2 = aux32[3] >> 28;
  8880. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8881. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8882. sumi1 = _mm256_add_epi32(sumi1, p1);
  8883. sumi2 = _mm256_add_epi32(sumi2, p2);
  8884. }
  8885. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8886. }
  8887. *s = 0.125f * hsum_float_8(accumf);
  8888. #elif defined(__POWER9_VECTOR__)
  8889. vector float vsumf0 = vec_splats(0.0f);
  8890. vector float vsumf1 = vec_splats(0.0f);
  8891. vector float vsumf2 = vec_splats(0.0f);
  8892. vector float vsumf3 = vec_splats(0.0f);
  8893. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8894. for (int i = 0; i < nb; ++i) {
  8895. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8896. vector float vyd = vec_splats(y[i].d);
  8897. vector float vd = vec_mul(vxd, vyd);
  8898. vector signed int vsumi0 = vec_splats((int32_t)0);
  8899. vector signed int vsumi1 = vec_splats((int32_t)0);
  8900. vector signed int vsumi2 = vec_splats((int32_t)0);
  8901. vector signed int vsumi3 = vec_splats((int32_t)0);
  8902. vector signed int vsumi4 = vec_splats((int32_t)0);
  8903. vector signed int vsumi5 = vec_splats((int32_t)0);
  8904. vector signed int vsumi6 = vec_splats((int32_t)0);
  8905. vector signed int vsumi7 = vec_splats((int32_t)0);
  8906. const uint16_t * restrict q2 = x[i].qs;
  8907. const int8_t * restrict q8 = y[i].qs;
  8908. for (int j = 0; j < QK_K/32; j += 2) {
  8909. __builtin_prefetch(q2, 0, 1);
  8910. __builtin_prefetch(q8, 0, 1);
  8911. uint32_t aux32[4];
  8912. const uint8_t * aux8 = (const uint8_t *)aux32;
  8913. memcpy(aux32, q2, 4*sizeof(uint32_t));
  8914. q2 += 8;
  8915. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  8916. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  8917. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  8918. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  8919. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  8920. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  8921. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  8922. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  8923. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  8924. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  8925. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  8926. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  8927. vector signed char q8y0 = vec_xl( 0, q8);
  8928. vector signed char q8y1 = vec_xl(16, q8);
  8929. vector signed char q8y2 = vec_xl(32, q8);
  8930. vector signed char q8y3 = vec_xl(48, q8);
  8931. q8 += 64;
  8932. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8933. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8934. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8935. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8936. const uint16_t ls0 = aux32[1] >> 28;
  8937. const uint16_t ls1 = aux32[3] >> 28;
  8938. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  8939. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  8940. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  8941. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  8942. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  8943. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  8944. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  8945. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  8946. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  8947. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  8948. }
  8949. vsumi0 = vec_add(vsumi0, vsumi4);
  8950. vsumi1 = vec_add(vsumi1, vsumi5);
  8951. vsumi2 = vec_add(vsumi2, vsumi6);
  8952. vsumi3 = vec_add(vsumi3, vsumi7);
  8953. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8954. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8955. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8956. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8957. }
  8958. vsumf0 = vec_add(vsumf0, vsumf2);
  8959. vsumf1 = vec_add(vsumf1, vsumf3);
  8960. vsumf0 = vec_add(vsumf0, vsumf1);
  8961. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8962. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8963. *s = 0.125f * vec_extract(vsumf0, 0);
  8964. #elif defined(__loongarch_asx)
  8965. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8966. uint32_t aux32[4];
  8967. const uint8_t * aux8 = (const uint8_t *)aux32;
  8968. __m256 accumf = (__m256)__lasx_xvldi(0);
  8969. for (int i = 0; i < nb; ++i) {
  8970. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8971. const uint16_t * restrict q2 = x[i].qs;
  8972. const int8_t * restrict q8 = y[i].qs;
  8973. __m256i sumi1 = __lasx_xvldi(0);
  8974. __m256i sumi2 = __lasx_xvldi(0);
  8975. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8976. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8977. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8978. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  8979. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  8980. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  8981. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8982. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8983. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  8984. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  8985. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  8986. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  8987. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8988. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8989. const uint16_t ls1 = aux32[1] >> 28;
  8990. const uint16_t ls2 = aux32[3] >> 28;
  8991. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8992. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8993. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8994. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8995. }
  8996. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8997. }
  8998. *s = 0.125f * hsum_float_8(accumf);
  8999. #else
  9000. uint32_t aux32[2];
  9001. const uint8_t * aux8 = (const uint8_t *)aux32;
  9002. float sumf = 0.f;
  9003. for (int i = 0; i < nb; ++i) {
  9004. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9005. const uint16_t * restrict q2 = x[i].qs;
  9006. const int8_t * restrict q8 = y[i].qs;
  9007. int32_t bsum = 0;
  9008. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  9009. memcpy(aux32, q2, 2*sizeof(uint32_t));
  9010. q2 += 4;
  9011. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  9012. int32_t sumi = 0;
  9013. for (int l = 0; l < 4; ++l) {
  9014. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  9015. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  9016. for (int j = 0; j < 8; ++j) {
  9017. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  9018. }
  9019. q8 += 8;
  9020. }
  9021. bsum += sumi * ls;
  9022. }
  9023. sumf += d * bsum;
  9024. }
  9025. *s = 0.125f * sumf;
  9026. #endif
  9027. }
  9028. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9029. assert(n % QK_K == 0);
  9030. assert(nrc == 1);
  9031. UNUSED(nrc);
  9032. UNUSED(bx);
  9033. UNUSED(by);
  9034. UNUSED(bs);
  9035. const block_iq2_xs * restrict x = vx;
  9036. const block_q8_K * restrict y = vy;
  9037. const int nb = n / QK_K;
  9038. #if defined(__ARM_NEON)
  9039. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9040. ggml_int8x16x4_t q2u;
  9041. ggml_int8x16x4_t q2s;
  9042. ggml_int8x16x4_t q8b;
  9043. int32x4x4_t scales32;
  9044. float sumf = 0;
  9045. for (int i = 0; i < nb; ++i) {
  9046. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9047. const uint16_t * restrict q2 = x[i].qs;
  9048. const int8_t * restrict q8 = y[i].qs;
  9049. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  9050. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  9051. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  9052. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  9053. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  9054. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  9055. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  9056. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  9057. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  9058. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  9059. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  9060. int32x4_t sumi = vdupq_n_s32(0);
  9061. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  9062. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9063. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  9064. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  9065. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  9066. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  9067. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  9068. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  9069. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  9070. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  9071. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  9072. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  9073. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  9074. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  9075. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  9076. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  9077. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  9078. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  9079. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  9080. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  9081. q2 += 8;
  9082. }
  9083. sumf += d*vaddvq_s32(sumi);
  9084. }
  9085. *s = 0.125f * sumf;
  9086. #elif defined(__AVX2__)
  9087. const __m256i mone = _mm256_set1_epi8(1);
  9088. static const char block_sign_shuffle_mask_1[32] = {
  9089. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  9090. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  9091. };
  9092. static const char block_sign_shuffle_mask_2[32] = {
  9093. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  9094. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  9095. };
  9096. static const uint8_t bit_selector_mask_bytes[32] = {
  9097. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9098. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9099. };
  9100. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  9101. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  9102. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  9103. #if QK_K == 64
  9104. static const uint8_t k_bit_helper[16] = {
  9105. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  9106. };
  9107. const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper);
  9108. const __m128i m511 = _mm_set1_epi16(511);
  9109. typedef union {
  9110. __m128i vec_index;
  9111. uint16_t index[8];
  9112. } index_t;
  9113. index_t idx;
  9114. __m256 accumf = _mm256_setzero_ps();
  9115. for (int i = 0; i < nb; ++i) {
  9116. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9117. const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs);
  9118. idx.vec_index = _mm_and_si128(q2_data, m511);
  9119. const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9);
  9120. const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13);
  9121. const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper);
  9122. const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  9123. const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
  9124. const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits);
  9125. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  9126. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));
  9127. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
  9128. iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
  9129. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
  9130. iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);
  9131. __m256i signs;
  9132. signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1);
  9133. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  9134. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  9135. signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2);
  9136. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  9137. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  9138. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  9139. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  9140. const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
  9141. const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
  9142. const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));
  9143. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf);
  9144. }
  9145. *s = 0.125f * hsum_float_8(accumf);
  9146. #else
  9147. static const uint8_t k_bit_helper[32] = {
  9148. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  9149. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  9150. };
  9151. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  9152. const __m256i m511 = _mm256_set1_epi16(511);
  9153. const __m128i m4 = _mm_set1_epi8(0xf);
  9154. const __m128i m1 = _mm_set1_epi8(1);
  9155. uint64_t aux64;
  9156. // somewhat hacky, but gives a significant boost in performance
  9157. __m256i aux_gindex;
  9158. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  9159. __m256 accumf = _mm256_setzero_ps();
  9160. for (int i = 0; i < nb; ++i) {
  9161. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9162. const uint16_t * restrict q2 = x[i].qs;
  9163. const int8_t * restrict q8 = y[i].qs;
  9164. memcpy(&aux64, x[i].scales, 8);
  9165. __m128i stmp = _mm_set1_epi64x(aux64);
  9166. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  9167. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  9168. __m256i sumi1 = _mm256_setzero_si256();
  9169. __m256i sumi2 = _mm256_setzero_si256();
  9170. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  9171. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  9172. aux_gindex = _mm256_and_si256(q2_data, m511);
  9173. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  9174. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  9175. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  9176. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  9177. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  9178. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9179. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9180. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9181. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9182. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  9183. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  9184. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  9185. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  9186. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  9187. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  9188. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  9189. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  9190. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  9191. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  9192. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  9193. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  9194. __m256i signs;
  9195. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  9196. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  9197. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  9198. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  9199. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  9200. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  9201. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  9202. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  9203. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  9204. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  9205. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  9206. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  9207. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  9208. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  9209. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  9210. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  9211. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  9212. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  9213. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  9214. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  9215. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  9216. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  9217. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  9218. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  9219. }
  9220. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  9221. }
  9222. *s = 0.125f * hsum_float_8(accumf);
  9223. #endif
  9224. #elif defined(__loongarch_asx)
  9225. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  9226. static const char block_sign_shuffle_mask_1[32] = {
  9227. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  9228. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  9229. };
  9230. static const char block_sign_shuffle_mask_2[32] = {
  9231. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  9232. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  9233. };
  9234. static const uint8_t bit_selector_mask_bytes[32] = {
  9235. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9236. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9237. };
  9238. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  9239. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  9240. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  9241. #if QK_K == 64
  9242. static const uint8_t k_bit_helper[16] = {
  9243. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  9244. };
  9245. const __m128i bit_helper = __lsx_vld((const __m128i*)k_bit_helper, 0);
  9246. const __m128i m511 = __lsx_vreplgr2vr_h(511);
  9247. typedef union {
  9248. __m128i vec_index;
  9249. uint16_t index[8];
  9250. } index_t;
  9251. index_t idx;
  9252. __m256 accumf = (__m256)__lasx_xvldi(0);
  9253. for (int i = 0; i < nb; ++i) {
  9254. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9255. const __m128i q2_data = __lsx_vld((const __m128i*)x[i].qs, 0);
  9256. idx.vec_index = __lsx_vand_v(q2_data, m511);
  9257. const __m128i partial_sign_bits = __lsx_vsrli_h(q2_data, 9);
  9258. const __m128i partial_sign_bits_upper = __lsx_vsrli_h(q2_data, 13);
  9259. const __m128i partial_sign_bits_for_counting = __lsx_vxor_v(partial_sign_bits, partial_sign_bits_upper);
  9260. const __m128i odd_bits = lsx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  9261. const __m128i full_sign_bits = __lsx_vor_v(partial_sign_bits, odd_bits);
  9262. const __m256i full_signs = lasx_insertf128(full_sign_bits, full_sign_bits);
  9263. const __m256i q8_1 = __lasx_xvld((const __m256i *)y[i].qs, 0);
  9264. const __m256i q8_2 = __lasx_xvld((const __m256i *)(y[i].qs+32), 0);
  9265. const __m256i q2_1 = lasx_set_d(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
  9266. iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
  9267. const __m256i q2_2 = lasx_set_d(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
  9268. iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);
  9269. __m256i signs;
  9270. signs = lasx_shuffle_b(full_signs, block_sign_shuffle_1);
  9271. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  9272. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  9273. signs = lasx_shuffle_b(full_signs, block_sign_shuffle_2);
  9274. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  9275. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  9276. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9277. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9278. const __m256i sc1 = lasx_insertf128(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), __lsx_vreplgr2vr_h(2*(x[i].scales[0] & 0xf)+1));
  9279. const __m256i sc2 = lasx_insertf128(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), __lsx_vreplgr2vr_h(2*(x[i].scales[1] & 0xf)+1));
  9280. const __m256i sum = __lasx_xvadd_w(lasx_madd_h(sc1, dot1), lasx_madd_h(sc2, dot2));
  9281. accumf = __lasx_vfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sum), accumf);
  9282. }
  9283. *s = 0.125f * hsum_float_8(accumf);
  9284. #else
  9285. static const uint8_t k_bit_helper[32] = {
  9286. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  9287. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  9288. };
  9289. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  9290. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  9291. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  9292. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  9293. uint64_t aux64;
  9294. // somewhat hacky, but gives a significant boost in performance
  9295. __m256i aux_gindex;
  9296. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  9297. __m256 accumf = (__m256)__lasx_xvldi(0);
  9298. for (int i = 0; i < nb; ++i) {
  9299. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9300. const uint16_t * restrict q2 = x[i].qs;
  9301. const int8_t * restrict q8 = y[i].qs;
  9302. memcpy(&aux64, x[i].scales, 8);
  9303. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  9304. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  9305. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  9306. __m256i sumi1 = __lasx_xvldi(0);
  9307. __m256i sumi2 = __lasx_xvldi(0);
  9308. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  9309. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  9310. aux_gindex = __lasx_xvand_v(q2_data, m511);
  9311. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  9312. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  9313. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  9314. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  9315. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  9316. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9317. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9318. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9319. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9320. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  9321. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  9322. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  9323. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  9324. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  9325. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  9326. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  9327. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  9328. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  9329. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  9330. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  9331. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  9332. __m256i signs;
  9333. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  9334. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  9335. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  9336. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  9337. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  9338. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  9339. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  9340. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  9341. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  9342. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  9343. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  9344. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  9345. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9346. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9347. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  9348. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  9349. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  9350. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  9351. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  9352. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  9353. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  9354. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  9355. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  9356. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  9357. }
  9358. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9359. }
  9360. *s = 0.125f * hsum_float_8(accumf);
  9361. #endif
  9362. #elif defined(__POWER9_VECTOR__)
  9363. vector float vsumf0 = vec_splats(0.0f);
  9364. vector float vsumf1 = vec_splats(0.0f);
  9365. vector float vsumf2 = vec_splats(0.0f);
  9366. vector float vsumf3 = vec_splats(0.0f);
  9367. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9368. for (int i = 0; i < nb; ++i) {
  9369. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9370. vector float vyd = vec_splats(y[i].d);
  9371. vector float vd = vec_mul(vxd, vyd);
  9372. vector signed int vsumi0 = vec_splats((int32_t)0);
  9373. vector signed int vsumi1 = vec_splats((int32_t)0);
  9374. vector signed int vsumi2 = vec_splats((int32_t)0);
  9375. vector signed int vsumi3 = vec_splats((int32_t)0);
  9376. vector signed int vsumi4 = vec_splats((int32_t)0);
  9377. vector signed int vsumi5 = vec_splats((int32_t)0);
  9378. vector signed int vsumi6 = vec_splats((int32_t)0);
  9379. vector signed int vsumi7 = vec_splats((int32_t)0);
  9380. const uint16_t * restrict q2 = x[i].qs;
  9381. const uint8_t * restrict sc = x[i].scales;
  9382. const int8_t * restrict q8 = y[i].qs;
  9383. for (int j = 0; j < QK_K/64; ++j) {
  9384. __builtin_prefetch(q2, 0, 1);
  9385. __builtin_prefetch(q8, 0, 1);
  9386. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  9387. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  9388. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  9389. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  9390. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  9391. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  9392. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  9393. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  9394. q2 += 8;
  9395. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  9396. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  9397. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  9398. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  9399. vector signed char q8y0 = vec_xl( 0, q8);
  9400. vector signed char q8y1 = vec_xl(16, q8);
  9401. vector signed char q8y2 = vec_xl(32, q8);
  9402. vector signed char q8y3 = vec_xl(48, q8);
  9403. q8 += 64;
  9404. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  9405. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  9406. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  9407. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  9408. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  9409. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  9410. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  9411. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  9412. sc += 2;
  9413. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  9414. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  9415. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  9416. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  9417. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  9418. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  9419. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  9420. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  9421. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  9422. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  9423. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  9424. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  9425. }
  9426. vsumi0 = vec_add(vsumi0, vsumi4);
  9427. vsumi1 = vec_add(vsumi1, vsumi5);
  9428. vsumi2 = vec_add(vsumi2, vsumi6);
  9429. vsumi3 = vec_add(vsumi3, vsumi7);
  9430. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9431. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9432. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9433. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9434. }
  9435. vsumf0 = vec_add(vsumf0, vsumf2);
  9436. vsumf1 = vec_add(vsumf1, vsumf3);
  9437. vsumf0 = vec_add(vsumf0, vsumf1);
  9438. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9439. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9440. *s = 0.125f * vec_extract(vsumf0, 0);
  9441. #else
  9442. float sumf = 0.f;
  9443. for (int i = 0; i < nb; ++i) {
  9444. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9445. const uint16_t * restrict q2 = x[i].qs;
  9446. const uint8_t * restrict sc = x[i].scales;
  9447. const int8_t * restrict q8 = y[i].qs;
  9448. int32_t bsum = 0;
  9449. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  9450. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  9451. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  9452. int32_t sumi = 0;
  9453. for (int l = 0; l < 2; ++l) {
  9454. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  9455. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  9456. for (int j = 0; j < 8; ++j) {
  9457. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  9458. }
  9459. q8 += 8;
  9460. }
  9461. bsum += sumi * ls1;
  9462. sumi = 0;
  9463. for (int l = 2; l < 4; ++l) {
  9464. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  9465. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  9466. for (int j = 0; j < 8; ++j) {
  9467. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  9468. }
  9469. q8 += 8;
  9470. }
  9471. bsum += sumi * ls2;
  9472. q2 += 4;
  9473. }
  9474. sumf += d * bsum;
  9475. }
  9476. *s = 0.125f * sumf;
  9477. #endif
  9478. }
  9479. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9480. assert(n % QK_K == 0);
  9481. assert(nrc == 1);
  9482. UNUSED(nrc);
  9483. UNUSED(bx);
  9484. UNUSED(by);
  9485. UNUSED(bs);
  9486. const block_iq2_s * restrict x = vx;
  9487. const block_q8_K * restrict y = vy;
  9488. const int nb = n / QK_K;
  9489. #if defined(__ARM_NEON)
  9490. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9491. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9492. };
  9493. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  9494. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  9495. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  9496. const uint8x16_t m1 = vdupq_n_u8(1);
  9497. const int32x4_t vzero = vdupq_n_s32(0);
  9498. uint8x16x2_t vs;
  9499. ggml_int8x16x4_t q2s;
  9500. ggml_int8x16x4_t q8b;
  9501. float sumf = 0;
  9502. for (int i = 0; i < nb; ++i) {
  9503. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9504. const uint8_t * restrict qs = x[i].qs;
  9505. const uint8_t * restrict qh = x[i].qh;
  9506. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  9507. const int8_t * restrict q8 = y[i].qs;
  9508. int sumi1 = 0, sumi2 = 0;
  9509. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9510. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9511. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  9512. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  9513. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  9514. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  9515. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  9516. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  9517. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  9518. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  9519. qs += 8;
  9520. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  9521. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  9522. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  9523. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  9524. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  9525. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  9526. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  9527. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  9528. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  9529. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  9530. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  9531. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  9532. signs += 4;
  9533. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  9534. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  9535. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  9536. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  9537. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  9538. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  9539. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  9540. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  9541. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  9542. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  9543. }
  9544. sumf += d*(sumi1 + sumi2);
  9545. }
  9546. *s = 0.125f * sumf;
  9547. #elif defined(__AVX2__)
  9548. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9549. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9550. };
  9551. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9552. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9553. };
  9554. const __m128i m4 = _mm_set1_epi8(0xf);
  9555. const __m128i m1 = _mm_set1_epi8(1);
  9556. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  9557. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  9558. uint64_t aux64;
  9559. __m256 accumf = _mm256_setzero_ps();
  9560. for (int i = 0; i < nb; ++i) {
  9561. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9562. const uint8_t * restrict qs = x[i].qs;
  9563. const uint8_t * restrict qh = x[i].qh;
  9564. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  9565. const int8_t * restrict q8 = y[i].qs;
  9566. memcpy(&aux64, x[i].scales, 8);
  9567. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  9568. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  9569. __m256i sumi1 = _mm256_setzero_si256();
  9570. __m256i sumi2 = _mm256_setzero_si256();
  9571. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9572. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9573. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9574. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  9575. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  9576. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  9577. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  9578. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  9579. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  9580. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  9581. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  9582. qs += 8;
  9583. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  9584. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  9585. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  9586. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  9587. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  9588. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  9589. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  9590. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  9591. signs += 4;
  9592. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  9593. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  9594. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  9595. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  9596. sumi1 = _mm256_add_epi32(sumi1, p1);
  9597. sumi2 = _mm256_add_epi32(sumi2, p2);
  9598. }
  9599. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  9600. }
  9601. *s = 0.125f * hsum_float_8(accumf);
  9602. #elif defined(__POWER9_VECTOR__)
  9603. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9604. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9605. };
  9606. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  9607. vector float vsumf0 = vec_splats(0.0f);
  9608. vector float vsumf1 = vec_splats(0.0f);
  9609. vector float vsumf2 = vec_splats(0.0f);
  9610. vector float vsumf3 = vec_splats(0.0f);
  9611. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  9612. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  9613. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  9614. for (int i = 0; i < nb; ++i) {
  9615. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9616. vector float vyd = vec_splats(y[i].d);
  9617. vector float vd = vec_mul(vxd, vyd);
  9618. vector signed int vsumi0 = vec_splats((int32_t)0);
  9619. vector signed int vsumi1 = vec_splats((int32_t)0);
  9620. vector signed int vsumi2 = vec_splats((int32_t)0);
  9621. vector signed int vsumi3 = vec_splats((int32_t)0);
  9622. vector signed int vsumi4 = vec_splats((int32_t)0);
  9623. vector signed int vsumi5 = vec_splats((int32_t)0);
  9624. vector signed int vsumi6 = vec_splats((int32_t)0);
  9625. vector signed int vsumi7 = vec_splats((int32_t)0);
  9626. const uint8_t * restrict q2 = x[i].qs;
  9627. const uint8_t * restrict qh = x[i].qh;
  9628. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  9629. const uint8_t * restrict sc = x[i].scales;
  9630. const int8_t * restrict q8 = y[i].qs;
  9631. for (int j = 0; j < QK_K/32; j += 2) {
  9632. __builtin_prefetch(q2, 0, 1);
  9633. __builtin_prefetch(q8, 0, 1);
  9634. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  9635. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  9636. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  9637. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  9638. q2 += 8;
  9639. qh += 2;
  9640. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  9641. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  9642. signs += 4;
  9643. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  9644. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  9645. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  9646. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  9647. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  9648. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  9649. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  9650. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  9651. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  9652. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  9653. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  9654. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  9655. vector signed char q8y0 = vec_xl( 0, q8);
  9656. vector signed char q8y1 = vec_xl(16, q8);
  9657. vector signed char q8y2 = vec_xl(32, q8);
  9658. vector signed char q8y3 = vec_xl(48, q8);
  9659. q8 += 64;
  9660. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  9661. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  9662. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  9663. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  9664. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  9665. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  9666. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  9667. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  9668. sc += 2;
  9669. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  9670. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  9671. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  9672. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  9673. vsumi0 = vec_add(vec_mule(qv0, vscales0), vsumi0);
  9674. vsumi1 = vec_add(vec_mule(qv1, vscales1), vsumi1);
  9675. vsumi2 = vec_add(vec_mule(qv2, vscales2), vsumi2);
  9676. vsumi3 = vec_add(vec_mule(qv3, vscales3), vsumi3);
  9677. vsumi4 = vec_add(vec_mulo(qv0, vscales0), vsumi4);
  9678. vsumi5 = vec_add(vec_mulo(qv1, vscales1), vsumi5);
  9679. vsumi6 = vec_add(vec_mulo(qv2, vscales2), vsumi6);
  9680. vsumi7 = vec_add(vec_mulo(qv3, vscales3), vsumi7);
  9681. }
  9682. vsumi0 = vec_add(vsumi0, vsumi4);
  9683. vsumi1 = vec_add(vsumi1, vsumi5);
  9684. vsumi2 = vec_add(vsumi2, vsumi6);
  9685. vsumi3 = vec_add(vsumi3, vsumi7);
  9686. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9687. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9688. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9689. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9690. }
  9691. vsumf0 = vec_add(vsumf0, vsumf2);
  9692. vsumf1 = vec_add(vsumf1, vsumf3);
  9693. vsumf0 = vec_add(vsumf0, vsumf1);
  9694. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9695. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9696. *s = 0.125f * vec_extract(vsumf0, 0);
  9697. #elif defined(__loongarch_asx)
  9698. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9699. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9700. };
  9701. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9702. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9703. };
  9704. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  9705. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  9706. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  9707. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  9708. uint64_t aux64;
  9709. __m256 accumf = (__m256)__lasx_xvldi(0);
  9710. for (int i = 0; i < nb; ++i) {
  9711. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9712. const uint8_t * restrict qs = x[i].qs;
  9713. const uint8_t * restrict qh = x[i].qh;
  9714. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  9715. const int8_t * restrict q8 = y[i].qs;
  9716. __m128i tmp1;
  9717. memcpy(&aux64, x[i].scales, 8);
  9718. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  9719. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  9720. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  9721. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  9722. __m256i sumi1 = __lasx_xvldi(0);
  9723. __m256i sumi2 = __lasx_xvldi(0);
  9724. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9725. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9726. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9727. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  9728. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  9729. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  9730. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  9731. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  9732. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  9733. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  9734. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  9735. qs += 8;
  9736. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  9737. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  9738. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  9739. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  9740. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  9741. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  9742. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  9743. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  9744. signs += 4;
  9745. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  9746. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  9747. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  9748. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  9749. sumi1 = __lasx_xvadd_w(sumi1, p1);
  9750. sumi2 = __lasx_xvadd_w(sumi2, p2);
  9751. }
  9752. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9753. }
  9754. *s = 0.125f * hsum_float_8(accumf);
  9755. #else
  9756. float sumf = 0;
  9757. for (int i = 0; i < nb; i++) {
  9758. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9759. const int8_t * q8 = y[i].qs;
  9760. const uint8_t * qs = x[i].qs;
  9761. const uint8_t * qh = x[i].qh;
  9762. const uint8_t * signs = qs + QK_K/8;
  9763. int bsum = 0;
  9764. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  9765. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  9766. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  9767. int sumi1 = 0, sumi2 = 0;
  9768. for (int l = 0; l < 2; ++l) {
  9769. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  9770. for (int j = 0; j < 8; ++j) {
  9771. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  9772. }
  9773. q8 += 8;
  9774. }
  9775. for (int l = 2; l < 4; ++l) {
  9776. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  9777. for (int j = 0; j < 8; ++j) {
  9778. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  9779. }
  9780. q8 += 8;
  9781. }
  9782. bsum += ls1 * sumi1 + ls2 * sumi2;
  9783. qs += 4;
  9784. signs += 4;
  9785. }
  9786. sumf += d * bsum;
  9787. }
  9788. *s = 0.125f * sumf;
  9789. #endif
  9790. }
  9791. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9792. assert(n % QK_K == 0);
  9793. assert(nrc == 1);
  9794. UNUSED(nrc);
  9795. UNUSED(bx);
  9796. UNUSED(by);
  9797. UNUSED(bs);
  9798. const block_iq3_xxs * restrict x = vx;
  9799. const block_q8_K * restrict y = vy;
  9800. const int nb = n / QK_K;
  9801. #if defined(__ARM_NEON)
  9802. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9803. uint32_t aux32[2];
  9804. ggml_int8x16x4_t q3s;
  9805. ggml_int8x16x4_t q8b;
  9806. float sumf = 0;
  9807. for (int i = 0; i < nb; ++i) {
  9808. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9809. const uint8_t * restrict q3 = x[i].qs;
  9810. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9811. const int8_t * restrict q8 = y[i].qs;
  9812. float sumf1 = 0, sumf2 = 0;
  9813. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9814. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9815. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  9816. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  9817. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  9818. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  9819. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  9820. q3 += 16;
  9821. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  9822. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  9823. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  9824. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  9825. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  9826. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  9827. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  9828. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  9829. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  9830. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  9831. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  9832. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  9833. }
  9834. sumf += d*(sumf1 + sumf2);
  9835. }
  9836. *s = 0.5f * sumf;
  9837. #elif defined(__AVX2__)
  9838. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9839. uint32_t aux32[2];
  9840. __m256 accumf = _mm256_setzero_ps();
  9841. for (int i = 0; i < nb; ++i) {
  9842. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9843. const uint8_t * restrict q3 = x[i].qs;
  9844. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9845. const int8_t * restrict q8 = y[i].qs;
  9846. __m256i sumi1 = _mm256_setzero_si256();
  9847. __m256i sumi2 = _mm256_setzero_si256();
  9848. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9849. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9850. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9851. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9852. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9853. q3 += 8;
  9854. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9855. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9856. q3 += 8;
  9857. memcpy(aux32, gas, 8); gas += 8;
  9858. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  9859. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  9860. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  9861. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  9862. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  9863. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  9864. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  9865. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  9866. const uint16_t ls1 = aux32[0] >> 28;
  9867. const uint16_t ls2 = aux32[1] >> 28;
  9868. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  9869. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  9870. sumi1 = _mm256_add_epi32(sumi1, p1);
  9871. sumi2 = _mm256_add_epi32(sumi2, p2);
  9872. }
  9873. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  9874. }
  9875. *s = 0.25f * hsum_float_8(accumf);
  9876. #elif defined(__POWER9_VECTOR__)
  9877. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9878. vector float vsumf0 = vec_splats(0.0f);
  9879. vector float vsumf1 = vec_splats(0.0f);
  9880. vector float vsumf2 = vec_splats(0.0f);
  9881. vector float vsumf3 = vec_splats(0.0f);
  9882. for (int i = 0; i < nb; ++i) {
  9883. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9884. vector float vyd = vec_splats(y[i].d);
  9885. vector float vd = vec_mul(vxd, vyd);
  9886. vector signed int vsumi0 = vec_splats((int32_t)0);
  9887. vector signed int vsumi1 = vec_splats((int32_t)0);
  9888. vector signed int vsumi2 = vec_splats((int32_t)0);
  9889. vector signed int vsumi3 = vec_splats((int32_t)0);
  9890. vector signed int vsumi4 = vec_splats((int32_t)0);
  9891. vector signed int vsumi5 = vec_splats((int32_t)0);
  9892. vector signed int vsumi6 = vec_splats((int32_t)0);
  9893. vector signed int vsumi7 = vec_splats((int32_t)0);
  9894. const uint8_t * restrict q3 = x[i].qs;
  9895. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  9896. const int8_t * restrict q8 = y[i].qs;
  9897. #pragma GCC unroll 1
  9898. for (int j = 0; j < QK_K/32; j += 2) {
  9899. __builtin_prefetch(q3, 0, 1);
  9900. __builtin_prefetch(q8, 0, 1);
  9901. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  9902. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  9903. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  9904. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  9905. q3 += 16;
  9906. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  9907. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  9908. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  9909. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  9910. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  9911. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  9912. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  9913. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  9914. vector signed char q8y0 = vec_xl( 0, q8);
  9915. vector signed char q8y1 = vec_xl(16, q8);
  9916. vector signed char q8y2 = vec_xl(32, q8);
  9917. vector signed char q8y3 = vec_xl(48, q8);
  9918. q8 += 64;
  9919. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  9920. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  9921. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  9922. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  9923. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  9924. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  9925. signs += 2;
  9926. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9927. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9928. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  9929. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  9930. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  9931. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  9932. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  9933. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  9934. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  9935. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  9936. }
  9937. vsumi0 = vec_add(vsumi0, vsumi4);
  9938. vsumi1 = vec_add(vsumi1, vsumi5);
  9939. vsumi2 = vec_add(vsumi2, vsumi6);
  9940. vsumi3 = vec_add(vsumi3, vsumi7);
  9941. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9942. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9943. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9944. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9945. }
  9946. vsumf0 = vec_add(vsumf0, vsumf2);
  9947. vsumf1 = vec_add(vsumf1, vsumf3);
  9948. vsumf0 = vec_add(vsumf0, vsumf1);
  9949. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9950. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9951. *s = 0.25f * vec_extract(vsumf0, 0);
  9952. #elif defined(__loongarch_asx)
  9953. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9954. uint32_t aux32[2];
  9955. __m256 accumf = (__m256)__lasx_xvldi(0);
  9956. for (int i = 0; i < nb; ++i) {
  9957. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9958. const uint8_t * restrict q3 = x[i].qs;
  9959. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9960. const int8_t * restrict q8 = y[i].qs;
  9961. __m256i sumi1 = __lasx_xvldi(0);
  9962. __m256i sumi2 = __lasx_xvldi(0);
  9963. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9964. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9965. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9966. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9967. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9968. q3 += 8;
  9969. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9970. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9971. q3 += 8;
  9972. memcpy(aux32, gas, 8); gas += 8;
  9973. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  9974. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  9975. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  9976. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  9977. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  9978. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  9979. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9980. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9981. const uint16_t ls1 = aux32[0] >> 28;
  9982. const uint16_t ls2 = aux32[1] >> 28;
  9983. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  9984. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  9985. sumi1 = __lasx_xvadd_w(sumi1, p1);
  9986. sumi2 = __lasx_xvadd_w(sumi2, p2);
  9987. }
  9988. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9989. }
  9990. *s = 0.25f * hsum_float_8(accumf);
  9991. #else
  9992. uint32_t aux32;
  9993. float sumf = 0.f;
  9994. for (int i = 0; i < nb; ++i) {
  9995. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9996. const uint8_t * restrict q3 = x[i].qs;
  9997. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9998. const int8_t * restrict q8 = y[i].qs;
  9999. int32_t bsum = 0;
  10000. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  10001. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  10002. const uint32_t ls = 2*(aux32 >> 28) + 1;
  10003. int32_t sumi = 0;
  10004. for (int l = 0; l < 4; ++l) {
  10005. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  10006. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  10007. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  10008. for (int j = 0; j < 4; ++j) {
  10009. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  10010. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  10011. }
  10012. q8 += 8;
  10013. }
  10014. q3 += 8;
  10015. bsum += sumi * ls;
  10016. }
  10017. sumf += d * bsum;
  10018. }
  10019. *s = 0.25f * sumf;
  10020. #endif
  10021. }
  10022. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10023. assert(n % QK_K == 0);
  10024. assert(nrc == 1);
  10025. UNUSED(nrc);
  10026. UNUSED(bx);
  10027. UNUSED(by);
  10028. UNUSED(bs);
  10029. const block_iq3_s * restrict x = vx;
  10030. const block_q8_K * restrict y = vy;
  10031. const int nb = n / QK_K;
  10032. #if defined(__ARM_NEON)
  10033. typedef union {
  10034. uint16x8_t vec_index;
  10035. uint16_t index[8];
  10036. } vec_index_t;
  10037. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  10038. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  10039. };
  10040. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  10041. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  10042. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  10043. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  10044. const int16x8_t hshift = vld1q_s16(k_shift);
  10045. const uint16x8_t m256 = vdupq_n_u16(256);
  10046. const uint8x16_t m1 = vdupq_n_u8(1);
  10047. uint8x16x2_t vs;
  10048. ggml_int8x16x4_t q3s;
  10049. ggml_int8x16x4_t q8b;
  10050. vec_index_t idx;
  10051. #if QK_K == 256
  10052. uint32_t scales32[2];
  10053. const uint8_t * scales8 = (const uint8_t *)scales32;
  10054. #endif
  10055. float sumf = 0;
  10056. for (int i = 0; i < nb; ++i) {
  10057. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  10058. const uint8_t * restrict qs = x[i].qs;
  10059. const uint8_t * restrict qh = x[i].qh;
  10060. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  10061. const int8_t * restrict q8 = y[i].qs;
  10062. #if QK_K == 256
  10063. memcpy(scales32, x[i].scales, 4);
  10064. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  10065. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  10066. #endif
  10067. int sumi1 = 0, sumi2 = 0;
  10068. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  10069. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  10070. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  10071. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  10072. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  10073. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  10074. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  10075. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  10076. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  10077. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  10078. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  10079. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  10080. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  10081. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  10082. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  10083. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  10084. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  10085. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  10086. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  10087. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  10088. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  10089. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  10090. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  10091. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  10092. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  10093. signs += 4;
  10094. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  10095. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  10096. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  10097. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  10098. #if QK_K == 256
  10099. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  10100. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  10101. #else
  10102. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  10103. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
  10104. #endif
  10105. }
  10106. sumf += d*(sumi1 + sumi2);
  10107. }
  10108. *s = sumf;
  10109. #elif defined(__AVX2__)
  10110. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  10111. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  10112. };
  10113. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  10114. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  10115. };
  10116. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  10117. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  10118. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  10119. const __m256i idx_mask = _mm256_set1_epi32(256);
  10120. typedef union {
  10121. __m256i vec[2];
  10122. uint32_t index[16];
  10123. } index_t;
  10124. index_t idx;
  10125. __m256 accumf = _mm256_setzero_ps();
  10126. for (int i = 0; i < nb; ++i) {
  10127. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  10128. const uint8_t * restrict qs = x[i].qs;
  10129. const uint8_t * restrict qh = x[i].qh;
  10130. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  10131. const int8_t * restrict q8 = y[i].qs;
  10132. __m256i sumi1 = _mm256_setzero_si256();
  10133. __m256i sumi2 = _mm256_setzero_si256();
  10134. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  10135. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  10136. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  10137. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  10138. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  10139. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  10140. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  10141. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  10142. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  10143. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  10144. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  10145. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  10146. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  10147. const __m256i q2_1 = _mm256_set_epi32(
  10148. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  10149. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  10150. );
  10151. const __m256i q2_2 = _mm256_set_epi32(
  10152. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  10153. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  10154. );
  10155. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  10156. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  10157. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  10158. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  10159. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  10160. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  10161. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  10162. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  10163. signs += 4;
  10164. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  10165. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  10166. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  10167. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  10168. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  10169. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  10170. sumi1 = _mm256_add_epi32(sumi1, p1);
  10171. sumi2 = _mm256_add_epi32(sumi2, p2);
  10172. }
  10173. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  10174. }
  10175. *s = hsum_float_8(accumf);
  10176. #elif defined(__POWER9_VECTOR__)
  10177. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  10178. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  10179. };
  10180. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  10181. vector float vsumf0 = vec_splats(0.0f);
  10182. vector float vsumf1 = vec_splats(0.0f);
  10183. vector float vsumf2 = vec_splats(0.0f);
  10184. vector float vsumf3 = vec_splats(0.0f);
  10185. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  10186. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  10187. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  10188. for (int i = 0; i < nb; ++i) {
  10189. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  10190. vector float vyd = vec_splats(y[i].d);
  10191. vector float vd = vec_mul(vxd, vyd);
  10192. const uint8_t * restrict q3 = x[i].qs;
  10193. const uint8_t * restrict qh = x[i].qh;
  10194. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  10195. const uint8_t * restrict sc = x[i].scales;
  10196. const int8_t * restrict q8 = y[i].qs;
  10197. vector signed int vsumi0 = vec_splats((int32_t)0);
  10198. vector signed int vsumi1 = vec_splats((int32_t)0);
  10199. vector signed int vsumi2 = vec_splats((int32_t)0);
  10200. vector signed int vsumi3 = vec_splats((int32_t)0);
  10201. vector signed int vsumi4 = vec_splats((int32_t)0);
  10202. vector signed int vsumi5 = vec_splats((int32_t)0);
  10203. vector signed int vsumi6 = vec_splats((int32_t)0);
  10204. vector signed int vsumi7 = vec_splats((int32_t)0);
  10205. for (int j = 0; j < QK_K/32; j += 2) {
  10206. __builtin_prefetch(q3, 0, 1);
  10207. __builtin_prefetch(q8, 0, 1);
  10208. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  10209. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  10210. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  10211. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  10212. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  10213. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  10214. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  10215. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  10216. q3 += 16;
  10217. qh += 2;
  10218. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  10219. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  10220. signs += 4;
  10221. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  10222. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  10223. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  10224. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  10225. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  10226. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  10227. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  10228. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  10229. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  10230. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  10231. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  10232. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  10233. vector signed char q8y0 = vec_xl( 0, q8);
  10234. vector signed char q8y1 = vec_xl(16, q8);
  10235. vector signed char q8y2 = vec_xl(32, q8);
  10236. vector signed char q8y3 = vec_xl(48, q8);
  10237. q8 += 64;
  10238. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  10239. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  10240. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  10241. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  10242. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  10243. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  10244. sc ++;
  10245. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  10246. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  10247. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  10248. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  10249. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  10250. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  10251. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  10252. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  10253. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  10254. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  10255. }
  10256. vsumi0 = vec_add(vsumi0, vsumi4);
  10257. vsumi1 = vec_add(vsumi1, vsumi5);
  10258. vsumi2 = vec_add(vsumi2, vsumi6);
  10259. vsumi3 = vec_add(vsumi3, vsumi7);
  10260. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10261. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10262. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  10263. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  10264. }
  10265. vsumf0 = vec_add(vsumf0, vsumf2);
  10266. vsumf1 = vec_add(vsumf1, vsumf3);
  10267. vsumf0 = vec_add(vsumf0, vsumf1);
  10268. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10269. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10270. *s = vec_extract(vsumf0, 0);
  10271. #elif defined(__loongarch_asx)
  10272. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  10273. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  10274. };
  10275. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  10276. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  10277. };
  10278. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  10279. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  10280. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  10281. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  10282. typedef union {
  10283. __m256i vec[2];
  10284. uint32_t index[16];
  10285. } index_t;
  10286. index_t idx;
  10287. __m256 accumf = (__m256)__lasx_xvldi(0);
  10288. for (int i = 0; i < nb; ++i) {
  10289. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  10290. const uint8_t * restrict qs = x[i].qs;
  10291. const uint8_t * restrict qh = x[i].qh;
  10292. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  10293. const int8_t * restrict q8 = y[i].qs;
  10294. __m256i sumi1 = __lasx_xvldi(0);
  10295. __m256i sumi2 = __lasx_xvldi(0);
  10296. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  10297. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  10298. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  10299. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  10300. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  10301. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  10302. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  10303. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  10304. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  10305. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  10306. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  10307. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  10308. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  10309. const __m256i q2_1 = lasx_set_w(
  10310. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  10311. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  10312. );
  10313. const __m256i q2_2 = lasx_set_w(
  10314. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  10315. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  10316. );
  10317. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  10318. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  10319. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  10320. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  10321. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  10322. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  10323. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  10324. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  10325. signs += 4;
  10326. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  10327. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  10328. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  10329. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  10330. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  10331. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  10332. sumi1 = __lasx_xvadd_w(sumi1, p1);
  10333. sumi2 = __lasx_xvadd_w(sumi2, p2);
  10334. }
  10335. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  10336. }
  10337. *s = hsum_float_8(accumf);
  10338. #else
  10339. float sumf = 0.f;
  10340. for (int i = 0; i < nb; ++i) {
  10341. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  10342. const uint8_t * restrict qs = x[i].qs;
  10343. const uint8_t * restrict qh = x[i].qh;
  10344. const uint8_t * restrict signs = x[i].signs;
  10345. const int8_t * restrict q8 = y[i].qs;
  10346. int32_t bsum = 0;
  10347. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  10348. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  10349. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  10350. int32_t sumi = 0;
  10351. for (int l = 0; l < 4; ++l) {
  10352. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  10353. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  10354. for (int j = 0; j < 4; ++j) {
  10355. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  10356. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  10357. }
  10358. q8 += 8;
  10359. }
  10360. qs += 8;
  10361. signs += 4;
  10362. bsum += sumi * ls1;
  10363. sumi = 0;
  10364. for (int l = 0; l < 4; ++l) {
  10365. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  10366. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  10367. for (int j = 0; j < 4; ++j) {
  10368. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  10369. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  10370. }
  10371. q8 += 8;
  10372. }
  10373. qs += 8;
  10374. signs += 4;
  10375. bsum += sumi * ls2;
  10376. }
  10377. sumf += d * bsum;
  10378. }
  10379. *s = sumf;
  10380. #endif
  10381. }
  10382. #if defined(__AVX2__)
  10383. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  10384. const __m256i ax = _mm256_sign_epi8(x, x);
  10385. const __m256i sy = _mm256_sign_epi8(y, x);
  10386. return _mm256_maddubs_epi16(ax, sy);
  10387. }
  10388. #elif defined(__loongarch_asx)
  10389. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  10390. const __m256i ax = __lasx_xvsigncov_b(x, x);
  10391. const __m256i sy = __lasx_xvsigncov_b(x, y);
  10392. __m256i tmp1, tmp2, tmp3;
  10393. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  10394. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  10395. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  10396. return __lasx_xvsat_h(tmp3, 15);
  10397. }
  10398. #endif
  10399. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10400. assert(n % QK_K == 0);
  10401. assert(nrc == 1);
  10402. UNUSED(nrc);
  10403. UNUSED(bx);
  10404. UNUSED(by);
  10405. UNUSED(bs);
  10406. const block_iq1_s * restrict x = vx;
  10407. const block_q8_K * restrict y = vy;
  10408. const int nb = n / QK_K;
  10409. #if defined __ARM_NEON
  10410. ggml_int8x16x4_t q1b;
  10411. ggml_int8x16x4_t q8b;
  10412. float sumf = 0;
  10413. for (int i = 0; i < nb; ++i) {
  10414. const int8_t * q8 = y[i].qs;
  10415. const uint8_t * qs = x[i].qs;
  10416. const uint16_t * qh = x[i].qh;
  10417. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  10418. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10419. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  10420. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  10421. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  10422. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  10423. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  10424. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  10425. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  10426. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  10427. qs += 8;
  10428. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  10429. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  10430. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  10431. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  10432. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  10433. sumi1 += vaddvq_s32(p1) * ls1;
  10434. sumi2 += vaddvq_s32(p2) * ls2;
  10435. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  10436. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  10437. }
  10438. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  10439. }
  10440. *s = sumf;
  10441. #elif defined __AVX2__
  10442. __m256 accum = _mm256_setzero_ps();
  10443. float accum1 = 0;
  10444. for (int i = 0; i < nb; ++i) {
  10445. const int8_t * q8 = y[i].qs;
  10446. const uint8_t * qs = x[i].qs;
  10447. const uint16_t * qh = x[i].qh;
  10448. __m256i sumi = _mm256_setzero_si256();
  10449. int sumi1 = 0;
  10450. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10451. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  10452. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  10453. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  10454. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  10455. qs += 8;
  10456. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  10457. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  10458. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  10459. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  10460. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  10461. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  10462. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  10463. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  10464. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  10465. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  10466. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  10467. }
  10468. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  10469. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  10470. accum1 += d * sumi1;
  10471. }
  10472. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  10473. #elif defined(__POWER9_VECTOR__)
  10474. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  10475. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  10476. vector float vsumf0 = vec_splats(0.0f);
  10477. vector float vsumf1 = vec_splats(0.0f);
  10478. vector float vsumf2 = vec_splats(0.0f);
  10479. vector float vsumf3 = vec_splats(0.0f);
  10480. for (int i = 0; i < nb; ++i) {
  10481. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  10482. vector float vyd = vec_splats(y[i].d);
  10483. vector float vd = vec_mul(vxd, vyd);
  10484. vector signed int vsumi0 = vec_splats((int32_t)0);
  10485. vector signed int vsumi1 = vec_splats((int32_t)0);
  10486. vector signed int vsumi2 = vec_splats((int32_t)0);
  10487. vector signed int vsumi3 = vec_splats((int32_t)0);
  10488. vector signed int vsumi4 = vec_splats((int32_t)0);
  10489. vector signed int vsumi5 = vec_splats((int32_t)0);
  10490. vector signed int vsumi6 = vec_splats((int32_t)0);
  10491. vector signed int vsumi7 = vec_splats((int32_t)0);
  10492. vector signed int vsumi8 = vec_splats((int32_t)0);
  10493. const uint8_t * restrict q1 = x[i].qs;
  10494. const uint16_t * restrict qh = x[i].qh;
  10495. const int8_t * restrict q8 = y[i].qs;
  10496. const int16_t * restrict qs = y[i].bsums;
  10497. for (int j = 0; j < QK_K/32; j += 2) {
  10498. __builtin_prefetch(q1, 0, 1);
  10499. __builtin_prefetch(qh, 0, 1);
  10500. __builtin_prefetch(q8, 0, 1);
  10501. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  10502. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  10503. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  10504. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  10505. q1 += 8;
  10506. vector signed char q1x0 = (vector signed char)aux64x2_0;
  10507. vector signed char q1x1 = (vector signed char)aux64x2_1;
  10508. vector signed char q1x2 = (vector signed char)aux64x2_2;
  10509. vector signed char q1x3 = (vector signed char)aux64x2_3;
  10510. vector signed char q8y0 = vec_xl( 0, q8);
  10511. vector signed char q8y1 = vec_xl(16, q8);
  10512. vector signed char q8y2 = vec_xl(32, q8);
  10513. vector signed char q8y3 = vec_xl(48, q8);
  10514. q8 += 64;
  10515. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  10516. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  10517. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  10518. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  10519. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  10520. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  10521. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  10522. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  10523. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  10524. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  10525. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  10526. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  10527. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  10528. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  10529. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  10530. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  10531. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  10532. vector signed short q8ysums = vec_xl_len(qs, 8);
  10533. qs += 4;
  10534. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  10535. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  10536. qh += 2;
  10537. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  10538. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  10539. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  10540. }
  10541. vsumi0 = vec_add(vsumi0, vsumi4);
  10542. vsumi1 = vec_add(vsumi1, vsumi5);
  10543. vsumi2 = vec_add(vsumi2, vsumi6);
  10544. vsumi3 = vec_add(vsumi3, vsumi7);
  10545. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10546. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10547. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  10548. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  10549. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  10550. }
  10551. vsumf0 = vec_add(vsumf0, vsumf2);
  10552. vsumf1 = vec_add(vsumf1, vsumf3);
  10553. vsumf0 = vec_add(vsumf0, vsumf1);
  10554. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10555. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10556. *s = vec_extract(vsumf0, 0);
  10557. #elif defined(__loongarch_asx)
  10558. __m256 accum = (__m256)__lasx_xvldi(0);
  10559. float accum1 = 0;
  10560. for (int i = 0; i < nb; ++i) {
  10561. const int8_t * q8 = y[i].qs;
  10562. const uint8_t * qs = x[i].qs;
  10563. const uint16_t * qh = x[i].qh;
  10564. __m256i sumi = __lasx_xvldi(0);
  10565. int sumi1 = 0;
  10566. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10567. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  10568. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  10569. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  10570. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  10571. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  10572. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  10573. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  10574. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  10575. qs += 8;
  10576. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  10577. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  10578. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  10579. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  10580. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  10581. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  10582. __m256i tmp1, tmp5, tmp6;
  10583. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  10584. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  10585. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  10586. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  10587. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  10588. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  10589. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  10590. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  10591. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  10592. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  10593. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  10594. }
  10595. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  10596. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  10597. accum1 += d * sumi1;
  10598. }
  10599. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  10600. #else
  10601. float sumf = 0;
  10602. for (int i = 0; i < nb; i++) {
  10603. const int8_t * q8 = y[i].qs;
  10604. const uint8_t * qs = x[i].qs;
  10605. const uint16_t * qh = x[i].qh;
  10606. int sumi = 0, sumi1 = 0;
  10607. for (int ib = 0; ib < QK_K/32; ++ib) {
  10608. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  10609. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  10610. int lsum = 0;
  10611. for (int l = 0; l < 4; ++l) {
  10612. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  10613. for (int j = 0; j < 8; ++j) {
  10614. lsum += q8[j] * grid[j];
  10615. }
  10616. q8 += 8;
  10617. }
  10618. sumi += ls * lsum;
  10619. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  10620. qs += 4;
  10621. }
  10622. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  10623. }
  10624. *s = sumf;
  10625. #endif
  10626. }
  10627. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10628. assert(n % QK_K == 0);
  10629. assert(nrc == 1);
  10630. UNUSED(nrc);
  10631. UNUSED(bx);
  10632. UNUSED(by);
  10633. UNUSED(bs);
  10634. const block_iq1_m * restrict x = vx;
  10635. const block_q8_K * restrict y = vy;
  10636. const int nb = n / QK_K;
  10637. #if QK_K != 64
  10638. iq1m_scale_t scale;
  10639. #endif
  10640. #if defined __ARM_NEON
  10641. #if QK_K == 64
  10642. const int32x4_t mask = vdupq_n_s32(0xf);
  10643. #else
  10644. const int32x4_t mask = vdupq_n_s32(0x7);
  10645. #endif
  10646. const int32x4_t mone = vdupq_n_s32(1);
  10647. const int32x4_t mzero = vdupq_n_s32(0);
  10648. ggml_int8x16x4_t deltas;
  10649. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  10650. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  10651. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  10652. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  10653. ggml_int8x16x4_t q1b;
  10654. ggml_int8x16x4_t q8b;
  10655. uint32_t aux32;
  10656. const uint8_t * aux8 = (const uint8_t *)&aux32;
  10657. float sumf = 0;
  10658. for (int i = 0; i < nb; ++i) {
  10659. const int8_t * q8 = y[i].qs;
  10660. const uint8_t * qs = x[i].qs;
  10661. const uint8_t * qh = x[i].qh;
  10662. const uint16_t * sc = (const uint16_t *)x[i].scales;
  10663. #if QK_K != 64
  10664. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  10665. #endif
  10666. int32x4_t sumi1 = mzero;
  10667. int32x4_t sumi2 = mzero;
  10668. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10669. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  10670. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  10671. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  10672. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  10673. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  10674. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  10675. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  10676. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  10677. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  10678. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  10679. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  10680. const int32x4_t p12 = vpaddq_s32(p1, p2);
  10681. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  10682. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  10683. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  10684. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  10685. const int32x4_t p34 = vpaddq_s32(p3, p4);
  10686. #if QK_K == 64
  10687. int32x4_t scales_4 = ggml_vld1q_u32(sc[0] >> 0, sc[0] >> 4, sc[0] >> 8, sc[0] >> 12);
  10688. #else
  10689. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  10690. #endif
  10691. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  10692. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  10693. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  10694. qs += 8; qh += 4;
  10695. }
  10696. #if QK_K == 64
  10697. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  10698. #else
  10699. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  10700. #endif
  10701. }
  10702. *s = sumf;
  10703. #elif defined __AVX2__
  10704. #if QK_K == 64
  10705. const __m256i mask = _mm256_set1_epi16(0xf);
  10706. #else
  10707. const __m256i mask = _mm256_set1_epi16(0x7);
  10708. #endif
  10709. const __m256i mone = _mm256_set1_epi16(1);
  10710. __m256 accum1 = _mm256_setzero_ps();
  10711. __m256 accum2 = _mm256_setzero_ps();
  10712. for (int i = 0; i < nb; ++i) {
  10713. const int8_t * q8 = y[i].qs;
  10714. const uint8_t * qs = x[i].qs;
  10715. const uint8_t * qh = x[i].qh;
  10716. const uint16_t * sc = (const uint16_t *)x[i].scales;
  10717. #if QK_K != 64
  10718. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  10719. #endif
  10720. __m256i sumi1 = _mm256_setzero_si256();
  10721. __m256i sumi2 = _mm256_setzero_si256();
  10722. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10723. const __m256i q1b_1 = _mm256_set_epi64x(
  10724. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  10725. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  10726. );
  10727. const __m256i q1b_2 = _mm256_set_epi64x(
  10728. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  10729. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  10730. );
  10731. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  10732. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  10733. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  10734. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  10735. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  10736. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  10737. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  10738. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  10739. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  10740. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  10741. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  10742. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  10743. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  10744. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  10745. #if QK_K == 64
  10746. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 4), _mm_set1_epi16(sc[0] >> 0));
  10747. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 12), _mm_set1_epi16(sc[0] >> 8));
  10748. #else
  10749. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  10750. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  10751. #endif
  10752. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  10753. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  10754. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  10755. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  10756. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  10757. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  10758. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  10759. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  10760. qs += 8; qh += 4;
  10761. }
  10762. #if QK_K == 64
  10763. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  10764. #else
  10765. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  10766. #endif
  10767. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  10768. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  10769. }
  10770. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  10771. #else
  10772. int sum1[2], sum2[2], delta[4];
  10773. float sumf = 0;
  10774. for (int i = 0; i < nb; i++) {
  10775. const int8_t * q8 = y[i].qs;
  10776. const uint8_t * qs = x[i].qs;
  10777. const uint8_t * qh = x[i].qh;
  10778. const uint16_t * sc = (const uint16_t *)x[i].scales;
  10779. #if QK_K != 64
  10780. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  10781. #endif
  10782. int sumi1 = 0, sumi2 = 0;
  10783. for (int ib = 0; ib < QK_K/32; ++ib) {
  10784. delta[0] = qh[0] & 0x08 ? -1 : 1;
  10785. delta[1] = qh[0] & 0x80 ? -1 : 1;
  10786. delta[2] = qh[1] & 0x08 ? -1 : 1;
  10787. delta[3] = qh[1] & 0x80 ? -1 : 1;
  10788. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  10789. for (int l = 0; l < 4; ++l) {
  10790. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  10791. int lsum1 = 0, lsum2 = 0;
  10792. for (int j = 0; j < 8; ++j) {
  10793. lsum1 += q8[j] * grid[j];
  10794. lsum2 += q8[j];
  10795. }
  10796. q8 += 8;
  10797. sum1[l/2] += lsum1;
  10798. sum2[l/2] += lsum2*delta[l];
  10799. }
  10800. #if QK_K == 64
  10801. const int ls1 = 2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1;
  10802. const int ls2 = 2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1;
  10803. #else
  10804. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  10805. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  10806. #endif
  10807. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  10808. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  10809. qs += 4;
  10810. qh += 2;
  10811. }
  10812. #if QK_K == 64
  10813. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  10814. #else
  10815. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  10816. #endif
  10817. }
  10818. *s = sumf;
  10819. #endif
  10820. }
  10821. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10822. assert(nrc == 1);
  10823. UNUSED(nrc);
  10824. UNUSED(bx);
  10825. UNUSED(by);
  10826. UNUSED(bs);
  10827. assert(n % QK4_NL == 0);
  10828. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  10829. const block_iq4_nl * restrict x = vx;
  10830. const block_q8_0 * restrict y = vy;
  10831. const int nb = n / QK4_NL;
  10832. #if defined __ARM_NEON
  10833. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  10834. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  10835. uint8x16x2_t q4bits;
  10836. int8x16x4_t q4b;
  10837. int8x16x4_t q8b;
  10838. int32x4_t prod_1, prod_2;
  10839. float sumf = 0;
  10840. for (int ib = 0; ib < nb; ib += 2) {
  10841. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  10842. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  10843. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  10844. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  10845. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  10846. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  10847. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  10848. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  10849. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  10850. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  10851. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  10852. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  10853. sumf +=
  10854. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  10855. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  10856. }
  10857. *s = sumf;
  10858. #elif defined __AVX2__
  10859. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10860. const __m128i m4b = _mm_set1_epi8(0x0f);
  10861. const __m256i mone = _mm256_set1_epi16(1);
  10862. __m256 accum1 = _mm256_setzero_ps();
  10863. __m256 accum2 = _mm256_setzero_ps();
  10864. for (int ib = 0; ib < nb; ib += 2) {
  10865. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  10866. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  10867. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  10868. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  10869. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  10870. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  10871. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  10872. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  10873. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10874. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10875. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  10876. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  10877. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  10878. _mm256_cvtepi32_ps(p_1), accum1);
  10879. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  10880. _mm256_cvtepi32_ps(p_2), accum2);
  10881. y += 2;
  10882. x += 2;
  10883. }
  10884. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  10885. #elif defined(__POWER9_VECTOR__)
  10886. const vector signed char lowMask = vec_splats((signed char)0xF);
  10887. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  10888. vector float vsumf0 = vec_splats(0.0f);
  10889. vector float vsumf1 = vec_splats(0.0f);
  10890. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  10891. #pragma GCC unroll 4
  10892. for (int ib = 0; ib < nb; ++ib) {
  10893. __builtin_prefetch(x[ib].qs, 0, 1);
  10894. __builtin_prefetch(y[ib].qs, 0, 1);
  10895. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  10896. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  10897. vector float vd = vec_mul(vxd, vyd);
  10898. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  10899. vector signed char q4x0 = vec_and(qxs, lowMask);
  10900. vector signed char q4x1 = vec_sr(qxs, v4);
  10901. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  10902. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  10903. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  10904. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  10905. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  10906. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  10907. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  10908. vector signed int vsumi1 = vec_add(vec_unpackh(qv1), vec_unpackl(qv1));
  10909. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10910. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10911. }
  10912. vsumf0 = vec_add(vsumf0, vsumf1);
  10913. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10914. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10915. *s = vec_extract(vsumf0, 0);
  10916. #elif defined (__loongarch_asx)
  10917. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  10918. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  10919. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  10920. __m256 accum1 = (__m256)__lasx_xvldi(0);
  10921. __m256 accum2 = (__m256)__lasx_xvldi(0);
  10922. for (int ib = 0; ib < nb; ib += 2) {
  10923. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[0].qs, 0);
  10924. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[1].qs, 0);
  10925. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[0].qs, 0);
  10926. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[1].qs, 0);
  10927. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  10928. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  10929. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  10930. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  10931. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10932. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10933. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  10934. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  10935. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  10936. __lasx_xvffint_s_w(p_1), accum1);
  10937. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  10938. __lasx_xvffint_s_w(p_2), accum2);
  10939. y += 2;
  10940. x += 2;
  10941. }
  10942. *s = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  10943. #else
  10944. float sumf = 0;
  10945. for (int ib = 0; ib < nb; ++ib) {
  10946. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  10947. int sumi1 = 0, sumi2 = 0;
  10948. for (int j = 0; j < QK4_NL/2; ++j) {
  10949. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  10950. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  10951. }
  10952. sumf += d * (sumi1 + sumi2);
  10953. }
  10954. *s = sumf;
  10955. #endif
  10956. }
  10957. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10958. assert(nrc == 1);
  10959. UNUSED(nrc);
  10960. UNUSED(bx);
  10961. UNUSED(by);
  10962. UNUSED(bs);
  10963. assert(n % QK_K == 0);
  10964. #if QK_K == 64
  10965. ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc);
  10966. #else
  10967. const block_iq4_xs * restrict x = vx;
  10968. const block_q8_K * restrict y = vy;
  10969. const int nb = n / QK_K;
  10970. #if defined __ARM_NEON
  10971. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  10972. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  10973. ggml_uint8x16x2_t q4bits;
  10974. ggml_int8x16x4_t q4b;
  10975. ggml_int8x16x4_t q8b;
  10976. int32x4_t prod_1, prod_2;
  10977. float sumf = 0;
  10978. for (int ibl = 0; ibl < nb; ++ibl) {
  10979. const int8_t * q8 = y[ibl].qs;
  10980. const uint8_t * q4 = x[ibl].qs;
  10981. uint16_t h = x[ibl].scales_h;
  10982. int sumi1 = 0, sumi2 = 0;
  10983. for (int ib = 0; ib < QK_K/64; ++ib) {
  10984. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  10985. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  10986. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  10987. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  10988. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  10989. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  10990. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  10991. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  10992. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  10993. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  10994. h >>= 4;
  10995. sumi1 += vaddvq_s32(prod_1) * ls1;
  10996. sumi2 += vaddvq_s32(prod_2) * ls2;
  10997. }
  10998. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  10999. }
  11000. *s = sumf;
  11001. #elif defined __AVX2__
  11002. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  11003. const __m128i m4b = _mm_set1_epi8(0x0f);
  11004. __m256 accum = _mm256_setzero_ps();
  11005. for (int ibl = 0; ibl < nb; ++ibl) {
  11006. const uint8_t * qs = x[ibl].qs;
  11007. const int8_t * q8 = y[ibl].qs;
  11008. uint16_t sh = x[ibl].scales_h;
  11009. __m256i sumi1 = _mm256_setzero_si256();
  11010. __m256i sumi2 = _mm256_setzero_si256();
  11011. for (int ib = 0; ib < QK_K/32; ib += 2) {
  11012. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  11013. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  11014. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  11015. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  11016. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  11017. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  11018. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  11019. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  11020. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  11021. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  11022. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  11023. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  11024. sh >>= 4;
  11025. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  11026. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  11027. sumi1 = _mm256_add_epi32(p_1, sumi1);
  11028. sumi2 = _mm256_add_epi32(p_2, sumi2);
  11029. }
  11030. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  11031. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  11032. }
  11033. *s = hsum_float_8(accum);
  11034. #elif defined(__POWER9_VECTOR__)
  11035. const vector signed char lowMask = vec_splats((signed char)0xF);
  11036. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  11037. vector float vsumf0 = vec_splats(0.0f);
  11038. vector float vsumf1 = vec_splats(0.0f);
  11039. vector float vsumf2 = vec_splats(0.0f);
  11040. vector float vsumf3 = vec_splats(0.0f);
  11041. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  11042. for (int ibl = 0; ibl < nb; ++ibl) {
  11043. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  11044. vector float vyd = vec_splats(y[ibl].d);
  11045. vector float vd = vec_mul(vxd, vyd);
  11046. vector signed int vsumi0 = vec_splats((int32_t)0);
  11047. vector signed int vsumi1 = vec_splats((int32_t)0);
  11048. vector signed int vsumi2 = vec_splats((int32_t)0);
  11049. vector signed int vsumi3 = vec_splats((int32_t)0);
  11050. vector signed int vsumi4 = vec_splats((int32_t)0);
  11051. vector signed int vsumi5 = vec_splats((int32_t)0);
  11052. vector signed int vsumi6 = vec_splats((int32_t)0);
  11053. vector signed int vsumi7 = vec_splats((int32_t)0);
  11054. uint16_t h = x[ibl].scales_h;
  11055. const uint8_t * restrict q4 = x[ibl].qs;
  11056. const uint8_t * restrict sc = x[ibl].scales_l;
  11057. const int8_t * restrict q8 = y[ibl].qs;
  11058. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  11059. __builtin_prefetch(q4, 0, 1);
  11060. __builtin_prefetch(q8, 0, 1);
  11061. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  11062. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  11063. q4 += 32;
  11064. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  11065. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  11066. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  11067. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  11068. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  11069. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  11070. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  11071. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  11072. vector signed char q8y0 = vec_xl( 0, q8);
  11073. vector signed char q8y1 = vec_xl(16, q8);
  11074. vector signed char q8y2 = vec_xl(32, q8);
  11075. vector signed char q8y3 = vec_xl(48, q8);
  11076. q8 += 64;
  11077. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  11078. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  11079. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  11080. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  11081. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  11082. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  11083. h >>= 4;
  11084. sc ++;
  11085. vector signed short vscales01 = vec_splats((int16_t)ls0);
  11086. vector signed short vscales23 = vec_splats((int16_t)ls1);
  11087. vsumi0 = vec_add(vec_mule(qv0, vscales01), vsumi0);
  11088. vsumi1 = vec_add(vec_mule(qv1, vscales01), vsumi1);
  11089. vsumi2 = vec_add(vec_mule(qv2, vscales23), vsumi2);
  11090. vsumi3 = vec_add(vec_mule(qv3, vscales23), vsumi3);
  11091. vsumi4 = vec_add(vec_mulo(qv0, vscales01), vsumi4);
  11092. vsumi5 = vec_add(vec_mulo(qv1, vscales01), vsumi5);
  11093. vsumi6 = vec_add(vec_mulo(qv2, vscales23), vsumi6);
  11094. vsumi7 = vec_add(vec_mulo(qv3, vscales23), vsumi7);
  11095. }
  11096. vsumi0 = vec_add(vsumi0, vsumi4);
  11097. vsumi1 = vec_add(vsumi1, vsumi5);
  11098. vsumi2 = vec_add(vsumi2, vsumi6);
  11099. vsumi3 = vec_add(vsumi3, vsumi7);
  11100. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  11101. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  11102. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  11103. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  11104. }
  11105. vsumf0 = vec_add(vsumf0, vsumf2);
  11106. vsumf1 = vec_add(vsumf1, vsumf3);
  11107. vsumf0 = vec_add(vsumf0, vsumf1);
  11108. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  11109. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  11110. *s = vec_extract(vsumf0, 0);
  11111. #elif defined(__loongarch_asx)
  11112. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  11113. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  11114. __m256 accum = (__m256)__lasx_xvldi(0);
  11115. __m256i tmp1;
  11116. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  11117. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  11118. for (int ibl = 0; ibl < nb; ++ibl) {
  11119. const uint8_t * qs = x[ibl].qs;
  11120. const int8_t * q8 = y[ibl].qs;
  11121. uint16_t sh = x[ibl].scales_h;
  11122. __m256i sumi1 = __lasx_xvldi(0);
  11123. __m256i sumi2 = __lasx_xvldi(0);
  11124. __m128i zero = __lsx_vldi(0);
  11125. for (int ib = 0; ib < QK_K/32; ib += 2) {
  11126. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  11127. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  11128. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  11129. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  11130. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  11131. tmp0 = __lsx_vori_b(tmp2, 0x10);
  11132. mask = __lsx_vsle_b(zero, tmp2);
  11133. tmp3 = __lsx_vand_v(tmp0, mask);
  11134. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  11135. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  11136. tmp0 = __lsx_vori_b(tmp2, 0x10);
  11137. mask = __lsx_vsle_b(zero, tmp2);
  11138. tmp4 = __lsx_vand_v(tmp0, mask);
  11139. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  11140. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  11141. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  11142. tmp0 = __lsx_vori_b(tmp2, 0x10);
  11143. mask = __lsx_vsle_b(zero, tmp2);
  11144. tmp3 = __lsx_vand_v(tmp0, mask);
  11145. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  11146. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  11147. tmp0 = __lsx_vori_b(tmp2, 0x10);
  11148. mask = __lsx_vsle_b(zero, tmp2);
  11149. tmp4 = __lsx_vand_v(tmp0, mask);
  11150. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  11151. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  11152. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  11153. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  11154. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  11155. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  11156. sh >>= 4;
  11157. __m256i tmp5, tmp6;
  11158. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  11159. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  11160. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  11161. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  11162. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  11163. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  11164. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  11165. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  11166. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  11167. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  11168. }
  11169. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  11170. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  11171. }
  11172. *s = hsum_float_8(accum);
  11173. #else
  11174. float sumf = 0;
  11175. for (int ibl = 0; ibl < nb; ++ibl) {
  11176. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  11177. uint16_t h = x[ibl].scales_h;
  11178. const uint8_t * qs = x[ibl].qs;
  11179. const int8_t * q8 = y[ibl].qs;
  11180. for (int ib = 0; ib < QK_K/32; ib += 2) {
  11181. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  11182. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  11183. h >>= 4;
  11184. const float d1 = d4d8*(ls1 - 32);
  11185. const float d2 = d4d8*(ls2 - 32);
  11186. int sumi1 = 0, sumi2 = 0;
  11187. for (int j = 0; j < 16; ++j) {
  11188. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  11189. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  11190. }
  11191. sumf += d1 * (sumi1 + sumi2);
  11192. qs += 16;
  11193. q8 += 32;
  11194. sumi1 = sumi2 = 0;
  11195. for (int j = 0; j < 16; ++j) {
  11196. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  11197. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  11198. }
  11199. sumf += d2 * (sumi1 + sumi2);
  11200. qs += 16;
  11201. q8 += 32;
  11202. }
  11203. }
  11204. *s = sumf;
  11205. #endif
  11206. #endif
  11207. }
  11208. // ================================ IQ2 quantization =============================================
  11209. typedef struct {
  11210. uint64_t * grid;
  11211. int * map;
  11212. uint16_t * neighbours;
  11213. } iq2_entry_t;
  11214. static iq2_entry_t iq2_data[4] = {
  11215. {NULL, NULL, NULL},
  11216. {NULL, NULL, NULL},
  11217. {NULL, NULL, NULL},
  11218. {NULL, NULL, NULL},
  11219. };
  11220. static inline int iq2_data_index(enum ggml_type type) {
  11221. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  11222. return type == GGML_TYPE_IQ2_XXS ? 0 :
  11223. type == GGML_TYPE_IQ2_XS ? 1 :
  11224. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  11225. }
  11226. static inline int iq2_grid_size(enum ggml_type type) {
  11227. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  11228. return type == GGML_TYPE_IQ2_XXS ? 256 :
  11229. type == GGML_TYPE_IQ2_XS ? 512 :
  11230. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  11231. }
  11232. static int iq2_compare_func(const void * left, const void * right) {
  11233. const int * l = (const int *)left;
  11234. const int * r = (const int *)right;
  11235. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  11236. }
  11237. void iq2xs_init_impl(enum ggml_type type) {
  11238. const int gindex = iq2_data_index(type);
  11239. const int grid_size = iq2_grid_size(type);
  11240. if (iq2_data[gindex].grid) {
  11241. return;
  11242. }
  11243. static const uint16_t kgrid_2bit_256[256] = {
  11244. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  11245. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  11246. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  11247. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  11248. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  11249. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  11250. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  11251. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  11252. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  11253. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  11254. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  11255. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  11256. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  11257. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  11258. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  11259. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  11260. };
  11261. static const uint16_t kgrid_2bit_512[512] = {
  11262. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  11263. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  11264. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  11265. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  11266. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  11267. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  11268. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  11269. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  11270. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  11271. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  11272. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  11273. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  11274. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  11275. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  11276. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  11277. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  11278. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  11279. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  11280. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  11281. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  11282. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  11283. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  11284. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  11285. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  11286. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  11287. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  11288. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  11289. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  11290. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  11291. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  11292. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  11293. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  11294. };
  11295. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  11296. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  11297. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  11298. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  11299. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  11300. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  11301. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  11302. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  11303. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  11304. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  11305. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  11306. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  11307. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  11308. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  11309. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  11310. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  11311. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  11312. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  11313. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  11314. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  11315. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  11316. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  11317. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  11318. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  11319. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  11320. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  11321. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  11322. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  11323. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  11324. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  11325. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  11326. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  11327. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  11328. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  11329. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  11330. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  11331. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  11332. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  11333. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  11334. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  11335. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  11336. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  11337. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  11338. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  11339. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  11340. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  11341. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  11342. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  11343. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  11344. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  11345. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  11346. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  11347. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  11348. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  11349. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  11350. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  11351. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  11352. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  11353. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  11354. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  11355. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  11356. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  11357. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  11358. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  11359. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  11360. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  11361. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  11362. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  11363. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  11364. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  11365. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  11366. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  11367. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  11368. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  11369. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  11370. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  11371. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  11372. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  11373. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  11374. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  11375. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  11376. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  11377. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  11378. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  11379. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  11380. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  11381. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  11382. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  11383. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  11384. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  11385. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  11386. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  11387. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  11388. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  11389. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  11390. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  11391. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  11392. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  11393. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  11394. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  11395. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  11396. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  11397. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  11398. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  11399. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  11400. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  11401. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  11402. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  11403. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  11404. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  11405. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  11406. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  11407. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  11408. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  11409. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  11410. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  11411. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  11412. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  11413. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  11414. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  11415. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  11416. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  11417. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  11418. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  11419. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  11420. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  11421. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  11422. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  11423. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  11424. };
  11425. static const uint16_t kgrid_2bit_1024[1024] = {
  11426. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  11427. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  11428. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  11429. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  11430. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  11431. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  11432. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  11433. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  11434. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  11435. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  11436. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  11437. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  11438. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  11439. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  11440. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  11441. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  11442. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  11443. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  11444. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  11445. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  11446. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  11447. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  11448. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  11449. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  11450. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  11451. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  11452. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  11453. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  11454. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  11455. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  11456. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  11457. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  11458. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  11459. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  11460. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  11461. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  11462. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  11463. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  11464. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  11465. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  11466. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  11467. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  11468. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  11469. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  11470. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  11471. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  11472. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  11473. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  11474. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  11475. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  11476. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  11477. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  11478. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  11479. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  11480. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  11481. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  11482. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  11483. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  11484. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  11485. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  11486. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  11487. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  11488. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  11489. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  11490. };
  11491. const int kmap_size = 43692;
  11492. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  11493. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  11494. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  11495. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  11496. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  11497. uint64_t * kgrid_q2xs;
  11498. int * kmap_q2xs;
  11499. uint16_t * kneighbors_q2xs;
  11500. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  11501. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  11502. for (int k = 0; k < grid_size; ++k) {
  11503. int8_t * pos = (int8_t *)(the_grid + k);
  11504. for (int i = 0; i < 8; ++i) {
  11505. int l = (kgrid[k] >> 2*i) & 0x3;
  11506. pos[i] = 2*l + 1;
  11507. }
  11508. }
  11509. kgrid_q2xs = the_grid;
  11510. iq2_data[gindex].grid = the_grid;
  11511. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  11512. iq2_data[gindex].map = kmap_q2xs;
  11513. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  11514. uint64_t aux64;
  11515. uint8_t * aux8 = (uint8_t *)&aux64;
  11516. for (int i = 0; i < grid_size; ++i) {
  11517. aux64 = kgrid_q2xs[i];
  11518. uint16_t index = 0;
  11519. for (int k=0; k<8; ++k) {
  11520. uint16_t q = (aux8[k] - 1)/2;
  11521. index |= (q << 2*k);
  11522. }
  11523. kmap_q2xs[index] = i;
  11524. }
  11525. int8_t pos[8];
  11526. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  11527. int num_neighbors = 0, num_not_in_map = 0;
  11528. for (int i = 0; i < kmap_size; ++i) {
  11529. if (kmap_q2xs[i] >= 0) continue;
  11530. ++num_not_in_map;
  11531. for (int k = 0; k < 8; ++k) {
  11532. int l = (i >> 2*k) & 0x3;
  11533. pos[k] = 2*l + 1;
  11534. }
  11535. for (int j = 0; j < grid_size; ++j) {
  11536. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  11537. int d2 = 0;
  11538. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  11539. dist2[2*j+0] = d2;
  11540. dist2[2*j+1] = j;
  11541. }
  11542. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  11543. int n = 0; int d2 = dist2[0];
  11544. int nhave = 1;
  11545. for (int j = 0; j < grid_size; ++j) {
  11546. if (dist2[2*j] > d2) {
  11547. if (nhave == nwant) break;
  11548. d2 = dist2[2*j];
  11549. ++nhave;
  11550. }
  11551. ++n;
  11552. }
  11553. num_neighbors += n;
  11554. }
  11555. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  11556. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  11557. iq2_data[gindex].neighbours = kneighbors_q2xs;
  11558. int counter = 0;
  11559. for (int i = 0; i < kmap_size; ++i) {
  11560. if (kmap_q2xs[i] >= 0) continue;
  11561. for (int k = 0; k < 8; ++k) {
  11562. int l = (i >> 2*k) & 0x3;
  11563. pos[k] = 2*l + 1;
  11564. }
  11565. for (int j = 0; j < grid_size; ++j) {
  11566. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  11567. int d2 = 0;
  11568. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  11569. dist2[2*j+0] = d2;
  11570. dist2[2*j+1] = j;
  11571. }
  11572. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  11573. kmap_q2xs[i] = -(counter + 1);
  11574. int d2 = dist2[0];
  11575. uint16_t * start = &kneighbors_q2xs[counter++];
  11576. int n = 0, nhave = 1;
  11577. for (int j = 0; j < grid_size; ++j) {
  11578. if (dist2[2*j] > d2) {
  11579. if (nhave == nwant) break;
  11580. d2 = dist2[2*j];
  11581. ++nhave;
  11582. }
  11583. kneighbors_q2xs[counter++] = dist2[2*j+1];
  11584. ++n;
  11585. }
  11586. *start = n;
  11587. }
  11588. free(dist2);
  11589. }
  11590. void iq2xs_free_impl(enum ggml_type type) {
  11591. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  11592. const int gindex = iq2_data_index(type);
  11593. if (iq2_data[gindex].grid) {
  11594. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  11595. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  11596. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  11597. }
  11598. }
  11599. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11600. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  11601. int num_neighbors = neighbours[0];
  11602. GGML_ASSERT(num_neighbors > 0);
  11603. float best_d2 = FLT_MAX;
  11604. int grid_index = -1;
  11605. for (int j = 1; j <= num_neighbors; ++j) {
  11606. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11607. float d2 = 0;
  11608. for (int i = 0; i < 8; ++i) {
  11609. float q = pg[i];
  11610. float diff = scale*q - xval[i];
  11611. d2 += weight[i]*diff*diff;
  11612. }
  11613. if (d2 < best_d2) {
  11614. best_d2 = d2; grid_index = neighbours[j];
  11615. }
  11616. }
  11617. GGML_ASSERT(grid_index >= 0);
  11618. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11619. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11620. return grid_index;
  11621. }
  11622. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11623. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  11624. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11625. const int * kmap_q2xs = iq2_data[gindex].map;
  11626. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11627. GGML_ASSERT(quant_weights && "missing quantization weights");
  11628. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11629. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11630. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11631. GGML_ASSERT(n%QK_K == 0);
  11632. const int kMaxQ = 3;
  11633. const int64_t nbl = n/QK_K;
  11634. block_iq2_xxs * y = vy;
  11635. float scales[QK_K/32];
  11636. float weight[32];
  11637. float xval[32];
  11638. int8_t L[32];
  11639. int8_t Laux[32];
  11640. float waux[32];
  11641. uint8_t block_signs[4];
  11642. uint32_t q2[2*(QK_K/32)];
  11643. for (int ibl = 0; ibl < nbl; ++ibl) {
  11644. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11645. memset(q2, 0, QK_K/4);
  11646. float max_scale = 0;
  11647. const float * xbl = x + QK_K*ibl;
  11648. float sumx2 = 0;
  11649. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11650. float sigma2 = sumx2/QK_K;
  11651. for (int ib = 0; ib < QK_K/32; ++ib) {
  11652. const float * xb = xbl + 32*ib;
  11653. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  11654. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11655. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  11656. for (int k = 0; k < 4; ++k) {
  11657. int nflip = 0;
  11658. uint8_t s = 0;
  11659. for (int i = 0; i < 8; ++i) {
  11660. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11661. else {
  11662. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  11663. }
  11664. }
  11665. if (nflip%2) {
  11666. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  11667. for (int i = 1; i < 8; ++i) {
  11668. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  11669. if (ax < min) {
  11670. min = ax; imin = i;
  11671. }
  11672. }
  11673. xval[8*k+imin] = -xval[8*k+imin];
  11674. s ^= (1 << imin);
  11675. }
  11676. block_signs[k] = s & 127;
  11677. }
  11678. float max = xval[0];
  11679. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  11680. if (max < GROUP_MAX_EPS) {
  11681. scales[ib] = 0;
  11682. memset(L, 0, 32);
  11683. continue;
  11684. }
  11685. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  11686. float eff_max = scale*kMaxQ;
  11687. float best = 0;
  11688. for (int is = -6; is <= 6; ++is) {
  11689. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  11690. float this_scale = 1/id;
  11691. for (int k = 0; k < 4; ++k) {
  11692. for (int i = 0; i < 8; ++i) {
  11693. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11694. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11695. }
  11696. uint16_t u = 0;
  11697. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11698. int grid_index = kmap_q2xs[u];
  11699. if (grid_index < 0) {
  11700. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11701. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11702. }
  11703. }
  11704. float sumqx = 0, sumq2 = 0;
  11705. for (int i = 0; i < 32; ++i) {
  11706. float w = weight[i];
  11707. float q = 2*Laux[i] + 1;
  11708. sumqx += w*xval[i]*q;
  11709. sumq2 += w*q*q;
  11710. }
  11711. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11712. scale = sumqx/sumq2; best = scale*sumqx;
  11713. memcpy(L, Laux, 32);
  11714. }
  11715. }
  11716. if (scale > 0) {
  11717. float id = 1/scale;
  11718. for (int k = 0; k < 4; ++k) {
  11719. uint16_t u = 0;
  11720. for (int i = 0; i < 8; ++i) {
  11721. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11722. l = MAX(0, MIN(kMaxQ-1, l));
  11723. u |= (l << 2*i);
  11724. }
  11725. int grid_index = kmap_q2xs[u];
  11726. if (grid_index < 0) {
  11727. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11728. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11729. }
  11730. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  11731. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  11732. }
  11733. float sumqx = 0, sumq2 = 0;
  11734. for (int i = 0; i < 32; ++i) {
  11735. float w = weight[i];
  11736. float q = 2*L[i] + 1;
  11737. sumqx += w*xval[i]*q;
  11738. sumq2 += w*q*q;
  11739. }
  11740. if (sumq2 > 0) scale = sumqx/sumq2;
  11741. }
  11742. if (scale < 0) {
  11743. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11744. // and correspondingly flip quant signs.
  11745. scale = -scale;
  11746. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11747. }
  11748. for (int k = 0; k < 4; ++k) {
  11749. uint16_t u = 0;
  11750. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11751. int grid_index = kmap_q2xs[u];
  11752. if (grid_index < 0) {
  11753. printf("Oops: found point %u not on grid:", u);
  11754. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11755. printf("\n");
  11756. GGML_ASSERT(false);
  11757. }
  11758. q2[2*ib+0] |= (grid_index << 8*k);
  11759. q2[2*ib+1] |= (block_signs[k] << 7*k);
  11760. }
  11761. GGML_ASSERT(scale >= 0);
  11762. scales[ib] = scale;
  11763. max_scale = MAX(max_scale, scale);
  11764. }
  11765. if (!max_scale) {
  11766. memset(y[ibl].qs, 0, QK_K/4);
  11767. continue;
  11768. }
  11769. float d = max_scale/31;
  11770. y[ibl].d = GGML_FP32_TO_FP16(d);
  11771. float id = 1/d;
  11772. for (int ib = 0; ib < QK_K/32; ++ib) {
  11773. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11774. l = MAX(0, MIN(15, l));
  11775. q2[2*ib+1] |= ((uint32_t)l << 28);
  11776. }
  11777. memcpy(y[ibl].qs, q2, QK_K/4);
  11778. }
  11779. }
  11780. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11781. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  11782. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11783. const int * kmap_q2xs = iq2_data[gindex].map;
  11784. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11785. GGML_ASSERT(quant_weights && "missing quantization weights");
  11786. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11787. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11788. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11789. GGML_ASSERT(n%QK_K == 0);
  11790. const int kMaxQ = 3;
  11791. const int64_t nbl = n/QK_K;
  11792. block_iq2_xs * y = vy;
  11793. float scales[QK_K/16];
  11794. float weight[16];
  11795. float xval[16];
  11796. int8_t L[16];
  11797. int8_t Laux[16];
  11798. float waux[16];
  11799. bool is_on_grid[2];
  11800. bool is_on_grid_aux[2];
  11801. uint8_t block_signs[2];
  11802. uint16_t q2[2*(QK_K/16)];
  11803. for (int ibl = 0; ibl < nbl; ++ibl) {
  11804. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11805. memset(q2, 0, QK_K/4);
  11806. memset(y[ibl].scales, 0, QK_K/32);
  11807. float max_scale = 0;
  11808. const float * xbl = x + QK_K*ibl;
  11809. float sumx2 = 0;
  11810. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11811. float sigma2 = sumx2/QK_K;
  11812. for (int ib = 0; ib < QK_K/16; ++ib) {
  11813. const float * xb = xbl + 16*ib;
  11814. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11815. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11816. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11817. for (int k = 0; k < 2; ++k) {
  11818. int nflip = 0;
  11819. uint8_t s = 0;
  11820. for (int i = 0; i < 8; ++i) {
  11821. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11822. else {
  11823. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  11824. }
  11825. }
  11826. if (nflip%2) {
  11827. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  11828. for (int i = 1; i < 8; ++i) {
  11829. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  11830. if (ax < min) {
  11831. min = ax; imin = i;
  11832. }
  11833. }
  11834. xval[8*k+imin] = -xval[8*k+imin];
  11835. s ^= (1 << imin);
  11836. }
  11837. block_signs[k] = s & 127;
  11838. }
  11839. float max = xval[0];
  11840. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11841. if (max < GROUP_MAX_EPS) {
  11842. scales[ib] = 0;
  11843. memset(L, 0, 16);
  11844. continue;
  11845. }
  11846. float best = 0;
  11847. float scale = max/(2*kMaxQ-1);
  11848. is_on_grid[0] = is_on_grid[1] = true;
  11849. for (int is = -9; is <= 9; ++is) {
  11850. float id = (2*kMaxQ-1+is*0.1f)/max;
  11851. float this_scale = 1/id;
  11852. for (int k = 0; k < 2; ++k) {
  11853. for (int i = 0; i < 8; ++i) {
  11854. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11855. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11856. }
  11857. uint16_t u = 0;
  11858. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11859. int grid_index = kmap_q2xs[u];
  11860. is_on_grid_aux[k] = true;
  11861. if (grid_index < 0) {
  11862. is_on_grid_aux[k] = false;
  11863. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11864. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11865. }
  11866. }
  11867. float sumqx = 0, sumq2 = 0;
  11868. for (int i = 0; i < 16; ++i) {
  11869. float w = weight[i];
  11870. float q = 2*Laux[i] + 1;
  11871. sumqx += w*xval[i]*q;
  11872. sumq2 += w*q*q;
  11873. }
  11874. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11875. scale = sumqx/sumq2; best = scale*sumqx;
  11876. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11877. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11878. }
  11879. }
  11880. int n_not_ongrid = 0;
  11881. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11882. if (n_not_ongrid > 0 && scale > 0) {
  11883. float id = 1/scale;
  11884. for (int k = 0; k < 2; ++k) {
  11885. if (is_on_grid[k]) continue;
  11886. uint16_t u = 0;
  11887. for (int i = 0; i < 8; ++i) {
  11888. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11889. l = MAX(0, MIN(kMaxQ-1, l));
  11890. u |= (l << 2*i);
  11891. L[8*k + i] = l;
  11892. }
  11893. int grid_index = kmap_q2xs[u];
  11894. if (grid_index < 0) {
  11895. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11896. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11897. }
  11898. }
  11899. float sumqx = 0, sumq2 = 0;
  11900. for (int i = 0; i < 16; ++i) {
  11901. float w = weight[i];
  11902. float q = 2*L[i] + 1;
  11903. sumqx += w*xval[i]*q;
  11904. sumq2 += w*q*q;
  11905. }
  11906. if (sumq2 > 0) scale = sumqx/sumq2;
  11907. }
  11908. if (scale < 0) {
  11909. scale = -scale;
  11910. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11911. }
  11912. for (int k = 0; k < 2; ++k) {
  11913. uint16_t u = 0;
  11914. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11915. int grid_index = kmap_q2xs[u];
  11916. if (grid_index < 0) {
  11917. printf("Oops: found point %u not on grid:", u);
  11918. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11919. printf("\n");
  11920. GGML_ASSERT(false);
  11921. }
  11922. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  11923. }
  11924. GGML_ASSERT(scale >= 0);
  11925. scales[ib] = scale;
  11926. max_scale = MAX(max_scale, scale);
  11927. }
  11928. if (!max_scale) {
  11929. memset(y[ibl].qs, 0, QK_K/4);
  11930. continue;
  11931. }
  11932. float d = max_scale/31;
  11933. y[ibl].d = GGML_FP32_TO_FP16(d);
  11934. float id = 1/d;
  11935. for (int ib = 0; ib < QK_K/16; ++ib) {
  11936. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11937. l = MAX(0, MIN(15, l));
  11938. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  11939. else y[ibl].scales[ib/2] |= (l << 4);
  11940. }
  11941. memcpy(y[ibl].qs, q2, QK_K/4);
  11942. }
  11943. }
  11944. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11945. GGML_ASSERT(n_per_row%QK_K == 0);
  11946. int64_t nblock = n_per_row/QK_K;
  11947. char * qrow = (char *)dst;
  11948. for (int64_t row = 0; row < nrow; ++row) {
  11949. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  11950. src += n_per_row;
  11951. qrow += nblock*sizeof(block_iq2_xxs);
  11952. }
  11953. return nrow * nblock * sizeof(block_iq2_xxs);
  11954. }
  11955. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11956. GGML_ASSERT(n_per_row%QK_K == 0);
  11957. int64_t nblock = n_per_row/QK_K;
  11958. char * qrow = (char *)dst;
  11959. for (int64_t row = 0; row < nrow; ++row) {
  11960. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  11961. src += n_per_row;
  11962. qrow += nblock*sizeof(block_iq2_xs);
  11963. }
  11964. return nrow * nblock * sizeof(block_iq2_xs);
  11965. }
  11966. //
  11967. // ============================================= 3-bit using D4 lattice
  11968. //
  11969. typedef struct {
  11970. uint32_t * grid;
  11971. int * map;
  11972. uint16_t * neighbours;
  11973. } iq3_entry_t;
  11974. static iq3_entry_t iq3_data[2] = {
  11975. {NULL, NULL, NULL},
  11976. {NULL, NULL, NULL},
  11977. };
  11978. static inline int iq3_data_index(int grid_size) {
  11979. (void)grid_size;
  11980. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  11981. return grid_size == 256 ? 0 : 1;
  11982. }
  11983. static int iq3_compare_func(const void * left, const void * right) {
  11984. const int * l = (const int *)left;
  11985. const int * r = (const int *)right;
  11986. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  11987. }
  11988. void iq3xs_init_impl(int grid_size) {
  11989. const int gindex = iq3_data_index(grid_size);
  11990. if (iq3_data[gindex].grid) {
  11991. return;
  11992. }
  11993. static const uint16_t kgrid_256[256] = {
  11994. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  11995. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  11996. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  11997. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  11998. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  11999. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  12000. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  12001. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  12002. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  12003. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  12004. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  12005. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  12006. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  12007. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  12008. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  12009. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  12010. };
  12011. static const uint16_t kgrid_512[512] = {
  12012. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  12013. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  12014. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  12015. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  12016. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  12017. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  12018. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  12019. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  12020. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  12021. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  12022. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  12023. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  12024. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  12025. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  12026. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  12027. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  12028. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  12029. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  12030. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  12031. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  12032. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  12033. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  12034. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  12035. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  12036. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  12037. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  12038. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  12039. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  12040. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  12041. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  12042. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  12043. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  12044. };
  12045. const int kmap_size = 4096;
  12046. const int nwant = grid_size == 256 ? 2 : 3;
  12047. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  12048. uint32_t * kgrid_q3xs;
  12049. int * kmap_q3xs;
  12050. uint16_t * kneighbors_q3xs;
  12051. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  12052. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  12053. for (int k = 0; k < grid_size; ++k) {
  12054. int8_t * pos = (int8_t *)(the_grid + k);
  12055. for (int i = 0; i < 4; ++i) {
  12056. int l = (kgrid[k] >> 3*i) & 0x7;
  12057. pos[i] = 2*l + 1;
  12058. }
  12059. }
  12060. kgrid_q3xs = the_grid;
  12061. iq3_data[gindex].grid = the_grid;
  12062. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  12063. iq3_data[gindex].map = kmap_q3xs;
  12064. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  12065. uint32_t aux32;
  12066. uint8_t * aux8 = (uint8_t *)&aux32;
  12067. for (int i = 0; i < grid_size; ++i) {
  12068. aux32 = kgrid_q3xs[i];
  12069. uint16_t index = 0;
  12070. for (int k=0; k<4; ++k) {
  12071. uint16_t q = (aux8[k] - 1)/2;
  12072. index |= (q << 3*k);
  12073. }
  12074. kmap_q3xs[index] = i;
  12075. }
  12076. int8_t pos[4];
  12077. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  12078. int num_neighbors = 0, num_not_in_map = 0;
  12079. for (int i = 0; i < kmap_size; ++i) {
  12080. if (kmap_q3xs[i] >= 0) continue;
  12081. ++num_not_in_map;
  12082. for (int k = 0; k < 4; ++k) {
  12083. int l = (i >> 3*k) & 0x7;
  12084. pos[k] = 2*l + 1;
  12085. }
  12086. for (int j = 0; j < grid_size; ++j) {
  12087. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  12088. int d2 = 0;
  12089. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  12090. dist2[2*j+0] = d2;
  12091. dist2[2*j+1] = j;
  12092. }
  12093. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  12094. int n = 0; int d2 = dist2[0];
  12095. int nhave = 1;
  12096. for (int j = 0; j < grid_size; ++j) {
  12097. if (dist2[2*j] > d2) {
  12098. if (nhave == nwant) break;
  12099. d2 = dist2[2*j];
  12100. ++nhave;
  12101. }
  12102. ++n;
  12103. }
  12104. num_neighbors += n;
  12105. }
  12106. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  12107. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  12108. iq3_data[gindex].neighbours = kneighbors_q3xs;
  12109. int counter = 0;
  12110. for (int i = 0; i < kmap_size; ++i) {
  12111. if (kmap_q3xs[i] >= 0) continue;
  12112. for (int k = 0; k < 4; ++k) {
  12113. int l = (i >> 3*k) & 0x7;
  12114. pos[k] = 2*l + 1;
  12115. }
  12116. for (int j = 0; j < grid_size; ++j) {
  12117. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  12118. int d2 = 0;
  12119. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  12120. dist2[2*j+0] = d2;
  12121. dist2[2*j+1] = j;
  12122. }
  12123. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  12124. kmap_q3xs[i] = -(counter + 1);
  12125. int d2 = dist2[0];
  12126. uint16_t * start = &kneighbors_q3xs[counter++];
  12127. int n = 0, nhave = 1;
  12128. for (int j = 0; j < grid_size; ++j) {
  12129. if (dist2[2*j] > d2) {
  12130. if (nhave == nwant) break;
  12131. d2 = dist2[2*j];
  12132. ++nhave;
  12133. }
  12134. kneighbors_q3xs[counter++] = dist2[2*j+1];
  12135. ++n;
  12136. }
  12137. *start = n;
  12138. }
  12139. free(dist2);
  12140. }
  12141. void iq3xs_free_impl(int grid_size) {
  12142. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  12143. const int gindex = iq3_data_index(grid_size);
  12144. if (iq3_data[gindex].grid) {
  12145. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  12146. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  12147. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  12148. }
  12149. }
  12150. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  12151. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  12152. int num_neighbors = neighbours[0];
  12153. GGML_ASSERT(num_neighbors > 0);
  12154. float best_d2 = FLT_MAX;
  12155. int grid_index = -1;
  12156. for (int j = 1; j <= num_neighbors; ++j) {
  12157. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  12158. float d2 = 0;
  12159. for (int i = 0; i < 4; ++i) {
  12160. float q = pg[i];
  12161. float diff = scale*q - xval[i];
  12162. d2 += weight[i]*diff*diff;
  12163. }
  12164. if (d2 < best_d2) {
  12165. best_d2 = d2; grid_index = neighbours[j];
  12166. }
  12167. }
  12168. GGML_ASSERT(grid_index >= 0);
  12169. const int8_t * pg = (const int8_t *)(grid + grid_index);
  12170. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  12171. return grid_index;
  12172. }
  12173. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  12174. const float * restrict quant_weights) {
  12175. const int gindex = iq3_data_index(grid_size);
  12176. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  12177. const int * kmap_q3xs = iq3_data[gindex].map;
  12178. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  12179. //GGML_ASSERT(quant_weights && "missing quantization weights");
  12180. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  12181. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  12182. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  12183. GGML_ASSERT(n%QK_K == 0);
  12184. const int kMaxQ = 8;
  12185. const int64_t nbl = n/QK_K;
  12186. ggml_fp16_t * dh;
  12187. uint8_t * qs;
  12188. int block_size;
  12189. if (grid_size == 256) {
  12190. block_iq3_xxs * y = vy;
  12191. dh = &y->d;
  12192. qs = y->qs;
  12193. block_size = sizeof(block_iq3_xxs);
  12194. } else {
  12195. block_iq3_s * y = vy;
  12196. dh = &y->d;
  12197. qs = y->qs;
  12198. block_size = sizeof(block_iq3_s);
  12199. }
  12200. int quant_size = block_size - sizeof(ggml_fp16_t);
  12201. float scales[QK_K/32];
  12202. float weight[32];
  12203. float xval[32];
  12204. int8_t L[32];
  12205. int8_t Laux[32];
  12206. float waux[32];
  12207. bool is_on_grid[8];
  12208. bool is_on_grid_aux[8];
  12209. uint8_t block_signs[8];
  12210. uint8_t q3[3*(QK_K/8)+QK_K/32];
  12211. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  12212. uint8_t * qh = q3 + 3*(QK_K/8);
  12213. for (int ibl = 0; ibl < nbl; ++ibl) {
  12214. dh[0] = GGML_FP32_TO_FP16(0.f);
  12215. memset(q3, 0, 3*QK_K/8+QK_K/32);
  12216. float max_scale = 0;
  12217. const float * xbl = x + QK_K*ibl;
  12218. float sumx2 = 0;
  12219. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12220. float sigma2 = 2*sumx2/QK_K;
  12221. for (int ib = 0; ib < QK_K/32; ++ib) {
  12222. const float * xb = xbl + 32*ib;
  12223. if (quant_weights) {
  12224. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  12225. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12226. } else {
  12227. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  12228. }
  12229. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  12230. for (int k = 0; k < 4; ++k) {
  12231. int nflip = 0;
  12232. uint8_t s = 0;
  12233. for (int i = 0; i < 8; ++i) {
  12234. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  12235. else {
  12236. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  12237. }
  12238. }
  12239. if (nflip%2) {
  12240. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  12241. for (int i = 1; i < 8; ++i) {
  12242. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  12243. if (ax < min) {
  12244. min = ax; imin = i;
  12245. }
  12246. }
  12247. xval[8*k+imin] = -xval[8*k+imin];
  12248. s ^= (1 << imin);
  12249. }
  12250. block_signs[k] = s & 127;
  12251. }
  12252. float max = xval[0];
  12253. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  12254. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  12255. scales[ib] = 0;
  12256. memset(L, 0, 32);
  12257. continue;
  12258. }
  12259. float best = 0;
  12260. float scale = max/(2*kMaxQ-1);
  12261. for (int is = -15; is <= 15; ++is) {
  12262. float id = (2*kMaxQ-1+is*0.2f)/max;
  12263. float this_scale = 1/id;
  12264. for (int k = 0; k < 8; ++k) {
  12265. for (int i = 0; i < 4; ++i) {
  12266. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  12267. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  12268. }
  12269. uint16_t u = 0;
  12270. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  12271. int grid_index = kmap_q3xs[u];
  12272. is_on_grid_aux[k] = true;
  12273. if (grid_index < 0) {
  12274. is_on_grid_aux[k] = false;
  12275. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  12276. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  12277. }
  12278. }
  12279. float sumqx = 0, sumq2 = 0;
  12280. for (int i = 0; i < 32; ++i) {
  12281. float w = weight[i];
  12282. float q = 2*Laux[i] + 1;
  12283. sumqx += w*xval[i]*q;
  12284. sumq2 += w*q*q;
  12285. }
  12286. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12287. scale = sumqx/sumq2; best = scale*sumqx;
  12288. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  12289. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  12290. }
  12291. }
  12292. int n_not_ongrid = 0;
  12293. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  12294. if (n_not_ongrid > 0 && scale > 0) {
  12295. float id = 1/scale;
  12296. for (int k = 0; k < 8; ++k) {
  12297. if (is_on_grid[k]) continue;
  12298. uint16_t u = 0;
  12299. for (int i = 0; i < 4; ++i) {
  12300. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  12301. l = MAX(0, MIN(kMaxQ-1, l));
  12302. u |= (l << 3*i);
  12303. }
  12304. int grid_index = kmap_q3xs[u];
  12305. if (grid_index < 0) {
  12306. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  12307. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  12308. }
  12309. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  12310. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  12311. }
  12312. float sumqx = 0, sumq2 = 0;
  12313. for (int i = 0; i < 32; ++i) {
  12314. float w = weight[i];
  12315. float q = 2*L[i] + 1;
  12316. sumqx += w*xval[i]*q;
  12317. sumq2 += w*q*q;
  12318. }
  12319. if (sumq2 > 0) scale = sumqx/sumq2;
  12320. }
  12321. if (scale < 0) {
  12322. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  12323. // and correspondingly flip quant signs.
  12324. scale = -scale;
  12325. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  12326. }
  12327. for (int k = 0; k < 8; ++k) {
  12328. uint16_t u = 0;
  12329. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  12330. int grid_index = kmap_q3xs[u];
  12331. if (grid_index < 0) {
  12332. printf("Oops: found point %u not on grid:", u);
  12333. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  12334. printf("\n");
  12335. GGML_ASSERT(false);
  12336. }
  12337. if (grid_size == 256) {
  12338. q3[8*ib+k] = grid_index;
  12339. } else {
  12340. q3[8*ib+k] = grid_index & 255;
  12341. qh[ib] |= ((grid_index >> 8) << k);
  12342. }
  12343. }
  12344. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  12345. GGML_ASSERT(scale >= 0);
  12346. scales[ib] = scale;
  12347. max_scale = MAX(max_scale, scale);
  12348. }
  12349. if (!max_scale) {
  12350. memset(qs, 0, quant_size);
  12351. dh += block_size/sizeof(ggml_fp16_t);
  12352. qs += block_size;
  12353. continue;
  12354. }
  12355. float d = max_scale/31;
  12356. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  12357. float id = 1/d;
  12358. for (int ib = 0; ib < QK_K/32; ++ib) {
  12359. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12360. l = MAX(0, MIN(15, l));
  12361. scales_and_signs[ib] |= ((uint32_t)l << 28);
  12362. }
  12363. memcpy(qs, q3, quant_size);
  12364. dh += block_size/sizeof(ggml_fp16_t);
  12365. qs += block_size;
  12366. }
  12367. }
  12368. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12369. GGML_ASSERT(n_per_row%QK_K == 0);
  12370. int64_t nblock = n_per_row/QK_K;
  12371. char * qrow = (char *)dst;
  12372. for (int64_t row = 0; row < nrow; ++row) {
  12373. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  12374. src += n_per_row;
  12375. qrow += nblock*sizeof(block_iq3_xxs);
  12376. }
  12377. return nrow * nblock * sizeof(block_iq3_xxs);
  12378. }
  12379. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  12380. assert(k % QK_K == 0);
  12381. block_iq3_xxs * restrict y = vy;
  12382. quantize_row_iq3_xxs_reference(x, y, k);
  12383. }
  12384. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  12385. assert(k % QK_K == 0);
  12386. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  12387. }
  12388. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  12389. const float * restrict quant_weights,
  12390. float * scales,
  12391. float * weight,
  12392. float * xval,
  12393. int8_t * L,
  12394. int8_t * Laux,
  12395. float * waux,
  12396. bool * is_on_grid,
  12397. bool * is_on_grid_aux,
  12398. uint8_t * block_signs) {
  12399. const int gindex = iq3_data_index(512);
  12400. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  12401. const int * kmap_q3xs = iq3_data[gindex].map;
  12402. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  12403. //GGML_ASSERT(quant_weights && "missing quantization weights");
  12404. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  12405. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  12406. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  12407. GGML_ASSERT(n%QK_K == 0);
  12408. const int kMaxQ = 8;
  12409. const int64_t nbl = n/QK_K;
  12410. block_iq3_s * y = vy;
  12411. const int bs4 = block_size/4;
  12412. const int bs8 = block_size/8;
  12413. for (int ibl = 0; ibl < nbl; ++ibl) {
  12414. memset(&y[ibl], 0, sizeof(block_iq3_s));
  12415. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  12416. uint8_t * qs = y[ibl].qs;
  12417. uint8_t * qh = y[ibl].qh;
  12418. uint8_t * signs = y[ibl].signs;
  12419. float max_scale = 0;
  12420. const float * xbl = x + QK_K*ibl;
  12421. float sumx2 = 0;
  12422. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12423. float sigma2 = 2*sumx2/QK_K;
  12424. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12425. const float * xb = xbl + block_size*ib;
  12426. if (quant_weights) {
  12427. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12428. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12429. } else {
  12430. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  12431. }
  12432. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  12433. for (int k = 0; k < bs8; ++k) {
  12434. uint8_t s = 0;
  12435. for (int i = 0; i < 8; ++i) {
  12436. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  12437. else {
  12438. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  12439. }
  12440. }
  12441. block_signs[k] = s;
  12442. }
  12443. float max = xval[0];
  12444. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  12445. if (!max) {
  12446. scales[ib] = 0;
  12447. continue;
  12448. }
  12449. float best = 0;
  12450. float scale = max/(2*kMaxQ-1);
  12451. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  12452. for (int is = -9; is <= 9; ++is) {
  12453. float id = (2*kMaxQ-1+is*0.2f)/max;
  12454. float this_scale = 1/id;
  12455. for (int k = 0; k < bs4; ++k) {
  12456. for (int i = 0; i < 4; ++i) {
  12457. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  12458. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  12459. }
  12460. uint16_t u = 0;
  12461. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  12462. int grid_index = kmap_q3xs[u];
  12463. is_on_grid_aux[k] = true;
  12464. if (grid_index < 0) {
  12465. is_on_grid_aux[k] = false;
  12466. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  12467. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  12468. }
  12469. }
  12470. float sumqx = 0, sumq2 = 0;
  12471. for (int i = 0; i < block_size; ++i) {
  12472. float w = weight[i];
  12473. float q = 2*Laux[i] + 1;
  12474. sumqx += w*xval[i]*q;
  12475. sumq2 += w*q*q;
  12476. }
  12477. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12478. scale = sumqx/sumq2; best = scale*sumqx;
  12479. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  12480. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  12481. }
  12482. }
  12483. int n_not_ongrid = 0;
  12484. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  12485. if (n_not_ongrid > 0 && scale > 0) {
  12486. float id = 1/scale;
  12487. for (int k = 0; k < bs4; ++k) {
  12488. //if (is_on_grid[k]) continue;
  12489. uint16_t u = 0;
  12490. for (int i = 0; i < 4; ++i) {
  12491. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  12492. l = MAX(0, MIN(kMaxQ-1, l));
  12493. u |= (l << 3*i);
  12494. }
  12495. int grid_index = kmap_q3xs[u];
  12496. if (grid_index < 0) {
  12497. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  12498. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  12499. }
  12500. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  12501. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  12502. }
  12503. float sumqx = 0, sumq2 = 0;
  12504. for (int i = 0; i < block_size; ++i) {
  12505. float w = weight[i];
  12506. float q = 2*L[i] + 1;
  12507. sumqx += w*xval[i]*q;
  12508. sumq2 += w*q*q;
  12509. }
  12510. if (sumq2 > 0) scale = sumqx/sumq2;
  12511. }
  12512. if (scale < 0) {
  12513. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  12514. // and correspondingly flip quant signs.
  12515. scale = -scale;
  12516. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  12517. }
  12518. for (int k = 0; k < bs4; ++k) {
  12519. uint16_t u = 0;
  12520. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  12521. int grid_index = kmap_q3xs[u];
  12522. if (grid_index < 0) {
  12523. printf("Oops: found point %u not on grid:", u);
  12524. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  12525. printf("\n");
  12526. GGML_ASSERT(false);
  12527. }
  12528. qs[k] = grid_index & 255;
  12529. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  12530. }
  12531. qs += bs4;
  12532. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  12533. signs += bs8;
  12534. GGML_ASSERT(scale >= 0);
  12535. scales[ib] = scale;
  12536. max_scale = MAX(max_scale, scale);
  12537. }
  12538. if (!max_scale) {
  12539. continue;
  12540. }
  12541. float d = max_scale/31;
  12542. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  12543. float id = 1/d;
  12544. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  12545. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  12546. l1 = MAX(0, MIN(15, l1));
  12547. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  12548. l2 = MAX(0, MIN(15, l2));
  12549. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  12550. }
  12551. }
  12552. }
  12553. #define IQ3S_BLOCK_SIZE 32
  12554. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12555. GGML_ASSERT(n_per_row%QK_K == 0);
  12556. int64_t nblock = n_per_row/QK_K;
  12557. float scales[QK_K/IQ3S_BLOCK_SIZE];
  12558. float weight[IQ3S_BLOCK_SIZE];
  12559. float xval[IQ3S_BLOCK_SIZE];
  12560. int8_t L[IQ3S_BLOCK_SIZE];
  12561. int8_t Laux[IQ3S_BLOCK_SIZE];
  12562. float waux[IQ3S_BLOCK_SIZE];
  12563. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  12564. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  12565. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  12566. char * qrow = (char *)dst;
  12567. for (int64_t row = 0; row < nrow; ++row) {
  12568. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  12569. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  12570. src += n_per_row;
  12571. qrow += nblock*sizeof(block_iq3_s);
  12572. }
  12573. return nrow * nblock * sizeof(block_iq3_s);
  12574. }
  12575. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  12576. assert(k % QK_K == 0);
  12577. block_iq3_s * restrict y = vy;
  12578. quantize_row_iq3_s_reference(x, y, k);
  12579. }
  12580. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  12581. assert(k % QK_K == 0);
  12582. quantize_iq3_s(x, y, 1, k, NULL);
  12583. }
  12584. // =================================== 1.5 bpw ===================================================
  12585. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  12586. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  12587. int num_neighbors = neighbours[0];
  12588. GGML_ASSERT(num_neighbors > 0);
  12589. float best_score = 0;
  12590. int grid_index = -1;
  12591. for (int j = 1; j <= num_neighbors; ++j) {
  12592. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  12593. float sumqx = 0, sumq2 = 0;
  12594. for (int i = 0; i < 8; ++i) {
  12595. float q = (pg[i] - 3)/2;
  12596. float w = weight[i];
  12597. sumqx += w*q*xval[i];
  12598. sumq2 += w*q*q;
  12599. }
  12600. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12601. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  12602. grid_index = neighbours[j];
  12603. }
  12604. }
  12605. if (grid_index < 0) {
  12606. for (int i = 0; i < ngrid; ++i) {
  12607. const int8_t * grid_i = (const int8_t *)(grid + i);
  12608. float sumqx = 0, sumq2 = 0;
  12609. for (int j = 0; j < 8; ++j) {
  12610. float w = weight[j];
  12611. float q = (grid_i[j] - 3)/2;
  12612. sumqx += w*q*xval[j];
  12613. sumq2 += w*q*q;
  12614. }
  12615. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12616. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  12617. grid_index = i;
  12618. }
  12619. }
  12620. }
  12621. if (grid_index < 0) {
  12622. printf("Oops, did not find grid point\n");
  12623. printf("Have %d neighbours\n", num_neighbors);
  12624. for (int j = 1; j <= num_neighbors; ++j) {
  12625. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  12626. float sumqx = 0, sumq2 = 0;
  12627. for (int i = 0; i < 8; ++i) {
  12628. float q = (pg[i] - 3)/2;
  12629. float w = weight[i];
  12630. sumqx += w*q*xval[i];
  12631. sumq2 += w*q*q;
  12632. }
  12633. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  12634. }
  12635. }
  12636. GGML_ASSERT(grid_index >= 0);
  12637. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  12638. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  12639. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  12640. const int8_t * pg = (const int8_t *)(grid + grid_index);
  12641. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  12642. return grid_index;
  12643. }
  12644. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  12645. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  12646. int num_neighbors = neighbours[0];
  12647. GGML_ASSERT(num_neighbors > 0);
  12648. float best_score = FLT_MAX;
  12649. int grid_index = -1;
  12650. for (int j = 1; j <= num_neighbors; ++j) {
  12651. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  12652. float d2 = 0;
  12653. for (int i = 0; i < 8; ++i) {
  12654. float q = xg[(pg[i] - 1)/2];
  12655. float w = weight[i];
  12656. float diff = scale*q - xval[i];
  12657. d2 += w*diff*diff;
  12658. }
  12659. if (d2 < best_score) {
  12660. best_score = d2;
  12661. grid_index = neighbours[j];
  12662. }
  12663. }
  12664. if (grid_index < 0) {
  12665. for (int i = 0; i < ngrid; ++i) {
  12666. const int8_t * grid_i = (const int8_t *)(grid + i);
  12667. float d2 = 0;
  12668. for (int j = 0; j < 8; ++j) {
  12669. float w = weight[j];
  12670. float q = xg[(grid_i[j] - 1)/2];
  12671. float diff = scale*q - xval[i];
  12672. d2 += w*diff*diff;
  12673. }
  12674. if (d2 < best_score) {
  12675. best_score = d2;
  12676. grid_index = i;
  12677. }
  12678. }
  12679. }
  12680. if (grid_index < 0) {
  12681. printf("Oops, did not find grid point\n");
  12682. printf("Have %d neighbours\n", num_neighbors);
  12683. for (int j = 1; j <= num_neighbors; ++j) {
  12684. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  12685. float sumqx = 0, sumq2 = 0;
  12686. for (int i = 0; i < 8; ++i) {
  12687. float q = xg[(pg[i] - 1)/2];
  12688. float w = weight[i];
  12689. sumqx += w*q*xval[i];
  12690. sumq2 += w*q*q;
  12691. }
  12692. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  12693. }
  12694. }
  12695. GGML_ASSERT(grid_index >= 0);
  12696. const int8_t * pg = (const int8_t *)(grid + grid_index);
  12697. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  12698. return grid_index;
  12699. }
  12700. static int iq1_sort_helper(const void * left, const void * right) {
  12701. const float * l = left;
  12702. const float * r = right;
  12703. return *l < *r ? -1 : *l > *r ? 1 : 0;
  12704. }
  12705. #define IQ1S_BLOCK_SIZE 32
  12706. #define IQ1M_BLOCK_SIZE 16
  12707. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  12708. float * scales,
  12709. float * weight,
  12710. float * sumx,
  12711. float * sumw,
  12712. float * pairs,
  12713. int8_t * L,
  12714. uint16_t * index,
  12715. int8_t * shifts) {
  12716. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  12717. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12718. const int * kmap_q2xs = iq2_data[gindex].map;
  12719. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12720. GGML_ASSERT(quant_weights && "missing quantization weights");
  12721. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12722. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12723. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12724. GGML_ASSERT(n%QK_K == 0);
  12725. block_iq1_s * y = vy;
  12726. const int64_t nbl = n/QK_K;
  12727. const int block_size = IQ1S_BLOCK_SIZE;
  12728. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  12729. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  12730. int * idx = (int *)(pairs + 1);
  12731. for (int ibl = 0; ibl < nbl; ++ibl) {
  12732. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  12733. memset(y[ibl].qs, 0, QK_K/8);
  12734. memset(y[ibl].qh, 0, QK_K/16);
  12735. float max_scale = 0;
  12736. const float * xbl = x + QK_K*ibl;
  12737. float sumx2 = 0;
  12738. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12739. float sigma2 = 2*sumx2/QK_K;
  12740. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12741. const float * xb = xbl + block_size*ib;
  12742. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12743. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12744. float max = fabsf(xb[0]);
  12745. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  12746. if (max < GROUP_MAX_EPS_IQ1_S) {
  12747. scales[ib] = 0;
  12748. memset(L, 1, block_size);
  12749. continue;
  12750. }
  12751. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  12752. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  12753. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  12754. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  12755. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  12756. // for each possible and score for each split.
  12757. for (int j = 0; j < block_size; ++j) {
  12758. pairs[2*j] = xb[j];
  12759. idx[2*j] = j;
  12760. }
  12761. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  12762. {
  12763. sumx[0] = sumw[0] = 0;
  12764. for (int j = 0; j < block_size; ++j) {
  12765. int i = idx[2*j];
  12766. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  12767. sumw[j+1] = sumw[j] + weight[i];
  12768. }
  12769. }
  12770. float best_score = 0, scale = max;
  12771. int besti1 = -1, besti2 = -1, best_shift = 0;
  12772. for (int i1 = 0; i1 <= block_size; ++i1) {
  12773. for (int i2 = i1; i2 <= block_size; ++i2) {
  12774. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  12775. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  12776. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12777. scale = sumqx/sumq2; best_score = scale*sumqx;
  12778. besti1 = i1; besti2 = i2; best_shift = 1;
  12779. }
  12780. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  12781. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  12782. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12783. scale = sumqx/sumq2; best_score = scale*sumqx;
  12784. besti1 = i1; besti2 = i2; best_shift = -1;
  12785. }
  12786. }
  12787. }
  12788. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  12789. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  12790. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  12791. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  12792. if (scale < 0) {
  12793. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  12794. scale = -scale; best_shift = -best_shift;
  12795. }
  12796. bool all_on_grid = true;
  12797. const float * xx = best_shift == 1 ? x_p : x_m;
  12798. for (int k = 0; k < block_size/8; ++k) {
  12799. uint16_t u = 0;
  12800. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  12801. int grid_index = kmap_q2xs[u];
  12802. if (grid_index < 0) {
  12803. all_on_grid = false;
  12804. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12805. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  12806. GGML_ASSERT(grid_index >= 0);
  12807. }
  12808. index[k] = grid_index;
  12809. }
  12810. if (!all_on_grid) {
  12811. float sumqx = 0, sumq2 = 0;
  12812. for (int k = 0; k < block_size/8; ++k) {
  12813. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  12814. for (int j = 0; j < 8; ++j) {
  12815. float w = weight[8*k + j];
  12816. float q = xx[(pg[j] - 1)/2];
  12817. sumqx += w*q*xb[8*k+j];
  12818. sumq2 += w*q*q;
  12819. }
  12820. }
  12821. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  12822. }
  12823. uint16_t h = 0;
  12824. for (int k = 0; k < block_size/8; ++k) {
  12825. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  12826. h |= (index[k] >> 8) << 3*k;
  12827. }
  12828. y[ibl].qh[ib] = h;
  12829. GGML_ASSERT(scale >= 0);
  12830. scales[ib] = scale;
  12831. shifts[ib] = best_shift;
  12832. max_scale = MAX(max_scale, scale);
  12833. }
  12834. if (!max_scale) {
  12835. continue;
  12836. }
  12837. float d = max_scale/15;
  12838. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  12839. float id = 1/d;
  12840. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12841. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12842. l = MAX(0, MIN(7, l));
  12843. if (shifts[ib] == -1) l |= 8;
  12844. y[ibl].qh[ib] |= (l << 12);
  12845. }
  12846. }
  12847. }
  12848. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12849. GGML_ASSERT(n_per_row%QK_K == 0);
  12850. float scales[QK_K/IQ1S_BLOCK_SIZE];
  12851. float weight[IQ1S_BLOCK_SIZE];
  12852. int8_t L[IQ1S_BLOCK_SIZE];
  12853. float sumx[IQ1S_BLOCK_SIZE+1];
  12854. float sumw[IQ1S_BLOCK_SIZE+1];
  12855. float pairs[2*IQ1S_BLOCK_SIZE];
  12856. uint16_t index[IQ1S_BLOCK_SIZE/8];
  12857. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  12858. int64_t nblock = n_per_row/QK_K;
  12859. char * qrow = (char *)dst;
  12860. for (int64_t row = 0; row < nrow; ++row) {
  12861. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  12862. src += n_per_row;
  12863. qrow += nblock*sizeof(block_iq1_s);
  12864. }
  12865. return nrow * nblock * sizeof(block_iq1_s);
  12866. }
  12867. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  12868. float * scales,
  12869. float * weight,
  12870. float * pairs,
  12871. int8_t * L,
  12872. uint16_t * index,
  12873. int8_t * shifts) {
  12874. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  12875. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12876. const int * kmap_q2xs = iq2_data[gindex].map;
  12877. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12878. //GGML_ASSERT(quant_weights && "missing quantization weights");
  12879. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12880. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12881. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12882. GGML_ASSERT(n%QK_K == 0);
  12883. block_iq1_m * y = vy;
  12884. const int64_t nbl = n/QK_K;
  12885. const int block_size = IQ1M_BLOCK_SIZE;
  12886. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  12887. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  12888. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  12889. int * idx = (int *)(pairs + 1);
  12890. float sumqx[4], sumq2[4];
  12891. iq1m_scale_t s;
  12892. const float * xx;
  12893. for (int ibl = 0; ibl < nbl; ++ibl) {
  12894. #if QK_K == 64
  12895. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  12896. #endif
  12897. memset(y[ibl].qs, 0, QK_K/8);
  12898. memset(y[ibl].qh, 0, QK_K/16);
  12899. memset(y[ibl].scales, 0, QK_K/32);
  12900. float max_scale = 0;
  12901. const float * xbl = x + QK_K*ibl;
  12902. float sumx2 = 0;
  12903. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12904. float sigma2 = 2*sumx2/QK_K;
  12905. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12906. const float * xb = xbl + block_size*ib;
  12907. if (quant_weights) {
  12908. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12909. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12910. } else {
  12911. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  12912. }
  12913. float max = fabsf(xb[0]);
  12914. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  12915. if (max < GROUP_MAX_EPS_IQ1_M) {
  12916. scales[ib] = 0;
  12917. memset(L, 1, block_size);
  12918. continue;
  12919. }
  12920. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  12921. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  12922. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  12923. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  12924. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  12925. // for each possible and score for each split.
  12926. for (int j = 0; j < block_size; ++j) {
  12927. pairs[2*j] = xb[j];
  12928. idx[2*j] = j;
  12929. }
  12930. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  12931. float best_score = 0, scale = max;
  12932. int besti1 = -1, besti2 = -1, best_k = -1;
  12933. // 0: +, +
  12934. // 1: +, -
  12935. // 2: -, +
  12936. // 3: -, -
  12937. for (int i1 = 0; i1 <= block_size; ++i1) {
  12938. for (int i2 = i1; i2 <= block_size; ++i2) {
  12939. memset(sumqx, 0, 4*sizeof(float));
  12940. memset(sumq2, 0, 4*sizeof(float));
  12941. for (int j = 0; j < i1; ++j) {
  12942. int i = idx[2*j];
  12943. if (i < block_size/2) {
  12944. sumqx[0] += weight[i]*x_p[0]*xb[i];
  12945. sumqx[1] += weight[i]*x_p[0]*xb[i];
  12946. sumqx[2] += weight[i]*x_m[0]*xb[i];
  12947. sumqx[3] += weight[i]*x_m[0]*xb[i];
  12948. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  12949. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  12950. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  12951. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  12952. } else {
  12953. sumqx[0] += weight[i]*x_p[0]*xb[i];
  12954. sumqx[2] += weight[i]*x_p[0]*xb[i];
  12955. sumqx[1] += weight[i]*x_m[0]*xb[i];
  12956. sumqx[3] += weight[i]*x_m[0]*xb[i];
  12957. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  12958. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  12959. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  12960. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  12961. }
  12962. }
  12963. for (int j = i1; j < i2; ++j) {
  12964. int i = idx[2*j];
  12965. if (i < block_size/2) {
  12966. sumqx[0] += weight[i]*x_p[1]*xb[i];
  12967. sumqx[1] += weight[i]*x_p[1]*xb[i];
  12968. sumqx[2] += weight[i]*x_m[1]*xb[i];
  12969. sumqx[3] += weight[i]*x_m[1]*xb[i];
  12970. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  12971. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  12972. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  12973. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  12974. } else {
  12975. sumqx[0] += weight[i]*x_p[1]*xb[i];
  12976. sumqx[2] += weight[i]*x_p[1]*xb[i];
  12977. sumqx[1] += weight[i]*x_m[1]*xb[i];
  12978. sumqx[3] += weight[i]*x_m[1]*xb[i];
  12979. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  12980. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  12981. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  12982. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  12983. }
  12984. }
  12985. for (int j = i2; j < block_size; ++j) {
  12986. int i = idx[2*j];
  12987. if (i < block_size/2) {
  12988. sumqx[0] += weight[i]*x_p[2]*xb[i];
  12989. sumqx[1] += weight[i]*x_p[2]*xb[i];
  12990. sumqx[2] += weight[i]*x_m[2]*xb[i];
  12991. sumqx[3] += weight[i]*x_m[2]*xb[i];
  12992. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  12993. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  12994. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  12995. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  12996. } else {
  12997. sumqx[0] += weight[i]*x_p[2]*xb[i];
  12998. sumqx[2] += weight[i]*x_p[2]*xb[i];
  12999. sumqx[1] += weight[i]*x_m[2]*xb[i];
  13000. sumqx[3] += weight[i]*x_m[2]*xb[i];
  13001. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  13002. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  13003. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  13004. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  13005. }
  13006. }
  13007. for (int k = 0; k < 4; ++k) {
  13008. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  13009. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  13010. besti1 = i1; besti2 = i2; best_k = k;
  13011. }
  13012. }
  13013. }
  13014. }
  13015. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  13016. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  13017. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  13018. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  13019. if (scale < 0) {
  13020. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  13021. scale = -scale;
  13022. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  13023. }
  13024. bool all_on_grid = true;
  13025. for (int k = 0; k < block_size/8; ++k) {
  13026. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  13027. else xx = best_k%2 == 0 ? x_p : x_m;
  13028. uint16_t u = 0;
  13029. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  13030. int grid_index = kmap_q2xs[u];
  13031. if (grid_index < 0) {
  13032. all_on_grid = false;
  13033. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  13034. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  13035. GGML_ASSERT(grid_index >= 0);
  13036. }
  13037. index[k] = grid_index;
  13038. }
  13039. if (!all_on_grid) {
  13040. float sumqx_f = 0, sumq2_f = 0;
  13041. for (int k = 0; k < block_size/8; ++k) {
  13042. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  13043. else xx = best_k%2 == 0 ? x_p : x_m;
  13044. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  13045. for (int j = 0; j < 8; ++j) {
  13046. float w = weight[8*k + j];
  13047. float q = xx[(pg[j] - 1)/2];
  13048. sumqx_f += w*q*xb[8*k+j];
  13049. sumq2_f += w*q*q;
  13050. }
  13051. }
  13052. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  13053. }
  13054. y[ibl].qs[2*ib + 0] = index[0] & 255;
  13055. y[ibl].qs[2*ib + 1] = index[1] & 255;
  13056. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  13057. GGML_ASSERT(scale >= 0);
  13058. scales[ib] = scale;
  13059. shifts[ib] = best_k;
  13060. max_scale = MAX(max_scale, scale);
  13061. }
  13062. if (!max_scale) {
  13063. continue;
  13064. }
  13065. uint16_t * sc = (uint16_t *)y[ibl].scales;
  13066. #if QK_K == 64
  13067. float d = max_scale/31;
  13068. #else
  13069. float d = max_scale/15;
  13070. #endif
  13071. float id = 1/d;
  13072. float sumqx_f = 0, sumq2_f = 0;
  13073. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  13074. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  13075. #if QK_K == 64
  13076. l = MAX(0, MIN(15, l));
  13077. sc[ib/4] |= (l << 4*(ib%4));
  13078. #else
  13079. l = MAX(0, MIN(7, l));
  13080. sc[ib/4] |= (l << 3*(ib%4));
  13081. #endif
  13082. y[ibl].qh[ib] |= masks[shifts[ib]];
  13083. const float * xb = xbl + block_size*ib;
  13084. if (quant_weights) {
  13085. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  13086. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  13087. } else {
  13088. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  13089. }
  13090. for (int k = 0; k < block_size/8; ++k) {
  13091. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  13092. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  13093. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  13094. for (int j = 0; j < 8; ++j) {
  13095. float w = weight[8*k + j];
  13096. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  13097. sumqx_f += w*q*xb[8*k+j];
  13098. sumq2_f += w*q*q;
  13099. }
  13100. }
  13101. }
  13102. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  13103. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  13104. #if QK_K == 64
  13105. y[ibl].d = s.f16;
  13106. #else
  13107. sc[0] |= ((s.u16 & 0x000f) << 12);
  13108. sc[1] |= ((s.u16 & 0x00f0) << 8);
  13109. sc[2] |= ((s.u16 & 0x0f00) << 4);
  13110. sc[3] |= ((s.u16 & 0xf000) << 0);
  13111. #endif
  13112. }
  13113. }
  13114. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  13115. GGML_ASSERT(n_per_row%QK_K == 0);
  13116. float scales[QK_K/IQ1M_BLOCK_SIZE];
  13117. float weight[IQ1M_BLOCK_SIZE];
  13118. int8_t L[IQ1M_BLOCK_SIZE];
  13119. float pairs[2*IQ1M_BLOCK_SIZE];
  13120. uint16_t index[IQ1M_BLOCK_SIZE/8];
  13121. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  13122. int64_t nblock = n_per_row/QK_K;
  13123. char * qrow = (char *)dst;
  13124. for (int64_t row = 0; row < nrow; ++row) {
  13125. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  13126. src += n_per_row;
  13127. qrow += nblock*sizeof(block_iq1_m);
  13128. }
  13129. return nrow * nblock * sizeof(block_iq1_m);
  13130. }
  13131. // ============================ 4-bit non-linear quants
  13132. static inline int best_index_int8(int n, const int8_t * val, float x) {
  13133. if (x <= val[0]) return 0;
  13134. if (x >= val[n-1]) return n-1;
  13135. int ml = 0, mu = n-1;
  13136. while (mu-ml > 1) {
  13137. int mav = (ml+mu)/2;
  13138. if (x < val[mav]) mu = mav; else ml = mav;
  13139. }
  13140. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  13141. }
  13142. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  13143. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  13144. float * scales, float * weight, uint8_t * L,
  13145. const int8_t * values,
  13146. const float * quant_weights,
  13147. const int ntry) {
  13148. float sigma2 = 0;
  13149. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  13150. sigma2 *= 2.f/super_block_size;
  13151. memset(q4, 0, super_block_size/2);
  13152. dh[0] = GGML_FP32_TO_FP16(0.f);
  13153. float max_scale = 0, amax_scale = 0;
  13154. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  13155. const float * xb = x + ib*block_size;
  13156. uint8_t * Lb = L + ib*block_size;
  13157. if (quant_weights) {
  13158. const float * qw = quant_weights + ib*block_size;
  13159. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  13160. } else {
  13161. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  13162. }
  13163. float amax = 0, max = 0;
  13164. for (int j = 0; j < block_size; ++j) {
  13165. float ax = fabsf(xb[j]);
  13166. if (ax > amax) {
  13167. amax = ax; max = xb[j];
  13168. }
  13169. }
  13170. if (amax < GROUP_MAX_EPS) {
  13171. scales[ib] = 0;
  13172. continue;
  13173. }
  13174. float d = ntry > 0 ? -max/values[0] : max/values[0];
  13175. float id = 1/d;
  13176. float sumqx = 0, sumq2 = 0;
  13177. for (int j = 0; j < block_size; ++j) {
  13178. float al = id*xb[j];
  13179. int l = best_index_int8(16, values, al);
  13180. Lb[j] = l;
  13181. float q = values[l];
  13182. float w = weight[j];
  13183. sumqx += w*q*xb[j];
  13184. sumq2 += w*q*q;
  13185. }
  13186. d = sumqx/sumq2;
  13187. float best = d*sumqx;
  13188. for (int itry = -ntry; itry <= ntry; ++itry) {
  13189. id = (itry + values[0])/max;
  13190. sumqx = sumq2 = 0;
  13191. for (int j = 0; j < block_size; ++j) {
  13192. float al = id*xb[j];
  13193. int l = best_index_int8(16, values, al);
  13194. float q = values[l];
  13195. float w = weight[j];
  13196. sumqx += w*q*xb[j];
  13197. sumq2 += w*q*q;
  13198. }
  13199. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  13200. d = sumqx/sumq2; best = d * sumqx;
  13201. }
  13202. }
  13203. scales[ib] = d;
  13204. float abs_d = fabsf(d);
  13205. if (abs_d > amax_scale) {
  13206. amax_scale = abs_d; max_scale = d;
  13207. }
  13208. }
  13209. if (super_block_size/block_size > 1) {
  13210. int nb = super_block_size/block_size;
  13211. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  13212. float d = -max_scale/32;
  13213. dh[0] = GGML_FP32_TO_FP16(d);
  13214. float id = d ? 1/d : 0.f;
  13215. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  13216. int l = nearest_int(id*scales[ib]);
  13217. l = MAX(-32, MIN(31, l));
  13218. float dl = d * l;
  13219. float idl = dl ? 1/dl : 0.f;
  13220. uint8_t * Lb = L + ib*block_size;
  13221. const float * xb = x + ib*block_size;
  13222. for (int j = 0; j < block_size; ++j) {
  13223. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  13224. }
  13225. l += 32;
  13226. uint8_t l_l = l & 0xf;
  13227. uint8_t l_h = l >> 4;
  13228. if (ib%2 == 0) scales_l[ib/2] = l_l;
  13229. else scales_l[ib/2] |= (l_l << 4);
  13230. scales_h[ib/8] |= (l_h << 2*(ib%8));
  13231. }
  13232. } else {
  13233. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  13234. if (ntry > 0) {
  13235. float id = scales[0] ? 1/scales[0] : 0;
  13236. for (int j = 0; j < super_block_size; ++j) {
  13237. L[j] = best_index_int8(16, values, id*x[j]);
  13238. }
  13239. }
  13240. }
  13241. for (int i = 0; i < super_block_size/32; ++i) {
  13242. for (int j = 0; j < 16; ++j) {
  13243. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  13244. }
  13245. }
  13246. }
  13247. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  13248. GGML_ASSERT(n_per_row%QK4_NL == 0);
  13249. int64_t nblock = n_per_row/QK4_NL;
  13250. char * qrow = (char *)dst;
  13251. uint8_t L[QK4_NL];
  13252. float weight[QK4_NL];
  13253. uint16_t unused_h;
  13254. uint8_t * unused_l = NULL;
  13255. float scale;
  13256. for (int64_t row = 0; row < nrow; ++row) {
  13257. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  13258. for (int ibl = 0; ibl < nblock; ++ibl) {
  13259. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  13260. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  13261. &scale, weight, L, kvalues_iq4nl, qw, 7);
  13262. }
  13263. src += n_per_row;
  13264. qrow += nblock*sizeof(block_iq4_nl);
  13265. }
  13266. return nrow * nblock * sizeof(block_iq4_nl);
  13267. }
  13268. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  13269. GGML_ASSERT(k%QK4_NL == 0);
  13270. int64_t nblock = k/QK4_NL;
  13271. uint8_t L[QK4_NL];
  13272. float weight[QK4_NL];
  13273. uint16_t unused_h;
  13274. uint8_t * unused_l = NULL;
  13275. float scale;
  13276. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  13277. for (int ibl = 0; ibl < nblock; ++ibl) {
  13278. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  13279. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  13280. }
  13281. }
  13282. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  13283. assert(k % QK4_NL == 0);
  13284. quantize_row_iq4_nl(x, y, k);
  13285. }
  13286. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  13287. #if QK_K == 64
  13288. return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights);
  13289. #else
  13290. GGML_ASSERT(n_per_row%QK_K == 0);
  13291. int64_t nblock = n_per_row/QK_K;
  13292. char * qrow = (char *)dst;
  13293. uint8_t L[QK_K];
  13294. float weight[32];
  13295. float scales[QK_K/32];
  13296. for (int64_t row = 0; row < nrow; ++row) {
  13297. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  13298. for (int ibl = 0; ibl < nblock; ++ibl) {
  13299. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  13300. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  13301. scales, weight, L, kvalues_iq4nl, qw, 7);
  13302. }
  13303. src += n_per_row;
  13304. qrow += nblock*sizeof(block_iq4_xs);
  13305. }
  13306. return nrow * nblock * sizeof(block_iq4_xs);
  13307. #endif
  13308. }
  13309. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  13310. assert(k % QK_K == 0);
  13311. block_iq4_xs * restrict y = vy;
  13312. quantize_row_iq4_xs_reference(x, y, k);
  13313. }
  13314. void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  13315. assert(k % QK_K == 0);
  13316. quantize_iq4_xs(x, y, 1, k, NULL);
  13317. }
  13318. // =============================== 2.5625 bpw
  13319. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  13320. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  13321. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  13322. const int * kmap_q2xs = iq2_data[gindex].map;
  13323. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  13324. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  13325. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  13326. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  13327. GGML_ASSERT(n%QK_K == 0);
  13328. const int kMaxQ = 3;
  13329. const int64_t nbl = n/QK_K;
  13330. block_iq2_s * y = vy;
  13331. float scales[QK_K/16];
  13332. float weight[16];
  13333. float xval[16];
  13334. int8_t L[16];
  13335. int8_t Laux[16];
  13336. float waux[16];
  13337. bool is_on_grid[2];
  13338. bool is_on_grid_aux[2];
  13339. uint8_t block_signs[2];
  13340. for (int ibl = 0; ibl < nbl; ++ibl) {
  13341. memset(&y[ibl], 0, sizeof(block_iq2_s));
  13342. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  13343. float max_scale = 0;
  13344. const float * xbl = x + QK_K*ibl;
  13345. float sumx2 = 0;
  13346. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  13347. float sigma2 = 2*sumx2/QK_K;
  13348. for (int ib = 0; ib < QK_K/16; ++ib) {
  13349. const float * xb = xbl + 16*ib;
  13350. if (quant_weights) {
  13351. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  13352. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  13353. } else {
  13354. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  13355. }
  13356. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  13357. for (int k = 0; k < 2; ++k) {
  13358. uint8_t s = 0;
  13359. for (int i = 0; i < 8; ++i) {
  13360. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  13361. else {
  13362. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  13363. }
  13364. }
  13365. block_signs[k] = s;
  13366. }
  13367. float max = xval[0];
  13368. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  13369. if (max < GROUP_MAX_EPS_IQ2_S) {
  13370. scales[ib] = 0;
  13371. continue;
  13372. }
  13373. float best = 0;
  13374. float scale = max/(2*kMaxQ-1);
  13375. is_on_grid[0] = is_on_grid[1] = true;
  13376. for (int is = -9; is <= 9; ++is) {
  13377. float id = (2*kMaxQ-1+is*0.1f)/max;
  13378. float this_scale = 1/id;
  13379. for (int k = 0; k < 2; ++k) {
  13380. for (int i = 0; i < 8; ++i) {
  13381. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  13382. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  13383. }
  13384. uint16_t u = 0;
  13385. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  13386. int grid_index = kmap_q2xs[u];
  13387. is_on_grid_aux[k] = true;
  13388. if (grid_index < 0) {
  13389. is_on_grid_aux[k] = false;
  13390. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  13391. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  13392. }
  13393. }
  13394. float sumqx = 0, sumq2 = 0;
  13395. for (int i = 0; i < 16; ++i) {
  13396. float w = weight[i];
  13397. float q = 2*Laux[i] + 1;
  13398. sumqx += w*xval[i]*q;
  13399. sumq2 += w*q*q;
  13400. }
  13401. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  13402. scale = sumqx/sumq2; best = scale*sumqx;
  13403. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  13404. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  13405. }
  13406. }
  13407. int n_not_ongrid = 0;
  13408. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  13409. if (n_not_ongrid > 0 && scale > 0) {
  13410. float id = 1/scale;
  13411. for (int k = 0; k < 2; ++k) {
  13412. if (is_on_grid[k]) continue;
  13413. uint16_t u = 0;
  13414. for (int i = 0; i < 8; ++i) {
  13415. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  13416. l = MAX(0, MIN(kMaxQ-1, l));
  13417. u |= (l << 2*i);
  13418. L[8*k + i] = l;
  13419. }
  13420. int grid_index = kmap_q2xs[u];
  13421. if (grid_index < 0) {
  13422. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  13423. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  13424. }
  13425. }
  13426. float sumqx = 0, sumq2 = 0;
  13427. for (int i = 0; i < 16; ++i) {
  13428. float w = weight[i];
  13429. float q = 2*L[i] + 1;
  13430. sumqx += w*xval[i]*q;
  13431. sumq2 += w*q*q;
  13432. }
  13433. if (sumq2 > 0) scale = sumqx/sumq2;
  13434. }
  13435. if (scale < 0) {
  13436. scale = -scale;
  13437. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  13438. }
  13439. for (int k = 0; k < 2; ++k) {
  13440. uint16_t u = 0;
  13441. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  13442. int grid_index = kmap_q2xs[u];
  13443. if (grid_index < 0) {
  13444. printf("Oops: found point %u not on grid:", u);
  13445. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  13446. printf("\n");
  13447. GGML_ASSERT(false);
  13448. }
  13449. const int i8 = 2*ib + k;
  13450. y[ibl].qs[i8] = grid_index & 255;
  13451. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  13452. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  13453. }
  13454. GGML_ASSERT(scale >= 0);
  13455. scales[ib] = scale;
  13456. max_scale = MAX(max_scale, scale);
  13457. }
  13458. if (!max_scale) {
  13459. continue;
  13460. }
  13461. float d = max_scale/31;
  13462. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  13463. float id = 1/d;
  13464. for (int ib = 0; ib < QK_K/16; ++ib) {
  13465. int l = nearest_int(0.5f*(id*scales[ib]-1));
  13466. l = MAX(0, MIN(15, l));
  13467. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  13468. else y[ibl].scales[ib/2] |= (l << 4);
  13469. }
  13470. }
  13471. }
  13472. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  13473. GGML_ASSERT(n_per_row%QK_K == 0);
  13474. int64_t nblock = n_per_row/QK_K;
  13475. char * qrow = (char *)dst;
  13476. for (int64_t row = 0; row < nrow; ++row) {
  13477. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  13478. src += n_per_row;
  13479. qrow += nblock*sizeof(block_iq2_s);
  13480. }
  13481. return nrow * nblock * sizeof(block_iq2_s);
  13482. }
  13483. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  13484. assert(k % QK_K == 0);
  13485. quantize_iq2_s(x, y, 1, k, NULL);
  13486. }
  13487. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  13488. assert(k % QK_K == 0);
  13489. block_iq2_s * restrict y = vy;
  13490. quantize_row_iq2_s_reference(x, y, k);
  13491. }
  13492. static bool validate_float(float f, size_t i) {
  13493. if (isinf(f)) {
  13494. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  13495. return false;
  13496. }
  13497. if (isnan(f)) {
  13498. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  13499. return false;
  13500. }
  13501. return true;
  13502. }
  13503. static bool isinf_fp16(ggml_fp16_t f) {
  13504. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  13505. }
  13506. static bool isnan_fp16(ggml_fp16_t f) {
  13507. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  13508. }
  13509. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  13510. if (isinf_fp16(f)) {
  13511. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  13512. return false;
  13513. }
  13514. if (isnan_fp16(f)) {
  13515. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  13516. return false;
  13517. }
  13518. return true;
  13519. }
  13520. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  13521. const type * q = (const type *) (data); \
  13522. for (size_t i = 0; i < (nb); ++i) { \
  13523. if (!validate_fp16(q[i].d, i)) { \
  13524. return false; \
  13525. } \
  13526. }
  13527. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  13528. const type * q = (const type *) (data); \
  13529. for (size_t i = 0; i < (nb); ++i) { \
  13530. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  13531. return false; \
  13532. } \
  13533. }
  13534. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  13535. if (type < 0 || type >= GGML_TYPE_COUNT) {
  13536. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  13537. return false;
  13538. }
  13539. if (nbytes % ggml_type_size(type) != 0) {
  13540. fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
  13541. return false;
  13542. }
  13543. const size_t nb = nbytes/ggml_type_size(type);
  13544. switch (type) {
  13545. case GGML_TYPE_BF16:
  13546. {
  13547. int nans = 0;
  13548. int infs = 0;
  13549. const unsigned short * f = (const unsigned short *) data;
  13550. for (size_t i = 0; i < nb; ++i) {
  13551. nans += (f[i] & 0x7fff) > 0x7f80;
  13552. infs += (f[i] & 0x7fff) == 0x7f80;
  13553. }
  13554. if (nans) {
  13555. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  13556. return false;
  13557. }
  13558. if (infs) {
  13559. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  13560. return false;
  13561. }
  13562. } break;
  13563. case GGML_TYPE_F16:
  13564. {
  13565. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  13566. size_t i = 0;
  13567. #if defined(__AVX2__)
  13568. for (; i + 15 < nb; i += 16) {
  13569. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  13570. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  13571. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  13572. int mask = _mm256_movemask_epi8(cmp);
  13573. if (mask) {
  13574. for (size_t j = 0; j < 16; ++j) {
  13575. if (!validate_fp16(f[i + j], i + j)) {
  13576. return false;
  13577. }
  13578. }
  13579. GGML_UNREACHABLE();
  13580. }
  13581. }
  13582. #elif defined(__ARM_NEON)
  13583. for (; i + 7 < nb; i += 8) {
  13584. uint16x8_t v = vld1q_u16(f + i);
  13585. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  13586. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  13587. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  13588. if (mask) {
  13589. for (size_t j = 0; j < 8; ++j) {
  13590. if (!validate_fp16(f[i + j], i + j)) {
  13591. return false;
  13592. }
  13593. }
  13594. GGML_UNREACHABLE();
  13595. }
  13596. }
  13597. #endif
  13598. for (; i < nb; ++i) {
  13599. if (!validate_fp16(f[i], i)) {
  13600. return false;
  13601. }
  13602. }
  13603. } break;
  13604. case GGML_TYPE_F32:
  13605. {
  13606. const float * f = (const float *) data;
  13607. size_t i = 0;
  13608. #if defined(__AVX2__)
  13609. for (; i + 7 < nb; i += 8) {
  13610. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  13611. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  13612. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  13613. int mask = _mm256_movemask_epi8(cmp);
  13614. if (mask) {
  13615. for (size_t j = 0; j < 8; ++j) {
  13616. if (!validate_float(f[i + j], i + j)) {
  13617. return false;
  13618. }
  13619. }
  13620. GGML_UNREACHABLE();
  13621. }
  13622. }
  13623. #elif defined(__ARM_NEON)
  13624. for (; i + 3 < nb; i += 4) {
  13625. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  13626. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  13627. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  13628. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  13629. if (mask) {
  13630. for (size_t j = 0; j < 4; ++j) {
  13631. if (!validate_float(f[i + j], i + j)) {
  13632. return false;
  13633. }
  13634. }
  13635. GGML_UNREACHABLE();
  13636. }
  13637. }
  13638. #endif
  13639. for (; i < nb; ++i) {
  13640. if (!validate_float(f[i], i)) {
  13641. return false;
  13642. }
  13643. }
  13644. } break;
  13645. case GGML_TYPE_F64:
  13646. {
  13647. const double * f = (const double *) data;
  13648. for (size_t i = 0; i < nb; ++i) {
  13649. if (!validate_float(f[i], i)) {
  13650. return false;
  13651. }
  13652. }
  13653. } break;
  13654. case GGML_TYPE_Q4_0:
  13655. {
  13656. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  13657. } break;
  13658. case GGML_TYPE_Q4_1:
  13659. {
  13660. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  13661. } break;
  13662. case GGML_TYPE_Q5_0:
  13663. {
  13664. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  13665. } break;
  13666. case GGML_TYPE_Q5_1:
  13667. {
  13668. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  13669. } break;
  13670. case GGML_TYPE_Q8_0:
  13671. {
  13672. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  13673. } break;
  13674. case GGML_TYPE_Q2_K:
  13675. {
  13676. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  13677. } break;
  13678. case GGML_TYPE_Q3_K:
  13679. {
  13680. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  13681. } break;
  13682. case GGML_TYPE_Q4_K:
  13683. {
  13684. #ifdef GGML_QKK_64
  13685. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d[0], d[1]);
  13686. #else
  13687. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  13688. #endif
  13689. } break;
  13690. case GGML_TYPE_Q5_K:
  13691. {
  13692. #ifdef GGML_QKK_64
  13693. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_K, data, nb);
  13694. #else
  13695. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  13696. #endif
  13697. } break;
  13698. case GGML_TYPE_Q6_K:
  13699. {
  13700. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  13701. } break;
  13702. case GGML_TYPE_Q8_K:
  13703. {
  13704. const block_q8_K * q = (const block_q8_K *) data;
  13705. for (size_t i = 0; i < nb; ++i) {
  13706. if (!validate_float(q[i].d, i)) {
  13707. return false;
  13708. }
  13709. }
  13710. } break;
  13711. case GGML_TYPE_IQ1_S:
  13712. {
  13713. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  13714. } break;
  13715. case GGML_TYPE_IQ1_M:
  13716. {
  13717. const block_iq1_m * q = (const block_iq1_m *) data;
  13718. for (size_t i = 0; i < nb; ++i) {
  13719. #if QK_K == 64
  13720. if (!validate_fp16(q[i].d, i)) {
  13721. return false;
  13722. }
  13723. #else
  13724. iq1m_scale_t scale;
  13725. const uint16_t * sc = (const uint16_t *)q[i].scales;
  13726. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  13727. if (!validate_fp16(scale.f16, i)) {
  13728. return false;
  13729. }
  13730. #endif
  13731. }
  13732. } break;
  13733. case GGML_TYPE_IQ2_XXS:
  13734. {
  13735. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  13736. } break;
  13737. case GGML_TYPE_IQ2_XS:
  13738. {
  13739. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  13740. } break;
  13741. case GGML_TYPE_IQ2_S:
  13742. {
  13743. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  13744. } break;
  13745. case GGML_TYPE_IQ3_XXS:
  13746. {
  13747. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  13748. } break;
  13749. case GGML_TYPE_IQ3_S:
  13750. {
  13751. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  13752. } break;
  13753. case GGML_TYPE_IQ4_XS:
  13754. #if QK_K != 64
  13755. {
  13756. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  13757. } break;
  13758. #endif
  13759. // with QK_K == 64, iq4_xs is iq4_nl
  13760. case GGML_TYPE_IQ4_NL:
  13761. {
  13762. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  13763. } break;
  13764. case GGML_TYPE_I8:
  13765. case GGML_TYPE_I16:
  13766. case GGML_TYPE_I32:
  13767. case GGML_TYPE_I64:
  13768. // nothing to validate
  13769. break;
  13770. default:
  13771. {
  13772. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  13773. return false;
  13774. }
  13775. }
  13776. return true;
  13777. }