ggml.c 760 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. #if QK_K == 64
  790. .blck_size = QK4_NL,
  791. #else
  792. .blck_size = QK_K,
  793. #endif
  794. .type_size = sizeof(block_iq4_xs),
  795. .is_quantized = true,
  796. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  797. .from_float = quantize_row_iq4_xs,
  798. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  799. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  800. #if QK_K == 64
  801. .vec_dot_type = GGML_TYPE_Q8_0,
  802. #else
  803. .vec_dot_type = GGML_TYPE_Q8_K,
  804. #endif
  805. .nrows = 1,
  806. },
  807. [GGML_TYPE_Q8_K] = {
  808. .type_name = "q8_K",
  809. .blck_size = QK_K,
  810. .type_size = sizeof(block_q8_K),
  811. .is_quantized = true,
  812. .from_float = quantize_row_q8_K,
  813. },
  814. [GGML_TYPE_BF16] = {
  815. .type_name = "bf16",
  816. .blck_size = 1,
  817. .type_size = sizeof(ggml_bf16_t),
  818. .is_quantized = false,
  819. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  820. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  821. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  822. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  823. .vec_dot_type = GGML_TYPE_BF16,
  824. .nrows = 1,
  825. }
  826. };
  827. // For internal test use
  828. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  829. GGML_ASSERT(type < GGML_TYPE_COUNT);
  830. return type_traits[type];
  831. }
  832. //
  833. // simd mappings
  834. //
  835. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  836. // we then implement the fundamental computation operations below using only these macros
  837. // adding support for new architectures requires to define the corresponding SIMD macros
  838. //
  839. // GGML_F32_STEP / GGML_F16_STEP
  840. // number of elements to process in a single step
  841. //
  842. // GGML_F32_EPR / GGML_F16_EPR
  843. // number of elements to fit in a single register
  844. //
  845. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  846. #define GGML_SIMD
  847. // F32 NEON
  848. #define GGML_F32_STEP 16
  849. #define GGML_F32_EPR 4
  850. #define GGML_F32x4 float32x4_t
  851. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  852. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  853. #define GGML_F32x4_LOAD vld1q_f32
  854. #define GGML_F32x4_STORE vst1q_f32
  855. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  856. #define GGML_F32x4_ADD vaddq_f32
  857. #define GGML_F32x4_MUL vmulq_f32
  858. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  859. #define GGML_F32x4_REDUCE(res, x) \
  860. { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  874. }
  875. #define GGML_F32_VEC GGML_F32x4
  876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  884. // F16 NEON
  885. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  886. #define GGML_F16_STEP 32
  887. #define GGML_F16_EPR 8
  888. #define GGML_F16x8 float16x8_t
  889. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  890. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  891. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  892. #define GGML_F16x8_STORE vst1q_f16
  893. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  894. #define GGML_F16x8_ADD vaddq_f16
  895. #define GGML_F16x8_MUL vmulq_f16
  896. #define GGML_F16x8_REDUCE(res, x) \
  897. do { \
  898. int offset = GGML_F16_ARR >> 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. offset >>= 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  911. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  912. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  913. } while (0)
  914. #define GGML_F16_VEC GGML_F16x8
  915. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  916. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  917. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  918. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  919. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  920. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  921. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  922. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  923. #else
  924. // if FP16 vector arithmetic is not supported, we use FP32 instead
  925. // and take advantage of the vcvt_ functions to convert to/from FP16
  926. #define GGML_F16_STEP 16
  927. #define GGML_F16_EPR 4
  928. #define GGML_F32Cx4 float32x4_t
  929. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  930. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  931. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  932. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  933. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  934. #define GGML_F32Cx4_ADD vaddq_f32
  935. #define GGML_F32Cx4_MUL vmulq_f32
  936. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  937. #define GGML_F16_VEC GGML_F32Cx4
  938. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  939. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  940. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  941. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  942. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  943. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  944. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  945. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  946. #endif
  947. #elif defined(__AVX512F__)
  948. #define GGML_SIMD
  949. // F32 AVX512
  950. #define GGML_F32_STEP 64
  951. #define GGML_F32_EPR 16
  952. #define GGML_F32x16 __m512
  953. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  954. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  955. #define GGML_F32x16_LOAD _mm512_loadu_ps
  956. #define GGML_F32x16_STORE _mm512_storeu_ps
  957. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  958. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  959. #define GGML_F32x16_ADD _mm512_add_ps
  960. #define GGML_F32x16_MUL _mm512_mul_ps
  961. #define GGML_F32x16_REDUCE(res, x) \
  962. do { \
  963. int offset = GGML_F32_ARR >> 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. offset >>= 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. res = _mm512_reduce_add_ps(x[0]); \
  976. } while (0)
  977. // TODO: is this optimal ?
  978. #define GGML_F32_VEC GGML_F32x16
  979. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  980. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  981. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  982. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  983. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  984. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  985. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  986. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  987. // F16 AVX512
  988. // F16 AVX
  989. #define GGML_F16_STEP 64
  990. #define GGML_F16_EPR 16
  991. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  992. #define GGML_F32Cx16 __m512
  993. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  994. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  995. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  996. // so F16C guard isn't required
  997. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  998. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  999. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1000. #define GGML_F32Cx16_ADD _mm512_add_ps
  1001. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1002. #define GGML_F32Cx16_REDUCE(res, x) \
  1003. do { \
  1004. int offset = GGML_F32_ARR >> 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. offset >>= 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. res = _mm512_reduce_add_ps(x[0]); \
  1017. } while (0)
  1018. #define GGML_F16_VEC GGML_F32Cx16
  1019. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1027. #elif defined(__AVX__)
  1028. #define GGML_SIMD
  1029. // F32 AVX
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 8
  1032. #define GGML_F32x8 __m256
  1033. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1034. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1035. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1036. #define GGML_F32x8_STORE _mm256_storeu_ps
  1037. #if defined(__FMA__)
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1039. #else
  1040. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1041. #endif
  1042. #define GGML_F32x8_ADD _mm256_add_ps
  1043. #define GGML_F32x8_MUL _mm256_mul_ps
  1044. #define GGML_F32x8_REDUCE(res, x) \
  1045. do { \
  1046. int offset = GGML_F32_ARR >> 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. offset >>= 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1059. _mm256_extractf128_ps(x[0], 1)); \
  1060. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1061. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1062. } while (0)
  1063. // TODO: is this optimal ?
  1064. #define GGML_F32_VEC GGML_F32x8
  1065. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1066. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1067. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1068. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1069. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1070. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1071. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1072. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1073. // F16 AVX
  1074. #define GGML_F16_STEP 32
  1075. #define GGML_F16_EPR 8
  1076. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1077. #define GGML_F32Cx8 __m256
  1078. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1080. #if defined(__F16C__)
  1081. // the _mm256_cvt intrinsics require F16C
  1082. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1083. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1084. #else
  1085. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1086. float tmp[8];
  1087. for (int i = 0; i < 8; i++) {
  1088. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1089. }
  1090. return _mm256_loadu_ps(tmp);
  1091. }
  1092. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1093. float arr[8];
  1094. _mm256_storeu_ps(arr, y);
  1095. for (int i = 0; i < 8; i++)
  1096. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1097. }
  1098. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1099. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1100. #endif
  1101. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1102. #define GGML_F32Cx8_ADD _mm256_add_ps
  1103. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1104. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1105. #define GGML_F16_VEC GGML_F32Cx8
  1106. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1107. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1108. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1109. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1110. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1111. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1112. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1113. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1114. #elif defined(__POWER9_VECTOR__)
  1115. #define GGML_SIMD
  1116. // F32 POWER9
  1117. #define GGML_F32_STEP 32
  1118. #define GGML_F32_EPR 4
  1119. #define GGML_F32x4 vector float
  1120. #define GGML_F32x4_ZERO 0.0f
  1121. #define GGML_F32x4_SET1 vec_splats
  1122. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1123. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1124. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1125. #define GGML_F32x4_ADD vec_add
  1126. #define GGML_F32x4_MUL vec_mul
  1127. #define GGML_F32x4_REDUCE(res, x) \
  1128. { \
  1129. int offset = GGML_F32_ARR >> 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. offset >>= 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. res = vec_extract(x[0], 0) + \
  1142. vec_extract(x[0], 1) + \
  1143. vec_extract(x[0], 2) + \
  1144. vec_extract(x[0], 3); \
  1145. }
  1146. #define GGML_F32_VEC GGML_F32x4
  1147. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1148. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1149. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1150. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1151. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1152. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1153. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1154. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1155. // F16 POWER9
  1156. #define GGML_F16_STEP GGML_F32_STEP
  1157. #define GGML_F16_EPR GGML_F32_EPR
  1158. #define GGML_F16_VEC GGML_F32x4
  1159. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1161. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1166. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1167. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1168. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1169. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1170. #define GGML_F16_VEC_STORE(p, r, i) \
  1171. if (i & 0x1) \
  1172. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1173. r[i - GGML_ENDIAN_BYTE(0)]), \
  1174. 0, p - GGML_F16_EPR)
  1175. #elif defined(__wasm_simd128__)
  1176. #define GGML_SIMD
  1177. // F32 WASM
  1178. #define GGML_F32_STEP 16
  1179. #define GGML_F32_EPR 4
  1180. #define GGML_F32x4 v128_t
  1181. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1182. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1183. #define GGML_F32x4_LOAD wasm_v128_load
  1184. #define GGML_F32x4_STORE wasm_v128_store
  1185. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1186. #define GGML_F32x4_ADD wasm_f32x4_add
  1187. #define GGML_F32x4_MUL wasm_f32x4_mul
  1188. #define GGML_F32x4_REDUCE(res, x) \
  1189. { \
  1190. int offset = GGML_F32_ARR >> 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. offset >>= 1; \
  1195. for (int i = 0; i < offset; ++i) { \
  1196. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1197. } \
  1198. offset >>= 1; \
  1199. for (int i = 0; i < offset; ++i) { \
  1200. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1201. } \
  1202. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1203. wasm_f32x4_extract_lane(x[0], 1) + \
  1204. wasm_f32x4_extract_lane(x[0], 2) + \
  1205. wasm_f32x4_extract_lane(x[0], 3); \
  1206. }
  1207. #define GGML_F32_VEC GGML_F32x4
  1208. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1209. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1210. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1211. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1212. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1213. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1214. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1215. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1216. // F16 WASM
  1217. #define GGML_F16_STEP 16
  1218. #define GGML_F16_EPR 4
  1219. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1220. float tmp[4];
  1221. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1222. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1223. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1224. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1225. return wasm_v128_load(tmp);
  1226. }
  1227. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1228. float tmp[4];
  1229. wasm_v128_store(tmp, x);
  1230. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1231. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1232. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1233. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1234. }
  1235. #define GGML_F16x4 v128_t
  1236. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1237. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1238. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1239. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1240. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1241. #define GGML_F16x4_ADD wasm_f32x4_add
  1242. #define GGML_F16x4_MUL wasm_f32x4_mul
  1243. #define GGML_F16x4_REDUCE(res, x) \
  1244. { \
  1245. int offset = GGML_F16_ARR >> 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. offset >>= 1; \
  1250. for (int i = 0; i < offset; ++i) { \
  1251. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1252. } \
  1253. offset >>= 1; \
  1254. for (int i = 0; i < offset; ++i) { \
  1255. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1256. } \
  1257. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1258. wasm_f32x4_extract_lane(x[0], 1) + \
  1259. wasm_f32x4_extract_lane(x[0], 2) + \
  1260. wasm_f32x4_extract_lane(x[0], 3); \
  1261. }
  1262. #define GGML_F16_VEC GGML_F16x4
  1263. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1271. #elif defined(__SSE3__)
  1272. #define GGML_SIMD
  1273. // F32 SSE
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 4
  1276. #define GGML_F32x4 __m128
  1277. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1278. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1279. #define GGML_F32x4_LOAD _mm_loadu_ps
  1280. #define GGML_F32x4_STORE _mm_storeu_ps
  1281. #if defined(__FMA__)
  1282. // TODO: Does this work?
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1284. #else
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1286. #endif
  1287. #define GGML_F32x4_ADD _mm_add_ps
  1288. #define GGML_F32x4_MUL _mm_mul_ps
  1289. #define GGML_F32x4_REDUCE(res, x) \
  1290. { \
  1291. int offset = GGML_F32_ARR >> 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. offset >>= 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1302. } \
  1303. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1305. }
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x4
  1308. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1316. // F16 SSE
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 4
  1319. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1320. float tmp[4];
  1321. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1322. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1323. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1324. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1325. return _mm_loadu_ps(tmp);
  1326. }
  1327. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1328. float arr[4];
  1329. _mm_storeu_ps(arr, y);
  1330. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1331. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1332. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1333. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1334. }
  1335. #define GGML_F32Cx4 __m128
  1336. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1337. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1338. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1339. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1340. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1341. #define GGML_F32Cx4_ADD _mm_add_ps
  1342. #define GGML_F32Cx4_MUL _mm_mul_ps
  1343. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1344. #define GGML_F16_VEC GGML_F32Cx4
  1345. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1346. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1347. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1348. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1349. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1350. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1351. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1352. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1353. #elif defined(__loongarch_asx)
  1354. #define GGML_SIMD
  1355. // F32 LASX
  1356. #define GGML_F32_STEP 32
  1357. #define GGML_F32_EPR 8
  1358. #define GGML_F32x8 __m256
  1359. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1360. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1361. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1362. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1363. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1364. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1365. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1366. #define GGML_F32x8_REDUCE(res, x) \
  1367. do { \
  1368. int offset = GGML_F32_ARR >> 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. offset >>= 1; \
  1373. for (int i = 0; i < offset; ++i) { \
  1374. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1375. } \
  1376. offset >>= 1; \
  1377. for (int i = 0; i < offset; ++i) { \
  1378. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1379. } \
  1380. float *tmp_p = (float *)&x[0]; \
  1381. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1382. } while (0)
  1383. // TODO: is this optimal ?
  1384. #define GGML_F32_VEC GGML_F32x8
  1385. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1386. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1387. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1388. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1389. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1390. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1391. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1392. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1393. // F16 LASX
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1397. #define GGML_F32Cx8 __m256
  1398. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1399. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1400. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1401. float tmp[8];
  1402. for (int i = 0; i < 8; i++) {
  1403. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1404. }
  1405. return (__m256)__lasx_xvld(tmp, 0);
  1406. }
  1407. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1408. float arr[8];
  1409. __lasx_xvst(y, arr, 0);
  1410. for (int i = 0; i < 8; i++)
  1411. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1412. }
  1413. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1414. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1415. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1416. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1417. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1418. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1419. #define GGML_F16_VEC GGML_F32Cx8
  1420. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1428. #elif defined(__loongarch_sx)
  1429. #define GGML_SIMD
  1430. // F32 LSX
  1431. #define GGML_F32_STEP 32
  1432. #define GGML_F32_EPR 4
  1433. #define GGML_F32x4 __m128
  1434. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1435. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1436. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1437. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1438. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1439. #define GGML_F32x4_ADD __lsx_vfadd_s
  1440. #define GGML_F32x4_MUL __lsx_vfmul_s
  1441. #define GGML_F32x4_REDUCE(res, x) \
  1442. { \
  1443. int offset = GGML_F32_ARR >> 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. offset >>= 1; \
  1448. for (int i = 0; i < offset; ++i) { \
  1449. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1450. } \
  1451. offset >>= 1; \
  1452. for (int i = 0; i < offset; ++i) { \
  1453. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1454. } \
  1455. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1456. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1457. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1458. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1459. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1460. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1461. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1462. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1463. }
  1464. #define GGML_F32_VEC GGML_F32x4
  1465. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1468. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1469. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1470. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1471. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1472. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1473. // F16 LSX
  1474. #define GGML_F16_STEP 32
  1475. #define GGML_F16_EPR 4
  1476. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1477. float tmp[4];
  1478. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1479. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1480. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1481. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1482. return __lsx_vld(tmp, 0);
  1483. }
  1484. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1485. float arr[4];
  1486. __lsx_vst(y, arr, 0);
  1487. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1488. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1489. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1490. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1491. }
  1492. #define GGML_F32Cx4 __m128
  1493. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1494. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1495. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1496. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1497. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1498. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1499. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1500. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1501. #define GGML_F16_VEC GGML_F32Cx4
  1502. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1503. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1504. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1505. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1506. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1507. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1508. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1509. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1510. #endif
  1511. // GGML_F32_ARR / GGML_F16_ARR
  1512. // number of registers to use per step
  1513. #ifdef GGML_SIMD
  1514. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1515. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1516. #endif
  1517. //
  1518. // ggml context
  1519. //
  1520. struct ggml_context {
  1521. size_t mem_size;
  1522. void* mem_buffer;
  1523. bool mem_buffer_owned;
  1524. bool no_alloc;
  1525. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1526. int n_objects;
  1527. struct ggml_object* objects_begin;
  1528. struct ggml_object* objects_end;
  1529. struct ggml_scratch scratch;
  1530. struct ggml_scratch scratch_save;
  1531. };
  1532. struct ggml_context_container {
  1533. bool used;
  1534. struct ggml_context context;
  1535. };
  1536. struct ggml_compute_state_shared {
  1537. const struct ggml_cgraph* cgraph;
  1538. const struct ggml_cplan* cplan;
  1539. int64_t perf_node_start_cycles;
  1540. int64_t perf_node_start_time_us;
  1541. const int n_threads;
  1542. // synchronization primitives
  1543. atomic_int n_active; // num active threads
  1544. atomic_int node_n; // active graph node
  1545. atomic_int node_task; // active graph node task phase
  1546. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1547. void* abort_callback_data;
  1548. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1549. };
  1550. struct ggml_compute_state {
  1551. ggml_thread_t thrd;
  1552. int ith;
  1553. struct ggml_compute_state_shared* shared;
  1554. enum ggml_status ec;
  1555. };
  1556. //
  1557. // fundamental operations
  1558. //
  1559. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1565. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1566. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1567. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1568. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1569. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1570. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1571. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1572. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1573. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1574. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1575. assert(nrc == 1);
  1576. UNUSED(nrc);
  1577. UNUSED(bx);
  1578. UNUSED(by);
  1579. UNUSED(bs);
  1580. #if defined(GGML_SIMD)
  1581. float sumf = 0.0f;
  1582. const int np = (n & ~(GGML_F32_STEP - 1));
  1583. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1584. GGML_F32_VEC ax[GGML_F32_ARR];
  1585. GGML_F32_VEC ay[GGML_F32_ARR];
  1586. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1587. for (int j = 0; j < GGML_F32_ARR; j++) {
  1588. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1589. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1590. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1591. }
  1592. }
  1593. // reduce sum0..sum3 to sum0
  1594. GGML_F32_VEC_REDUCE(sumf, sum);
  1595. // leftovers
  1596. for (int i = np; i < n; ++i) {
  1597. sumf += x[i]*y[i];
  1598. }
  1599. #else
  1600. // scalar
  1601. ggml_float sumf = 0.0;
  1602. for (int i = 0; i < n; ++i) {
  1603. sumf += (ggml_float)(x[i]*y[i]);
  1604. }
  1605. #endif
  1606. *s = sumf;
  1607. }
  1608. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1609. assert(nrc == 1);
  1610. UNUSED(nrc);
  1611. UNUSED(bx);
  1612. UNUSED(by);
  1613. UNUSED(bs);
  1614. int i = 0;
  1615. ggml_float sumf = 0;
  1616. #if defined(__AVX512BF16__)
  1617. __m512 c1 = _mm512_setzero_ps();
  1618. __m512 c2 = _mm512_setzero_ps();
  1619. for (; i + 64 <= n; i += 64) {
  1620. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1621. m512bh(_mm512_loadu_si512((y + i))));
  1622. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1623. m512bh(_mm512_loadu_si512((y + i + 32))));
  1624. }
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1626. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1627. #elif defined(__AVX512F__)
  1628. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1629. __m512 c1 = _mm512_setzero_ps();
  1630. __m512 c2 = _mm512_setzero_ps();
  1631. for (; i + 32 <= n; i += 32) {
  1632. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1633. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1634. }
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1636. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1637. #undef LOAD
  1638. #elif defined(__AVX2__)
  1639. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1640. __m256 c1 = _mm256_setzero_ps();
  1641. __m256 c2 = _mm256_setzero_ps();
  1642. __m256 c3 = _mm256_setzero_ps();
  1643. __m256 c4 = _mm256_setzero_ps();
  1644. for (; i + 32 <= n; i += 32) {
  1645. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1646. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1647. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1648. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1649. }
  1650. __m128 g;
  1651. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1652. _mm256_add_ps(c2, c4));
  1653. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1654. _mm256_castps256_ps128(c1));
  1655. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1656. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1657. sumf += (ggml_float)_mm_cvtss_f32(g);
  1658. #undef LOAD
  1659. #endif
  1660. for (; i < n; ++i) {
  1661. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1662. GGML_BF16_TO_FP32(y[i]));
  1663. }
  1664. *s = sumf;
  1665. }
  1666. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1667. assert(nrc == 1);
  1668. UNUSED(nrc);
  1669. UNUSED(bx);
  1670. UNUSED(by);
  1671. UNUSED(bs);
  1672. ggml_float sumf = 0.0;
  1673. #if defined(GGML_SIMD)
  1674. const int np = (n & ~(GGML_F16_STEP - 1));
  1675. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1676. GGML_F16_VEC ax[GGML_F16_ARR];
  1677. GGML_F16_VEC ay[GGML_F16_ARR];
  1678. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1679. for (int j = 0; j < GGML_F16_ARR; j++) {
  1680. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1681. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1682. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1683. }
  1684. }
  1685. // reduce sum0..sum3 to sum0
  1686. GGML_F16_VEC_REDUCE(sumf, sum);
  1687. // leftovers
  1688. for (int i = np; i < n; ++i) {
  1689. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1690. }
  1691. #else
  1692. for (int i = 0; i < n; ++i) {
  1693. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1694. }
  1695. #endif
  1696. *s = sumf;
  1697. }
  1698. // compute GGML_VEC_DOT_UNROLL dot products at once
  1699. // xs - x row stride in bytes
  1700. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1701. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1702. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1703. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1704. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1705. }
  1706. #if defined(GGML_SIMD)
  1707. const int np = (n & ~(GGML_F16_STEP - 1));
  1708. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1709. GGML_F16_VEC ax[GGML_F16_ARR];
  1710. GGML_F16_VEC ay[GGML_F16_ARR];
  1711. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1712. for (int j = 0; j < GGML_F16_ARR; j++) {
  1713. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1714. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1715. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1716. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1717. }
  1718. }
  1719. }
  1720. // reduce sum0..sum3 to sum0
  1721. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1722. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1723. }
  1724. // leftovers
  1725. for (int i = np; i < n; ++i) {
  1726. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1727. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1728. }
  1729. }
  1730. #else
  1731. for (int i = 0; i < n; ++i) {
  1732. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1733. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1734. }
  1735. }
  1736. #endif
  1737. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1738. s[i] = sumf[i];
  1739. }
  1740. }
  1741. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1742. #if defined(GGML_SIMD)
  1743. const int np = (n & ~(GGML_F32_STEP - 1));
  1744. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1745. GGML_F32_VEC ax[GGML_F32_ARR];
  1746. GGML_F32_VEC ay[GGML_F32_ARR];
  1747. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1748. for (int j = 0; j < GGML_F32_ARR; j++) {
  1749. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1751. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1752. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1753. }
  1754. }
  1755. // leftovers
  1756. for (int i = np; i < n; ++i) {
  1757. y[i] += x[i]*v;
  1758. }
  1759. #else
  1760. // scalar
  1761. for (int i = 0; i < n; ++i) {
  1762. y[i] += x[i]*v;
  1763. }
  1764. #endif
  1765. }
  1766. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1767. #if defined(GGML_SIMD)
  1768. const int np = (n & ~(GGML_F16_STEP - 1));
  1769. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1770. GGML_F16_VEC ax[GGML_F16_ARR];
  1771. GGML_F16_VEC ay[GGML_F16_ARR];
  1772. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1773. for (int j = 0; j < GGML_F16_ARR; j++) {
  1774. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1776. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1777. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1778. }
  1779. }
  1780. // leftovers
  1781. for (int i = np; i < n; ++i) {
  1782. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1783. }
  1784. #else
  1785. // scalar
  1786. for (int i = 0; i < n; ++i) {
  1787. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1788. }
  1789. #endif
  1790. }
  1791. // xs and vs are byte strides of x and v
  1792. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1793. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1794. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1795. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1796. x[i] = (const float *) ((const char *) xv + i*xs);
  1797. v[i] = (const float *) ((const char *) vv + i*vs);
  1798. }
  1799. #if defined(GGML_SIMD)
  1800. const int np = (n & ~(GGML_F32_STEP - 1));
  1801. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1804. }
  1805. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1806. GGML_F32_VEC ay[GGML_F32_ARR];
  1807. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1808. for (int j = 0; j < GGML_F32_ARR; j++) {
  1809. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1812. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1813. }
  1814. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1815. }
  1816. }
  1817. // leftovers
  1818. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1819. for (int i = np; i < n; ++i) {
  1820. y[i] += x[k][i]*v[k][0];
  1821. }
  1822. }
  1823. #else
  1824. // scalar
  1825. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1826. for (int i = 0; i < n; ++i) {
  1827. y[i] += x[k][i]*v[k][0];
  1828. }
  1829. }
  1830. #endif
  1831. }
  1832. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1833. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1834. #if defined(GGML_USE_ACCELERATE)
  1835. vDSP_vsmul(y, 1, &v, y, 1, n);
  1836. #elif defined(GGML_SIMD)
  1837. const int np = (n & ~(GGML_F32_STEP - 1));
  1838. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1839. GGML_F32_VEC ay[GGML_F32_ARR];
  1840. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1841. for (int j = 0; j < GGML_F32_ARR; j++) {
  1842. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1843. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1844. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1845. }
  1846. }
  1847. // leftovers
  1848. for (int i = np; i < n; ++i) {
  1849. y[i] *= v;
  1850. }
  1851. #else
  1852. // scalar
  1853. for (int i = 0; i < n; ++i) {
  1854. y[i] *= v;
  1855. }
  1856. #endif
  1857. }
  1858. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1859. #if defined(GGML_SIMD)
  1860. const int np = (n & ~(GGML_F16_STEP - 1));
  1861. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1862. GGML_F16_VEC ay[GGML_F16_ARR];
  1863. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1864. for (int j = 0; j < GGML_F16_ARR; j++) {
  1865. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1866. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1867. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1868. }
  1869. }
  1870. // leftovers
  1871. for (int i = np; i < n; ++i) {
  1872. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1873. }
  1874. #else
  1875. // scalar
  1876. for (int i = 0; i < n; ++i) {
  1877. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1878. }
  1879. #endif
  1880. }
  1881. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1882. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1883. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1884. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1885. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1886. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1887. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1888. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1889. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1890. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1891. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1892. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1893. // TODO: optimize performance
  1894. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1896. static const float GELU_COEF_A = 0.044715f;
  1897. static const float GELU_QUICK_COEF = -1.702f;
  1898. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1899. inline static float ggml_gelu_f32(float x) {
  1900. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1901. }
  1902. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1903. const uint16_t * i16 = (const uint16_t *) x;
  1904. for (int i = 0; i < n; ++i) {
  1905. y[i] = ggml_table_gelu_f16[i16[i]];
  1906. }
  1907. }
  1908. #ifdef GGML_GELU_FP16
  1909. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1910. uint16_t t;
  1911. for (int i = 0; i < n; ++i) {
  1912. if (x[i] <= -10.0f) {
  1913. y[i] = 0.0f;
  1914. } else if (x[i] >= 10.0f) {
  1915. y[i] = x[i];
  1916. } else {
  1917. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1918. memcpy(&t, &fp16, sizeof(uint16_t));
  1919. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1920. }
  1921. }
  1922. }
  1923. #else
  1924. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1925. for (int i = 0; i < n; ++i) {
  1926. y[i] = ggml_gelu_f32(x[i]);
  1927. }
  1928. }
  1929. #endif
  1930. inline static float ggml_gelu_quick_f32(float x) {
  1931. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1932. }
  1933. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1934. // const uint16_t * i16 = (const uint16_t *) x;
  1935. // for (int i = 0; i < n; ++i) {
  1936. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1937. // }
  1938. //}
  1939. #ifdef GGML_GELU_QUICK_FP16
  1940. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1941. uint16_t t;
  1942. for (int i = 0; i < n; ++i) {
  1943. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1944. memcpy(&t, &fp16, sizeof(uint16_t));
  1945. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1946. }
  1947. }
  1948. #else
  1949. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1950. for (int i = 0; i < n; ++i) {
  1951. y[i] = ggml_gelu_quick_f32(x[i]);
  1952. }
  1953. }
  1954. #endif
  1955. // Sigmoid Linear Unit (SiLU) function
  1956. inline static float ggml_silu_f32(float x) {
  1957. return x/(1.0f + expf(-x));
  1958. }
  1959. #if defined(__ARM_NEON) && defined(__aarch64__)
  1960. // adapted from arm limited optimized routine
  1961. // the maximum error is 1.45358 plus 0.5 ulps
  1962. // numbers above 88.38 will flush to infinity
  1963. // numbers beneath -103.97 will flush to zero
  1964. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1965. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1966. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1967. const float32x4_t n = vsubq_f32(z, r);
  1968. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1969. vdupq_n_f32(0x1.7f7d1cp-20f));
  1970. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1971. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1972. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1973. const float32x4_t u = vmulq_f32(b, b);
  1974. const float32x4_t j = vfmaq_f32(
  1975. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1976. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1977. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1978. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1979. return vfmaq_f32(k, j, k);
  1980. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1981. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1982. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1983. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1984. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1985. }
  1986. // computes silu x/(1+exp(-x)) in single precision vector
  1987. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1988. const float32x4_t one = vdupq_n_f32(1.0f);
  1989. const float32x4_t zero = vdupq_n_f32(0.0f);
  1990. const float32x4_t neg_x = vsubq_f32(zero, x);
  1991. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1992. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1993. return vdivq_f32(x, one_plus_exp_neg_x);
  1994. }
  1995. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1996. // adapted from arm limited optimized routine
  1997. // the maximum error is 1.45358 plus 0.5 ulps
  1998. // numbers above 88.38 will flush to infinity
  1999. // numbers beneath -103.97 will flush to zero
  2000. inline static __m512 ggml_v_expf(__m512 x) {
  2001. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2002. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2003. const __m512 n = _mm512_sub_ps(z, r);
  2004. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2005. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2006. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  2007. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2008. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2009. const __m512 u = _mm512_mul_ps(b, b);
  2010. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2011. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2012. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2013. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2014. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2015. if (_mm512_kortestz(c, c))
  2016. return _mm512_fmadd_ps(j, k, k);
  2017. const __m512i g = _mm512_and_si512(
  2018. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2019. _mm512_set1_epi32(0x82000000u));
  2020. const __m512 s1 =
  2021. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2022. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2023. const __mmask16 d =
  2024. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2025. return _mm512_mask_blend_ps(
  2026. d, _mm512_mask_blend_ps(
  2027. c, _mm512_fmadd_ps(k, j, k),
  2028. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2029. _mm512_mul_ps(s1, s1));
  2030. }
  2031. // computes silu x/(1+exp(-x)) in single precision vector
  2032. inline static __m512 ggml_v_silu(__m512 x) {
  2033. const __m512 one = _mm512_set1_ps(1);
  2034. const __m512 zero = _mm512_setzero_ps();
  2035. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2036. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2037. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2038. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2039. }
  2040. #elif defined(__AVX2__) && defined(__FMA__)
  2041. // adapted from arm limited optimized routine
  2042. // the maximum error is 1.45358 plus 0.5 ulps
  2043. // numbers above 88.38 will flush to infinity
  2044. // numbers beneath -103.97 will flush to zero
  2045. inline static __m256 ggml_v_expf(__m256 x) {
  2046. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2047. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2048. const __m256 n = _mm256_sub_ps(z, r);
  2049. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2050. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2051. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2052. const __m256 k = _mm256_castsi256_ps(
  2053. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2054. const __m256i c = _mm256_castps_si256(
  2055. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2056. _mm256_set1_ps(126), _CMP_GT_OQ));
  2057. const __m256 u = _mm256_mul_ps(b, b);
  2058. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2059. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2060. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2061. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2062. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2063. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2064. return _mm256_fmadd_ps(j, k, k);
  2065. const __m256i g = _mm256_and_si256(
  2066. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2067. _mm256_set1_epi32(0x82000000u));
  2068. const __m256 s1 =
  2069. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2070. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2071. const __m256i d = _mm256_castps_si256(
  2072. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2073. _mm256_set1_ps(192), _CMP_GT_OQ));
  2074. return _mm256_or_ps(
  2075. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2076. _mm256_andnot_ps(
  2077. _mm256_castsi256_ps(d),
  2078. _mm256_or_ps(
  2079. _mm256_and_ps(_mm256_castsi256_ps(c),
  2080. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2081. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2082. }
  2083. // computes silu x/(1+exp(-x)) in single precision vector
  2084. inline static __m256 ggml_v_silu(__m256 x) {
  2085. const __m256 one = _mm256_set1_ps(1);
  2086. const __m256 zero = _mm256_setzero_ps();
  2087. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2088. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2089. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2090. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2091. }
  2092. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2093. #if defined(__FMA__)
  2094. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2095. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2096. #else
  2097. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2098. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2099. #endif
  2100. // adapted from arm limited optimized routine
  2101. // the maximum error is 1.45358 plus 0.5 ulps
  2102. // numbers above 88.38 will flush to infinity
  2103. // numbers beneath -103.97 will flush to zero
  2104. inline static __m128 ggml_v_expf(__m128 x) {
  2105. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2106. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2107. const __m128 n = _mm_sub_ps(z, r);
  2108. const __m128 b =
  2109. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2110. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2111. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2112. const __m128i c =
  2113. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2114. const __m128 u = _mm_mul_ps(b, b);
  2115. const __m128 j =
  2116. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2117. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2118. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2119. if (!_mm_movemask_epi8(c))
  2120. return MADD128(j, k, k);
  2121. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2122. _mm_set1_epi32(0x82000000u));
  2123. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2124. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2125. const __m128i d =
  2126. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2127. return _mm_or_ps(
  2128. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(d),
  2130. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2131. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2132. }
  2133. // computes silu x/(1+exp(-x)) in single precision vector
  2134. inline static __m128 ggml_v_silu(__m128 x) {
  2135. const __m128 one = _mm_set1_ps(1);
  2136. const __m128 zero = _mm_setzero_ps();
  2137. const __m128 neg_x = _mm_sub_ps(zero, x);
  2138. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2139. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2140. return _mm_div_ps(x, one_plus_exp_neg_x);
  2141. }
  2142. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2143. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2144. int i = 0;
  2145. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2146. for (; i + 15 < n; i += 16) {
  2147. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__AVX2__) && defined(__FMA__)
  2150. for (; i + 7 < n; i += 8) {
  2151. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2152. }
  2153. #elif defined(__SSE2__)
  2154. for (; i + 3 < n; i += 4) {
  2155. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2156. }
  2157. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2158. for (; i + 3 < n; i += 4) {
  2159. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2160. }
  2161. #endif
  2162. for (; i < n; ++i) {
  2163. y[i] = ggml_silu_f32(x[i]);
  2164. }
  2165. }
  2166. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2167. int i = 0;
  2168. ggml_float sum = 0;
  2169. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2170. for (; i + 15 < n; i += 16) {
  2171. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2172. _mm512_set1_ps(max)));
  2173. _mm512_storeu_ps(y + i, val);
  2174. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2175. }
  2176. #elif defined(__AVX2__) && defined(__FMA__)
  2177. for (; i + 7 < n; i += 8) {
  2178. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2179. _mm256_set1_ps(max)));
  2180. _mm256_storeu_ps(y + i, val);
  2181. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2182. _mm256_castps256_ps128(val));
  2183. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2184. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2185. sum += (ggml_float)_mm_cvtss_f32(val2);
  2186. }
  2187. #elif defined(__SSE2__)
  2188. for (; i + 3 < n; i += 4) {
  2189. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2190. _mm_set1_ps(max)));
  2191. _mm_storeu_ps(y + i, val);
  2192. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2193. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2194. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2195. #else
  2196. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2197. val = _mm_add_ps(val, tmp);
  2198. tmp = _mm_movehl_ps(tmp, val);
  2199. val = _mm_add_ss(val, tmp);
  2200. #endif
  2201. sum += (ggml_float)_mm_cvtss_f32(val);
  2202. }
  2203. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2204. for (; i + 3 < n; i += 4) {
  2205. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2206. vdupq_n_f32(max)));
  2207. vst1q_f32(y + i, val);
  2208. sum += (ggml_float)vaddvq_f32(val);
  2209. }
  2210. #endif
  2211. for (; i < n; ++i) {
  2212. float val = expf(x[i] - max);
  2213. sum += (ggml_float)val;
  2214. y[i] = val;
  2215. }
  2216. return sum;
  2217. }
  2218. inline static float ggml_silu_backward_f32(float x, float dy) {
  2219. const float s = 1.0f/(1.0f + expf(-x));
  2220. return dy*s*(1.0f + x*(1.0f - s));
  2221. }
  2222. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2223. for (int i = 0; i < n; ++i) {
  2224. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2225. }
  2226. }
  2227. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2228. #ifndef GGML_USE_ACCELERATE
  2229. ggml_float sum = 0.0;
  2230. for (int i = 0; i < n; ++i) {
  2231. sum += (ggml_float)x[i];
  2232. }
  2233. *s = sum;
  2234. #else
  2235. vDSP_sve(x, 1, s, n);
  2236. #endif
  2237. }
  2238. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2239. ggml_float sum = 0.0;
  2240. for (int i = 0; i < n; ++i) {
  2241. sum += (ggml_float)x[i];
  2242. }
  2243. *s = sum;
  2244. }
  2245. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2246. float sum = 0.0f;
  2247. for (int i = 0; i < n; ++i) {
  2248. sum += GGML_FP16_TO_FP32(x[i]);
  2249. }
  2250. *s = sum;
  2251. }
  2252. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2253. float sum = 0.0f;
  2254. for (int i = 0; i < n; ++i) {
  2255. sum += GGML_BF16_TO_FP32(x[i]);
  2256. }
  2257. *s = sum;
  2258. }
  2259. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2260. #ifndef GGML_USE_ACCELERATE
  2261. float max = -INFINITY;
  2262. for (int i = 0; i < n; ++i) {
  2263. max = MAX(max, x[i]);
  2264. }
  2265. *s = max;
  2266. #else
  2267. vDSP_maxv(x, 1, s, n);
  2268. #endif
  2269. }
  2270. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2271. ggml_vec_norm_f32(n, s, x);
  2272. *s = 1.f/(*s);
  2273. }
  2274. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2275. float max = -INFINITY;
  2276. int idx = 0;
  2277. for (int i = 0; i < n; ++i) {
  2278. max = MAX(max, x[i]);
  2279. if (max == x[i]) { idx = i; }
  2280. }
  2281. *s = idx;
  2282. }
  2283. //
  2284. // data types
  2285. //
  2286. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2287. "NONE",
  2288. "DUP",
  2289. "ADD",
  2290. "ADD1",
  2291. "ACC",
  2292. "SUB",
  2293. "MUL",
  2294. "DIV",
  2295. "SQR",
  2296. "SQRT",
  2297. "LOG",
  2298. "SUM",
  2299. "SUM_ROWS",
  2300. "MEAN",
  2301. "ARGMAX",
  2302. "REPEAT",
  2303. "REPEAT_BACK",
  2304. "CONCAT",
  2305. "SILU_BACK",
  2306. "NORM",
  2307. "RMS_NORM",
  2308. "RMS_NORM_BACK",
  2309. "GROUP_NORM",
  2310. "MUL_MAT",
  2311. "MUL_MAT_ID",
  2312. "OUT_PROD",
  2313. "SCALE",
  2314. "SET",
  2315. "CPY",
  2316. "CONT",
  2317. "RESHAPE",
  2318. "VIEW",
  2319. "PERMUTE",
  2320. "TRANSPOSE",
  2321. "GET_ROWS",
  2322. "GET_ROWS_BACK",
  2323. "DIAG",
  2324. "DIAG_MASK_INF",
  2325. "DIAG_MASK_ZERO",
  2326. "SOFT_MAX",
  2327. "SOFT_MAX_BACK",
  2328. "ROPE",
  2329. "ROPE_BACK",
  2330. "CLAMP",
  2331. "CONV_TRANSPOSE_1D",
  2332. "IM2COL",
  2333. "CONV_TRANSPOSE_2D",
  2334. "POOL_1D",
  2335. "POOL_2D",
  2336. "UPSCALE",
  2337. "PAD",
  2338. "ARANGE",
  2339. "TIMESTEP_EMBEDDING",
  2340. "ARGSORT",
  2341. "LEAKY_RELU",
  2342. "FLASH_ATTN",
  2343. "FLASH_ATTN_EXT",
  2344. "FLASH_FF",
  2345. "FLASH_ATTN_BACK",
  2346. "SSM_CONV",
  2347. "SSM_SCAN",
  2348. "WIN_PART",
  2349. "WIN_UNPART",
  2350. "GET_REL_POS",
  2351. "ADD_REL_POS",
  2352. "UNARY",
  2353. "MAP_UNARY",
  2354. "MAP_BINARY",
  2355. "MAP_CUSTOM1_F32",
  2356. "MAP_CUSTOM2_F32",
  2357. "MAP_CUSTOM3_F32",
  2358. "MAP_CUSTOM1",
  2359. "MAP_CUSTOM2",
  2360. "MAP_CUSTOM3",
  2361. "CROSS_ENTROPY_LOSS",
  2362. "CROSS_ENTROPY_LOSS_BACK",
  2363. };
  2364. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2365. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2366. "none",
  2367. "x",
  2368. "x+y",
  2369. "x+y",
  2370. "view(x,nb,offset)+=y->x",
  2371. "x-y",
  2372. "x*y",
  2373. "x/y",
  2374. "x^2",
  2375. "√x",
  2376. "log(x)",
  2377. "Σx",
  2378. "Σx_k",
  2379. "Σx/n",
  2380. "argmax(x)",
  2381. "repeat(x)",
  2382. "repeat_back(x)",
  2383. "concat(x, y)",
  2384. "silu_back(x)",
  2385. "norm(x)",
  2386. "rms_norm(x)",
  2387. "rms_norm_back(x)",
  2388. "group_norm(x)",
  2389. "X*Y",
  2390. "X[i]*Y",
  2391. "X*Y",
  2392. "x*v",
  2393. "y-\\>view(x)",
  2394. "x-\\>y",
  2395. "cont(x)",
  2396. "reshape(x)",
  2397. "view(x)",
  2398. "permute(x)",
  2399. "transpose(x)",
  2400. "get_rows(x)",
  2401. "get_rows_back(x)",
  2402. "diag(x)",
  2403. "diag_mask_inf(x)",
  2404. "diag_mask_zero(x)",
  2405. "soft_max(x)",
  2406. "soft_max_back(x)",
  2407. "rope(x)",
  2408. "rope_back(x)",
  2409. "clamp(x)",
  2410. "conv_transpose_1d(x)",
  2411. "im2col(x)",
  2412. "conv_transpose_2d(x)",
  2413. "pool_1d(x)",
  2414. "pool_2d(x)",
  2415. "upscale(x)",
  2416. "pad(x)",
  2417. "arange(start, stop, step)",
  2418. "timestep_embedding(timesteps, dim, max_period)",
  2419. "argsort(x)",
  2420. "leaky_relu(x)",
  2421. "flash_attn(x)",
  2422. "flash_attn_ext(x)",
  2423. "flash_ff(x)",
  2424. "flash_attn_back(x)",
  2425. "ssm_conv(x)",
  2426. "ssm_scan(x)",
  2427. "win_part(x)",
  2428. "win_unpart(x)",
  2429. "get_rel_pos(x)",
  2430. "add_rel_pos(x)",
  2431. "unary(x)",
  2432. "f(x)",
  2433. "f(x,y)",
  2434. "custom_f32(x)",
  2435. "custom_f32(x,y)",
  2436. "custom_f32(x,y,z)",
  2437. "custom(x)",
  2438. "custom(x,y)",
  2439. "custom(x,y,z)",
  2440. "cross_entropy_loss(x,y)",
  2441. "cross_entropy_loss_back(x,y)",
  2442. };
  2443. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2444. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2445. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2446. "ABS",
  2447. "SGN",
  2448. "NEG",
  2449. "STEP",
  2450. "TANH",
  2451. "ELU",
  2452. "RELU",
  2453. "SIGMOID",
  2454. "GELU",
  2455. "GELU_QUICK",
  2456. "SILU",
  2457. "HARDSWISH",
  2458. "HARDSIGMOID",
  2459. };
  2460. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2461. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2462. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2463. // WARN:
  2464. // Mis-configuration can lead to problem that's hard to reason about:
  2465. // * At best it crash or talks nosense.
  2466. // * At worst it talks slightly difference but hard to perceive.
  2467. //
  2468. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2469. // Take care about compile options (e.g., GGML_USE_xxx).
  2470. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2471. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2472. static void ggml_setup_op_has_task_pass(void) {
  2473. { // INIT
  2474. bool * p = GGML_OP_HAS_INIT;
  2475. p[GGML_OP_ACC ] = true;
  2476. p[GGML_OP_MUL_MAT ] = true;
  2477. p[GGML_OP_MUL_MAT_ID ] = true;
  2478. p[GGML_OP_OUT_PROD ] = true;
  2479. p[GGML_OP_SET ] = true;
  2480. p[GGML_OP_GET_ROWS_BACK ] = true;
  2481. p[GGML_OP_DIAG_MASK_INF ] = true;
  2482. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2483. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2484. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2485. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2486. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2487. p[GGML_OP_ADD_REL_POS ] = true;
  2488. }
  2489. { // FINALIZE
  2490. bool * p = GGML_OP_HAS_FINALIZE;
  2491. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2492. }
  2493. }
  2494. //
  2495. // NUMA support
  2496. //
  2497. #define GGML_NUMA_MAX_NODES 8
  2498. #define GGML_NUMA_MAX_CPUS 512
  2499. struct ggml_numa_node {
  2500. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2501. uint32_t n_cpus;
  2502. };
  2503. struct ggml_numa_nodes {
  2504. enum ggml_numa_strategy numa_strategy;
  2505. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2506. uint32_t n_nodes;
  2507. uint32_t total_cpus; // hardware threads on system
  2508. uint32_t current_node; // node on which main process is execting
  2509. #if defined(__gnu_linux__)
  2510. cpu_set_t cpuset; // cpuset from numactl
  2511. #else
  2512. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2513. #endif
  2514. };
  2515. //
  2516. // ggml state
  2517. //
  2518. struct ggml_state {
  2519. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2520. struct ggml_numa_nodes numa;
  2521. };
  2522. // global state
  2523. static struct ggml_state g_state;
  2524. static atomic_int g_state_barrier = 0;
  2525. // barrier via spin lock
  2526. inline static void ggml_critical_section_start(void) {
  2527. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2528. while (processing > 0) {
  2529. // wait for other threads to finish
  2530. atomic_fetch_sub(&g_state_barrier, 1);
  2531. sched_yield(); // TODO: reconsider this
  2532. processing = atomic_fetch_add(&g_state_barrier, 1);
  2533. }
  2534. }
  2535. // TODO: make this somehow automatically executed
  2536. // some sort of "sentry" mechanism
  2537. inline static void ggml_critical_section_end(void) {
  2538. atomic_fetch_sub(&g_state_barrier, 1);
  2539. }
  2540. #if defined(__gnu_linux__)
  2541. static cpu_set_t ggml_get_numa_affinity(void) {
  2542. cpu_set_t cpuset;
  2543. pthread_t thread;
  2544. thread = pthread_self();
  2545. CPU_ZERO(&cpuset);
  2546. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2547. return cpuset;
  2548. }
  2549. #else
  2550. static uint32_t ggml_get_numa_affinity(void) {
  2551. return 0; // no NUMA support
  2552. }
  2553. #endif
  2554. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2555. if (g_state.numa.n_nodes > 0) {
  2556. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2557. return;
  2558. }
  2559. #if defined(__gnu_linux__)
  2560. struct stat st;
  2561. char path[256];
  2562. int rv;
  2563. // set numa scheme
  2564. g_state.numa.numa_strategy = numa_flag;
  2565. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2566. g_state.numa.cpuset = ggml_get_numa_affinity();
  2567. // enumerate nodes
  2568. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2569. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2570. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2571. if (stat(path, &st) != 0) { break; }
  2572. ++g_state.numa.n_nodes;
  2573. }
  2574. // enumerate CPUs
  2575. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2576. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2577. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2578. if (stat(path, &st) != 0) { break; }
  2579. ++g_state.numa.total_cpus;
  2580. }
  2581. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2582. // figure out which node we're on
  2583. uint current_cpu;
  2584. int getcpu_ret = 0;
  2585. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2586. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2587. #else
  2588. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2589. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2590. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2591. # endif
  2592. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2593. #endif
  2594. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2595. g_state.numa.n_nodes = 0;
  2596. return;
  2597. }
  2598. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2599. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2600. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2601. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2602. node->n_cpus = 0;
  2603. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2604. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2605. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2606. if (stat(path, &st) == 0) {
  2607. node->cpus[node->n_cpus++] = c;
  2608. GGML_PRINT_DEBUG(" %u", c);
  2609. }
  2610. }
  2611. GGML_PRINT_DEBUG("\n");
  2612. }
  2613. if (ggml_is_numa()) {
  2614. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2615. if (fptr != NULL) {
  2616. char buf[42];
  2617. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2618. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2619. }
  2620. fclose(fptr);
  2621. }
  2622. }
  2623. #else
  2624. GGML_UNUSED(numa_flag);
  2625. // TODO
  2626. #endif
  2627. }
  2628. bool ggml_is_numa(void) {
  2629. return g_state.numa.n_nodes > 1;
  2630. }
  2631. ////////////////////////////////////////////////////////////////////////////////
  2632. void ggml_print_object(const struct ggml_object * obj) {
  2633. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2634. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2635. }
  2636. void ggml_print_objects(const struct ggml_context * ctx) {
  2637. struct ggml_object * obj = ctx->objects_begin;
  2638. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2639. while (obj != NULL) {
  2640. ggml_print_object(obj);
  2641. obj = obj->next;
  2642. }
  2643. GGML_PRINT("%s: --- end ---\n", __func__);
  2644. }
  2645. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2646. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2647. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2648. }
  2649. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2650. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2651. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2652. }
  2653. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2654. size_t nbytes;
  2655. size_t blck_size = ggml_blck_size(tensor->type);
  2656. if (blck_size == 1) {
  2657. nbytes = ggml_type_size(tensor->type);
  2658. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2659. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2660. }
  2661. }
  2662. else {
  2663. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2664. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2665. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2666. }
  2667. }
  2668. return nbytes;
  2669. }
  2670. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2671. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2672. }
  2673. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2674. return type_traits[type].blck_size;
  2675. }
  2676. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2677. return type_traits[type].type_size;
  2678. }
  2679. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2680. assert(ne % ggml_blck_size(type) == 0);
  2681. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2682. }
  2683. double ggml_type_sizef(enum ggml_type type) {
  2684. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2685. }
  2686. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2687. return type_traits[type].type_name;
  2688. }
  2689. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2690. return type_traits[type].is_quantized;
  2691. }
  2692. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2693. return GGML_OP_NAME[op];
  2694. }
  2695. const char * ggml_op_symbol(enum ggml_op op) {
  2696. return GGML_OP_SYMBOL[op];
  2697. }
  2698. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2699. return GGML_UNARY_OP_NAME[op];
  2700. }
  2701. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2702. if (t->op == GGML_OP_UNARY) {
  2703. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2704. return ggml_unary_op_name(uop);
  2705. }
  2706. else {
  2707. return ggml_op_name(t->op);
  2708. }
  2709. }
  2710. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2711. return ggml_type_size(tensor->type);
  2712. }
  2713. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2715. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2716. }
  2717. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2718. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2719. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2720. }
  2721. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2722. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2723. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2724. }
  2725. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2726. return tensor->ne[3] == 1;
  2727. }
  2728. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2729. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2730. if (tensor->ne[i] > 1) {
  2731. return i + 1;
  2732. }
  2733. }
  2734. return 1;
  2735. }
  2736. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2737. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2738. return (t0->ne[0] == t1->ne[0]) &&
  2739. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2740. (t1->ne[3]%t0->ne[3] == 0);
  2741. }
  2742. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2743. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2744. return (t0->ne[1] == t1->ne[1]) &&
  2745. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2746. (t1->ne[3]%t0->ne[3] == 0);
  2747. }
  2748. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2749. enum ggml_type wtype = GGML_TYPE_COUNT;
  2750. switch (ftype) {
  2751. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2752. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2753. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2754. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2755. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2756. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2757. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2758. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2759. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2760. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2761. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2762. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2763. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2764. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2765. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2766. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2767. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2768. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2769. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2770. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2771. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2772. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2773. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2774. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2775. }
  2776. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2777. return wtype;
  2778. }
  2779. size_t ggml_tensor_overhead(void) {
  2780. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2781. }
  2782. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2783. return tensor->nb[0] > tensor->nb[1];
  2784. }
  2785. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2786. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2787. return
  2788. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2789. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2790. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2791. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2792. }
  2793. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2795. return
  2796. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2797. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2798. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2799. }
  2800. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2801. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2802. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2803. }
  2804. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2806. return
  2807. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2808. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2809. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2810. }
  2811. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2812. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2813. if (tensor->ne[i] == 0) {
  2814. // empty if any dimension has no elements
  2815. return true;
  2816. }
  2817. }
  2818. return false;
  2819. }
  2820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return
  2823. (t0->ne[0] == t1->ne[0] ) &&
  2824. (t0->ne[1] == t1->ne[1] ) &&
  2825. (t0->ne[2] == t1->ne[2] ) &&
  2826. (t0->ne[3] == t1->ne[3] );
  2827. }
  2828. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return
  2831. (t0->nb[0] == t1->nb[0] ) &&
  2832. (t0->nb[1] == t1->nb[1] ) &&
  2833. (t0->nb[2] == t1->nb[2] ) &&
  2834. (t0->nb[3] == t1->nb[3] );
  2835. }
  2836. // check if t1 can be represented as a repeatition of t0
  2837. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2840. (t1->ne[0]%t0->ne[0] == 0) &&
  2841. (t1->ne[1]%t0->ne[1] == 0) &&
  2842. (t1->ne[2]%t0->ne[2] == 0) &&
  2843. (t1->ne[3]%t0->ne[3] == 0);
  2844. }
  2845. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2848. }
  2849. static inline int ggml_up32(int n) {
  2850. return (n + 31) & ~31;
  2851. }
  2852. //static inline int ggml_up64(int n) {
  2853. // return (n + 63) & ~63;
  2854. //}
  2855. static inline int ggml_up(int n, int m) {
  2856. // assert m is a power of 2
  2857. GGML_ASSERT((m & (m - 1)) == 0);
  2858. return (n + m - 1) & ~(m - 1);
  2859. }
  2860. // assert that pointer is aligned to GGML_MEM_ALIGN
  2861. #define ggml_assert_aligned(ptr) \
  2862. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2863. ////////////////////////////////////////////////////////////////////////////////
  2864. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2865. // make this function thread safe
  2866. ggml_critical_section_start();
  2867. static bool is_first_call = true;
  2868. if (is_first_call) {
  2869. // initialize time system (required on Windows)
  2870. ggml_time_init();
  2871. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2872. {
  2873. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2874. for (int i = 0; i < (1 << 16); ++i) {
  2875. union {
  2876. uint16_t u16;
  2877. ggml_fp16_t fp16;
  2878. } u = {i};
  2879. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2880. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2881. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2882. }
  2883. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2884. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2885. }
  2886. // initialize g_state
  2887. {
  2888. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2889. g_state = (struct ggml_state) {
  2890. /*.contexts =*/ { { 0 } },
  2891. /*.numa =*/ {
  2892. .n_nodes = 0,
  2893. .total_cpus = 0,
  2894. },
  2895. };
  2896. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2897. g_state.contexts[i].used = false;
  2898. }
  2899. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2900. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2901. }
  2902. #if defined(GGML_USE_CLBLAST)
  2903. ggml_cl_init();
  2904. #endif
  2905. ggml_setup_op_has_task_pass();
  2906. is_first_call = false;
  2907. }
  2908. // find non-used context in g_state
  2909. struct ggml_context * ctx = NULL;
  2910. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2911. if (!g_state.contexts[i].used) {
  2912. g_state.contexts[i].used = true;
  2913. ctx = &g_state.contexts[i].context;
  2914. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2915. break;
  2916. }
  2917. }
  2918. if (ctx == NULL) {
  2919. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2920. ggml_critical_section_end();
  2921. return NULL;
  2922. }
  2923. // allow to call ggml_init with 0 size
  2924. if (params.mem_size == 0) {
  2925. params.mem_size = GGML_MEM_ALIGN;
  2926. }
  2927. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2928. *ctx = (struct ggml_context) {
  2929. /*.mem_size =*/ mem_size,
  2930. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2931. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2932. /*.no_alloc =*/ params.no_alloc,
  2933. /*.no_alloc_save =*/ params.no_alloc,
  2934. /*.n_objects =*/ 0,
  2935. /*.objects_begin =*/ NULL,
  2936. /*.objects_end =*/ NULL,
  2937. /*.scratch =*/ { 0, 0, NULL, },
  2938. /*.scratch_save =*/ { 0, 0, NULL, },
  2939. };
  2940. GGML_ASSERT(ctx->mem_buffer != NULL);
  2941. ggml_assert_aligned(ctx->mem_buffer);
  2942. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2943. ggml_critical_section_end();
  2944. return ctx;
  2945. }
  2946. void ggml_free(struct ggml_context * ctx) {
  2947. if (ctx == NULL) {
  2948. return;
  2949. }
  2950. // make this function thread safe
  2951. ggml_critical_section_start();
  2952. bool found = false;
  2953. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2954. if (&g_state.contexts[i].context == ctx) {
  2955. g_state.contexts[i].used = false;
  2956. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2957. __func__, i, ggml_used_mem(ctx));
  2958. if (ctx->mem_buffer_owned) {
  2959. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2960. }
  2961. found = true;
  2962. break;
  2963. }
  2964. }
  2965. if (!found) {
  2966. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2967. }
  2968. ggml_critical_section_end();
  2969. }
  2970. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2971. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2972. }
  2973. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2974. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2975. ctx->scratch = scratch;
  2976. return result;
  2977. }
  2978. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2979. return ctx->no_alloc;
  2980. }
  2981. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2982. ctx->no_alloc = no_alloc;
  2983. }
  2984. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2985. return ctx->mem_buffer;
  2986. }
  2987. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2988. return ctx->mem_size;
  2989. }
  2990. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2991. size_t max_size = 0;
  2992. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2993. size_t bytes = ggml_nbytes(tensor);
  2994. max_size = MAX(max_size, bytes);
  2995. }
  2996. return max_size;
  2997. }
  2998. // IMPORTANT:
  2999. // when creating "opt" tensors, always save and load the scratch buffer
  3000. // this is an error prone process, but it is necessary to support inplace
  3001. // operators when using scratch buffers
  3002. // TODO: implement a better way
  3003. static void ggml_scratch_save(struct ggml_context * ctx) {
  3004. // this is needed to allow opt tensors to store their data
  3005. // TODO: again, need to find a better way
  3006. ctx->no_alloc_save = ctx->no_alloc;
  3007. ctx->no_alloc = false;
  3008. ctx->scratch_save = ctx->scratch;
  3009. ctx->scratch.data = NULL;
  3010. }
  3011. static void ggml_scratch_load(struct ggml_context * ctx) {
  3012. ctx->no_alloc = ctx->no_alloc_save;
  3013. ctx->scratch = ctx->scratch_save;
  3014. }
  3015. ////////////////////////////////////////////////////////////////////////////////
  3016. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3017. // always insert objects at the end of the context's memory pool
  3018. struct ggml_object * obj_cur = ctx->objects_end;
  3019. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3020. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3021. const size_t cur_end = cur_offs + cur_size;
  3022. // align to GGML_MEM_ALIGN
  3023. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3024. char * const mem_buffer = ctx->mem_buffer;
  3025. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3026. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3027. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3028. __func__, cur_end + size_needed, ctx->mem_size);
  3029. assert(false);
  3030. return NULL;
  3031. }
  3032. *obj_new = (struct ggml_object) {
  3033. .offs = cur_end + GGML_OBJECT_SIZE,
  3034. .size = size_needed,
  3035. .next = NULL,
  3036. .type = type,
  3037. };
  3038. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3039. if (obj_cur != NULL) {
  3040. obj_cur->next = obj_new;
  3041. } else {
  3042. // this is the first object in this context
  3043. ctx->objects_begin = obj_new;
  3044. }
  3045. ctx->objects_end = obj_new;
  3046. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3047. return obj_new;
  3048. }
  3049. static struct ggml_tensor * ggml_new_tensor_impl(
  3050. struct ggml_context * ctx,
  3051. enum ggml_type type,
  3052. int n_dims,
  3053. const int64_t * ne,
  3054. struct ggml_tensor * view_src,
  3055. size_t view_offs) {
  3056. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3057. // find the base tensor and absolute offset
  3058. if (view_src != NULL && view_src->view_src != NULL) {
  3059. view_offs += view_src->view_offs;
  3060. view_src = view_src->view_src;
  3061. }
  3062. size_t data_size = ggml_row_size(type, ne[0]);
  3063. for (int i = 1; i < n_dims; i++) {
  3064. data_size *= ne[i];
  3065. }
  3066. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3067. void * data = view_src != NULL ? view_src->data : NULL;
  3068. if (data != NULL) {
  3069. data = (char *) data + view_offs;
  3070. }
  3071. size_t obj_alloc_size = 0;
  3072. if (view_src == NULL && !ctx->no_alloc) {
  3073. if (ctx->scratch.data != NULL) {
  3074. // allocate tensor data in the scratch buffer
  3075. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3076. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3077. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3078. assert(false);
  3079. return NULL;
  3080. }
  3081. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3082. ctx->scratch.offs += data_size;
  3083. } else {
  3084. // allocate tensor data in the context's memory pool
  3085. obj_alloc_size = data_size;
  3086. }
  3087. }
  3088. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3089. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3090. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3091. #ifdef __clang__
  3092. // temporary until ggml_tensor::backend is removed
  3093. #pragma clang diagnostic push
  3094. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3095. #endif
  3096. *result = (struct ggml_tensor) {
  3097. /*.type =*/ type,
  3098. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3099. /*.buffer =*/ NULL,
  3100. /*.ne =*/ { 1, 1, 1, 1 },
  3101. /*.nb =*/ { 0, 0, 0, 0 },
  3102. /*.op =*/ GGML_OP_NONE,
  3103. /*.op_params =*/ { 0 },
  3104. /*.flags =*/ 0,
  3105. /*.grad =*/ NULL,
  3106. /*.src =*/ { NULL },
  3107. /*.perf_runs =*/ 0,
  3108. /*.perf_cycles =*/ 0,
  3109. /*.perf_time_us =*/ 0,
  3110. /*.view_src =*/ view_src,
  3111. /*.view_offs =*/ view_offs,
  3112. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3113. /*.name =*/ { 0 },
  3114. /*.extra =*/ NULL,
  3115. /*.padding =*/ { 0 },
  3116. };
  3117. #ifdef __clang__
  3118. #pragma clang diagnostic pop
  3119. #endif
  3120. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3121. //ggml_assert_aligned(result->data);
  3122. for (int i = 0; i < n_dims; i++) {
  3123. result->ne[i] = ne[i];
  3124. }
  3125. result->nb[0] = ggml_type_size(type);
  3126. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3127. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3128. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3129. }
  3130. ctx->n_objects++;
  3131. return result;
  3132. }
  3133. struct ggml_tensor * ggml_new_tensor(
  3134. struct ggml_context * ctx,
  3135. enum ggml_type type,
  3136. int n_dims,
  3137. const int64_t * ne) {
  3138. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3139. }
  3140. struct ggml_tensor * ggml_new_tensor_1d(
  3141. struct ggml_context * ctx,
  3142. enum ggml_type type,
  3143. int64_t ne0) {
  3144. return ggml_new_tensor(ctx, type, 1, &ne0);
  3145. }
  3146. struct ggml_tensor * ggml_new_tensor_2d(
  3147. struct ggml_context * ctx,
  3148. enum ggml_type type,
  3149. int64_t ne0,
  3150. int64_t ne1) {
  3151. const int64_t ne[2] = { ne0, ne1 };
  3152. return ggml_new_tensor(ctx, type, 2, ne);
  3153. }
  3154. struct ggml_tensor * ggml_new_tensor_3d(
  3155. struct ggml_context * ctx,
  3156. enum ggml_type type,
  3157. int64_t ne0,
  3158. int64_t ne1,
  3159. int64_t ne2) {
  3160. const int64_t ne[3] = { ne0, ne1, ne2 };
  3161. return ggml_new_tensor(ctx, type, 3, ne);
  3162. }
  3163. struct ggml_tensor * ggml_new_tensor_4d(
  3164. struct ggml_context * ctx,
  3165. enum ggml_type type,
  3166. int64_t ne0,
  3167. int64_t ne1,
  3168. int64_t ne2,
  3169. int64_t ne3) {
  3170. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3171. return ggml_new_tensor(ctx, type, 4, ne);
  3172. }
  3173. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3174. ggml_scratch_save(ctx);
  3175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3176. ggml_scratch_load(ctx);
  3177. ggml_set_i32(result, value);
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3181. ggml_scratch_save(ctx);
  3182. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3183. ggml_scratch_load(ctx);
  3184. ggml_set_f32(result, value);
  3185. return result;
  3186. }
  3187. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3188. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3189. }
  3190. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3191. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3192. assert(params_size <= GGML_MAX_OP_PARAMS);
  3193. memcpy(tensor->op_params, params, params_size);
  3194. }
  3195. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3196. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3197. return ((const int32_t *)(tensor->op_params))[i];
  3198. }
  3199. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3200. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3201. return ((const float *)(tensor->op_params))[i];
  3202. }
  3203. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3204. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3205. ((int32_t *)(tensor->op_params))[i] = value;
  3206. }
  3207. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3208. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3209. ((float *)(tensor->op_params))[i] = value;
  3210. }
  3211. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3212. memset(tensor->data, 0, ggml_nbytes(tensor));
  3213. return tensor;
  3214. }
  3215. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3216. const int n = ggml_nrows(tensor);
  3217. const int nc = tensor->ne[0];
  3218. const size_t n1 = tensor->nb[1];
  3219. char * const data = tensor->data;
  3220. switch (tensor->type) {
  3221. case GGML_TYPE_I8:
  3222. {
  3223. assert(tensor->nb[0] == sizeof(int8_t));
  3224. for (int i = 0; i < n; i++) {
  3225. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3226. }
  3227. } break;
  3228. case GGML_TYPE_I16:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int16_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_I32:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(int32_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3240. }
  3241. } break;
  3242. case GGML_TYPE_F16:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3247. }
  3248. } break;
  3249. case GGML_TYPE_BF16:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3254. }
  3255. } break;
  3256. case GGML_TYPE_F32:
  3257. {
  3258. assert(tensor->nb[0] == sizeof(float));
  3259. for (int i = 0; i < n; i++) {
  3260. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3261. }
  3262. } break;
  3263. default:
  3264. {
  3265. GGML_ASSERT(false);
  3266. } break;
  3267. }
  3268. return tensor;
  3269. }
  3270. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3271. const int n = ggml_nrows(tensor);
  3272. const int nc = tensor->ne[0];
  3273. const size_t n1 = tensor->nb[1];
  3274. char * const data = tensor->data;
  3275. switch (tensor->type) {
  3276. case GGML_TYPE_I8:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int8_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I16:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int16_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_I32:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(int32_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3295. }
  3296. } break;
  3297. case GGML_TYPE_F16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3302. }
  3303. } break;
  3304. case GGML_TYPE_BF16:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3309. }
  3310. } break;
  3311. case GGML_TYPE_F32:
  3312. {
  3313. assert(tensor->nb[0] == sizeof(float));
  3314. for (int i = 0; i < n; i++) {
  3315. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3316. }
  3317. } break;
  3318. default:
  3319. {
  3320. GGML_ASSERT(false);
  3321. } break;
  3322. }
  3323. return tensor;
  3324. }
  3325. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3326. const int64_t ne2 = tensor->ne[2];
  3327. const int64_t ne1 = tensor->ne[1];
  3328. const int64_t ne0 = tensor->ne[0];
  3329. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3330. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3331. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3332. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3333. if (i0) {
  3334. * i0 = i0_;
  3335. }
  3336. if (i1) {
  3337. * i1 = i1_;
  3338. }
  3339. if (i2) {
  3340. * i2 = i2_;
  3341. }
  3342. if (i3) {
  3343. * i3 = i3_;
  3344. }
  3345. }
  3346. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3347. if (!ggml_is_contiguous(tensor)) {
  3348. int64_t id[4] = { 0, 0, 0, 0 };
  3349. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3350. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3351. }
  3352. switch (tensor->type) {
  3353. case GGML_TYPE_I8:
  3354. {
  3355. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3356. return ((int8_t *)(tensor->data))[i];
  3357. }
  3358. case GGML_TYPE_I16:
  3359. {
  3360. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3361. return ((int16_t *)(tensor->data))[i];
  3362. }
  3363. case GGML_TYPE_I32:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3366. return ((int32_t *)(tensor->data))[i];
  3367. }
  3368. case GGML_TYPE_F16:
  3369. {
  3370. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3371. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3372. }
  3373. case GGML_TYPE_BF16:
  3374. {
  3375. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3376. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3377. }
  3378. case GGML_TYPE_F32:
  3379. {
  3380. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3381. return ((float *)(tensor->data))[i];
  3382. }
  3383. default:
  3384. {
  3385. GGML_ASSERT(false);
  3386. }
  3387. }
  3388. return 0.0f;
  3389. }
  3390. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3391. if (!ggml_is_contiguous(tensor)) {
  3392. int64_t id[4] = { 0, 0, 0, 0 };
  3393. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3394. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3395. return;
  3396. }
  3397. switch (tensor->type) {
  3398. case GGML_TYPE_I8:
  3399. {
  3400. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3401. ((int8_t *)(tensor->data))[i] = value;
  3402. } break;
  3403. case GGML_TYPE_I16:
  3404. {
  3405. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3406. ((int16_t *)(tensor->data))[i] = value;
  3407. } break;
  3408. case GGML_TYPE_I32:
  3409. {
  3410. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3411. ((int32_t *)(tensor->data))[i] = value;
  3412. } break;
  3413. case GGML_TYPE_F16:
  3414. {
  3415. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3416. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3417. } break;
  3418. case GGML_TYPE_BF16:
  3419. {
  3420. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3421. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3422. } break;
  3423. case GGML_TYPE_F32:
  3424. {
  3425. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3426. ((float *)(tensor->data))[i] = value;
  3427. } break;
  3428. default:
  3429. {
  3430. GGML_ASSERT(false);
  3431. } break;
  3432. }
  3433. }
  3434. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3435. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3436. switch (tensor->type) {
  3437. case GGML_TYPE_I8:
  3438. return ((int8_t *) data)[0];
  3439. case GGML_TYPE_I16:
  3440. return ((int16_t *) data)[0];
  3441. case GGML_TYPE_I32:
  3442. return ((int32_t *) data)[0];
  3443. case GGML_TYPE_F16:
  3444. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3445. case GGML_TYPE_BF16:
  3446. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3447. case GGML_TYPE_F32:
  3448. return ((float *) data)[0];
  3449. default:
  3450. GGML_ASSERT(false);
  3451. }
  3452. return 0.0f;
  3453. }
  3454. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3455. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3456. switch (tensor->type) {
  3457. case GGML_TYPE_I8:
  3458. {
  3459. ((int8_t *)(data))[0] = value;
  3460. } break;
  3461. case GGML_TYPE_I16:
  3462. {
  3463. ((int16_t *)(data))[0] = value;
  3464. } break;
  3465. case GGML_TYPE_I32:
  3466. {
  3467. ((int32_t *)(data))[0] = value;
  3468. } break;
  3469. case GGML_TYPE_F16:
  3470. {
  3471. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3472. } break;
  3473. case GGML_TYPE_BF16:
  3474. {
  3475. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3476. } break;
  3477. case GGML_TYPE_F32:
  3478. {
  3479. ((float *)(data))[0] = value;
  3480. } break;
  3481. default:
  3482. {
  3483. GGML_ASSERT(false);
  3484. } break;
  3485. }
  3486. }
  3487. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3488. if (!ggml_is_contiguous(tensor)) {
  3489. int64_t id[4] = { 0, 0, 0, 0 };
  3490. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3491. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3492. }
  3493. switch (tensor->type) {
  3494. case GGML_TYPE_I8:
  3495. {
  3496. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3497. return ((int8_t *)(tensor->data))[i];
  3498. }
  3499. case GGML_TYPE_I16:
  3500. {
  3501. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3502. return ((int16_t *)(tensor->data))[i];
  3503. }
  3504. case GGML_TYPE_I32:
  3505. {
  3506. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3507. return ((int32_t *)(tensor->data))[i];
  3508. }
  3509. case GGML_TYPE_F16:
  3510. {
  3511. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3512. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3513. }
  3514. case GGML_TYPE_BF16:
  3515. {
  3516. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3517. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3518. }
  3519. case GGML_TYPE_F32:
  3520. {
  3521. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3522. return ((float *)(tensor->data))[i];
  3523. }
  3524. default:
  3525. {
  3526. GGML_ASSERT(false);
  3527. }
  3528. }
  3529. return 0.0f;
  3530. }
  3531. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3532. if (!ggml_is_contiguous(tensor)) {
  3533. int64_t id[4] = { 0, 0, 0, 0 };
  3534. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3535. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3536. return;
  3537. }
  3538. switch (tensor->type) {
  3539. case GGML_TYPE_I8:
  3540. {
  3541. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3542. ((int8_t *)(tensor->data))[i] = value;
  3543. } break;
  3544. case GGML_TYPE_I16:
  3545. {
  3546. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3547. ((int16_t *)(tensor->data))[i] = value;
  3548. } break;
  3549. case GGML_TYPE_I32:
  3550. {
  3551. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3552. ((int32_t *)(tensor->data))[i] = value;
  3553. } break;
  3554. case GGML_TYPE_F16:
  3555. {
  3556. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3557. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3558. } break;
  3559. case GGML_TYPE_BF16:
  3560. {
  3561. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3562. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3563. } break;
  3564. case GGML_TYPE_F32:
  3565. {
  3566. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3567. ((float *)(tensor->data))[i] = value;
  3568. } break;
  3569. default:
  3570. {
  3571. GGML_ASSERT(false);
  3572. } break;
  3573. }
  3574. }
  3575. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3576. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3577. switch (tensor->type) {
  3578. case GGML_TYPE_I8:
  3579. return ((int8_t *) data)[0];
  3580. case GGML_TYPE_I16:
  3581. return ((int16_t *) data)[0];
  3582. case GGML_TYPE_I32:
  3583. return ((int32_t *) data)[0];
  3584. case GGML_TYPE_F16:
  3585. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3586. case GGML_TYPE_BF16:
  3587. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3588. case GGML_TYPE_F32:
  3589. return ((float *) data)[0];
  3590. default:
  3591. GGML_ASSERT(false);
  3592. }
  3593. return 0.0f;
  3594. }
  3595. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3596. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3597. switch (tensor->type) {
  3598. case GGML_TYPE_I8:
  3599. {
  3600. ((int8_t *)(data))[0] = value;
  3601. } break;
  3602. case GGML_TYPE_I16:
  3603. {
  3604. ((int16_t *)(data))[0] = value;
  3605. } break;
  3606. case GGML_TYPE_I32:
  3607. {
  3608. ((int32_t *)(data))[0] = value;
  3609. } break;
  3610. case GGML_TYPE_F16:
  3611. {
  3612. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3613. } break;
  3614. case GGML_TYPE_BF16:
  3615. {
  3616. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3617. } break;
  3618. case GGML_TYPE_F32:
  3619. {
  3620. ((float *)(data))[0] = value;
  3621. } break;
  3622. default:
  3623. {
  3624. GGML_ASSERT(false);
  3625. } break;
  3626. }
  3627. }
  3628. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3629. return tensor->data;
  3630. }
  3631. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3632. assert(tensor->type == GGML_TYPE_F32);
  3633. return (float *)(tensor->data);
  3634. }
  3635. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3636. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3637. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3638. }
  3639. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3640. return tensor->name;
  3641. }
  3642. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3643. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3644. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3645. return tensor;
  3646. }
  3647. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3648. va_list args;
  3649. va_start(args, fmt);
  3650. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3651. va_end(args);
  3652. return tensor;
  3653. }
  3654. struct ggml_tensor * ggml_view_tensor(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * src) {
  3657. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3658. ggml_format_name(result, "%s (view)", src->name);
  3659. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3660. result->nb[i] = src->nb[i];
  3661. }
  3662. return result;
  3663. }
  3664. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3665. struct ggml_object * obj = ctx->objects_begin;
  3666. char * const mem_buffer = ctx->mem_buffer;
  3667. while (obj != NULL) {
  3668. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3669. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3670. }
  3671. obj = obj->next;
  3672. }
  3673. return NULL;
  3674. }
  3675. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3676. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3677. obj = obj->next;
  3678. char * const mem_buffer = ctx->mem_buffer;
  3679. while (obj != NULL) {
  3680. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3681. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3682. }
  3683. obj = obj->next;
  3684. }
  3685. return NULL;
  3686. }
  3687. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3688. struct ggml_object * obj = ctx->objects_begin;
  3689. char * const mem_buffer = ctx->mem_buffer;
  3690. while (obj != NULL) {
  3691. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3692. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3693. if (strcmp(cur->name, name) == 0) {
  3694. return cur;
  3695. }
  3696. }
  3697. obj = obj->next;
  3698. }
  3699. return NULL;
  3700. }
  3701. ////////////////////////////////////////////////////////////////////////////////
  3702. // ggml_dup
  3703. static struct ggml_tensor * ggml_dup_impl(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. bool inplace) {
  3707. bool is_node = false;
  3708. if (!inplace && (a->grad)) {
  3709. is_node = true;
  3710. }
  3711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3712. result->op = GGML_OP_DUP;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src[0] = a;
  3715. return result;
  3716. }
  3717. struct ggml_tensor * ggml_dup(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a) {
  3720. return ggml_dup_impl(ctx, a, false);
  3721. }
  3722. struct ggml_tensor * ggml_dup_inplace(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a) {
  3725. return ggml_dup_impl(ctx, a, true);
  3726. }
  3727. // ggml_add
  3728. static struct ggml_tensor * ggml_add_impl(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b,
  3732. bool inplace) {
  3733. GGML_ASSERT(ggml_can_repeat(b, a));
  3734. bool is_node = false;
  3735. if (!inplace && (a->grad || b->grad)) {
  3736. // TODO: support backward pass for broadcasting
  3737. GGML_ASSERT(ggml_are_same_shape(a, b));
  3738. is_node = true;
  3739. }
  3740. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3741. result->op = GGML_OP_ADD;
  3742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3743. result->src[0] = a;
  3744. result->src[1] = b;
  3745. return result;
  3746. }
  3747. struct ggml_tensor * ggml_add(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. struct ggml_tensor * b) {
  3751. return ggml_add_impl(ctx, a, b, false);
  3752. }
  3753. struct ggml_tensor * ggml_add_inplace(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. struct ggml_tensor * b) {
  3757. return ggml_add_impl(ctx, a, b, true);
  3758. }
  3759. // ggml_add_cast
  3760. static struct ggml_tensor * ggml_add_cast_impl(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a,
  3763. struct ggml_tensor * b,
  3764. enum ggml_type type) {
  3765. // TODO: support less-strict constraint
  3766. // GGML_ASSERT(ggml_can_repeat(b, a));
  3767. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3768. // currently only supported for quantized input and f16
  3769. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3770. a->type == GGML_TYPE_F16 ||
  3771. a->type == GGML_TYPE_BF16);
  3772. bool is_node = false;
  3773. if (a->grad || b->grad) {
  3774. // TODO: support backward pass for broadcasting
  3775. GGML_ASSERT(ggml_are_same_shape(a, b));
  3776. is_node = true;
  3777. }
  3778. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3779. result->op = GGML_OP_ADD;
  3780. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3781. result->src[0] = a;
  3782. result->src[1] = b;
  3783. return result;
  3784. }
  3785. struct ggml_tensor * ggml_add_cast(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a,
  3788. struct ggml_tensor * b,
  3789. enum ggml_type type) {
  3790. return ggml_add_cast_impl(ctx, a, b, type);
  3791. }
  3792. // ggml_add1
  3793. static struct ggml_tensor * ggml_add1_impl(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a,
  3796. struct ggml_tensor * b,
  3797. bool inplace) {
  3798. GGML_ASSERT(ggml_is_scalar(b));
  3799. GGML_ASSERT(ggml_is_padded_1d(a));
  3800. bool is_node = false;
  3801. if (a->grad || b->grad) {
  3802. is_node = true;
  3803. }
  3804. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3805. result->op = GGML_OP_ADD1;
  3806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3807. result->src[0] = a;
  3808. result->src[1] = b;
  3809. return result;
  3810. }
  3811. struct ggml_tensor * ggml_add1(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b) {
  3815. return ggml_add1_impl(ctx, a, b, false);
  3816. }
  3817. struct ggml_tensor * ggml_add1_inplace(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b) {
  3821. return ggml_add1_impl(ctx, a, b, true);
  3822. }
  3823. // ggml_acc
  3824. static struct ggml_tensor * ggml_acc_impl(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b,
  3828. size_t nb1,
  3829. size_t nb2,
  3830. size_t nb3,
  3831. size_t offset,
  3832. bool inplace) {
  3833. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3834. GGML_ASSERT(ggml_is_contiguous(a));
  3835. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3836. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3837. bool is_node = false;
  3838. if (!inplace && (a->grad || b->grad)) {
  3839. is_node = true;
  3840. }
  3841. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3842. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3843. ggml_set_op_params(result, params, sizeof(params));
  3844. result->op = GGML_OP_ACC;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src[0] = a;
  3847. result->src[1] = b;
  3848. return result;
  3849. }
  3850. struct ggml_tensor * ggml_acc(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. struct ggml_tensor * b,
  3854. size_t nb1,
  3855. size_t nb2,
  3856. size_t nb3,
  3857. size_t offset) {
  3858. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3859. }
  3860. struct ggml_tensor * ggml_acc_inplace(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b,
  3864. size_t nb1,
  3865. size_t nb2,
  3866. size_t nb3,
  3867. size_t offset) {
  3868. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3869. }
  3870. // ggml_sub
  3871. static struct ggml_tensor * ggml_sub_impl(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a,
  3874. struct ggml_tensor * b,
  3875. bool inplace) {
  3876. GGML_ASSERT(ggml_are_same_shape(a, b));
  3877. bool is_node = false;
  3878. if (!inplace && (a->grad || b->grad)) {
  3879. is_node = true;
  3880. }
  3881. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3882. result->op = GGML_OP_SUB;
  3883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3884. result->src[0] = a;
  3885. result->src[1] = b;
  3886. return result;
  3887. }
  3888. struct ggml_tensor * ggml_sub(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. struct ggml_tensor * b) {
  3892. return ggml_sub_impl(ctx, a, b, false);
  3893. }
  3894. struct ggml_tensor * ggml_sub_inplace(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a,
  3897. struct ggml_tensor * b) {
  3898. return ggml_sub_impl(ctx, a, b, true);
  3899. }
  3900. // ggml_mul
  3901. static struct ggml_tensor * ggml_mul_impl(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. struct ggml_tensor * b,
  3905. bool inplace) {
  3906. GGML_ASSERT(ggml_can_repeat(b, a));
  3907. bool is_node = false;
  3908. if (!inplace && (a->grad || b->grad)) {
  3909. // TODO: support backward pass for broadcasting
  3910. GGML_ASSERT(ggml_are_same_shape(a, b));
  3911. is_node = true;
  3912. }
  3913. if (inplace) {
  3914. GGML_ASSERT(!is_node);
  3915. }
  3916. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3917. result->op = GGML_OP_MUL;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. result->src[1] = b;
  3921. return result;
  3922. }
  3923. struct ggml_tensor * ggml_mul(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b) {
  3927. return ggml_mul_impl(ctx, a, b, false);
  3928. }
  3929. struct ggml_tensor * ggml_mul_inplace(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b) {
  3933. return ggml_mul_impl(ctx, a, b, true);
  3934. }
  3935. // ggml_div
  3936. static struct ggml_tensor * ggml_div_impl(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b,
  3940. bool inplace) {
  3941. GGML_ASSERT(ggml_can_repeat(b, a));
  3942. bool is_node = false;
  3943. if (!inplace && (a->grad || b->grad)) {
  3944. is_node = true;
  3945. }
  3946. if (inplace) {
  3947. GGML_ASSERT(!is_node);
  3948. }
  3949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3950. result->op = GGML_OP_DIV;
  3951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3952. result->src[0] = a;
  3953. result->src[1] = b;
  3954. return result;
  3955. }
  3956. struct ggml_tensor * ggml_div(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b) {
  3960. return ggml_div_impl(ctx, a, b, false);
  3961. }
  3962. struct ggml_tensor * ggml_div_inplace(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. return ggml_div_impl(ctx, a, b, true);
  3967. }
  3968. // ggml_sqr
  3969. static struct ggml_tensor * ggml_sqr_impl(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. bool inplace) {
  3973. bool is_node = false;
  3974. if (!inplace && (a->grad)) {
  3975. is_node = true;
  3976. }
  3977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3978. result->op = GGML_OP_SQR;
  3979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3980. result->src[0] = a;
  3981. return result;
  3982. }
  3983. struct ggml_tensor * ggml_sqr(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a) {
  3986. return ggml_sqr_impl(ctx, a, false);
  3987. }
  3988. struct ggml_tensor * ggml_sqr_inplace(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a) {
  3991. return ggml_sqr_impl(ctx, a, true);
  3992. }
  3993. // ggml_sqrt
  3994. static struct ggml_tensor * ggml_sqrt_impl(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. bool inplace) {
  3998. bool is_node = false;
  3999. if (!inplace && (a->grad)) {
  4000. is_node = true;
  4001. }
  4002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4003. result->op = GGML_OP_SQRT;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src[0] = a;
  4006. return result;
  4007. }
  4008. struct ggml_tensor * ggml_sqrt(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a) {
  4011. return ggml_sqrt_impl(ctx, a, false);
  4012. }
  4013. struct ggml_tensor * ggml_sqrt_inplace(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a) {
  4016. return ggml_sqrt_impl(ctx, a, true);
  4017. }
  4018. // ggml_log
  4019. static struct ggml_tensor * ggml_log_impl(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. bool inplace) {
  4023. bool is_node = false;
  4024. if (!inplace && (a->grad)) {
  4025. is_node = true;
  4026. }
  4027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4028. result->op = GGML_OP_LOG;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src[0] = a;
  4031. return result;
  4032. }
  4033. struct ggml_tensor * ggml_log(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a) {
  4036. return ggml_log_impl(ctx, a, false);
  4037. }
  4038. struct ggml_tensor * ggml_log_inplace(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a) {
  4041. return ggml_log_impl(ctx, a, true);
  4042. }
  4043. // ggml_sum
  4044. struct ggml_tensor * ggml_sum(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a) {
  4047. bool is_node = false;
  4048. if (a->grad) {
  4049. is_node = true;
  4050. }
  4051. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4052. result->op = GGML_OP_SUM;
  4053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4054. result->src[0] = a;
  4055. return result;
  4056. }
  4057. // ggml_sum_rows
  4058. struct ggml_tensor * ggml_sum_rows(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a) {
  4061. bool is_node = false;
  4062. if (a->grad) {
  4063. is_node = true;
  4064. }
  4065. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4066. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4067. ne[i] = a->ne[i];
  4068. }
  4069. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4070. result->op = GGML_OP_SUM_ROWS;
  4071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4072. result->src[0] = a;
  4073. return result;
  4074. }
  4075. // ggml_mean
  4076. struct ggml_tensor * ggml_mean(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a) {
  4079. bool is_node = false;
  4080. if (a->grad) {
  4081. GGML_ASSERT(false); // TODO: implement
  4082. is_node = true;
  4083. }
  4084. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4085. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4086. result->op = GGML_OP_MEAN;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src[0] = a;
  4089. return result;
  4090. }
  4091. // ggml_argmax
  4092. struct ggml_tensor * ggml_argmax(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. GGML_ASSERT(ggml_is_matrix(a));
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. GGML_ASSERT(false);
  4099. is_node = true;
  4100. }
  4101. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4102. result->op = GGML_OP_ARGMAX;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. // ggml_repeat
  4108. struct ggml_tensor * ggml_repeat(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b) {
  4112. GGML_ASSERT(ggml_can_repeat(a, b));
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4118. result->op = GGML_OP_REPEAT;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src[0] = a;
  4121. return result;
  4122. }
  4123. // ggml_repeat_back
  4124. struct ggml_tensor * ggml_repeat_back(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b) {
  4128. GGML_ASSERT(ggml_can_repeat(b, a));
  4129. bool is_node = false;
  4130. if (a->grad) {
  4131. is_node = true;
  4132. }
  4133. if (ggml_are_same_shape(a, b) && !is_node) {
  4134. return a;
  4135. }
  4136. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4137. result->op = GGML_OP_REPEAT_BACK;
  4138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4139. result->src[0] = a;
  4140. return result;
  4141. }
  4142. // ggml_concat
  4143. struct ggml_tensor * ggml_concat(
  4144. struct ggml_context* ctx,
  4145. struct ggml_tensor* a,
  4146. struct ggml_tensor* b) {
  4147. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4148. bool is_node = false;
  4149. if (a->grad || b->grad) {
  4150. is_node = true;
  4151. }
  4152. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4153. result->op = GGML_OP_CONCAT;
  4154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4155. result->src[0] = a;
  4156. result->src[1] = b;
  4157. return result;
  4158. }
  4159. // ggml_abs
  4160. struct ggml_tensor * ggml_abs(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4164. }
  4165. struct ggml_tensor * ggml_abs_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a) {
  4168. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4169. }
  4170. // ggml_sgn
  4171. struct ggml_tensor * ggml_sgn(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a) {
  4174. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4175. }
  4176. struct ggml_tensor * ggml_sgn_inplace(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4180. }
  4181. // ggml_neg
  4182. struct ggml_tensor * ggml_neg(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a) {
  4185. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4186. }
  4187. struct ggml_tensor * ggml_neg_inplace(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a) {
  4190. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4191. }
  4192. // ggml_step
  4193. struct ggml_tensor * ggml_step(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a) {
  4196. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4197. }
  4198. struct ggml_tensor * ggml_step_inplace(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a) {
  4201. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4202. }
  4203. // ggml_tanh
  4204. struct ggml_tensor * ggml_tanh(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a) {
  4207. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4208. }
  4209. struct ggml_tensor * ggml_tanh_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4213. }
  4214. // ggml_elu
  4215. struct ggml_tensor * ggml_elu(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a) {
  4218. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4219. }
  4220. struct ggml_tensor * ggml_elu_inplace(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a) {
  4223. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4224. }
  4225. // ggml_relu
  4226. struct ggml_tensor * ggml_relu(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a) {
  4229. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4230. }
  4231. struct ggml_tensor * ggml_relu_inplace(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4235. }
  4236. // ggml_leaky_relu
  4237. struct ggml_tensor * ggml_leaky_relu(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4240. bool is_node = false;
  4241. if (!inplace && (a->grad)) {
  4242. is_node = true;
  4243. }
  4244. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4245. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4246. result->op = GGML_OP_LEAKY_RELU;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. return result;
  4250. }
  4251. // ggml_sigmoid
  4252. struct ggml_tensor * ggml_sigmoid(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a) {
  4255. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4256. }
  4257. struct ggml_tensor * ggml_sigmoid_inplace(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a) {
  4260. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4261. }
  4262. // ggml_gelu
  4263. struct ggml_tensor * ggml_gelu(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a) {
  4266. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4267. }
  4268. struct ggml_tensor * ggml_gelu_inplace(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a) {
  4271. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4272. }
  4273. // ggml_gelu_quick
  4274. struct ggml_tensor * ggml_gelu_quick(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a) {
  4277. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4278. }
  4279. struct ggml_tensor * ggml_gelu_quick_inplace(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a) {
  4282. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4283. }
  4284. // ggml_silu
  4285. struct ggml_tensor * ggml_silu(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4289. }
  4290. struct ggml_tensor * ggml_silu_inplace(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4294. }
  4295. // ggml_silu_back
  4296. struct ggml_tensor * ggml_silu_back(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. bool is_node = false;
  4301. if (a->grad || b->grad) {
  4302. // TODO: implement backward
  4303. is_node = true;
  4304. }
  4305. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4306. result->op = GGML_OP_SILU_BACK;
  4307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4308. result->src[0] = a;
  4309. result->src[1] = b;
  4310. return result;
  4311. }
  4312. // ggml hardswish
  4313. struct ggml_tensor * ggml_hardswish(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a) {
  4316. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4317. }
  4318. // ggml hardsigmoid
  4319. struct ggml_tensor * ggml_hardsigmoid(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a) {
  4322. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4323. }
  4324. // ggml_norm
  4325. static struct ggml_tensor * ggml_norm_impl(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. float eps,
  4329. bool inplace) {
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad)) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4336. ggml_set_op_params(result, &eps, sizeof(eps));
  4337. result->op = GGML_OP_NORM;
  4338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4339. result->src[0] = a;
  4340. return result;
  4341. }
  4342. struct ggml_tensor * ggml_norm(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. float eps) {
  4346. return ggml_norm_impl(ctx, a, eps, false);
  4347. }
  4348. struct ggml_tensor * ggml_norm_inplace(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. float eps) {
  4352. return ggml_norm_impl(ctx, a, eps, true);
  4353. }
  4354. // ggml_rms_norm
  4355. static struct ggml_tensor * ggml_rms_norm_impl(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. float eps,
  4359. bool inplace) {
  4360. bool is_node = false;
  4361. if (!inplace && (a->grad)) {
  4362. is_node = true;
  4363. }
  4364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4365. ggml_set_op_params(result, &eps, sizeof(eps));
  4366. result->op = GGML_OP_RMS_NORM;
  4367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4368. result->src[0] = a;
  4369. return result;
  4370. }
  4371. struct ggml_tensor * ggml_rms_norm(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. float eps) {
  4375. return ggml_rms_norm_impl(ctx, a, eps, false);
  4376. }
  4377. struct ggml_tensor * ggml_rms_norm_inplace(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. float eps) {
  4381. return ggml_rms_norm_impl(ctx, a, eps, true);
  4382. }
  4383. // ggml_rms_norm_back
  4384. struct ggml_tensor * ggml_rms_norm_back(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a,
  4387. struct ggml_tensor * b,
  4388. float eps) {
  4389. bool is_node = false;
  4390. if (a->grad) {
  4391. // TODO: implement backward
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4395. ggml_set_op_params(result, &eps, sizeof(eps));
  4396. result->op = GGML_OP_RMS_NORM_BACK;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src[0] = a;
  4399. result->src[1] = b;
  4400. return result;
  4401. }
  4402. // ggml_group_norm
  4403. static struct ggml_tensor * ggml_group_norm_impl(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. int n_groups,
  4407. bool inplace) {
  4408. bool is_node = false;
  4409. if (!inplace && (a->grad)) {
  4410. GGML_ASSERT(false); // TODO: implement backward
  4411. is_node = true;
  4412. }
  4413. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4414. result->op_params[0] = n_groups;
  4415. result->op = GGML_OP_GROUP_NORM;
  4416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4417. result->src[0] = a;
  4418. return result;
  4419. }
  4420. struct ggml_tensor * ggml_group_norm(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. int n_groups) {
  4424. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4425. }
  4426. struct ggml_tensor * ggml_group_norm_inplace(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. int n_groups) {
  4430. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4431. }
  4432. // ggml_mul_mat
  4433. struct ggml_tensor * ggml_mul_mat(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b) {
  4437. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4438. GGML_ASSERT(!ggml_is_transposed(a));
  4439. bool is_node = false;
  4440. if (a->grad || b->grad) {
  4441. is_node = true;
  4442. }
  4443. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4444. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4445. result->op = GGML_OP_MUL_MAT;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src[0] = a;
  4448. result->src[1] = b;
  4449. return result;
  4450. }
  4451. void ggml_mul_mat_set_prec(
  4452. struct ggml_tensor * a,
  4453. enum ggml_prec prec) {
  4454. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4455. const int32_t prec_i32 = (int32_t) prec;
  4456. ggml_set_op_params_i32(a, 0, prec_i32);
  4457. }
  4458. // ggml_mul_mat_id
  4459. /*
  4460. c = ggml_mul_mat_id(ctx, as, b, ids);
  4461. as -> [cols, rows, n_expert]
  4462. ids -> [n_experts_used, n_tokens] (i32)
  4463. b -> [cols, n_expert_used, n_tokens]
  4464. c -> [cols, n_expert_used, n_tokens]
  4465. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4466. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4467. */
  4468. struct ggml_tensor * ggml_mul_mat_id(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * as,
  4471. struct ggml_tensor * b,
  4472. struct ggml_tensor * ids) {
  4473. GGML_ASSERT(!ggml_is_transposed(as));
  4474. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4475. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4476. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4477. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4478. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4479. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4480. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4481. bool is_node = false;
  4482. if (as->grad || b->grad) {
  4483. is_node = true;
  4484. }
  4485. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4486. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4487. result->op = GGML_OP_MUL_MAT_ID;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = as;
  4490. result->src[1] = b;
  4491. result->src[2] = ids;
  4492. return result;
  4493. }
  4494. // ggml_out_prod
  4495. struct ggml_tensor * ggml_out_prod(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. struct ggml_tensor * b) {
  4499. GGML_ASSERT(ggml_can_out_prod(a, b));
  4500. GGML_ASSERT(!ggml_is_transposed(a));
  4501. bool is_node = false;
  4502. if (a->grad || b->grad) {
  4503. is_node = true;
  4504. }
  4505. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4506. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4507. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4508. result->op = GGML_OP_OUT_PROD;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. result->src[1] = b;
  4512. return result;
  4513. }
  4514. // ggml_scale
  4515. static struct ggml_tensor * ggml_scale_impl(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. float s,
  4519. bool inplace) {
  4520. GGML_ASSERT(ggml_is_padded_1d(a));
  4521. bool is_node = false;
  4522. if (a->grad) {
  4523. is_node = true;
  4524. }
  4525. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4526. ggml_set_op_params(result, &s, sizeof(s));
  4527. result->op = GGML_OP_SCALE;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src[0] = a;
  4530. return result;
  4531. }
  4532. struct ggml_tensor * ggml_scale(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. float s) {
  4536. return ggml_scale_impl(ctx, a, s, false);
  4537. }
  4538. struct ggml_tensor * ggml_scale_inplace(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a,
  4541. float s) {
  4542. return ggml_scale_impl(ctx, a, s, true);
  4543. }
  4544. // ggml_set
  4545. static struct ggml_tensor * ggml_set_impl(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b,
  4549. size_t nb1,
  4550. size_t nb2,
  4551. size_t nb3,
  4552. size_t offset,
  4553. bool inplace) {
  4554. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4555. bool is_node = false;
  4556. if (a->grad || b->grad) {
  4557. is_node = true;
  4558. }
  4559. // make a view of the destination
  4560. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4561. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4562. ggml_set_op_params(result, params, sizeof(params));
  4563. result->op = GGML_OP_SET;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src[0] = a;
  4566. result->src[1] = b;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_set(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b,
  4573. size_t nb1,
  4574. size_t nb2,
  4575. size_t nb3,
  4576. size_t offset) {
  4577. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4578. }
  4579. struct ggml_tensor * ggml_set_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a,
  4582. struct ggml_tensor * b,
  4583. size_t nb1,
  4584. size_t nb2,
  4585. size_t nb3,
  4586. size_t offset) {
  4587. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4588. }
  4589. struct ggml_tensor * ggml_set_1d(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. struct ggml_tensor * b,
  4593. size_t offset) {
  4594. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4595. }
  4596. struct ggml_tensor * ggml_set_1d_inplace(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. struct ggml_tensor * b,
  4600. size_t offset) {
  4601. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4602. }
  4603. struct ggml_tensor * ggml_set_2d(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. size_t nb1,
  4608. size_t offset) {
  4609. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4610. }
  4611. struct ggml_tensor * ggml_set_2d_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. struct ggml_tensor * b,
  4615. size_t nb1,
  4616. size_t offset) {
  4617. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4618. }
  4619. // ggml_cpy
  4620. static struct ggml_tensor * ggml_cpy_impl(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. struct ggml_tensor * b) {
  4624. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4625. bool is_node = false;
  4626. if (a->grad || b->grad) {
  4627. // inplace is false and either one have a grad
  4628. is_node = true;
  4629. }
  4630. // make a view of the destination
  4631. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4632. if (strlen(b->name) > 0) {
  4633. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4634. } else {
  4635. ggml_format_name(result, "%s (copy)", a->name);
  4636. }
  4637. result->op = GGML_OP_CPY;
  4638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4639. result->src[0] = a;
  4640. result->src[1] = b;
  4641. return result;
  4642. }
  4643. struct ggml_tensor * ggml_cpy(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. struct ggml_tensor * b) {
  4647. return ggml_cpy_impl(ctx, a, b);
  4648. }
  4649. struct ggml_tensor * ggml_cast(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. enum ggml_type type) {
  4653. bool is_node = false;
  4654. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4655. ggml_format_name(result, "%s (copy)", a->name);
  4656. result->op = GGML_OP_CPY;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src[0] = a;
  4659. result->src[1] = result;
  4660. return result;
  4661. }
  4662. // ggml_cont
  4663. static struct ggml_tensor * ggml_cont_impl(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a) {
  4666. bool is_node = false;
  4667. if (a->grad) {
  4668. is_node = true;
  4669. }
  4670. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4671. ggml_format_name(result, "%s (cont)", a->name);
  4672. result->op = GGML_OP_CONT;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = a;
  4675. return result;
  4676. }
  4677. struct ggml_tensor * ggml_cont(
  4678. struct ggml_context * ctx,
  4679. struct ggml_tensor * a) {
  4680. return ggml_cont_impl(ctx, a);
  4681. }
  4682. // make contiguous, with new shape
  4683. GGML_API struct ggml_tensor * ggml_cont_1d(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. int64_t ne0) {
  4687. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4688. }
  4689. GGML_API struct ggml_tensor * ggml_cont_2d(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a,
  4692. int64_t ne0,
  4693. int64_t ne1) {
  4694. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4695. }
  4696. GGML_API struct ggml_tensor * ggml_cont_3d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0,
  4700. int64_t ne1,
  4701. int64_t ne2) {
  4702. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4703. }
  4704. struct ggml_tensor * ggml_cont_4d(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. int64_t ne0,
  4708. int64_t ne1,
  4709. int64_t ne2,
  4710. int64_t ne3) {
  4711. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4712. bool is_node = false;
  4713. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4714. ggml_format_name(result, "%s (cont)", a->name);
  4715. result->op = GGML_OP_CONT;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src[0] = a;
  4718. return result;
  4719. }
  4720. // ggml_reshape
  4721. struct ggml_tensor * ggml_reshape(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. struct ggml_tensor * b) {
  4725. GGML_ASSERT(ggml_is_contiguous(a));
  4726. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4727. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4728. bool is_node = false;
  4729. if (a->grad) {
  4730. is_node = true;
  4731. }
  4732. if (b->grad) {
  4733. // gradient propagation is not supported
  4734. //GGML_ASSERT(false);
  4735. }
  4736. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4737. ggml_format_name(result, "%s (reshaped)", a->name);
  4738. result->op = GGML_OP_RESHAPE;
  4739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4740. result->src[0] = a;
  4741. return result;
  4742. }
  4743. struct ggml_tensor * ggml_reshape_1d(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. int64_t ne0) {
  4747. GGML_ASSERT(ggml_is_contiguous(a));
  4748. GGML_ASSERT(ggml_nelements(a) == ne0);
  4749. bool is_node = false;
  4750. if (a->grad) {
  4751. is_node = true;
  4752. }
  4753. const int64_t ne[1] = { ne0 };
  4754. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4755. ggml_format_name(result, "%s (reshaped)", a->name);
  4756. result->op = GGML_OP_RESHAPE;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_reshape_2d(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int64_t ne0,
  4765. int64_t ne1) {
  4766. GGML_ASSERT(ggml_is_contiguous(a));
  4767. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4768. bool is_node = false;
  4769. if (a->grad) {
  4770. is_node = true;
  4771. }
  4772. const int64_t ne[2] = { ne0, ne1 };
  4773. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4774. ggml_format_name(result, "%s (reshaped)", a->name);
  4775. result->op = GGML_OP_RESHAPE;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src[0] = a;
  4778. return result;
  4779. }
  4780. struct ggml_tensor * ggml_reshape_3d(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. int64_t ne0,
  4784. int64_t ne1,
  4785. int64_t ne2) {
  4786. GGML_ASSERT(ggml_is_contiguous(a));
  4787. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4788. bool is_node = false;
  4789. if (a->grad) {
  4790. is_node = true;
  4791. }
  4792. const int64_t ne[3] = { ne0, ne1, ne2 };
  4793. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4794. ggml_format_name(result, "%s (reshaped)", a->name);
  4795. result->op = GGML_OP_RESHAPE;
  4796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4797. result->src[0] = a;
  4798. return result;
  4799. }
  4800. struct ggml_tensor * ggml_reshape_4d(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. int64_t ne0,
  4804. int64_t ne1,
  4805. int64_t ne2,
  4806. int64_t ne3) {
  4807. GGML_ASSERT(ggml_is_contiguous(a));
  4808. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4809. bool is_node = false;
  4810. if (a->grad) {
  4811. is_node = true;
  4812. }
  4813. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4814. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4815. ggml_format_name(result, "%s (reshaped)", a->name);
  4816. result->op = GGML_OP_RESHAPE;
  4817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4818. result->src[0] = a;
  4819. return result;
  4820. }
  4821. static struct ggml_tensor * ggml_view_impl(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. int n_dims,
  4825. const int64_t * ne,
  4826. size_t offset) {
  4827. bool is_node = false;
  4828. if (a->grad) {
  4829. is_node = true;
  4830. }
  4831. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4832. ggml_format_name(result, "%s (view)", a->name);
  4833. ggml_set_op_params(result, &offset, sizeof(offset));
  4834. result->op = GGML_OP_VIEW;
  4835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4836. result->src[0] = a;
  4837. return result;
  4838. }
  4839. // ggml_view_1d
  4840. struct ggml_tensor * ggml_view_1d(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. int64_t ne0,
  4844. size_t offset) {
  4845. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4846. return result;
  4847. }
  4848. // ggml_view_2d
  4849. struct ggml_tensor * ggml_view_2d(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. int64_t ne0,
  4853. int64_t ne1,
  4854. size_t nb1,
  4855. size_t offset) {
  4856. const int64_t ne[2] = { ne0, ne1 };
  4857. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4858. result->nb[1] = nb1;
  4859. result->nb[2] = result->nb[1]*ne1;
  4860. result->nb[3] = result->nb[2];
  4861. return result;
  4862. }
  4863. // ggml_view_3d
  4864. struct ggml_tensor * ggml_view_3d(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. int64_t ne0,
  4868. int64_t ne1,
  4869. int64_t ne2,
  4870. size_t nb1,
  4871. size_t nb2,
  4872. size_t offset) {
  4873. const int64_t ne[3] = { ne0, ne1, ne2 };
  4874. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4875. result->nb[1] = nb1;
  4876. result->nb[2] = nb2;
  4877. result->nb[3] = result->nb[2]*ne2;
  4878. return result;
  4879. }
  4880. // ggml_view_4d
  4881. struct ggml_tensor * ggml_view_4d(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. int64_t ne0,
  4885. int64_t ne1,
  4886. int64_t ne2,
  4887. int64_t ne3,
  4888. size_t nb1,
  4889. size_t nb2,
  4890. size_t nb3,
  4891. size_t offset) {
  4892. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4893. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4894. result->nb[1] = nb1;
  4895. result->nb[2] = nb2;
  4896. result->nb[3] = nb3;
  4897. return result;
  4898. }
  4899. // ggml_permute
  4900. struct ggml_tensor * ggml_permute(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. int axis0,
  4904. int axis1,
  4905. int axis2,
  4906. int axis3) {
  4907. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4908. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4909. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4910. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4911. GGML_ASSERT(axis0 != axis1);
  4912. GGML_ASSERT(axis0 != axis2);
  4913. GGML_ASSERT(axis0 != axis3);
  4914. GGML_ASSERT(axis1 != axis2);
  4915. GGML_ASSERT(axis1 != axis3);
  4916. GGML_ASSERT(axis2 != axis3);
  4917. bool is_node = false;
  4918. if (a->grad) {
  4919. is_node = true;
  4920. }
  4921. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4922. ggml_format_name(result, "%s (permuted)", a->name);
  4923. int ne[GGML_MAX_DIMS];
  4924. int nb[GGML_MAX_DIMS];
  4925. ne[axis0] = a->ne[0];
  4926. ne[axis1] = a->ne[1];
  4927. ne[axis2] = a->ne[2];
  4928. ne[axis3] = a->ne[3];
  4929. nb[axis0] = a->nb[0];
  4930. nb[axis1] = a->nb[1];
  4931. nb[axis2] = a->nb[2];
  4932. nb[axis3] = a->nb[3];
  4933. result->ne[0] = ne[0];
  4934. result->ne[1] = ne[1];
  4935. result->ne[2] = ne[2];
  4936. result->ne[3] = ne[3];
  4937. result->nb[0] = nb[0];
  4938. result->nb[1] = nb[1];
  4939. result->nb[2] = nb[2];
  4940. result->nb[3] = nb[3];
  4941. result->op = GGML_OP_PERMUTE;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src[0] = a;
  4944. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4945. ggml_set_op_params(result, params, sizeof(params));
  4946. return result;
  4947. }
  4948. // ggml_transpose
  4949. struct ggml_tensor * ggml_transpose(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a) {
  4952. bool is_node = false;
  4953. if (a->grad) {
  4954. is_node = true;
  4955. }
  4956. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4957. ggml_format_name(result, "%s (transposed)", a->name);
  4958. result->ne[0] = a->ne[1];
  4959. result->ne[1] = a->ne[0];
  4960. result->nb[0] = a->nb[1];
  4961. result->nb[1] = a->nb[0];
  4962. result->op = GGML_OP_TRANSPOSE;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. // ggml_get_rows
  4968. struct ggml_tensor * ggml_get_rows(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b) {
  4972. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4973. GGML_ASSERT(b->ne[3] == 1);
  4974. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4975. bool is_node = false;
  4976. if (a->grad || b->grad) {
  4977. is_node = true;
  4978. }
  4979. // TODO: implement non F32 return
  4980. enum ggml_type type = GGML_TYPE_F32;
  4981. if (a->type == GGML_TYPE_I32) {
  4982. type = a->type;
  4983. }
  4984. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4985. result->op = GGML_OP_GET_ROWS;
  4986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4987. result->src[0] = a;
  4988. result->src[1] = b;
  4989. return result;
  4990. }
  4991. // ggml_get_rows_back
  4992. struct ggml_tensor * ggml_get_rows_back(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. struct ggml_tensor * c) {
  4997. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4998. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4999. bool is_node = false;
  5000. if (a->grad || b->grad) {
  5001. is_node = true;
  5002. }
  5003. // TODO: implement non F32 return
  5004. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5005. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5006. result->op = GGML_OP_GET_ROWS_BACK;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src[0] = a;
  5009. result->src[1] = b;
  5010. return result;
  5011. }
  5012. // ggml_diag
  5013. struct ggml_tensor * ggml_diag(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a) {
  5016. GGML_ASSERT(a->ne[1] == 1);
  5017. bool is_node = false;
  5018. if (a->grad) {
  5019. is_node = true;
  5020. }
  5021. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5022. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5023. result->op = GGML_OP_DIAG;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src[0] = a;
  5026. return result;
  5027. }
  5028. // ggml_diag_mask_inf
  5029. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. int n_past,
  5033. bool inplace) {
  5034. bool is_node = false;
  5035. if (a->grad) {
  5036. is_node = true;
  5037. }
  5038. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5039. int32_t params[] = { n_past };
  5040. ggml_set_op_params(result, params, sizeof(params));
  5041. result->op = GGML_OP_DIAG_MASK_INF;
  5042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5043. result->src[0] = a;
  5044. return result;
  5045. }
  5046. struct ggml_tensor * ggml_diag_mask_inf(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. int n_past) {
  5050. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5051. }
  5052. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. int n_past) {
  5056. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5057. }
  5058. // ggml_diag_mask_zero
  5059. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. int n_past,
  5063. bool inplace) {
  5064. bool is_node = false;
  5065. if (a->grad) {
  5066. is_node = true;
  5067. }
  5068. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5069. int32_t params[] = { n_past };
  5070. ggml_set_op_params(result, params, sizeof(params));
  5071. result->op = GGML_OP_DIAG_MASK_ZERO;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. return result;
  5075. }
  5076. struct ggml_tensor * ggml_diag_mask_zero(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. int n_past) {
  5080. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5081. }
  5082. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. int n_past) {
  5086. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5087. }
  5088. // ggml_soft_max
  5089. static struct ggml_tensor * ggml_soft_max_impl(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. struct ggml_tensor * mask,
  5093. float scale,
  5094. float max_bias,
  5095. bool inplace) {
  5096. GGML_ASSERT(ggml_is_contiguous(a));
  5097. if (mask) {
  5098. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5099. GGML_ASSERT(ggml_is_contiguous(mask));
  5100. GGML_ASSERT(ggml_is_matrix(mask));
  5101. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5102. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5103. }
  5104. if (max_bias > 0.0f) {
  5105. GGML_ASSERT(mask);
  5106. }
  5107. bool is_node = false;
  5108. if (a->grad) {
  5109. is_node = true;
  5110. }
  5111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5112. float params[] = { scale, max_bias };
  5113. ggml_set_op_params(result, params, sizeof(params));
  5114. result->op = GGML_OP_SOFT_MAX;
  5115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5116. result->src[0] = a;
  5117. result->src[1] = mask;
  5118. return result;
  5119. }
  5120. struct ggml_tensor * ggml_soft_max(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a) {
  5123. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5124. }
  5125. struct ggml_tensor * ggml_soft_max_inplace(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a) {
  5128. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5129. }
  5130. struct ggml_tensor * ggml_soft_max_ext(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a,
  5133. struct ggml_tensor * mask,
  5134. float scale,
  5135. float max_bias) {
  5136. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5137. }
  5138. // ggml_soft_max_back
  5139. static struct ggml_tensor * ggml_soft_max_back_impl(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b,
  5143. bool inplace) {
  5144. bool is_node = false;
  5145. if (a->grad || b->grad) {
  5146. is_node = true; // TODO : implement backward pass
  5147. }
  5148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5149. result->op = GGML_OP_SOFT_MAX_BACK;
  5150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5151. result->src[0] = a;
  5152. result->src[1] = b;
  5153. return result;
  5154. }
  5155. struct ggml_tensor * ggml_soft_max_back(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b) {
  5159. return ggml_soft_max_back_impl(ctx, a, b, false);
  5160. }
  5161. struct ggml_tensor * ggml_soft_max_back_inplace(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a,
  5164. struct ggml_tensor * b) {
  5165. return ggml_soft_max_back_impl(ctx, a, b, true);
  5166. }
  5167. // ggml_rope
  5168. static struct ggml_tensor * ggml_rope_impl(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * a,
  5171. struct ggml_tensor * b,
  5172. int n_dims,
  5173. int mode,
  5174. int n_ctx,
  5175. int n_orig_ctx,
  5176. float freq_base,
  5177. float freq_scale,
  5178. float ext_factor,
  5179. float attn_factor,
  5180. float beta_fast,
  5181. float beta_slow,
  5182. float xpos_base,
  5183. bool xpos_down,
  5184. bool inplace) {
  5185. GGML_ASSERT(ggml_is_vector(b));
  5186. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5187. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5188. bool is_node = false;
  5189. if (a->grad) {
  5190. is_node = true;
  5191. }
  5192. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5193. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5194. memcpy(params + 5, &freq_base, sizeof(float));
  5195. memcpy(params + 6, &freq_scale, sizeof(float));
  5196. memcpy(params + 7, &ext_factor, sizeof(float));
  5197. memcpy(params + 8, &attn_factor, sizeof(float));
  5198. memcpy(params + 9, &beta_fast, sizeof(float));
  5199. memcpy(params + 10, &beta_slow, sizeof(float));
  5200. memcpy(params + 11, &xpos_base, sizeof(float));
  5201. memcpy(params + 12, &xpos_down, sizeof(bool));
  5202. ggml_set_op_params(result, params, sizeof(params));
  5203. result->op = GGML_OP_ROPE;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src[0] = a;
  5206. result->src[1] = b;
  5207. return result;
  5208. }
  5209. struct ggml_tensor * ggml_rope(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. struct ggml_tensor * b,
  5213. int n_dims,
  5214. int mode,
  5215. int n_ctx) {
  5216. return ggml_rope_impl(
  5217. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5218. );
  5219. }
  5220. struct ggml_tensor * ggml_rope_inplace(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. struct ggml_tensor * b,
  5224. int n_dims,
  5225. int mode,
  5226. int n_ctx) {
  5227. return ggml_rope_impl(
  5228. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5229. );
  5230. }
  5231. struct ggml_tensor * ggml_rope_custom(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * a,
  5234. struct ggml_tensor * b,
  5235. int n_dims,
  5236. int mode,
  5237. int n_ctx,
  5238. int n_orig_ctx,
  5239. float freq_base,
  5240. float freq_scale,
  5241. float ext_factor,
  5242. float attn_factor,
  5243. float beta_fast,
  5244. float beta_slow) {
  5245. return ggml_rope_impl(
  5246. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5247. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5248. );
  5249. }
  5250. struct ggml_tensor * ggml_rope_custom_inplace(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. struct ggml_tensor * b,
  5254. int n_dims,
  5255. int mode,
  5256. int n_ctx,
  5257. int n_orig_ctx,
  5258. float freq_base,
  5259. float freq_scale,
  5260. float ext_factor,
  5261. float attn_factor,
  5262. float beta_fast,
  5263. float beta_slow) {
  5264. return ggml_rope_impl(
  5265. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5266. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5267. );
  5268. }
  5269. struct ggml_tensor * ggml_rope_xpos_inplace(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. struct ggml_tensor * b,
  5273. int n_dims,
  5274. float base,
  5275. bool down) {
  5276. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5277. }
  5278. // ggml_rope_back
  5279. struct ggml_tensor * ggml_rope_back(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. struct ggml_tensor * b,
  5283. int n_dims,
  5284. int mode,
  5285. int n_ctx,
  5286. int n_orig_ctx,
  5287. float freq_base,
  5288. float freq_scale,
  5289. float ext_factor,
  5290. float attn_factor,
  5291. float beta_fast,
  5292. float beta_slow,
  5293. float xpos_base,
  5294. bool xpos_down) {
  5295. GGML_ASSERT(ggml_is_vector(b));
  5296. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5297. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5298. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5299. bool is_node = false;
  5300. if (a->grad) {
  5301. is_node = false; // TODO: implement backward
  5302. }
  5303. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5304. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5305. memcpy(params + 5, &freq_base, sizeof(float));
  5306. memcpy(params + 6, &freq_scale, sizeof(float));
  5307. memcpy(params + 7, &ext_factor, sizeof(float));
  5308. memcpy(params + 8, &attn_factor, sizeof(float));
  5309. memcpy(params + 9, &beta_fast, sizeof(float));
  5310. memcpy(params + 10, &beta_slow, sizeof(float));
  5311. memcpy(params + 11, &xpos_base, sizeof(float));
  5312. memcpy(params + 12, &xpos_down, sizeof(bool));
  5313. ggml_set_op_params(result, params, sizeof(params));
  5314. result->op = GGML_OP_ROPE_BACK;
  5315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5316. result->src[0] = a;
  5317. result->src[1] = b;
  5318. return result;
  5319. }
  5320. // ggml_clamp
  5321. struct ggml_tensor * ggml_clamp(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. float min,
  5325. float max) {
  5326. bool is_node = false;
  5327. if (a->grad) {
  5328. GGML_ASSERT(false); // TODO: implement backward
  5329. is_node = true;
  5330. }
  5331. // TODO: when implement backward, fix this:
  5332. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5333. float params[] = { min, max };
  5334. ggml_set_op_params(result, params, sizeof(params));
  5335. result->op = GGML_OP_CLAMP;
  5336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5337. result->src[0] = a;
  5338. return result;
  5339. }
  5340. // ggml_conv_1d
  5341. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5342. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5343. }
  5344. GGML_API struct ggml_tensor * ggml_conv_1d(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a,
  5347. struct ggml_tensor * b,
  5348. int s0,
  5349. int p0,
  5350. int d0) {
  5351. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5352. struct ggml_tensor * result =
  5353. ggml_mul_mat(ctx,
  5354. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5355. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5356. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5357. return result;
  5358. }
  5359. // ggml_conv_1d_ph
  5360. struct ggml_tensor* ggml_conv_1d_ph(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. struct ggml_tensor * b,
  5364. int s,
  5365. int d) {
  5366. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5367. }
  5368. // ggml_conv_transpose_1d
  5369. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5370. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5371. }
  5372. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5373. struct ggml_context * ctx,
  5374. struct ggml_tensor * a,
  5375. struct ggml_tensor * b,
  5376. int s0,
  5377. int p0,
  5378. int d0) {
  5379. GGML_ASSERT(ggml_is_matrix(b));
  5380. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5381. GGML_ASSERT(a->ne[3] == 1);
  5382. GGML_ASSERT(p0 == 0);
  5383. GGML_ASSERT(d0 == 1);
  5384. bool is_node = false;
  5385. if (a->grad || b->grad) {
  5386. GGML_ASSERT(false); // TODO: implement backward
  5387. is_node = true;
  5388. }
  5389. const int64_t ne[4] = {
  5390. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5391. a->ne[1], b->ne[2], 1,
  5392. };
  5393. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5394. int32_t params[] = { s0, p0, d0 };
  5395. ggml_set_op_params(result, params, sizeof(params));
  5396. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. result->src[1] = b;
  5400. return result;
  5401. }
  5402. // ggml_conv_depthwise
  5403. struct ggml_tensor * ggml_conv_depthwise_2d(
  5404. struct ggml_context * ctx,
  5405. struct ggml_tensor * a,
  5406. struct ggml_tensor * b,
  5407. int s0,
  5408. int s1,
  5409. int p0,
  5410. int p1,
  5411. int d0,
  5412. int d1) {
  5413. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5414. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5415. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5416. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5417. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5418. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5419. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5420. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5421. return result;
  5422. }
  5423. // ggml_conv_2d
  5424. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5425. // a: [OC,IC, KH, KW]
  5426. // b: [N, IC, IH, IW]
  5427. // result: [N, OH, OW, IC*KH*KW]
  5428. struct ggml_tensor * ggml_im2col(
  5429. struct ggml_context * ctx,
  5430. struct ggml_tensor * a,
  5431. struct ggml_tensor * b,
  5432. int s0,
  5433. int s1,
  5434. int p0,
  5435. int p1,
  5436. int d0,
  5437. int d1,
  5438. bool is_2D,
  5439. enum ggml_type dst_type) {
  5440. if(is_2D) {
  5441. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5442. } else {
  5443. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5444. }
  5445. bool is_node = false;
  5446. if (a->grad || b->grad) {
  5447. GGML_ASSERT(false); // TODO: implement backward
  5448. is_node = true;
  5449. }
  5450. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5451. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5452. const int64_t ne[4] = {
  5453. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5454. OW,
  5455. is_2D ? OH : b->ne[2],
  5456. is_2D ? b->ne[3] : 1,
  5457. };
  5458. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5459. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5460. ggml_set_op_params(result, params, sizeof(params));
  5461. result->op = GGML_OP_IM2COL;
  5462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5463. result->src[0] = a;
  5464. result->src[1] = b;
  5465. return result;
  5466. }
  5467. // a: [OC,IC, KH, KW]
  5468. // b: [N, IC, IH, IW]
  5469. // result: [N, OC, OH, OW]
  5470. struct ggml_tensor * ggml_conv_2d(
  5471. struct ggml_context * ctx,
  5472. struct ggml_tensor * a,
  5473. struct ggml_tensor * b,
  5474. int s0,
  5475. int s1,
  5476. int p0,
  5477. int p1,
  5478. int d0,
  5479. int d1) {
  5480. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5481. struct ggml_tensor * result =
  5482. ggml_mul_mat(ctx,
  5483. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5484. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5485. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5486. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5487. return result;
  5488. }
  5489. // ggml_conv_2d_sk_p0
  5490. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. struct ggml_tensor * b) {
  5494. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5495. }
  5496. // ggml_conv_2d_s1_ph
  5497. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5498. struct ggml_context * ctx,
  5499. struct ggml_tensor * a,
  5500. struct ggml_tensor * b) {
  5501. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5502. }
  5503. // ggml_conv_transpose_2d_p0
  5504. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5505. return (ins - 1) * s - 2 * p + ks;
  5506. }
  5507. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5508. struct ggml_context * ctx,
  5509. struct ggml_tensor * a,
  5510. struct ggml_tensor * b,
  5511. int stride) {
  5512. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5513. bool is_node = false;
  5514. if (a->grad || b->grad) {
  5515. GGML_ASSERT(false); // TODO: implement backward
  5516. is_node = true;
  5517. }
  5518. const int64_t ne[4] = {
  5519. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5520. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5521. a->ne[2], b->ne[3],
  5522. };
  5523. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5524. ggml_set_op_params_i32(result, 0, stride);
  5525. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5527. result->src[0] = a;
  5528. result->src[1] = b;
  5529. return result;
  5530. }
  5531. // ggml_pool_*
  5532. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5533. return (ins + 2 * p - ks) / s + 1;
  5534. }
  5535. // ggml_pool_1d
  5536. struct ggml_tensor * ggml_pool_1d(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. enum ggml_op_pool op,
  5540. int k0,
  5541. int s0,
  5542. int p0) {
  5543. bool is_node = false;
  5544. if (a->grad) {
  5545. GGML_ASSERT(false); // TODO: implement backward
  5546. is_node = true;
  5547. }
  5548. const int64_t ne[4] = {
  5549. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5550. a->ne[1],
  5551. a->ne[2],
  5552. a->ne[3],
  5553. };
  5554. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5555. int32_t params[] = { op, k0, s0, p0 };
  5556. ggml_set_op_params(result, params, sizeof(params));
  5557. result->op = GGML_OP_POOL_1D;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. return result;
  5561. }
  5562. // ggml_pool_2d
  5563. struct ggml_tensor * ggml_pool_2d(
  5564. struct ggml_context * ctx,
  5565. struct ggml_tensor * a,
  5566. enum ggml_op_pool op,
  5567. int k0,
  5568. int k1,
  5569. int s0,
  5570. int s1,
  5571. float p0,
  5572. float p1) {
  5573. bool is_node = false;
  5574. if (a->grad) {
  5575. GGML_ASSERT(false); // TODO: implement backward
  5576. is_node = true;
  5577. }
  5578. struct ggml_tensor * result;
  5579. const int64_t ne[3] = {
  5580. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5581. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5582. a->ne[2],
  5583. };
  5584. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5585. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5586. ggml_set_op_params(result, params, sizeof(params));
  5587. result->op = GGML_OP_POOL_2D;
  5588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5589. result->src[0] = a;
  5590. return result;
  5591. }
  5592. // ggml_upscale
  5593. static struct ggml_tensor * ggml_upscale_impl(
  5594. struct ggml_context * ctx,
  5595. struct ggml_tensor * a,
  5596. int ne0,
  5597. int ne1,
  5598. int ne2,
  5599. int ne3) {
  5600. bool is_node = false;
  5601. if (a->grad) {
  5602. GGML_ASSERT(false); // TODO: implement backward
  5603. is_node = true;
  5604. }
  5605. GGML_ASSERT(a->ne[0] <= ne0);
  5606. GGML_ASSERT(a->ne[1] <= ne1);
  5607. GGML_ASSERT(a->ne[2] <= ne2);
  5608. GGML_ASSERT(a->ne[3] <= ne3);
  5609. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5610. ne0,
  5611. ne1,
  5612. ne2,
  5613. ne3
  5614. );
  5615. result->op = GGML_OP_UPSCALE;
  5616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5617. result->src[0] = a;
  5618. return result;
  5619. }
  5620. struct ggml_tensor * ggml_upscale(
  5621. struct ggml_context * ctx,
  5622. struct ggml_tensor * a,
  5623. int scale_factor) {
  5624. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5625. }
  5626. struct ggml_tensor * ggml_upscale_ext(
  5627. struct ggml_context * ctx,
  5628. struct ggml_tensor * a,
  5629. int ne0,
  5630. int ne1,
  5631. int ne2,
  5632. int ne3) {
  5633. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5634. }
  5635. // ggml_pad
  5636. struct ggml_tensor * ggml_pad(
  5637. struct ggml_context * ctx,
  5638. struct ggml_tensor * a,
  5639. int p0, int p1, int p2, int p3) {
  5640. bool is_node = false;
  5641. if (a->grad) {
  5642. GGML_ASSERT(false); // TODO: implement backward
  5643. is_node = true;
  5644. }
  5645. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5646. a->ne[0] + p0,
  5647. a->ne[1] + p1,
  5648. a->ne[2] + p2,
  5649. a->ne[3] + p3);
  5650. result->op = GGML_OP_PAD;
  5651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5652. result->src[0] = a;
  5653. return result;
  5654. }
  5655. // ggml_arange
  5656. struct ggml_tensor * ggml_arange(
  5657. struct ggml_context * ctx,
  5658. float start,
  5659. float stop,
  5660. float step) {
  5661. GGML_ASSERT(stop > start);
  5662. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5663. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5664. result->op = GGML_OP_ARANGE;
  5665. ggml_set_op_params_f32(result, 0, start);
  5666. ggml_set_op_params_f32(result, 1, stop);
  5667. ggml_set_op_params_f32(result, 2, step);
  5668. return result;
  5669. }
  5670. // ggml_timestep_embedding
  5671. struct ggml_tensor * ggml_timestep_embedding(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * timesteps,
  5674. int dim,
  5675. int max_period) {
  5676. bool is_node = false;
  5677. if (timesteps->grad) {
  5678. GGML_ASSERT(false); // TODO: implement backward
  5679. is_node = true;
  5680. }
  5681. int actual_dim = dim;
  5682. if (dim % 2 != 0) {
  5683. actual_dim = dim + 1;
  5684. }
  5685. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5686. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5687. ggml_set_op_params_i32(result, 0, dim);
  5688. ggml_set_op_params_i32(result, 1, max_period);
  5689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5690. result->src[0] = timesteps;
  5691. return result;
  5692. }
  5693. // ggml_argsort
  5694. struct ggml_tensor * ggml_argsort(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * a,
  5697. enum ggml_sort_order order) {
  5698. bool is_node = false;
  5699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5700. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5701. result->op = GGML_OP_ARGSORT;
  5702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5703. result->src[0] = a;
  5704. return result;
  5705. }
  5706. // ggml_top_k
  5707. struct ggml_tensor * ggml_top_k(
  5708. struct ggml_context * ctx,
  5709. struct ggml_tensor * a,
  5710. int k) {
  5711. GGML_ASSERT(a->ne[0] >= k);
  5712. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5713. result = ggml_view_4d(ctx, result,
  5714. k, result->ne[1], result->ne[2], result->ne[3],
  5715. result->nb[1], result->nb[2], result->nb[3],
  5716. 0);
  5717. return result;
  5718. }
  5719. // ggml_flash_attn
  5720. struct ggml_tensor * ggml_flash_attn(
  5721. struct ggml_context * ctx,
  5722. struct ggml_tensor * q,
  5723. struct ggml_tensor * k,
  5724. struct ggml_tensor * v,
  5725. bool masked) {
  5726. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5727. // TODO: check if vT can be multiplied by (k*qT)
  5728. bool is_node = false;
  5729. if (q->grad || k->grad || v->grad) {
  5730. is_node = true;
  5731. }
  5732. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5733. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5734. int32_t t = masked ? 1 : 0;
  5735. ggml_set_op_params(result, &t, sizeof(t));
  5736. result->op = GGML_OP_FLASH_ATTN;
  5737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5738. result->src[0] = q;
  5739. result->src[1] = k;
  5740. result->src[2] = v;
  5741. return result;
  5742. }
  5743. // ggml_flash_attn_ext
  5744. struct ggml_tensor * ggml_flash_attn_ext(
  5745. struct ggml_context * ctx,
  5746. struct ggml_tensor * q,
  5747. struct ggml_tensor * k,
  5748. struct ggml_tensor * v,
  5749. struct ggml_tensor * mask,
  5750. float scale,
  5751. float max_bias) {
  5752. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5753. // TODO: check if vT can be multiplied by (k*qT)
  5754. if (mask) {
  5755. GGML_ASSERT(ggml_is_contiguous(mask));
  5756. GGML_ASSERT(mask->ne[2] == 1);
  5757. GGML_ASSERT(mask->ne[3] == 1);
  5758. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5759. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5760. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5761. }
  5762. if (max_bias > 0.0f) {
  5763. GGML_ASSERT(mask);
  5764. }
  5765. bool is_node = false;
  5766. if (q->grad || k->grad || v->grad) {
  5767. is_node = true;
  5768. }
  5769. // permute(0, 2, 1, 3)
  5770. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5772. float params[] = { scale, max_bias };
  5773. ggml_set_op_params(result, params, sizeof(params));
  5774. result->op = GGML_OP_FLASH_ATTN_EXT;
  5775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5776. result->src[0] = q;
  5777. result->src[1] = k;
  5778. result->src[2] = v;
  5779. result->src[3] = mask;
  5780. return result;
  5781. }
  5782. void ggml_flash_attn_ext_set_prec(
  5783. struct ggml_tensor * a,
  5784. enum ggml_prec prec) {
  5785. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5786. const int32_t prec_i32 = (int32_t) prec;
  5787. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5788. }
  5789. // ggml_flash_ff
  5790. struct ggml_tensor * ggml_flash_ff(
  5791. struct ggml_context * ctx,
  5792. struct ggml_tensor * a,
  5793. struct ggml_tensor * b0,
  5794. struct ggml_tensor * b1,
  5795. struct ggml_tensor * c0,
  5796. struct ggml_tensor * c1) {
  5797. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5798. // TODO: more checks
  5799. bool is_node = false;
  5800. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5801. is_node = true;
  5802. }
  5803. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5804. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5805. result->op = GGML_OP_FLASH_FF;
  5806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5807. result->src[0] = a;
  5808. result->src[1] = b0;
  5809. result->src[2] = b1;
  5810. result->src[3] = c0;
  5811. result->src[4] = c1;
  5812. return result;
  5813. }
  5814. // ggml_flash_attn_back
  5815. struct ggml_tensor * ggml_flash_attn_back(
  5816. struct ggml_context * ctx,
  5817. struct ggml_tensor * q,
  5818. struct ggml_tensor * k,
  5819. struct ggml_tensor * v,
  5820. struct ggml_tensor * d,
  5821. bool masked) {
  5822. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5823. // TODO: check if vT can be multiplied by (k*qT)
  5824. // d shape [D,N,ne2,ne3]
  5825. // q shape [D,N,ne2,ne3]
  5826. // k shape [D,M,kvne2,ne3]
  5827. // v shape [M,D,kvne2,ne3]
  5828. const int64_t D = q->ne[0];
  5829. const int64_t N = q->ne[1];
  5830. const int64_t M = k->ne[1];
  5831. const int64_t ne2 = q->ne[2];
  5832. const int64_t ne3 = q->ne[3];
  5833. const int64_t kvne2 = k->ne[2];
  5834. GGML_ASSERT(k->ne[0] == D);
  5835. GGML_ASSERT(v->ne[0] == M);
  5836. GGML_ASSERT(v->ne[1] == D);
  5837. GGML_ASSERT(d->ne[0] == D);
  5838. GGML_ASSERT(d->ne[1] == N);
  5839. GGML_ASSERT(k->ne[2] == kvne2);
  5840. GGML_ASSERT(k->ne[3] == ne3);
  5841. GGML_ASSERT(v->ne[2] == kvne2);
  5842. GGML_ASSERT(v->ne[3] == ne3);
  5843. GGML_ASSERT(d->ne[2] == ne2);
  5844. GGML_ASSERT(d->ne[3] == ne3);
  5845. GGML_ASSERT(ne2 % kvne2 == 0);
  5846. bool is_node = false;
  5847. if (q->grad || k->grad || v->grad) {
  5848. // when using this operation (in backwards pass) these grads are set.
  5849. // we don't want to create (big) grad of our result, so is_node is false.
  5850. is_node = false;
  5851. }
  5852. // store gradients of q, k and v as continuous tensors concatenated in result.
  5853. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5854. const int64_t elem_q = ggml_nelements(q);
  5855. const int64_t elem_k = ggml_nelements(k);
  5856. const int64_t elem_v = ggml_nelements(v);
  5857. enum ggml_type result_type = GGML_TYPE_F32;
  5858. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5859. const size_t tsize = ggml_type_size(result_type);
  5860. const size_t offs_q = 0;
  5861. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5862. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5863. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5864. const size_t nelements = (end + tsize - 1)/tsize;
  5865. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5866. int32_t masked_i = masked ? 1 : 0;
  5867. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5868. result->op = GGML_OP_FLASH_ATTN_BACK;
  5869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5870. result->src[0] = q;
  5871. result->src[1] = k;
  5872. result->src[2] = v;
  5873. result->src[3] = d;
  5874. return result;
  5875. }
  5876. // ggml_ssm_conv
  5877. struct ggml_tensor * ggml_ssm_conv(
  5878. struct ggml_context * ctx,
  5879. struct ggml_tensor * s,
  5880. struct ggml_tensor * x,
  5881. struct ggml_tensor * c,
  5882. struct ggml_tensor * sq) {
  5883. GGML_ASSERT(ggml_is_3d(s));
  5884. GGML_ASSERT(ggml_is_matrix(x));
  5885. GGML_ASSERT(ggml_is_matrix(c));
  5886. GGML_ASSERT(ggml_is_matrix(sq));
  5887. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5888. const int64_t d_conv = c->ne[0];
  5889. const int64_t d_inner = c->ne[1];
  5890. const int64_t n_tokens = x->ne[1];
  5891. const int64_t n_kv = s->ne[2];
  5892. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5893. GGML_ASSERT( s->ne[1] == d_inner);
  5894. GGML_ASSERT( x->ne[0] == d_inner);
  5895. GGML_ASSERT(sq->ne[0] == n_kv);
  5896. GGML_ASSERT(sq->ne[1] == n_tokens);
  5897. bool is_node = false;
  5898. if (s->grad || x->grad || c->grad || sq->grad) {
  5899. GGML_ASSERT(false); // TODO: implement
  5900. is_node = true;
  5901. }
  5902. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5903. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5904. result->op = GGML_OP_SSM_CONV;
  5905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5906. result->src[0] = s;
  5907. result->src[1] = x;
  5908. result->src[2] = c;
  5909. result->src[3] = sq;
  5910. return result;
  5911. }
  5912. // ggml_ssm_scan
  5913. struct ggml_tensor * ggml_ssm_scan(
  5914. struct ggml_context * ctx,
  5915. struct ggml_tensor * s,
  5916. struct ggml_tensor * x,
  5917. struct ggml_tensor * dt,
  5918. struct ggml_tensor * A,
  5919. struct ggml_tensor * B,
  5920. struct ggml_tensor * C,
  5921. struct ggml_tensor * sq) {
  5922. GGML_ASSERT(ggml_is_contiguous(s));
  5923. GGML_ASSERT(ggml_is_contiguous(x));
  5924. GGML_ASSERT(ggml_is_contiguous(dt));
  5925. GGML_ASSERT(ggml_is_contiguous(A));
  5926. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5927. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5928. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5929. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5930. {
  5931. const int64_t d_state = s->ne[0];
  5932. const int64_t d_inner = s->ne[1];
  5933. const int64_t n_tokens = x->ne[1];
  5934. GGML_ASSERT(x->ne[0] == d_inner);
  5935. GGML_ASSERT(A->ne[0] == d_state);
  5936. GGML_ASSERT(A->ne[1] == d_inner);
  5937. GGML_ASSERT(B->ne[0] == d_state);
  5938. GGML_ASSERT(B->ne[1] == n_tokens);
  5939. GGML_ASSERT(C->ne[0] == d_state);
  5940. GGML_ASSERT(C->ne[1] == n_tokens);
  5941. }
  5942. bool is_node = false;
  5943. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5944. GGML_ASSERT(false); // TODO: implement
  5945. is_node = true;
  5946. }
  5947. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5948. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5949. result->op = GGML_OP_SSM_SCAN;
  5950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5951. result->src[0] = s;
  5952. result->src[1] = x;
  5953. result->src[2] = dt;
  5954. result->src[3] = A;
  5955. result->src[4] = B;
  5956. result->src[5] = C;
  5957. result->src[6] = sq;
  5958. return result;
  5959. }
  5960. // ggml_win_part
  5961. struct ggml_tensor * ggml_win_part(
  5962. struct ggml_context * ctx,
  5963. struct ggml_tensor * a,
  5964. int w) {
  5965. GGML_ASSERT(a->ne[3] == 1);
  5966. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5967. bool is_node = false;
  5968. if (a->grad) {
  5969. GGML_ASSERT(false); // TODO: implement backward
  5970. is_node = true;
  5971. }
  5972. // padding
  5973. const int px = (w - a->ne[1]%w)%w;
  5974. const int py = (w - a->ne[2]%w)%w;
  5975. const int npx = (px + a->ne[1])/w;
  5976. const int npy = (py + a->ne[2])/w;
  5977. const int np = npx*npy;
  5978. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5979. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5980. int32_t params[] = { npx, npy, w };
  5981. ggml_set_op_params(result, params, sizeof(params));
  5982. result->op = GGML_OP_WIN_PART;
  5983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5984. result->src[0] = a;
  5985. return result;
  5986. }
  5987. // ggml_win_unpart
  5988. struct ggml_tensor * ggml_win_unpart(
  5989. struct ggml_context * ctx,
  5990. struct ggml_tensor * a,
  5991. int w0,
  5992. int h0,
  5993. int w) {
  5994. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5995. bool is_node = false;
  5996. if (a->grad) {
  5997. GGML_ASSERT(false); // TODO: implement backward
  5998. is_node = true;
  5999. }
  6000. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6001. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6002. int32_t params[] = { w };
  6003. ggml_set_op_params(result, params, sizeof(params));
  6004. result->op = GGML_OP_WIN_UNPART;
  6005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6006. result->src[0] = a;
  6007. return result;
  6008. }
  6009. // ggml_get_rel_pos
  6010. struct ggml_tensor * ggml_get_rel_pos(
  6011. struct ggml_context * ctx,
  6012. struct ggml_tensor * a,
  6013. int qh,
  6014. int kh) {
  6015. GGML_ASSERT(qh == kh);
  6016. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6017. bool is_node = false;
  6018. if (a->grad) {
  6019. GGML_ASSERT(false); // TODO: implement backward
  6020. is_node = true;
  6021. }
  6022. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6023. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6024. result->op = GGML_OP_GET_REL_POS;
  6025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6026. result->src[0] = a;
  6027. return result;
  6028. }
  6029. // ggml_add_rel_pos
  6030. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6031. struct ggml_context * ctx,
  6032. struct ggml_tensor * a,
  6033. struct ggml_tensor * pw,
  6034. struct ggml_tensor * ph,
  6035. bool inplace) {
  6036. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6037. GGML_ASSERT(ggml_is_contiguous(a));
  6038. GGML_ASSERT(ggml_is_contiguous(pw));
  6039. GGML_ASSERT(ggml_is_contiguous(ph));
  6040. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6041. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6042. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6043. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6044. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6045. bool is_node = false;
  6046. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6047. is_node = true;
  6048. }
  6049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6050. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6051. result->op = GGML_OP_ADD_REL_POS;
  6052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6053. result->src[0] = a;
  6054. result->src[1] = pw;
  6055. result->src[2] = ph;
  6056. return result;
  6057. }
  6058. struct ggml_tensor * ggml_add_rel_pos(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. struct ggml_tensor * pw,
  6062. struct ggml_tensor * ph) {
  6063. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6064. }
  6065. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * a,
  6068. struct ggml_tensor * pw,
  6069. struct ggml_tensor * ph) {
  6070. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6071. }
  6072. // gmml_unary
  6073. static struct ggml_tensor * ggml_unary_impl(
  6074. struct ggml_context * ctx,
  6075. struct ggml_tensor * a,
  6076. enum ggml_unary_op op,
  6077. bool inplace) {
  6078. bool is_node = false;
  6079. if (!inplace && (a->grad)) {
  6080. is_node = true;
  6081. }
  6082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6083. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6084. result->op = GGML_OP_UNARY;
  6085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6086. result->src[0] = a;
  6087. return result;
  6088. }
  6089. struct ggml_tensor * ggml_unary(
  6090. struct ggml_context * ctx,
  6091. struct ggml_tensor * a,
  6092. enum ggml_unary_op op) {
  6093. return ggml_unary_impl(ctx, a, op, false);
  6094. }
  6095. struct ggml_tensor * ggml_unary_inplace(
  6096. struct ggml_context * ctx,
  6097. struct ggml_tensor * a,
  6098. enum ggml_unary_op op) {
  6099. return ggml_unary_impl(ctx, a, op, true);
  6100. }
  6101. // ggml_map_unary
  6102. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6103. struct ggml_context * ctx,
  6104. struct ggml_tensor * a,
  6105. const ggml_unary_op_f32_t fun,
  6106. bool inplace) {
  6107. bool is_node = false;
  6108. if (!inplace && a->grad) {
  6109. is_node = true;
  6110. }
  6111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6112. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6113. result->op = GGML_OP_MAP_UNARY;
  6114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6115. result->src[0] = a;
  6116. return result;
  6117. }
  6118. struct ggml_tensor * ggml_map_unary_f32(
  6119. struct ggml_context * ctx,
  6120. struct ggml_tensor * a,
  6121. const ggml_unary_op_f32_t fun) {
  6122. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6123. }
  6124. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6125. struct ggml_context * ctx,
  6126. struct ggml_tensor * a,
  6127. const ggml_unary_op_f32_t fun) {
  6128. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6129. }
  6130. // ggml_map_binary
  6131. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. struct ggml_tensor * b,
  6135. const ggml_binary_op_f32_t fun,
  6136. bool inplace) {
  6137. GGML_ASSERT(ggml_are_same_shape(a, b));
  6138. bool is_node = false;
  6139. if (!inplace && (a->grad || b->grad)) {
  6140. is_node = true;
  6141. }
  6142. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6143. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6144. result->op = GGML_OP_MAP_BINARY;
  6145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6146. result->src[0] = a;
  6147. result->src[1] = b;
  6148. return result;
  6149. }
  6150. struct ggml_tensor * ggml_map_binary_f32(
  6151. struct ggml_context * ctx,
  6152. struct ggml_tensor * a,
  6153. struct ggml_tensor * b,
  6154. const ggml_binary_op_f32_t fun) {
  6155. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6156. }
  6157. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6158. struct ggml_context * ctx,
  6159. struct ggml_tensor * a,
  6160. struct ggml_tensor * b,
  6161. const ggml_binary_op_f32_t fun) {
  6162. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6163. }
  6164. // ggml_map_custom1_f32
  6165. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. const ggml_custom1_op_f32_t fun,
  6169. bool inplace) {
  6170. bool is_node = false;
  6171. if (!inplace && a->grad) {
  6172. is_node = true;
  6173. }
  6174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6175. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6176. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6178. result->src[0] = a;
  6179. return result;
  6180. }
  6181. struct ggml_tensor * ggml_map_custom1_f32(
  6182. struct ggml_context * ctx,
  6183. struct ggml_tensor * a,
  6184. const ggml_custom1_op_f32_t fun) {
  6185. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6186. }
  6187. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. const ggml_custom1_op_f32_t fun) {
  6191. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6192. }
  6193. // ggml_map_custom2_f32
  6194. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * a,
  6197. struct ggml_tensor * b,
  6198. const ggml_custom2_op_f32_t fun,
  6199. bool inplace) {
  6200. bool is_node = false;
  6201. if (!inplace && (a->grad || b->grad)) {
  6202. is_node = true;
  6203. }
  6204. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6205. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6206. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6208. result->src[0] = a;
  6209. result->src[1] = b;
  6210. return result;
  6211. }
  6212. struct ggml_tensor * ggml_map_custom2_f32(
  6213. struct ggml_context * ctx,
  6214. struct ggml_tensor * a,
  6215. struct ggml_tensor * b,
  6216. const ggml_custom2_op_f32_t fun) {
  6217. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6218. }
  6219. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6220. struct ggml_context * ctx,
  6221. struct ggml_tensor * a,
  6222. struct ggml_tensor * b,
  6223. const ggml_custom2_op_f32_t fun) {
  6224. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6225. }
  6226. // ggml_map_custom3_f32
  6227. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6228. struct ggml_context * ctx,
  6229. struct ggml_tensor * a,
  6230. struct ggml_tensor * b,
  6231. struct ggml_tensor * c,
  6232. const ggml_custom3_op_f32_t fun,
  6233. bool inplace) {
  6234. bool is_node = false;
  6235. if (!inplace && (a->grad || b->grad || c->grad)) {
  6236. is_node = true;
  6237. }
  6238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6239. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6240. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6242. result->src[0] = a;
  6243. result->src[1] = b;
  6244. result->src[2] = c;
  6245. return result;
  6246. }
  6247. struct ggml_tensor * ggml_map_custom3_f32(
  6248. struct ggml_context * ctx,
  6249. struct ggml_tensor * a,
  6250. struct ggml_tensor * b,
  6251. struct ggml_tensor * c,
  6252. const ggml_custom3_op_f32_t fun) {
  6253. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6254. }
  6255. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6256. struct ggml_context * ctx,
  6257. struct ggml_tensor * a,
  6258. struct ggml_tensor * b,
  6259. struct ggml_tensor * c,
  6260. const ggml_custom3_op_f32_t fun) {
  6261. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6262. }
  6263. // ggml_map_custom1
  6264. struct ggml_map_custom1_op_params {
  6265. ggml_custom1_op_t fun;
  6266. int n_tasks;
  6267. void * userdata;
  6268. };
  6269. static struct ggml_tensor * ggml_map_custom1_impl(
  6270. struct ggml_context * ctx,
  6271. struct ggml_tensor * a,
  6272. const ggml_custom1_op_t fun,
  6273. int n_tasks,
  6274. void * userdata,
  6275. bool inplace) {
  6276. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6277. bool is_node = false;
  6278. if (!inplace && a->grad) {
  6279. is_node = true;
  6280. }
  6281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6282. struct ggml_map_custom1_op_params params = {
  6283. /*.fun =*/ fun,
  6284. /*.n_tasks =*/ n_tasks,
  6285. /*.userdata =*/ userdata
  6286. };
  6287. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6288. result->op = GGML_OP_MAP_CUSTOM1;
  6289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6290. result->src[0] = a;
  6291. return result;
  6292. }
  6293. struct ggml_tensor * ggml_map_custom1(
  6294. struct ggml_context * ctx,
  6295. struct ggml_tensor * a,
  6296. const ggml_custom1_op_t fun,
  6297. int n_tasks,
  6298. void * userdata) {
  6299. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6300. }
  6301. struct ggml_tensor * ggml_map_custom1_inplace(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. const ggml_custom1_op_t fun,
  6305. int n_tasks,
  6306. void * userdata) {
  6307. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6308. }
  6309. // ggml_map_custom2
  6310. struct ggml_map_custom2_op_params {
  6311. ggml_custom2_op_t fun;
  6312. int n_tasks;
  6313. void * userdata;
  6314. };
  6315. static struct ggml_tensor * ggml_map_custom2_impl(
  6316. struct ggml_context * ctx,
  6317. struct ggml_tensor * a,
  6318. struct ggml_tensor * b,
  6319. const ggml_custom2_op_t fun,
  6320. int n_tasks,
  6321. void * userdata,
  6322. bool inplace) {
  6323. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6324. bool is_node = false;
  6325. if (!inplace && (a->grad || b->grad)) {
  6326. is_node = true;
  6327. }
  6328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6329. struct ggml_map_custom2_op_params params = {
  6330. /*.fun =*/ fun,
  6331. /*.n_tasks =*/ n_tasks,
  6332. /*.userdata =*/ userdata
  6333. };
  6334. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6335. result->op = GGML_OP_MAP_CUSTOM2;
  6336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6337. result->src[0] = a;
  6338. result->src[1] = b;
  6339. return result;
  6340. }
  6341. struct ggml_tensor * ggml_map_custom2(
  6342. struct ggml_context * ctx,
  6343. struct ggml_tensor * a,
  6344. struct ggml_tensor * b,
  6345. const ggml_custom2_op_t fun,
  6346. int n_tasks,
  6347. void * userdata) {
  6348. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6349. }
  6350. struct ggml_tensor * ggml_map_custom2_inplace(
  6351. struct ggml_context * ctx,
  6352. struct ggml_tensor * a,
  6353. struct ggml_tensor * b,
  6354. const ggml_custom2_op_t fun,
  6355. int n_tasks,
  6356. void * userdata) {
  6357. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6358. }
  6359. // ggml_map_custom3
  6360. struct ggml_map_custom3_op_params {
  6361. ggml_custom3_op_t fun;
  6362. int n_tasks;
  6363. void * userdata;
  6364. };
  6365. static struct ggml_tensor * ggml_map_custom3_impl(
  6366. struct ggml_context * ctx,
  6367. struct ggml_tensor * a,
  6368. struct ggml_tensor * b,
  6369. struct ggml_tensor * c,
  6370. const ggml_custom3_op_t fun,
  6371. int n_tasks,
  6372. void * userdata,
  6373. bool inplace) {
  6374. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6375. bool is_node = false;
  6376. if (!inplace && (a->grad || b->grad || c->grad)) {
  6377. is_node = true;
  6378. }
  6379. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6380. struct ggml_map_custom3_op_params params = {
  6381. /*.fun =*/ fun,
  6382. /*.n_tasks =*/ n_tasks,
  6383. /*.userdata =*/ userdata
  6384. };
  6385. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6386. result->op = GGML_OP_MAP_CUSTOM3;
  6387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6388. result->src[0] = a;
  6389. result->src[1] = b;
  6390. result->src[2] = c;
  6391. return result;
  6392. }
  6393. struct ggml_tensor * ggml_map_custom3(
  6394. struct ggml_context * ctx,
  6395. struct ggml_tensor * a,
  6396. struct ggml_tensor * b,
  6397. struct ggml_tensor * c,
  6398. const ggml_custom3_op_t fun,
  6399. int n_tasks,
  6400. void * userdata) {
  6401. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6402. }
  6403. struct ggml_tensor * ggml_map_custom3_inplace(
  6404. struct ggml_context * ctx,
  6405. struct ggml_tensor * a,
  6406. struct ggml_tensor * b,
  6407. struct ggml_tensor * c,
  6408. const ggml_custom3_op_t fun,
  6409. int n_tasks,
  6410. void * userdata) {
  6411. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6412. }
  6413. // ggml_cross_entropy_loss
  6414. struct ggml_tensor * ggml_cross_entropy_loss(
  6415. struct ggml_context * ctx,
  6416. struct ggml_tensor * a,
  6417. struct ggml_tensor * b) {
  6418. GGML_ASSERT(ggml_are_same_shape(a, b));
  6419. bool is_node = false;
  6420. if (a->grad || b->grad) {
  6421. is_node = true;
  6422. }
  6423. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6424. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6426. result->src[0] = a;
  6427. result->src[1] = b;
  6428. return result;
  6429. }
  6430. // ggml_cross_entropy_loss_back
  6431. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6432. struct ggml_context * ctx,
  6433. struct ggml_tensor * a,
  6434. struct ggml_tensor * b,
  6435. struct ggml_tensor * c) {
  6436. GGML_ASSERT(ggml_are_same_shape(a, b));
  6437. GGML_ASSERT(ggml_is_scalar(c));
  6438. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6439. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6440. result->grad = NULL;
  6441. result->src[0] = a;
  6442. result->src[1] = b;
  6443. result->src[2] = c;
  6444. return result;
  6445. }
  6446. ////////////////////////////////////////////////////////////////////////////////
  6447. void ggml_set_param(
  6448. struct ggml_context * ctx,
  6449. struct ggml_tensor * tensor) {
  6450. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6451. GGML_ASSERT(tensor->grad == NULL);
  6452. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6453. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6454. }
  6455. // ggml_compute_forward_dup
  6456. static void ggml_compute_forward_dup_same_cont(
  6457. const struct ggml_compute_params * params,
  6458. struct ggml_tensor * dst) {
  6459. const struct ggml_tensor * src0 = dst->src[0];
  6460. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6461. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6462. GGML_ASSERT(src0->type == dst->type);
  6463. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6464. return;
  6465. }
  6466. const size_t nb00 = src0->nb[0];
  6467. const size_t nb0 = dst->nb[0];
  6468. const int ith = params->ith; // thread index
  6469. const int nth = params->nth; // number of threads
  6470. // parallelize by elements
  6471. const int ne = ggml_nelements(dst);
  6472. const int dr = (ne + nth - 1) / nth;
  6473. const int ie0 = dr * ith;
  6474. const int ie1 = MIN(ie0 + dr, ne);
  6475. if (ie0 < ie1) {
  6476. memcpy(
  6477. ((char *) dst->data + ie0*nb0),
  6478. ((char *) src0->data + ie0*nb00),
  6479. (ie1 - ie0) * ggml_type_size(src0->type));
  6480. }
  6481. }
  6482. static void ggml_compute_forward_dup_f16(
  6483. const struct ggml_compute_params * params,
  6484. struct ggml_tensor * dst) {
  6485. const struct ggml_tensor * src0 = dst->src[0];
  6486. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6488. return;
  6489. }
  6490. GGML_TENSOR_UNARY_OP_LOCALS
  6491. const int ith = params->ith; // thread index
  6492. const int nth = params->nth; // number of threads
  6493. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6494. ggml_compute_forward_dup_same_cont(params, dst);
  6495. return;
  6496. }
  6497. // parallelize by rows
  6498. const int nr = ne01;
  6499. // number of rows per thread
  6500. const int dr = (nr + nth - 1) / nth;
  6501. // row range for this thread
  6502. const int ir0 = dr * ith;
  6503. const int ir1 = MIN(ir0 + dr, nr);
  6504. if (src0->type == dst->type &&
  6505. ne00 == ne0 &&
  6506. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6507. // copy by rows
  6508. const size_t rs = ne00*nb00;
  6509. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6510. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6511. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6512. memcpy(
  6513. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6514. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6515. rs);
  6516. }
  6517. }
  6518. }
  6519. return;
  6520. }
  6521. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6522. if (ggml_is_contiguous(dst)) {
  6523. if (nb00 == sizeof(ggml_fp16_t)) {
  6524. if (dst->type == GGML_TYPE_F16) {
  6525. size_t id = 0;
  6526. const size_t rs = ne00 * nb00;
  6527. char * dst_ptr = (char *) dst->data;
  6528. for (int i03 = 0; i03 < ne03; i03++) {
  6529. for (int i02 = 0; i02 < ne02; i02++) {
  6530. id += rs * ir0;
  6531. for (int i01 = ir0; i01 < ir1; i01++) {
  6532. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6533. memcpy(dst_ptr + id, src0_ptr, rs);
  6534. id += rs;
  6535. }
  6536. id += rs * (ne01 - ir1);
  6537. }
  6538. }
  6539. } else if (dst->type == GGML_TYPE_F32) {
  6540. size_t id = 0;
  6541. float * dst_ptr = (float *) dst->data;
  6542. for (int i03 = 0; i03 < ne03; i03++) {
  6543. for (int i02 = 0; i02 < ne02; i02++) {
  6544. id += ne00 * ir0;
  6545. for (int i01 = ir0; i01 < ir1; i01++) {
  6546. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6547. for (int i00 = 0; i00 < ne00; i00++) {
  6548. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6549. id++;
  6550. }
  6551. }
  6552. id += ne00 * (ne01 - ir1);
  6553. }
  6554. }
  6555. } else if (type_traits[dst->type].from_float) {
  6556. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6557. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6558. size_t id = 0;
  6559. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6560. char * dst_ptr = (char *) dst->data;
  6561. for (int i03 = 0; i03 < ne03; i03++) {
  6562. for (int i02 = 0; i02 < ne02; i02++) {
  6563. id += rs * ir0;
  6564. for (int i01 = ir0; i01 < ir1; i01++) {
  6565. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6566. for (int i00 = 0; i00 < ne00; i00++) {
  6567. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6568. }
  6569. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6570. id += rs;
  6571. }
  6572. id += rs * (ne01 - ir1);
  6573. }
  6574. }
  6575. } else {
  6576. GGML_ASSERT(false); // TODO: implement
  6577. }
  6578. } else {
  6579. //printf("%s: this is not optimal - fix me\n", __func__);
  6580. if (dst->type == GGML_TYPE_F32) {
  6581. size_t id = 0;
  6582. float * dst_ptr = (float *) dst->data;
  6583. for (int i03 = 0; i03 < ne03; i03++) {
  6584. for (int i02 = 0; i02 < ne02; i02++) {
  6585. id += ne00 * ir0;
  6586. for (int i01 = ir0; i01 < ir1; i01++) {
  6587. for (int i00 = 0; i00 < ne00; i00++) {
  6588. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6589. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6590. id++;
  6591. }
  6592. }
  6593. id += ne00 * (ne01 - ir1);
  6594. }
  6595. }
  6596. } else if (dst->type == GGML_TYPE_F16) {
  6597. size_t id = 0;
  6598. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6599. for (int i03 = 0; i03 < ne03; i03++) {
  6600. for (int i02 = 0; i02 < ne02; i02++) {
  6601. id += ne00 * ir0;
  6602. for (int i01 = ir0; i01 < ir1; i01++) {
  6603. for (int i00 = 0; i00 < ne00; i00++) {
  6604. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6605. dst_ptr[id] = *src0_ptr;
  6606. id++;
  6607. }
  6608. }
  6609. id += ne00 * (ne01 - ir1);
  6610. }
  6611. }
  6612. } else {
  6613. GGML_ASSERT(false); // TODO: implement
  6614. }
  6615. }
  6616. return;
  6617. }
  6618. // dst counters
  6619. int64_t i10 = 0;
  6620. int64_t i11 = 0;
  6621. int64_t i12 = 0;
  6622. int64_t i13 = 0;
  6623. if (dst->type == GGML_TYPE_F16) {
  6624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6626. i10 += ne00 * ir0;
  6627. while (i10 >= ne0) {
  6628. i10 -= ne0;
  6629. if (++i11 == ne1) {
  6630. i11 = 0;
  6631. if (++i12 == ne2) {
  6632. i12 = 0;
  6633. if (++i13 == ne3) {
  6634. i13 = 0;
  6635. }
  6636. }
  6637. }
  6638. }
  6639. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6640. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6641. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6642. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6643. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6644. if (++i10 == ne00) {
  6645. i10 = 0;
  6646. if (++i11 == ne01) {
  6647. i11 = 0;
  6648. if (++i12 == ne02) {
  6649. i12 = 0;
  6650. if (++i13 == ne03) {
  6651. i13 = 0;
  6652. }
  6653. }
  6654. }
  6655. }
  6656. }
  6657. }
  6658. i10 += ne00 * (ne01 - ir1);
  6659. while (i10 >= ne0) {
  6660. i10 -= ne0;
  6661. if (++i11 == ne1) {
  6662. i11 = 0;
  6663. if (++i12 == ne2) {
  6664. i12 = 0;
  6665. if (++i13 == ne3) {
  6666. i13 = 0;
  6667. }
  6668. }
  6669. }
  6670. }
  6671. }
  6672. }
  6673. } else if (dst->type == GGML_TYPE_F32) {
  6674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6676. i10 += ne00 * ir0;
  6677. while (i10 >= ne0) {
  6678. i10 -= ne0;
  6679. if (++i11 == ne1) {
  6680. i11 = 0;
  6681. if (++i12 == ne2) {
  6682. i12 = 0;
  6683. if (++i13 == ne3) {
  6684. i13 = 0;
  6685. }
  6686. }
  6687. }
  6688. }
  6689. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6690. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6691. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6692. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6693. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6694. if (++i10 == ne0) {
  6695. i10 = 0;
  6696. if (++i11 == ne1) {
  6697. i11 = 0;
  6698. if (++i12 == ne2) {
  6699. i12 = 0;
  6700. if (++i13 == ne3) {
  6701. i13 = 0;
  6702. }
  6703. }
  6704. }
  6705. }
  6706. }
  6707. }
  6708. i10 += ne00 * (ne01 - ir1);
  6709. while (i10 >= ne0) {
  6710. i10 -= ne0;
  6711. if (++i11 == ne1) {
  6712. i11 = 0;
  6713. if (++i12 == ne2) {
  6714. i12 = 0;
  6715. if (++i13 == ne3) {
  6716. i13 = 0;
  6717. }
  6718. }
  6719. }
  6720. }
  6721. }
  6722. }
  6723. } else {
  6724. GGML_ASSERT(false); // TODO: implement
  6725. }
  6726. }
  6727. static void ggml_compute_forward_dup_bf16(
  6728. const struct ggml_compute_params * params,
  6729. struct ggml_tensor * dst) {
  6730. const struct ggml_tensor * src0 = dst->src[0];
  6731. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6733. return;
  6734. }
  6735. GGML_TENSOR_UNARY_OP_LOCALS
  6736. const int ith = params->ith; // thread index
  6737. const int nth = params->nth; // number of threads
  6738. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6739. ggml_compute_forward_dup_same_cont(params, dst);
  6740. return;
  6741. }
  6742. // parallelize by rows
  6743. const int nr = ne01;
  6744. // number of rows per thread
  6745. const int dr = (nr + nth - 1) / nth;
  6746. // row range for this thread
  6747. const int ir0 = dr * ith;
  6748. const int ir1 = MIN(ir0 + dr, nr);
  6749. if (src0->type == dst->type &&
  6750. ne00 == ne0 &&
  6751. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6752. // copy by rows
  6753. const size_t rs = ne00*nb00;
  6754. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6756. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6757. memcpy(
  6758. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6759. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6760. rs);
  6761. }
  6762. }
  6763. }
  6764. return;
  6765. }
  6766. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6767. if (ggml_is_contiguous(dst)) {
  6768. if (nb00 == sizeof(ggml_bf16_t)) {
  6769. if (dst->type == GGML_TYPE_BF16) {
  6770. size_t id = 0;
  6771. const size_t rs = ne00 * nb00;
  6772. char * dst_ptr = (char *) dst->data;
  6773. for (int i03 = 0; i03 < ne03; i03++) {
  6774. for (int i02 = 0; i02 < ne02; i02++) {
  6775. id += rs * ir0;
  6776. for (int i01 = ir0; i01 < ir1; i01++) {
  6777. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6778. memcpy(dst_ptr + id, src0_ptr, rs);
  6779. id += rs;
  6780. }
  6781. id += rs * (ne01 - ir1);
  6782. }
  6783. }
  6784. } else if (dst->type == GGML_TYPE_F16) {
  6785. size_t id = 0;
  6786. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6787. for (int i03 = 0; i03 < ne03; i03++) {
  6788. for (int i02 = 0; i02 < ne02; i02++) {
  6789. id += ne00 * ir0;
  6790. for (int i01 = ir0; i01 < ir1; i01++) {
  6791. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6792. for (int i00 = 0; i00 < ne00; i00++) {
  6793. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6794. id++;
  6795. }
  6796. }
  6797. id += ne00 * (ne01 - ir1);
  6798. }
  6799. }
  6800. } else if (dst->type == GGML_TYPE_F32) {
  6801. size_t id = 0;
  6802. float * dst_ptr = (float *) dst->data;
  6803. for (int i03 = 0; i03 < ne03; i03++) {
  6804. for (int i02 = 0; i02 < ne02; i02++) {
  6805. id += ne00 * ir0;
  6806. for (int i01 = ir0; i01 < ir1; i01++) {
  6807. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6808. for (int i00 = 0; i00 < ne00; i00++) {
  6809. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6810. id++;
  6811. }
  6812. }
  6813. id += ne00 * (ne01 - ir1);
  6814. }
  6815. }
  6816. } else if (type_traits[dst->type].from_float) {
  6817. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6818. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6819. size_t id = 0;
  6820. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6821. char * dst_ptr = (char *) dst->data;
  6822. for (int i03 = 0; i03 < ne03; i03++) {
  6823. for (int i02 = 0; i02 < ne02; i02++) {
  6824. id += rs * ir0;
  6825. for (int i01 = ir0; i01 < ir1; i01++) {
  6826. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6827. for (int i00 = 0; i00 < ne00; i00++) {
  6828. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6829. }
  6830. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6831. id += rs;
  6832. }
  6833. id += rs * (ne01 - ir1);
  6834. }
  6835. }
  6836. } else {
  6837. GGML_ASSERT(false); // TODO: implement
  6838. }
  6839. } else {
  6840. //printf("%s: this is not optimal - fix me\n", __func__);
  6841. if (dst->type == GGML_TYPE_F32) {
  6842. size_t id = 0;
  6843. float * dst_ptr = (float *) dst->data;
  6844. for (int i03 = 0; i03 < ne03; i03++) {
  6845. for (int i02 = 0; i02 < ne02; i02++) {
  6846. id += ne00 * ir0;
  6847. for (int i01 = ir0; i01 < ir1; i01++) {
  6848. for (int i00 = 0; i00 < ne00; i00++) {
  6849. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6850. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6851. id++;
  6852. }
  6853. }
  6854. id += ne00 * (ne01 - ir1);
  6855. }
  6856. }
  6857. } else if (dst->type == GGML_TYPE_BF16) {
  6858. size_t id = 0;
  6859. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6860. for (int i03 = 0; i03 < ne03; i03++) {
  6861. for (int i02 = 0; i02 < ne02; i02++) {
  6862. id += ne00 * ir0;
  6863. for (int i01 = ir0; i01 < ir1; i01++) {
  6864. for (int i00 = 0; i00 < ne00; i00++) {
  6865. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6866. dst_ptr[id] = *src0_ptr;
  6867. id++;
  6868. }
  6869. }
  6870. id += ne00 * (ne01 - ir1);
  6871. }
  6872. }
  6873. } else if (dst->type == GGML_TYPE_F16) {
  6874. size_t id = 0;
  6875. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6876. for (int i03 = 0; i03 < ne03; i03++) {
  6877. for (int i02 = 0; i02 < ne02; i02++) {
  6878. id += ne00 * ir0;
  6879. for (int i01 = ir0; i01 < ir1; i01++) {
  6880. for (int i00 = 0; i00 < ne00; i00++) {
  6881. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6882. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6883. id++;
  6884. }
  6885. }
  6886. id += ne00 * (ne01 - ir1);
  6887. }
  6888. }
  6889. } else {
  6890. GGML_ASSERT(false); // TODO: implement
  6891. }
  6892. }
  6893. return;
  6894. }
  6895. // dst counters
  6896. int64_t i10 = 0;
  6897. int64_t i11 = 0;
  6898. int64_t i12 = 0;
  6899. int64_t i13 = 0;
  6900. if (dst->type == GGML_TYPE_BF16) {
  6901. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6902. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6903. i10 += ne00 * ir0;
  6904. while (i10 >= ne0) {
  6905. i10 -= ne0;
  6906. if (++i11 == ne1) {
  6907. i11 = 0;
  6908. if (++i12 == ne2) {
  6909. i12 = 0;
  6910. if (++i13 == ne3) {
  6911. i13 = 0;
  6912. }
  6913. }
  6914. }
  6915. }
  6916. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6917. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6918. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6919. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6920. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6921. if (++i10 == ne00) {
  6922. i10 = 0;
  6923. if (++i11 == ne01) {
  6924. i11 = 0;
  6925. if (++i12 == ne02) {
  6926. i12 = 0;
  6927. if (++i13 == ne03) {
  6928. i13 = 0;
  6929. }
  6930. }
  6931. }
  6932. }
  6933. }
  6934. }
  6935. i10 += ne00 * (ne01 - ir1);
  6936. while (i10 >= ne0) {
  6937. i10 -= ne0;
  6938. if (++i11 == ne1) {
  6939. i11 = 0;
  6940. if (++i12 == ne2) {
  6941. i12 = 0;
  6942. if (++i13 == ne3) {
  6943. i13 = 0;
  6944. }
  6945. }
  6946. }
  6947. }
  6948. }
  6949. }
  6950. } else if (dst->type == GGML_TYPE_F16) {
  6951. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6952. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6953. i10 += ne00 * ir0;
  6954. while (i10 >= ne0) {
  6955. i10 -= ne0;
  6956. if (++i11 == ne1) {
  6957. i11 = 0;
  6958. if (++i12 == ne2) {
  6959. i12 = 0;
  6960. if (++i13 == ne3) {
  6961. i13 = 0;
  6962. }
  6963. }
  6964. }
  6965. }
  6966. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6967. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6968. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6969. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6970. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6971. if (++i10 == ne0) {
  6972. i10 = 0;
  6973. if (++i11 == ne1) {
  6974. i11 = 0;
  6975. if (++i12 == ne2) {
  6976. i12 = 0;
  6977. if (++i13 == ne3) {
  6978. i13 = 0;
  6979. }
  6980. }
  6981. }
  6982. }
  6983. }
  6984. }
  6985. i10 += ne00 * (ne01 - ir1);
  6986. while (i10 >= ne0) {
  6987. i10 -= ne0;
  6988. if (++i11 == ne1) {
  6989. i11 = 0;
  6990. if (++i12 == ne2) {
  6991. i12 = 0;
  6992. if (++i13 == ne3) {
  6993. i13 = 0;
  6994. }
  6995. }
  6996. }
  6997. }
  6998. }
  6999. }
  7000. } else if (dst->type == GGML_TYPE_F32) {
  7001. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7002. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7003. i10 += ne00 * ir0;
  7004. while (i10 >= ne0) {
  7005. i10 -= ne0;
  7006. if (++i11 == ne1) {
  7007. i11 = 0;
  7008. if (++i12 == ne2) {
  7009. i12 = 0;
  7010. if (++i13 == ne3) {
  7011. i13 = 0;
  7012. }
  7013. }
  7014. }
  7015. }
  7016. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7017. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7018. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7019. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7020. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7021. if (++i10 == ne0) {
  7022. i10 = 0;
  7023. if (++i11 == ne1) {
  7024. i11 = 0;
  7025. if (++i12 == ne2) {
  7026. i12 = 0;
  7027. if (++i13 == ne3) {
  7028. i13 = 0;
  7029. }
  7030. }
  7031. }
  7032. }
  7033. }
  7034. }
  7035. i10 += ne00 * (ne01 - ir1);
  7036. while (i10 >= ne0) {
  7037. i10 -= ne0;
  7038. if (++i11 == ne1) {
  7039. i11 = 0;
  7040. if (++i12 == ne2) {
  7041. i12 = 0;
  7042. if (++i13 == ne3) {
  7043. i13 = 0;
  7044. }
  7045. }
  7046. }
  7047. }
  7048. }
  7049. }
  7050. } else {
  7051. GGML_ASSERT(false); // TODO: implement
  7052. }
  7053. }
  7054. static void ggml_compute_forward_dup_f32(
  7055. const struct ggml_compute_params * params,
  7056. struct ggml_tensor * dst) {
  7057. const struct ggml_tensor * src0 = dst->src[0];
  7058. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7059. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7060. return;
  7061. }
  7062. GGML_TENSOR_UNARY_OP_LOCALS
  7063. const int ith = params->ith; // thread index
  7064. const int nth = params->nth; // number of threads
  7065. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7066. ggml_compute_forward_dup_same_cont(params, dst);
  7067. return;
  7068. }
  7069. // parallelize by rows
  7070. const int nr = ne01;
  7071. // number of rows per thread
  7072. const int dr = (nr + nth - 1) / nth;
  7073. // row range for this thread
  7074. const int ir0 = dr * ith;
  7075. const int ir1 = MIN(ir0 + dr, nr);
  7076. if (src0->type == dst->type &&
  7077. ne00 == ne0 &&
  7078. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7079. // copy by rows
  7080. const size_t rs = ne00*nb00;
  7081. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7083. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7084. memcpy(
  7085. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7086. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7087. rs);
  7088. }
  7089. }
  7090. }
  7091. return;
  7092. }
  7093. if (ggml_is_contiguous(dst)) {
  7094. // TODO: simplify
  7095. if (nb00 == sizeof(float)) {
  7096. if (dst->type == GGML_TYPE_F32) {
  7097. size_t id = 0;
  7098. const size_t rs = ne00 * nb00;
  7099. char * dst_ptr = (char *) dst->data;
  7100. for (int i03 = 0; i03 < ne03; i03++) {
  7101. for (int i02 = 0; i02 < ne02; i02++) {
  7102. id += rs * ir0;
  7103. for (int i01 = ir0; i01 < ir1; i01++) {
  7104. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7105. memcpy(dst_ptr + id, src0_ptr, rs);
  7106. id += rs;
  7107. }
  7108. id += rs * (ne01 - ir1);
  7109. }
  7110. }
  7111. } else if (type_traits[dst->type].from_float) {
  7112. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7113. size_t id = 0;
  7114. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7115. char * dst_ptr = (char *) dst->data;
  7116. for (int i03 = 0; i03 < ne03; i03++) {
  7117. for (int i02 = 0; i02 < ne02; i02++) {
  7118. id += rs * ir0;
  7119. for (int i01 = ir0; i01 < ir1; i01++) {
  7120. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7121. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7122. id += rs;
  7123. }
  7124. id += rs * (ne01 - ir1);
  7125. }
  7126. }
  7127. } else {
  7128. GGML_ASSERT(false); // TODO: implement
  7129. }
  7130. } else {
  7131. //printf("%s: this is not optimal - fix me\n", __func__);
  7132. if (dst->type == GGML_TYPE_F32) {
  7133. size_t id = 0;
  7134. float * dst_ptr = (float *) dst->data;
  7135. for (int i03 = 0; i03 < ne03; i03++) {
  7136. for (int i02 = 0; i02 < ne02; i02++) {
  7137. id += ne00 * ir0;
  7138. for (int i01 = ir0; i01 < ir1; i01++) {
  7139. for (int i00 = 0; i00 < ne00; i00++) {
  7140. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7141. dst_ptr[id] = *src0_ptr;
  7142. id++;
  7143. }
  7144. }
  7145. id += ne00 * (ne01 - ir1);
  7146. }
  7147. }
  7148. } else if (dst->type == GGML_TYPE_F16) {
  7149. size_t id = 0;
  7150. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7151. for (int i03 = 0; i03 < ne03; i03++) {
  7152. for (int i02 = 0; i02 < ne02; i02++) {
  7153. id += ne00 * ir0;
  7154. for (int i01 = ir0; i01 < ir1; i01++) {
  7155. for (int i00 = 0; i00 < ne00; i00++) {
  7156. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7157. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7158. id++;
  7159. }
  7160. }
  7161. id += ne00 * (ne01 - ir1);
  7162. }
  7163. }
  7164. } else if (dst->type == GGML_TYPE_BF16) {
  7165. size_t id = 0;
  7166. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7167. for (int i03 = 0; i03 < ne03; i03++) {
  7168. for (int i02 = 0; i02 < ne02; i02++) {
  7169. id += ne00 * ir0;
  7170. for (int i01 = ir0; i01 < ir1; i01++) {
  7171. for (int i00 = 0; i00 < ne00; i00++) {
  7172. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7173. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7174. id++;
  7175. }
  7176. }
  7177. id += ne00 * (ne01 - ir1);
  7178. }
  7179. }
  7180. } else {
  7181. GGML_ASSERT(false); // TODO: implement
  7182. }
  7183. }
  7184. return;
  7185. }
  7186. // dst counters
  7187. int64_t i10 = 0;
  7188. int64_t i11 = 0;
  7189. int64_t i12 = 0;
  7190. int64_t i13 = 0;
  7191. if (dst->type == GGML_TYPE_F32) {
  7192. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7193. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7194. i10 += ne00 * ir0;
  7195. while (i10 >= ne0) {
  7196. i10 -= ne0;
  7197. if (++i11 == ne1) {
  7198. i11 = 0;
  7199. if (++i12 == ne2) {
  7200. i12 = 0;
  7201. if (++i13 == ne3) {
  7202. i13 = 0;
  7203. }
  7204. }
  7205. }
  7206. }
  7207. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7208. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7209. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7210. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7211. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7212. if (++i10 == ne0) {
  7213. i10 = 0;
  7214. if (++i11 == ne1) {
  7215. i11 = 0;
  7216. if (++i12 == ne2) {
  7217. i12 = 0;
  7218. if (++i13 == ne3) {
  7219. i13 = 0;
  7220. }
  7221. }
  7222. }
  7223. }
  7224. }
  7225. }
  7226. i10 += ne00 * (ne01 - ir1);
  7227. while (i10 >= ne0) {
  7228. i10 -= ne0;
  7229. if (++i11 == ne1) {
  7230. i11 = 0;
  7231. if (++i12 == ne2) {
  7232. i12 = 0;
  7233. if (++i13 == ne3) {
  7234. i13 = 0;
  7235. }
  7236. }
  7237. }
  7238. }
  7239. }
  7240. }
  7241. } else if (dst->type == GGML_TYPE_F16) {
  7242. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7243. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7244. i10 += ne00 * ir0;
  7245. while (i10 >= ne0) {
  7246. i10 -= ne0;
  7247. if (++i11 == ne1) {
  7248. i11 = 0;
  7249. if (++i12 == ne2) {
  7250. i12 = 0;
  7251. if (++i13 == ne3) {
  7252. i13 = 0;
  7253. }
  7254. }
  7255. }
  7256. }
  7257. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7258. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7259. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7260. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7261. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7262. if (++i10 == ne0) {
  7263. i10 = 0;
  7264. if (++i11 == ne1) {
  7265. i11 = 0;
  7266. if (++i12 == ne2) {
  7267. i12 = 0;
  7268. if (++i13 == ne3) {
  7269. i13 = 0;
  7270. }
  7271. }
  7272. }
  7273. }
  7274. }
  7275. }
  7276. i10 += ne00 * (ne01 - ir1);
  7277. while (i10 >= ne0) {
  7278. i10 -= ne0;
  7279. if (++i11 == ne1) {
  7280. i11 = 0;
  7281. if (++i12 == ne2) {
  7282. i12 = 0;
  7283. if (++i13 == ne3) {
  7284. i13 = 0;
  7285. }
  7286. }
  7287. }
  7288. }
  7289. }
  7290. }
  7291. } else if (dst->type == GGML_TYPE_BF16) {
  7292. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7293. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7294. i10 += ne00 * ir0;
  7295. while (i10 >= ne0) {
  7296. i10 -= ne0;
  7297. if (++i11 == ne1) {
  7298. i11 = 0;
  7299. if (++i12 == ne2) {
  7300. i12 = 0;
  7301. if (++i13 == ne3) {
  7302. i13 = 0;
  7303. }
  7304. }
  7305. }
  7306. }
  7307. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7308. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7309. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7310. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7311. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7312. if (++i10 == ne0) {
  7313. i10 = 0;
  7314. if (++i11 == ne1) {
  7315. i11 = 0;
  7316. if (++i12 == ne2) {
  7317. i12 = 0;
  7318. if (++i13 == ne3) {
  7319. i13 = 0;
  7320. }
  7321. }
  7322. }
  7323. }
  7324. }
  7325. }
  7326. i10 += ne00 * (ne01 - ir1);
  7327. while (i10 >= ne0) {
  7328. i10 -= ne0;
  7329. if (++i11 == ne1) {
  7330. i11 = 0;
  7331. if (++i12 == ne2) {
  7332. i12 = 0;
  7333. if (++i13 == ne3) {
  7334. i13 = 0;
  7335. }
  7336. }
  7337. }
  7338. }
  7339. }
  7340. }
  7341. } else {
  7342. GGML_ASSERT(false); // TODO: implement
  7343. }
  7344. }
  7345. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7346. static void ggml_compute_forward_dup_bytes(
  7347. const struct ggml_compute_params * params,
  7348. struct ggml_tensor * dst) {
  7349. const struct ggml_tensor * src0 = dst->src[0];
  7350. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7351. GGML_ASSERT(src0->type == dst->type);
  7352. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7353. return;
  7354. }
  7355. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7356. ggml_compute_forward_dup_same_cont(params, dst);
  7357. return;
  7358. }
  7359. GGML_TENSOR_UNARY_OP_LOCALS;
  7360. const size_t type_size = ggml_type_size(src0->type);
  7361. const int ith = params->ith; // thread index
  7362. const int nth = params->nth; // number of threads
  7363. // parallelize by rows
  7364. const int nr = ne01;
  7365. // number of rows per thread
  7366. const int dr = (nr + nth - 1) / nth;
  7367. // row range for this thread
  7368. const int ir0 = dr * ith;
  7369. const int ir1 = MIN(ir0 + dr, nr);
  7370. if (src0->type == dst->type &&
  7371. ne00 == ne0 &&
  7372. nb00 == type_size && nb0 == type_size) {
  7373. // copy by rows
  7374. const size_t rs = ne00 * type_size;
  7375. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7376. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7377. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7378. memcpy(
  7379. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7380. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7381. rs);
  7382. }
  7383. }
  7384. }
  7385. return;
  7386. }
  7387. if (ggml_is_contiguous(dst)) {
  7388. size_t id = 0;
  7389. char * dst_ptr = (char *) dst->data;
  7390. const size_t rs = ne00 * type_size;
  7391. if (nb00 == type_size) {
  7392. // src0 is contigous on first dimension, copy by rows
  7393. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7394. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7395. id += rs * ir0;
  7396. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7397. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7398. memcpy(dst_ptr + id, src0_ptr, rs);
  7399. id += rs;
  7400. }
  7401. id += rs * (ne01 - ir1);
  7402. }
  7403. }
  7404. } else {
  7405. //printf("%s: this is not optimal - fix me\n", __func__);
  7406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7408. id += rs * ir0;
  7409. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7410. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7411. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7412. memcpy(dst_ptr + id, src0_ptr, type_size);
  7413. id += type_size;
  7414. }
  7415. }
  7416. id += rs * (ne01 - ir1);
  7417. }
  7418. }
  7419. }
  7420. return;
  7421. }
  7422. // dst counters
  7423. int64_t i10 = 0;
  7424. int64_t i11 = 0;
  7425. int64_t i12 = 0;
  7426. int64_t i13 = 0;
  7427. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7429. i10 += ne00 * ir0;
  7430. while (i10 >= ne0) {
  7431. i10 -= ne0;
  7432. if (++i11 == ne1) {
  7433. i11 = 0;
  7434. if (++i12 == ne2) {
  7435. i12 = 0;
  7436. if (++i13 == ne3) {
  7437. i13 = 0;
  7438. }
  7439. }
  7440. }
  7441. }
  7442. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7443. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7444. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7445. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7446. memcpy(dst_ptr, src0_ptr, type_size);
  7447. if (++i10 == ne0) {
  7448. i10 = 0;
  7449. if (++i11 == ne1) {
  7450. i11 = 0;
  7451. if (++i12 == ne2) {
  7452. i12 = 0;
  7453. if (++i13 == ne3) {
  7454. i13 = 0;
  7455. }
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. i10 += ne00 * (ne01 - ir1);
  7462. while (i10 >= ne0) {
  7463. i10 -= ne0;
  7464. if (++i11 == ne1) {
  7465. i11 = 0;
  7466. if (++i12 == ne2) {
  7467. i12 = 0;
  7468. if (++i13 == ne3) {
  7469. i13 = 0;
  7470. }
  7471. }
  7472. }
  7473. }
  7474. }
  7475. }
  7476. }
  7477. static void ggml_compute_forward_dup(
  7478. const struct ggml_compute_params * params,
  7479. struct ggml_tensor * dst) {
  7480. const struct ggml_tensor * src0 = dst->src[0];
  7481. if (src0->type == dst->type) {
  7482. ggml_compute_forward_dup_bytes(params, dst);
  7483. return;
  7484. }
  7485. switch (src0->type) {
  7486. case GGML_TYPE_F16:
  7487. {
  7488. ggml_compute_forward_dup_f16(params, dst);
  7489. } break;
  7490. case GGML_TYPE_BF16:
  7491. {
  7492. ggml_compute_forward_dup_bf16(params, dst);
  7493. } break;
  7494. case GGML_TYPE_F32:
  7495. {
  7496. ggml_compute_forward_dup_f32(params, dst);
  7497. } break;
  7498. default:
  7499. {
  7500. GGML_ASSERT(false);
  7501. } break;
  7502. }
  7503. }
  7504. // ggml_compute_forward_add
  7505. static void ggml_compute_forward_add_f32(
  7506. const struct ggml_compute_params * params,
  7507. struct ggml_tensor * dst) {
  7508. const struct ggml_tensor * src0 = dst->src[0];
  7509. const struct ggml_tensor * src1 = dst->src[1];
  7510. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7511. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7512. return;
  7513. }
  7514. const int ith = params->ith;
  7515. const int nth = params->nth;
  7516. #ifdef GGML_USE_CLBLAST
  7517. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7518. // TODO: OpenCL kernel support full broadcast
  7519. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7520. if (ith == 0) {
  7521. ggml_cl_add(src0, src1, dst);
  7522. }
  7523. return;
  7524. }
  7525. #endif
  7526. const int nr = ggml_nrows(src0);
  7527. GGML_TENSOR_BINARY_OP_LOCALS
  7528. GGML_ASSERT( nb0 == sizeof(float));
  7529. GGML_ASSERT(nb00 == sizeof(float));
  7530. // rows per thread
  7531. const int dr = (nr + nth - 1)/nth;
  7532. // row range for this thread
  7533. const int ir0 = dr*ith;
  7534. const int ir1 = MIN(ir0 + dr, nr);
  7535. if (nb10 == sizeof(float)) {
  7536. for (int ir = ir0; ir < ir1; ++ir) {
  7537. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7538. const int64_t i03 = ir/(ne02*ne01);
  7539. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7540. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7541. const int64_t i13 = i03 % ne13;
  7542. const int64_t i12 = i02 % ne12;
  7543. const int64_t i11 = i01 % ne11;
  7544. const int64_t nr0 = ne00 / ne10;
  7545. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7546. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7547. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7548. for (int64_t r = 0; r < nr0; ++r) {
  7549. #ifdef GGML_USE_ACCELERATE
  7550. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7551. #else
  7552. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7553. #endif
  7554. }
  7555. }
  7556. } else {
  7557. // src1 is not contiguous
  7558. for (int ir = ir0; ir < ir1; ++ir) {
  7559. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7560. const int64_t i03 = ir/(ne02*ne01);
  7561. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7562. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7563. const int64_t i13 = i03 % ne13;
  7564. const int64_t i12 = i02 % ne12;
  7565. const int64_t i11 = i01 % ne11;
  7566. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7567. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7568. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7569. const int64_t i10 = i0 % ne10;
  7570. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7571. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7572. }
  7573. }
  7574. }
  7575. }
  7576. static void ggml_compute_forward_add_f16_f32(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. const struct ggml_tensor * src1 = dst->src[1];
  7581. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7583. return;
  7584. }
  7585. const int ith = params->ith;
  7586. const int nth = params->nth;
  7587. const int nr = ggml_nrows(src0);
  7588. GGML_TENSOR_BINARY_OP_LOCALS
  7589. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7590. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7591. if (dst->type == GGML_TYPE_F32) {
  7592. GGML_ASSERT( nb0 == sizeof(float));
  7593. }
  7594. else {
  7595. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7596. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7597. }
  7598. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7599. // rows per thread
  7600. const int dr = (nr + nth - 1)/nth;
  7601. // row range for this thread
  7602. const int ir0 = dr*ith;
  7603. const int ir1 = MIN(ir0 + dr, nr);
  7604. if (nb10 == sizeof(float)) {
  7605. if (dst->type == GGML_TYPE_F16) {
  7606. for (int ir = ir0; ir < ir1; ++ir) {
  7607. // src0, src1 and dst are same shape => same indices
  7608. const int i3 = ir/(ne2*ne1);
  7609. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7610. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7611. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7612. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7613. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7614. for (int i = 0; i < ne0; i++) {
  7615. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7616. }
  7617. }
  7618. } else {
  7619. for (int ir = ir0; ir < ir1; ++ir) {
  7620. // src0, src1 and dst are same shape => same indices
  7621. const int i3 = ir/(ne2*ne1);
  7622. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7623. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7624. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7625. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7626. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7627. for (int i = 0; i < ne0; i++) {
  7628. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7629. }
  7630. }
  7631. }
  7632. }
  7633. else {
  7634. // src1 is not contiguous
  7635. GGML_ASSERT(false);
  7636. }
  7637. }
  7638. static void ggml_compute_forward_add_bf16_f32(
  7639. const struct ggml_compute_params * params,
  7640. struct ggml_tensor * dst) {
  7641. const struct ggml_tensor * src0 = dst->src[0];
  7642. const struct ggml_tensor * src1 = dst->src[1];
  7643. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7644. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7645. return;
  7646. }
  7647. const int ith = params->ith;
  7648. const int nth = params->nth;
  7649. const int nr = ggml_nrows(src0);
  7650. GGML_TENSOR_BINARY_OP_LOCALS
  7651. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7652. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7653. if (dst->type == GGML_TYPE_F32) {
  7654. GGML_ASSERT( nb0 == sizeof(float));
  7655. }
  7656. else {
  7657. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7658. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7659. }
  7660. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7661. // rows per thread
  7662. const int dr = (nr + nth - 1)/nth;
  7663. // row range for this thread
  7664. const int ir0 = dr*ith;
  7665. const int ir1 = MIN(ir0 + dr, nr);
  7666. if (nb10 == sizeof(float)) {
  7667. if (dst->type == GGML_TYPE_BF16) {
  7668. for (int ir = ir0; ir < ir1; ++ir) {
  7669. // src0, src1 and dst are same shape => same indices
  7670. const int i3 = ir/(ne2*ne1);
  7671. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7672. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7673. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7674. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7675. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7676. for (int i = 0; i < ne0; i++) {
  7677. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7678. }
  7679. }
  7680. } else {
  7681. for (int ir = ir0; ir < ir1; ++ir) {
  7682. // src0, src1 and dst are same shape => same indices
  7683. const int i3 = ir/(ne2*ne1);
  7684. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7685. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7686. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7687. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7688. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7689. for (int i = 0; i < ne0; i++) {
  7690. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7691. }
  7692. }
  7693. }
  7694. }
  7695. else {
  7696. // src1 is not contiguous
  7697. GGML_ASSERT(false);
  7698. }
  7699. }
  7700. static void ggml_compute_forward_add_f16_f16(
  7701. const struct ggml_compute_params * params,
  7702. struct ggml_tensor * dst) {
  7703. const struct ggml_tensor * src0 = dst->src[0];
  7704. const struct ggml_tensor * src1 = dst->src[1];
  7705. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7707. return;
  7708. }
  7709. const int ith = params->ith;
  7710. const int nth = params->nth;
  7711. const int nr = ggml_nrows(src0);
  7712. GGML_TENSOR_BINARY_OP_LOCALS
  7713. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7714. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7715. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7716. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7717. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7718. // rows per thread
  7719. const int dr = (nr + nth - 1)/nth;
  7720. // row range for this thread
  7721. const int ir0 = dr*ith;
  7722. const int ir1 = MIN(ir0 + dr, nr);
  7723. if (nb10 == sizeof(ggml_fp16_t)) {
  7724. for (int ir = ir0; ir < ir1; ++ir) {
  7725. // src0, src1 and dst are same shape => same indices
  7726. const int i3 = ir/(ne2*ne1);
  7727. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7728. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7729. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7730. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7731. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7732. for (int i = 0; i < ne0; i++) {
  7733. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7734. }
  7735. }
  7736. }
  7737. else {
  7738. // src1 is not contiguous
  7739. GGML_ASSERT(false);
  7740. }
  7741. }
  7742. static void ggml_compute_forward_add_bf16_bf16(
  7743. const struct ggml_compute_params * params,
  7744. struct ggml_tensor * dst) {
  7745. const struct ggml_tensor * src0 = dst->src[0];
  7746. const struct ggml_tensor * src1 = dst->src[1];
  7747. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7749. return;
  7750. }
  7751. const int ith = params->ith;
  7752. const int nth = params->nth;
  7753. const int nr = ggml_nrows(src0);
  7754. GGML_TENSOR_BINARY_OP_LOCALS
  7755. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7756. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7757. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7758. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7759. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7760. // rows per thread
  7761. const int dr = (nr + nth - 1)/nth;
  7762. // row range for this thread
  7763. const int ir0 = dr*ith;
  7764. const int ir1 = MIN(ir0 + dr, nr);
  7765. if (nb10 == sizeof(ggml_bf16_t)) {
  7766. for (int ir = ir0; ir < ir1; ++ir) {
  7767. // src0, src1 and dst are same shape => same indices
  7768. const int i3 = ir/(ne2*ne1);
  7769. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7770. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7771. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7772. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7773. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7774. for (int i = 0; i < ne0; i++) {
  7775. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7776. }
  7777. }
  7778. }
  7779. else {
  7780. // src1 is not contiguous
  7781. GGML_ASSERT(false);
  7782. }
  7783. }
  7784. static void ggml_compute_forward_add_q_f32(
  7785. const struct ggml_compute_params * params,
  7786. struct ggml_tensor * dst) {
  7787. const struct ggml_tensor * src0 = dst->src[0];
  7788. const struct ggml_tensor * src1 = dst->src[1];
  7789. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7791. return;
  7792. }
  7793. const int nr = ggml_nrows(src0);
  7794. GGML_TENSOR_BINARY_OP_LOCALS
  7795. const int ith = params->ith;
  7796. const int nth = params->nth;
  7797. const enum ggml_type type = src0->type;
  7798. const enum ggml_type dtype = dst->type;
  7799. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7800. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7801. // we don't support permuted src0 or src1
  7802. GGML_ASSERT(nb00 == ggml_type_size(type));
  7803. GGML_ASSERT(nb10 == sizeof(float));
  7804. // dst cannot be transposed or permuted
  7805. GGML_ASSERT(nb0 <= nb1);
  7806. GGML_ASSERT(nb1 <= nb2);
  7807. GGML_ASSERT(nb2 <= nb3);
  7808. GGML_ASSERT(ggml_is_quantized(src0->type));
  7809. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7810. // rows per thread
  7811. const int dr = (nr + nth - 1)/nth;
  7812. // row range for this thread
  7813. const int ir0 = dr*ith;
  7814. const int ir1 = MIN(ir0 + dr, nr);
  7815. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7816. for (int ir = ir0; ir < ir1; ++ir) {
  7817. // src0 indices
  7818. const int i03 = ir/(ne02*ne01);
  7819. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7820. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7821. // src1 and dst are same shape as src0 => same indices
  7822. const int i13 = i03;
  7823. const int i12 = i02;
  7824. const int i11 = i01;
  7825. const int i3 = i03;
  7826. const int i2 = i02;
  7827. const int i1 = i01;
  7828. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7829. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7830. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7831. assert(ne00 % 32 == 0);
  7832. // unquantize row from src0 to temp buffer
  7833. dequantize_row_q(src0_row, wdata, ne00);
  7834. // add src1
  7835. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7836. // quantize row to dst
  7837. if (quantize_row_q != NULL) {
  7838. quantize_row_q(wdata, dst_row, ne00);
  7839. } else {
  7840. memcpy(dst_row, wdata, ne0*nb0);
  7841. }
  7842. }
  7843. }
  7844. static void ggml_compute_forward_add(
  7845. const struct ggml_compute_params * params,
  7846. struct ggml_tensor * dst) {
  7847. const struct ggml_tensor * src0 = dst->src[0];
  7848. const struct ggml_tensor * src1 = dst->src[1];
  7849. switch (src0->type) {
  7850. case GGML_TYPE_F32:
  7851. {
  7852. if (src1->type == GGML_TYPE_F32) {
  7853. ggml_compute_forward_add_f32(params, dst);
  7854. }
  7855. else {
  7856. GGML_ASSERT(false);
  7857. }
  7858. } break;
  7859. case GGML_TYPE_F16:
  7860. {
  7861. if (src1->type == GGML_TYPE_F16) {
  7862. ggml_compute_forward_add_f16_f16(params, dst);
  7863. }
  7864. else if (src1->type == GGML_TYPE_F32) {
  7865. ggml_compute_forward_add_f16_f32(params, dst);
  7866. }
  7867. else {
  7868. GGML_ASSERT(false);
  7869. }
  7870. } break;
  7871. case GGML_TYPE_BF16:
  7872. {
  7873. if (src1->type == GGML_TYPE_BF16) {
  7874. ggml_compute_forward_add_bf16_bf16(params, dst);
  7875. }
  7876. else if (src1->type == GGML_TYPE_F32) {
  7877. ggml_compute_forward_add_bf16_f32(params, dst);
  7878. }
  7879. else {
  7880. GGML_ASSERT(false);
  7881. }
  7882. } break;
  7883. case GGML_TYPE_Q4_0:
  7884. case GGML_TYPE_Q4_1:
  7885. case GGML_TYPE_Q5_0:
  7886. case GGML_TYPE_Q5_1:
  7887. case GGML_TYPE_Q8_0:
  7888. case GGML_TYPE_Q2_K:
  7889. case GGML_TYPE_Q3_K:
  7890. case GGML_TYPE_Q4_K:
  7891. case GGML_TYPE_Q5_K:
  7892. case GGML_TYPE_Q6_K:
  7893. case GGML_TYPE_IQ2_XXS:
  7894. case GGML_TYPE_IQ2_XS:
  7895. case GGML_TYPE_IQ3_XXS:
  7896. case GGML_TYPE_IQ1_S:
  7897. case GGML_TYPE_IQ1_M:
  7898. case GGML_TYPE_IQ4_NL:
  7899. case GGML_TYPE_IQ4_XS:
  7900. case GGML_TYPE_IQ3_S:
  7901. case GGML_TYPE_IQ2_S:
  7902. {
  7903. ggml_compute_forward_add_q_f32(params, dst);
  7904. } break;
  7905. default:
  7906. {
  7907. GGML_ASSERT(false);
  7908. } break;
  7909. }
  7910. }
  7911. // ggml_compute_forward_add1
  7912. static void ggml_compute_forward_add1_f32(
  7913. const struct ggml_compute_params * params,
  7914. struct ggml_tensor * dst) {
  7915. const struct ggml_tensor * src0 = dst->src[0];
  7916. const struct ggml_tensor * src1 = dst->src[1];
  7917. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7918. GGML_ASSERT(ggml_is_scalar(src1));
  7919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7920. return;
  7921. }
  7922. const int ith = params->ith;
  7923. const int nth = params->nth;
  7924. const int nr = ggml_nrows(src0);
  7925. GGML_TENSOR_UNARY_OP_LOCALS
  7926. GGML_ASSERT( nb0 == sizeof(float));
  7927. GGML_ASSERT(nb00 == sizeof(float));
  7928. // rows per thread
  7929. const int dr = (nr + nth - 1)/nth;
  7930. // row range for this thread
  7931. const int ir0 = dr*ith;
  7932. const int ir1 = MIN(ir0 + dr, nr);
  7933. for (int ir = ir0; ir < ir1; ++ir) {
  7934. // src0 and dst are same shape => same indices
  7935. const int i3 = ir/(ne2*ne1);
  7936. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7937. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7938. #ifdef GGML_USE_ACCELERATE
  7939. UNUSED(ggml_vec_add1_f32);
  7940. vDSP_vadd(
  7941. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7942. (float *) ((char *) src1->data), 0,
  7943. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7944. ne0);
  7945. #else
  7946. ggml_vec_add1_f32(ne0,
  7947. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7948. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7949. *(float *) src1->data);
  7950. #endif
  7951. }
  7952. }
  7953. static void ggml_compute_forward_add1_f16_f32(
  7954. const struct ggml_compute_params * params,
  7955. struct ggml_tensor * dst) {
  7956. const struct ggml_tensor * src0 = dst->src[0];
  7957. const struct ggml_tensor * src1 = dst->src[1];
  7958. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7959. GGML_ASSERT(ggml_is_scalar(src1));
  7960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7961. return;
  7962. }
  7963. // scalar to add
  7964. const float v = *(float *) src1->data;
  7965. const int ith = params->ith;
  7966. const int nth = params->nth;
  7967. const int nr = ggml_nrows(src0);
  7968. GGML_TENSOR_UNARY_OP_LOCALS
  7969. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7970. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7971. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7972. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7973. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7974. // rows per thread
  7975. const int dr = (nr + nth - 1)/nth;
  7976. // row range for this thread
  7977. const int ir0 = dr*ith;
  7978. const int ir1 = MIN(ir0 + dr, nr);
  7979. for (int ir = ir0; ir < ir1; ++ir) {
  7980. // src0 and dst are same shape => same indices
  7981. const int i3 = ir/(ne2*ne1);
  7982. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7983. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7984. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7985. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7986. for (int i = 0; i < ne0; i++) {
  7987. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7988. }
  7989. }
  7990. }
  7991. static void ggml_compute_forward_add1_f16_f16(
  7992. const struct ggml_compute_params * params,
  7993. struct ggml_tensor * dst) {
  7994. const struct ggml_tensor * src0 = dst->src[0];
  7995. const struct ggml_tensor * src1 = dst->src[1];
  7996. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7997. GGML_ASSERT(ggml_is_scalar(src1));
  7998. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7999. return;
  8000. }
  8001. // scalar to add
  8002. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8003. const int ith = params->ith;
  8004. const int nth = params->nth;
  8005. const int nr = ggml_nrows(src0);
  8006. GGML_TENSOR_UNARY_OP_LOCALS
  8007. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8008. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8009. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8010. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8012. // rows per thread
  8013. const int dr = (nr + nth - 1)/nth;
  8014. // row range for this thread
  8015. const int ir0 = dr*ith;
  8016. const int ir1 = MIN(ir0 + dr, nr);
  8017. for (int ir = ir0; ir < ir1; ++ir) {
  8018. // src0 and dst are same shape => same indices
  8019. const int i3 = ir/(ne2*ne1);
  8020. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8021. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8022. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8023. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8024. for (int i = 0; i < ne0; i++) {
  8025. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8026. }
  8027. }
  8028. }
  8029. static void ggml_compute_forward_add1_q_f32(
  8030. const struct ggml_compute_params * params,
  8031. struct ggml_tensor * dst) {
  8032. const struct ggml_tensor * src0 = dst->src[0];
  8033. const struct ggml_tensor * src1 = dst->src[1];
  8034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8035. GGML_ASSERT(ggml_is_scalar(src1));
  8036. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8037. return;
  8038. }
  8039. // scalar to add
  8040. const float v = *(float *) src1->data;
  8041. const int ith = params->ith;
  8042. const int nth = params->nth;
  8043. const int nr = ggml_nrows(src0);
  8044. GGML_TENSOR_UNARY_OP_LOCALS
  8045. const enum ggml_type type = src0->type;
  8046. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8047. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8048. // we don't support permuted src0
  8049. GGML_ASSERT(nb00 == ggml_type_size(type));
  8050. // dst cannot be transposed or permuted
  8051. GGML_ASSERT(nb0 <= nb1);
  8052. GGML_ASSERT(nb1 <= nb2);
  8053. GGML_ASSERT(nb2 <= nb3);
  8054. GGML_ASSERT(ggml_is_quantized(src0->type));
  8055. GGML_ASSERT(dst->type == src0->type);
  8056. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8057. // rows per thread
  8058. const int dr = (nr + nth - 1)/nth;
  8059. // row range for this thread
  8060. const int ir0 = dr*ith;
  8061. const int ir1 = MIN(ir0 + dr, nr);
  8062. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8063. for (int ir = ir0; ir < ir1; ++ir) {
  8064. // src0 and dst are same shape => same indices
  8065. const int i3 = ir/(ne2*ne1);
  8066. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8067. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8068. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8069. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8070. assert(ne0 % 32 == 0);
  8071. // unquantize row from src0 to temp buffer
  8072. dequantize_row_q(src0_row, wdata, ne0);
  8073. // add src1
  8074. ggml_vec_acc1_f32(ne0, wdata, v);
  8075. // quantize row to dst
  8076. quantize_row_q(wdata, dst_row, ne0);
  8077. }
  8078. }
  8079. static void ggml_compute_forward_add1_bf16_f32(
  8080. const struct ggml_compute_params * params,
  8081. struct ggml_tensor * dst) {
  8082. const struct ggml_tensor * src0 = dst->src[0];
  8083. const struct ggml_tensor * src1 = dst->src[1];
  8084. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8085. GGML_ASSERT(ggml_is_scalar(src1));
  8086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8087. return;
  8088. }
  8089. // scalar to add
  8090. const float v = *(float *) src1->data;
  8091. const int ith = params->ith;
  8092. const int nth = params->nth;
  8093. const int nr = ggml_nrows(src0);
  8094. GGML_TENSOR_UNARY_OP_LOCALS
  8095. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8096. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8097. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8098. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8099. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8100. // rows per thread
  8101. const int dr = (nr + nth - 1)/nth;
  8102. // row range for this thread
  8103. const int ir0 = dr*ith;
  8104. const int ir1 = MIN(ir0 + dr, nr);
  8105. for (int ir = ir0; ir < ir1; ++ir) {
  8106. // src0 and dst are same shape => same indices
  8107. const int i3 = ir/(ne2*ne1);
  8108. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8109. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8110. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8111. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8112. for (int i = 0; i < ne0; i++) {
  8113. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8114. }
  8115. }
  8116. }
  8117. static void ggml_compute_forward_add1_bf16_bf16(
  8118. const struct ggml_compute_params * params,
  8119. struct ggml_tensor * dst) {
  8120. const struct ggml_tensor * src0 = dst->src[0];
  8121. const struct ggml_tensor * src1 = dst->src[1];
  8122. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8123. GGML_ASSERT(ggml_is_scalar(src1));
  8124. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8125. return;
  8126. }
  8127. // scalar to add
  8128. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8129. const int ith = params->ith;
  8130. const int nth = params->nth;
  8131. const int nr = ggml_nrows(src0);
  8132. GGML_TENSOR_UNARY_OP_LOCALS
  8133. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8134. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8135. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8136. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8137. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8138. // rows per thread
  8139. const int dr = (nr + nth - 1)/nth;
  8140. // row range for this thread
  8141. const int ir0 = dr*ith;
  8142. const int ir1 = MIN(ir0 + dr, nr);
  8143. for (int ir = ir0; ir < ir1; ++ir) {
  8144. // src0 and dst are same shape => same indices
  8145. const int i3 = ir/(ne2*ne1);
  8146. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8147. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8148. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8149. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8150. for (int i = 0; i < ne0; i++) {
  8151. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8152. }
  8153. }
  8154. }
  8155. static void ggml_compute_forward_add1(
  8156. const struct ggml_compute_params * params,
  8157. struct ggml_tensor * dst) {
  8158. const struct ggml_tensor * src0 = dst->src[0];
  8159. const struct ggml_tensor * src1 = dst->src[1];
  8160. switch (src0->type) {
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_add1_f32(params, dst);
  8164. } break;
  8165. case GGML_TYPE_F16:
  8166. {
  8167. if (src1->type == GGML_TYPE_F16) {
  8168. ggml_compute_forward_add1_f16_f16(params, dst);
  8169. }
  8170. else if (src1->type == GGML_TYPE_F32) {
  8171. ggml_compute_forward_add1_f16_f32(params, dst);
  8172. }
  8173. else {
  8174. GGML_ASSERT(false);
  8175. }
  8176. } break;
  8177. case GGML_TYPE_BF16:
  8178. {
  8179. if (src1->type == GGML_TYPE_BF16) {
  8180. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8181. }
  8182. else if (src1->type == GGML_TYPE_F32) {
  8183. ggml_compute_forward_add1_bf16_f32(params, dst);
  8184. }
  8185. else {
  8186. GGML_ASSERT(false);
  8187. }
  8188. } break;
  8189. case GGML_TYPE_Q4_0:
  8190. case GGML_TYPE_Q4_1:
  8191. case GGML_TYPE_Q5_0:
  8192. case GGML_TYPE_Q5_1:
  8193. case GGML_TYPE_Q8_0:
  8194. case GGML_TYPE_Q8_1:
  8195. case GGML_TYPE_Q2_K:
  8196. case GGML_TYPE_Q3_K:
  8197. case GGML_TYPE_Q4_K:
  8198. case GGML_TYPE_Q5_K:
  8199. case GGML_TYPE_Q6_K:
  8200. case GGML_TYPE_IQ2_XXS:
  8201. case GGML_TYPE_IQ2_XS:
  8202. case GGML_TYPE_IQ3_XXS:
  8203. case GGML_TYPE_IQ1_S:
  8204. case GGML_TYPE_IQ1_M:
  8205. case GGML_TYPE_IQ4_NL:
  8206. case GGML_TYPE_IQ4_XS:
  8207. case GGML_TYPE_IQ3_S:
  8208. case GGML_TYPE_IQ2_S:
  8209. {
  8210. ggml_compute_forward_add1_q_f32(params, dst);
  8211. } break;
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_acc
  8219. static void ggml_compute_forward_acc_f32(
  8220. const struct ggml_compute_params * params,
  8221. struct ggml_tensor * dst) {
  8222. const struct ggml_tensor * src0 = dst->src[0];
  8223. const struct ggml_tensor * src1 = dst->src[1];
  8224. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8225. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8226. // view src0 and dst with these strides and data offset inbytes during acc
  8227. // nb0 is implicitly element_size because src0 and dst are contiguous
  8228. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8229. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8230. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8231. size_t offset = ((int32_t *) dst->op_params)[3];
  8232. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8233. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8234. if (params->ith != 0) {
  8235. return;
  8236. }
  8237. // memcpy needs to be synchronized across threads to avoid race conditions.
  8238. // => do it in INIT phase
  8239. memcpy(
  8240. ((char *) dst->data),
  8241. ((char *) src0->data),
  8242. ggml_nbytes(dst));
  8243. }
  8244. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8245. return;
  8246. }
  8247. const int ith = params->ith;
  8248. const int nth = params->nth;
  8249. const int nr = ggml_nrows(src1);
  8250. const int nc = src1->ne[0];
  8251. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8252. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8253. // src0 and dst as viewed during acc
  8254. const size_t nb0 = ggml_element_size(src0);
  8255. const size_t nb00 = nb0;
  8256. const size_t nb01 = nb1;
  8257. const size_t nb02 = nb2;
  8258. const size_t nb03 = nb3;
  8259. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8260. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8261. GGML_ASSERT(nb10 == sizeof(float));
  8262. // rows per thread
  8263. const int dr = (nr + nth - 1)/nth;
  8264. // row range for this thread
  8265. const int ir0 = dr*ith;
  8266. const int ir1 = MIN(ir0 + dr, nr);
  8267. for (int ir = ir0; ir < ir1; ++ir) {
  8268. // src0 and dst are viewed with shape of src1 and offset
  8269. // => same indices
  8270. const int i3 = ir/(ne12*ne11);
  8271. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8272. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8273. #ifdef GGML_USE_ACCELERATE
  8274. vDSP_vadd(
  8275. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8276. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8277. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8278. #else
  8279. ggml_vec_add_f32(nc,
  8280. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8281. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8282. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8283. #endif
  8284. }
  8285. }
  8286. static void ggml_compute_forward_acc(
  8287. const struct ggml_compute_params * params,
  8288. struct ggml_tensor * dst) {
  8289. const struct ggml_tensor * src0 = dst->src[0];
  8290. switch (src0->type) {
  8291. case GGML_TYPE_F32:
  8292. {
  8293. ggml_compute_forward_acc_f32(params, dst);
  8294. } break;
  8295. case GGML_TYPE_F16:
  8296. case GGML_TYPE_BF16:
  8297. case GGML_TYPE_Q4_0:
  8298. case GGML_TYPE_Q4_1:
  8299. case GGML_TYPE_Q5_0:
  8300. case GGML_TYPE_Q5_1:
  8301. case GGML_TYPE_Q8_0:
  8302. case GGML_TYPE_Q8_1:
  8303. case GGML_TYPE_Q2_K:
  8304. case GGML_TYPE_Q3_K:
  8305. case GGML_TYPE_Q4_K:
  8306. case GGML_TYPE_Q5_K:
  8307. case GGML_TYPE_Q6_K:
  8308. case GGML_TYPE_IQ2_XXS:
  8309. case GGML_TYPE_IQ2_XS:
  8310. case GGML_TYPE_IQ3_XXS:
  8311. case GGML_TYPE_IQ1_S:
  8312. case GGML_TYPE_IQ1_M:
  8313. case GGML_TYPE_IQ4_NL:
  8314. case GGML_TYPE_IQ4_XS:
  8315. case GGML_TYPE_IQ3_S:
  8316. case GGML_TYPE_IQ2_S:
  8317. default:
  8318. {
  8319. GGML_ASSERT(false);
  8320. } break;
  8321. }
  8322. }
  8323. // ggml_compute_forward_sub
  8324. static void ggml_compute_forward_sub_f32(
  8325. const struct ggml_compute_params * params,
  8326. struct ggml_tensor * dst) {
  8327. const struct ggml_tensor * src0 = dst->src[0];
  8328. const struct ggml_tensor * src1 = dst->src[1];
  8329. assert(params->ith == 0);
  8330. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8331. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8332. return;
  8333. }
  8334. const int nr = ggml_nrows(src0);
  8335. GGML_TENSOR_BINARY_OP_LOCALS
  8336. GGML_ASSERT( nb0 == sizeof(float));
  8337. GGML_ASSERT(nb00 == sizeof(float));
  8338. if (nb10 == sizeof(float)) {
  8339. for (int ir = 0; ir < nr; ++ir) {
  8340. // src0, src1 and dst are same shape => same indices
  8341. const int i3 = ir/(ne2*ne1);
  8342. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8343. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8344. #ifdef GGML_USE_ACCELERATE
  8345. vDSP_vsub(
  8346. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8347. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8348. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8349. ne0);
  8350. #else
  8351. ggml_vec_sub_f32(ne0,
  8352. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8353. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8354. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8355. #endif
  8356. // }
  8357. // }
  8358. }
  8359. } else {
  8360. // src1 is not contiguous
  8361. for (int ir = 0; ir < nr; ++ir) {
  8362. // src0, src1 and dst are same shape => same indices
  8363. const int i3 = ir/(ne2*ne1);
  8364. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8365. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8366. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8367. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8368. for (int i0 = 0; i0 < ne0; i0++) {
  8369. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8370. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8371. }
  8372. }
  8373. }
  8374. }
  8375. static void ggml_compute_forward_sub(
  8376. const struct ggml_compute_params * params,
  8377. struct ggml_tensor * dst) {
  8378. const struct ggml_tensor * src0 = dst->src[0];
  8379. switch (src0->type) {
  8380. case GGML_TYPE_F32:
  8381. {
  8382. ggml_compute_forward_sub_f32(params, dst);
  8383. } break;
  8384. default:
  8385. {
  8386. GGML_ASSERT(false);
  8387. } break;
  8388. }
  8389. }
  8390. // ggml_compute_forward_mul
  8391. static void ggml_compute_forward_mul_f32(
  8392. const struct ggml_compute_params * params,
  8393. struct ggml_tensor * dst) {
  8394. const struct ggml_tensor * src0 = dst->src[0];
  8395. const struct ggml_tensor * src1 = dst->src[1];
  8396. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8398. return;
  8399. }
  8400. const int ith = params->ith;
  8401. const int nth = params->nth;
  8402. #if defined(GGML_USE_CLBLAST)
  8403. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8404. // TODO: OpenCL kernel support full broadcast
  8405. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8406. if (ith == 0) {
  8407. ggml_cl_mul(src0, src1, dst);
  8408. }
  8409. return;
  8410. }
  8411. #endif
  8412. const int64_t nr = ggml_nrows(src0);
  8413. GGML_TENSOR_BINARY_OP_LOCALS
  8414. GGML_ASSERT( nb0 == sizeof(float));
  8415. GGML_ASSERT(nb00 == sizeof(float));
  8416. if (nb10 == sizeof(float)) {
  8417. for (int64_t ir = ith; ir < nr; ir += nth) {
  8418. // src0 and dst are same shape => same indices
  8419. const int64_t i03 = ir/(ne02*ne01);
  8420. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8421. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8422. const int64_t i13 = i03 % ne13;
  8423. const int64_t i12 = i02 % ne12;
  8424. const int64_t i11 = i01 % ne11;
  8425. const int64_t nr0 = ne00 / ne10;
  8426. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8427. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8428. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8429. for (int64_t r = 0 ; r < nr0; ++r) {
  8430. #ifdef GGML_USE_ACCELERATE
  8431. UNUSED(ggml_vec_mul_f32);
  8432. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8433. #else
  8434. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8435. #endif
  8436. }
  8437. }
  8438. } else {
  8439. // src1 is not contiguous
  8440. for (int64_t ir = ith; ir < nr; ir += nth) {
  8441. // src0 and dst are same shape => same indices
  8442. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8443. const int64_t i03 = ir/(ne02*ne01);
  8444. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8445. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8446. const int64_t i13 = i03 % ne13;
  8447. const int64_t i12 = i02 % ne12;
  8448. const int64_t i11 = i01 % ne11;
  8449. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8450. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8451. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8452. const int64_t i10 = i0 % ne10;
  8453. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8454. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8455. }
  8456. }
  8457. }
  8458. }
  8459. static void ggml_compute_forward_mul(
  8460. const struct ggml_compute_params * params,
  8461. struct ggml_tensor * dst) {
  8462. const struct ggml_tensor * src0 = dst->src[0];
  8463. const struct ggml_tensor * src1 = dst->src[1];
  8464. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8465. switch (src0->type) {
  8466. case GGML_TYPE_F32:
  8467. {
  8468. ggml_compute_forward_mul_f32(params, dst);
  8469. } break;
  8470. default:
  8471. {
  8472. GGML_ASSERT(false);
  8473. } break;
  8474. }
  8475. }
  8476. // ggml_compute_forward_div
  8477. static void ggml_compute_forward_div_f32(
  8478. const struct ggml_compute_params * params,
  8479. struct ggml_tensor * dst) {
  8480. const struct ggml_tensor * src0 = dst->src[0];
  8481. const struct ggml_tensor * src1 = dst->src[1];
  8482. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8483. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8484. return;
  8485. }
  8486. const int ith = params->ith;
  8487. const int nth = params->nth;
  8488. const int64_t nr = ggml_nrows(src0);
  8489. GGML_TENSOR_BINARY_OP_LOCALS
  8490. GGML_ASSERT( nb0 == sizeof(float));
  8491. GGML_ASSERT(nb00 == sizeof(float));
  8492. if (nb10 == sizeof(float)) {
  8493. for (int64_t ir = ith; ir < nr; ir += nth) {
  8494. // src0 and dst are same shape => same indices
  8495. const int64_t i03 = ir/(ne02*ne01);
  8496. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8497. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8498. const int64_t i13 = i03 % ne13;
  8499. const int64_t i12 = i02 % ne12;
  8500. const int64_t i11 = i01 % ne11;
  8501. const int64_t nr0 = ne00 / ne10;
  8502. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8503. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8504. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8505. for (int64_t r = 0; r < nr0; ++r) {
  8506. #ifdef GGML_USE_ACCELERATE
  8507. UNUSED(ggml_vec_div_f32);
  8508. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8509. #else
  8510. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8511. #endif
  8512. }
  8513. }
  8514. } else {
  8515. // src1 is not contiguous
  8516. for (int64_t ir = ith; ir < nr; ir += nth) {
  8517. // src0 and dst are same shape => same indices
  8518. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8519. const int64_t i03 = ir/(ne02*ne01);
  8520. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8521. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8522. const int64_t i13 = i03 % ne13;
  8523. const int64_t i12 = i02 % ne12;
  8524. const int64_t i11 = i01 % ne11;
  8525. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8526. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8527. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8528. const int64_t i10 = i0 % ne10;
  8529. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8530. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8531. }
  8532. }
  8533. }
  8534. }
  8535. static void ggml_compute_forward_div(
  8536. const struct ggml_compute_params * params,
  8537. struct ggml_tensor * dst) {
  8538. const struct ggml_tensor * src0 = dst->src[0];
  8539. switch (src0->type) {
  8540. case GGML_TYPE_F32:
  8541. {
  8542. ggml_compute_forward_div_f32(params, dst);
  8543. } break;
  8544. default:
  8545. {
  8546. GGML_ASSERT(false);
  8547. } break;
  8548. }
  8549. }
  8550. // ggml_compute_forward_sqr
  8551. static void ggml_compute_forward_sqr_f32(
  8552. const struct ggml_compute_params * params,
  8553. struct ggml_tensor * dst) {
  8554. const struct ggml_tensor * src0 = dst->src[0];
  8555. assert(params->ith == 0);
  8556. assert(ggml_are_same_shape(src0, dst));
  8557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8558. return;
  8559. }
  8560. const int n = ggml_nrows(src0);
  8561. const int nc = src0->ne[0];
  8562. assert( dst->nb[0] == sizeof(float));
  8563. assert(src0->nb[0] == sizeof(float));
  8564. for (int i = 0; i < n; i++) {
  8565. ggml_vec_sqr_f32(nc,
  8566. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8567. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8568. }
  8569. }
  8570. static void ggml_compute_forward_sqr(
  8571. const struct ggml_compute_params * params,
  8572. struct ggml_tensor * dst) {
  8573. const struct ggml_tensor * src0 = dst->src[0];
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_sqr_f32(params, dst);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ASSERT(false);
  8582. } break;
  8583. }
  8584. }
  8585. // ggml_compute_forward_sqrt
  8586. static void ggml_compute_forward_sqrt_f32(
  8587. const struct ggml_compute_params * params,
  8588. struct ggml_tensor * dst) {
  8589. const struct ggml_tensor * src0 = dst->src[0];
  8590. assert(params->ith == 0);
  8591. assert(ggml_are_same_shape(src0, dst));
  8592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8593. return;
  8594. }
  8595. const int n = ggml_nrows(src0);
  8596. const int nc = src0->ne[0];
  8597. assert( dst->nb[0] == sizeof(float));
  8598. assert(src0->nb[0] == sizeof(float));
  8599. for (int i = 0; i < n; i++) {
  8600. ggml_vec_sqrt_f32(nc,
  8601. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8602. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8603. }
  8604. }
  8605. static void ggml_compute_forward_sqrt(
  8606. const struct ggml_compute_params * params,
  8607. struct ggml_tensor * dst) {
  8608. const struct ggml_tensor * src0 = dst->src[0];
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_sqrt_f32(params, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ASSERT(false);
  8617. } break;
  8618. }
  8619. }
  8620. // ggml_compute_forward_log
  8621. static void ggml_compute_forward_log_f32(
  8622. const struct ggml_compute_params * params,
  8623. struct ggml_tensor * dst) {
  8624. const struct ggml_tensor * src0 = dst->src[0];
  8625. GGML_ASSERT(params->ith == 0);
  8626. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8627. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8628. return;
  8629. }
  8630. const int n = ggml_nrows(src0);
  8631. const int nc = src0->ne[0];
  8632. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8633. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8634. for (int i = 0; i < n; i++) {
  8635. ggml_vec_log_f32(nc,
  8636. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8637. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8638. }
  8639. }
  8640. static void ggml_compute_forward_log(
  8641. const struct ggml_compute_params * params,
  8642. struct ggml_tensor * dst) {
  8643. const struct ggml_tensor * src0 = dst->src[0];
  8644. switch (src0->type) {
  8645. case GGML_TYPE_F32:
  8646. {
  8647. ggml_compute_forward_log_f32(params, dst);
  8648. } break;
  8649. default:
  8650. {
  8651. GGML_ASSERT(false);
  8652. } break;
  8653. }
  8654. }
  8655. // ggml_compute_forward_sum
  8656. static void ggml_compute_forward_sum_f32(
  8657. const struct ggml_compute_params * params,
  8658. struct ggml_tensor * dst) {
  8659. const struct ggml_tensor * src0 = dst->src[0];
  8660. assert(params->ith == 0);
  8661. assert(ggml_is_scalar(dst));
  8662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8663. return;
  8664. }
  8665. assert(ggml_is_scalar(dst));
  8666. assert(src0->nb[0] == sizeof(float));
  8667. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8668. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8669. ggml_float sum = 0;
  8670. ggml_float row_sum = 0;
  8671. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8672. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8673. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8674. ggml_vec_sum_f32_ggf(ne00,
  8675. &row_sum,
  8676. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8677. sum += row_sum;
  8678. }
  8679. }
  8680. }
  8681. ((float *) dst->data)[0] = sum;
  8682. }
  8683. static void ggml_compute_forward_sum_f16(
  8684. const struct ggml_compute_params * params,
  8685. struct ggml_tensor * dst) {
  8686. const struct ggml_tensor * src0 = dst->src[0];
  8687. assert(params->ith == 0);
  8688. assert(ggml_is_scalar(dst));
  8689. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8690. return;
  8691. }
  8692. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8693. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8694. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8695. float sum = 0;
  8696. float row_sum = 0;
  8697. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8698. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8699. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8700. ggml_vec_sum_f16_ggf(ne00,
  8701. &row_sum,
  8702. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8703. sum += row_sum;
  8704. }
  8705. }
  8706. }
  8707. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8708. }
  8709. static void ggml_compute_forward_sum_bf16(
  8710. const struct ggml_compute_params * params,
  8711. struct ggml_tensor * dst) {
  8712. const struct ggml_tensor * src0 = dst->src[0];
  8713. assert(params->ith == 0);
  8714. assert(ggml_is_scalar(dst));
  8715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8716. return;
  8717. }
  8718. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8719. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8720. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8721. float sum = 0;
  8722. float row_sum = 0;
  8723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8725. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8726. ggml_vec_sum_bf16_ggf(ne00,
  8727. &row_sum,
  8728. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8729. sum += row_sum;
  8730. }
  8731. }
  8732. }
  8733. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8734. }
  8735. static void ggml_compute_forward_sum(
  8736. const struct ggml_compute_params * params,
  8737. struct ggml_tensor * dst) {
  8738. const struct ggml_tensor * src0 = dst->src[0];
  8739. switch (src0->type) {
  8740. case GGML_TYPE_F32:
  8741. {
  8742. ggml_compute_forward_sum_f32(params, dst);
  8743. } break;
  8744. case GGML_TYPE_F16:
  8745. {
  8746. ggml_compute_forward_sum_f16(params, dst);
  8747. } break;
  8748. case GGML_TYPE_BF16:
  8749. {
  8750. ggml_compute_forward_sum_bf16(params, dst);
  8751. } break;
  8752. default:
  8753. {
  8754. GGML_ASSERT(false);
  8755. } break;
  8756. }
  8757. }
  8758. // ggml_compute_forward_sum_rows
  8759. static void ggml_compute_forward_sum_rows_f32(
  8760. const struct ggml_compute_params * params,
  8761. struct ggml_tensor * dst) {
  8762. const struct ggml_tensor * src0 = dst->src[0];
  8763. GGML_ASSERT(params->ith == 0);
  8764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8765. return;
  8766. }
  8767. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8768. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8769. GGML_TENSOR_UNARY_OP_LOCALS
  8770. GGML_ASSERT(ne0 == 1);
  8771. GGML_ASSERT(ne1 == ne01);
  8772. GGML_ASSERT(ne2 == ne02);
  8773. GGML_ASSERT(ne3 == ne03);
  8774. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8775. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8776. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8777. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8778. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8779. float row_sum = 0;
  8780. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8781. dst_row[0] = row_sum;
  8782. }
  8783. }
  8784. }
  8785. }
  8786. static void ggml_compute_forward_sum_rows(
  8787. const struct ggml_compute_params * params,
  8788. struct ggml_tensor * dst) {
  8789. const struct ggml_tensor * src0 = dst->src[0];
  8790. switch (src0->type) {
  8791. case GGML_TYPE_F32:
  8792. {
  8793. ggml_compute_forward_sum_rows_f32(params, dst);
  8794. } break;
  8795. default:
  8796. {
  8797. GGML_ASSERT(false);
  8798. } break;
  8799. }
  8800. }
  8801. // ggml_compute_forward_mean
  8802. static void ggml_compute_forward_mean_f32(
  8803. const struct ggml_compute_params * params,
  8804. struct ggml_tensor * dst) {
  8805. const struct ggml_tensor * src0 = dst->src[0];
  8806. assert(params->ith == 0);
  8807. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8808. return;
  8809. }
  8810. assert(src0->nb[0] == sizeof(float));
  8811. GGML_TENSOR_UNARY_OP_LOCALS
  8812. assert(ne0 == 1);
  8813. assert(ne1 == ne01);
  8814. assert(ne2 == ne02);
  8815. assert(ne3 == ne03);
  8816. UNUSED(ne0);
  8817. UNUSED(ne1);
  8818. UNUSED(ne2);
  8819. UNUSED(ne3);
  8820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8821. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8822. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8823. ggml_vec_sum_f32(ne00,
  8824. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8825. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8826. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8827. }
  8828. }
  8829. }
  8830. }
  8831. static void ggml_compute_forward_mean(
  8832. const struct ggml_compute_params * params,
  8833. struct ggml_tensor * dst) {
  8834. const struct ggml_tensor * src0 = dst->src[0];
  8835. switch (src0->type) {
  8836. case GGML_TYPE_F32:
  8837. {
  8838. ggml_compute_forward_mean_f32(params, dst);
  8839. } break;
  8840. default:
  8841. {
  8842. GGML_ASSERT(false);
  8843. } break;
  8844. }
  8845. }
  8846. // ggml_compute_forward_argmax
  8847. static void ggml_compute_forward_argmax_f32(
  8848. const struct ggml_compute_params * params,
  8849. struct ggml_tensor * dst) {
  8850. const struct ggml_tensor * src0 = dst->src[0];
  8851. assert(params->ith == 0);
  8852. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8853. return;
  8854. }
  8855. assert(src0->nb[0] == sizeof(float));
  8856. assert(dst->nb[0] == sizeof(float));
  8857. const int64_t ne00 = src0->ne[0];
  8858. const int64_t ne01 = src0->ne[1];
  8859. const size_t nb01 = src0->nb[1];
  8860. const size_t nb0 = dst->nb[0];
  8861. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8862. float * src = (float *) ((char *) src0->data + i1*nb01);
  8863. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8864. int v = 0;
  8865. ggml_vec_argmax_f32(ne00, &v, src);
  8866. dst_[0] = v;
  8867. }
  8868. }
  8869. static void ggml_compute_forward_argmax(
  8870. const struct ggml_compute_params * params,
  8871. struct ggml_tensor * dst) {
  8872. const struct ggml_tensor * src0 = dst->src[0];
  8873. switch (src0->type) {
  8874. case GGML_TYPE_F32:
  8875. {
  8876. ggml_compute_forward_argmax_f32(params, dst);
  8877. } break;
  8878. default:
  8879. {
  8880. GGML_ASSERT(false);
  8881. } break;
  8882. }
  8883. }
  8884. // ggml_compute_forward_repeat
  8885. static void ggml_compute_forward_repeat_f32(
  8886. const struct ggml_compute_params * params,
  8887. struct ggml_tensor * dst) {
  8888. const struct ggml_tensor * src0 = dst->src[0];
  8889. GGML_ASSERT(params->ith == 0);
  8890. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8892. return;
  8893. }
  8894. GGML_TENSOR_UNARY_OP_LOCALS
  8895. // guaranteed to be an integer due to the check in ggml_can_repeat
  8896. const int nr0 = (int)(ne0/ne00);
  8897. const int nr1 = (int)(ne1/ne01);
  8898. const int nr2 = (int)(ne2/ne02);
  8899. const int nr3 = (int)(ne3/ne03);
  8900. // TODO: support for transposed / permuted tensors
  8901. GGML_ASSERT(nb0 == sizeof(float));
  8902. GGML_ASSERT(nb00 == sizeof(float));
  8903. // TODO: maybe this is not optimal?
  8904. for (int i3 = 0; i3 < nr3; i3++) {
  8905. for (int k3 = 0; k3 < ne03; k3++) {
  8906. for (int i2 = 0; i2 < nr2; i2++) {
  8907. for (int k2 = 0; k2 < ne02; k2++) {
  8908. for (int i1 = 0; i1 < nr1; i1++) {
  8909. for (int k1 = 0; k1 < ne01; k1++) {
  8910. for (int i0 = 0; i0 < nr0; i0++) {
  8911. ggml_vec_cpy_f32(ne00,
  8912. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8913. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8914. }
  8915. }
  8916. }
  8917. }
  8918. }
  8919. }
  8920. }
  8921. }
  8922. static void ggml_compute_forward_repeat_f16(
  8923. const struct ggml_compute_params * params,
  8924. struct ggml_tensor * dst) {
  8925. const struct ggml_tensor * src0 = dst->src[0];
  8926. GGML_ASSERT(params->ith == 0);
  8927. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8928. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8929. return;
  8930. }
  8931. GGML_TENSOR_UNARY_OP_LOCALS
  8932. // guaranteed to be an integer due to the check in ggml_can_repeat
  8933. const int nr0 = (int)(ne0/ne00);
  8934. const int nr1 = (int)(ne1/ne01);
  8935. const int nr2 = (int)(ne2/ne02);
  8936. const int nr3 = (int)(ne3/ne03);
  8937. // TODO: support for transposed / permuted tensors
  8938. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8939. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8940. // TODO: maybe this is not optimal?
  8941. for (int i3 = 0; i3 < nr3; i3++) {
  8942. for (int k3 = 0; k3 < ne03; k3++) {
  8943. for (int i2 = 0; i2 < nr2; i2++) {
  8944. for (int k2 = 0; k2 < ne02; k2++) {
  8945. for (int i1 = 0; i1 < nr1; i1++) {
  8946. for (int k1 = 0; k1 < ne01; k1++) {
  8947. for (int i0 = 0; i0 < nr0; i0++) {
  8948. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8949. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8950. // ggml_vec_cpy_f16(ne00, y, x)
  8951. for (int i = 0; i < ne00; ++i) {
  8952. y[i] = x[i];
  8953. }
  8954. }
  8955. }
  8956. }
  8957. }
  8958. }
  8959. }
  8960. }
  8961. }
  8962. static void ggml_compute_forward_repeat(
  8963. const struct ggml_compute_params * params,
  8964. struct ggml_tensor * dst) {
  8965. const struct ggml_tensor * src0 = dst->src[0];
  8966. switch (src0->type) {
  8967. case GGML_TYPE_F16:
  8968. case GGML_TYPE_BF16:
  8969. case GGML_TYPE_I16:
  8970. {
  8971. ggml_compute_forward_repeat_f16(params, dst);
  8972. } break;
  8973. case GGML_TYPE_F32:
  8974. case GGML_TYPE_I32:
  8975. {
  8976. ggml_compute_forward_repeat_f32(params, dst);
  8977. } break;
  8978. default:
  8979. {
  8980. GGML_ASSERT(false);
  8981. } break;
  8982. }
  8983. }
  8984. // ggml_compute_forward_repeat_back
  8985. static void ggml_compute_forward_repeat_back_f32(
  8986. const struct ggml_compute_params * params,
  8987. struct ggml_tensor * dst) {
  8988. const struct ggml_tensor * src0 = dst->src[0];
  8989. GGML_ASSERT(params->ith == 0);
  8990. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8991. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8992. return;
  8993. }
  8994. GGML_TENSOR_UNARY_OP_LOCALS
  8995. // guaranteed to be an integer due to the check in ggml_can_repeat
  8996. const int nr0 = (int)(ne00/ne0);
  8997. const int nr1 = (int)(ne01/ne1);
  8998. const int nr2 = (int)(ne02/ne2);
  8999. const int nr3 = (int)(ne03/ne3);
  9000. // TODO: support for transposed / permuted tensors
  9001. GGML_ASSERT(nb0 == sizeof(float));
  9002. GGML_ASSERT(nb00 == sizeof(float));
  9003. if (ggml_is_contiguous(dst)) {
  9004. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9005. } else {
  9006. for (int k3 = 0; k3 < ne3; k3++) {
  9007. for (int k2 = 0; k2 < ne2; k2++) {
  9008. for (int k1 = 0; k1 < ne1; k1++) {
  9009. ggml_vec_set_f32(ne0,
  9010. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9011. 0);
  9012. }
  9013. }
  9014. }
  9015. }
  9016. // TODO: maybe this is not optimal?
  9017. for (int i3 = 0; i3 < nr3; i3++) {
  9018. for (int k3 = 0; k3 < ne3; k3++) {
  9019. for (int i2 = 0; i2 < nr2; i2++) {
  9020. for (int k2 = 0; k2 < ne2; k2++) {
  9021. for (int i1 = 0; i1 < nr1; i1++) {
  9022. for (int k1 = 0; k1 < ne1; k1++) {
  9023. for (int i0 = 0; i0 < nr0; i0++) {
  9024. ggml_vec_acc_f32(ne0,
  9025. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9026. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9027. }
  9028. }
  9029. }
  9030. }
  9031. }
  9032. }
  9033. }
  9034. }
  9035. static void ggml_compute_forward_repeat_back(
  9036. const struct ggml_compute_params * params,
  9037. struct ggml_tensor * dst) {
  9038. const struct ggml_tensor * src0 = dst->src[0];
  9039. switch (src0->type) {
  9040. case GGML_TYPE_F32:
  9041. {
  9042. ggml_compute_forward_repeat_back_f32(params, dst);
  9043. } break;
  9044. default:
  9045. {
  9046. GGML_ASSERT(false);
  9047. } break;
  9048. }
  9049. }
  9050. // ggml_compute_forward_concat
  9051. static void ggml_compute_forward_concat_f32(
  9052. const struct ggml_compute_params * params,
  9053. struct ggml_tensor * dst) {
  9054. const struct ggml_tensor * src0 = dst->src[0];
  9055. const struct ggml_tensor * src1 = dst->src[1];
  9056. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9057. return;
  9058. }
  9059. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9060. const int ith = params->ith;
  9061. const int nth = params->nth;
  9062. GGML_TENSOR_BINARY_OP_LOCALS
  9063. // TODO: support for transposed / permuted tensors
  9064. GGML_ASSERT(nb0 == sizeof(float));
  9065. GGML_ASSERT(nb00 == sizeof(float));
  9066. GGML_ASSERT(nb10 == sizeof(float));
  9067. for (int i3 = 0; i3 < ne3; i3++) {
  9068. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9069. if (i2 < ne02) { // src0
  9070. for (int i1 = 0; i1 < ne1; i1++) {
  9071. for (int i0 = 0; i0 < ne0; i0++) {
  9072. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  9073. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  9074. *y = *x;
  9075. }
  9076. }
  9077. } // src1
  9078. else {
  9079. for (int i1 = 0; i1 < ne1; i1++) {
  9080. for (int i0 = 0; i0 < ne0; i0++) {
  9081. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  9082. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  9083. *y = *x;
  9084. }
  9085. }
  9086. }
  9087. }
  9088. }
  9089. }
  9090. static void ggml_compute_forward_concat(
  9091. const struct ggml_compute_params* params,
  9092. struct ggml_tensor* dst) {
  9093. const struct ggml_tensor * src0 = dst->src[0];
  9094. switch (src0->type) {
  9095. case GGML_TYPE_F32:
  9096. case GGML_TYPE_I32:
  9097. {
  9098. ggml_compute_forward_concat_f32(params, dst);
  9099. } break;
  9100. default:
  9101. {
  9102. GGML_ASSERT(false);
  9103. } break;
  9104. }
  9105. }
  9106. // ggml_compute_forward_abs
  9107. static void ggml_compute_forward_abs_f32(
  9108. const struct ggml_compute_params * params,
  9109. struct ggml_tensor * dst) {
  9110. const struct ggml_tensor * src0 = dst->src[0];
  9111. assert(params->ith == 0);
  9112. assert(ggml_are_same_shape(src0, dst));
  9113. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9114. return;
  9115. }
  9116. const int n = ggml_nrows(src0);
  9117. const int nc = src0->ne[0];
  9118. assert(dst->nb[0] == sizeof(float));
  9119. assert(src0->nb[0] == sizeof(float));
  9120. for (int i = 0; i < n; i++) {
  9121. ggml_vec_abs_f32(nc,
  9122. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9123. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9124. }
  9125. }
  9126. static void ggml_compute_forward_abs(
  9127. const struct ggml_compute_params * params,
  9128. struct ggml_tensor * dst) {
  9129. const struct ggml_tensor * src0 = dst->src[0];
  9130. switch (src0->type) {
  9131. case GGML_TYPE_F32:
  9132. {
  9133. ggml_compute_forward_abs_f32(params, dst);
  9134. } break;
  9135. default:
  9136. {
  9137. GGML_ASSERT(false);
  9138. } break;
  9139. }
  9140. }
  9141. // ggml_compute_forward_sgn
  9142. static void ggml_compute_forward_sgn_f32(
  9143. const struct ggml_compute_params * params,
  9144. struct ggml_tensor * dst) {
  9145. const struct ggml_tensor * src0 = dst->src[0];
  9146. assert(params->ith == 0);
  9147. assert(ggml_are_same_shape(src0, dst));
  9148. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9149. return;
  9150. }
  9151. const int n = ggml_nrows(src0);
  9152. const int nc = src0->ne[0];
  9153. assert(dst->nb[0] == sizeof(float));
  9154. assert(src0->nb[0] == sizeof(float));
  9155. for (int i = 0; i < n; i++) {
  9156. ggml_vec_sgn_f32(nc,
  9157. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9158. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9159. }
  9160. }
  9161. static void ggml_compute_forward_sgn(
  9162. const struct ggml_compute_params * params,
  9163. struct ggml_tensor * dst) {
  9164. const struct ggml_tensor * src0 = dst->src[0];
  9165. switch (src0->type) {
  9166. case GGML_TYPE_F32:
  9167. {
  9168. ggml_compute_forward_sgn_f32(params, dst);
  9169. } break;
  9170. default:
  9171. {
  9172. GGML_ASSERT(false);
  9173. } break;
  9174. }
  9175. }
  9176. // ggml_compute_forward_neg
  9177. static void ggml_compute_forward_neg_f32(
  9178. const struct ggml_compute_params * params,
  9179. struct ggml_tensor * dst) {
  9180. const struct ggml_tensor * src0 = dst->src[0];
  9181. assert(params->ith == 0);
  9182. assert(ggml_are_same_shape(src0, dst));
  9183. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9184. return;
  9185. }
  9186. const int n = ggml_nrows(src0);
  9187. const int nc = src0->ne[0];
  9188. assert(dst->nb[0] == sizeof(float));
  9189. assert(src0->nb[0] == sizeof(float));
  9190. for (int i = 0; i < n; i++) {
  9191. ggml_vec_neg_f32(nc,
  9192. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9193. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9194. }
  9195. }
  9196. static void ggml_compute_forward_neg(
  9197. const struct ggml_compute_params * params,
  9198. struct ggml_tensor * dst) {
  9199. const struct ggml_tensor * src0 = dst->src[0];
  9200. switch (src0->type) {
  9201. case GGML_TYPE_F32:
  9202. {
  9203. ggml_compute_forward_neg_f32(params, dst);
  9204. } break;
  9205. default:
  9206. {
  9207. GGML_ASSERT(false);
  9208. } break;
  9209. }
  9210. }
  9211. // ggml_compute_forward_step
  9212. static void ggml_compute_forward_step_f32(
  9213. const struct ggml_compute_params * params,
  9214. struct ggml_tensor * dst) {
  9215. const struct ggml_tensor * src0 = dst->src[0];
  9216. assert(params->ith == 0);
  9217. assert(ggml_are_same_shape(src0, dst));
  9218. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9219. return;
  9220. }
  9221. const int n = ggml_nrows(src0);
  9222. const int nc = src0->ne[0];
  9223. assert(dst->nb[0] == sizeof(float));
  9224. assert(src0->nb[0] == sizeof(float));
  9225. for (int i = 0; i < n; i++) {
  9226. ggml_vec_step_f32(nc,
  9227. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9228. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9229. }
  9230. }
  9231. static void ggml_compute_forward_step(
  9232. const struct ggml_compute_params * params,
  9233. struct ggml_tensor * dst) {
  9234. const struct ggml_tensor * src0 = dst->src[0];
  9235. switch (src0->type) {
  9236. case GGML_TYPE_F32:
  9237. {
  9238. ggml_compute_forward_step_f32(params, dst);
  9239. } break;
  9240. default:
  9241. {
  9242. GGML_ASSERT(false);
  9243. } break;
  9244. }
  9245. }
  9246. // ggml_compute_forward_tanh
  9247. static void ggml_compute_forward_tanh_f32(
  9248. const struct ggml_compute_params * params,
  9249. struct ggml_tensor * dst) {
  9250. const struct ggml_tensor * src0 = dst->src[0];
  9251. assert(params->ith == 0);
  9252. assert(ggml_are_same_shape(src0, dst));
  9253. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9254. return;
  9255. }
  9256. const int n = ggml_nrows(src0);
  9257. const int nc = src0->ne[0];
  9258. assert(dst->nb[0] == sizeof(float));
  9259. assert(src0->nb[0] == sizeof(float));
  9260. for (int i = 0; i < n; i++) {
  9261. ggml_vec_tanh_f32(nc,
  9262. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9263. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9264. }
  9265. }
  9266. static void ggml_compute_forward_tanh(
  9267. const struct ggml_compute_params * params,
  9268. struct ggml_tensor * dst) {
  9269. const struct ggml_tensor * src0 = dst->src[0];
  9270. switch (src0->type) {
  9271. case GGML_TYPE_F32:
  9272. {
  9273. ggml_compute_forward_tanh_f32(params, dst);
  9274. } break;
  9275. default:
  9276. {
  9277. GGML_ASSERT(false);
  9278. } break;
  9279. }
  9280. }
  9281. // ggml_compute_forward_elu
  9282. static void ggml_compute_forward_elu_f32(
  9283. const struct ggml_compute_params * params,
  9284. struct ggml_tensor * dst) {
  9285. const struct ggml_tensor * src0 = dst->src[0];
  9286. assert(params->ith == 0);
  9287. assert(ggml_are_same_shape(src0, dst));
  9288. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9289. return;
  9290. }
  9291. const int n = ggml_nrows(src0);
  9292. const int nc = src0->ne[0];
  9293. assert(dst->nb[0] == sizeof(float));
  9294. assert(src0->nb[0] == sizeof(float));
  9295. for (int i = 0; i < n; i++) {
  9296. ggml_vec_elu_f32(nc,
  9297. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9298. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9299. }
  9300. }
  9301. static void ggml_compute_forward_elu(
  9302. const struct ggml_compute_params * params,
  9303. struct ggml_tensor * dst) {
  9304. const struct ggml_tensor * src0 = dst->src[0];
  9305. switch (src0->type) {
  9306. case GGML_TYPE_F32:
  9307. {
  9308. ggml_compute_forward_elu_f32(params, dst);
  9309. } break;
  9310. default:
  9311. {
  9312. GGML_ASSERT(false);
  9313. } break;
  9314. }
  9315. }
  9316. // ggml_compute_forward_relu
  9317. static void ggml_compute_forward_relu_f32(
  9318. const struct ggml_compute_params * params,
  9319. struct ggml_tensor * dst) {
  9320. const struct ggml_tensor * src0 = dst->src[0];
  9321. assert(params->ith == 0);
  9322. assert(ggml_are_same_shape(src0, dst));
  9323. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9324. return;
  9325. }
  9326. const int n = ggml_nrows(src0);
  9327. const int nc = src0->ne[0];
  9328. assert(dst->nb[0] == sizeof(float));
  9329. assert(src0->nb[0] == sizeof(float));
  9330. for (int i = 0; i < n; i++) {
  9331. ggml_vec_relu_f32(nc,
  9332. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9333. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9334. }
  9335. }
  9336. static void ggml_compute_forward_relu(
  9337. const struct ggml_compute_params * params,
  9338. struct ggml_tensor * dst) {
  9339. const struct ggml_tensor * src0 = dst->src[0];
  9340. switch (src0->type) {
  9341. case GGML_TYPE_F32:
  9342. {
  9343. ggml_compute_forward_relu_f32(params, dst);
  9344. } break;
  9345. default:
  9346. {
  9347. GGML_ASSERT(false);
  9348. } break;
  9349. }
  9350. }
  9351. // ggml_compute_forward_sigmoid
  9352. static void ggml_compute_forward_sigmoid_f32(
  9353. const struct ggml_compute_params * params,
  9354. struct ggml_tensor * dst) {
  9355. const struct ggml_tensor * src0 = dst->src[0];
  9356. assert(params->ith == 0);
  9357. assert(ggml_are_same_shape(src0, dst));
  9358. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9359. return;
  9360. }
  9361. const int n = ggml_nrows(src0);
  9362. const int nc = src0->ne[0];
  9363. assert(dst->nb[0] == sizeof(float));
  9364. assert(src0->nb[0] == sizeof(float));
  9365. for (int i = 0; i < n; i++) {
  9366. ggml_vec_sigmoid_f32(nc,
  9367. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9368. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9369. }
  9370. }
  9371. static void ggml_compute_forward_sigmoid(
  9372. const struct ggml_compute_params * params,
  9373. struct ggml_tensor * dst) {
  9374. const struct ggml_tensor * src0 = dst->src[0];
  9375. switch (src0->type) {
  9376. case GGML_TYPE_F32:
  9377. {
  9378. ggml_compute_forward_sigmoid_f32(params, dst);
  9379. } break;
  9380. default:
  9381. {
  9382. GGML_ASSERT(false);
  9383. } break;
  9384. }
  9385. }
  9386. // ggml_compute_forward_gelu
  9387. static void ggml_compute_forward_gelu_f32(
  9388. const struct ggml_compute_params * params,
  9389. struct ggml_tensor * dst) {
  9390. const struct ggml_tensor * src0 = dst->src[0];
  9391. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9392. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9393. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9394. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9395. return;
  9396. }
  9397. const int ith = params->ith;
  9398. const int nth = params->nth;
  9399. const int nc = src0->ne[0];
  9400. const int nr = ggml_nrows(src0);
  9401. // rows per thread
  9402. const int dr = (nr + nth - 1)/nth;
  9403. // row range for this thread
  9404. const int ir0 = dr*ith;
  9405. const int ir1 = MIN(ir0 + dr, nr);
  9406. for (int i1 = ir0; i1 < ir1; i1++) {
  9407. ggml_vec_gelu_f32(nc,
  9408. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9409. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9410. #ifndef NDEBUG
  9411. for (int k = 0; k < nc; k++) {
  9412. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9413. UNUSED(x);
  9414. assert(!isnan(x));
  9415. assert(!isinf(x));
  9416. }
  9417. #endif
  9418. }
  9419. }
  9420. static void ggml_compute_forward_gelu(
  9421. const struct ggml_compute_params * params,
  9422. struct ggml_tensor * dst) {
  9423. const struct ggml_tensor * src0 = dst->src[0];
  9424. switch (src0->type) {
  9425. case GGML_TYPE_F32:
  9426. {
  9427. ggml_compute_forward_gelu_f32(params, dst);
  9428. } break;
  9429. default:
  9430. {
  9431. GGML_ASSERT(false);
  9432. } break;
  9433. }
  9434. }
  9435. // ggml_compute_forward_gelu_quick
  9436. static void ggml_compute_forward_gelu_quick_f32(
  9437. const struct ggml_compute_params * params,
  9438. struct ggml_tensor * dst) {
  9439. const struct ggml_tensor * src0 = dst->src[0];
  9440. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9441. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9442. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9443. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9444. return;
  9445. }
  9446. const int ith = params->ith;
  9447. const int nth = params->nth;
  9448. const int nc = src0->ne[0];
  9449. const int nr = ggml_nrows(src0);
  9450. // rows per thread
  9451. const int dr = (nr + nth - 1)/nth;
  9452. // row range for this thread
  9453. const int ir0 = dr*ith;
  9454. const int ir1 = MIN(ir0 + dr, nr);
  9455. for (int i1 = ir0; i1 < ir1; i1++) {
  9456. ggml_vec_gelu_quick_f32(nc,
  9457. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9458. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9459. #ifndef NDEBUG
  9460. for (int k = 0; k < nc; k++) {
  9461. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9462. UNUSED(x);
  9463. assert(!isnan(x));
  9464. assert(!isinf(x));
  9465. }
  9466. #endif
  9467. }
  9468. }
  9469. static void ggml_compute_forward_gelu_quick(
  9470. const struct ggml_compute_params * params,
  9471. struct ggml_tensor * dst) {
  9472. const struct ggml_tensor * src0 = dst->src[0];
  9473. switch (src0->type) {
  9474. case GGML_TYPE_F32:
  9475. {
  9476. ggml_compute_forward_gelu_quick_f32(params, dst);
  9477. } break;
  9478. default:
  9479. {
  9480. GGML_ASSERT(false);
  9481. } break;
  9482. }
  9483. }
  9484. // ggml_compute_forward_silu
  9485. static void ggml_compute_forward_silu_f32(
  9486. const struct ggml_compute_params * params,
  9487. struct ggml_tensor * dst) {
  9488. const struct ggml_tensor * src0 = dst->src[0];
  9489. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9490. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9491. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9493. return;
  9494. }
  9495. const int ith = params->ith;
  9496. const int nth = params->nth;
  9497. const int nc = src0->ne[0];
  9498. const int nr = ggml_nrows(src0);
  9499. // rows per thread
  9500. const int dr = (nr + nth - 1)/nth;
  9501. // row range for this thread
  9502. const int ir0 = dr*ith;
  9503. const int ir1 = MIN(ir0 + dr, nr);
  9504. for (int i1 = ir0; i1 < ir1; i1++) {
  9505. ggml_vec_silu_f32(nc,
  9506. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9507. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9508. #ifndef NDEBUG
  9509. for (int k = 0; k < nc; k++) {
  9510. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9511. UNUSED(x);
  9512. assert(!isnan(x));
  9513. assert(!isinf(x));
  9514. }
  9515. #endif
  9516. }
  9517. }
  9518. static void ggml_compute_forward_silu(
  9519. const struct ggml_compute_params * params,
  9520. struct ggml_tensor * dst) {
  9521. const struct ggml_tensor * src0 = dst->src[0];
  9522. switch (src0->type) {
  9523. case GGML_TYPE_F32:
  9524. {
  9525. ggml_compute_forward_silu_f32(params, dst);
  9526. } break;
  9527. default:
  9528. {
  9529. GGML_ASSERT(false);
  9530. } break;
  9531. }
  9532. }
  9533. // ggml_compute_forward_leaky_relu
  9534. static void ggml_compute_forward_leaky_relu_f32(
  9535. const struct ggml_compute_params * params,
  9536. struct ggml_tensor * dst) {
  9537. const struct ggml_tensor * src0 = dst->src[0];
  9538. assert(params->ith == 0);
  9539. assert(ggml_are_same_shape(src0, dst));
  9540. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9541. return;
  9542. }
  9543. const int n = ggml_nrows(src0);
  9544. const int nc = src0->ne[0];
  9545. float negative_slope;
  9546. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9547. assert(dst->nb[0] == sizeof(float));
  9548. assert(src0->nb[0] == sizeof(float));
  9549. for (int i = 0; i < n; i++) {
  9550. ggml_vec_leaky_relu_f32(nc,
  9551. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9552. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9553. }
  9554. }
  9555. static void ggml_compute_forward_leaky_relu(
  9556. const struct ggml_compute_params * params,
  9557. struct ggml_tensor * dst) {
  9558. const struct ggml_tensor * src0 = dst->src[0];
  9559. switch (src0->type) {
  9560. case GGML_TYPE_F32:
  9561. {
  9562. ggml_compute_forward_leaky_relu_f32(params, dst);
  9563. } break;
  9564. default:
  9565. {
  9566. GGML_ASSERT(false);
  9567. } break;
  9568. }
  9569. }
  9570. // ggml_compute_forward_silu_back
  9571. static void ggml_compute_forward_silu_back_f32(
  9572. const struct ggml_compute_params * params,
  9573. struct ggml_tensor * dst) {
  9574. const struct ggml_tensor * src0 = dst->src[0];
  9575. const struct ggml_tensor * grad = dst->src[1];
  9576. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9577. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9578. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9579. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9580. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9582. return;
  9583. }
  9584. const int ith = params->ith;
  9585. const int nth = params->nth;
  9586. const int nc = src0->ne[0];
  9587. const int nr = ggml_nrows(src0);
  9588. // rows per thread
  9589. const int dr = (nr + nth - 1)/nth;
  9590. // row range for this thread
  9591. const int ir0 = dr*ith;
  9592. const int ir1 = MIN(ir0 + dr, nr);
  9593. for (int i1 = ir0; i1 < ir1; i1++) {
  9594. ggml_vec_silu_backward_f32(nc,
  9595. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9596. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9597. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9598. #ifndef NDEBUG
  9599. for (int k = 0; k < nc; k++) {
  9600. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9601. UNUSED(x);
  9602. assert(!isnan(x));
  9603. assert(!isinf(x));
  9604. }
  9605. #endif
  9606. }
  9607. }
  9608. static void ggml_compute_forward_silu_back(
  9609. const struct ggml_compute_params * params,
  9610. struct ggml_tensor * dst) {
  9611. const struct ggml_tensor * src0 = dst->src[0];
  9612. switch (src0->type) {
  9613. case GGML_TYPE_F32:
  9614. {
  9615. ggml_compute_forward_silu_back_f32(params, dst);
  9616. } break;
  9617. default:
  9618. {
  9619. GGML_ASSERT(false);
  9620. } break;
  9621. }
  9622. }
  9623. static void ggml_compute_forward_hardswish_f32(
  9624. const struct ggml_compute_params * params,
  9625. struct ggml_tensor * dst) {
  9626. const struct ggml_tensor * src0 = dst->src[0];
  9627. assert(params->ith == 0);
  9628. assert(ggml_are_same_shape(src0, dst));
  9629. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9630. return;
  9631. }
  9632. const int n = ggml_nrows(src0);
  9633. const int nc = src0->ne[0];
  9634. assert(dst->nb[0] == sizeof(float));
  9635. assert(src0->nb[0] == sizeof(float));
  9636. for (int i = 0; i < n; i++) {
  9637. ggml_vec_hardswish_f32(nc,
  9638. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9639. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9640. }
  9641. }
  9642. static void ggml_compute_forward_hardswish(
  9643. const struct ggml_compute_params * params,
  9644. struct ggml_tensor * dst) {
  9645. const struct ggml_tensor * src0 = dst->src[0];
  9646. switch (src0->type) {
  9647. case GGML_TYPE_F32:
  9648. {
  9649. ggml_compute_forward_hardswish_f32(params, dst);
  9650. } break;
  9651. default:
  9652. {
  9653. GGML_ASSERT(false);
  9654. } break;
  9655. }
  9656. }
  9657. static void ggml_compute_forward_hardsigmoid_f32(
  9658. const struct ggml_compute_params * params,
  9659. struct ggml_tensor * dst) {
  9660. const struct ggml_tensor * src0 = dst->src[0];
  9661. assert(params->ith == 0);
  9662. assert(ggml_are_same_shape(src0, dst));
  9663. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9664. return;
  9665. }
  9666. const int n = ggml_nrows(src0);
  9667. const int nc = src0->ne[0];
  9668. assert(dst->nb[0] == sizeof(float));
  9669. assert(src0->nb[0] == sizeof(float));
  9670. for (int i = 0; i < n; i++) {
  9671. ggml_vec_hardsigmoid_f32(nc,
  9672. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9673. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9674. }
  9675. }
  9676. static void ggml_compute_forward_hardsigmoid(
  9677. const struct ggml_compute_params * params,
  9678. struct ggml_tensor * dst) {
  9679. const struct ggml_tensor * src0 = dst->src[0];
  9680. switch (src0->type) {
  9681. case GGML_TYPE_F32:
  9682. {
  9683. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9684. } break;
  9685. default:
  9686. {
  9687. GGML_ASSERT(false);
  9688. } break;
  9689. }
  9690. }
  9691. // ggml_compute_forward_norm
  9692. static void ggml_compute_forward_norm_f32(
  9693. const struct ggml_compute_params * params,
  9694. struct ggml_tensor * dst) {
  9695. const struct ggml_tensor * src0 = dst->src[0];
  9696. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9697. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9698. return;
  9699. }
  9700. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9701. const int ith = params->ith;
  9702. const int nth = params->nth;
  9703. GGML_TENSOR_UNARY_OP_LOCALS
  9704. float eps;
  9705. memcpy(&eps, dst->op_params, sizeof(float));
  9706. GGML_ASSERT(eps > 0.0f);
  9707. // TODO: optimize
  9708. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9709. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9710. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9711. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9712. ggml_float sum = 0.0;
  9713. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9714. sum += (ggml_float)x[i00];
  9715. }
  9716. float mean = sum/ne00;
  9717. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9718. ggml_float sum2 = 0.0;
  9719. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9720. float v = x[i00] - mean;
  9721. y[i00] = v;
  9722. sum2 += (ggml_float)(v*v);
  9723. }
  9724. float variance = sum2/ne00;
  9725. const float scale = 1.0f/sqrtf(variance + eps);
  9726. ggml_vec_scale_f32(ne00, y, scale);
  9727. }
  9728. }
  9729. }
  9730. }
  9731. static void ggml_compute_forward_norm(
  9732. const struct ggml_compute_params * params,
  9733. struct ggml_tensor * dst) {
  9734. const struct ggml_tensor * src0 = dst->src[0];
  9735. switch (src0->type) {
  9736. case GGML_TYPE_F32:
  9737. {
  9738. ggml_compute_forward_norm_f32(params, dst);
  9739. } break;
  9740. default:
  9741. {
  9742. GGML_ASSERT(false);
  9743. } break;
  9744. }
  9745. }
  9746. // ggml_compute_forward_group_rms_norm
  9747. static void ggml_compute_forward_rms_norm_f32(
  9748. const struct ggml_compute_params * params,
  9749. struct ggml_tensor * dst) {
  9750. const struct ggml_tensor * src0 = dst->src[0];
  9751. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9752. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9753. return;
  9754. }
  9755. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9756. const int ith = params->ith;
  9757. const int nth = params->nth;
  9758. GGML_TENSOR_UNARY_OP_LOCALS
  9759. float eps;
  9760. memcpy(&eps, dst->op_params, sizeof(float));
  9761. GGML_ASSERT(eps > 0.0f);
  9762. // TODO: optimize
  9763. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9764. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9765. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9766. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9767. ggml_float sum = 0.0;
  9768. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9769. sum += (ggml_float)(x[i00] * x[i00]);
  9770. }
  9771. const float mean = sum/ne00;
  9772. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9773. memcpy(y, x, ne00 * sizeof(float));
  9774. // for (int i00 = 0; i00 < ne00; i00++) {
  9775. // y[i00] = x[i00];
  9776. // }
  9777. const float scale = 1.0f/sqrtf(mean + eps);
  9778. ggml_vec_scale_f32(ne00, y, scale);
  9779. }
  9780. }
  9781. }
  9782. }
  9783. static void ggml_compute_forward_rms_norm(
  9784. const struct ggml_compute_params * params,
  9785. struct ggml_tensor * dst) {
  9786. const struct ggml_tensor * src0 = dst->src[0];
  9787. switch (src0->type) {
  9788. case GGML_TYPE_F32:
  9789. {
  9790. ggml_compute_forward_rms_norm_f32(params, dst);
  9791. } break;
  9792. default:
  9793. {
  9794. GGML_ASSERT(false);
  9795. } break;
  9796. }
  9797. }
  9798. static void ggml_compute_forward_rms_norm_back_f32(
  9799. const struct ggml_compute_params * params,
  9800. struct ggml_tensor * dst) {
  9801. const struct ggml_tensor * src0 = dst->src[0];
  9802. const struct ggml_tensor * src1 = dst->src[1];
  9803. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9805. return;
  9806. }
  9807. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9808. const int ith = params->ith;
  9809. const int nth = params->nth;
  9810. GGML_TENSOR_BINARY_OP_LOCALS
  9811. float eps;
  9812. memcpy(&eps, dst->op_params, sizeof(float));
  9813. // TODO: optimize
  9814. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9815. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9816. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9817. // src1 is same shape as src0 => same indices
  9818. const int64_t i11 = i01;
  9819. const int64_t i12 = i02;
  9820. const int64_t i13 = i03;
  9821. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9822. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9823. ggml_float sum_xx = 0.0;
  9824. ggml_float sum_xdz = 0.0;
  9825. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9826. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9827. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9828. }
  9829. //const float mean = (float)(sum_xx)/ne00;
  9830. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9831. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9832. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9833. // we could cache rms from forward pass to improve performance.
  9834. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9835. //const float rms = sqrtf(mean_eps);
  9836. const float rrms = 1.0f / sqrtf(mean_eps);
  9837. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9838. {
  9839. // z = rms_norm(x)
  9840. //
  9841. // rms_norm(src0) =
  9842. // scale(
  9843. // src0,
  9844. // div(
  9845. // 1,
  9846. // sqrt(
  9847. // add(
  9848. // scale(
  9849. // sum(
  9850. // sqr(
  9851. // src0)),
  9852. // (1.0/N)),
  9853. // eps))));
  9854. // postorder:
  9855. // ## op args grad
  9856. // 00 param src0 grad[#00]
  9857. // 01 const 1
  9858. // 02 sqr (#00) grad[#02]
  9859. // 03 sum (#02) grad[#03]
  9860. // 04 const 1/N
  9861. // 05 scale (#03, #04) grad[#05]
  9862. // 06 const eps
  9863. // 07 add (#05, #06) grad[#07]
  9864. // 08 sqrt (#07) grad[#08]
  9865. // 09 div (#01,#08) grad[#09]
  9866. // 10 scale (#00,#09) grad[#10]
  9867. //
  9868. // backward pass, given grad[#10]
  9869. // #10: scale
  9870. // grad[#00] += scale(grad[#10],#09)
  9871. // grad[#09] += sum(mul(grad[#10],#00))
  9872. // #09: div
  9873. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9874. // #08: sqrt
  9875. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9876. // #07: add
  9877. // grad[#05] += grad[#07]
  9878. // #05: scale
  9879. // grad[#03] += scale(grad[#05],#04)
  9880. // #03: sum
  9881. // grad[#02] += repeat(grad[#03], #02)
  9882. // #02:
  9883. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9884. //
  9885. // substitute and simplify:
  9886. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9887. // grad[#02] = repeat(grad[#03], #02)
  9888. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9889. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9890. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9891. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9892. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9893. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9894. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9895. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9896. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9897. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9898. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9899. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9900. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9901. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9902. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9903. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9904. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9905. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9906. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9907. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9908. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9909. // a = b*c + d*e
  9910. // a = b*c*f/f + d*e*f/f
  9911. // a = (b*c*f + d*e*f)*(1/f)
  9912. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9913. // a = (b + d*e/c)*c
  9914. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9915. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9916. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9917. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9918. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9919. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9920. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9921. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9922. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9923. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9924. }
  9925. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9926. // post-order:
  9927. // dx := x
  9928. // dx := scale(dx,-mean_xdz/mean_eps)
  9929. // dx := add(dx, dz)
  9930. // dx := scale(dx, rrms)
  9931. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9932. ggml_vec_cpy_f32 (ne00, dx, x);
  9933. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9934. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9935. ggml_vec_acc_f32 (ne00, dx, dz);
  9936. ggml_vec_scale_f32(ne00, dx, rrms);
  9937. }
  9938. }
  9939. }
  9940. }
  9941. static void ggml_compute_forward_rms_norm_back(
  9942. const struct ggml_compute_params * params,
  9943. struct ggml_tensor * dst) {
  9944. const struct ggml_tensor * src0 = dst->src[0];
  9945. switch (src0->type) {
  9946. case GGML_TYPE_F32:
  9947. {
  9948. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9949. } break;
  9950. default:
  9951. {
  9952. GGML_ASSERT(false);
  9953. } break;
  9954. }
  9955. }
  9956. // ggml_compute_forward_group_norm
  9957. static void ggml_compute_forward_group_norm_f32(
  9958. const struct ggml_compute_params * params,
  9959. struct ggml_tensor * dst) {
  9960. const struct ggml_tensor * src0 = dst->src[0];
  9961. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9962. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9963. return;
  9964. }
  9965. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9966. const int ith = params->ith;
  9967. const int nth = params->nth;
  9968. GGML_TENSOR_UNARY_OP_LOCALS
  9969. const float eps = 1e-6f; // TODO: make this a parameter
  9970. // TODO: optimize
  9971. int n_channels = src0->ne[2];
  9972. int n_groups = dst->op_params[0];
  9973. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9974. for (int i = ith; i < n_groups; i += nth) {
  9975. int start = i * n_channels_per_group;
  9976. int end = start + n_channels_per_group;
  9977. if (end > n_channels) {
  9978. end = n_channels;
  9979. }
  9980. int step = end - start;
  9981. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9982. ggml_float sum = 0.0;
  9983. for (int64_t i02 = start; i02 < end; i02++) {
  9984. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9985. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9986. ggml_float sumr = 0.0;
  9987. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9988. sumr += (ggml_float)x[i00];
  9989. }
  9990. sum += sumr;
  9991. }
  9992. }
  9993. const float mean = sum / (ne00 * ne01 * step);
  9994. ggml_float sum2 = 0.0;
  9995. for (int64_t i02 = start; i02 < end; i02++) {
  9996. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9997. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9998. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9999. ggml_float sumr = 0.0;
  10000. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10001. float v = x[i00] - mean;
  10002. y[i00] = v;
  10003. sumr += (ggml_float)(v * v);
  10004. }
  10005. sum2 += sumr;
  10006. }
  10007. }
  10008. const float variance = sum2 / (ne00 * ne01 * step);
  10009. const float scale = 1.0f / sqrtf(variance + eps);
  10010. for (int64_t i02 = start; i02 < end; i02++) {
  10011. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10012. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10013. ggml_vec_scale_f32(ne00, y, scale);
  10014. }
  10015. }
  10016. }
  10017. }
  10018. }
  10019. static void ggml_compute_forward_group_norm(
  10020. const struct ggml_compute_params * params,
  10021. struct ggml_tensor * dst) {
  10022. const struct ggml_tensor * src0 = dst->src[0];
  10023. switch (src0->type) {
  10024. case GGML_TYPE_F32:
  10025. {
  10026. ggml_compute_forward_group_norm_f32(params, dst);
  10027. } break;
  10028. default:
  10029. {
  10030. GGML_ASSERT(false);
  10031. } break;
  10032. }
  10033. }
  10034. // ggml_compute_forward_mul_mat
  10035. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10036. // helper function to determine if it is better to use BLAS or not
  10037. // for large matrices, BLAS is faster
  10038. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10039. const struct ggml_tensor * src0 = dst->src[0];
  10040. const struct ggml_tensor * src1 = dst->src[1];
  10041. //const int64_t ne00 = src0->ne[0];
  10042. //const int64_t ne01 = src0->ne[1];
  10043. const int64_t ne10 = src1->ne[0];
  10044. const int64_t ne0 = dst->ne[0];
  10045. const int64_t ne1 = dst->ne[1];
  10046. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10047. // all the experts for each batch element and the processing would become incredibly slow
  10048. // TODO: find the optimal values for these
  10049. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10050. ggml_is_contiguous(src0) &&
  10051. ggml_is_contiguous(src1) &&
  10052. //src0->type == GGML_TYPE_F32 &&
  10053. src1->type == GGML_TYPE_F32 &&
  10054. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10055. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10056. return true;
  10057. }
  10058. return false;
  10059. }
  10060. #endif
  10061. static void ggml_compute_forward_mul_mat_one_chunk(
  10062. const struct ggml_compute_params * params,
  10063. struct ggml_tensor * dst,
  10064. const int64_t num_rows_per_vec_dot,
  10065. const int64_t ir0_start,
  10066. const int64_t ir0_end,
  10067. const int64_t ir1_start,
  10068. const int64_t ir1_end) {
  10069. const struct ggml_tensor * src0 = dst->src[0];
  10070. const struct ggml_tensor * src1 = dst->src[1];
  10071. GGML_TENSOR_BINARY_OP_LOCALS
  10072. const enum ggml_type type = src0->type;
  10073. const bool src1_cont = ggml_is_contiguous(src1);
  10074. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10075. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10076. // broadcast factors
  10077. const int64_t r2 = ne12 / ne02;
  10078. const int64_t r3 = ne13 / ne03;
  10079. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10080. // threads with no work simply yield (not sure if it helps)
  10081. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10082. return;
  10083. }
  10084. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10085. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10086. assert(ne12 % ne02 == 0);
  10087. assert(ne13 % ne03 == 0);
  10088. // block-tiling attempt
  10089. const int64_t blck_0 = 16;
  10090. const int64_t blck_1 = 16;
  10091. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10092. // attempt to reduce false-sharing (does not seem to make a difference)
  10093. // 16 * 2, accounting for mmla kernels
  10094. float tmp[32];
  10095. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10096. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10097. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10098. const int64_t i13 = (ir1 / (ne12 * ne1));
  10099. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10100. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10101. // broadcast src0 into src1
  10102. const int64_t i03 = i13 / r3;
  10103. const int64_t i02 = i12 / r2;
  10104. const int64_t i1 = i11;
  10105. const int64_t i2 = i12;
  10106. const int64_t i3 = i13;
  10107. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10108. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10109. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10110. // the original src1 data pointer, so we should index using the indices directly
  10111. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10112. const char * src1_col = (const char*)wdata +
  10113. (src1_cont || src1->type != vec_dot_type
  10114. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10115. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10116. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10117. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10118. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10119. //}
  10120. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10121. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10122. }
  10123. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10124. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10125. }
  10126. }
  10127. }
  10128. }
  10129. }
  10130. static void ggml_compute_forward_mul_mat(
  10131. const struct ggml_compute_params * params,
  10132. struct ggml_tensor * dst,
  10133. struct ggml_compute_state * state) {
  10134. const struct ggml_tensor * src0 = dst->src[0];
  10135. const struct ggml_tensor * src1 = dst->src[1];
  10136. int64_t t0 = ggml_perf_time_us();
  10137. UNUSED(t0);
  10138. GGML_TENSOR_BINARY_OP_LOCALS
  10139. const int ith = params->ith;
  10140. const int nth = params->nth;
  10141. const enum ggml_type type = src0->type;
  10142. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10143. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10144. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10145. GGML_ASSERT(ne0 == ne01);
  10146. GGML_ASSERT(ne1 == ne11);
  10147. GGML_ASSERT(ne2 == ne12);
  10148. GGML_ASSERT(ne3 == ne13);
  10149. // we don't support permuted src0 or src1
  10150. GGML_ASSERT(nb00 == ggml_type_size(type));
  10151. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10152. // dst cannot be transposed or permuted
  10153. GGML_ASSERT(nb0 == sizeof(float));
  10154. GGML_ASSERT(nb0 <= nb1);
  10155. GGML_ASSERT(nb1 <= nb2);
  10156. GGML_ASSERT(nb2 <= nb3);
  10157. // broadcast factors
  10158. const int64_t r2 = ne12 / ne02;
  10159. const int64_t r3 = ne13 / ne03;
  10160. UNUSED(r2);
  10161. UNUSED(r3);
  10162. // nb01 >= nb00 - src0 is not transposed
  10163. // compute by src0 rows
  10164. #if defined(GGML_USE_CLBLAST)
  10165. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10166. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10167. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10168. }
  10169. return;
  10170. }
  10171. #endif
  10172. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10173. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10174. const int64_t ne_plane = ne01*ne00;
  10175. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10176. UNUSED(desired_wsize);
  10177. if (params->type == GGML_TASK_TYPE_INIT) {
  10178. if (type != GGML_TYPE_F32) {
  10179. assert(params->wsize >= desired_wsize);
  10180. // parallelize by src0 rows
  10181. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10182. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10183. // broadcast src0 into src1 across 2nd,3rd dimension
  10184. const int64_t i03 = i13/r3;
  10185. const int64_t i02 = i12/r2;
  10186. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10187. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10188. ggml_to_float_t const to_float = type_traits[type].to_float;
  10189. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10190. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10191. }
  10192. }
  10193. }
  10194. }
  10195. return;
  10196. }
  10197. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10198. return;
  10199. }
  10200. // perform sgemm, parallelization controlled by blas lib
  10201. if (ith != 0) {
  10202. return;
  10203. }
  10204. //const int64_t tgemm0 = ggml_perf_time_us();
  10205. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10206. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10207. const int64_t i03 = i13/r3;
  10208. const int64_t i02 = i12/r2;
  10209. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10210. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10211. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10212. if (type != GGML_TYPE_F32) {
  10213. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10214. }
  10215. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10216. ne1, ne01, ne10,
  10217. 1.0f, y, ne10,
  10218. x, ne00,
  10219. 0.0f, d, ne01);
  10220. }
  10221. }
  10222. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10223. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10224. return;
  10225. }
  10226. #endif
  10227. #if GGML_USE_LLAMAFILE
  10228. const bool src1_cont = ggml_is_contiguous(src1);
  10229. if (src1_cont) {
  10230. for (int64_t i13 = 0; i13 < ne13; i13++)
  10231. for (int64_t i12 = 0; i12 < ne12; i12++)
  10232. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10233. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10234. nb01/ggml_type_size(src0->type),
  10235. (const char *)src1->data + i12*nb12 + i13*nb13,
  10236. nb11/ggml_type_size(src1->type),
  10237. (char *)dst->data + i12*nb2 + i13*nb3,
  10238. nb1/ggml_type_size(dst->type),
  10239. ith, nth,
  10240. params->type,
  10241. src0->type,
  10242. src1->type,
  10243. dst->type))
  10244. goto UseGgmlGemm1;
  10245. return;
  10246. }
  10247. UseGgmlGemm1:;
  10248. #endif
  10249. if (params->type == GGML_TASK_TYPE_INIT) {
  10250. if (ith != 0) {
  10251. return;
  10252. }
  10253. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10254. atomic_store(&state->shared->current_chunk, nth);
  10255. if (src1->type != vec_dot_type) {
  10256. char * wdata = params->wdata;
  10257. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10258. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10259. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10260. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10261. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10262. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10263. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10264. wdata += row_size;
  10265. }
  10266. }
  10267. }
  10268. }
  10269. return;
  10270. }
  10271. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10272. return;
  10273. }
  10274. #if GGML_USE_LLAMAFILE
  10275. if (src1->type != vec_dot_type) {
  10276. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10277. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10278. for (int64_t i13 = 0; i13 < ne13; i13++)
  10279. for (int64_t i12 = 0; i12 < ne12; i12++)
  10280. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10281. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10282. nb01/ggml_type_size(src0->type),
  10283. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10284. row_size/ggml_type_size(vec_dot_type),
  10285. (char *)dst->data + i12*nb2 + i13*nb3,
  10286. nb1/ggml_type_size(dst->type),
  10287. ith, nth,
  10288. params->type,
  10289. src0->type,
  10290. vec_dot_type,
  10291. dst->type))
  10292. goto UseGgmlGemm2;
  10293. return;
  10294. }
  10295. UseGgmlGemm2:;
  10296. #endif
  10297. #ifdef GGML_PERF
  10298. int chunks_executed = 0;
  10299. UNUSED(chunks_executed);
  10300. #endif
  10301. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10302. const int64_t nr0 = ne0;
  10303. // This is the size of the rest of the dimensions of the result
  10304. const int64_t nr1 = ne1 * ne2 * ne3;
  10305. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10306. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10307. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10308. // this check can be removed once they are extended to support odd numbered rows/cols too
  10309. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10310. num_rows_per_vec_dot = 1;
  10311. }
  10312. // Now select a reasonable chunk size.
  10313. int chunk_size = 16;
  10314. // We need to step up the size if it's small
  10315. if (nr0 == 1 || nr1 == 1) {
  10316. chunk_size = 64;
  10317. }
  10318. // distribute the work across the inner or outer loop based on which one is larger
  10319. // The number of chunks in the 0/1 dim.
  10320. // CEIL(nr0/chunk_size)
  10321. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10322. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10323. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10324. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10325. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10326. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10327. // distribute the thread work across the inner or outer loop based on which one is larger
  10328. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10329. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10330. }
  10331. // The number of elements in each chunk
  10332. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10333. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10334. //if (ith == 0)
  10335. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10336. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10337. int current_chunk = ith;
  10338. while (current_chunk < nchunk0 * nchunk1) {
  10339. const int64_t ith0 = current_chunk % nchunk0;
  10340. const int64_t ith1 = current_chunk / nchunk0;
  10341. const int64_t ir0_start = dr0 * ith0;
  10342. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10343. const int64_t ir1_start = dr1 * ith1;
  10344. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10345. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10346. #ifdef GGML_PERF
  10347. chunks_executed++;
  10348. #endif
  10349. if (nth >= nchunk0 * nchunk1) {
  10350. break;
  10351. }
  10352. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10353. }
  10354. #ifdef GGML_PERF
  10355. // These numbers are useful when trying to measure how well the threading scheduling works.
  10356. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10357. //float time = (ggml_perf_time_us() - t0);
  10358. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10359. #endif
  10360. }
  10361. // ggml_compute_forward_mul_mat_id
  10362. static void ggml_compute_forward_mul_mat_id(
  10363. const struct ggml_compute_params * params,
  10364. struct ggml_tensor * dst) {
  10365. const struct ggml_tensor * src0 = dst->src[0];
  10366. const struct ggml_tensor * src1 = dst->src[1];
  10367. const struct ggml_tensor * ids = dst->src[2];
  10368. GGML_TENSOR_BINARY_OP_LOCALS
  10369. const int ith = params->ith;
  10370. const int nth = params->nth;
  10371. const enum ggml_type type = src0->type;
  10372. const bool src1_cont = ggml_is_contiguous(src1);
  10373. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10374. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10375. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10376. // we don't support permuted src0 or src1
  10377. GGML_ASSERT(nb00 == ggml_type_size(type));
  10378. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10379. // dst cannot be transposed or permuted
  10380. GGML_ASSERT(nb0 == sizeof(float));
  10381. GGML_ASSERT(nb0 <= nb1);
  10382. GGML_ASSERT(nb1 <= nb2);
  10383. GGML_ASSERT(nb2 <= nb3);
  10384. // row groups
  10385. const int n_ids = ids->ne[0]; // n_expert_used
  10386. const int n_as = ne02; // n_expert
  10387. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10388. (char *) params->wdata :
  10389. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10390. struct mmid_row_mapping {
  10391. int32_t i1;
  10392. int32_t i2;
  10393. };
  10394. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10395. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10396. if (params->type == GGML_TASK_TYPE_INIT) {
  10397. if (ith != 0) {
  10398. return;
  10399. }
  10400. char * wdata = params->wdata;
  10401. if (src1->type != vec_dot_type) {
  10402. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10403. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10404. assert(src1->type == GGML_TYPE_F32);
  10405. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10406. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10407. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10408. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10409. wdata += row_size;
  10410. }
  10411. }
  10412. }
  10413. }
  10414. // initialize matrix_row_counts
  10415. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10416. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10417. // group rows by src0 matrix
  10418. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10419. for (int id = 0; id < n_ids; ++id) {
  10420. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10421. assert(i02 >= 0 && i02 < n_as);
  10422. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10423. matrix_row_counts[i02] += 1;
  10424. }
  10425. }
  10426. return;
  10427. }
  10428. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10429. return;
  10430. }
  10431. // compute each matrix multiplication in sequence
  10432. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10433. const int64_t cne1 = matrix_row_counts[cur_a];
  10434. if (cne1 == 0) {
  10435. continue;
  10436. }
  10437. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10438. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10439. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10440. const int64_t nr0 = ne01; // src0 rows
  10441. const int64_t nr1 = cne1; // src1 rows
  10442. // distribute the thread work across the inner or outer loop based on which one is larger
  10443. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10444. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10445. const int64_t ith0 = ith % nth0;
  10446. const int64_t ith1 = ith / nth0;
  10447. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10448. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10449. const int64_t ir010 = dr0*ith0;
  10450. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10451. const int64_t ir110 = dr1*ith1;
  10452. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10453. // threads with no work simply yield (not sure if it helps)
  10454. //if (ir010 >= ir011 || ir110 >= ir111) {
  10455. // sched_yield();
  10456. // continue;
  10457. //}
  10458. // block-tiling attempt
  10459. const int64_t blck_0 = 16;
  10460. const int64_t blck_1 = 16;
  10461. // attempt to reduce false-sharing (does not seem to make a difference)
  10462. float tmp[16];
  10463. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10464. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10465. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10466. const int64_t _i12 = ir1; // logical row index for this expert
  10467. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10468. const int id = row_mapping.i1; // selected expert index
  10469. const int64_t i11 = id % ne11;
  10470. const int64_t i12 = row_mapping.i2; // row index in src1
  10471. const int64_t i1 = id; // selected expert index
  10472. const int64_t i2 = i12; // row
  10473. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10474. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10475. // the original src1 data pointer, so we should index using the indices directly
  10476. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10477. const char * src1_col = (const char *) wdata +
  10478. (src1_cont || src1->type != vec_dot_type
  10479. ? (i11 + i12*ne11)*row_size
  10480. : (i11*nb11 + i12*nb12));
  10481. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10482. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10483. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10484. //}
  10485. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10486. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10487. }
  10488. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10489. }
  10490. }
  10491. }
  10492. }
  10493. #undef MMID_MATRIX_ROW
  10494. }
  10495. // ggml_compute_forward_out_prod
  10496. static void ggml_compute_forward_out_prod_f32(
  10497. const struct ggml_compute_params * params,
  10498. struct ggml_tensor * dst) {
  10499. const struct ggml_tensor * src0 = dst->src[0];
  10500. const struct ggml_tensor * src1 = dst->src[1];
  10501. // int64_t t0 = ggml_perf_time_us();
  10502. // UNUSED(t0);
  10503. GGML_TENSOR_BINARY_OP_LOCALS
  10504. const int ith = params->ith;
  10505. const int nth = params->nth;
  10506. GGML_ASSERT(ne0 == ne00);
  10507. GGML_ASSERT(ne1 == ne10);
  10508. GGML_ASSERT(ne2 == ne02);
  10509. GGML_ASSERT(ne02 == ne12);
  10510. GGML_ASSERT(ne3 == ne13);
  10511. GGML_ASSERT(ne03 == ne13);
  10512. // we don't support permuted src0 or src1
  10513. GGML_ASSERT(nb00 == sizeof(float));
  10514. // dst cannot be transposed or permuted
  10515. GGML_ASSERT(nb0 == sizeof(float));
  10516. // GGML_ASSERT(nb0 <= nb1);
  10517. // GGML_ASSERT(nb1 <= nb2);
  10518. // GGML_ASSERT(nb2 <= nb3);
  10519. // nb01 >= nb00 - src0 is not transposed
  10520. // compute by src0 rows
  10521. // TODO: #if defined(GGML_USE_CLBLAST)
  10522. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10523. bool use_blas = ggml_is_matrix(src0) &&
  10524. ggml_is_matrix(src1) &&
  10525. ggml_is_contiguous(src0) &&
  10526. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10527. #endif
  10528. if (params->type == GGML_TASK_TYPE_INIT) {
  10529. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10530. if (use_blas) {
  10531. return;
  10532. }
  10533. #endif
  10534. if (ith != 0) {
  10535. return;
  10536. }
  10537. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10538. return;
  10539. }
  10540. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10541. return;
  10542. }
  10543. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10544. if (use_blas) {
  10545. if (params->ith != 0) { // All threads other than the first do no work.
  10546. return;
  10547. }
  10548. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10549. // src0: (k,n)
  10550. // src1: (k,m)
  10551. // dst: (m,n)
  10552. //
  10553. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10554. // Also expressed as (major,minor)
  10555. // a: (m,k): so src1 transposed
  10556. // b: (k,n): so src0
  10557. // c: (m,n)
  10558. //
  10559. // However, if ggml_is_transposed(src1) is true, then
  10560. // src1->data already contains a transposed version, so sgemm mustn't
  10561. // transpose it further.
  10562. int n = src0->ne[0];
  10563. int k = src0->ne[1];
  10564. int m = src1->ne[0];
  10565. int transposeA, lda;
  10566. if (!ggml_is_transposed(src1)) {
  10567. transposeA = CblasTrans;
  10568. lda = m;
  10569. } else {
  10570. transposeA = CblasNoTrans;
  10571. lda = k;
  10572. }
  10573. float * a = (float *) ((char *) src1->data);
  10574. float * b = (float *) ((char *) src0->data);
  10575. float * c = (float *) ((char *) dst->data);
  10576. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10577. return;
  10578. }
  10579. #endif
  10580. // dst[:,:,:,:] = 0
  10581. // for i2,i3:
  10582. // for i1:
  10583. // for i01:
  10584. // for i0:
  10585. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10586. // parallelize by last three dimensions
  10587. // total rows in dst
  10588. const int64_t nr = ne1*ne2*ne3;
  10589. // rows per thread
  10590. const int64_t dr = (nr + nth - 1)/nth;
  10591. // row range for this thread
  10592. const int64_t ir0 = dr*ith;
  10593. const int64_t ir1 = MIN(ir0 + dr, nr);
  10594. // block-tiling attempt
  10595. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10596. const int64_t blck_1 = 16;
  10597. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10598. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10599. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10600. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10601. for (int64_t ir = bir; ir < bir1; ++ir) {
  10602. // dst indices
  10603. const int64_t i3 = ir/(ne2*ne1);
  10604. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10605. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10606. const int64_t i02 = i2;
  10607. const int64_t i03 = i3;
  10608. //const int64_t i10 = i1;
  10609. const int64_t i12 = i2;
  10610. const int64_t i13 = i3;
  10611. #if GGML_VEC_MAD_UNROLL > 2
  10612. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10613. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10614. const int64_t i11 = i01;
  10615. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10616. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10617. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10618. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10619. }
  10620. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10621. const int64_t i11 = i01;
  10622. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10623. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10624. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10625. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10626. }
  10627. #else
  10628. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10629. const int64_t i11 = i01;
  10630. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10631. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10632. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10633. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10634. }
  10635. #endif
  10636. }
  10637. }
  10638. }
  10639. //int64_t t1 = ggml_perf_time_us();
  10640. //static int64_t acc = 0;
  10641. //acc += t1 - t0;
  10642. //if (t1 - t0 > 10) {
  10643. // printf("\n");
  10644. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10645. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10646. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10647. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10648. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10649. //}
  10650. }
  10651. static void ggml_compute_forward_out_prod_q_f32(
  10652. const struct ggml_compute_params * params,
  10653. struct ggml_tensor * dst) {
  10654. const struct ggml_tensor * src0 = dst->src[0];
  10655. const struct ggml_tensor * src1 = dst->src[1];
  10656. // int64_t t0 = ggml_perf_time_us();
  10657. // UNUSED(t0);
  10658. GGML_TENSOR_BINARY_OP_LOCALS;
  10659. const int ith = params->ith;
  10660. const int nth = params->nth;
  10661. const enum ggml_type type = src0->type;
  10662. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10663. GGML_ASSERT(ne02 == ne12);
  10664. GGML_ASSERT(ne03 == ne13);
  10665. GGML_ASSERT(ne2 == ne12);
  10666. GGML_ASSERT(ne3 == ne13);
  10667. // we don't support permuted src0 dim0
  10668. GGML_ASSERT(nb00 == ggml_type_size(type));
  10669. // dst dim0 cannot be transposed or permuted
  10670. GGML_ASSERT(nb0 == sizeof(float));
  10671. // GGML_ASSERT(nb0 <= nb1);
  10672. // GGML_ASSERT(nb1 <= nb2);
  10673. // GGML_ASSERT(nb2 <= nb3);
  10674. GGML_ASSERT(ne0 == ne00);
  10675. GGML_ASSERT(ne1 == ne10);
  10676. GGML_ASSERT(ne2 == ne02);
  10677. GGML_ASSERT(ne3 == ne03);
  10678. // nb01 >= nb00 - src0 is not transposed
  10679. // compute by src0 rows
  10680. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10681. if (params->type == GGML_TASK_TYPE_INIT) {
  10682. if (ith != 0) {
  10683. return;
  10684. }
  10685. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10686. return;
  10687. }
  10688. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10689. return;
  10690. }
  10691. // parallelize by last three dimensions
  10692. // total rows in dst
  10693. const int64_t nr = ne1*ne2*ne3;
  10694. // rows per thread
  10695. const int64_t dr = (nr + nth - 1)/nth;
  10696. // row range for this thread
  10697. const int64_t ir0 = dr*ith;
  10698. const int64_t ir1 = MIN(ir0 + dr, nr);
  10699. // dst[:,:,:,:] = 0
  10700. // for i2,i3:
  10701. // for i1:
  10702. // for i01:
  10703. // for i0:
  10704. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10705. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10706. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10707. // dst indices
  10708. const int64_t i3 = ir/(ne2*ne1);
  10709. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10710. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10711. const int64_t i02 = i2;
  10712. const int64_t i03 = i3;
  10713. //const int64_t i10 = i1;
  10714. const int64_t i12 = i2;
  10715. const int64_t i13 = i3;
  10716. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10717. const int64_t i11 = i01;
  10718. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10719. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10720. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10721. dequantize_row_q(s0, wdata, ne0);
  10722. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10723. }
  10724. }
  10725. //int64_t t1 = ggml_perf_time_us();
  10726. //static int64_t acc = 0;
  10727. //acc += t1 - t0;
  10728. //if (t1 - t0 > 10) {
  10729. // printf("\n");
  10730. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10731. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10732. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10733. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10734. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10735. //}
  10736. }
  10737. static void ggml_compute_forward_out_prod(
  10738. const struct ggml_compute_params * params,
  10739. struct ggml_tensor * dst) {
  10740. const struct ggml_tensor * src0 = dst->src[0];
  10741. switch (src0->type) {
  10742. case GGML_TYPE_Q4_0:
  10743. case GGML_TYPE_Q4_1:
  10744. case GGML_TYPE_Q5_0:
  10745. case GGML_TYPE_Q5_1:
  10746. case GGML_TYPE_Q8_0:
  10747. case GGML_TYPE_Q2_K:
  10748. case GGML_TYPE_Q3_K:
  10749. case GGML_TYPE_Q4_K:
  10750. case GGML_TYPE_Q5_K:
  10751. case GGML_TYPE_Q6_K:
  10752. case GGML_TYPE_IQ2_XXS:
  10753. case GGML_TYPE_IQ2_XS:
  10754. case GGML_TYPE_IQ3_XXS:
  10755. case GGML_TYPE_IQ1_S:
  10756. case GGML_TYPE_IQ1_M:
  10757. case GGML_TYPE_IQ4_NL:
  10758. case GGML_TYPE_IQ4_XS:
  10759. case GGML_TYPE_IQ3_S:
  10760. case GGML_TYPE_IQ2_S:
  10761. {
  10762. ggml_compute_forward_out_prod_q_f32(params, dst);
  10763. } break;
  10764. case GGML_TYPE_F16:
  10765. {
  10766. GGML_ASSERT(false); // todo
  10767. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10768. } break;
  10769. case GGML_TYPE_F32:
  10770. {
  10771. ggml_compute_forward_out_prod_f32(params, dst);
  10772. } break;
  10773. default:
  10774. {
  10775. GGML_ASSERT(false);
  10776. } break;
  10777. }
  10778. }
  10779. // ggml_compute_forward_scale
  10780. static void ggml_compute_forward_scale_f32(
  10781. const struct ggml_compute_params * params,
  10782. struct ggml_tensor * dst) {
  10783. const struct ggml_tensor * src0 = dst->src[0];
  10784. GGML_ASSERT(ggml_is_contiguous(src0));
  10785. GGML_ASSERT(ggml_is_contiguous(dst));
  10786. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10787. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10788. return;
  10789. }
  10790. // scale factor
  10791. float v;
  10792. memcpy(&v, dst->op_params, sizeof(float));
  10793. const int ith = params->ith;
  10794. const int nth = params->nth;
  10795. const int nc = src0->ne[0];
  10796. const int nr = ggml_nrows(src0);
  10797. // rows per thread
  10798. const int dr = (nr + nth - 1)/nth;
  10799. // row range for this thread
  10800. const int ir0 = dr*ith;
  10801. const int ir1 = MIN(ir0 + dr, nr);
  10802. const size_t nb01 = src0->nb[1];
  10803. const size_t nb1 = dst->nb[1];
  10804. for (int i1 = ir0; i1 < ir1; i1++) {
  10805. if (dst->data != src0->data) {
  10806. // src0 is same shape as dst => same indices
  10807. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10808. }
  10809. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10810. }
  10811. }
  10812. static void ggml_compute_forward_scale(
  10813. const struct ggml_compute_params * params,
  10814. struct ggml_tensor * dst) {
  10815. const struct ggml_tensor * src0 = dst->src[0];
  10816. switch (src0->type) {
  10817. case GGML_TYPE_F32:
  10818. {
  10819. ggml_compute_forward_scale_f32(params, dst);
  10820. } break;
  10821. default:
  10822. {
  10823. GGML_ASSERT(false);
  10824. } break;
  10825. }
  10826. }
  10827. // ggml_compute_forward_set
  10828. static void ggml_compute_forward_set_f32(
  10829. const struct ggml_compute_params * params,
  10830. struct ggml_tensor * dst) {
  10831. const struct ggml_tensor * src0 = dst->src[0];
  10832. const struct ggml_tensor * src1 = dst->src[1];
  10833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10834. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10835. // view src0 and dst with these strides and data offset inbytes during set
  10836. // nb0 is implicitly element_size because src0 and dst are contiguous
  10837. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10838. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10839. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10840. size_t offset = ((int32_t *) dst->op_params)[3];
  10841. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10842. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10843. if (params->ith != 0) {
  10844. return;
  10845. }
  10846. // memcpy needs to be synchronized across threads to avoid race conditions.
  10847. // => do it in INIT phase
  10848. memcpy(
  10849. ((char *) dst->data),
  10850. ((char *) src0->data),
  10851. ggml_nbytes(dst));
  10852. }
  10853. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10854. return;
  10855. }
  10856. const int ith = params->ith;
  10857. const int nth = params->nth;
  10858. const int nr = ggml_nrows(src1);
  10859. const int nc = src1->ne[0];
  10860. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10861. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10862. // src0 and dst as viewed during set
  10863. const size_t nb0 = ggml_element_size(src0);
  10864. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10865. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10866. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10867. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10868. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10869. GGML_ASSERT(nb10 == sizeof(float));
  10870. // rows per thread
  10871. const int dr = (nr + nth - 1)/nth;
  10872. // row range for this thread
  10873. const int ir0 = dr*ith;
  10874. const int ir1 = MIN(ir0 + dr, nr);
  10875. for (int ir = ir0; ir < ir1; ++ir) {
  10876. // src0 and dst are viewed with shape of src1 and offset
  10877. // => same indices
  10878. const int i3 = ir/(ne12*ne11);
  10879. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10880. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10881. ggml_vec_cpy_f32(nc,
  10882. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10883. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10884. }
  10885. }
  10886. static void ggml_compute_forward_set(
  10887. const struct ggml_compute_params * params,
  10888. struct ggml_tensor * dst) {
  10889. const struct ggml_tensor * src0 = dst->src[0];
  10890. switch (src0->type) {
  10891. case GGML_TYPE_F32:
  10892. {
  10893. ggml_compute_forward_set_f32(params, dst);
  10894. } break;
  10895. case GGML_TYPE_F16:
  10896. case GGML_TYPE_BF16:
  10897. case GGML_TYPE_Q4_0:
  10898. case GGML_TYPE_Q4_1:
  10899. case GGML_TYPE_Q5_0:
  10900. case GGML_TYPE_Q5_1:
  10901. case GGML_TYPE_Q8_0:
  10902. case GGML_TYPE_Q8_1:
  10903. case GGML_TYPE_Q2_K:
  10904. case GGML_TYPE_Q3_K:
  10905. case GGML_TYPE_Q4_K:
  10906. case GGML_TYPE_Q5_K:
  10907. case GGML_TYPE_Q6_K:
  10908. case GGML_TYPE_IQ2_XXS:
  10909. case GGML_TYPE_IQ2_XS:
  10910. case GGML_TYPE_IQ3_XXS:
  10911. case GGML_TYPE_IQ1_S:
  10912. case GGML_TYPE_IQ1_M:
  10913. case GGML_TYPE_IQ4_NL:
  10914. case GGML_TYPE_IQ4_XS:
  10915. case GGML_TYPE_IQ3_S:
  10916. case GGML_TYPE_IQ2_S:
  10917. default:
  10918. {
  10919. GGML_ASSERT(false);
  10920. } break;
  10921. }
  10922. }
  10923. // ggml_compute_forward_cpy
  10924. static void ggml_compute_forward_cpy(
  10925. const struct ggml_compute_params * params,
  10926. struct ggml_tensor * dst) {
  10927. ggml_compute_forward_dup(params, dst);
  10928. }
  10929. // ggml_compute_forward_cont
  10930. static void ggml_compute_forward_cont(
  10931. const struct ggml_compute_params * params,
  10932. struct ggml_tensor * dst) {
  10933. ggml_compute_forward_dup(params, dst);
  10934. }
  10935. // ggml_compute_forward_reshape
  10936. static void ggml_compute_forward_reshape(
  10937. const struct ggml_compute_params * params,
  10938. struct ggml_tensor * dst) {
  10939. // NOP
  10940. UNUSED(params);
  10941. UNUSED(dst);
  10942. }
  10943. // ggml_compute_forward_view
  10944. static void ggml_compute_forward_view(
  10945. const struct ggml_compute_params * params,
  10946. const struct ggml_tensor * dst) {
  10947. // NOP
  10948. UNUSED(params);
  10949. UNUSED(dst);
  10950. }
  10951. // ggml_compute_forward_permute
  10952. static void ggml_compute_forward_permute(
  10953. const struct ggml_compute_params * params,
  10954. const struct ggml_tensor * dst) {
  10955. // NOP
  10956. UNUSED(params);
  10957. UNUSED(dst);
  10958. }
  10959. // ggml_compute_forward_transpose
  10960. static void ggml_compute_forward_transpose(
  10961. const struct ggml_compute_params * params,
  10962. const struct ggml_tensor * dst) {
  10963. // NOP
  10964. UNUSED(params);
  10965. UNUSED(dst);
  10966. }
  10967. // ggml_compute_forward_get_rows
  10968. static void ggml_compute_forward_get_rows_q(
  10969. const struct ggml_compute_params * params,
  10970. struct ggml_tensor * dst) {
  10971. const struct ggml_tensor * src0 = dst->src[0];
  10972. const struct ggml_tensor * src1 = dst->src[1];
  10973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10974. return;
  10975. }
  10976. GGML_TENSOR_BINARY_OP_LOCALS
  10977. const int64_t nc = ne00;
  10978. const int64_t nr = ggml_nelements(src1);
  10979. const enum ggml_type type = src0->type;
  10980. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10981. assert(ne0 == nc);
  10982. assert(ne02 == ne11);
  10983. assert(nb00 == ggml_type_size(type));
  10984. assert(ggml_nrows(dst) == nr);
  10985. const int ith = params->ith;
  10986. const int nth = params->nth;
  10987. // rows per thread
  10988. const int dr = (nr + nth - 1)/nth;
  10989. // row range for this thread
  10990. const int ir0 = dr*ith;
  10991. const int ir1 = MIN(ir0 + dr, nr);
  10992. for (int64_t i = ir0; i < ir1; ++i) {
  10993. const int64_t i12 = i/(ne11*ne10);
  10994. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10995. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10996. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10997. dequantize_row_q(
  10998. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10999. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11000. }
  11001. }
  11002. static void ggml_compute_forward_get_rows_f16(
  11003. const struct ggml_compute_params * params,
  11004. struct ggml_tensor * dst) {
  11005. const struct ggml_tensor * src0 = dst->src[0];
  11006. const struct ggml_tensor * src1 = dst->src[1];
  11007. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11008. return;
  11009. }
  11010. GGML_TENSOR_BINARY_OP_LOCALS
  11011. const int64_t nc = ne00;
  11012. const int64_t nr = ggml_nelements(src1);
  11013. assert(ne0 == nc);
  11014. assert(ne02 == ne11);
  11015. assert(nb00 == sizeof(ggml_fp16_t));
  11016. assert(ggml_nrows(dst) == nr);
  11017. const int ith = params->ith;
  11018. const int nth = params->nth;
  11019. // rows per thread
  11020. const int dr = (nr + nth - 1)/nth;
  11021. // row range for this thread
  11022. const int ir0 = dr*ith;
  11023. const int ir1 = MIN(ir0 + dr, nr);
  11024. for (int64_t i = ir0; i < ir1; ++i) {
  11025. const int64_t i12 = i/(ne11*ne10);
  11026. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11027. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11028. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11029. ggml_fp16_to_fp32_row(
  11030. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11031. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11032. }
  11033. }
  11034. static void ggml_compute_forward_get_rows_bf16(
  11035. const struct ggml_compute_params * params,
  11036. struct ggml_tensor * dst) {
  11037. const struct ggml_tensor * src0 = dst->src[0];
  11038. const struct ggml_tensor * src1 = dst->src[1];
  11039. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11040. return;
  11041. }
  11042. GGML_TENSOR_BINARY_OP_LOCALS
  11043. const int64_t nc = ne00;
  11044. const int64_t nr = ggml_nelements(src1);
  11045. assert(ne0 == nc);
  11046. assert(ne02 == ne11);
  11047. assert(nb00 == sizeof(ggml_bf16_t));
  11048. assert(ggml_nrows(dst) == nr);
  11049. const int ith = params->ith;
  11050. const int nth = params->nth;
  11051. // rows per thread
  11052. const int dr = (nr + nth - 1)/nth;
  11053. // row range for this thread
  11054. const int ir0 = dr*ith;
  11055. const int ir1 = MIN(ir0 + dr, nr);
  11056. for (int64_t i = ir0; i < ir1; ++i) {
  11057. const int64_t i12 = i/(ne11*ne10);
  11058. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11059. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11060. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11061. ggml_bf16_to_fp32_row(
  11062. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11063. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11064. }
  11065. }
  11066. static void ggml_compute_forward_get_rows_f32(
  11067. const struct ggml_compute_params * params,
  11068. struct ggml_tensor * dst) {
  11069. const struct ggml_tensor * src0 = dst->src[0];
  11070. const struct ggml_tensor * src1 = dst->src[1];
  11071. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11072. return;
  11073. }
  11074. GGML_TENSOR_BINARY_OP_LOCALS
  11075. const int64_t nc = ne00;
  11076. const int64_t nr = ggml_nelements(src1);
  11077. assert(ne0 == nc);
  11078. assert(ne02 == ne11);
  11079. assert(nb00 == sizeof(float));
  11080. assert(ggml_nrows(dst) == nr);
  11081. const int ith = params->ith;
  11082. const int nth = params->nth;
  11083. // rows per thread
  11084. const int dr = (nr + nth - 1)/nth;
  11085. // row range for this thread
  11086. const int ir0 = dr*ith;
  11087. const int ir1 = MIN(ir0 + dr, nr);
  11088. for (int64_t i = ir0; i < ir1; ++i) {
  11089. const int64_t i12 = i/(ne11*ne10);
  11090. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11091. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11092. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11093. ggml_vec_cpy_f32(nc,
  11094. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11095. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11096. }
  11097. }
  11098. static void ggml_compute_forward_get_rows(
  11099. const struct ggml_compute_params * params,
  11100. struct ggml_tensor * dst) {
  11101. const struct ggml_tensor * src0 = dst->src[0];
  11102. switch (src0->type) {
  11103. case GGML_TYPE_Q4_0:
  11104. case GGML_TYPE_Q4_1:
  11105. case GGML_TYPE_Q5_0:
  11106. case GGML_TYPE_Q5_1:
  11107. case GGML_TYPE_Q8_0:
  11108. case GGML_TYPE_Q8_1:
  11109. case GGML_TYPE_Q2_K:
  11110. case GGML_TYPE_Q3_K:
  11111. case GGML_TYPE_Q4_K:
  11112. case GGML_TYPE_Q5_K:
  11113. case GGML_TYPE_Q6_K:
  11114. case GGML_TYPE_IQ2_XXS:
  11115. case GGML_TYPE_IQ2_XS:
  11116. case GGML_TYPE_IQ3_XXS:
  11117. case GGML_TYPE_IQ1_S:
  11118. case GGML_TYPE_IQ1_M:
  11119. case GGML_TYPE_IQ4_NL:
  11120. case GGML_TYPE_IQ4_XS:
  11121. case GGML_TYPE_IQ3_S:
  11122. case GGML_TYPE_IQ2_S:
  11123. {
  11124. ggml_compute_forward_get_rows_q(params, dst);
  11125. } break;
  11126. case GGML_TYPE_F16:
  11127. {
  11128. ggml_compute_forward_get_rows_f16(params, dst);
  11129. } break;
  11130. case GGML_TYPE_BF16:
  11131. {
  11132. ggml_compute_forward_get_rows_bf16(params, dst);
  11133. } break;
  11134. case GGML_TYPE_F32:
  11135. case GGML_TYPE_I32:
  11136. {
  11137. ggml_compute_forward_get_rows_f32(params, dst);
  11138. } break;
  11139. default:
  11140. {
  11141. GGML_ASSERT(false);
  11142. } break;
  11143. }
  11144. //static bool first = true;
  11145. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11146. //if (first) {
  11147. // first = false;
  11148. //} else {
  11149. // for (int k = 0; k < dst->ne[1]; ++k) {
  11150. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11151. // for (int i = 0; i < 16; ++i) {
  11152. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11153. // }
  11154. // printf("\n");
  11155. // }
  11156. // printf("\n");
  11157. // }
  11158. // printf("\n");
  11159. // exit(0);
  11160. //}
  11161. }
  11162. // ggml_compute_forward_get_rows_back
  11163. static void ggml_compute_forward_get_rows_back_f32_f16(
  11164. const struct ggml_compute_params * params,
  11165. struct ggml_tensor * dst) {
  11166. const struct ggml_tensor * src0 = dst->src[0];
  11167. const struct ggml_tensor * src1 = dst->src[1];
  11168. GGML_ASSERT(params->ith == 0);
  11169. GGML_ASSERT(ggml_is_contiguous(dst));
  11170. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11171. if (params->type == GGML_TASK_TYPE_INIT) {
  11172. if (params->ith != 0) {
  11173. return;
  11174. }
  11175. memset(dst->data, 0, ggml_nbytes(dst));
  11176. }
  11177. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11178. return;
  11179. }
  11180. const int nc = src0->ne[0];
  11181. const int nr = ggml_nelements(src1);
  11182. GGML_ASSERT( dst->ne[0] == nc);
  11183. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11184. for (int i = 0; i < nr; ++i) {
  11185. const int r = ((int32_t *) src1->data)[i];
  11186. for (int j = 0; j < nc; ++j) {
  11187. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11188. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11189. }
  11190. }
  11191. }
  11192. static void ggml_compute_forward_get_rows_back_f32(
  11193. const struct ggml_compute_params * params,
  11194. struct ggml_tensor * dst) {
  11195. const struct ggml_tensor * src0 = dst->src[0];
  11196. const struct ggml_tensor * src1 = dst->src[1];
  11197. GGML_ASSERT(params->ith == 0);
  11198. GGML_ASSERT(ggml_is_contiguous(dst));
  11199. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11200. if (params->type == GGML_TASK_TYPE_INIT) {
  11201. if (params->ith != 0) {
  11202. return;
  11203. }
  11204. memset(dst->data, 0, ggml_nbytes(dst));
  11205. }
  11206. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11207. return;
  11208. }
  11209. const int nc = src0->ne[0];
  11210. const int nr = ggml_nelements(src1);
  11211. GGML_ASSERT( dst->ne[0] == nc);
  11212. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11213. for (int i = 0; i < nr; ++i) {
  11214. const int r = ((int32_t *) src1->data)[i];
  11215. ggml_vec_add_f32(nc,
  11216. (float *) ((char *) dst->data + r*dst->nb[1]),
  11217. (float *) ((char *) dst->data + r*dst->nb[1]),
  11218. (float *) ((char *) src0->data + i*src0->nb[1]));
  11219. }
  11220. }
  11221. static void ggml_compute_forward_get_rows_back(
  11222. const struct ggml_compute_params * params,
  11223. struct ggml_tensor * dst) {
  11224. const struct ggml_tensor * src0 = dst->src[0];
  11225. switch (src0->type) {
  11226. case GGML_TYPE_F16:
  11227. {
  11228. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11229. } break;
  11230. case GGML_TYPE_F32:
  11231. {
  11232. ggml_compute_forward_get_rows_back_f32(params, dst);
  11233. } break;
  11234. default:
  11235. {
  11236. GGML_ASSERT(false);
  11237. } break;
  11238. }
  11239. //static bool first = true;
  11240. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11241. //if (first) {
  11242. // first = false;
  11243. //} else {
  11244. // for (int k = 0; k < dst->ne[1]; ++k) {
  11245. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11246. // for (int i = 0; i < 16; ++i) {
  11247. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11248. // }
  11249. // printf("\n");
  11250. // }
  11251. // printf("\n");
  11252. // }
  11253. // printf("\n");
  11254. // exit(0);
  11255. //}
  11256. }
  11257. // ggml_compute_forward_diag
  11258. static void ggml_compute_forward_diag_f32(
  11259. const struct ggml_compute_params * params,
  11260. struct ggml_tensor * dst) {
  11261. const struct ggml_tensor * src0 = dst->src[0];
  11262. GGML_ASSERT(params->ith == 0);
  11263. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11264. return;
  11265. }
  11266. // TODO: handle transposed/permuted matrices
  11267. GGML_TENSOR_UNARY_OP_LOCALS
  11268. GGML_ASSERT(ne00 == ne0);
  11269. GGML_ASSERT(ne00 == ne1);
  11270. GGML_ASSERT(ne01 == 1);
  11271. GGML_ASSERT(ne02 == ne2);
  11272. GGML_ASSERT(ne03 == ne3);
  11273. GGML_ASSERT(nb00 == sizeof(float));
  11274. GGML_ASSERT(nb0 == sizeof(float));
  11275. for (int i3 = 0; i3 < ne3; i3++) {
  11276. for (int i2 = 0; i2 < ne2; i2++) {
  11277. for (int i1 = 0; i1 < ne1; i1++) {
  11278. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11279. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11280. for (int i0 = 0; i0 < i1; i0++) {
  11281. d[i0] = 0;
  11282. }
  11283. d[i1] = s[i1];
  11284. for (int i0 = i1+1; i0 < ne0; i0++) {
  11285. d[i0] = 0;
  11286. }
  11287. }
  11288. }
  11289. }
  11290. }
  11291. static void ggml_compute_forward_diag(
  11292. const struct ggml_compute_params * params,
  11293. struct ggml_tensor * dst) {
  11294. const struct ggml_tensor * src0 = dst->src[0];
  11295. switch (src0->type) {
  11296. case GGML_TYPE_F32:
  11297. {
  11298. ggml_compute_forward_diag_f32(params, dst);
  11299. } break;
  11300. default:
  11301. {
  11302. GGML_ASSERT(false);
  11303. } break;
  11304. }
  11305. }
  11306. // ggml_compute_forward_diag_mask_inf
  11307. static void ggml_compute_forward_diag_mask_f32(
  11308. const struct ggml_compute_params * params,
  11309. struct ggml_tensor * dst,
  11310. const float value) {
  11311. const struct ggml_tensor * src0 = dst->src[0];
  11312. const int ith = params->ith;
  11313. const int nth = params->nth;
  11314. const int n_past = ((int32_t *) dst->op_params)[0];
  11315. const bool inplace = src0->data == dst->data;
  11316. GGML_ASSERT(n_past >= 0);
  11317. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11318. if (ith != 0) {
  11319. return;
  11320. }
  11321. // memcpy needs to be synchronized across threads to avoid race conditions.
  11322. // => do it in INIT phase
  11323. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11324. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11325. memcpy(
  11326. ((char *) dst->data),
  11327. ((char *) src0->data),
  11328. ggml_nbytes(dst));
  11329. }
  11330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11331. return;
  11332. }
  11333. // TODO: handle transposed/permuted matrices
  11334. const int n = ggml_nrows(src0);
  11335. const int nc = src0->ne[0];
  11336. const int nr = src0->ne[1];
  11337. const int nz = n/nr;
  11338. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11339. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11340. for (int k = 0; k < nz; k++) {
  11341. for (int j = ith; j < nr; j += nth) {
  11342. for (int i = n_past; i < nc; i++) {
  11343. if (i > n_past + j) {
  11344. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11345. }
  11346. }
  11347. }
  11348. }
  11349. }
  11350. static void ggml_compute_forward_diag_mask_inf(
  11351. const struct ggml_compute_params * params,
  11352. struct ggml_tensor * dst) {
  11353. const struct ggml_tensor * src0 = dst->src[0];
  11354. switch (src0->type) {
  11355. case GGML_TYPE_F32:
  11356. {
  11357. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11358. } break;
  11359. default:
  11360. {
  11361. GGML_ASSERT(false);
  11362. } break;
  11363. }
  11364. }
  11365. static void ggml_compute_forward_diag_mask_zero(
  11366. const struct ggml_compute_params * params,
  11367. struct ggml_tensor * dst) {
  11368. const struct ggml_tensor * src0 = dst->src[0];
  11369. switch (src0->type) {
  11370. case GGML_TYPE_F32:
  11371. {
  11372. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11373. } break;
  11374. default:
  11375. {
  11376. GGML_ASSERT(false);
  11377. } break;
  11378. }
  11379. }
  11380. // ggml_compute_forward_soft_max
  11381. static void ggml_compute_forward_soft_max_f32(
  11382. const struct ggml_compute_params * params,
  11383. struct ggml_tensor * dst) {
  11384. const struct ggml_tensor * src0 = dst->src[0];
  11385. const struct ggml_tensor * src1 = dst->src[1];
  11386. assert(ggml_is_contiguous(dst));
  11387. assert(ggml_are_same_shape(src0, dst));
  11388. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11389. return;
  11390. }
  11391. float scale = 1.0f;
  11392. float max_bias = 0.0f;
  11393. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11394. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11395. // TODO: handle transposed/permuted matrices
  11396. const int ith = params->ith;
  11397. const int nth = params->nth;
  11398. GGML_TENSOR_UNARY_OP_LOCALS
  11399. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11400. // TODO: is this supposed to be ceil instead of floor?
  11401. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11402. const uint32_t n_head = ne02;
  11403. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11404. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11405. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11406. const int nc = src0->ne[0];
  11407. const int nr = ggml_nrows(src0);
  11408. // rows per thread
  11409. const int dr = (nr + nth - 1)/nth;
  11410. // row range for this thread
  11411. const int ir0 = dr*ith;
  11412. const int ir1 = MIN(ir0 + dr, nr);
  11413. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11414. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11415. for (int i1 = ir0; i1 < ir1; i1++) {
  11416. // ALiBi
  11417. const uint32_t h = (i1/ne01)%ne02; // head
  11418. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11419. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11420. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11421. // broadcast the mask across rows
  11422. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11423. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11424. ggml_vec_cpy_f32 (nc, wp, sp);
  11425. ggml_vec_scale_f32(nc, wp, scale);
  11426. if (mp_f32) {
  11427. if (use_f16) {
  11428. for (int i = 0; i < nc; ++i) {
  11429. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11430. }
  11431. } else {
  11432. for (int i = 0; i < nc; ++i) {
  11433. wp[i] += slope*mp_f32[i];
  11434. }
  11435. }
  11436. }
  11437. #ifndef NDEBUG
  11438. for (int i = 0; i < nc; ++i) {
  11439. //printf("p[%d] = %f\n", i, p[i]);
  11440. assert(!isnan(wp[i]));
  11441. }
  11442. #endif
  11443. float max = -INFINITY;
  11444. ggml_vec_max_f32(nc, &max, wp);
  11445. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11446. assert(sum > 0.0);
  11447. sum = 1.0/sum;
  11448. ggml_vec_scale_f32(nc, dp, sum);
  11449. #ifndef NDEBUG
  11450. for (int i = 0; i < nc; ++i) {
  11451. assert(!isnan(dp[i]));
  11452. assert(!isinf(dp[i]));
  11453. }
  11454. #endif
  11455. }
  11456. }
  11457. static void ggml_compute_forward_soft_max(
  11458. const struct ggml_compute_params * params,
  11459. struct ggml_tensor * dst) {
  11460. const struct ggml_tensor * src0 = dst->src[0];
  11461. switch (src0->type) {
  11462. case GGML_TYPE_F32:
  11463. {
  11464. ggml_compute_forward_soft_max_f32(params, dst);
  11465. } break;
  11466. default:
  11467. {
  11468. GGML_ASSERT(false);
  11469. } break;
  11470. }
  11471. }
  11472. // ggml_compute_forward_soft_max_back
  11473. static void ggml_compute_forward_soft_max_back_f32(
  11474. const struct ggml_compute_params * params,
  11475. struct ggml_tensor * dst) {
  11476. const struct ggml_tensor * src0 = dst->src[0];
  11477. const struct ggml_tensor * src1 = dst->src[1];
  11478. GGML_ASSERT(ggml_is_contiguous(src0));
  11479. GGML_ASSERT(ggml_is_contiguous(src1));
  11480. GGML_ASSERT(ggml_is_contiguous(dst));
  11481. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11482. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11483. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11484. return;
  11485. }
  11486. // TODO: handle transposed/permuted matrices
  11487. const int ith = params->ith;
  11488. const int nth = params->nth;
  11489. const int nc = src0->ne[0];
  11490. const int nr = ggml_nrows(src0);
  11491. // rows per thread
  11492. const int dr = (nr + nth - 1)/nth;
  11493. // row range for this thread
  11494. const int ir0 = dr*ith;
  11495. const int ir1 = MIN(ir0 + dr, nr);
  11496. for (int i1 = ir0; i1 < ir1; i1++) {
  11497. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11498. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11499. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11500. #ifndef NDEBUG
  11501. for (int i = 0; i < nc; ++i) {
  11502. //printf("p[%d] = %f\n", i, p[i]);
  11503. assert(!isnan(dy[i]));
  11504. assert(!isnan(y[i]));
  11505. }
  11506. #endif
  11507. // Jii = yi - yi*yi
  11508. // Jij = -yi*yj
  11509. // J = diag(y)-y.T*y
  11510. // dx = J * dy
  11511. // dxk = sum_i(Jki * dyi)
  11512. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11513. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11514. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11515. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11516. // dxk = -yk * dot(y, dy) + yk*dyk
  11517. // dxk = yk * (- dot(y, dy) + dyk)
  11518. // dxk = yk * (dyk - dot(y, dy))
  11519. //
  11520. // post-order:
  11521. // dot_y_dy := dot(y, dy)
  11522. // dx := dy
  11523. // dx := dx - dot_y_dy
  11524. // dx := dx * y
  11525. // linear runtime, no additional memory
  11526. float dot_y_dy = 0;
  11527. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11528. ggml_vec_cpy_f32 (nc, dx, dy);
  11529. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11530. ggml_vec_mul_f32 (nc, dx, dx, y);
  11531. #ifndef NDEBUG
  11532. for (int i = 0; i < nc; ++i) {
  11533. assert(!isnan(dx[i]));
  11534. assert(!isinf(dx[i]));
  11535. }
  11536. #endif
  11537. }
  11538. }
  11539. static void ggml_compute_forward_soft_max_back(
  11540. const struct ggml_compute_params * params,
  11541. struct ggml_tensor * dst) {
  11542. const struct ggml_tensor * src0 = dst->src[0];
  11543. switch (src0->type) {
  11544. case GGML_TYPE_F32:
  11545. {
  11546. ggml_compute_forward_soft_max_back_f32(params, dst);
  11547. } break;
  11548. default:
  11549. {
  11550. GGML_ASSERT(false);
  11551. } break;
  11552. }
  11553. }
  11554. // ggml_compute_forward_clamp
  11555. static void ggml_compute_forward_clamp_f32(
  11556. const struct ggml_compute_params * params,
  11557. struct ggml_tensor * dst) {
  11558. const struct ggml_tensor * src0 = dst->src[0];
  11559. assert(params->ith == 0);
  11560. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11561. return;
  11562. }
  11563. float min;
  11564. float max;
  11565. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11566. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11567. const int ith = params->ith;
  11568. const int nth = params->nth;
  11569. const int n = ggml_nrows(src0);
  11570. const int nc = src0->ne[0];
  11571. const size_t nb00 = src0->nb[0];
  11572. const size_t nb01 = src0->nb[1];
  11573. const size_t nb0 = dst->nb[0];
  11574. const size_t nb1 = dst->nb[1];
  11575. GGML_ASSERT( nb0 == sizeof(float));
  11576. GGML_ASSERT(nb00 == sizeof(float));
  11577. for (int j = ith; j < n; j += nth) {
  11578. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11579. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11580. for (int i = 0; i < nc; i++) {
  11581. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11582. }
  11583. }
  11584. }
  11585. static void ggml_compute_forward_clamp(
  11586. const struct ggml_compute_params * params,
  11587. struct ggml_tensor * dst) {
  11588. const struct ggml_tensor * src0 = dst->src[0];
  11589. switch (src0->type) {
  11590. case GGML_TYPE_F32:
  11591. {
  11592. ggml_compute_forward_clamp_f32(params, dst);
  11593. } break;
  11594. case GGML_TYPE_F16:
  11595. case GGML_TYPE_BF16:
  11596. case GGML_TYPE_Q4_0:
  11597. case GGML_TYPE_Q4_1:
  11598. case GGML_TYPE_Q5_0:
  11599. case GGML_TYPE_Q5_1:
  11600. case GGML_TYPE_Q8_0:
  11601. case GGML_TYPE_Q8_1:
  11602. case GGML_TYPE_Q2_K:
  11603. case GGML_TYPE_Q3_K:
  11604. case GGML_TYPE_Q4_K:
  11605. case GGML_TYPE_Q5_K:
  11606. case GGML_TYPE_Q6_K:
  11607. case GGML_TYPE_IQ2_XXS:
  11608. case GGML_TYPE_IQ2_XS:
  11609. case GGML_TYPE_IQ3_XXS:
  11610. case GGML_TYPE_IQ1_S:
  11611. case GGML_TYPE_IQ1_M:
  11612. case GGML_TYPE_IQ4_NL:
  11613. case GGML_TYPE_IQ4_XS:
  11614. case GGML_TYPE_IQ3_S:
  11615. case GGML_TYPE_IQ2_S:
  11616. case GGML_TYPE_Q8_K:
  11617. case GGML_TYPE_I8:
  11618. case GGML_TYPE_I16:
  11619. case GGML_TYPE_I32:
  11620. case GGML_TYPE_I64:
  11621. case GGML_TYPE_F64:
  11622. case GGML_TYPE_COUNT:
  11623. {
  11624. GGML_ASSERT(false);
  11625. } break;
  11626. }
  11627. }
  11628. // ggml_compute_forward_rope
  11629. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11630. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11631. return 1 - MIN(1, MAX(0, y));
  11632. }
  11633. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11634. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11635. static void rope_yarn(
  11636. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11637. float * cos_theta, float * sin_theta
  11638. ) {
  11639. // Get n-d rotational scaling corrected for extrapolation
  11640. float theta_interp = freq_scale * theta_extrap;
  11641. float theta = theta_interp;
  11642. if (ext_factor != 0.0f) {
  11643. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11644. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11645. // Get n-d magnitude scaling corrected for interpolation
  11646. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11647. }
  11648. *cos_theta = cosf(theta) * mscale;
  11649. *sin_theta = sinf(theta) * mscale;
  11650. }
  11651. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11652. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11653. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11654. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11655. }
  11656. static void ggml_rope_cache_init(
  11657. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11658. float * cache, float sin_sign, float theta_scale
  11659. ) {
  11660. float theta = theta_base;
  11661. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11662. rope_yarn(
  11663. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11664. );
  11665. cache[i0 + 1] *= sin_sign;
  11666. theta *= theta_scale;
  11667. }
  11668. }
  11669. GGML_CALL void ggml_rope_yarn_corr_dims(
  11670. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11671. ) {
  11672. // start and end correction dims
  11673. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11674. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11675. dims[0] = MAX(0, start);
  11676. dims[1] = MIN(n_dims - 1, end);
  11677. }
  11678. static void ggml_compute_forward_rope_f32(
  11679. const struct ggml_compute_params * params,
  11680. struct ggml_tensor * dst,
  11681. const bool forward) {
  11682. const struct ggml_tensor * src0 = dst->src[0];
  11683. const struct ggml_tensor * src1 = dst->src[1];
  11684. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11685. return;
  11686. }
  11687. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11688. // these two only relevant for xPos RoPE:
  11689. float xpos_base;
  11690. bool xpos_down;
  11691. //const int n_past = ((int32_t *) dst->op_params)[0];
  11692. const int n_dims = ((int32_t *) dst->op_params)[1];
  11693. const int mode = ((int32_t *) dst->op_params)[2];
  11694. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11695. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11696. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11697. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11698. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11699. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11700. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11701. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11702. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11703. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11704. GGML_TENSOR_UNARY_OP_LOCALS
  11705. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11706. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11707. GGML_ASSERT(nb00 == sizeof(float));
  11708. const int ith = params->ith;
  11709. const int nth = params->nth;
  11710. const int nr = ggml_nrows(dst);
  11711. GGML_ASSERT(n_dims <= ne0);
  11712. GGML_ASSERT(n_dims % 2 == 0);
  11713. // rows per thread
  11714. const int dr = (nr + nth - 1)/nth;
  11715. // row range for this thread
  11716. const int ir0 = dr*ith;
  11717. const int ir1 = MIN(ir0 + dr, nr);
  11718. // row index used to determine which thread to use
  11719. int ir = 0;
  11720. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11721. const float inv_ndims = -1.f/n_dims;
  11722. float corr_dims[2];
  11723. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11724. const bool is_neox = mode & 2;
  11725. const bool is_glm = mode & 4;
  11726. // backward process uses inverse rotation by cos and sin.
  11727. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11728. // this essentially just switches the sign of sin.
  11729. const float sin_sign = forward ? 1.0f : -1.0f;
  11730. const int32_t * pos = (const int32_t *) src1->data;
  11731. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11732. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11733. const int64_t p = pos[i2];
  11734. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11735. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11736. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11737. }
  11738. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11739. if (ir++ < ir0) continue;
  11740. if (ir > ir1) break;
  11741. float theta_base = (float)p;
  11742. if (is_glm) {
  11743. theta_base = MIN(p, n_ctx - 2);
  11744. float block_theta = MAX(p - (n_ctx - 2), 0);
  11745. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11746. const float cos_theta = cosf(theta_base);
  11747. const float sin_theta = sinf(theta_base) * sin_sign;
  11748. const float cos_block_theta = cosf(block_theta);
  11749. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11750. theta_base *= theta_scale;
  11751. block_theta *= theta_scale;
  11752. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11753. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11754. const float x0 = src[0];
  11755. const float x1 = src[n_dims/2];
  11756. const float x2 = src[n_dims];
  11757. const float x3 = src[n_dims/2*3];
  11758. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11759. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11760. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11761. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11762. }
  11763. } else if (!is_neox) {
  11764. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11765. const float cos_theta = cache[i0 + 0];
  11766. const float sin_theta = cache[i0 + 1];
  11767. // zeta scaling for xPos only:
  11768. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11769. if (xpos_down) zeta = 1.0f / zeta;
  11770. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11771. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11772. const float x0 = src[0];
  11773. const float x1 = src[1];
  11774. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11775. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11776. }
  11777. } else {
  11778. // TODO: this might be wrong for ne0 != n_dims - need double check
  11779. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11780. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11781. theta_base *= freq_scale;
  11782. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11783. if (ic < n_dims) {
  11784. const int64_t ib = 0;
  11785. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11786. float cur_rot = inv_ndims * ic - ib;
  11787. float cos_theta, sin_theta;
  11788. rope_yarn(
  11789. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11790. &cos_theta, &sin_theta
  11791. );
  11792. sin_theta *= sin_sign;
  11793. theta_base *= theta_scale;
  11794. const int64_t i0 = ib*n_dims + ic/2;
  11795. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11796. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11797. const float x0 = src[0];
  11798. const float x1 = src[n_dims/2];
  11799. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11800. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11801. } else {
  11802. const int64_t i0 = ic;
  11803. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11804. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11805. dst_data[0] = src[0];
  11806. dst_data[1] = src[1];
  11807. }
  11808. }
  11809. }
  11810. }
  11811. }
  11812. }
  11813. }
  11814. static void ggml_compute_forward_rope_f16(
  11815. const struct ggml_compute_params * params,
  11816. struct ggml_tensor * dst,
  11817. const bool forward) {
  11818. const struct ggml_tensor * src0 = dst->src[0];
  11819. const struct ggml_tensor * src1 = dst->src[1];
  11820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11821. return;
  11822. }
  11823. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11824. //const int n_past = ((int32_t *) dst->op_params)[0];
  11825. const int n_dims = ((int32_t *) dst->op_params)[1];
  11826. const int mode = ((int32_t *) dst->op_params)[2];
  11827. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11828. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11829. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11830. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11831. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11832. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11833. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11834. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11835. GGML_TENSOR_UNARY_OP_LOCALS
  11836. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11837. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11838. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11839. const int ith = params->ith;
  11840. const int nth = params->nth;
  11841. const int nr = ggml_nrows(dst);
  11842. GGML_ASSERT(n_dims <= ne0);
  11843. GGML_ASSERT(n_dims % 2 == 0);
  11844. // rows per thread
  11845. const int dr = (nr + nth - 1)/nth;
  11846. // row range for this thread
  11847. const int ir0 = dr*ith;
  11848. const int ir1 = MIN(ir0 + dr, nr);
  11849. // row index used to determine which thread to use
  11850. int ir = 0;
  11851. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11852. const float inv_ndims = -1.f/n_dims;
  11853. float corr_dims[2];
  11854. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11855. const bool is_neox = mode & 2;
  11856. const bool is_glm = mode & 4;
  11857. // backward process uses inverse rotation by cos and sin.
  11858. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11859. // this essentially just switches the sign of sin.
  11860. const float sin_sign = forward ? 1.0f : -1.0f;
  11861. const int32_t * pos = (const int32_t *) src1->data;
  11862. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11863. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11864. const int64_t p = pos[i2];
  11865. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11866. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11867. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11868. }
  11869. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11870. if (ir++ < ir0) continue;
  11871. if (ir > ir1) break;
  11872. float theta_base = (float)p;
  11873. if (is_glm) {
  11874. theta_base = MIN(p, n_ctx - 2);
  11875. float block_theta = MAX(p - (n_ctx - 2), 0);
  11876. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11877. const float cos_theta = cosf(theta_base);
  11878. const float sin_theta = sinf(theta_base) * sin_sign;
  11879. const float cos_block_theta = cosf(block_theta);
  11880. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11881. theta_base *= theta_scale;
  11882. block_theta *= theta_scale;
  11883. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11884. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11885. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11886. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11887. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11888. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11889. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11890. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11891. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11892. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11893. }
  11894. } else if (!is_neox) {
  11895. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11896. const float cos_theta = cache[i0 + 0];
  11897. const float sin_theta = cache[i0 + 1];
  11898. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11899. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11900. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11901. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11902. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11903. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11904. }
  11905. } else {
  11906. // TODO: this might be wrong for ne0 != n_dims - need double check
  11907. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11908. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11909. theta_base *= freq_scale;
  11910. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11911. if (ic < n_dims) {
  11912. const int64_t ib = 0;
  11913. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11914. float cur_rot = inv_ndims * ic - ib;
  11915. float cos_theta, sin_theta;
  11916. rope_yarn(
  11917. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11918. &cos_theta, &sin_theta
  11919. );
  11920. sin_theta *= sin_sign;
  11921. theta_base *= theta_scale;
  11922. const int64_t i0 = ib*n_dims + ic/2;
  11923. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11924. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11925. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11926. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11927. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11928. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11929. } else {
  11930. const int64_t i0 = ic;
  11931. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11932. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11933. dst_data[0] = src[0];
  11934. dst_data[1] = src[1];
  11935. }
  11936. }
  11937. }
  11938. }
  11939. }
  11940. }
  11941. }
  11942. static void ggml_compute_forward_rope(
  11943. const struct ggml_compute_params * params,
  11944. struct ggml_tensor * dst) {
  11945. const struct ggml_tensor * src0 = dst->src[0];
  11946. switch (src0->type) {
  11947. case GGML_TYPE_F16:
  11948. {
  11949. ggml_compute_forward_rope_f16(params, dst, true);
  11950. } break;
  11951. case GGML_TYPE_F32:
  11952. {
  11953. ggml_compute_forward_rope_f32(params, dst, true);
  11954. } break;
  11955. default:
  11956. {
  11957. GGML_ASSERT(false);
  11958. } break;
  11959. }
  11960. }
  11961. // ggml_compute_forward_rope_back
  11962. static void ggml_compute_forward_rope_back(
  11963. const struct ggml_compute_params * params,
  11964. struct ggml_tensor * dst) {
  11965. const struct ggml_tensor * src0 = dst->src[0];
  11966. switch (src0->type) {
  11967. case GGML_TYPE_F16:
  11968. {
  11969. ggml_compute_forward_rope_f16(params, dst, false);
  11970. } break;
  11971. case GGML_TYPE_F32:
  11972. {
  11973. ggml_compute_forward_rope_f32(params, dst, false);
  11974. } break;
  11975. default:
  11976. {
  11977. GGML_ASSERT(false);
  11978. } break;
  11979. }
  11980. }
  11981. // ggml_compute_forward_conv_transpose_1d
  11982. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11983. const struct ggml_compute_params * params,
  11984. struct ggml_tensor * dst) {
  11985. const struct ggml_tensor * src0 = dst->src[0];
  11986. const struct ggml_tensor * src1 = dst->src[1];
  11987. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11988. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11989. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11990. int64_t t0 = ggml_perf_time_us();
  11991. UNUSED(t0);
  11992. GGML_TENSOR_BINARY_OP_LOCALS
  11993. const int ith = params->ith;
  11994. const int nth = params->nth;
  11995. const int nk = ne00*ne01*ne02;
  11996. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11997. GGML_ASSERT(nb10 == sizeof(float));
  11998. if (params->type == GGML_TASK_TYPE_INIT) {
  11999. if (ith != 0) {
  12000. return;
  12001. }
  12002. memset(params->wdata, 0, params->wsize);
  12003. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12004. {
  12005. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12006. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12007. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12008. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12009. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12010. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12011. dst_data[i00*ne02 + i02] = src[i00];
  12012. }
  12013. }
  12014. }
  12015. }
  12016. // permute source data (src1) from (L x Cin) to (Cin x L)
  12017. {
  12018. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12019. ggml_fp16_t * dst_data = wdata;
  12020. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12021. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12022. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12023. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12024. }
  12025. }
  12026. }
  12027. // need to zero dst since we are accumulating into it
  12028. memset(dst->data, 0, ggml_nbytes(dst));
  12029. return;
  12030. }
  12031. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12032. return;
  12033. }
  12034. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12035. // total rows in dst
  12036. const int nr = ne1;
  12037. // rows per thread
  12038. const int dr = (nr + nth - 1)/nth;
  12039. // row range for this thread
  12040. const int ir0 = dr*ith;
  12041. const int ir1 = MIN(ir0 + dr, nr);
  12042. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12043. ggml_fp16_t * const wdata_src = wdata + nk;
  12044. for (int i1 = ir0; i1 < ir1; i1++) {
  12045. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12046. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12047. for (int i10 = 0; i10 < ne10; i10++) {
  12048. const int i1n = i10*ne11;
  12049. for (int i00 = 0; i00 < ne00; i00++) {
  12050. float v = 0;
  12051. ggml_vec_dot_f16(ne02, &v, 0,
  12052. (ggml_fp16_t *) wdata_src + i1n, 0,
  12053. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12054. dst_data[i10*s0 + i00] += v;
  12055. }
  12056. }
  12057. }
  12058. }
  12059. static void ggml_compute_forward_conv_transpose_1d_f32(
  12060. const struct ggml_compute_params * params,
  12061. struct ggml_tensor * dst) {
  12062. const struct ggml_tensor * src0 = dst->src[0];
  12063. const struct ggml_tensor * src1 = dst->src[1];
  12064. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12066. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12067. int64_t t0 = ggml_perf_time_us();
  12068. UNUSED(t0);
  12069. GGML_TENSOR_BINARY_OP_LOCALS
  12070. const int ith = params->ith;
  12071. const int nth = params->nth;
  12072. const int nk = ne00*ne01*ne02;
  12073. GGML_ASSERT(nb00 == sizeof(float));
  12074. GGML_ASSERT(nb10 == sizeof(float));
  12075. if (params->type == GGML_TASK_TYPE_INIT) {
  12076. if (ith != 0) {
  12077. return;
  12078. }
  12079. memset(params->wdata, 0, params->wsize);
  12080. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12081. {
  12082. float * const wdata = (float *) params->wdata + 0;
  12083. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12084. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12085. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12086. float * dst_data = wdata + i01*ne00*ne02;
  12087. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12088. dst_data[i00*ne02 + i02] = src[i00];
  12089. }
  12090. }
  12091. }
  12092. }
  12093. // prepare source data (src1)
  12094. {
  12095. float * const wdata = (float *) params->wdata + nk;
  12096. float * dst_data = wdata;
  12097. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12098. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12099. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12100. dst_data[i10*ne11 + i11] = src[i10];
  12101. }
  12102. }
  12103. }
  12104. // need to zero dst since we are accumulating into it
  12105. memset(dst->data, 0, ggml_nbytes(dst));
  12106. return;
  12107. }
  12108. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12109. return;
  12110. }
  12111. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12112. // total rows in dst
  12113. const int nr = ne1;
  12114. // rows per thread
  12115. const int dr = (nr + nth - 1)/nth;
  12116. // row range for this thread
  12117. const int ir0 = dr*ith;
  12118. const int ir1 = MIN(ir0 + dr, nr);
  12119. float * const wdata = (float *) params->wdata + 0;
  12120. float * const wdata_src = wdata + nk;
  12121. for (int i1 = ir0; i1 < ir1; i1++) {
  12122. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12123. float * wdata_kernel = wdata + i1*ne02*ne00;
  12124. for (int i10 = 0; i10 < ne10; i10++) {
  12125. const int i1n = i10*ne11;
  12126. for (int i00 = 0; i00 < ne00; i00++) {
  12127. float v = 0;
  12128. ggml_vec_dot_f32(ne02, &v, 0,
  12129. wdata_src + i1n, 0,
  12130. wdata_kernel + i00*ne02, 0, 1);
  12131. dst_data[i10*s0 + i00] += v;
  12132. }
  12133. }
  12134. }
  12135. }
  12136. static void ggml_compute_forward_conv_transpose_1d(
  12137. const struct ggml_compute_params * params,
  12138. struct ggml_tensor * dst) {
  12139. const struct ggml_tensor * src0 = dst->src[0];
  12140. switch (src0->type) {
  12141. case GGML_TYPE_F16:
  12142. {
  12143. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12144. } break;
  12145. case GGML_TYPE_F32:
  12146. {
  12147. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12148. } break;
  12149. default:
  12150. {
  12151. GGML_ASSERT(false);
  12152. } break;
  12153. }
  12154. }
  12155. // src0: kernel [OC, IC, KH, KW]
  12156. // src1: image [N, IC, IH, IW]
  12157. // dst: result [N, OH, OW, IC*KH*KW]
  12158. static void ggml_compute_forward_im2col_f32(
  12159. const struct ggml_compute_params * params,
  12160. struct ggml_tensor * dst) {
  12161. const struct ggml_tensor * src0 = dst->src[0];
  12162. const struct ggml_tensor * src1 = dst->src[1];
  12163. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12164. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12165. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12166. int64_t t0 = ggml_perf_time_us();
  12167. UNUSED(t0);
  12168. GGML_TENSOR_BINARY_OP_LOCALS;
  12169. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12170. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12171. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12172. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12173. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12174. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12175. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12176. const int ith = params->ith;
  12177. const int nth = params->nth;
  12178. const int64_t N = is_2D ? ne13 : ne12;
  12179. const int64_t IC = is_2D ? ne12 : ne11;
  12180. const int64_t IH = is_2D ? ne11 : 1;
  12181. const int64_t IW = ne10;
  12182. const int64_t KH = is_2D ? ne01 : 1;
  12183. const int64_t KW = ne00;
  12184. const int64_t OH = is_2D ? ne2 : 1;
  12185. const int64_t OW = ne1;
  12186. int ofs0 = is_2D ? nb13 : nb12;
  12187. int ofs1 = is_2D ? nb12 : nb11;
  12188. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12189. GGML_ASSERT(nb10 == sizeof(float));
  12190. if (params->type == GGML_TASK_TYPE_INIT) {
  12191. return;
  12192. }
  12193. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12194. return;
  12195. }
  12196. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12197. {
  12198. float * const wdata = (float *) dst->data;
  12199. for (int64_t in = 0; in < N; in++) {
  12200. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12201. for (int64_t iow = 0; iow < OW; iow++) {
  12202. for (int64_t iic = ith; iic < IC; iic += nth) {
  12203. // micro kernel
  12204. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12205. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12206. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12207. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12208. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12209. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12210. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12211. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12212. } else {
  12213. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12214. }
  12215. }
  12216. }
  12217. }
  12218. }
  12219. }
  12220. }
  12221. }
  12222. }
  12223. // src0: kernel [OC, IC, KH, KW]
  12224. // src1: image [N, IC, IH, IW]
  12225. // dst: result [N, OH, OW, IC*KH*KW]
  12226. static void ggml_compute_forward_im2col_f16(
  12227. const struct ggml_compute_params * params,
  12228. struct ggml_tensor * dst) {
  12229. const struct ggml_tensor * src0 = dst->src[0];
  12230. const struct ggml_tensor * src1 = dst->src[1];
  12231. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12232. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12233. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12234. int64_t t0 = ggml_perf_time_us();
  12235. UNUSED(t0);
  12236. GGML_TENSOR_BINARY_OP_LOCALS;
  12237. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12238. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12239. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12240. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12241. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12242. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12243. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12244. const int ith = params->ith;
  12245. const int nth = params->nth;
  12246. const int64_t N = is_2D ? ne13 : ne12;
  12247. const int64_t IC = is_2D ? ne12 : ne11;
  12248. const int64_t IH = is_2D ? ne11 : 1;
  12249. const int64_t IW = ne10;
  12250. const int64_t KH = is_2D ? ne01 : 1;
  12251. const int64_t KW = ne00;
  12252. const int64_t OH = is_2D ? ne2 : 1;
  12253. const int64_t OW = ne1;
  12254. int ofs0 = is_2D ? nb13 : nb12;
  12255. int ofs1 = is_2D ? nb12 : nb11;
  12256. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12257. GGML_ASSERT(nb10 == sizeof(float));
  12258. if (params->type == GGML_TASK_TYPE_INIT) {
  12259. return;
  12260. }
  12261. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12262. return;
  12263. }
  12264. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12265. {
  12266. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12267. for (int64_t in = 0; in < N; in++) {
  12268. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12269. for (int64_t iow = 0; iow < OW; iow++) {
  12270. for (int64_t iic = ith; iic < IC; iic += nth) {
  12271. // micro kernel
  12272. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12273. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12274. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12275. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12276. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12277. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12278. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12279. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12280. } else {
  12281. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12282. }
  12283. }
  12284. }
  12285. }
  12286. }
  12287. }
  12288. }
  12289. }
  12290. }
  12291. static void ggml_compute_forward_im2col(
  12292. const struct ggml_compute_params * params,
  12293. struct ggml_tensor * dst) {
  12294. switch (dst->type) {
  12295. case GGML_TYPE_F16:
  12296. {
  12297. ggml_compute_forward_im2col_f16(params, dst);
  12298. } break;
  12299. case GGML_TYPE_F32:
  12300. {
  12301. ggml_compute_forward_im2col_f32(params, dst);
  12302. } break;
  12303. default:
  12304. {
  12305. GGML_ASSERT(false);
  12306. } break;
  12307. }
  12308. }
  12309. // ggml_compute_forward_conv_transpose_2d
  12310. static void ggml_compute_forward_conv_transpose_2d(
  12311. const struct ggml_compute_params * params,
  12312. struct ggml_tensor * dst) {
  12313. const struct ggml_tensor * src0 = dst->src[0];
  12314. const struct ggml_tensor * src1 = dst->src[1];
  12315. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12316. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12317. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12318. int64_t t0 = ggml_perf_time_us();
  12319. UNUSED(t0);
  12320. GGML_TENSOR_BINARY_OP_LOCALS
  12321. const int ith = params->ith;
  12322. const int nth = params->nth;
  12323. const int nk = ne00*ne01*ne02*ne03;
  12324. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12325. GGML_ASSERT(nb10 == sizeof(float));
  12326. if (params->type == GGML_TASK_TYPE_INIT) {
  12327. if (ith != 0) {
  12328. return;
  12329. }
  12330. memset(params->wdata, 0, params->wsize);
  12331. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12332. {
  12333. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12334. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12335. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12336. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12337. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12338. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12339. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12340. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12341. }
  12342. }
  12343. }
  12344. }
  12345. }
  12346. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12347. {
  12348. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12349. for (int i12 = 0; i12 < ne12; i12++) {
  12350. for (int i11 = 0; i11 < ne11; i11++) {
  12351. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12352. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12353. for (int i10 = 0; i10 < ne10; i10++) {
  12354. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12355. }
  12356. }
  12357. }
  12358. }
  12359. memset(dst->data, 0, ggml_nbytes(dst));
  12360. return;
  12361. }
  12362. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12363. return;
  12364. }
  12365. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12366. // total patches in dst
  12367. const int np = ne2;
  12368. // patches per thread
  12369. const int dp = (np + nth - 1)/nth;
  12370. // patch range for this thread
  12371. const int ip0 = dp*ith;
  12372. const int ip1 = MIN(ip0 + dp, np);
  12373. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12374. ggml_fp16_t * const wdata_src = wdata + nk;
  12375. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12376. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12377. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12378. for (int i11 = 0; i11 < ne11; i11++) {
  12379. for (int i10 = 0; i10 < ne10; i10++) {
  12380. const int i1n = i11*ne10*ne12 + i10*ne12;
  12381. for (int i01 = 0; i01 < ne01; i01++) {
  12382. for (int i00 = 0; i00 < ne00; i00++) {
  12383. float v = 0;
  12384. ggml_vec_dot_f16(ne03, &v, 0,
  12385. wdata_src + i1n, 0,
  12386. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12387. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12388. }
  12389. }
  12390. }
  12391. }
  12392. }
  12393. }
  12394. // ggml_compute_forward_pool_1d_sk_p0
  12395. static void ggml_compute_forward_pool_1d_sk_p0(
  12396. const struct ggml_compute_params * params,
  12397. const enum ggml_op_pool op,
  12398. const int k,
  12399. struct ggml_tensor * dst) {
  12400. const struct ggml_tensor * src = dst->src[0];
  12401. assert(src->type == GGML_TYPE_F32);
  12402. assert(params->ith == 0);
  12403. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12404. return;
  12405. }
  12406. const char * cdata = (const char *)src->data;
  12407. const char * const data_end = cdata + ggml_nbytes(src);
  12408. float * drow = (float *)dst->data;
  12409. const int64_t rs = dst->ne[0];
  12410. while (cdata < data_end) {
  12411. const float * const srow = (const float *)cdata;
  12412. int j = 0;
  12413. for (int64_t i = 0; i < rs; ++i) {
  12414. switch (op) {
  12415. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12416. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12417. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12418. }
  12419. for (int ki = 0; ki < k; ++ki) {
  12420. switch (op) {
  12421. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12422. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12423. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12424. }
  12425. ++j;
  12426. }
  12427. switch (op) {
  12428. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12429. case GGML_OP_POOL_MAX: break;
  12430. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12431. }
  12432. }
  12433. cdata += src->nb[1];
  12434. drow += rs;
  12435. }
  12436. }
  12437. // ggml_compute_forward_pool_1d
  12438. static void ggml_compute_forward_pool_1d(
  12439. const struct ggml_compute_params * params,
  12440. struct ggml_tensor * dst) {
  12441. const int32_t * opts = (const int32_t *)dst->op_params;
  12442. enum ggml_op_pool op = opts[0];
  12443. const int k0 = opts[1];
  12444. const int s0 = opts[2];
  12445. const int p0 = opts[3];
  12446. GGML_ASSERT(p0 == 0); // padding not supported
  12447. GGML_ASSERT(k0 == s0); // only s = k supported
  12448. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12449. }
  12450. // ggml_compute_forward_pool_2d
  12451. static void ggml_compute_forward_pool_2d(
  12452. const struct ggml_compute_params * params,
  12453. struct ggml_tensor * dst) {
  12454. const struct ggml_tensor * src = dst->src[0];
  12455. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12456. GGML_ASSERT(params->ith == 0);
  12457. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12458. return;
  12459. }
  12460. const int32_t * opts = (const int32_t *)dst->op_params;
  12461. enum ggml_op_pool op = opts[0];
  12462. const int k0 = opts[1];
  12463. const int k1 = opts[2];
  12464. const int s0 = opts[3];
  12465. const int s1 = opts[4];
  12466. const int p0 = opts[5];
  12467. const int p1 = opts[6];
  12468. const char * cdata = (const char*)src->data;
  12469. const char * const data_end = cdata + ggml_nbytes(src);
  12470. const int64_t px = dst->ne[0];
  12471. const int64_t py = dst->ne[1];
  12472. const int64_t pa = px * py;
  12473. float * dplane = (float *)dst->data;
  12474. const int ka = k0 * k1;
  12475. const int offset0 = -p0;
  12476. const int offset1 = -p1;
  12477. while (cdata < data_end) {
  12478. for (int oy = 0; oy < py; ++oy) {
  12479. float * const drow = dplane + oy * px;
  12480. for (int ox = 0; ox < px; ++ox) {
  12481. float * const out = drow + ox;
  12482. switch (op) {
  12483. case GGML_OP_POOL_AVG: *out = 0; break;
  12484. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12485. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12486. }
  12487. const int ix = offset0 + ox * s0;
  12488. const int iy = offset1 + oy * s1;
  12489. for (int ky = 0; ky < k1; ++ky) {
  12490. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12491. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12492. for (int kx = 0; kx < k0; ++kx) {
  12493. int j = ix + kx;
  12494. if (j < 0 || j >= src->ne[0]) continue;
  12495. switch (op) {
  12496. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12497. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12498. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12499. }
  12500. }
  12501. }
  12502. switch (op) {
  12503. case GGML_OP_POOL_AVG: *out /= ka; break;
  12504. case GGML_OP_POOL_MAX: break;
  12505. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12506. }
  12507. }
  12508. }
  12509. cdata += src->nb[2];
  12510. dplane += pa;
  12511. }
  12512. }
  12513. // ggml_compute_forward_upscale
  12514. static void ggml_compute_forward_upscale_f32(
  12515. const struct ggml_compute_params * params,
  12516. struct ggml_tensor * dst) {
  12517. const struct ggml_tensor * src0 = dst->src[0];
  12518. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12519. return;
  12520. }
  12521. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12522. const int ith = params->ith;
  12523. const int nth = params->nth;
  12524. GGML_TENSOR_UNARY_OP_LOCALS
  12525. const float sf0 = (float)ne0/src0->ne[0];
  12526. const float sf1 = (float)ne1/src0->ne[1];
  12527. const float sf2 = (float)ne2/src0->ne[2];
  12528. const float sf3 = (float)ne3/src0->ne[3];
  12529. // TODO: optimize
  12530. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12531. const int64_t i03 = i3 / sf3;
  12532. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12533. const int64_t i02 = i2 / sf2;
  12534. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12535. const int64_t i01 = i1 / sf1;
  12536. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12537. const int64_t i00 = i0 / sf0;
  12538. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12539. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12540. *y = *x;
  12541. }
  12542. }
  12543. }
  12544. }
  12545. }
  12546. static void ggml_compute_forward_upscale(
  12547. const struct ggml_compute_params * params,
  12548. struct ggml_tensor * dst) {
  12549. const struct ggml_tensor * src0 = dst->src[0];
  12550. switch (src0->type) {
  12551. case GGML_TYPE_F32:
  12552. {
  12553. ggml_compute_forward_upscale_f32(params, dst);
  12554. } break;
  12555. default:
  12556. {
  12557. GGML_ASSERT(false);
  12558. } break;
  12559. }
  12560. }
  12561. // ggml_compute_forward_pad
  12562. static void ggml_compute_forward_pad_f32(
  12563. const struct ggml_compute_params * params,
  12564. struct ggml_tensor * dst) {
  12565. const struct ggml_tensor * src0 = dst->src[0];
  12566. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12567. return;
  12568. }
  12569. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12570. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12571. const int ith = params->ith;
  12572. const int nth = params->nth;
  12573. GGML_TENSOR_UNARY_OP_LOCALS
  12574. float * dst_ptr = (float *) dst->data;
  12575. // TODO: optimize
  12576. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12577. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12578. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12579. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12580. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12581. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12582. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12583. dst_ptr[dst_idx] = *src_ptr;
  12584. } else {
  12585. dst_ptr[dst_idx] = 0;
  12586. }
  12587. }
  12588. }
  12589. }
  12590. }
  12591. }
  12592. static void ggml_compute_forward_pad(
  12593. const struct ggml_compute_params * params,
  12594. struct ggml_tensor * dst) {
  12595. const struct ggml_tensor * src0 = dst->src[0];
  12596. switch (src0->type) {
  12597. case GGML_TYPE_F32:
  12598. {
  12599. ggml_compute_forward_pad_f32(params, dst);
  12600. } break;
  12601. default:
  12602. {
  12603. GGML_ASSERT(false);
  12604. } break;
  12605. }
  12606. }
  12607. // ggml_compute_forward_arange
  12608. static void ggml_compute_forward_arange_f32(
  12609. const struct ggml_compute_params * params,
  12610. struct ggml_tensor * dst) {
  12611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12612. return;
  12613. }
  12614. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12615. const int ith = params->ith;
  12616. const int nth = params->nth;
  12617. const float start = ggml_get_op_params_f32(dst, 0);
  12618. const float stop = ggml_get_op_params_f32(dst, 1);
  12619. const float step = ggml_get_op_params_f32(dst, 2);
  12620. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12621. GGML_ASSERT(ggml_nelements(dst) == steps);
  12622. for (int64_t i = ith; i < steps; i+= nth) {
  12623. float value = start + step * i;
  12624. ((float *)dst->data)[i] = value;
  12625. }
  12626. }
  12627. static void ggml_compute_forward_arange(
  12628. const struct ggml_compute_params * params,
  12629. struct ggml_tensor * dst) {
  12630. switch (dst->type) {
  12631. case GGML_TYPE_F32:
  12632. {
  12633. ggml_compute_forward_arange_f32(params, dst);
  12634. } break;
  12635. default:
  12636. {
  12637. GGML_ASSERT(false);
  12638. } break;
  12639. }
  12640. }
  12641. static void ggml_compute_forward_timestep_embedding_f32(
  12642. const struct ggml_compute_params * params,
  12643. struct ggml_tensor * dst) {
  12644. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12645. return;
  12646. }
  12647. const struct ggml_tensor * src0 = dst->src[0];
  12648. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12649. const int ith = params->ith;
  12650. const int nth = params->nth;
  12651. GGML_TENSOR_UNARY_OP_LOCALS
  12652. const int dim = ggml_get_op_params_i32(dst, 0);
  12653. const int max_period = ggml_get_op_params_i32(dst, 1);
  12654. int half = dim / 2;
  12655. for (int64_t i = 0; i < ne00; i++) {
  12656. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12657. for (int64_t j = ith; j < half; j += nth) {
  12658. float timestep = ((float *)src0->data)[i];
  12659. float freq = (float)expf(-logf(max_period) * j / half);
  12660. float arg = timestep * freq;
  12661. embed_data[j] = cosf(arg);
  12662. embed_data[j + half] = sinf(arg);
  12663. }
  12664. if (dim % 2 != 0 && ith == 0) {
  12665. embed_data[dim] = 0.f;
  12666. }
  12667. }
  12668. }
  12669. static void ggml_compute_forward_timestep_embedding(
  12670. const struct ggml_compute_params * params,
  12671. struct ggml_tensor * dst) {
  12672. const struct ggml_tensor * src0 = dst->src[0];
  12673. switch (src0->type) {
  12674. case GGML_TYPE_F32:
  12675. {
  12676. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12677. } break;
  12678. default:
  12679. {
  12680. GGML_ASSERT(false);
  12681. } break;
  12682. }
  12683. }
  12684. // ggml_compute_forward_argsort
  12685. static void ggml_compute_forward_argsort_f32(
  12686. const struct ggml_compute_params * params,
  12687. struct ggml_tensor * dst) {
  12688. const struct ggml_tensor * src0 = dst->src[0];
  12689. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12690. return;
  12691. }
  12692. GGML_TENSOR_UNARY_OP_LOCALS
  12693. GGML_ASSERT(nb0 == sizeof(float));
  12694. const int ith = params->ith;
  12695. const int nth = params->nth;
  12696. const int64_t nr = ggml_nrows(src0);
  12697. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12698. for (int64_t i = ith; i < nr; i += nth) {
  12699. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12700. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12701. for (int64_t j = 0; j < ne0; j++) {
  12702. dst_data[j] = j;
  12703. }
  12704. // C doesn't have a functional sort, so we do a bubble sort instead
  12705. for (int64_t j = 0; j < ne0; j++) {
  12706. for (int64_t k = j + 1; k < ne0; k++) {
  12707. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12708. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12709. int32_t tmp = dst_data[j];
  12710. dst_data[j] = dst_data[k];
  12711. dst_data[k] = tmp;
  12712. }
  12713. }
  12714. }
  12715. }
  12716. }
  12717. static void ggml_compute_forward_argsort(
  12718. const struct ggml_compute_params * params,
  12719. struct ggml_tensor * dst) {
  12720. const struct ggml_tensor * src0 = dst->src[0];
  12721. switch (src0->type) {
  12722. case GGML_TYPE_F32:
  12723. {
  12724. ggml_compute_forward_argsort_f32(params, dst);
  12725. } break;
  12726. default:
  12727. {
  12728. GGML_ASSERT(false);
  12729. } break;
  12730. }
  12731. }
  12732. // ggml_compute_forward_flash_attn
  12733. static void ggml_compute_forward_flash_attn_f32(
  12734. const struct ggml_compute_params * params,
  12735. const bool masked,
  12736. struct ggml_tensor * dst) {
  12737. const struct ggml_tensor * q = dst->src[0];
  12738. const struct ggml_tensor * k = dst->src[1];
  12739. const struct ggml_tensor * v = dst->src[2];
  12740. int64_t t0 = ggml_perf_time_us();
  12741. UNUSED(t0);
  12742. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12743. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12744. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12745. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12746. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12747. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12748. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12749. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12750. const int ith = params->ith;
  12751. const int nth = params->nth;
  12752. const int64_t D = neq0;
  12753. const int64_t N = neq1;
  12754. const int64_t P = nek1 - N;
  12755. const int64_t M = P + N;
  12756. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12757. GGML_ASSERT(ne0 == D);
  12758. GGML_ASSERT(ne1 == N);
  12759. GGML_ASSERT(P >= 0);
  12760. GGML_ASSERT(nbq0 == sizeof(float));
  12761. GGML_ASSERT(nbk0 == sizeof(float));
  12762. GGML_ASSERT(nbv0 == sizeof(float));
  12763. GGML_ASSERT(neq0 == D);
  12764. GGML_ASSERT(nek0 == D);
  12765. GGML_ASSERT(nev1 == D);
  12766. GGML_ASSERT(neq1 == N);
  12767. GGML_ASSERT(nek1 == N + P);
  12768. GGML_ASSERT(nev1 == D);
  12769. // dst cannot be transposed or permuted
  12770. GGML_ASSERT(nb0 == sizeof(float));
  12771. GGML_ASSERT(nb0 <= nb1);
  12772. GGML_ASSERT(nb1 <= nb2);
  12773. GGML_ASSERT(nb2 <= nb3);
  12774. if (params->type == GGML_TASK_TYPE_INIT) {
  12775. return;
  12776. }
  12777. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12778. return;
  12779. }
  12780. // parallelize by q rows using ggml_vec_dot_f32
  12781. // total rows in q
  12782. const int nr = neq1*neq2*neq3;
  12783. // rows per thread
  12784. const int dr = (nr + nth - 1)/nth;
  12785. // row range for this thread
  12786. const int ir0 = dr*ith;
  12787. const int ir1 = MIN(ir0 + dr, nr);
  12788. const float scale = 1.0f/sqrtf(D);
  12789. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12790. for (int ir = ir0; ir < ir1; ++ir) {
  12791. // q indices
  12792. const int iq3 = ir/(neq2*neq1);
  12793. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12794. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12795. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12796. for (int i = M; i < Mup; ++i) {
  12797. S[i] = -INFINITY;
  12798. }
  12799. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12800. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12801. // k indices
  12802. const int ik3 = iq3;
  12803. const int ik2 = iq2 % nek2;
  12804. const int ik1 = ic;
  12805. // S indices
  12806. const int i1 = ik1;
  12807. ggml_vec_dot_f32(neq0,
  12808. S + i1, 0,
  12809. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12810. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12811. }
  12812. // scale
  12813. ggml_vec_scale_f32(masked_begin, S, scale);
  12814. for (int64_t i = masked_begin; i < M; i++) {
  12815. S[i] = -INFINITY;
  12816. }
  12817. // softmax
  12818. // exclude known -INF S[..] values from max and loop
  12819. // dont forget to set their SW values to zero
  12820. {
  12821. float max = -INFINITY;
  12822. ggml_vec_max_f32(masked_begin, &max, S);
  12823. ggml_float sum = 0.0;
  12824. {
  12825. #ifdef GGML_SOFT_MAX_ACCELERATE
  12826. max = -max;
  12827. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12828. vvexpf(S, S, &Mup);
  12829. ggml_vec_sum_f32(Mup, &sum, S);
  12830. #else
  12831. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12832. #endif
  12833. }
  12834. assert(sum > 0.0);
  12835. sum = 1.0/sum;
  12836. ggml_vec_scale_f32(masked_begin, S, sum);
  12837. #ifndef NDEBUG
  12838. for (int i = 0; i < masked_begin; ++i) {
  12839. assert(!isnan(S[i]));
  12840. assert(!isinf(S[i]));
  12841. }
  12842. #endif
  12843. }
  12844. for (int64_t ic = 0; ic < nev1; ++ic) {
  12845. // dst indices
  12846. const int i1 = iq1;
  12847. const int i2 = iq2;
  12848. const int i3 = iq3;
  12849. // v indices
  12850. const int iv2 = iq2 % nev2;
  12851. const int iv3 = iq3;
  12852. ggml_vec_dot_f32(masked_begin,
  12853. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12854. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12855. S, 0, 1);
  12856. }
  12857. }
  12858. }
  12859. static void ggml_compute_forward_flash_attn_f16(
  12860. const struct ggml_compute_params * params,
  12861. const bool masked,
  12862. struct ggml_tensor * dst) {
  12863. const struct ggml_tensor * q = dst->src[0];
  12864. const struct ggml_tensor * k = dst->src[1];
  12865. const struct ggml_tensor * v = dst->src[2];
  12866. int64_t t0 = ggml_perf_time_us();
  12867. UNUSED(t0);
  12868. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12869. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12870. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12871. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12872. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12873. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12874. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12875. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12876. const int ith = params->ith;
  12877. const int nth = params->nth;
  12878. const int64_t D = neq0;
  12879. const int64_t N = neq1;
  12880. const int64_t P = nek1 - N;
  12881. const int64_t M = P + N;
  12882. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12883. GGML_ASSERT(ne0 == D);
  12884. GGML_ASSERT(ne1 == N);
  12885. GGML_ASSERT(P >= 0);
  12886. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12887. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12888. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12889. GGML_ASSERT(neq0 == D);
  12890. GGML_ASSERT(nek0 == D);
  12891. GGML_ASSERT(nev1 == D);
  12892. GGML_ASSERT(neq1 == N);
  12893. GGML_ASSERT(nek1 == N + P);
  12894. GGML_ASSERT(nev1 == D);
  12895. // dst cannot be transposed or permuted
  12896. GGML_ASSERT(nb0 == sizeof(float));
  12897. GGML_ASSERT(nb0 <= nb1);
  12898. GGML_ASSERT(nb1 <= nb2);
  12899. GGML_ASSERT(nb2 <= nb3);
  12900. if (params->type == GGML_TASK_TYPE_INIT) {
  12901. return;
  12902. }
  12903. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12904. return;
  12905. }
  12906. // parallelize by q rows using ggml_vec_dot_f32
  12907. // total rows in q
  12908. const int nr = neq1*neq2*neq3;
  12909. // rows per thread
  12910. const int dr = (nr + nth - 1)/nth;
  12911. // row range for this thread
  12912. const int ir0 = dr*ith;
  12913. const int ir1 = MIN(ir0 + dr, nr);
  12914. const float scale = 1.0f/sqrtf(D);
  12915. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12916. for (int ir = ir0; ir < ir1; ++ir) {
  12917. // q indices
  12918. const int iq3 = ir/(neq2*neq1);
  12919. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12920. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12921. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12922. for (int i = M; i < Mup; ++i) {
  12923. S[i] = -INFINITY;
  12924. }
  12925. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12926. for (int64_t ic = 0; ic < nek1; ++ic) {
  12927. // k indices
  12928. const int ik3 = iq3;
  12929. const int ik2 = iq2 % nek2;
  12930. const int ik1 = ic;
  12931. // S indices
  12932. const int i1 = ik1;
  12933. ggml_vec_dot_f16(neq0,
  12934. S + i1, 0,
  12935. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12936. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12937. }
  12938. } else {
  12939. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12940. // k indices
  12941. const int ik3 = iq3;
  12942. const int ik2 = iq2 % nek2;
  12943. const int ik1 = ic;
  12944. // S indices
  12945. const int i1 = ik1;
  12946. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12947. S + i1,
  12948. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12949. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12950. }
  12951. }
  12952. // scale
  12953. ggml_vec_scale_f32(nek1, S, scale);
  12954. if (masked) {
  12955. for (int64_t i = P; i < M; i++) {
  12956. if (i > P + iq1) {
  12957. S[i] = -INFINITY;
  12958. }
  12959. }
  12960. }
  12961. // softmax
  12962. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12963. // dont forget to set their S values to zero
  12964. {
  12965. float max = -INFINITY;
  12966. ggml_vec_max_f32(M, &max, S);
  12967. ggml_float sum = 0.0;
  12968. {
  12969. #ifdef GGML_SOFT_MAX_ACCELERATE
  12970. max = -max;
  12971. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12972. vvexpf(S, S, &Mup);
  12973. ggml_vec_sum_f32(Mup, &sum, S);
  12974. #else
  12975. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12976. #endif
  12977. }
  12978. assert(sum > 0.0);
  12979. sum = 1.0/sum;
  12980. ggml_vec_scale_f32(M, S, sum);
  12981. #ifndef NDEBUG
  12982. for (int i = 0; i < M; ++i) {
  12983. assert(!isnan(S[i]));
  12984. assert(!isinf(S[i]));
  12985. }
  12986. #endif
  12987. }
  12988. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12989. for (int64_t i = 0; i < M; i++) {
  12990. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12991. }
  12992. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12993. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12994. for (int64_t ic = 0; ic < nev1; ++ic) {
  12995. // dst indices
  12996. const int i1 = iq1;
  12997. const int i2 = iq2;
  12998. const int i3 = iq3;
  12999. // v indices
  13000. const int iv2 = iq2 % nev2;
  13001. const int iv3 = iq3;
  13002. ggml_vec_dot_f16(nev0,
  13003. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13004. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  13005. S16, 0, 1);
  13006. }
  13007. } else {
  13008. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  13009. // dst indices
  13010. const int i1 = iq1;
  13011. const int i2 = iq2;
  13012. const int i3 = iq3;
  13013. // v indices
  13014. const int iv2 = iq2 % nev2;
  13015. const int iv3 = iq3;
  13016. ggml_vec_dot_f16_unroll(nev0, nbv1,
  13017. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  13018. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13019. S16);
  13020. }
  13021. }
  13022. }
  13023. }
  13024. static void ggml_compute_forward_flash_attn(
  13025. const struct ggml_compute_params * params,
  13026. const bool masked,
  13027. struct ggml_tensor * dst) {
  13028. const struct ggml_tensor * q = dst->src[0];
  13029. switch (q->type) {
  13030. case GGML_TYPE_F16:
  13031. {
  13032. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  13033. } break;
  13034. case GGML_TYPE_F32:
  13035. {
  13036. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  13037. } break;
  13038. default:
  13039. {
  13040. GGML_ASSERT(false);
  13041. } break;
  13042. }
  13043. }
  13044. // ggml_compute_forward_flash_attn_ext
  13045. static void ggml_compute_forward_flash_attn_ext_f16(
  13046. const struct ggml_compute_params * params,
  13047. const struct ggml_tensor * q,
  13048. const struct ggml_tensor * k,
  13049. const struct ggml_tensor * v,
  13050. const struct ggml_tensor * mask,
  13051. struct ggml_tensor * dst) {
  13052. int64_t t0 = ggml_perf_time_us();
  13053. UNUSED(t0);
  13054. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13055. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13056. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13057. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13058. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13059. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13060. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13061. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13062. const int ith = params->ith;
  13063. const int nth = params->nth;
  13064. const int64_t D = neq0;
  13065. const int64_t N = neq1;
  13066. GGML_ASSERT(ne0 == D);
  13067. GGML_ASSERT(ne2 == N);
  13068. // input tensor rows must be contiguous
  13069. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  13070. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  13071. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  13072. GGML_ASSERT(neq0 == D);
  13073. GGML_ASSERT(nek0 == D);
  13074. GGML_ASSERT(nev0 == D);
  13075. GGML_ASSERT(neq1 == N);
  13076. GGML_ASSERT(nev0 == D);
  13077. // dst cannot be transposed or permuted
  13078. GGML_ASSERT(nb0 == sizeof(float));
  13079. GGML_ASSERT(nb0 <= nb1);
  13080. GGML_ASSERT(nb1 <= nb2);
  13081. GGML_ASSERT(nb2 <= nb3);
  13082. // broadcast factors
  13083. const int64_t rk2 = neq2/nek2;
  13084. const int64_t rk3 = neq3/nek3;
  13085. const int64_t rv2 = neq2/nev2;
  13086. const int64_t rv3 = neq3/nev3;
  13087. if (params->type == GGML_TASK_TYPE_INIT) {
  13088. return;
  13089. }
  13090. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13091. return;
  13092. }
  13093. // parallelize by q rows using ggml_vec_dot_f32
  13094. // total rows in q
  13095. const int nr = neq1*neq2*neq3;
  13096. // rows per thread
  13097. const int dr = (nr + nth - 1)/nth;
  13098. // row range for this thread
  13099. const int ir0 = dr*ith;
  13100. const int ir1 = MIN(ir0 + dr, nr);
  13101. float scale = 1.0f;
  13102. float max_bias = 0.0f;
  13103. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  13104. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  13105. const uint32_t n_head = neq2;
  13106. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  13107. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  13108. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  13109. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  13110. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  13111. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  13112. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  13113. // loop over n_batch and n_head
  13114. for (int ir = ir0; ir < ir1; ++ir) {
  13115. // q indices
  13116. const int iq3 = ir/(neq2*neq1);
  13117. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  13118. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  13119. const uint32_t h = iq2; // head index
  13120. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  13121. float S = 0.0f; // sum
  13122. float M = -INFINITY; // maximum KQ value
  13123. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  13124. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  13125. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  13126. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  13127. if (v->type == GGML_TYPE_F16) {
  13128. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  13129. } else {
  13130. memset(VKQ32, 0, D*sizeof(float));
  13131. }
  13132. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  13133. // k indices
  13134. const int ik3 = iq3 / rk3;
  13135. const int ik2 = iq2 / rk2;
  13136. // v indices
  13137. const int iv3 = iq3 / rv3;
  13138. const int iv2 = iq2 / rv2;
  13139. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  13140. q_to_vec_dot(pq, Q_q, D);
  13141. // online softmax / attention
  13142. // loop over n_kv and n_head_kv
  13143. // ref: https://arxiv.org/pdf/2112.05682.pdf
  13144. for (int64_t ic = 0; ic < nek1; ++ic) {
  13145. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  13146. if (mv == -INFINITY) {
  13147. continue;
  13148. }
  13149. float s; // KQ value
  13150. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  13151. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  13152. s = s*scale + mv; // scale KQ value and apply mask
  13153. const float Mold = M;
  13154. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  13155. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  13156. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13157. if (v->type== GGML_TYPE_F16) {
  13158. if (s > M) {
  13159. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13160. M = s;
  13161. ms = expf(Mold - M);
  13162. // V = V*expf(Mold - M)
  13163. ggml_vec_scale_f16(D, VKQ16, ms);
  13164. } else {
  13165. // no new maximum, ms == 1.0f, vs != 1.0f
  13166. vs = expf(s - M);
  13167. }
  13168. // V += v*expf(s - M)
  13169. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  13170. } else {
  13171. if (s > M) {
  13172. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13173. M = s;
  13174. ms = expf(Mold - M);
  13175. // V = V*expf(Mold - M)
  13176. ggml_vec_scale_f32(D, VKQ32, ms);
  13177. } else {
  13178. // no new maximum, ms == 1.0f, vs != 1.0f
  13179. vs = expf(s - M);
  13180. }
  13181. v_to_float(v_data, V32, D);
  13182. // V += v*expf(s - M)
  13183. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  13184. }
  13185. S = S*ms + vs; // scale and increment sum with partial sum
  13186. }
  13187. if (v->type == GGML_TYPE_F16) {
  13188. for (int64_t d = 0; d < D; ++d) {
  13189. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  13190. }
  13191. }
  13192. // V /= S
  13193. const float S_inv = 1.0f/S;
  13194. ggml_vec_scale_f32(D, VKQ32, S_inv);
  13195. // dst indices
  13196. const int i1 = iq1;
  13197. const int i2 = iq2;
  13198. const int i3 = iq3;
  13199. // original
  13200. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13201. // permute(0, 2, 1, 3)
  13202. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  13203. }
  13204. }
  13205. static void ggml_compute_forward_flash_attn_ext(
  13206. const struct ggml_compute_params * params,
  13207. const struct ggml_tensor * q,
  13208. const struct ggml_tensor * k,
  13209. const struct ggml_tensor * v,
  13210. const struct ggml_tensor * mask,
  13211. struct ggml_tensor * dst) {
  13212. switch (dst->op_params[2]) {
  13213. case GGML_PREC_DEFAULT:
  13214. case GGML_PREC_F32:
  13215. {
  13216. // uses F32 accumulators
  13217. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13218. } break;
  13219. default:
  13220. {
  13221. GGML_ASSERT(false);
  13222. } break;
  13223. }
  13224. }
  13225. // ggml_compute_forward_flash_ff
  13226. static void ggml_compute_forward_flash_ff_f16(
  13227. const struct ggml_compute_params * params,
  13228. struct ggml_tensor * dst) {
  13229. const struct ggml_tensor * a = dst->src[0]; // F16
  13230. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  13231. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  13232. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  13233. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  13234. int64_t t0 = ggml_perf_time_us();
  13235. UNUSED(t0);
  13236. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  13237. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  13238. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  13239. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  13240. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  13241. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  13242. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  13243. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  13244. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  13245. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  13246. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13247. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13248. const int ith = params->ith;
  13249. const int nth = params->nth;
  13250. const int64_t D = nea0;
  13251. //const int64_t N = nea1;
  13252. const int64_t M = neb01;
  13253. GGML_ASSERT(ne0 == nea0);
  13254. GGML_ASSERT(ne1 == nea1);
  13255. GGML_ASSERT(ne2 == nea2);
  13256. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  13257. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  13258. GGML_ASSERT(nbb10 == sizeof(float));
  13259. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  13260. GGML_ASSERT(nbc10 == sizeof(float));
  13261. GGML_ASSERT(neb00 == D);
  13262. GGML_ASSERT(neb01 == M);
  13263. GGML_ASSERT(neb10 == M);
  13264. GGML_ASSERT(neb11 == 1);
  13265. GGML_ASSERT(nec00 == M);
  13266. GGML_ASSERT(nec01 == D);
  13267. GGML_ASSERT(nec10 == D);
  13268. GGML_ASSERT(nec11 == 1);
  13269. // dst cannot be transposed or permuted
  13270. GGML_ASSERT(nb0 == sizeof(float));
  13271. GGML_ASSERT(nb0 <= nb1);
  13272. GGML_ASSERT(nb1 <= nb2);
  13273. GGML_ASSERT(nb2 <= nb3);
  13274. if (params->type == GGML_TASK_TYPE_INIT) {
  13275. return;
  13276. }
  13277. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13278. return;
  13279. }
  13280. // parallelize by a rows using ggml_vec_dot_f32
  13281. // total rows in a
  13282. const int nr = nea1*nea2*nea3;
  13283. // rows per thread
  13284. const int dr = (nr + nth - 1)/nth;
  13285. // row range for this thread
  13286. const int ir0 = dr*ith;
  13287. const int ir1 = MIN(ir0 + dr, nr);
  13288. for (int ir = ir0; ir < ir1; ++ir) {
  13289. // a indices
  13290. const int ia3 = ir/(nea2*nea1);
  13291. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  13292. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  13293. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  13294. for (int64_t ic = 0; ic < neb01; ++ic) {
  13295. // b0 indices
  13296. const int ib03 = ia3;
  13297. const int ib02 = ia2;
  13298. const int ib01 = ic;
  13299. // S indices
  13300. const int i1 = ib01;
  13301. ggml_vec_dot_f16(nea0,
  13302. S + i1, 0,
  13303. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  13304. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  13305. }
  13306. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  13307. //ggml_vec_gelu_f32(neb01, S, S);
  13308. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  13309. for (int64_t i = 0; i < M; i++) {
  13310. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13311. }
  13312. ggml_vec_gelu_f16(neb01, S16, S16);
  13313. {
  13314. // dst indices
  13315. const int i1 = ia1;
  13316. const int i2 = ia2;
  13317. const int i3 = ia3;
  13318. for (int64_t ic = 0; ic < nec01; ++ic) {
  13319. ggml_vec_dot_f16(neb01,
  13320. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13321. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  13322. S16, 0, 1);
  13323. }
  13324. ggml_vec_add_f32(nec01,
  13325. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13326. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13327. (float *) c1->data);
  13328. }
  13329. }
  13330. }
  13331. static void ggml_compute_forward_flash_ff(
  13332. const struct ggml_compute_params * params,
  13333. struct ggml_tensor * dst) {
  13334. const struct ggml_tensor * b0 = dst->src[1];
  13335. switch (b0->type) {
  13336. case GGML_TYPE_F16:
  13337. {
  13338. ggml_compute_forward_flash_ff_f16(params, dst);
  13339. } break;
  13340. case GGML_TYPE_F32:
  13341. {
  13342. GGML_ASSERT(false); // TODO
  13343. } break;
  13344. default:
  13345. {
  13346. GGML_ASSERT(false);
  13347. } break;
  13348. }
  13349. }
  13350. // ggml_compute_forward_flash_attn_back
  13351. static void ggml_compute_forward_flash_attn_back_f32(
  13352. const struct ggml_compute_params * params,
  13353. const bool masked,
  13354. struct ggml_tensor * dst) {
  13355. const struct ggml_tensor * q = dst->src[0];
  13356. const struct ggml_tensor * k = dst->src[1];
  13357. const struct ggml_tensor * v = dst->src[2];
  13358. const struct ggml_tensor * d = dst->src[3];
  13359. int64_t t0 = ggml_perf_time_us();
  13360. UNUSED(t0);
  13361. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13362. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13363. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13364. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13365. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13366. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13367. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13368. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13369. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13370. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13371. const int ith = params->ith;
  13372. const int nth = params->nth;
  13373. const int64_t D = neq0;
  13374. const int64_t N = neq1;
  13375. const int64_t P = nek1 - N;
  13376. const int64_t M = P + N;
  13377. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13378. const int mxDM = MAX(D, Mup);
  13379. // GGML_ASSERT(ne0 == D);
  13380. // GGML_ASSERT(ne1 == N);
  13381. GGML_ASSERT(P >= 0);
  13382. GGML_ASSERT(nbq0 == sizeof(float));
  13383. GGML_ASSERT(nbk0 == sizeof(float));
  13384. GGML_ASSERT(nbv0 == sizeof(float));
  13385. GGML_ASSERT(neq0 == D);
  13386. GGML_ASSERT(nek0 == D);
  13387. GGML_ASSERT(nev1 == D);
  13388. GGML_ASSERT(ned0 == D);
  13389. GGML_ASSERT(neq1 == N);
  13390. GGML_ASSERT(nek1 == N + P);
  13391. GGML_ASSERT(nev1 == D);
  13392. GGML_ASSERT(ned1 == N);
  13393. // dst cannot be transposed or permuted
  13394. GGML_ASSERT(nb0 == sizeof(float));
  13395. GGML_ASSERT(nb0 <= nb1);
  13396. GGML_ASSERT(nb1 <= nb2);
  13397. GGML_ASSERT(nb2 <= nb3);
  13398. if (params->type == GGML_TASK_TYPE_INIT) {
  13399. if (ith == 0) {
  13400. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13401. }
  13402. return;
  13403. }
  13404. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13405. return;
  13406. }
  13407. const int64_t elem_q = ggml_nelements(q);
  13408. const int64_t elem_k = ggml_nelements(k);
  13409. enum ggml_type result_type = dst->type;
  13410. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13411. const size_t tsize = ggml_type_size(result_type);
  13412. const size_t offs_q = 0;
  13413. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13414. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13415. void * grad_q = (char *) dst->data;
  13416. void * grad_k = (char *) dst->data + offs_k;
  13417. void * grad_v = (char *) dst->data + offs_v;
  13418. const size_t nbgq1 = nb0*neq0;
  13419. const size_t nbgq2 = nb0*neq0*neq1;
  13420. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13421. const size_t nbgk1 = nb0*nek0;
  13422. const size_t nbgk2 = nb0*nek0*nek1;
  13423. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13424. const size_t nbgv1 = nb0*nev0;
  13425. const size_t nbgv2 = nb0*nev0*nev1;
  13426. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13427. // parallelize by k rows using ggml_vec_dot_f32
  13428. // total rows in k
  13429. const int nr = nek2*nek3;
  13430. // rows per thread
  13431. const int dr = (nr + nth - 1)/nth;
  13432. // row range for this thread
  13433. const int ir0 = dr*ith;
  13434. const int ir1 = MIN(ir0 + dr, nr);
  13435. const float scale = 1.0f/sqrtf(D);
  13436. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13437. // how often k2 (and v2) is repeated in q2
  13438. int nrep = neq2/nek2;
  13439. for (int ir = ir0; ir < ir1; ++ir) {
  13440. // q indices
  13441. const int ik3 = ir/(nek2);
  13442. const int ik2 = ir - ik3*nek2;
  13443. const int iq3 = ik3;
  13444. const int id3 = ik3;
  13445. const int iv3 = ik3;
  13446. const int iv2 = ik2;
  13447. for (int irep = 0; irep < nrep; ++irep) {
  13448. const int iq2 = ik2 + irep*nek2;
  13449. const int id2 = iq2;
  13450. // (ik2 + irep*nek2) % nek2 == ik2
  13451. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13452. const int id1 = iq1;
  13453. // not sure about CACHE_LINE_SIZE_F32..
  13454. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13455. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13456. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13457. for (int i = M; i < Mup; ++i) {
  13458. S[i] = -INFINITY;
  13459. }
  13460. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13461. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13462. // k indices
  13463. const int ik1 = ic;
  13464. // S indices
  13465. const int i1 = ik1;
  13466. ggml_vec_dot_f32(neq0,
  13467. S + i1, 0,
  13468. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13469. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13470. }
  13471. // scale
  13472. ggml_vec_scale_f32(masked_begin, S, scale);
  13473. for (int64_t i = masked_begin; i < M; i++) {
  13474. S[i] = -INFINITY;
  13475. }
  13476. // softmax
  13477. // exclude known -INF S[..] values from max and loop
  13478. // dont forget to set their SM values to zero
  13479. {
  13480. float max = -INFINITY;
  13481. ggml_vec_max_f32(masked_begin, &max, S);
  13482. ggml_float sum = 0.0;
  13483. {
  13484. #ifdef GGML_SOFT_MAX_ACCELERATE
  13485. max = -max;
  13486. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13487. vvexpf(SM, SM, &Mup);
  13488. ggml_vec_sum_f32(Mup, &sum, SM);
  13489. #else
  13490. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13491. #endif
  13492. }
  13493. assert(sum > 0.0);
  13494. sum = 1.0/sum;
  13495. ggml_vec_scale_f32(masked_begin, SM, sum);
  13496. }
  13497. // step-by-step explanation
  13498. {
  13499. // forward-process shape grads from backward process
  13500. // parallel_for ik2,ik3:
  13501. // for irep:
  13502. // iq2 = ik2 + irep*nek2
  13503. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13504. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13505. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13506. // for iq1:
  13507. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13508. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13509. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13510. // S0 = -Inf [D,1,1,1]
  13511. // ~S1[i] = dot(kcur[:D,i], qcur)
  13512. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13513. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13514. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13515. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13516. // ~S5[i] = dot(vcur[:,i], S4)
  13517. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13518. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13519. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13520. // dst backward-/ grad[dst] = d
  13521. //
  13522. // output gradients with their dependencies:
  13523. //
  13524. // grad[kcur] = grad[S1].T @ qcur
  13525. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13526. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13527. // grad[S4] = grad[S5] @ vcur
  13528. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13529. // grad[qcur] = grad[S1] @ kcur
  13530. // grad[vcur] = grad[S5].T @ S4
  13531. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13532. //
  13533. // in post-order:
  13534. //
  13535. // S1 = qcur @ kcur.T
  13536. // S2 = S1 * scale
  13537. // S3 = diag_mask_inf(S2, P)
  13538. // S4 = softmax(S3)
  13539. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13540. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13541. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13542. // grad[qcur] = grad[S1] @ kcur
  13543. // grad[kcur] = grad[S1].T @ qcur
  13544. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13545. //
  13546. // using less variables (SM=S4):
  13547. //
  13548. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13549. // SM = softmax(S)
  13550. // S = d[:D,iq1,iq2,iq3] @ vcur
  13551. // dot_SM_gradSM = dot(SM, S)
  13552. // S = SM * (S - dot(SM, S))
  13553. // S = diag_mask_zero(S, P) * scale
  13554. //
  13555. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13556. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13557. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13558. }
  13559. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13560. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13561. // for ic:
  13562. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13563. // exclude known future zero S[..] values from operation
  13564. ggml_vec_set_f32(masked_begin, S, 0);
  13565. for (int64_t ic = 0; ic < D; ++ic) {
  13566. ggml_vec_mad_f32(masked_begin,
  13567. S,
  13568. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13569. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13570. }
  13571. // S = SM * (S - dot(SM, S))
  13572. float dot_SM_gradSM = 0;
  13573. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13574. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13575. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13576. // S = diag_mask_zero(S, P) * scale
  13577. // already done by above ggml_vec_set_f32
  13578. // exclude known zero S[..] values from operation
  13579. ggml_vec_scale_f32(masked_begin, S, scale);
  13580. // S shape [M,1]
  13581. // SM shape [M,1]
  13582. // kcur shape [D,M]
  13583. // qcur shape [D,1]
  13584. // vcur shape [M,D]
  13585. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13586. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13587. // for ic:
  13588. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13589. // exclude known zero S[..] values from loop
  13590. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13591. ggml_vec_mad_f32(D,
  13592. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13593. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13594. S[ic]);
  13595. }
  13596. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13597. // for ic:
  13598. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13599. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13600. // exclude known zero S[..] values from loop
  13601. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13602. ggml_vec_mad_f32(D,
  13603. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13604. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13605. S[ic]);
  13606. }
  13607. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13608. // for ic:
  13609. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13610. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13611. // exclude known zero SM[..] values from mad
  13612. for (int64_t ic = 0; ic < D; ++ic) {
  13613. ggml_vec_mad_f32(masked_begin,
  13614. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13615. SM,
  13616. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13617. }
  13618. }
  13619. }
  13620. }
  13621. }
  13622. static void ggml_compute_forward_flash_attn_back(
  13623. const struct ggml_compute_params * params,
  13624. const bool masked,
  13625. struct ggml_tensor * dst) {
  13626. const struct ggml_tensor * q = dst->src[0];
  13627. switch (q->type) {
  13628. case GGML_TYPE_F32:
  13629. {
  13630. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13631. } break;
  13632. default:
  13633. {
  13634. GGML_ASSERT(false);
  13635. } break;
  13636. }
  13637. }
  13638. // ggml_compute_forward_ssm_conv
  13639. static void ggml_compute_forward_ssm_conv_f32(
  13640. const struct ggml_compute_params * params,
  13641. struct ggml_tensor * dst) {
  13642. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13643. return;
  13644. }
  13645. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13646. const struct ggml_tensor * src1 = dst->src[1]; // x
  13647. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13648. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13649. const int ith = params->ith;
  13650. const int nth = params->nth;
  13651. const int nc = src2->ne[0]; // d_conv
  13652. const int nr = src0->ne[1]; // d_inner
  13653. const int n_t = src1->ne[1]; // n_tokens
  13654. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13655. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13656. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13657. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13658. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13659. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13660. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13661. // for use with the destination state offset between sequences
  13662. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13663. // rows per thread
  13664. const int dr = (nr + nth - 1)/nth;
  13665. // row range for this thread
  13666. const int ir0 = dr*ith;
  13667. const int ir1 = MIN(ir0 + dr, nr);
  13668. const int ir = ir1 - ir0;
  13669. if (n_kv > 1) {
  13670. // multiple sequences means it's hard to know when it's the first time a state is read,
  13671. // so copy them all over to the destination, just to be sure.
  13672. for (int i3 = 0; i3 < n_kv; ++i3) {
  13673. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13674. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13675. // can't use memcpy because of d_conv vs d_conv - 1
  13676. for (int i1 = 0; i1 < ir; ++i1) {
  13677. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13678. // copy s0 to last (d_conv - 1) columns of s
  13679. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13680. }
  13681. }
  13682. }
  13683. }
  13684. for (int i2 = 0; i2 < n_t; ++i2) {
  13685. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13686. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13687. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13688. float * s0; // {d_conv - 1, d_inner, n_kv}
  13689. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13690. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13691. int ne0s0;
  13692. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13693. // avoid needing to copy the state for the first token
  13694. if (i2 == 0) {
  13695. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13696. ne0s0 = src0->ne[0];
  13697. } else {
  13698. // the source is the last (d_conv - 1) columns of the destination
  13699. s0 = s + 1;
  13700. ne0s0 = nc;
  13701. }
  13702. // d_inner
  13703. for (int i1 = 0; i1 < ir; ++i1) {
  13704. // shift state left
  13705. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13706. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13707. }
  13708. // insert x on the last column
  13709. s[(nc - 1) + i1*nc] = x0[i1];
  13710. }
  13711. // handle copies when there are multiple output states
  13712. for (int i3 = 1; i3 < n_kv; ++i3) {
  13713. int32_t seq = sq[i3];
  13714. if (0 <= seq && seq < n_kv) {
  13715. float * s1 = s + (seq - sq[0])*nc*nr;
  13716. memcpy(s1, s, nc*ir*sizeof(float));
  13717. } else {
  13718. // stop at negative or too big seq_ids
  13719. break;
  13720. }
  13721. }
  13722. // it seems a little faster when this is separate from the state shift
  13723. for (int i1 = 0; i1 < ir; ++i1) {
  13724. // rowwise dot product
  13725. float sumf = 0.0f;
  13726. for (int i0 = 0; i0 < nc; ++i0) {
  13727. int i = i0 + i1*nc;
  13728. sumf += s[i] * c[i];
  13729. }
  13730. x[i1] = sumf;
  13731. }
  13732. }
  13733. }
  13734. static void ggml_compute_forward_ssm_conv(
  13735. const struct ggml_compute_params * params,
  13736. struct ggml_tensor * dst) {
  13737. switch (dst->src[0]->type) {
  13738. case GGML_TYPE_F32:
  13739. {
  13740. ggml_compute_forward_ssm_conv_f32(params, dst);
  13741. } break;
  13742. default:
  13743. {
  13744. GGML_ASSERT(false);
  13745. } break;
  13746. }
  13747. }
  13748. // ggml_compute_forward_ssm_scan
  13749. static void ggml_compute_forward_ssm_scan_f32(
  13750. const struct ggml_compute_params * params,
  13751. struct ggml_tensor * dst) {
  13752. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13753. return;
  13754. }
  13755. const struct ggml_tensor * src0 = dst->src[0]; // s
  13756. const struct ggml_tensor * src1 = dst->src[1]; // x
  13757. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13758. const struct ggml_tensor * src3 = dst->src[3]; // A
  13759. const struct ggml_tensor * src4 = dst->src[4]; // B
  13760. const struct ggml_tensor * src5 = dst->src[5]; // C
  13761. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13762. const int ith = params->ith;
  13763. const int nth = params->nth;
  13764. const int64_t nc = src0->ne[0]; // d_state
  13765. const int64_t nr = src0->ne[1]; // d_inner
  13766. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13767. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13768. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13769. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13770. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13771. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13772. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13773. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13774. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13775. // required for the dot product between s and C, and when copying the states
  13776. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13777. // required for per-sequence offsets for states
  13778. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13779. // required to get correct offset for state destination (i.e. src1->nb[2])
  13780. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13781. // rows per thread
  13782. const int dr = (nr + nth - 1)/nth;
  13783. // row range for this thread
  13784. const int ir0 = dr*ith;
  13785. const int ir1 = MIN(ir0 + dr, nr);
  13786. const int ir = ir1 - ir0;
  13787. if (n_kv > 1) {
  13788. // it's hard to know if the source states have already been copied
  13789. // when there are multiple, so copy them already.
  13790. for (int i3 = 0; i3 < n_kv; ++i3) {
  13791. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13792. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13793. memcpy(s, s0, nc*ir*sizeof(float));
  13794. }
  13795. }
  13796. for (int i2 = 0; i2 < n_t; ++i2) {
  13797. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13798. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13799. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13800. float * s0;
  13801. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13802. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13803. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13804. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13805. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13806. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13807. // avoid needing to copy the state for the first token
  13808. if (i2 == 0) {
  13809. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13810. } else {
  13811. // otherwise the source is the same as the destination
  13812. s0 = s;
  13813. }
  13814. // d_inner
  13815. for (int i1 = 0; i1 < ir; ++i1) {
  13816. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13817. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13818. float x_dt = x[i1] * dt_soft_plus;
  13819. float sumf = 0.0f;
  13820. // d_state
  13821. for (int i0 = 0; i0 < nc; ++i0) {
  13822. int i = i0 + i1*nc;
  13823. // state = prev_state * dA + dB * x
  13824. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13825. // y = rowwise_dotprod(state, C)
  13826. sumf += state * C[i0];
  13827. s[i] = state;
  13828. }
  13829. y[i1] = sumf;
  13830. }
  13831. // handle copies when there are multiple output states
  13832. for (int i3 = 1; i3 < n_kv; ++i3) {
  13833. int32_t seq = sq[i3];
  13834. if (0 <= seq && seq < n_kv) {
  13835. float * s1 = s + (seq - sq[0])*nc*nr;
  13836. memcpy(s1, s, nc*ir*sizeof(float));
  13837. } else {
  13838. // stop at negative or too big seq_ids
  13839. break;
  13840. }
  13841. }
  13842. }
  13843. }
  13844. static void ggml_compute_forward_ssm_scan(
  13845. const struct ggml_compute_params * params,
  13846. struct ggml_tensor * dst) {
  13847. switch (dst->src[0]->type) {
  13848. case GGML_TYPE_F32:
  13849. {
  13850. ggml_compute_forward_ssm_scan_f32(params, dst);
  13851. } break;
  13852. default:
  13853. {
  13854. GGML_ASSERT(false);
  13855. } break;
  13856. }
  13857. }
  13858. // ggml_compute_forward_win_part
  13859. static void ggml_compute_forward_win_part_f32(
  13860. const struct ggml_compute_params * params,
  13861. struct ggml_tensor * dst) {
  13862. const struct ggml_tensor * src0 = dst->src[0];
  13863. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13864. return;
  13865. }
  13866. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13867. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13868. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13869. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13870. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13871. assert(ne00 == ne0);
  13872. assert(ne3 == nep0*nep1);
  13873. // TODO: optimize / multi-thread
  13874. for (int py = 0; py < nep1; ++py) {
  13875. for (int px = 0; px < nep0; ++px) {
  13876. const int64_t i3 = py*nep0 + px;
  13877. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13878. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13879. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13880. const int64_t i02 = py*w + i2;
  13881. const int64_t i01 = px*w + i1;
  13882. const int64_t i00 = i0;
  13883. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13884. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13885. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13886. ((float *) dst->data)[i] = 0.0f;
  13887. } else {
  13888. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13889. }
  13890. }
  13891. }
  13892. }
  13893. }
  13894. }
  13895. }
  13896. static void ggml_compute_forward_win_part(
  13897. const struct ggml_compute_params * params,
  13898. struct ggml_tensor * dst) {
  13899. const struct ggml_tensor * src0 = dst->src[0];
  13900. switch (src0->type) {
  13901. case GGML_TYPE_F32:
  13902. {
  13903. ggml_compute_forward_win_part_f32(params, dst);
  13904. } break;
  13905. default:
  13906. {
  13907. GGML_ASSERT(false);
  13908. } break;
  13909. }
  13910. }
  13911. // ggml_compute_forward_win_unpart
  13912. static void ggml_compute_forward_win_unpart_f32(
  13913. const struct ggml_compute_params * params,
  13914. struct ggml_tensor * dst) {
  13915. const struct ggml_tensor * src0 = dst->src[0];
  13916. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13917. return;
  13918. }
  13919. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13920. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13921. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13922. // padding
  13923. const int px = (w - ne1%w)%w;
  13924. //const int py = (w - ne2%w)%w;
  13925. const int npx = (px + ne1)/w;
  13926. //const int npy = (py + ne2)/w;
  13927. assert(ne0 == ne00);
  13928. // TODO: optimize / multi-thread
  13929. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13930. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13931. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13932. const int ip2 = i2/w;
  13933. const int ip1 = i1/w;
  13934. const int64_t i02 = i2%w;
  13935. const int64_t i01 = i1%w;
  13936. const int64_t i00 = i0;
  13937. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13938. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13939. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13940. }
  13941. }
  13942. }
  13943. }
  13944. static void ggml_compute_forward_win_unpart(
  13945. const struct ggml_compute_params * params,
  13946. struct ggml_tensor * dst) {
  13947. const struct ggml_tensor * src0 = dst->src[0];
  13948. switch (src0->type) {
  13949. case GGML_TYPE_F32:
  13950. {
  13951. ggml_compute_forward_win_unpart_f32(params, dst);
  13952. } break;
  13953. default:
  13954. {
  13955. GGML_ASSERT(false);
  13956. } break;
  13957. }
  13958. }
  13959. //gmml_compute_forward_unary
  13960. static void ggml_compute_forward_unary(
  13961. const struct ggml_compute_params * params,
  13962. struct ggml_tensor * dst) {
  13963. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13964. switch (op) {
  13965. case GGML_UNARY_OP_ABS:
  13966. {
  13967. ggml_compute_forward_abs(params, dst);
  13968. } break;
  13969. case GGML_UNARY_OP_SGN:
  13970. {
  13971. ggml_compute_forward_sgn(params, dst);
  13972. } break;
  13973. case GGML_UNARY_OP_NEG:
  13974. {
  13975. ggml_compute_forward_neg(params, dst);
  13976. } break;
  13977. case GGML_UNARY_OP_STEP:
  13978. {
  13979. ggml_compute_forward_step(params, dst);
  13980. } break;
  13981. case GGML_UNARY_OP_TANH:
  13982. {
  13983. ggml_compute_forward_tanh(params, dst);
  13984. } break;
  13985. case GGML_UNARY_OP_ELU:
  13986. {
  13987. ggml_compute_forward_elu(params, dst);
  13988. } break;
  13989. case GGML_UNARY_OP_RELU:
  13990. {
  13991. ggml_compute_forward_relu(params, dst);
  13992. } break;
  13993. case GGML_UNARY_OP_SIGMOID:
  13994. {
  13995. ggml_compute_forward_sigmoid(params, dst);
  13996. } break;
  13997. case GGML_UNARY_OP_GELU:
  13998. {
  13999. ggml_compute_forward_gelu(params, dst);
  14000. } break;
  14001. case GGML_UNARY_OP_GELU_QUICK:
  14002. {
  14003. ggml_compute_forward_gelu_quick(params, dst);
  14004. } break;
  14005. case GGML_UNARY_OP_SILU:
  14006. {
  14007. ggml_compute_forward_silu(params, dst);
  14008. } break;
  14009. case GGML_UNARY_OP_HARDSWISH:
  14010. {
  14011. ggml_compute_forward_hardswish(params, dst);
  14012. } break;
  14013. case GGML_UNARY_OP_HARDSIGMOID:
  14014. {
  14015. ggml_compute_forward_hardsigmoid(params, dst);
  14016. } break;
  14017. default:
  14018. {
  14019. GGML_ASSERT(false);
  14020. } break;
  14021. }
  14022. }
  14023. // ggml_compute_forward_get_rel_pos
  14024. static void ggml_compute_forward_get_rel_pos_f16(
  14025. const struct ggml_compute_params * params,
  14026. struct ggml_tensor * dst) {
  14027. const struct ggml_tensor * src0 = dst->src[0];
  14028. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14029. return;
  14030. }
  14031. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  14032. GGML_TENSOR_UNARY_OP_LOCALS
  14033. const int64_t w = ne1;
  14034. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  14035. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  14036. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  14037. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  14038. const int64_t pos = (w - i1 - 1) + i2;
  14039. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  14040. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  14041. }
  14042. }
  14043. }
  14044. }
  14045. static void ggml_compute_forward_get_rel_pos(
  14046. const struct ggml_compute_params * params,
  14047. struct ggml_tensor * dst) {
  14048. const struct ggml_tensor * src0 = dst->src[0];
  14049. switch (src0->type) {
  14050. case GGML_TYPE_F16:
  14051. case GGML_TYPE_BF16:
  14052. {
  14053. ggml_compute_forward_get_rel_pos_f16(params, dst);
  14054. } break;
  14055. default:
  14056. {
  14057. GGML_ASSERT(false);
  14058. } break;
  14059. }
  14060. }
  14061. // ggml_compute_forward_add_rel_pos
  14062. static void ggml_compute_forward_add_rel_pos_f32(
  14063. const struct ggml_compute_params * params,
  14064. struct ggml_tensor * dst) {
  14065. const struct ggml_tensor * src0 = dst->src[0];
  14066. const struct ggml_tensor * src1 = dst->src[1];
  14067. const struct ggml_tensor * src2 = dst->src[2];
  14068. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  14069. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  14070. if (params->ith != 0) {
  14071. return;
  14072. }
  14073. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  14074. return;
  14075. }
  14076. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14077. return;
  14078. }
  14079. int64_t t0 = ggml_perf_time_us();
  14080. UNUSED(t0);
  14081. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  14082. float * src1_data = (float *) src1->data;
  14083. float * src2_data = (float *) src2->data;
  14084. float * dst_data = (float *) dst->data;
  14085. const int64_t ne10 = src1->ne[0];
  14086. const int64_t ne11 = src1->ne[1];
  14087. const int64_t ne12 = src1->ne[2];
  14088. const int64_t ne13 = src1->ne[3];
  14089. const int ith = params->ith;
  14090. const int nth = params->nth;
  14091. // total patches in dst
  14092. const int np = ne13;
  14093. // patches per thread
  14094. const int dp = (np + nth - 1)/nth;
  14095. // patch range for this thread
  14096. const int ip0 = dp*ith;
  14097. const int ip1 = MIN(ip0 + dp, np);
  14098. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  14099. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  14100. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  14101. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  14102. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  14103. const int64_t jp0 = jp1 + i10;
  14104. const float src1_e = src1_data[jp0];
  14105. const float src2_e = src2_data[jp0];
  14106. const int64_t jdh = jp0 * ne10;
  14107. const int64_t jdw = jdh - (ne10 - 1) * i10;
  14108. for (int64_t j = 0; j < ne10; ++j) {
  14109. dst_data[jdh + j ] += src2_e;
  14110. dst_data[jdw + j*ne10] += src1_e;
  14111. }
  14112. }
  14113. }
  14114. }
  14115. }
  14116. }
  14117. static void ggml_compute_forward_add_rel_pos(
  14118. const struct ggml_compute_params * params,
  14119. struct ggml_tensor * dst) {
  14120. const struct ggml_tensor * src0 = dst->src[0];
  14121. switch (src0->type) {
  14122. case GGML_TYPE_F32:
  14123. {
  14124. ggml_compute_forward_add_rel_pos_f32(params, dst);
  14125. } break;
  14126. default:
  14127. {
  14128. GGML_ASSERT(false);
  14129. } break;
  14130. }
  14131. }
  14132. // ggml_compute_forward_map_unary
  14133. static void ggml_compute_forward_map_unary_f32(
  14134. const struct ggml_compute_params * params,
  14135. struct ggml_tensor * dst,
  14136. const ggml_unary_op_f32_t fun) {
  14137. const struct ggml_tensor * src0 = dst->src[0];
  14138. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  14139. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14140. return;
  14141. }
  14142. const int n = ggml_nrows(src0);
  14143. const int nc = src0->ne[0];
  14144. assert( dst->nb[0] == sizeof(float));
  14145. assert(src0->nb[0] == sizeof(float));
  14146. for (int i = 0; i < n; i++) {
  14147. fun(nc,
  14148. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14149. (float *) ((char *) src0->data + i*(src0->nb[1])));
  14150. }
  14151. }
  14152. static void ggml_compute_forward_map_unary(
  14153. const struct ggml_compute_params * params,
  14154. struct ggml_tensor * dst,
  14155. const ggml_unary_op_f32_t fun) {
  14156. const struct ggml_tensor * src0 = dst->src[0];
  14157. switch (src0->type) {
  14158. case GGML_TYPE_F32:
  14159. {
  14160. ggml_compute_forward_map_unary_f32(params, dst, fun);
  14161. } break;
  14162. default:
  14163. {
  14164. GGML_ASSERT(false);
  14165. } break;
  14166. }
  14167. }
  14168. // ggml_compute_forward_map_binary
  14169. static void ggml_compute_forward_map_binary_f32(
  14170. const struct ggml_compute_params * params,
  14171. struct ggml_tensor * dst,
  14172. const ggml_binary_op_f32_t fun) {
  14173. const struct ggml_tensor * src0 = dst->src[0];
  14174. const struct ggml_tensor * src1 = dst->src[1];
  14175. assert(params->ith == 0);
  14176. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14177. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14178. return;
  14179. }
  14180. const int n = ggml_nrows(src0);
  14181. const int nc = src0->ne[0];
  14182. assert( dst->nb[0] == sizeof(float));
  14183. assert(src0->nb[0] == sizeof(float));
  14184. assert(src1->nb[0] == sizeof(float));
  14185. for (int i = 0; i < n; i++) {
  14186. fun(nc,
  14187. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14188. (float *) ((char *) src0->data + i*(src0->nb[1])),
  14189. (float *) ((char *) src1->data + i*(src1->nb[1])));
  14190. }
  14191. }
  14192. static void ggml_compute_forward_map_binary(
  14193. const struct ggml_compute_params * params,
  14194. struct ggml_tensor * dst,
  14195. const ggml_binary_op_f32_t fun) {
  14196. const struct ggml_tensor * src0 = dst->src[0];
  14197. switch (src0->type) {
  14198. case GGML_TYPE_F32:
  14199. {
  14200. ggml_compute_forward_map_binary_f32(params, dst, fun);
  14201. } break;
  14202. default:
  14203. {
  14204. GGML_ASSERT(false);
  14205. } break;
  14206. }
  14207. }
  14208. // ggml_compute_forward_map_custom1
  14209. static void ggml_compute_forward_map_custom1_f32(
  14210. const struct ggml_compute_params * params,
  14211. struct ggml_tensor * dst,
  14212. const ggml_custom1_op_f32_t fun) {
  14213. const struct ggml_tensor * a = dst->src[0];
  14214. assert(params->ith == 0);
  14215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14216. return;
  14217. }
  14218. fun(dst, a);
  14219. }
  14220. // ggml_compute_forward_map_custom2
  14221. static void ggml_compute_forward_map_custom2_f32(
  14222. const struct ggml_compute_params * params,
  14223. struct ggml_tensor * dst,
  14224. const ggml_custom2_op_f32_t fun) {
  14225. const struct ggml_tensor * a = dst->src[0];
  14226. const struct ggml_tensor * b = dst->src[1];
  14227. assert(params->ith == 0);
  14228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14229. return;
  14230. }
  14231. fun(dst, a, b);
  14232. }
  14233. // ggml_compute_forward_map_custom3
  14234. static void ggml_compute_forward_map_custom3_f32(
  14235. const struct ggml_compute_params * params,
  14236. struct ggml_tensor * dst,
  14237. const ggml_custom3_op_f32_t fun) {
  14238. const struct ggml_tensor * a = dst->src[0];
  14239. const struct ggml_tensor * b = dst->src[1];
  14240. const struct ggml_tensor * c = dst->src[1];
  14241. assert(params->ith == 0);
  14242. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14243. return;
  14244. }
  14245. fun(dst, a, b, c);
  14246. }
  14247. // ggml_compute_forward_map_custom1
  14248. static void ggml_compute_forward_map_custom1(
  14249. const struct ggml_compute_params * params,
  14250. struct ggml_tensor * dst) {
  14251. const struct ggml_tensor * a = dst->src[0];
  14252. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14253. return;
  14254. }
  14255. struct ggml_map_custom1_op_params p;
  14256. memcpy(&p, dst->op_params, sizeof(p));
  14257. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14258. }
  14259. // ggml_compute_forward_map_custom2
  14260. static void ggml_compute_forward_map_custom2(
  14261. const struct ggml_compute_params * params,
  14262. struct ggml_tensor * dst) {
  14263. const struct ggml_tensor * a = dst->src[0];
  14264. const struct ggml_tensor * b = dst->src[1];
  14265. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14266. return;
  14267. }
  14268. struct ggml_map_custom2_op_params p;
  14269. memcpy(&p, dst->op_params, sizeof(p));
  14270. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14271. }
  14272. // ggml_compute_forward_map_custom3
  14273. static void ggml_compute_forward_map_custom3(
  14274. const struct ggml_compute_params * params,
  14275. struct ggml_tensor * dst) {
  14276. const struct ggml_tensor * a = dst->src[0];
  14277. const struct ggml_tensor * b = dst->src[1];
  14278. const struct ggml_tensor * c = dst->src[2];
  14279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14280. return;
  14281. }
  14282. struct ggml_map_custom3_op_params p;
  14283. memcpy(&p, dst->op_params, sizeof(p));
  14284. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14285. }
  14286. // ggml_compute_forward_cross_entropy_loss
  14287. static void ggml_compute_forward_cross_entropy_loss_f32(
  14288. const struct ggml_compute_params * params,
  14289. struct ggml_tensor * dst) {
  14290. const struct ggml_tensor * src0 = dst->src[0];
  14291. const struct ggml_tensor * src1 = dst->src[1];
  14292. GGML_ASSERT(ggml_is_contiguous(src0));
  14293. GGML_ASSERT(ggml_is_contiguous(src1));
  14294. GGML_ASSERT(ggml_is_scalar(dst));
  14295. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14296. const int ith = params->ith;
  14297. const int nth = params->nth;
  14298. float * sums = (float *) params->wdata;
  14299. // TODO: handle transposed/permuted matrices
  14300. const int nc = src0->ne[0];
  14301. const int nr = ggml_nrows(src0);
  14302. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14303. if (params->type == GGML_TASK_TYPE_INIT) {
  14304. if (ith == 0) {
  14305. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14306. }
  14307. return;
  14308. }
  14309. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  14310. if (ith == 0) {
  14311. float * dp = (float *) dst->data;
  14312. ggml_vec_sum_f32(nth, dp, sums);
  14313. dp[0] *= -1.0f / (float) nr;
  14314. }
  14315. return;
  14316. }
  14317. const double eps = 1e-9;
  14318. // rows per thread
  14319. const int dr = (nr + nth - 1)/nth;
  14320. // row range for this thread
  14321. const int ir0 = dr*ith;
  14322. const int ir1 = MIN(ir0 + dr, nr);
  14323. for (int i1 = ir0; i1 < ir1; i1++) {
  14324. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14325. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14326. float * st = ((float *) params->wdata) + nth + ith*nc;
  14327. #ifndef NDEBUG
  14328. for (int i = 0; i < nc; ++i) {
  14329. //printf("p[%d] = %f\n", i, p[i]);
  14330. assert(!isnan(s0[i]));
  14331. assert(!isnan(s1[i]));
  14332. }
  14333. #endif
  14334. // soft_max
  14335. float max = -INFINITY;
  14336. ggml_vec_max_f32(nc, &max, s0);
  14337. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  14338. assert(sum > 0.0);
  14339. sum = (1.0 - eps) / sum;
  14340. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14341. ggml_vec_scale_f32(nc, st, sum);
  14342. ggml_vec_add1_f32(nc, st, st, eps);
  14343. ggml_vec_log_f32(nc, st, st);
  14344. ggml_vec_mul_f32(nc, st, st, s1);
  14345. float st_sum = 0;
  14346. ggml_vec_sum_f32(nc, &st_sum, st);
  14347. sums[ith] += st_sum;
  14348. #ifndef NDEBUG
  14349. for (int i = 0; i < nc; ++i) {
  14350. assert(!isnan(st[i]));
  14351. assert(!isinf(st[i]));
  14352. }
  14353. #endif
  14354. }
  14355. }
  14356. static void ggml_compute_forward_cross_entropy_loss(
  14357. const struct ggml_compute_params * params,
  14358. struct ggml_tensor * dst) {
  14359. const struct ggml_tensor * src0 = dst->src[0];
  14360. switch (src0->type) {
  14361. case GGML_TYPE_F32:
  14362. {
  14363. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14364. } break;
  14365. default:
  14366. {
  14367. GGML_ASSERT(false);
  14368. } break;
  14369. }
  14370. }
  14371. // ggml_compute_forward_cross_entropy_loss_back
  14372. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14373. const struct ggml_compute_params * params,
  14374. struct ggml_tensor * dst) {
  14375. const struct ggml_tensor * src0 = dst->src[0];
  14376. const struct ggml_tensor * src1 = dst->src[1];
  14377. const struct ggml_tensor * opt0 = dst->src[2];
  14378. GGML_ASSERT(ggml_is_contiguous(dst));
  14379. GGML_ASSERT(ggml_is_contiguous(src0));
  14380. GGML_ASSERT(ggml_is_contiguous(src1));
  14381. GGML_ASSERT(ggml_is_contiguous(opt0));
  14382. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14383. const int64_t ith = params->ith;
  14384. const int64_t nth = params->nth;
  14385. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14386. return;
  14387. }
  14388. const double eps = 1e-9;
  14389. // TODO: handle transposed/permuted matrices
  14390. const int64_t nc = src0->ne[0];
  14391. const int64_t nr = ggml_nrows(src0);
  14392. // rows per thread
  14393. const int64_t dr = (nr + nth - 1)/nth;
  14394. // row range for this thread
  14395. const int64_t ir0 = dr*ith;
  14396. const int64_t ir1 = MIN(ir0 + dr, nr);
  14397. float * d = (float *) opt0->data;
  14398. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14399. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14400. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14401. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14402. #ifndef NDEBUG
  14403. for (int i = 0; i < nc; ++i) {
  14404. //printf("p[%d] = %f\n", i, p[i]);
  14405. assert(!isnan(s0[i]));
  14406. assert(!isnan(s1[i]));
  14407. }
  14408. #endif
  14409. // soft_max
  14410. float max = -INFINITY;
  14411. ggml_vec_max_f32(nc, &max, s0);
  14412. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14413. assert(sum > 0.0);
  14414. sum = (1.0 - eps) / sum;
  14415. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14416. ggml_vec_scale_f32(nc, ds0, sum);
  14417. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14418. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14419. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14420. #ifndef NDEBUG
  14421. for (int i = 0; i < nc; ++i) {
  14422. assert(!isnan(ds0[i]));
  14423. assert(!isinf(ds0[i]));
  14424. }
  14425. #endif
  14426. }
  14427. }
  14428. static void ggml_compute_forward_cross_entropy_loss_back(
  14429. const struct ggml_compute_params * params,
  14430. struct ggml_tensor * dst) {
  14431. const struct ggml_tensor * src0 = dst->src[0];
  14432. switch (src0->type) {
  14433. case GGML_TYPE_F32:
  14434. {
  14435. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14436. } break;
  14437. default:
  14438. {
  14439. GGML_ASSERT(false);
  14440. } break;
  14441. }
  14442. }
  14443. /////////////////////////////////
  14444. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14445. GGML_ASSERT(params);
  14446. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14447. return;
  14448. }
  14449. switch (tensor->op) {
  14450. case GGML_OP_DUP:
  14451. {
  14452. ggml_compute_forward_dup(params, tensor);
  14453. } break;
  14454. case GGML_OP_ADD:
  14455. {
  14456. ggml_compute_forward_add(params, tensor);
  14457. } break;
  14458. case GGML_OP_ADD1:
  14459. {
  14460. ggml_compute_forward_add1(params, tensor);
  14461. } break;
  14462. case GGML_OP_ACC:
  14463. {
  14464. ggml_compute_forward_acc(params, tensor);
  14465. } break;
  14466. case GGML_OP_SUB:
  14467. {
  14468. ggml_compute_forward_sub(params, tensor);
  14469. } break;
  14470. case GGML_OP_MUL:
  14471. {
  14472. ggml_compute_forward_mul(params, tensor);
  14473. } break;
  14474. case GGML_OP_DIV:
  14475. {
  14476. ggml_compute_forward_div(params, tensor);
  14477. } break;
  14478. case GGML_OP_SQR:
  14479. {
  14480. ggml_compute_forward_sqr(params, tensor);
  14481. } break;
  14482. case GGML_OP_SQRT:
  14483. {
  14484. ggml_compute_forward_sqrt(params, tensor);
  14485. } break;
  14486. case GGML_OP_LOG:
  14487. {
  14488. ggml_compute_forward_log(params, tensor);
  14489. } break;
  14490. case GGML_OP_SUM:
  14491. {
  14492. ggml_compute_forward_sum(params, tensor);
  14493. } break;
  14494. case GGML_OP_SUM_ROWS:
  14495. {
  14496. ggml_compute_forward_sum_rows(params, tensor);
  14497. } break;
  14498. case GGML_OP_MEAN:
  14499. {
  14500. ggml_compute_forward_mean(params, tensor);
  14501. } break;
  14502. case GGML_OP_ARGMAX:
  14503. {
  14504. ggml_compute_forward_argmax(params, tensor);
  14505. } break;
  14506. case GGML_OP_REPEAT:
  14507. {
  14508. ggml_compute_forward_repeat(params, tensor);
  14509. } break;
  14510. case GGML_OP_REPEAT_BACK:
  14511. {
  14512. ggml_compute_forward_repeat_back(params, tensor);
  14513. } break;
  14514. case GGML_OP_CONCAT:
  14515. {
  14516. ggml_compute_forward_concat(params, tensor);
  14517. } break;
  14518. case GGML_OP_SILU_BACK:
  14519. {
  14520. ggml_compute_forward_silu_back(params, tensor);
  14521. } break;
  14522. case GGML_OP_NORM:
  14523. {
  14524. ggml_compute_forward_norm(params, tensor);
  14525. } break;
  14526. case GGML_OP_RMS_NORM:
  14527. {
  14528. ggml_compute_forward_rms_norm(params, tensor);
  14529. } break;
  14530. case GGML_OP_RMS_NORM_BACK:
  14531. {
  14532. ggml_compute_forward_rms_norm_back(params, tensor);
  14533. } break;
  14534. case GGML_OP_GROUP_NORM:
  14535. {
  14536. ggml_compute_forward_group_norm(params, tensor);
  14537. } break;
  14538. case GGML_OP_MUL_MAT:
  14539. {
  14540. ggml_compute_forward_mul_mat(params, tensor, state);
  14541. } break;
  14542. case GGML_OP_MUL_MAT_ID:
  14543. {
  14544. ggml_compute_forward_mul_mat_id(params, tensor);
  14545. } break;
  14546. case GGML_OP_OUT_PROD:
  14547. {
  14548. ggml_compute_forward_out_prod(params, tensor);
  14549. } break;
  14550. case GGML_OP_SCALE:
  14551. {
  14552. ggml_compute_forward_scale(params, tensor);
  14553. } break;
  14554. case GGML_OP_SET:
  14555. {
  14556. ggml_compute_forward_set(params, tensor);
  14557. } break;
  14558. case GGML_OP_CPY:
  14559. {
  14560. ggml_compute_forward_cpy(params, tensor);
  14561. } break;
  14562. case GGML_OP_CONT:
  14563. {
  14564. ggml_compute_forward_cont(params, tensor);
  14565. } break;
  14566. case GGML_OP_RESHAPE:
  14567. {
  14568. ggml_compute_forward_reshape(params, tensor);
  14569. } break;
  14570. case GGML_OP_VIEW:
  14571. {
  14572. ggml_compute_forward_view(params, tensor);
  14573. } break;
  14574. case GGML_OP_PERMUTE:
  14575. {
  14576. ggml_compute_forward_permute(params, tensor);
  14577. } break;
  14578. case GGML_OP_TRANSPOSE:
  14579. {
  14580. ggml_compute_forward_transpose(params, tensor);
  14581. } break;
  14582. case GGML_OP_GET_ROWS:
  14583. {
  14584. ggml_compute_forward_get_rows(params, tensor);
  14585. } break;
  14586. case GGML_OP_GET_ROWS_BACK:
  14587. {
  14588. ggml_compute_forward_get_rows_back(params, tensor);
  14589. } break;
  14590. case GGML_OP_DIAG:
  14591. {
  14592. ggml_compute_forward_diag(params, tensor);
  14593. } break;
  14594. case GGML_OP_DIAG_MASK_INF:
  14595. {
  14596. ggml_compute_forward_diag_mask_inf(params, tensor);
  14597. } break;
  14598. case GGML_OP_DIAG_MASK_ZERO:
  14599. {
  14600. ggml_compute_forward_diag_mask_zero(params, tensor);
  14601. } break;
  14602. case GGML_OP_SOFT_MAX:
  14603. {
  14604. ggml_compute_forward_soft_max(params, tensor);
  14605. } break;
  14606. case GGML_OP_SOFT_MAX_BACK:
  14607. {
  14608. ggml_compute_forward_soft_max_back(params, tensor);
  14609. } break;
  14610. case GGML_OP_ROPE:
  14611. {
  14612. ggml_compute_forward_rope(params, tensor);
  14613. } break;
  14614. case GGML_OP_ROPE_BACK:
  14615. {
  14616. ggml_compute_forward_rope_back(params, tensor);
  14617. } break;
  14618. case GGML_OP_CLAMP:
  14619. {
  14620. ggml_compute_forward_clamp(params, tensor);
  14621. } break;
  14622. case GGML_OP_CONV_TRANSPOSE_1D:
  14623. {
  14624. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14625. } break;
  14626. case GGML_OP_IM2COL:
  14627. {
  14628. ggml_compute_forward_im2col(params, tensor);
  14629. } break;
  14630. case GGML_OP_CONV_TRANSPOSE_2D:
  14631. {
  14632. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14633. } break;
  14634. case GGML_OP_POOL_1D:
  14635. {
  14636. ggml_compute_forward_pool_1d(params, tensor);
  14637. } break;
  14638. case GGML_OP_POOL_2D:
  14639. {
  14640. ggml_compute_forward_pool_2d(params, tensor);
  14641. } break;
  14642. case GGML_OP_UPSCALE:
  14643. {
  14644. ggml_compute_forward_upscale(params, tensor);
  14645. } break;
  14646. case GGML_OP_PAD:
  14647. {
  14648. ggml_compute_forward_pad(params, tensor);
  14649. } break;
  14650. case GGML_OP_ARANGE:
  14651. {
  14652. ggml_compute_forward_arange(params, tensor);
  14653. } break;
  14654. case GGML_OP_TIMESTEP_EMBEDDING:
  14655. {
  14656. ggml_compute_forward_timestep_embedding(params, tensor);
  14657. } break;
  14658. case GGML_OP_ARGSORT:
  14659. {
  14660. ggml_compute_forward_argsort(params, tensor);
  14661. } break;
  14662. case GGML_OP_LEAKY_RELU:
  14663. {
  14664. ggml_compute_forward_leaky_relu(params, tensor);
  14665. } break;
  14666. case GGML_OP_FLASH_ATTN:
  14667. {
  14668. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14669. GGML_ASSERT(t == 0 || t == 1);
  14670. const bool masked = t != 0;
  14671. ggml_compute_forward_flash_attn(params, masked, tensor);
  14672. } break;
  14673. case GGML_OP_FLASH_ATTN_EXT:
  14674. {
  14675. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14676. } break;
  14677. case GGML_OP_FLASH_FF:
  14678. {
  14679. ggml_compute_forward_flash_ff(params, tensor);
  14680. } break;
  14681. case GGML_OP_FLASH_ATTN_BACK:
  14682. {
  14683. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14684. GGML_ASSERT(t == 0 || t == 1);
  14685. bool masked = t != 0;
  14686. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14687. } break;
  14688. case GGML_OP_SSM_CONV:
  14689. {
  14690. ggml_compute_forward_ssm_conv(params, tensor);
  14691. } break;
  14692. case GGML_OP_SSM_SCAN:
  14693. {
  14694. ggml_compute_forward_ssm_scan(params, tensor);
  14695. } break;
  14696. case GGML_OP_WIN_PART:
  14697. {
  14698. ggml_compute_forward_win_part(params, tensor);
  14699. } break;
  14700. case GGML_OP_WIN_UNPART:
  14701. {
  14702. ggml_compute_forward_win_unpart(params, tensor);
  14703. } break;
  14704. case GGML_OP_UNARY:
  14705. {
  14706. ggml_compute_forward_unary(params, tensor);
  14707. } break;
  14708. case GGML_OP_GET_REL_POS:
  14709. {
  14710. ggml_compute_forward_get_rel_pos(params, tensor);
  14711. } break;
  14712. case GGML_OP_ADD_REL_POS:
  14713. {
  14714. ggml_compute_forward_add_rel_pos(params, tensor);
  14715. } break;
  14716. case GGML_OP_MAP_UNARY:
  14717. {
  14718. ggml_unary_op_f32_t fun;
  14719. memcpy(&fun, tensor->op_params, sizeof(fun));
  14720. ggml_compute_forward_map_unary(params, tensor, fun);
  14721. }
  14722. break;
  14723. case GGML_OP_MAP_BINARY:
  14724. {
  14725. ggml_binary_op_f32_t fun;
  14726. memcpy(&fun, tensor->op_params, sizeof(fun));
  14727. ggml_compute_forward_map_binary(params, tensor, fun);
  14728. }
  14729. break;
  14730. case GGML_OP_MAP_CUSTOM1_F32:
  14731. {
  14732. ggml_custom1_op_f32_t fun;
  14733. memcpy(&fun, tensor->op_params, sizeof(fun));
  14734. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14735. }
  14736. break;
  14737. case GGML_OP_MAP_CUSTOM2_F32:
  14738. {
  14739. ggml_custom2_op_f32_t fun;
  14740. memcpy(&fun, tensor->op_params, sizeof(fun));
  14741. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14742. }
  14743. break;
  14744. case GGML_OP_MAP_CUSTOM3_F32:
  14745. {
  14746. ggml_custom3_op_f32_t fun;
  14747. memcpy(&fun, tensor->op_params, sizeof(fun));
  14748. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14749. }
  14750. break;
  14751. case GGML_OP_MAP_CUSTOM1:
  14752. {
  14753. ggml_compute_forward_map_custom1(params, tensor);
  14754. }
  14755. break;
  14756. case GGML_OP_MAP_CUSTOM2:
  14757. {
  14758. ggml_compute_forward_map_custom2(params, tensor);
  14759. }
  14760. break;
  14761. case GGML_OP_MAP_CUSTOM3:
  14762. {
  14763. ggml_compute_forward_map_custom3(params, tensor);
  14764. }
  14765. break;
  14766. case GGML_OP_CROSS_ENTROPY_LOSS:
  14767. {
  14768. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14769. }
  14770. break;
  14771. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14772. {
  14773. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14774. }
  14775. break;
  14776. case GGML_OP_NONE:
  14777. {
  14778. // nop
  14779. } break;
  14780. case GGML_OP_COUNT:
  14781. {
  14782. GGML_ASSERT(false);
  14783. } break;
  14784. }
  14785. }
  14786. ////////////////////////////////////////////////////////////////////////////////
  14787. static size_t ggml_hash_size(size_t min_sz) {
  14788. // next primes after powers of two
  14789. static const size_t primes[] = {
  14790. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14791. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14792. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14793. 16777259, 33554467, 67108879, 134217757, 268435459,
  14794. 536870923, 1073741827, 2147483659
  14795. };
  14796. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14797. // find the smallest prime that is larger or equal to min_sz
  14798. size_t l = 0;
  14799. size_t r = n_primes;
  14800. while (l < r) {
  14801. size_t m = (l + r)/2;
  14802. if (primes[m] < min_sz) {
  14803. l = m + 1;
  14804. } else {
  14805. r = m;
  14806. }
  14807. }
  14808. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14809. return sz;
  14810. }
  14811. static size_t ggml_hash(const void * p) {
  14812. return (size_t)p;
  14813. }
  14814. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14815. size_t h = ggml_hash(key) % hash_set.size;
  14816. // linear probing
  14817. size_t i = h;
  14818. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14819. i = (i + 1) % hash_set.size;
  14820. if (i == h) {
  14821. // visited all hash table entries -> not found
  14822. return GGML_HASHTABLE_FULL;
  14823. }
  14824. }
  14825. return i;
  14826. }
  14827. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14828. size_t i = ggml_hash_find(hash_set, key);
  14829. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14830. }
  14831. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14832. size_t i = ggml_hash_find(hash_set, key);
  14833. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14834. if (hash_set.keys[i] == key) {
  14835. return GGML_HASHTABLE_ALREADY_EXISTS;
  14836. }
  14837. // insert
  14838. GGML_ASSERT(hash_set.keys[i] == NULL);
  14839. hash_set.keys[i] = key;
  14840. return i;
  14841. }
  14842. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14843. size_t i = ggml_hash_find(hash_set, key);
  14844. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14845. hash_set.keys[i] = key;
  14846. return i;
  14847. }
  14848. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14849. size = ggml_hash_size(size);
  14850. struct ggml_hash_set result;
  14851. result.size = size;
  14852. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14853. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14854. return result;
  14855. }
  14856. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14857. GGML_FREE(hash_set.keys);
  14858. }
  14859. struct hash_map {
  14860. struct ggml_hash_set set;
  14861. struct ggml_tensor ** vals;
  14862. };
  14863. static struct hash_map * ggml_new_hash_map(size_t size) {
  14864. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14865. result->set = ggml_hash_set_new(size);
  14866. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14867. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14868. return result;
  14869. }
  14870. static void ggml_hash_map_free(struct hash_map * map) {
  14871. ggml_hash_set_free(map->set);
  14872. GGML_FREE(map->vals);
  14873. GGML_FREE(map);
  14874. }
  14875. // gradient checkpointing
  14876. static struct ggml_tensor * ggml_recompute_graph_node(
  14877. struct ggml_context * ctx,
  14878. struct ggml_cgraph * graph,
  14879. struct hash_map * replacements,
  14880. struct ggml_tensor * node) {
  14881. if (node == NULL) {
  14882. return NULL;
  14883. }
  14884. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14885. return node;
  14886. }
  14887. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14888. return node;
  14889. }
  14890. int count_children = 0;
  14891. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14892. if (node->src[k]) {
  14893. ++count_children;
  14894. }
  14895. }
  14896. if (count_children == 0) {
  14897. return node;
  14898. }
  14899. size_t i = ggml_hash_find(replacements->set, node);
  14900. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14901. if (replacements->set.keys[i] == node) {
  14902. return replacements->vals[i];
  14903. }
  14904. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14905. // insert clone into replacements
  14906. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14907. replacements->set.keys[i] = node;
  14908. replacements->vals[i] = clone;
  14909. clone->op = node->op;
  14910. clone->grad = node->grad;
  14911. clone->flags = node->flags;
  14912. clone->extra = node->extra;
  14913. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14914. clone->nb[k] = node->nb[k];
  14915. }
  14916. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14917. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14918. }
  14919. if (node->view_src != NULL) {
  14920. clone->data = (node->view_src->data == NULL)
  14921. ? NULL // view_src not yet allocated
  14922. : (char *) node->view_src->data // view_src already allocated
  14923. + node->view_offs;
  14924. clone->view_src = node->view_src;
  14925. clone->view_offs = node->view_offs;
  14926. }
  14927. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14928. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14929. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14930. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14931. return clone;
  14932. }
  14933. void ggml_build_backward_gradient_checkpointing(
  14934. struct ggml_context * ctx,
  14935. struct ggml_cgraph * gf,
  14936. struct ggml_cgraph * gb,
  14937. struct ggml_cgraph * gb_tmp,
  14938. struct ggml_tensor * * checkpoints,
  14939. int n_checkpoints) {
  14940. ggml_graph_cpy(gf, gb_tmp);
  14941. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14942. if (n_checkpoints <= 0) {
  14943. ggml_graph_cpy(gb_tmp, gb);
  14944. return;
  14945. }
  14946. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14947. // insert checkpoints in replacements
  14948. for (int i = 0; i < n_checkpoints; ++i) {
  14949. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14950. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14951. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14952. replacements->set.keys[k] = checkpoints[i];
  14953. replacements->vals[k] = checkpoints[i];
  14954. }
  14955. ggml_graph_cpy(gf, gb);
  14956. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14957. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14958. // by recomputing them from checkpoints
  14959. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14960. struct ggml_tensor * node = gb_tmp->nodes[i];
  14961. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14962. // insert new tensors recomputing src, reusing already made replacements,
  14963. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14964. // recurse for input tensors,
  14965. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14966. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14967. }
  14968. // insert rewritten backward node with replacements made into resulting backward graph gb
  14969. ggml_build_forward_expand(gb, node);
  14970. }
  14971. ggml_hash_map_free(replacements);
  14972. }
  14973. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14974. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14975. if (ggml_hash_contains(zero_table, a)) {
  14976. return b;
  14977. } else {
  14978. return ggml_add_impl(ctx, a, b, false);
  14979. }
  14980. }
  14981. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14982. if (ggml_hash_contains(zero_table, a)) {
  14983. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14984. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14985. } else {
  14986. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14987. }
  14988. }
  14989. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14990. if (ggml_hash_contains(zero_table, a)) {
  14991. return ggml_repeat(ctx, b, a);
  14992. } else {
  14993. return ggml_add1_impl(ctx, a, b, false);
  14994. }
  14995. }
  14996. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14997. if (ggml_hash_contains(zero_table, a)) {
  14998. return ggml_neg(ctx, b);
  14999. } else {
  15000. return ggml_sub_impl(ctx, a, b, false);
  15001. }
  15002. }
  15003. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  15004. struct ggml_tensor * src0 = tensor->src[0];
  15005. struct ggml_tensor * src1 = tensor->src[1];
  15006. switch (tensor->op) {
  15007. case GGML_OP_DUP:
  15008. {
  15009. if (src0->grad) {
  15010. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15011. }
  15012. } break;
  15013. case GGML_OP_ADD:
  15014. {
  15015. if (src0->grad) {
  15016. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15017. }
  15018. if (src1->grad) {
  15019. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  15020. }
  15021. } break;
  15022. case GGML_OP_ADD1:
  15023. {
  15024. if (src0->grad) {
  15025. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15026. }
  15027. if (src1->grad) {
  15028. src1->grad = ggml_add_or_set(ctx,
  15029. src1->grad,
  15030. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  15031. zero_table);
  15032. }
  15033. } break;
  15034. case GGML_OP_ACC:
  15035. {
  15036. if (src0->grad) {
  15037. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15038. }
  15039. if (src1->grad) {
  15040. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15041. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15042. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15043. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15044. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  15045. tensor->grad,
  15046. src1->grad->ne[0],
  15047. src1->grad->ne[1],
  15048. src1->grad->ne[2],
  15049. src1->grad->ne[3],
  15050. nb1, nb2, nb3, offset);
  15051. src1->grad =
  15052. ggml_add_or_set(ctx,
  15053. src1->grad,
  15054. ggml_reshape(ctx,
  15055. ggml_cont(ctx, tensor_grad_view),
  15056. src1->grad),
  15057. zero_table);
  15058. }
  15059. } break;
  15060. case GGML_OP_SUB:
  15061. {
  15062. if (src0->grad) {
  15063. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15064. }
  15065. if (src1->grad) {
  15066. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  15067. }
  15068. } break;
  15069. case GGML_OP_MUL:
  15070. {
  15071. if (src0->grad) {
  15072. src0->grad =
  15073. ggml_add_or_set(ctx,
  15074. src0->grad,
  15075. ggml_mul(ctx, src1, tensor->grad),
  15076. zero_table);
  15077. }
  15078. if (src1->grad) {
  15079. src1->grad =
  15080. ggml_add_or_set(ctx,
  15081. src1->grad,
  15082. ggml_mul(ctx, src0, tensor->grad),
  15083. zero_table);
  15084. }
  15085. } break;
  15086. case GGML_OP_DIV:
  15087. {
  15088. if (src0->grad) {
  15089. src0->grad =
  15090. ggml_add_or_set(ctx,
  15091. src0->grad,
  15092. ggml_div(ctx, tensor->grad, src1),
  15093. zero_table);
  15094. }
  15095. if (src1->grad) {
  15096. src1->grad =
  15097. ggml_sub_or_set(ctx,
  15098. src1->grad,
  15099. ggml_mul(ctx,
  15100. tensor->grad,
  15101. ggml_div(ctx, tensor, src1)),
  15102. zero_table);
  15103. }
  15104. } break;
  15105. case GGML_OP_SQR:
  15106. {
  15107. if (src0->grad) {
  15108. src0->grad =
  15109. ggml_add_or_set(ctx,
  15110. src0->grad,
  15111. ggml_scale(ctx,
  15112. ggml_mul(ctx, src0, tensor->grad),
  15113. 2.0f),
  15114. zero_table);
  15115. }
  15116. } break;
  15117. case GGML_OP_SQRT:
  15118. {
  15119. if (src0->grad) {
  15120. src0->grad =
  15121. ggml_add_or_set(ctx,
  15122. src0->grad,
  15123. ggml_scale(ctx,
  15124. ggml_div(ctx,
  15125. tensor->grad,
  15126. tensor),
  15127. 0.5f),
  15128. zero_table);
  15129. }
  15130. } break;
  15131. case GGML_OP_LOG:
  15132. {
  15133. if (src0->grad) {
  15134. src0->grad =
  15135. ggml_add_or_set(ctx,
  15136. src0->grad,
  15137. ggml_div(ctx,
  15138. tensor->grad,
  15139. src0),
  15140. zero_table);
  15141. }
  15142. } break;
  15143. case GGML_OP_SUM:
  15144. {
  15145. if (src0->grad) {
  15146. src0->grad =
  15147. ggml_add1_or_set(ctx,
  15148. src0->grad,
  15149. tensor->grad,
  15150. zero_table);
  15151. }
  15152. } break;
  15153. case GGML_OP_SUM_ROWS:
  15154. {
  15155. if (src0->grad) {
  15156. src0->grad =
  15157. ggml_add_or_set(ctx,
  15158. src0->grad,
  15159. ggml_repeat(ctx,
  15160. tensor->grad,
  15161. src0->grad),
  15162. zero_table);
  15163. }
  15164. } break;
  15165. case GGML_OP_MEAN:
  15166. case GGML_OP_ARGMAX:
  15167. {
  15168. GGML_ASSERT(false); // TODO: implement
  15169. } break;
  15170. case GGML_OP_REPEAT:
  15171. {
  15172. // necessary for llama
  15173. if (src0->grad) {
  15174. src0->grad = ggml_add_or_set(ctx,
  15175. src0->grad,
  15176. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  15177. zero_table);
  15178. }
  15179. } break;
  15180. case GGML_OP_REPEAT_BACK:
  15181. {
  15182. if (src0->grad) {
  15183. // TODO: test this
  15184. src0->grad = ggml_add_or_set(ctx,
  15185. src0->grad,
  15186. ggml_repeat(ctx, tensor->grad, src0->grad),
  15187. zero_table);
  15188. }
  15189. } break;
  15190. case GGML_OP_CONCAT:
  15191. {
  15192. GGML_ASSERT(false); // TODO: implement
  15193. } break;
  15194. case GGML_OP_SILU_BACK:
  15195. {
  15196. GGML_ASSERT(false); // TODO: not implemented
  15197. } break;
  15198. case GGML_OP_NORM:
  15199. {
  15200. GGML_ASSERT(false); // TODO: not implemented
  15201. } break;
  15202. case GGML_OP_RMS_NORM:
  15203. {
  15204. // necessary for llama
  15205. if (src0->grad) {
  15206. float eps;
  15207. memcpy(&eps, tensor->op_params, sizeof(float));
  15208. src0->grad = ggml_add_or_set(ctx,
  15209. src0->grad,
  15210. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  15211. zero_table);
  15212. }
  15213. } break;
  15214. case GGML_OP_RMS_NORM_BACK:
  15215. {
  15216. GGML_ASSERT(false); // TODO: not implemented
  15217. } break;
  15218. case GGML_OP_GROUP_NORM:
  15219. {
  15220. GGML_ASSERT(false); // TODO: not implemented
  15221. } break;
  15222. case GGML_OP_MUL_MAT:
  15223. {
  15224. // https://cs231n.github.io/optimization-2/#staged
  15225. // # forward pass
  15226. // s0 = np.random.randn(5, 10)
  15227. // s1 = np.random.randn(10, 3)
  15228. // t = s0.dot(s1)
  15229. // # now suppose we had the gradient on t from above in the circuit
  15230. // dt = np.random.randn(*t.shape) # same shape as t
  15231. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15232. // ds1 = t.T.dot(dt)
  15233. // tensor.shape [m,p,qq,rr]
  15234. // src0.shape [n,m,q1,r1]
  15235. // src1.shape [n,p,qq,rr]
  15236. // necessary for llama
  15237. if (src0->grad) {
  15238. struct ggml_tensor * s1_tg =
  15239. ggml_out_prod(ctx, // [n,m,qq,rr]
  15240. src1, // [n,p,qq,rr]
  15241. tensor->grad); // [m,p,qq,rr]
  15242. const int64_t qq = s1_tg->ne[2];
  15243. const int64_t rr = s1_tg->ne[3];
  15244. const int64_t q1 = src0->ne[2];
  15245. const int64_t r1 = src0->ne[3];
  15246. const bool ne2_broadcasted = qq > q1;
  15247. const bool ne3_broadcasted = rr > r1;
  15248. if (ne2_broadcasted || ne3_broadcasted) {
  15249. // sum broadcast repetitions of s1_tg into shape of src0
  15250. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15251. }
  15252. src0->grad =
  15253. ggml_add_or_set(ctx,
  15254. src0->grad, // [n,m,q1,r1]
  15255. s1_tg, // [n,m,q1,r1]
  15256. zero_table);
  15257. }
  15258. if (src1->grad) {
  15259. src1->grad =
  15260. ggml_add_or_set(ctx,
  15261. src1->grad, // [n,p,qq,rr]
  15262. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15263. // ggml_cont(ctx, // [m,n,q1,r1]
  15264. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15265. // tensor->grad), // [m,p,qq,rr]
  15266. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15267. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15268. // // and then use ggml_out_prod
  15269. ggml_out_prod(ctx, // [n,p,qq,rr]
  15270. src0, // [n,m,q1,r1]
  15271. ggml_transpose(ctx, // [p,m,qq,rr]
  15272. tensor->grad)), // [m,p,qq,rr]
  15273. zero_table);
  15274. }
  15275. } break;
  15276. case GGML_OP_MUL_MAT_ID:
  15277. {
  15278. GGML_ASSERT(false); // TODO: not implemented
  15279. } break;
  15280. case GGML_OP_OUT_PROD:
  15281. {
  15282. GGML_ASSERT(false); // TODO: not implemented
  15283. } break;
  15284. case GGML_OP_SCALE:
  15285. {
  15286. // necessary for llama
  15287. if (src0->grad) {
  15288. float s;
  15289. memcpy(&s, tensor->op_params, sizeof(float));
  15290. src0->grad =
  15291. ggml_add_or_set(ctx,
  15292. src0->grad,
  15293. ggml_scale_impl(ctx, tensor->grad, s, false),
  15294. zero_table);
  15295. }
  15296. } break;
  15297. case GGML_OP_SET:
  15298. {
  15299. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15300. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15301. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15302. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15303. struct ggml_tensor * tensor_grad_view = NULL;
  15304. if (src0->grad || src1->grad) {
  15305. GGML_ASSERT(src0->type == tensor->type);
  15306. GGML_ASSERT(tensor->grad->type == tensor->type);
  15307. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15308. tensor_grad_view = ggml_view_4d(ctx,
  15309. tensor->grad,
  15310. src1->grad->ne[0],
  15311. src1->grad->ne[1],
  15312. src1->grad->ne[2],
  15313. src1->grad->ne[3],
  15314. nb1, nb2, nb3, offset);
  15315. }
  15316. if (src0->grad) {
  15317. src0->grad = ggml_add_or_set(ctx,
  15318. src0->grad,
  15319. ggml_acc_impl(ctx,
  15320. tensor->grad,
  15321. ggml_neg(ctx, tensor_grad_view),
  15322. nb1, nb2, nb3, offset, false),
  15323. zero_table);
  15324. }
  15325. if (src1->grad) {
  15326. src1->grad =
  15327. ggml_add_or_set(ctx,
  15328. src1->grad,
  15329. ggml_reshape(ctx,
  15330. ggml_cont(ctx, tensor_grad_view),
  15331. src1->grad),
  15332. zero_table);
  15333. }
  15334. } break;
  15335. case GGML_OP_CPY:
  15336. {
  15337. // necessary for llama
  15338. // cpy overwrites value of src1 by src0 and returns view(src1)
  15339. // the overwriting is mathematically equivalent to:
  15340. // tensor = src0 * 1 + src1 * 0
  15341. if (src0->grad) {
  15342. // dsrc0 = dtensor * 1
  15343. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15344. }
  15345. if (src1->grad) {
  15346. // dsrc1 = dtensor * 0 -> noop
  15347. }
  15348. } break;
  15349. case GGML_OP_CONT:
  15350. {
  15351. // same as cpy
  15352. if (src0->grad) {
  15353. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15354. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15355. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15356. }
  15357. } break;
  15358. case GGML_OP_RESHAPE:
  15359. {
  15360. // necessary for llama
  15361. if (src0->grad) {
  15362. src0->grad =
  15363. ggml_add_or_set(ctx, src0->grad,
  15364. ggml_reshape(ctx,
  15365. ggml_is_contiguous(tensor->grad)
  15366. ? tensor->grad
  15367. : ggml_cont(ctx, tensor->grad),
  15368. src0->grad),
  15369. zero_table);
  15370. }
  15371. } break;
  15372. case GGML_OP_VIEW:
  15373. {
  15374. // necessary for llama
  15375. if (src0->grad) {
  15376. size_t offset;
  15377. memcpy(&offset, tensor->op_params, sizeof(offset));
  15378. size_t nb1 = tensor->nb[1];
  15379. size_t nb2 = tensor->nb[2];
  15380. size_t nb3 = tensor->nb[3];
  15381. if (src0->type != src0->grad->type) {
  15382. // gradient is typically F32, but src0 could be other type
  15383. size_t ng = ggml_element_size(src0->grad);
  15384. size_t n0 = ggml_element_size(src0);
  15385. GGML_ASSERT(offset % n0 == 0);
  15386. GGML_ASSERT(nb1 % n0 == 0);
  15387. GGML_ASSERT(nb2 % n0 == 0);
  15388. GGML_ASSERT(nb3 % n0 == 0);
  15389. offset = (offset / n0) * ng;
  15390. nb1 = (nb1 / n0) * ng;
  15391. nb2 = (nb2 / n0) * ng;
  15392. nb3 = (nb3 / n0) * ng;
  15393. }
  15394. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15395. }
  15396. } break;
  15397. case GGML_OP_PERMUTE:
  15398. {
  15399. // necessary for llama
  15400. if (src0->grad) {
  15401. int32_t * axes = (int32_t *) tensor->op_params;
  15402. int axis0 = axes[0] & 0x3;
  15403. int axis1 = axes[1] & 0x3;
  15404. int axis2 = axes[2] & 0x3;
  15405. int axis3 = axes[3] & 0x3;
  15406. int axes_backward[4] = {0,0,0,0};
  15407. axes_backward[axis0] = 0;
  15408. axes_backward[axis1] = 1;
  15409. axes_backward[axis2] = 2;
  15410. axes_backward[axis3] = 3;
  15411. src0->grad =
  15412. ggml_add_or_set(ctx, src0->grad,
  15413. ggml_permute(ctx,
  15414. tensor->grad,
  15415. axes_backward[0],
  15416. axes_backward[1],
  15417. axes_backward[2],
  15418. axes_backward[3]),
  15419. zero_table);
  15420. }
  15421. } break;
  15422. case GGML_OP_TRANSPOSE:
  15423. {
  15424. // necessary for llama
  15425. if (src0->grad) {
  15426. src0->grad =
  15427. ggml_add_or_set(ctx, src0->grad,
  15428. ggml_transpose(ctx, tensor->grad),
  15429. zero_table);
  15430. }
  15431. } break;
  15432. case GGML_OP_GET_ROWS:
  15433. {
  15434. // necessary for llama (only for tokenizer)
  15435. if (src0->grad) {
  15436. src0->grad =
  15437. ggml_add_or_set(ctx, src0->grad,
  15438. // last ggml_get_rows_back argument src0->grad is only
  15439. // necessary to setup correct output shape
  15440. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15441. zero_table);
  15442. }
  15443. if (src1->grad) {
  15444. // noop
  15445. }
  15446. } break;
  15447. case GGML_OP_GET_ROWS_BACK:
  15448. {
  15449. GGML_ASSERT(false); // TODO: not implemented
  15450. } break;
  15451. case GGML_OP_DIAG:
  15452. {
  15453. GGML_ASSERT(false); // TODO: not implemented
  15454. } break;
  15455. case GGML_OP_DIAG_MASK_INF:
  15456. {
  15457. // necessary for llama
  15458. if (src0->grad) {
  15459. const int n_past = ((int32_t *) tensor->op_params)[0];
  15460. src0->grad =
  15461. ggml_add_or_set(ctx, src0->grad,
  15462. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15463. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15464. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15465. zero_table);
  15466. }
  15467. } break;
  15468. case GGML_OP_DIAG_MASK_ZERO:
  15469. {
  15470. // necessary for llama
  15471. if (src0->grad) {
  15472. const int n_past = ((int32_t *) tensor->op_params)[0];
  15473. src0->grad =
  15474. ggml_add_or_set(ctx, src0->grad,
  15475. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15476. zero_table);
  15477. }
  15478. } break;
  15479. case GGML_OP_SOFT_MAX:
  15480. {
  15481. // necessary for llama
  15482. if (src0->grad) {
  15483. src0->grad =
  15484. ggml_add_or_set(ctx, src0->grad,
  15485. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15486. zero_table);
  15487. }
  15488. } break;
  15489. case GGML_OP_SOFT_MAX_BACK:
  15490. {
  15491. GGML_ASSERT(false); // TODO: not implemented
  15492. } break;
  15493. case GGML_OP_ROPE:
  15494. {
  15495. // necessary for llama
  15496. if (src0->grad) {
  15497. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15498. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15499. const int mode = ((int32_t *) tensor->op_params)[2];
  15500. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15501. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15502. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15503. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15504. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15505. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15506. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15507. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15508. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15509. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15510. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15511. src0->grad = ggml_add_or_set(ctx,
  15512. src0->grad,
  15513. ggml_rope_back(ctx,
  15514. tensor->grad,
  15515. src1,
  15516. n_dims,
  15517. mode,
  15518. n_ctx,
  15519. n_orig_ctx,
  15520. freq_base,
  15521. freq_scale,
  15522. ext_factor,
  15523. attn_factor,
  15524. beta_fast,
  15525. beta_slow,
  15526. xpos_base,
  15527. xpos_down),
  15528. zero_table);
  15529. }
  15530. } break;
  15531. case GGML_OP_ROPE_BACK:
  15532. {
  15533. if (src0->grad) {
  15534. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15535. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15536. const int mode = ((int32_t *) tensor->op_params)[2];
  15537. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15538. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15539. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15540. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15541. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15542. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15543. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15544. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15545. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15546. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15547. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15548. src0->grad = ggml_add_or_set(ctx,
  15549. src0->grad,
  15550. ggml_rope_impl(ctx,
  15551. tensor->grad,
  15552. src1,
  15553. n_dims,
  15554. mode,
  15555. n_ctx,
  15556. n_orig_ctx,
  15557. freq_base,
  15558. freq_scale,
  15559. ext_factor,
  15560. attn_factor,
  15561. beta_fast,
  15562. beta_slow,
  15563. xpos_base,
  15564. xpos_down,
  15565. false),
  15566. zero_table);
  15567. }
  15568. } break;
  15569. case GGML_OP_CLAMP:
  15570. {
  15571. GGML_ASSERT(false); // TODO: not implemented
  15572. } break;
  15573. case GGML_OP_CONV_TRANSPOSE_1D:
  15574. {
  15575. GGML_ASSERT(false); // TODO: not implemented
  15576. } break;
  15577. case GGML_OP_IM2COL:
  15578. {
  15579. GGML_ASSERT(false); // TODO: not implemented
  15580. } break;
  15581. case GGML_OP_CONV_TRANSPOSE_2D:
  15582. {
  15583. GGML_ASSERT(false); // TODO: not implemented
  15584. } break;
  15585. case GGML_OP_POOL_1D:
  15586. {
  15587. GGML_ASSERT(false); // TODO: not implemented
  15588. } break;
  15589. case GGML_OP_POOL_2D:
  15590. {
  15591. GGML_ASSERT(false); // TODO: not implemented
  15592. } break;
  15593. case GGML_OP_UPSCALE:
  15594. {
  15595. GGML_ASSERT(false); // TODO: not implemented
  15596. } break;
  15597. case GGML_OP_PAD:
  15598. {
  15599. GGML_ASSERT(false); // TODO: not implemented
  15600. } break;
  15601. case GGML_OP_ARANGE:
  15602. {
  15603. GGML_ASSERT(false); // TODO: not implemented
  15604. } break;
  15605. case GGML_OP_TIMESTEP_EMBEDDING:
  15606. {
  15607. GGML_ASSERT(false); // TODO: not implemented
  15608. } break;
  15609. case GGML_OP_ARGSORT:
  15610. {
  15611. GGML_ASSERT(false); // TODO: not implemented
  15612. } break;
  15613. case GGML_OP_LEAKY_RELU:
  15614. {
  15615. GGML_ASSERT(false); // TODO: not implemented
  15616. } break;
  15617. case GGML_OP_FLASH_ATTN:
  15618. case GGML_OP_FLASH_ATTN_EXT:
  15619. {
  15620. struct ggml_tensor * flash_grad = NULL;
  15621. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15622. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15623. GGML_ASSERT(t == 0 || t == 1);
  15624. bool masked = t != 0;
  15625. flash_grad =
  15626. ggml_flash_attn_back(ctx,
  15627. src0,
  15628. src1,
  15629. tensor->src[2],
  15630. tensor->grad,
  15631. masked);
  15632. }
  15633. struct ggml_tensor * src2 = tensor->src[2];
  15634. const int64_t elem_q = ggml_nelements(src0);
  15635. const int64_t elem_k = ggml_nelements(src1);
  15636. const int64_t elem_v = ggml_nelements(src2);
  15637. enum ggml_type result_type = flash_grad->type;
  15638. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15639. const size_t tsize = ggml_type_size(result_type);
  15640. const size_t offs_q = 0;
  15641. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15642. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15643. if (src0->grad) {
  15644. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15645. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15646. src0->grad = ggml_add_or_set(ctx,
  15647. src0->grad,
  15648. grad_q,
  15649. zero_table);
  15650. }
  15651. if (src1->grad) {
  15652. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15653. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15654. src1->grad = ggml_add_or_set(ctx,
  15655. src1->grad,
  15656. grad_k,
  15657. zero_table);
  15658. }
  15659. if (src2->grad) {
  15660. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15661. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15662. src2->grad = ggml_add_or_set(ctx,
  15663. src2->grad,
  15664. grad_v,
  15665. zero_table);
  15666. }
  15667. } break;
  15668. case GGML_OP_FLASH_FF:
  15669. {
  15670. GGML_ASSERT(false); // not supported
  15671. } break;
  15672. case GGML_OP_FLASH_ATTN_BACK:
  15673. {
  15674. GGML_ASSERT(false); // not supported
  15675. } break;
  15676. case GGML_OP_SSM_CONV:
  15677. case GGML_OP_SSM_SCAN:
  15678. {
  15679. GGML_ASSERT(false); // TODO: not implemented
  15680. } break;
  15681. case GGML_OP_WIN_PART:
  15682. case GGML_OP_WIN_UNPART:
  15683. case GGML_OP_UNARY:
  15684. {
  15685. switch (ggml_get_unary_op(tensor)) {
  15686. case GGML_UNARY_OP_ABS:
  15687. {
  15688. if (src0->grad) {
  15689. src0->grad =
  15690. ggml_add_or_set(ctx,
  15691. src0->grad,
  15692. ggml_mul(ctx,
  15693. ggml_sgn(ctx, src0),
  15694. tensor->grad),
  15695. zero_table);
  15696. }
  15697. } break;
  15698. case GGML_UNARY_OP_SGN:
  15699. {
  15700. if (src0->grad) {
  15701. // noop
  15702. }
  15703. } break;
  15704. case GGML_UNARY_OP_NEG:
  15705. {
  15706. if (src0->grad) {
  15707. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15708. }
  15709. } break;
  15710. case GGML_UNARY_OP_STEP:
  15711. {
  15712. if (src0->grad) {
  15713. // noop
  15714. }
  15715. } break;
  15716. case GGML_UNARY_OP_TANH:
  15717. {
  15718. GGML_ASSERT(false); // TODO: not implemented
  15719. } break;
  15720. case GGML_UNARY_OP_ELU:
  15721. {
  15722. GGML_ASSERT(false); // TODO: not implemented
  15723. } break;
  15724. case GGML_UNARY_OP_RELU:
  15725. {
  15726. if (src0->grad) {
  15727. src0->grad = ggml_add_or_set(ctx,
  15728. src0->grad,
  15729. ggml_mul(ctx,
  15730. ggml_step(ctx, src0),
  15731. tensor->grad),
  15732. zero_table);
  15733. }
  15734. } break;
  15735. case GGML_UNARY_OP_SIGMOID:
  15736. {
  15737. GGML_ASSERT(false); // TODO: not implemented
  15738. } break;
  15739. case GGML_UNARY_OP_GELU:
  15740. {
  15741. GGML_ASSERT(false); // TODO: not implemented
  15742. } break;
  15743. case GGML_UNARY_OP_GELU_QUICK:
  15744. {
  15745. GGML_ASSERT(false); // TODO: not implemented
  15746. } break;
  15747. case GGML_UNARY_OP_SILU:
  15748. {
  15749. // necessary for llama
  15750. if (src0->grad) {
  15751. src0->grad = ggml_add_or_set(ctx,
  15752. src0->grad,
  15753. ggml_silu_back(ctx, src0, tensor->grad),
  15754. zero_table);
  15755. }
  15756. } break;
  15757. default:
  15758. GGML_ASSERT(false);
  15759. }
  15760. } break;
  15761. case GGML_OP_GET_REL_POS:
  15762. case GGML_OP_ADD_REL_POS:
  15763. case GGML_OP_MAP_UNARY:
  15764. case GGML_OP_MAP_BINARY:
  15765. case GGML_OP_MAP_CUSTOM1_F32:
  15766. case GGML_OP_MAP_CUSTOM2_F32:
  15767. case GGML_OP_MAP_CUSTOM3_F32:
  15768. case GGML_OP_MAP_CUSTOM1:
  15769. case GGML_OP_MAP_CUSTOM2:
  15770. case GGML_OP_MAP_CUSTOM3:
  15771. {
  15772. GGML_ASSERT(false); // not supported
  15773. } break;
  15774. case GGML_OP_CROSS_ENTROPY_LOSS:
  15775. {
  15776. if (src0->grad) {
  15777. src0->grad = ggml_add_or_set(ctx,
  15778. src0->grad,
  15779. ggml_cross_entropy_loss_back(ctx,
  15780. src0,
  15781. src1,
  15782. tensor->grad),
  15783. zero_table);
  15784. }
  15785. } break;
  15786. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15787. {
  15788. GGML_ASSERT(false); // not supported
  15789. } break;
  15790. case GGML_OP_NONE:
  15791. {
  15792. // nop
  15793. } break;
  15794. case GGML_OP_COUNT:
  15795. {
  15796. GGML_ASSERT(false);
  15797. } break;
  15798. }
  15799. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15800. if (tensor->src[i] && tensor->src[i]->grad) {
  15801. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15802. }
  15803. }
  15804. }
  15805. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15806. if (node->grad == NULL) {
  15807. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15808. // it can also happen during forward pass, if the user performs computations with constants
  15809. if (node->op != GGML_OP_NONE) {
  15810. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15811. }
  15812. }
  15813. // check if already visited
  15814. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15815. return;
  15816. }
  15817. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15818. const int k =
  15819. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15820. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15821. /* unknown order, just fall back to using i*/ i;
  15822. if (node->src[k]) {
  15823. ggml_visit_parents(cgraph, node->src[k]);
  15824. }
  15825. }
  15826. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15827. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15828. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15829. if (strlen(node->name) == 0) {
  15830. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15831. }
  15832. cgraph->leafs[cgraph->n_leafs] = node;
  15833. cgraph->n_leafs++;
  15834. } else {
  15835. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15836. if (strlen(node->name) == 0) {
  15837. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15838. }
  15839. cgraph->nodes[cgraph->n_nodes] = node;
  15840. if (cgraph->grads) {
  15841. cgraph->grads[cgraph->n_nodes] = node->grad;
  15842. }
  15843. cgraph->n_nodes++;
  15844. }
  15845. }
  15846. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15847. if (!expand) {
  15848. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15849. ggml_graph_clear(cgraph);
  15850. }
  15851. const int n0 = cgraph->n_nodes;
  15852. UNUSED(n0);
  15853. ggml_visit_parents(cgraph, tensor);
  15854. const int n_new = cgraph->n_nodes - n0;
  15855. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15856. if (n_new > 0) {
  15857. // the last added node should always be starting point
  15858. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15859. }
  15860. }
  15861. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15862. ggml_build_forward_impl(cgraph, tensor, true);
  15863. }
  15864. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15865. GGML_ASSERT(gf->n_nodes > 0);
  15866. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15867. if (keep) {
  15868. for (int i = 0; i < gf->n_nodes; i++) {
  15869. struct ggml_tensor * node = gf->nodes[i];
  15870. if (node->grad) {
  15871. node->grad = ggml_dup_tensor(ctx, node);
  15872. gf->grads[i] = node->grad;
  15873. }
  15874. }
  15875. }
  15876. // remember original gradients which start with zero values
  15877. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15878. for (int i = 0; i < gf->n_nodes; i++) {
  15879. if (gf->grads[i]) {
  15880. ggml_hash_insert(zero_table, gf->grads[i]);
  15881. }
  15882. }
  15883. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15884. struct ggml_tensor * node = gf->nodes[i];
  15885. // inplace operations to add gradients are not created by ggml_compute_backward
  15886. // use allocator to automatically make inplace operations
  15887. if (node->grad) {
  15888. ggml_compute_backward(ctx, node, zero_table);
  15889. }
  15890. }
  15891. for (int i = 0; i < gf->n_nodes; i++) {
  15892. struct ggml_tensor * node = gf->nodes[i];
  15893. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15894. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15895. ggml_build_forward_expand(gb, node->grad);
  15896. }
  15897. }
  15898. ggml_hash_set_free(zero_table);
  15899. }
  15900. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15901. size_t nbytes = sizeof(struct ggml_cgraph);
  15902. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15903. if (grads) {
  15904. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15905. }
  15906. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15907. return nbytes;
  15908. }
  15909. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15910. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15911. }
  15912. size_t ggml_graph_overhead(void) {
  15913. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15914. }
  15915. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15916. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15917. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15918. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15919. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15920. size_t hash_size = ggml_hash_size(size * 2);
  15921. struct ggml_tensor ** nodes_ptr = data_start;
  15922. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15923. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15924. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15925. // check that we allocated the correct amount of memory
  15926. assert(obj_size == (size_t) (
  15927. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15928. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15929. *cgraph = (struct ggml_cgraph) {
  15930. /*.size =*/ size,
  15931. /*.n_nodes =*/ 0,
  15932. /*.n_leafs =*/ 0,
  15933. /*.nodes =*/ nodes_ptr,
  15934. /*.grads =*/ grads_ptr,
  15935. /*.leafs =*/ leafs_ptr,
  15936. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15937. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15938. /*.perf_runs =*/ 0,
  15939. /*.perf_cycles =*/ 0,
  15940. /*.perf_time_us =*/ 0,
  15941. };
  15942. return cgraph;
  15943. }
  15944. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15945. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15946. }
  15947. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15948. struct ggml_cgraph cgraph = {
  15949. /*.size =*/ 0,
  15950. /*.n_nodes =*/ i1 - i0,
  15951. /*.n_leafs =*/ 0,
  15952. /*.nodes =*/ cgraph0->nodes + i0,
  15953. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15954. /*.leafs =*/ NULL,
  15955. /*.hash_table =*/ { 0, NULL },
  15956. /*.order =*/ cgraph0->order,
  15957. /*.perf_runs =*/ 0,
  15958. /*.perf_cycles =*/ 0,
  15959. /*.perf_time_us =*/ 0,
  15960. };
  15961. return cgraph;
  15962. }
  15963. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15964. GGML_ASSERT(dst->size >= src->n_leafs);
  15965. GGML_ASSERT(dst->size >= src->n_nodes);
  15966. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15967. dst->n_leafs = src->n_leafs;
  15968. dst->n_nodes = src->n_nodes;
  15969. dst->order = src->order;
  15970. for (int i = 0; i < src->n_leafs; ++i) {
  15971. dst->leafs[i] = src->leafs[i];
  15972. }
  15973. for (int i = 0; i < src->n_nodes; ++i) {
  15974. dst->nodes[i] = src->nodes[i];
  15975. }
  15976. if (src->grads) {
  15977. GGML_ASSERT(dst->grads != NULL);
  15978. for (int i = 0; i < src->n_nodes; ++i) {
  15979. dst->grads[i] = src->grads[i];
  15980. }
  15981. }
  15982. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15983. if (src->visited_hash_table.keys[i]) {
  15984. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15985. }
  15986. }
  15987. }
  15988. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15989. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15990. ggml_graph_cpy(cgraph, result);
  15991. return result;
  15992. }
  15993. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15994. GGML_ASSERT(cgraph->grads != NULL);
  15995. for (int i = 0; i < cgraph->n_nodes; i++) {
  15996. struct ggml_tensor * grad = cgraph->grads[i];
  15997. if (grad) {
  15998. ggml_set_zero(grad);
  15999. }
  16000. }
  16001. }
  16002. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  16003. cgraph->n_leafs = 0;
  16004. cgraph->n_nodes = 0;
  16005. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  16006. }
  16007. //
  16008. // thread data
  16009. //
  16010. // synchronization is done via busy loops
  16011. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  16012. //
  16013. #ifdef __APPLE__
  16014. //#include <os/lock.h>
  16015. //
  16016. //typedef os_unfair_lock ggml_lock_t;
  16017. //
  16018. //#define ggml_lock_init(x) UNUSED(x)
  16019. //#define ggml_lock_destroy(x) UNUSED(x)
  16020. //#define ggml_lock_lock os_unfair_lock_lock
  16021. //#define ggml_lock_unlock os_unfair_lock_unlock
  16022. //
  16023. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  16024. typedef int ggml_lock_t;
  16025. #define ggml_lock_init(x) UNUSED(x)
  16026. #define ggml_lock_destroy(x) UNUSED(x)
  16027. #define ggml_lock_lock(x) UNUSED(x)
  16028. #define ggml_lock_unlock(x) UNUSED(x)
  16029. #define GGML_LOCK_INITIALIZER 0
  16030. #define ggml_thread_create pthread_create
  16031. #define ggml_thread_join pthread_join
  16032. #else
  16033. //typedef pthread_spinlock_t ggml_lock_t;
  16034. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  16035. //#define ggml_lock_destroy pthread_spin_destroy
  16036. //#define ggml_lock_lock pthread_spin_lock
  16037. //#define ggml_lock_unlock pthread_spin_unlock
  16038. typedef int ggml_lock_t;
  16039. #define ggml_lock_init(x) UNUSED(x)
  16040. #define ggml_lock_destroy(x) UNUSED(x)
  16041. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  16042. #define ggml_lock_lock(x) _mm_pause()
  16043. #else
  16044. #define ggml_lock_lock(x) UNUSED(x)
  16045. #endif
  16046. #define ggml_lock_unlock(x) UNUSED(x)
  16047. #define GGML_LOCK_INITIALIZER 0
  16048. #define ggml_thread_create pthread_create
  16049. #define ggml_thread_join pthread_join
  16050. #endif
  16051. // Android's libc implementation "bionic" does not support setting affinity
  16052. #if defined(__gnu_linux__)
  16053. static void set_numa_thread_affinity(int thread_n) {
  16054. if (!ggml_is_numa()) {
  16055. return;
  16056. }
  16057. int node_num;
  16058. int rv;
  16059. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16060. switch(g_state.numa.numa_strategy) {
  16061. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  16062. // run thread on node_num thread_n / (threads per node)
  16063. node_num = thread_n % g_state.numa.n_nodes;
  16064. break;
  16065. case GGML_NUMA_STRATEGY_ISOLATE:
  16066. // run thread on current_node
  16067. node_num = g_state.numa.current_node;
  16068. break;
  16069. case GGML_NUMA_STRATEGY_NUMACTL:
  16070. // use the cpuset that numactl gave us
  16071. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  16072. if (rv) {
  16073. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  16074. }
  16075. return;
  16076. default:
  16077. return;
  16078. }
  16079. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  16080. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16081. CPU_ZERO_S(setsize, cpus);
  16082. for (size_t i = 0; i < node->n_cpus; ++i) {
  16083. CPU_SET_S(node->cpus[i], setsize, cpus);
  16084. }
  16085. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16086. if (rv) {
  16087. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16088. }
  16089. CPU_FREE(cpus);
  16090. }
  16091. static void clear_numa_thread_affinity(void) {
  16092. if (!ggml_is_numa()) {
  16093. return;
  16094. }
  16095. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16096. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16097. CPU_ZERO_S(setsize, cpus);
  16098. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  16099. CPU_SET_S(i, setsize, cpus);
  16100. }
  16101. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16102. if (rv) {
  16103. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16104. }
  16105. CPU_FREE(cpus);
  16106. }
  16107. #else
  16108. // TODO: Windows etc.
  16109. // (the linux implementation may also work on BSD, someone should test)
  16110. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  16111. static void clear_numa_thread_affinity(void) {}
  16112. #endif
  16113. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  16114. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  16115. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  16116. node->perf_runs++;
  16117. node->perf_cycles += cycles_cur;
  16118. node->perf_time_us += time_us_cur;
  16119. }
  16120. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  16121. int n_tasks = 0;
  16122. if (ggml_is_empty(node)) {
  16123. // no need to multi-thread a no-op
  16124. n_tasks = 1;
  16125. return n_tasks;
  16126. }
  16127. switch (node->op) {
  16128. case GGML_OP_CPY:
  16129. case GGML_OP_DUP:
  16130. case GGML_OP_ADD:
  16131. case GGML_OP_ADD1:
  16132. case GGML_OP_ACC:
  16133. {
  16134. n_tasks = n_threads;
  16135. } break;
  16136. case GGML_OP_SUB:
  16137. case GGML_OP_SQR:
  16138. case GGML_OP_SQRT:
  16139. case GGML_OP_LOG:
  16140. case GGML_OP_SUM:
  16141. case GGML_OP_SUM_ROWS:
  16142. case GGML_OP_MEAN:
  16143. case GGML_OP_ARGMAX:
  16144. case GGML_OP_REPEAT:
  16145. case GGML_OP_REPEAT_BACK:
  16146. case GGML_OP_LEAKY_RELU:
  16147. {
  16148. n_tasks = 1;
  16149. } break;
  16150. case GGML_OP_UNARY:
  16151. switch (ggml_get_unary_op(node)) {
  16152. case GGML_UNARY_OP_ABS:
  16153. case GGML_UNARY_OP_SGN:
  16154. case GGML_UNARY_OP_NEG:
  16155. case GGML_UNARY_OP_STEP:
  16156. case GGML_UNARY_OP_TANH:
  16157. case GGML_UNARY_OP_ELU:
  16158. case GGML_UNARY_OP_RELU:
  16159. case GGML_UNARY_OP_SIGMOID:
  16160. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  16161. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  16162. {
  16163. n_tasks = 1;
  16164. } break;
  16165. case GGML_UNARY_OP_GELU:
  16166. case GGML_UNARY_OP_GELU_QUICK:
  16167. case GGML_UNARY_OP_SILU:
  16168. {
  16169. n_tasks = n_threads;
  16170. } break;
  16171. default:
  16172. GGML_ASSERT(false);
  16173. }
  16174. break;
  16175. case GGML_OP_SILU_BACK:
  16176. case GGML_OP_MUL:
  16177. case GGML_OP_DIV:
  16178. case GGML_OP_NORM:
  16179. case GGML_OP_RMS_NORM:
  16180. case GGML_OP_RMS_NORM_BACK:
  16181. case GGML_OP_GROUP_NORM:
  16182. case GGML_OP_CONCAT:
  16183. {
  16184. n_tasks = n_threads;
  16185. } break;
  16186. case GGML_OP_MUL_MAT:
  16187. {
  16188. n_tasks = n_threads;
  16189. // TODO: use different scheduling for different matrix sizes
  16190. //const int nr0 = ggml_nrows(node->src[0]);
  16191. //const int nr1 = ggml_nrows(node->src[1]);
  16192. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  16193. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  16194. } break;
  16195. case GGML_OP_MUL_MAT_ID:
  16196. {
  16197. n_tasks = n_threads;
  16198. } break;
  16199. case GGML_OP_OUT_PROD:
  16200. {
  16201. n_tasks = n_threads;
  16202. } break;
  16203. case GGML_OP_GET_ROWS:
  16204. {
  16205. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  16206. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  16207. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  16208. } break;
  16209. case GGML_OP_SCALE:
  16210. case GGML_OP_SET:
  16211. case GGML_OP_CONT:
  16212. case GGML_OP_RESHAPE:
  16213. case GGML_OP_VIEW:
  16214. case GGML_OP_PERMUTE:
  16215. case GGML_OP_TRANSPOSE:
  16216. case GGML_OP_GET_ROWS_BACK:
  16217. case GGML_OP_DIAG:
  16218. {
  16219. n_tasks = 1;
  16220. } break;
  16221. case GGML_OP_DIAG_MASK_ZERO:
  16222. case GGML_OP_DIAG_MASK_INF:
  16223. case GGML_OP_SOFT_MAX_BACK:
  16224. case GGML_OP_ROPE:
  16225. case GGML_OP_ROPE_BACK:
  16226. case GGML_OP_ADD_REL_POS:
  16227. {
  16228. n_tasks = n_threads;
  16229. } break;
  16230. case GGML_OP_CLAMP:
  16231. {
  16232. n_tasks = 1; //TODO
  16233. } break;
  16234. case GGML_OP_SOFT_MAX:
  16235. {
  16236. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16237. } break;
  16238. case GGML_OP_CONV_TRANSPOSE_1D:
  16239. {
  16240. n_tasks = n_threads;
  16241. } break;
  16242. case GGML_OP_IM2COL:
  16243. {
  16244. n_tasks = n_threads;
  16245. } break;
  16246. case GGML_OP_CONV_TRANSPOSE_2D:
  16247. {
  16248. n_tasks = n_threads;
  16249. } break;
  16250. case GGML_OP_POOL_1D:
  16251. case GGML_OP_POOL_2D:
  16252. {
  16253. n_tasks = 1;
  16254. } break;
  16255. case GGML_OP_UPSCALE:
  16256. {
  16257. n_tasks = n_threads;
  16258. } break;
  16259. case GGML_OP_PAD:
  16260. {
  16261. n_tasks = n_threads;
  16262. } break;
  16263. case GGML_OP_ARANGE:
  16264. {
  16265. n_tasks = n_threads;
  16266. } break;
  16267. case GGML_OP_TIMESTEP_EMBEDDING:
  16268. {
  16269. n_tasks = n_threads;
  16270. } break;
  16271. case GGML_OP_ARGSORT:
  16272. {
  16273. n_tasks = n_threads;
  16274. } break;
  16275. case GGML_OP_FLASH_ATTN:
  16276. case GGML_OP_FLASH_ATTN_EXT:
  16277. {
  16278. n_tasks = n_threads;
  16279. } break;
  16280. case GGML_OP_FLASH_FF:
  16281. {
  16282. n_tasks = n_threads;
  16283. } break;
  16284. case GGML_OP_FLASH_ATTN_BACK:
  16285. {
  16286. n_tasks = n_threads;
  16287. } break;
  16288. case GGML_OP_SSM_CONV:
  16289. case GGML_OP_SSM_SCAN:
  16290. {
  16291. n_tasks = n_threads;
  16292. } break;
  16293. case GGML_OP_WIN_PART:
  16294. case GGML_OP_WIN_UNPART:
  16295. case GGML_OP_GET_REL_POS:
  16296. case GGML_OP_MAP_UNARY:
  16297. case GGML_OP_MAP_BINARY:
  16298. case GGML_OP_MAP_CUSTOM1_F32:
  16299. case GGML_OP_MAP_CUSTOM2_F32:
  16300. case GGML_OP_MAP_CUSTOM3_F32:
  16301. {
  16302. n_tasks = 1;
  16303. } break;
  16304. case GGML_OP_MAP_CUSTOM1:
  16305. {
  16306. struct ggml_map_custom1_op_params p;
  16307. memcpy(&p, node->op_params, sizeof(p));
  16308. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16309. n_tasks = n_threads;
  16310. } else {
  16311. n_tasks = MIN(p.n_tasks, n_threads);
  16312. }
  16313. } break;
  16314. case GGML_OP_MAP_CUSTOM2:
  16315. {
  16316. struct ggml_map_custom2_op_params p;
  16317. memcpy(&p, node->op_params, sizeof(p));
  16318. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16319. n_tasks = n_threads;
  16320. } else {
  16321. n_tasks = MIN(p.n_tasks, n_threads);
  16322. }
  16323. } break;
  16324. case GGML_OP_MAP_CUSTOM3:
  16325. {
  16326. struct ggml_map_custom3_op_params p;
  16327. memcpy(&p, node->op_params, sizeof(p));
  16328. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16329. n_tasks = n_threads;
  16330. } else {
  16331. n_tasks = MIN(p.n_tasks, n_threads);
  16332. }
  16333. } break;
  16334. case GGML_OP_CROSS_ENTROPY_LOSS:
  16335. {
  16336. n_tasks = n_threads;
  16337. } break;
  16338. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16339. {
  16340. n_tasks = n_threads;
  16341. } break;
  16342. case GGML_OP_NONE:
  16343. {
  16344. n_tasks = 1;
  16345. } break;
  16346. case GGML_OP_COUNT:
  16347. {
  16348. GGML_ASSERT(false);
  16349. } break;
  16350. default:
  16351. {
  16352. fprintf(stderr, "%s: op not implemented: ", __func__);
  16353. if (node->op < GGML_OP_COUNT) {
  16354. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16355. } else {
  16356. fprintf(stderr, "%d\n", node->op);
  16357. }
  16358. GGML_ASSERT(false);
  16359. } break;
  16360. }
  16361. assert(n_tasks > 0);
  16362. return n_tasks;
  16363. }
  16364. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16365. // wait for other threads to finish
  16366. const int last_node_n = * node_n;
  16367. while (true) {
  16368. if (do_yield) {
  16369. sched_yield();
  16370. }
  16371. * node_n = atomic_load(&state->shared->node_n);
  16372. if (* node_n != last_node_n) break;
  16373. #if defined(__SSE3__)
  16374. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16375. _mm_pause();
  16376. #endif
  16377. }
  16378. }
  16379. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16380. // wait for other threads to finish
  16381. const int last_task_phase = * task_phase;
  16382. while (true) {
  16383. if (do_yield) {
  16384. sched_yield();
  16385. }
  16386. * task_phase = atomic_load(&state->shared->node_task);
  16387. if (* task_phase != last_task_phase) break;
  16388. #if defined(__SSE3__)
  16389. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16390. _mm_pause();
  16391. #endif
  16392. }
  16393. }
  16394. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16395. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16396. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16397. const struct ggml_cplan * cplan = state->shared->cplan;
  16398. const int n_threads = state->shared->n_threads;
  16399. set_numa_thread_affinity(state->ith);
  16400. int node_n = -1;
  16401. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16402. while (true) {
  16403. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16404. state->shared->node_n += 1;
  16405. state->ec = GGML_STATUS_ABORTED;
  16406. return 0;
  16407. }
  16408. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16409. // all other threads are finished and spinning
  16410. // do finalize and init here so we don't have synchronize again
  16411. struct ggml_compute_params params = {
  16412. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16413. /*.ith =*/ 0,
  16414. /*.nth =*/ 0,
  16415. /*.wsize =*/ cplan->work_size,
  16416. /*.wdata =*/ cplan->work_data,
  16417. };
  16418. if (node_n != -1) {
  16419. /* FINALIZE */
  16420. struct ggml_tensor * node = cgraph->nodes[node_n];
  16421. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16422. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16423. ggml_compute_forward(&params, node, state);
  16424. }
  16425. ggml_graph_compute_perf_stats_node(node, state->shared);
  16426. }
  16427. // distribute new work or execute it direct if 1T
  16428. while (++node_n < cgraph->n_nodes) {
  16429. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16430. struct ggml_tensor * node = cgraph->nodes[node_n];
  16431. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16432. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16433. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16434. params.nth = n_tasks;
  16435. if (n_tasks == 1) {
  16436. /* INIT */
  16437. if (GGML_OP_HAS_INIT[node->op]) {
  16438. params.type = GGML_TASK_TYPE_INIT;
  16439. ggml_compute_forward(&params, node, state);
  16440. }
  16441. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16442. // they do something more efficient than spinning (?)
  16443. params.type = GGML_TASK_TYPE_COMPUTE;
  16444. ggml_compute_forward(&params, node, state);
  16445. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16446. params.type = GGML_TASK_TYPE_FINALIZE;
  16447. ggml_compute_forward(&params, node, state);
  16448. }
  16449. ggml_graph_compute_perf_stats_node(node, state->shared);
  16450. } else {
  16451. break;
  16452. }
  16453. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16454. break;
  16455. }
  16456. }
  16457. task_phase = GGML_TASK_TYPE_INIT;
  16458. atomic_store(&state->shared->n_active, n_threads);
  16459. atomic_store(&state->shared->node_n, node_n);
  16460. atomic_store(&state->shared->node_task, task_phase);
  16461. } else {
  16462. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16463. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16464. }
  16465. // check if we should stop
  16466. if (node_n >= cgraph->n_nodes) break;
  16467. /* INIT & COMPUTE */
  16468. struct ggml_tensor * node = cgraph->nodes[node_n];
  16469. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16470. struct ggml_compute_params params = {
  16471. /*.type =*/ GGML_TASK_TYPE_INIT,
  16472. /*.ith =*/ state->ith,
  16473. /*.nth =*/ n_tasks,
  16474. /*.wsize =*/ cplan->work_size,
  16475. /*.wdata =*/ cplan->work_data,
  16476. };
  16477. if (state->ith < n_tasks) {
  16478. if (GGML_OP_HAS_INIT[node->op]) {
  16479. ggml_compute_forward(&params, node, state);
  16480. }
  16481. }
  16482. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16483. task_phase = GGML_TASK_TYPE_COMPUTE;
  16484. atomic_store(&state->shared->n_active, n_threads);
  16485. atomic_store(&state->shared->node_task, task_phase);
  16486. }
  16487. else {
  16488. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16489. // depending on the workload and the operating system.
  16490. // since it is not clear what is the best approach, it should potentially become user-configurable
  16491. // ref: https://github.com/ggerganov/ggml/issues/291
  16492. // UPD: adding the do_yield flag seems to resolve the issue universally
  16493. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16494. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16495. }
  16496. if (state->ith < n_tasks) {
  16497. params.type = GGML_TASK_TYPE_COMPUTE;
  16498. ggml_compute_forward(&params, node, state);
  16499. }
  16500. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16501. task_phase = GGML_TASK_TYPE_FINALIZE;
  16502. atomic_store(&state->shared->n_active, n_threads);
  16503. atomic_store(&state->shared->node_task, task_phase);
  16504. }
  16505. else {
  16506. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16507. }
  16508. }
  16509. return 0;
  16510. }
  16511. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16512. if (n_threads <= 0) {
  16513. n_threads = GGML_DEFAULT_N_THREADS;
  16514. }
  16515. size_t work_size = 0;
  16516. struct ggml_cplan cplan;
  16517. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16518. int max_tasks = 1;
  16519. // thread scheduling for the different operations + work buffer size estimation
  16520. for (int i = 0; i < cgraph->n_nodes; i++) {
  16521. struct ggml_tensor * node = cgraph->nodes[i];
  16522. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16523. max_tasks = MAX(max_tasks, n_tasks);
  16524. size_t cur = 0;
  16525. switch (node->op) {
  16526. case GGML_OP_CPY:
  16527. case GGML_OP_DUP:
  16528. {
  16529. if (ggml_is_quantized(node->type) ||
  16530. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16531. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16532. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16533. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16534. }
  16535. } break;
  16536. case GGML_OP_ADD:
  16537. case GGML_OP_ADD1:
  16538. {
  16539. if (ggml_is_quantized(node->src[0]->type)) {
  16540. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16541. }
  16542. } break;
  16543. case GGML_OP_ACC:
  16544. {
  16545. if (ggml_is_quantized(node->src[0]->type)) {
  16546. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16547. }
  16548. } break;
  16549. case GGML_OP_MUL_MAT:
  16550. {
  16551. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16552. #if defined(GGML_USE_CLBLAST)
  16553. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16554. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16555. } else
  16556. #endif
  16557. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16558. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16559. if (node->src[0]->type != GGML_TYPE_F32) {
  16560. // here we need memory for fully dequantized matrix from src0
  16561. // take into account that src0 can be broadcasted into src1[2,3]
  16562. cur = ggml_type_size(GGML_TYPE_F32)
  16563. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16564. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16565. }
  16566. } else
  16567. #endif
  16568. if (node->src[1]->type != vec_dot_type) {
  16569. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16570. }
  16571. } break;
  16572. case GGML_OP_MUL_MAT_ID:
  16573. {
  16574. cur = 0;
  16575. const struct ggml_tensor * src0 = node->src[0];
  16576. const struct ggml_tensor * src1 = node->src[1];
  16577. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16578. if (src1->type != vec_dot_type) {
  16579. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16580. }
  16581. const int n_as = src0->ne[2];
  16582. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16583. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16584. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16585. } break;
  16586. case GGML_OP_OUT_PROD:
  16587. {
  16588. if (ggml_is_quantized(node->src[0]->type)) {
  16589. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16590. }
  16591. } break;
  16592. case GGML_OP_SOFT_MAX:
  16593. case GGML_OP_ROPE:
  16594. {
  16595. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16596. } break;
  16597. case GGML_OP_CONV_TRANSPOSE_1D:
  16598. {
  16599. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16600. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16601. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16602. const int64_t ne00 = node->src[0]->ne[0]; // K
  16603. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16604. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16605. const int64_t ne10 = node->src[1]->ne[0]; // L
  16606. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16607. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16608. node->src[0]->type == GGML_TYPE_BF16) &&
  16609. node->src[1]->type == GGML_TYPE_F32) {
  16610. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16611. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16612. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16613. node->src[1]->type == GGML_TYPE_F32) {
  16614. cur += sizeof(float)*ne00*ne01*ne02;
  16615. cur += sizeof(float)*ne10*ne11;
  16616. } else {
  16617. GGML_ASSERT(false);
  16618. }
  16619. } break;
  16620. case GGML_OP_CONV_TRANSPOSE_2D:
  16621. {
  16622. const int64_t ne00 = node->src[0]->ne[0]; // W
  16623. const int64_t ne01 = node->src[0]->ne[1]; // H
  16624. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16625. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16626. const int64_t ne10 = node->src[1]->ne[0]; // W
  16627. const int64_t ne11 = node->src[1]->ne[1]; // H
  16628. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16629. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16630. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16631. } break;
  16632. case GGML_OP_FLASH_ATTN:
  16633. {
  16634. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16635. if (node->src[1]->type == GGML_TYPE_F32) {
  16636. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16637. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16638. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16639. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16640. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16641. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16642. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16643. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16644. }
  16645. } break;
  16646. case GGML_OP_FLASH_ATTN_EXT:
  16647. {
  16648. const int64_t ne00 = node->src[0]->ne[0]; // D
  16649. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16650. } break;
  16651. case GGML_OP_FLASH_FF:
  16652. {
  16653. if (node->src[1]->type == GGML_TYPE_F32) {
  16654. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16655. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16656. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16657. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16658. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16659. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16660. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16661. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16662. }
  16663. } break;
  16664. case GGML_OP_FLASH_ATTN_BACK:
  16665. {
  16666. const int64_t D = node->src[0]->ne[0];
  16667. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16668. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16669. if (node->src[1]->type == GGML_TYPE_F32) {
  16670. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16671. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16672. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16673. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16674. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16675. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16676. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16677. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16678. }
  16679. } break;
  16680. case GGML_OP_CROSS_ENTROPY_LOSS:
  16681. {
  16682. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16683. } break;
  16684. case GGML_OP_COUNT:
  16685. {
  16686. GGML_ASSERT(false);
  16687. } break;
  16688. default:
  16689. break;
  16690. }
  16691. work_size = MAX(work_size, cur);
  16692. }
  16693. if (work_size > 0) {
  16694. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16695. }
  16696. cplan.n_threads = MIN(max_tasks, n_threads);
  16697. cplan.work_size = work_size;
  16698. cplan.work_data = NULL;
  16699. return cplan;
  16700. }
  16701. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16702. {
  16703. GGML_ASSERT(cplan);
  16704. GGML_ASSERT(cplan->n_threads > 0);
  16705. if (cplan->work_size > 0) {
  16706. GGML_ASSERT(cplan->work_data);
  16707. }
  16708. }
  16709. const int n_threads = cplan->n_threads;
  16710. struct ggml_compute_state_shared state_shared = {
  16711. /*.cgraph =*/ cgraph,
  16712. /*.cgraph_plan =*/ cplan,
  16713. /*.perf_node_start_cycles =*/ 0,
  16714. /*.perf_node_start_time_us =*/ 0,
  16715. /*.n_threads =*/ n_threads,
  16716. /*.n_active =*/ n_threads,
  16717. /*.node_n =*/ -1,
  16718. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16719. /*.abort_callback =*/ NULL,
  16720. /*.abort_callback_data =*/ NULL,
  16721. /*.current_chunk; =*/ 0,
  16722. };
  16723. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16724. // create thread pool
  16725. if (n_threads > 1) {
  16726. for (int j = 1; j < n_threads; ++j) {
  16727. workers[j] = (struct ggml_compute_state) {
  16728. .thrd = 0,
  16729. .ith = j,
  16730. .shared = &state_shared,
  16731. .ec = GGML_STATUS_SUCCESS,
  16732. };
  16733. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16734. GGML_ASSERT(rc == 0);
  16735. UNUSED(rc);
  16736. }
  16737. }
  16738. workers[0].ith = 0;
  16739. workers[0].shared = &state_shared;
  16740. workers[0].ec = GGML_STATUS_SUCCESS;
  16741. const int64_t perf_start_cycles = ggml_perf_cycles();
  16742. const int64_t perf_start_time_us = ggml_perf_time_us();
  16743. // this is a work thread too
  16744. ggml_graph_compute_thread(&workers[0]);
  16745. enum ggml_status compute_status = workers[0].ec;
  16746. // don't leave affinity set on the main thread
  16747. clear_numa_thread_affinity();
  16748. // join or kill thread pool
  16749. if (n_threads > 1) {
  16750. for (int j = 1; j < n_threads; j++) {
  16751. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16752. GGML_ASSERT(rc == 0);
  16753. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16754. compute_status = workers[j].ec;
  16755. }
  16756. }
  16757. // performance stats (graph)
  16758. {
  16759. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16760. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16761. cgraph->perf_runs++;
  16762. cgraph->perf_cycles += perf_cycles_cur;
  16763. cgraph->perf_time_us += perf_time_us_cur;
  16764. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16765. __func__, cgraph->perf_runs,
  16766. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16767. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16768. (double) perf_time_us_cur / 1000.0,
  16769. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16770. }
  16771. return compute_status;
  16772. }
  16773. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16774. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16775. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16776. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16777. return ggml_graph_compute(cgraph, &cplan);
  16778. }
  16779. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16780. for (int i = 0; i < cgraph->n_leafs; i++) {
  16781. struct ggml_tensor * leaf = cgraph->leafs[i];
  16782. if (strcmp(leaf->name, name) == 0) {
  16783. return leaf;
  16784. }
  16785. }
  16786. for (int i = 0; i < cgraph->n_nodes; i++) {
  16787. struct ggml_tensor * node = cgraph->nodes[i];
  16788. if (strcmp(node->name, name) == 0) {
  16789. return node;
  16790. }
  16791. }
  16792. return NULL;
  16793. }
  16794. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16795. const int64_t * ne = tensor->ne;
  16796. const size_t * nb = tensor->nb;
  16797. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16798. ggml_type_name(tensor->type),
  16799. ggml_op_name (tensor->op),
  16800. ggml_n_dims(tensor),
  16801. ne[0], ne[1], ne[2], ne[3],
  16802. nb[0], nb[1], nb[2], nb[3],
  16803. tensor->data,
  16804. tensor->name);
  16805. }
  16806. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16807. const int64_t * ne = tensor->ne;
  16808. const size_t * nb = tensor->nb;
  16809. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16810. arg,
  16811. ggml_type_name(tensor->type),
  16812. ggml_op_name (tensor->op),
  16813. ggml_n_dims(tensor),
  16814. ne[0], ne[1], ne[2], ne[3],
  16815. nb[0], nb[1], nb[2], nb[3],
  16816. tensor->data,
  16817. tensor->name);
  16818. }
  16819. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16820. uint64_t size_eval = 0;
  16821. // compute size of intermediate results
  16822. // TODO: does not take into account scratch buffers !!!!
  16823. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16824. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16825. }
  16826. // print
  16827. {
  16828. FILE * fout = stdout;
  16829. fprintf(fout, "\n");
  16830. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16831. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16832. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16833. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16834. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16835. // header
  16836. fprintf(fout, "\n");
  16837. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16838. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16839. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16840. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16841. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16842. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16843. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16844. }
  16845. // header
  16846. fprintf(fout, "\n");
  16847. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16848. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16849. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16850. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16851. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16852. if (cgraph->nodes[i]->src[j]) {
  16853. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16854. }
  16855. }
  16856. fprintf(fout, "\n");
  16857. }
  16858. fprintf(fout, "\n");
  16859. }
  16860. // write binary data
  16861. {
  16862. FILE * fout = ggml_fopen(fname, "wb");
  16863. if (!fout) {
  16864. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16865. return;
  16866. }
  16867. // header
  16868. {
  16869. const uint32_t magic = GGML_FILE_MAGIC;
  16870. const uint32_t version = GGML_FILE_VERSION;
  16871. const uint32_t n_leafs = cgraph->n_leafs;
  16872. const uint32_t n_nodes = cgraph->n_nodes;
  16873. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16874. fwrite(&version, sizeof(uint32_t), 1, fout);
  16875. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16876. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16877. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16878. }
  16879. // leafs
  16880. {
  16881. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16882. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16883. const uint32_t type = tensor->type;
  16884. const uint32_t op = tensor->op;
  16885. fwrite(&type, sizeof(uint32_t), 1, fout);
  16886. fwrite(&op, sizeof(uint32_t), 1, fout);
  16887. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16888. const uint64_t ne = tensor->ne[j];
  16889. const uint64_t nb = tensor->nb[j];
  16890. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16891. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16892. }
  16893. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16894. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16895. // dump the data
  16896. // TODO: pad this to 32 byte boundary
  16897. {
  16898. const size_t size = ggml_nbytes(tensor);
  16899. fwrite(tensor->data, sizeof(char), size, fout);
  16900. }
  16901. }
  16902. }
  16903. // nodes
  16904. {
  16905. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16906. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16907. const uint32_t type = tensor->type;
  16908. const uint32_t op = tensor->op;
  16909. fwrite(&type, sizeof(uint32_t), 1, fout);
  16910. fwrite(&op, sizeof(uint32_t), 1, fout);
  16911. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16912. const uint64_t ne = tensor->ne[j];
  16913. const uint64_t nb = tensor->nb[j];
  16914. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16915. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16916. }
  16917. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16918. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16919. // output the op arguments
  16920. {
  16921. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16922. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16923. args[j] = tensor->src[j];
  16924. }
  16925. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16926. if (args[j]) {
  16927. int32_t idx = -1;
  16928. // check if leaf
  16929. {
  16930. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16931. if (args[j] == cgraph->leafs[k]) {
  16932. idx = k;
  16933. break;
  16934. }
  16935. }
  16936. }
  16937. // check if node
  16938. if (idx == -1) {
  16939. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16940. if (args[j] == cgraph->nodes[k]) {
  16941. idx = cgraph->n_leafs + k;
  16942. break;
  16943. }
  16944. }
  16945. }
  16946. if (idx == -1) {
  16947. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16948. fclose(fout);
  16949. return;
  16950. }
  16951. fwrite(&idx, sizeof(int32_t), 1, fout);
  16952. } else {
  16953. const int32_t nul = -1;
  16954. fwrite(&nul, sizeof(int32_t), 1, fout);
  16955. }
  16956. }
  16957. }
  16958. }
  16959. }
  16960. fclose(fout);
  16961. }
  16962. }
  16963. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16964. assert(*ctx_data == NULL);
  16965. assert(*ctx_eval == NULL);
  16966. struct ggml_cgraph * result = NULL;
  16967. struct ggml_tensor * data = NULL;
  16968. // read file into data
  16969. {
  16970. FILE * fin = ggml_fopen(fname, "rb");
  16971. if (!fin) {
  16972. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16973. return result;
  16974. }
  16975. size_t fsize = 0;
  16976. fseek(fin, 0, SEEK_END);
  16977. fsize = ftell(fin);
  16978. fseek(fin, 0, SEEK_SET);
  16979. // create the data context
  16980. {
  16981. const size_t overhead = 1*ggml_tensor_overhead();
  16982. struct ggml_init_params params = {
  16983. .mem_size = fsize + overhead,
  16984. .mem_buffer = NULL,
  16985. .no_alloc = false,
  16986. };
  16987. *ctx_data = ggml_init(params);
  16988. if (!*ctx_data) {
  16989. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16990. fclose(fin);
  16991. return result;
  16992. }
  16993. }
  16994. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16995. {
  16996. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16997. if (ret != fsize) {
  16998. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16999. fclose(fin);
  17000. return result;
  17001. }
  17002. }
  17003. fclose(fin);
  17004. }
  17005. // populate result
  17006. {
  17007. char * ptr = (char *) data->data;
  17008. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17009. if (magic != GGML_FILE_MAGIC) {
  17010. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17011. return result;
  17012. }
  17013. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17014. if (version != GGML_FILE_VERSION) {
  17015. fprintf(stderr, "%s: invalid version number\n", __func__);
  17016. return result;
  17017. }
  17018. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17019. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17020. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17021. const int graph_size = MAX(n_leafs, n_nodes);
  17022. // create the data context
  17023. {
  17024. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17025. struct ggml_init_params params = {
  17026. .mem_size = size_eval + overhead,
  17027. .mem_buffer = NULL,
  17028. .no_alloc = true,
  17029. };
  17030. *ctx_eval = ggml_init(params);
  17031. if (!*ctx_eval) {
  17032. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17033. return result;
  17034. }
  17035. }
  17036. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17037. result->n_leafs = n_leafs;
  17038. result->n_nodes = n_nodes;
  17039. // leafs
  17040. {
  17041. uint32_t type;
  17042. uint32_t op;
  17043. for (uint32_t i = 0; i < n_leafs; ++i) {
  17044. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17045. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17046. int64_t ne[GGML_MAX_DIMS];
  17047. size_t nb[GGML_MAX_DIMS];
  17048. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17049. uint64_t ne_cur;
  17050. uint64_t nb_cur;
  17051. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17052. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17053. ne[j] = ne_cur;
  17054. nb[j] = nb_cur;
  17055. }
  17056. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17057. tensor->op = (enum ggml_op) op;
  17058. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17059. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17060. tensor->data = (void *) ptr;
  17061. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17062. tensor->nb[j] = nb[j];
  17063. }
  17064. result->leafs[i] = tensor;
  17065. ptr += ggml_nbytes(tensor);
  17066. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17067. }
  17068. }
  17069. ggml_set_no_alloc(*ctx_eval, false);
  17070. // nodes
  17071. {
  17072. uint32_t type;
  17073. uint32_t op;
  17074. for (uint32_t i = 0; i < n_nodes; ++i) {
  17075. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17076. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17077. enum ggml_op eop = (enum ggml_op) op;
  17078. int64_t ne[GGML_MAX_DIMS];
  17079. size_t nb[GGML_MAX_DIMS];
  17080. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17081. uint64_t ne_cur;
  17082. uint64_t nb_cur;
  17083. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17084. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17085. ne[j] = ne_cur;
  17086. nb[j] = nb_cur;
  17087. }
  17088. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17089. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17090. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17091. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17092. // parse args
  17093. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17094. const int32_t arg_idx = ptr_arg_idx[j];
  17095. if (arg_idx == -1) {
  17096. continue;
  17097. }
  17098. if (arg_idx < result->n_leafs) {
  17099. args[j] = result->leafs[arg_idx];
  17100. } else {
  17101. args[j] = result->nodes[arg_idx - result->n_leafs];
  17102. }
  17103. }
  17104. // create the tensor
  17105. // "view" operations are handled differently
  17106. // TODO: handle inplace ops - currently a copy is always made
  17107. struct ggml_tensor * tensor = NULL;
  17108. switch (eop) {
  17109. // TODO: implement other view ops
  17110. case GGML_OP_RESHAPE:
  17111. {
  17112. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17113. } break;
  17114. case GGML_OP_VIEW:
  17115. {
  17116. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17117. size_t offs;
  17118. memcpy(&offs, ptr_op_params, sizeof(offs));
  17119. tensor->data = ((char *) tensor->data) + offs;
  17120. } break;
  17121. case GGML_OP_TRANSPOSE:
  17122. {
  17123. tensor = ggml_transpose(*ctx_eval, args[0]);
  17124. } break;
  17125. case GGML_OP_PERMUTE:
  17126. {
  17127. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17128. } break;
  17129. default:
  17130. {
  17131. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17132. tensor->op = eop;
  17133. } break;
  17134. }
  17135. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17136. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17137. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17138. tensor->nb[j] = nb[j];
  17139. }
  17140. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17141. tensor->src[j] = args[j];
  17142. }
  17143. result->nodes[i] = tensor;
  17144. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17145. }
  17146. }
  17147. }
  17148. return result;
  17149. }
  17150. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17151. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  17152. GGML_PRINT("=== GRAPH ===\n");
  17153. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  17154. for (int i = 0; i < cgraph->n_nodes; i++) {
  17155. struct ggml_tensor * node = cgraph->nodes[i];
  17156. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  17157. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  17158. i,
  17159. node->ne[0], node->ne[1], node->ne[2],
  17160. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  17161. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  17162. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  17163. (double) node->perf_time_us / 1000.0,
  17164. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  17165. }
  17166. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17167. for (int i = 0; i < cgraph->n_leafs; i++) {
  17168. struct ggml_tensor * node = cgraph->leafs[i];
  17169. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17170. i,
  17171. node->ne[0], node->ne[1],
  17172. ggml_op_name(node->op),
  17173. ggml_get_name(node));
  17174. }
  17175. for (int i = 0; i < GGML_OP_COUNT; i++) {
  17176. if (perf_total_per_op_us[i] == 0) {
  17177. continue;
  17178. }
  17179. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  17180. }
  17181. GGML_PRINT("========================================\n");
  17182. }
  17183. // check if node is part of the graph
  17184. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17185. if (cgraph == NULL) {
  17186. return true;
  17187. }
  17188. for (int i = 0; i < cgraph->n_nodes; i++) {
  17189. if (cgraph->nodes[i] == node) {
  17190. return true;
  17191. }
  17192. }
  17193. return false;
  17194. }
  17195. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17196. for (int i = 0; i < cgraph->n_nodes; i++) {
  17197. struct ggml_tensor * parent = cgraph->nodes[i];
  17198. if (parent->grad == node) {
  17199. return parent;
  17200. }
  17201. }
  17202. return NULL;
  17203. }
  17204. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17205. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17206. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17207. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17208. gparent0 ? (void *) gparent0 : (void *) parent,
  17209. gparent0 ? "g" : "x",
  17210. gparent ? (void *) gparent : (void *) node,
  17211. gparent ? "g" : "x",
  17212. gparent ? "empty" : "vee",
  17213. gparent ? "dashed" : "solid",
  17214. label);
  17215. }
  17216. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17217. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17218. (void *) parent, "x",
  17219. (void *) node, "x",
  17220. label);
  17221. }
  17222. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17223. char color[16];
  17224. FILE * fp = ggml_fopen(filename, "w");
  17225. GGML_ASSERT(fp);
  17226. fprintf(fp, "digraph G {\n");
  17227. fprintf(fp, " newrank = true;\n");
  17228. fprintf(fp, " rankdir = LR;\n");
  17229. for (int i = 0; i < gb->n_nodes; i++) {
  17230. struct ggml_tensor * node = gb->nodes[i];
  17231. if (ggml_graph_get_parent(gb, node) != NULL) {
  17232. continue;
  17233. }
  17234. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17235. snprintf(color, sizeof(color), "yellow");
  17236. } else if (node->grad) {
  17237. if (ggml_graph_find(gf, node)) {
  17238. snprintf(color, sizeof(color), "green");
  17239. } else {
  17240. snprintf(color, sizeof(color), "lightblue");
  17241. }
  17242. } else {
  17243. snprintf(color, sizeof(color), "white");
  17244. }
  17245. fprintf(fp, " \"%p\" [ "
  17246. "style = filled; fillcolor = %s; shape = record; "
  17247. "label=\"",
  17248. (void *) node, color);
  17249. if (strlen(node->name) > 0) {
  17250. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17251. } else {
  17252. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17253. }
  17254. if (ggml_is_matrix(node)) {
  17255. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17256. } else {
  17257. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17258. }
  17259. if (node->grad) {
  17260. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17261. } else {
  17262. fprintf(fp, "\"; ]\n");
  17263. }
  17264. }
  17265. for (int i = 0; i < gb->n_leafs; i++) {
  17266. struct ggml_tensor * node = gb->leafs[i];
  17267. snprintf(color, sizeof(color), "pink");
  17268. fprintf(fp, " \"%p\" [ "
  17269. "style = filled; fillcolor = %s; shape = record; "
  17270. "label=\"<x>",
  17271. (void *) node, color);
  17272. if (strlen(node->name) > 0) {
  17273. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17274. } else {
  17275. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17276. }
  17277. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17278. if (ggml_nelements(node) < 5) {
  17279. fprintf(fp, " | (");
  17280. for (int j = 0; j < ggml_nelements(node); j++) {
  17281. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17282. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17283. }
  17284. else if (node->type == GGML_TYPE_F32 ||
  17285. node->type == GGML_TYPE_F16 ||
  17286. node->type == GGML_TYPE_BF16) {
  17287. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17288. }
  17289. else {
  17290. fprintf(fp, "#");
  17291. }
  17292. if (j < ggml_nelements(node) - 1) {
  17293. fprintf(fp, ", ");
  17294. }
  17295. }
  17296. fprintf(fp, ")");
  17297. }
  17298. fprintf(fp, "\"; ]\n");
  17299. }
  17300. for (int i = 0; i < gb->n_nodes; i++) {
  17301. struct ggml_tensor * node = gb->nodes[i];
  17302. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17303. if (node->src[j]) {
  17304. char label[16];
  17305. snprintf(label, sizeof(label), "src %d", j);
  17306. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17307. }
  17308. }
  17309. }
  17310. for (int i = 0; i < gb->n_leafs; i++) {
  17311. struct ggml_tensor * node = gb->leafs[i];
  17312. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17313. if (node->src[j]) {
  17314. char label[16];
  17315. snprintf(label, sizeof(label), "src %d", j);
  17316. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17317. }
  17318. }
  17319. }
  17320. fprintf(fp, "}\n");
  17321. fclose(fp);
  17322. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17323. }
  17324. ////////////////////////////////////////////////////////////////////////////////
  17325. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17326. int i = 0;
  17327. for (int p = 0; p < np; ++p) {
  17328. const int64_t ne = ggml_nelements(ps[p]) ;
  17329. // TODO: add function to set tensor from array
  17330. for (int64_t j = 0; j < ne; ++j) {
  17331. ggml_set_f32_1d(ps[p], j, x[i++]);
  17332. }
  17333. }
  17334. }
  17335. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17336. int i = 0;
  17337. for (int p = 0; p < np; ++p) {
  17338. const int64_t ne = ggml_nelements(ps[p]) ;
  17339. // TODO: add function to get all elements at once
  17340. for (int64_t j = 0; j < ne; ++j) {
  17341. x[i++] = ggml_get_f32_1d(ps[p], j);
  17342. }
  17343. }
  17344. }
  17345. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17346. int64_t i = 0;
  17347. for (int p = 0; p < np; ++p) {
  17348. const int64_t ne = ggml_nelements(ps[p]) ;
  17349. // TODO: add function to get all elements at once
  17350. for (int64_t j = 0; j < ne; ++j) {
  17351. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17352. }
  17353. }
  17354. }
  17355. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17356. int64_t i = 0;
  17357. for (int p = 0; p < np; ++p) {
  17358. const int64_t ne = ggml_nelements(ps[p]) ;
  17359. // TODO: add function to get all elements at once
  17360. for (int64_t j = 0; j < ne; ++j) {
  17361. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17362. }
  17363. }
  17364. }
  17365. //
  17366. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17367. //
  17368. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17369. //
  17370. static enum ggml_opt_result ggml_opt_adam(
  17371. struct ggml_context * ctx,
  17372. struct ggml_opt_context * opt,
  17373. struct ggml_opt_params params,
  17374. struct ggml_tensor * f,
  17375. struct ggml_cgraph * gf,
  17376. struct ggml_cgraph * gb,
  17377. ggml_opt_callback callback,
  17378. void * callback_data) {
  17379. GGML_ASSERT(ggml_is_scalar(f));
  17380. // these will store the parameters we want to optimize
  17381. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17382. int np = 0;
  17383. int64_t nx = 0;
  17384. for (int i = 0; i < gf->n_nodes; ++i) {
  17385. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17386. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17387. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17388. ps[np++] = gf->nodes[i];
  17389. nx += ggml_nelements(gf->nodes[i]);
  17390. }
  17391. }
  17392. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17393. int iter = opt->iter;
  17394. ggml_opt_init(opt->ctx, opt, params, nx);
  17395. opt->iter = iter;
  17396. }
  17397. // constants
  17398. float sched = params.adam.sched;
  17399. const float alpha = params.adam.alpha;
  17400. const float decay = params.adam.decay * alpha;
  17401. const float beta1 = params.adam.beta1;
  17402. const float beta2 = params.adam.beta2;
  17403. const float eps = params.adam.eps;
  17404. const float gclip = params.adam.gclip;
  17405. const int decay_min_ndim = params.adam.decay_min_ndim;
  17406. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17407. const float accum_norm = 1.0f / (float) n_accum;
  17408. float * g = opt->adam.g->data; // gradients
  17409. float * m = opt->adam.m->data; // first moment
  17410. float * v = opt->adam.v->data; // second moment
  17411. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17412. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17413. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17414. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17415. bool cancel = false;
  17416. // compute the function value
  17417. float fx = 0;
  17418. ggml_set_zero(opt->adam.g);
  17419. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17420. if (callback) {
  17421. callback(callback_data, accum_step, &sched, &cancel);
  17422. if (cancel) {
  17423. return GGML_OPT_RESULT_CANCEL;
  17424. }
  17425. }
  17426. // ggml_graph_reset (gf);
  17427. ggml_set_f32 (f->grad, 1.0f);
  17428. ggml_graph_compute(gb, &cplan);
  17429. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17430. fx += ggml_get_f32_1d(f, 0);
  17431. }
  17432. fx *= accum_norm;
  17433. opt->adam.fx_prev = fx;
  17434. opt->adam.fx_best = opt->adam.fx_prev;
  17435. if (pf) {
  17436. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17437. }
  17438. opt->loss_before = opt->adam.fx_prev;
  17439. opt->loss_after = opt->adam.fx_prev;
  17440. // initialize
  17441. if (opt->just_initialized) {
  17442. opt->adam.n_no_improvement = 0;
  17443. opt->just_initialized = false;
  17444. }
  17445. float * fx_best = &opt->adam.fx_best;
  17446. float * fx_prev = &opt->adam.fx_prev;
  17447. int * n_no_improvement = &opt->adam.n_no_improvement;
  17448. int iter0 = opt->iter;
  17449. // run the optimizer
  17450. for (int t = 0; t < params.adam.n_iter; ++t) {
  17451. opt->iter = iter0 + t + 1;
  17452. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17453. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17454. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17455. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17456. for (int i = 0; i < np; ++i) {
  17457. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17458. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17459. }
  17460. const int64_t t_start_wall = ggml_time_us();
  17461. const int64_t t_start_cpu = ggml_cycles();
  17462. UNUSED(t_start_wall);
  17463. UNUSED(t_start_cpu);
  17464. {
  17465. float gnorm = 1.0f;
  17466. if (gclip > 0.0f) {
  17467. // gradient clipping
  17468. ggml_float sum = 0.0;
  17469. for (int64_t i = 0; i < nx; ++i) {
  17470. sum += (ggml_float)(g[i]*g[i]);
  17471. }
  17472. ggml_float norm = sqrt(sum);
  17473. if (norm > (ggml_float) gclip) {
  17474. gnorm = (float) ((ggml_float) gclip / norm);
  17475. }
  17476. }
  17477. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17478. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17479. int64_t i = 0;
  17480. for (int p = 0; p < np; ++p) {
  17481. const int64_t ne = ggml_nelements(ps[p]);
  17482. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17483. for (int64_t j = 0; j < ne; ++j) {
  17484. float x = ggml_get_f32_1d(ps[p], j);
  17485. float g_ = g[i]*gnorm;
  17486. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17487. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17488. float mh = m[i]*beta1h;
  17489. float vh = v[i]*beta2h;
  17490. vh = sqrtf(vh) + eps;
  17491. x = x*(1.0f - p_decay) - mh/vh;
  17492. ggml_set_f32_1d(ps[p], j, x);
  17493. ++i;
  17494. }
  17495. }
  17496. }
  17497. fx = 0;
  17498. ggml_set_zero(opt->adam.g);
  17499. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17500. if (callback) {
  17501. callback(callback_data, accum_step, &sched, &cancel);
  17502. if (cancel) {
  17503. return GGML_OPT_RESULT_CANCEL;;
  17504. }
  17505. }
  17506. // ggml_graph_reset (gf);
  17507. ggml_set_f32 (f->grad, 1.0f);
  17508. ggml_graph_compute(gb, &cplan);
  17509. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17510. fx += ggml_get_f32_1d(f, 0);
  17511. }
  17512. fx *= accum_norm;
  17513. opt->loss_after = fx;
  17514. // check convergence
  17515. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17516. GGML_PRINT_DEBUG("converged\n");
  17517. return GGML_OPT_RESULT_OK;
  17518. }
  17519. // delta-based convergence test
  17520. if (pf != NULL) {
  17521. // need at least params.past iterations to start checking for convergence
  17522. if (params.past <= iter0 + t) {
  17523. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17524. if (fabsf(rate) < params.delta) {
  17525. return GGML_OPT_RESULT_OK;
  17526. }
  17527. }
  17528. pf[(iter0 + t)%params.past] = fx;
  17529. }
  17530. // check for improvement
  17531. if (params.max_no_improvement > 0) {
  17532. if (fx_best[0] > fx) {
  17533. fx_best[0] = fx;
  17534. n_no_improvement[0] = 0;
  17535. } else {
  17536. ++n_no_improvement[0];
  17537. if (n_no_improvement[0] >= params.max_no_improvement) {
  17538. return GGML_OPT_RESULT_OK;
  17539. }
  17540. }
  17541. }
  17542. fx_prev[0] = fx;
  17543. {
  17544. const int64_t t_end_cpu = ggml_cycles();
  17545. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17546. UNUSED(t_end_cpu);
  17547. const int64_t t_end_wall = ggml_time_us();
  17548. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17549. UNUSED(t_end_wall);
  17550. }
  17551. }
  17552. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17553. }
  17554. //
  17555. // L-BFGS
  17556. //
  17557. // the L-BFGS implementation below is based on the following implementation:
  17558. //
  17559. // https://github.com/chokkan/liblbfgs
  17560. //
  17561. struct ggml_lbfgs_iteration_data {
  17562. float alpha;
  17563. float ys;
  17564. float * s;
  17565. float * y;
  17566. };
  17567. static enum ggml_opt_result linesearch_backtracking(
  17568. const struct ggml_opt_params * params,
  17569. int nx,
  17570. float * x,
  17571. float * fx,
  17572. float * g,
  17573. float * d,
  17574. float * step,
  17575. const float * xp,
  17576. struct ggml_tensor * f,
  17577. struct ggml_cgraph * gb,
  17578. struct ggml_cplan * cplan,
  17579. const int np,
  17580. struct ggml_tensor * ps[],
  17581. bool * cancel,
  17582. ggml_opt_callback callback,
  17583. void * callback_data) {
  17584. int count = 0;
  17585. float width = 0.0f;
  17586. float dg = 0.0f;
  17587. float finit = 0.0f;
  17588. float dginit = 0.0f;
  17589. float dgtest = 0.0f;
  17590. const float dec = 0.5f;
  17591. const float inc = 2.1f;
  17592. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17593. const float accum_norm = 1.0f / (float) n_accum;
  17594. if (*step <= 0.f) {
  17595. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17596. }
  17597. // compute the initial gradient in the search direction
  17598. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17599. // make sure that d points to a descent direction
  17600. if (0 < dginit) {
  17601. return GGML_LINESEARCH_FAIL;
  17602. }
  17603. // initialize local variables
  17604. finit = *fx;
  17605. dgtest = params->lbfgs.ftol*dginit;
  17606. while (true) {
  17607. ggml_vec_cpy_f32(nx, x, xp);
  17608. ggml_vec_mad_f32(nx, x, d, *step);
  17609. // evaluate the function and gradient values
  17610. {
  17611. ggml_opt_set_params(np, ps, x);
  17612. *fx = 0;
  17613. memset(g, 0, sizeof(float)*nx);
  17614. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17615. if (callback) {
  17616. // LBFG-S does not support learning rate -> ignore learning schedule
  17617. float sched = 0;
  17618. callback(callback_data, accum_step, &sched, cancel);
  17619. if (*cancel) {
  17620. return GGML_OPT_RESULT_CANCEL;
  17621. }
  17622. }
  17623. // ggml_graph_reset (gf);
  17624. ggml_set_f32 (f->grad, 1.0f);
  17625. ggml_graph_compute(gb, cplan);
  17626. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17627. *fx += ggml_get_f32_1d(f, 0);
  17628. }
  17629. *fx *= accum_norm;
  17630. }
  17631. ++count;
  17632. if (*fx > finit + (*step)*dgtest) {
  17633. width = dec;
  17634. } else {
  17635. // Armijo condition is satisfied
  17636. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17637. return count;
  17638. }
  17639. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17640. // check the Wolfe condition
  17641. if (dg < params->lbfgs.wolfe * dginit) {
  17642. width = inc;
  17643. } else {
  17644. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17645. // regular Wolfe conditions
  17646. return count;
  17647. }
  17648. if(dg > -params->lbfgs.wolfe*dginit) {
  17649. width = dec;
  17650. } else {
  17651. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17652. return count;
  17653. }
  17654. }
  17655. }
  17656. if (*step < params->lbfgs.min_step) {
  17657. return GGML_LINESEARCH_MINIMUM_STEP;
  17658. }
  17659. if (*step > params->lbfgs.max_step) {
  17660. return GGML_LINESEARCH_MAXIMUM_STEP;
  17661. }
  17662. if (params->lbfgs.max_linesearch <= count) {
  17663. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17664. }
  17665. (*step) *= width;
  17666. }
  17667. GGML_ASSERT(false && "line search failed");
  17668. return GGML_LINESEARCH_FAIL;
  17669. }
  17670. static enum ggml_opt_result ggml_opt_lbfgs(
  17671. struct ggml_context * ctx,
  17672. struct ggml_opt_context * opt,
  17673. struct ggml_opt_params params,
  17674. struct ggml_tensor * f,
  17675. struct ggml_cgraph * gf,
  17676. struct ggml_cgraph * gb,
  17677. ggml_opt_callback callback,
  17678. void * callback_data) {
  17679. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17680. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17681. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17682. return GGML_OPT_RESULT_INVALID_WOLFE;
  17683. }
  17684. }
  17685. const int m = params.lbfgs.m;
  17686. // these will store the parameters we want to optimize
  17687. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17688. int np = 0;
  17689. int nx = 0;
  17690. for (int i = 0; i < gf->n_nodes; ++i) {
  17691. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17692. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17693. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17694. ps[np++] = gf->nodes[i];
  17695. nx += ggml_nelements(gf->nodes[i]);
  17696. }
  17697. }
  17698. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17699. int iter = opt->iter;
  17700. ggml_opt_init(ctx, opt, params, nx);
  17701. opt->iter = iter;
  17702. }
  17703. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17704. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17705. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17706. float * x = opt->lbfgs.x->data; // current parameters
  17707. float * xp = opt->lbfgs.xp->data; // previous parameters
  17708. float * g = opt->lbfgs.g->data; // current gradient
  17709. float * gp = opt->lbfgs.gp->data; // previous gradient
  17710. float * d = opt->lbfgs.d->data; // search direction
  17711. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17712. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17713. const float accum_norm = 1.0f / (float) n_accum;
  17714. float fx = 0.0f; // cost function value
  17715. float xnorm = 0.0f; // ||x||
  17716. float gnorm = 0.0f; // ||g||
  17717. // initialize x from the graph nodes
  17718. ggml_opt_get_params(np, ps, x);
  17719. // the L-BFGS memory
  17720. float * lm_alpha = opt->lbfgs.lmal->data;
  17721. float * lm_ys = opt->lbfgs.lmys->data;
  17722. float * lm_s = opt->lbfgs.lms->data;
  17723. float * lm_y = opt->lbfgs.lmy->data;
  17724. bool cancel = false;
  17725. // evaluate the function value and its gradient
  17726. {
  17727. ggml_opt_set_params(np, ps, x);
  17728. fx = 0;
  17729. memset(g, 0, sizeof(float)*nx);
  17730. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17731. if (callback) {
  17732. // LBFG-S does not support learning rate -> ignore learning schedule
  17733. float sched = 0;
  17734. callback(callback_data, accum_step, &sched, &cancel);
  17735. if (cancel) {
  17736. return GGML_OPT_RESULT_CANCEL;
  17737. }
  17738. }
  17739. // ggml_graph_reset (gf);
  17740. ggml_set_f32 (f->grad, 1.0f);
  17741. ggml_graph_compute(gb, &cplan);
  17742. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17743. fx += ggml_get_f32_1d(f, 0);
  17744. }
  17745. fx *= accum_norm;
  17746. opt->loss_before = fx;
  17747. opt->loss_after = fx;
  17748. }
  17749. // search direction = -gradient
  17750. ggml_vec_neg_f32(nx, d, g);
  17751. // ||x||, ||g||
  17752. ggml_vec_norm_f32(nx, &xnorm, x);
  17753. ggml_vec_norm_f32(nx, &gnorm, g);
  17754. if (xnorm < 1.0f) {
  17755. xnorm = 1.0f;
  17756. }
  17757. // already optimized
  17758. if (gnorm/xnorm <= params.lbfgs.eps) {
  17759. return GGML_OPT_RESULT_OK;
  17760. }
  17761. if (opt->just_initialized) {
  17762. if (pf) {
  17763. pf[0] = fx;
  17764. }
  17765. opt->lbfgs.fx_best = fx;
  17766. // initial step
  17767. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17768. opt->lbfgs.j = 0;
  17769. opt->lbfgs.k = 1;
  17770. opt->lbfgs.end = 0;
  17771. opt->lbfgs.n_no_improvement = 0;
  17772. opt->just_initialized = false;
  17773. }
  17774. float * fx_best = &opt->lbfgs.fx_best;
  17775. float * step = &opt->lbfgs.step;
  17776. int * j = &opt->lbfgs.j;
  17777. int * k = &opt->lbfgs.k;
  17778. int * end = &opt->lbfgs.end;
  17779. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17780. int ls = 0;
  17781. int bound = 0;
  17782. float ys = 0.0f;
  17783. float yy = 0.0f;
  17784. float beta = 0.0f;
  17785. int it = 0;
  17786. while (true) {
  17787. // store the current position and gradient vectors
  17788. ggml_vec_cpy_f32(nx, xp, x);
  17789. ggml_vec_cpy_f32(nx, gp, g);
  17790. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17791. // to determine if the optimization should be cancelled
  17792. // this is a simple change, but not doing this atm, since I don't have a nice
  17793. // way to test and don't want to break something with so many changes lined up
  17794. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17795. if (cancel) {
  17796. return GGML_OPT_RESULT_CANCEL;
  17797. }
  17798. if (ls < 0) {
  17799. // linesearch failed - go back to the previous point and return
  17800. ggml_vec_cpy_f32(nx, x, xp);
  17801. ggml_vec_cpy_f32(nx, g, gp);
  17802. return ls;
  17803. }
  17804. opt->loss_after = fx;
  17805. ggml_vec_norm_f32(nx, &xnorm, x);
  17806. ggml_vec_norm_f32(nx, &gnorm, g);
  17807. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17808. if (xnorm < 1.0f) {
  17809. xnorm = 1.0f;
  17810. }
  17811. if (gnorm/xnorm <= params.lbfgs.eps) {
  17812. // converged
  17813. return GGML_OPT_RESULT_OK;
  17814. }
  17815. // delta-based convergence test
  17816. if (pf != NULL) {
  17817. // need at least params.past iterations to start checking for convergence
  17818. if (params.past <= k[0]) {
  17819. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17820. if (fabsf(rate) < params.delta) {
  17821. return GGML_OPT_RESULT_OK;
  17822. }
  17823. }
  17824. pf[k[0]%params.past] = fx;
  17825. }
  17826. // check for improvement
  17827. if (params.max_no_improvement > 0) {
  17828. if (fx < fx_best[0]) {
  17829. fx_best[0] = fx;
  17830. n_no_improvement[0] = 0;
  17831. } else {
  17832. n_no_improvement[0]++;
  17833. if (n_no_improvement[0] >= params.max_no_improvement) {
  17834. return GGML_OPT_RESULT_OK;
  17835. }
  17836. }
  17837. }
  17838. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17839. // reached the maximum number of iterations
  17840. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17841. }
  17842. // update vectors s and y:
  17843. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17844. // y_{k+1} = g_{k+1} - g_{k}.
  17845. //
  17846. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17847. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17848. // compute scalars ys and yy:
  17849. // ys = y^t \cdot s -> 1 / \rho.
  17850. // yy = y^t \cdot y.
  17851. //
  17852. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17853. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17854. lm_ys[end[0]] = ys;
  17855. // find new search direction
  17856. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17857. bound = (m <= k[0]) ? m : k[0];
  17858. k[0]++;
  17859. it++;
  17860. end[0] = (end[0] + 1)%m;
  17861. // initialize search direction with -g
  17862. ggml_vec_neg_f32(nx, d, g);
  17863. j[0] = end[0];
  17864. for (int i = 0; i < bound; ++i) {
  17865. j[0] = (j[0] + m - 1) % m;
  17866. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17867. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17868. lm_alpha[j[0]] /= lm_ys[j[0]];
  17869. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17870. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17871. }
  17872. ggml_vec_scale_f32(nx, d, ys/yy);
  17873. for (int i = 0; i < bound; ++i) {
  17874. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17875. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17876. beta /= lm_ys[j[0]];
  17877. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17878. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17879. j[0] = (j[0] + 1)%m;
  17880. }
  17881. step[0] = 1.0;
  17882. }
  17883. GGML_ASSERT(false && "lbfgs failed");
  17884. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17885. }
  17886. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17887. struct ggml_opt_params result;
  17888. switch (type) {
  17889. case GGML_OPT_TYPE_ADAM:
  17890. {
  17891. result = (struct ggml_opt_params) {
  17892. .type = GGML_OPT_TYPE_ADAM,
  17893. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17894. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17895. .past = 0,
  17896. .delta = 1e-5f,
  17897. .max_no_improvement = 100,
  17898. .print_forward_graph = true,
  17899. .print_backward_graph = true,
  17900. .n_gradient_accumulation = 1,
  17901. .adam = {
  17902. .n_iter = 10000,
  17903. .sched = 1.000f,
  17904. .decay = 0.0f,
  17905. .decay_min_ndim = 2,
  17906. .alpha = 0.001f,
  17907. .beta1 = 0.9f,
  17908. .beta2 = 0.999f,
  17909. .eps = 1e-8f,
  17910. .eps_f = 1e-5f,
  17911. .eps_g = 1e-3f,
  17912. .gclip = 0.0f,
  17913. },
  17914. };
  17915. } break;
  17916. case GGML_OPT_TYPE_LBFGS:
  17917. {
  17918. result = (struct ggml_opt_params) {
  17919. .type = GGML_OPT_TYPE_LBFGS,
  17920. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17921. .n_threads = 1,
  17922. .past = 0,
  17923. .delta = 1e-5f,
  17924. .max_no_improvement = 0,
  17925. .print_forward_graph = true,
  17926. .print_backward_graph = true,
  17927. .n_gradient_accumulation = 1,
  17928. .lbfgs = {
  17929. .m = 6,
  17930. .n_iter = 100,
  17931. .max_linesearch = 20,
  17932. .eps = 1e-5f,
  17933. .ftol = 1e-4f,
  17934. .wolfe = 0.9f,
  17935. .min_step = 1e-20f,
  17936. .max_step = 1e+20f,
  17937. .linesearch = GGML_LINESEARCH_DEFAULT,
  17938. },
  17939. };
  17940. } break;
  17941. }
  17942. return result;
  17943. }
  17944. GGML_API void ggml_opt_init(
  17945. struct ggml_context * ctx,
  17946. struct ggml_opt_context * opt,
  17947. struct ggml_opt_params params,
  17948. int64_t nx) {
  17949. opt->ctx = ctx;
  17950. opt->params = params;
  17951. opt->iter = 0;
  17952. opt->nx = nx;
  17953. opt->just_initialized = true;
  17954. if (opt->ctx == NULL) {
  17955. struct ggml_init_params ctx_opt_params;
  17956. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17957. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17958. if (opt->params.past > 0) {
  17959. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17960. }
  17961. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17962. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17963. if (opt->params.past > 0) {
  17964. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17965. }
  17966. }
  17967. ctx_opt_params.mem_buffer = NULL;
  17968. ctx_opt_params.no_alloc = false;
  17969. opt->ctx = ggml_init(ctx_opt_params);
  17970. }
  17971. switch (opt->params.type) {
  17972. case GGML_OPT_TYPE_ADAM:
  17973. {
  17974. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17975. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17976. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17977. opt->adam.pf = params.past > 0
  17978. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17979. : NULL;
  17980. ggml_set_zero(opt->adam.m);
  17981. ggml_set_zero(opt->adam.v);
  17982. if (opt->adam.pf) {
  17983. ggml_set_zero(opt->adam.pf);
  17984. }
  17985. } break;
  17986. case GGML_OPT_TYPE_LBFGS:
  17987. {
  17988. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17989. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17990. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17991. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17992. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17993. opt->lbfgs.pf = params.past > 0
  17994. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17995. : NULL;
  17996. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17997. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17998. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17999. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18000. ggml_set_zero(opt->lbfgs.x);
  18001. ggml_set_zero(opt->lbfgs.xp);
  18002. ggml_set_zero(opt->lbfgs.g);
  18003. ggml_set_zero(opt->lbfgs.gp);
  18004. ggml_set_zero(opt->lbfgs.d);
  18005. if (opt->lbfgs.pf) {
  18006. ggml_set_zero(opt->lbfgs.pf);
  18007. }
  18008. ggml_set_zero(opt->lbfgs.lmal);
  18009. ggml_set_zero(opt->lbfgs.lmys);
  18010. ggml_set_zero(opt->lbfgs.lms);
  18011. ggml_set_zero(opt->lbfgs.lmy);
  18012. } break;
  18013. }
  18014. }
  18015. enum ggml_opt_result ggml_opt(
  18016. struct ggml_context * ctx,
  18017. struct ggml_opt_params params,
  18018. struct ggml_tensor * f) {
  18019. bool free_ctx = false;
  18020. if (ctx == NULL) {
  18021. struct ggml_init_params params_ctx = {
  18022. .mem_size = 16*1024*1024,
  18023. .mem_buffer = NULL,
  18024. .no_alloc = false,
  18025. };
  18026. ctx = ggml_init(params_ctx);
  18027. if (ctx == NULL) {
  18028. return GGML_OPT_RESULT_NO_CONTEXT;
  18029. }
  18030. free_ctx = true;
  18031. }
  18032. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18033. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18034. ggml_opt_init(ctx, opt, params, 0);
  18035. result = ggml_opt_resume(ctx, opt, f);
  18036. if (free_ctx) {
  18037. ggml_free(ctx);
  18038. }
  18039. return result;
  18040. }
  18041. enum ggml_opt_result ggml_opt_resume(
  18042. struct ggml_context * ctx,
  18043. struct ggml_opt_context * opt,
  18044. struct ggml_tensor * f) {
  18045. // build forward + backward compute graphs
  18046. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18047. ggml_build_forward_expand(gf, f);
  18048. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18049. ggml_build_backward_expand(ctx, gf, gb, true);
  18050. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18051. }
  18052. enum ggml_opt_result ggml_opt_resume_g(
  18053. struct ggml_context * ctx,
  18054. struct ggml_opt_context * opt,
  18055. struct ggml_tensor * f,
  18056. struct ggml_cgraph * gf,
  18057. struct ggml_cgraph * gb,
  18058. ggml_opt_callback callback,
  18059. void * callback_data) {
  18060. // build forward + backward compute graphs
  18061. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18062. switch (opt->params.type) {
  18063. case GGML_OPT_TYPE_ADAM:
  18064. {
  18065. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18066. } break;
  18067. case GGML_OPT_TYPE_LBFGS:
  18068. {
  18069. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18070. } break;
  18071. }
  18072. if (opt->params.print_forward_graph) {
  18073. ggml_graph_print (gf);
  18074. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18075. }
  18076. if (opt->params.print_backward_graph) {
  18077. ggml_graph_print (gb);
  18078. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18079. }
  18080. return result;
  18081. }
  18082. ////////////////////////////////////////////////////////////////////////////////
  18083. void ggml_set_input(struct ggml_tensor * tensor) {
  18084. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18085. }
  18086. void ggml_set_output(struct ggml_tensor * tensor) {
  18087. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18088. }
  18089. ////////////////////////////////////////////////////////////////////////////////
  18090. void ggml_quantize_init(enum ggml_type type) {
  18091. ggml_critical_section_start();
  18092. switch (type) {
  18093. case GGML_TYPE_IQ2_XXS:
  18094. case GGML_TYPE_IQ2_XS:
  18095. case GGML_TYPE_IQ2_S:
  18096. case GGML_TYPE_IQ1_S:
  18097. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18098. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18099. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18100. default: // nothing
  18101. break;
  18102. }
  18103. ggml_critical_section_end();
  18104. }
  18105. void ggml_quantize_free(void) {
  18106. ggml_critical_section_start();
  18107. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18108. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18109. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18110. iq3xs_free_impl(256);
  18111. ggml_critical_section_end();
  18112. }
  18113. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18114. return
  18115. type == GGML_TYPE_IQ2_XXS ||
  18116. type == GGML_TYPE_IQ2_XS ||
  18117. type == GGML_TYPE_IQ1_S;// ||
  18118. //type == GGML_TYPE_IQ1_M;
  18119. }
  18120. size_t ggml_quantize_chunk(
  18121. enum ggml_type type,
  18122. const float * src,
  18123. void * dst,
  18124. int64_t start,
  18125. int64_t nrows,
  18126. int64_t n_per_row,
  18127. const float * imatrix) {
  18128. const int64_t n = (int64_t) nrows * n_per_row;
  18129. if (ggml_quantize_requires_imatrix(type)) {
  18130. GGML_ASSERT(imatrix != NULL);
  18131. }
  18132. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18133. GGML_ASSERT(start % n_per_row == 0);
  18134. ggml_quantize_init(type); // this is noop if already initialized
  18135. const size_t start_row = start / n_per_row;
  18136. const size_t row_size = ggml_row_size(type, n_per_row);
  18137. size_t result = 0;
  18138. switch (type) {
  18139. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18140. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18141. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18142. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18143. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18144. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18145. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18146. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18147. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18148. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18149. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18150. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18151. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18152. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18153. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18154. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18155. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18156. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18157. #if QK_K == 64
  18158. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18159. #else
  18160. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18161. #endif
  18162. case GGML_TYPE_F16:
  18163. {
  18164. size_t elemsize = sizeof(ggml_fp16_t);
  18165. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18166. result = n * elemsize;
  18167. } break;
  18168. case GGML_TYPE_BF16:
  18169. {
  18170. size_t elemsize = sizeof(ggml_bf16_t);
  18171. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  18172. result = n * elemsize;
  18173. } break;
  18174. case GGML_TYPE_F32:
  18175. {
  18176. size_t elemsize = sizeof(float);
  18177. result = n * elemsize;
  18178. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18179. } break;
  18180. default:
  18181. assert(false);
  18182. }
  18183. GGML_ASSERT(result == nrows * row_size);
  18184. return result;
  18185. }
  18186. ////////////////////////////////////////////////////////////////////////////////
  18187. struct gguf_str {
  18188. uint64_t n; // GGUFv2
  18189. char * data;
  18190. };
  18191. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18192. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18193. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18194. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18195. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18196. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18197. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18198. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18199. [GGUF_TYPE_BOOL] = sizeof(bool),
  18200. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18201. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18202. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18203. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18204. [GGUF_TYPE_ARRAY] = 0, // undefined
  18205. };
  18206. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18207. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18208. [GGUF_TYPE_UINT8] = "u8",
  18209. [GGUF_TYPE_INT8] = "i8",
  18210. [GGUF_TYPE_UINT16] = "u16",
  18211. [GGUF_TYPE_INT16] = "i16",
  18212. [GGUF_TYPE_UINT32] = "u32",
  18213. [GGUF_TYPE_INT32] = "i32",
  18214. [GGUF_TYPE_FLOAT32] = "f32",
  18215. [GGUF_TYPE_BOOL] = "bool",
  18216. [GGUF_TYPE_STRING] = "str",
  18217. [GGUF_TYPE_ARRAY] = "arr",
  18218. [GGUF_TYPE_UINT64] = "u64",
  18219. [GGUF_TYPE_INT64] = "i64",
  18220. [GGUF_TYPE_FLOAT64] = "f64",
  18221. };
  18222. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18223. union gguf_value {
  18224. uint8_t uint8;
  18225. int8_t int8;
  18226. uint16_t uint16;
  18227. int16_t int16;
  18228. uint32_t uint32;
  18229. int32_t int32;
  18230. float float32;
  18231. uint64_t uint64;
  18232. int64_t int64;
  18233. double float64;
  18234. bool bool_;
  18235. struct gguf_str str;
  18236. struct {
  18237. enum gguf_type type;
  18238. uint64_t n; // GGUFv2
  18239. void * data;
  18240. } arr;
  18241. };
  18242. struct gguf_kv {
  18243. struct gguf_str key;
  18244. enum gguf_type type;
  18245. union gguf_value value;
  18246. };
  18247. struct gguf_header {
  18248. char magic[4];
  18249. uint32_t version;
  18250. uint64_t n_tensors; // GGUFv2
  18251. uint64_t n_kv; // GGUFv2
  18252. };
  18253. struct gguf_tensor_info {
  18254. struct gguf_str name;
  18255. uint32_t n_dims;
  18256. uint64_t ne[GGML_MAX_DIMS];
  18257. enum ggml_type type;
  18258. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18259. // for writing API
  18260. const void * data;
  18261. size_t size;
  18262. };
  18263. struct gguf_context {
  18264. struct gguf_header header;
  18265. struct gguf_kv * kv;
  18266. struct gguf_tensor_info * infos;
  18267. size_t alignment;
  18268. size_t offset; // offset of `data` from beginning of file
  18269. size_t size; // size of `data` in bytes
  18270. //uint8_t * padding;
  18271. void * data;
  18272. };
  18273. static size_t gguf_type_size(enum gguf_type type) {
  18274. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18275. return GGUF_TYPE_SIZE[type];
  18276. }
  18277. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18278. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18279. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18280. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18281. GGML_ASSERT(info->ne[i] > 0);
  18282. }
  18283. // prevent overflow for total number of elements
  18284. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18285. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18286. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18287. }
  18288. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18289. const size_t n = fread(dst, 1, size, file);
  18290. *offset += n;
  18291. return n == size;
  18292. }
  18293. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18294. p->n = 0;
  18295. p->data = NULL;
  18296. bool ok = true;
  18297. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18298. // early exit if string length is invalid, prevents from integer overflow
  18299. if (p->n == SIZE_MAX) {
  18300. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18301. return false;
  18302. }
  18303. p->data = GGML_CALLOC(p->n + 1, 1);
  18304. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18305. return ok;
  18306. }
  18307. static void gguf_free_kv(struct gguf_kv * kv) {
  18308. if (kv->key.data) {
  18309. GGML_FREE(kv->key.data);
  18310. }
  18311. if (kv->type == GGUF_TYPE_STRING) {
  18312. if (kv->value.str.data) {
  18313. GGML_FREE(kv->value.str.data);
  18314. }
  18315. }
  18316. if (kv->type == GGUF_TYPE_ARRAY) {
  18317. if (kv->value.arr.data) {
  18318. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18319. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18320. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18321. if (str->data) {
  18322. GGML_FREE(str->data);
  18323. }
  18324. }
  18325. }
  18326. GGML_FREE(kv->value.arr.data);
  18327. }
  18328. }
  18329. }
  18330. struct gguf_context * gguf_init_empty(void) {
  18331. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18332. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18333. ctx->header.version = GGUF_VERSION;
  18334. ctx->header.n_tensors = 0;
  18335. ctx->header.n_kv = 0;
  18336. ctx->kv = NULL;
  18337. ctx->infos = NULL;
  18338. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18339. ctx->offset = 0;
  18340. ctx->size = 0;
  18341. ctx->data = NULL;
  18342. return ctx;
  18343. }
  18344. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18345. FILE * file = ggml_fopen(fname, "rb");
  18346. if (!file) {
  18347. return NULL;
  18348. }
  18349. // offset from start of file
  18350. size_t offset = 0;
  18351. char magic[4];
  18352. // check the magic before making allocations
  18353. {
  18354. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18355. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18356. if (magic[i] != GGUF_MAGIC[i]) {
  18357. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18358. fclose(file);
  18359. return NULL;
  18360. }
  18361. }
  18362. }
  18363. bool ok = true;
  18364. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18365. // read the header
  18366. {
  18367. strncpy(ctx->header.magic, magic, 4);
  18368. ctx->kv = NULL;
  18369. ctx->infos = NULL;
  18370. ctx->data = NULL;
  18371. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18372. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18373. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18374. if (ctx->header.version == 1) {
  18375. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18376. fclose(file);
  18377. gguf_free(ctx);
  18378. return NULL;
  18379. }
  18380. // sanity-checks to prevent from integer/buffer overflows
  18381. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18382. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18383. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18384. if (!ok) {
  18385. fprintf(stderr, "%s: failed to read header\n", __func__);
  18386. fclose(file);
  18387. gguf_free(ctx);
  18388. return NULL;
  18389. }
  18390. }
  18391. // read the kv pairs
  18392. {
  18393. const uint64_t n_kv = ctx->header.n_kv;
  18394. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18395. ctx->header.n_kv = 0;
  18396. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18397. for (uint64_t i = 0; i < n_kv; ++i) {
  18398. struct gguf_kv * kv = &ctx->kv[i];
  18399. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18400. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18401. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18402. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18403. switch (kv->type) {
  18404. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18405. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18406. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18407. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18408. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18409. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18410. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18411. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18412. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18413. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18414. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18415. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18416. case GGUF_TYPE_ARRAY:
  18417. {
  18418. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18419. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18420. switch (kv->value.arr.type) {
  18421. case GGUF_TYPE_UINT8:
  18422. case GGUF_TYPE_INT8:
  18423. case GGUF_TYPE_UINT16:
  18424. case GGUF_TYPE_INT16:
  18425. case GGUF_TYPE_UINT32:
  18426. case GGUF_TYPE_INT32:
  18427. case GGUF_TYPE_FLOAT32:
  18428. case GGUF_TYPE_UINT64:
  18429. case GGUF_TYPE_INT64:
  18430. case GGUF_TYPE_FLOAT64:
  18431. case GGUF_TYPE_BOOL:
  18432. {
  18433. // prevent from integer overflow in the malloc below
  18434. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18435. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18436. fclose(file);
  18437. gguf_free(ctx);
  18438. return NULL;
  18439. }
  18440. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18441. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18442. } break;
  18443. case GGUF_TYPE_STRING:
  18444. {
  18445. // prevent from integer overflow in the malloc below
  18446. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18447. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18448. fclose(file);
  18449. gguf_free(ctx);
  18450. return NULL;
  18451. }
  18452. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18453. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18454. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18455. }
  18456. } break;
  18457. case GGUF_TYPE_ARRAY:
  18458. default: GGML_ASSERT(false && "invalid type"); break;
  18459. }
  18460. } break;
  18461. default: GGML_ASSERT(false && "invalid type");
  18462. }
  18463. if (!ok) {
  18464. break;
  18465. }
  18466. ctx->header.n_kv++;
  18467. }
  18468. if (!ok) {
  18469. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18470. fclose(file);
  18471. gguf_free(ctx);
  18472. return NULL;
  18473. }
  18474. }
  18475. // read the tensor infos
  18476. if (ctx->header.n_tensors > 0) {
  18477. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18478. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18479. struct gguf_tensor_info * info = &ctx->infos[i];
  18480. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18481. info->ne[j] = 1;
  18482. }
  18483. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18484. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18485. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18486. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18487. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18488. }
  18489. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18490. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18491. // TODO: return an error instead of crashing with GGML_ASSERT
  18492. gguf_tensor_info_sanitize(info);
  18493. // make sure there is no duplicated tensor names
  18494. for (uint64_t j = 0; j < i; ++j) {
  18495. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18496. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18497. ok = false;
  18498. }
  18499. }
  18500. if (!ok) {
  18501. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18502. fclose(file);
  18503. gguf_free(ctx);
  18504. return NULL;
  18505. }
  18506. }
  18507. }
  18508. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18509. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18510. if (alignment_idx != -1) {
  18511. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18512. }
  18513. // we require the data section to be aligned, so take into account any padding
  18514. {
  18515. const size_t offset_pad = offset % ctx->alignment;
  18516. if (offset_pad != 0) {
  18517. offset += ctx->alignment - offset_pad;
  18518. fseek(file, offset, SEEK_SET);
  18519. }
  18520. }
  18521. // store the current file offset - this is where the data section starts
  18522. ctx->offset = offset;
  18523. // compute the total size of the data section, taking into account the alignment
  18524. {
  18525. ctx->size = 0;
  18526. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18527. struct gguf_tensor_info * info = &ctx->infos[i];
  18528. const int64_t ne =
  18529. (int64_t) info->ne[0] *
  18530. (int64_t) info->ne[1] *
  18531. (int64_t) info->ne[2] *
  18532. (int64_t) info->ne[3];
  18533. if (ne % ggml_blck_size(info->type) != 0) {
  18534. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18535. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18536. fclose(file);
  18537. gguf_free(ctx);
  18538. return NULL;
  18539. }
  18540. const size_t size_cur = ggml_row_size(info->type, ne);
  18541. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18542. }
  18543. }
  18544. // load the tensor data only if requested
  18545. if (params.ctx != NULL) {
  18546. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18547. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18548. // the ggml_tensor structs to the appropriate locations in the binary blob
  18549. // compute the exact size needed for the new ggml_context
  18550. const size_t mem_size =
  18551. params.no_alloc ?
  18552. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18553. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18554. struct ggml_init_params pdata = {
  18555. .mem_size = mem_size,
  18556. .mem_buffer = NULL,
  18557. .no_alloc = params.no_alloc,
  18558. };
  18559. *params.ctx = ggml_init(pdata);
  18560. struct ggml_context * ctx_data = *params.ctx;
  18561. struct ggml_tensor * data = NULL;
  18562. if (!params.no_alloc) {
  18563. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18564. ok = ok && data != NULL;
  18565. // read the binary blob with the tensor data
  18566. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18567. if (!ok) {
  18568. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18569. fclose(file);
  18570. ggml_free(ctx_data);
  18571. gguf_free(ctx);
  18572. return NULL;
  18573. }
  18574. ctx->data = data->data;
  18575. }
  18576. ggml_set_no_alloc(ctx_data, true);
  18577. // create the tensors
  18578. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18579. const int64_t ne[GGML_MAX_DIMS] = {
  18580. ctx->infos[i].ne[0],
  18581. ctx->infos[i].ne[1],
  18582. ctx->infos[i].ne[2],
  18583. ctx->infos[i].ne[3],
  18584. };
  18585. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18586. ok = ok && cur != NULL;
  18587. if (!ok) {
  18588. break;
  18589. }
  18590. ggml_set_name(cur, ctx->infos[i].name.data);
  18591. // point the data member to the appropriate location in the binary blob using the tensor infos
  18592. if (!params.no_alloc) {
  18593. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18594. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18595. }
  18596. }
  18597. if (!ok) {
  18598. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18599. fclose(file);
  18600. ggml_free(ctx_data);
  18601. gguf_free(ctx);
  18602. return NULL;
  18603. }
  18604. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18605. }
  18606. fclose(file);
  18607. return ctx;
  18608. }
  18609. void gguf_free(struct gguf_context * ctx) {
  18610. if (ctx == NULL) {
  18611. return;
  18612. }
  18613. if (ctx->kv) {
  18614. // free string memory - not great..
  18615. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18616. gguf_free_kv(&ctx->kv[i]);
  18617. }
  18618. GGML_FREE(ctx->kv);
  18619. }
  18620. if (ctx->infos) {
  18621. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18622. struct gguf_tensor_info * info = &ctx->infos[i];
  18623. if (info->name.data) {
  18624. GGML_FREE(info->name.data);
  18625. }
  18626. }
  18627. GGML_FREE(ctx->infos);
  18628. }
  18629. GGML_FREE(ctx);
  18630. }
  18631. const char * gguf_type_name(enum gguf_type type) {
  18632. return GGUF_TYPE_NAME[type];
  18633. }
  18634. int gguf_get_version(const struct gguf_context * ctx) {
  18635. return ctx->header.version;
  18636. }
  18637. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18638. return ctx->alignment;
  18639. }
  18640. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18641. return ctx->offset;
  18642. }
  18643. void * gguf_get_data(const struct gguf_context * ctx) {
  18644. return ctx->data;
  18645. }
  18646. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18647. return ctx->header.n_kv;
  18648. }
  18649. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18650. // return -1 if key not found
  18651. int keyfound = -1;
  18652. const int n_kv = gguf_get_n_kv(ctx);
  18653. for (int i = 0; i < n_kv; ++i) {
  18654. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18655. keyfound = i;
  18656. break;
  18657. }
  18658. }
  18659. return keyfound;
  18660. }
  18661. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18662. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18663. return ctx->kv[key_id].key.data;
  18664. }
  18665. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18666. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18667. return ctx->kv[key_id].type;
  18668. }
  18669. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18670. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18671. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18672. return ctx->kv[key_id].value.arr.type;
  18673. }
  18674. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18675. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18676. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18677. return ctx->kv[key_id].value.arr.data;
  18678. }
  18679. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18680. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18681. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18682. struct gguf_kv * kv = &ctx->kv[key_id];
  18683. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18684. return str->data;
  18685. }
  18686. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18687. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18688. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18689. return ctx->kv[key_id].value.arr.n;
  18690. }
  18691. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18692. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18693. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18694. return ctx->kv[key_id].value.uint8;
  18695. }
  18696. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18697. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18698. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18699. return ctx->kv[key_id].value.int8;
  18700. }
  18701. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18702. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18703. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18704. return ctx->kv[key_id].value.uint16;
  18705. }
  18706. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18707. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18708. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18709. return ctx->kv[key_id].value.int16;
  18710. }
  18711. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18712. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18713. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18714. return ctx->kv[key_id].value.uint32;
  18715. }
  18716. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18717. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18718. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18719. return ctx->kv[key_id].value.int32;
  18720. }
  18721. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18722. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18723. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18724. return ctx->kv[key_id].value.float32;
  18725. }
  18726. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18727. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18728. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18729. return ctx->kv[key_id].value.uint64;
  18730. }
  18731. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18732. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18733. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18734. return ctx->kv[key_id].value.int64;
  18735. }
  18736. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18737. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18738. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18739. return ctx->kv[key_id].value.float64;
  18740. }
  18741. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18742. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18743. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18744. return ctx->kv[key_id].value.bool_;
  18745. }
  18746. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18747. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18748. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18749. return ctx->kv[key_id].value.str.data;
  18750. }
  18751. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18752. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18753. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18754. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18755. return &ctx->kv[key_id].value;
  18756. }
  18757. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18758. return ctx->header.n_tensors;
  18759. }
  18760. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18761. // return -1 if tensor not found
  18762. int tensorfound = -1;
  18763. const int n_tensors = gguf_get_n_tensors(ctx);
  18764. for (int i = 0; i < n_tensors; ++i) {
  18765. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18766. tensorfound = i;
  18767. break;
  18768. }
  18769. }
  18770. return tensorfound;
  18771. }
  18772. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18773. return ctx->infos[i].offset;
  18774. }
  18775. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18776. return ctx->infos[i].name.data;
  18777. }
  18778. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18779. return ctx->infos[i].type;
  18780. }
  18781. // returns the index
  18782. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18783. const int idx = gguf_find_key(ctx, key);
  18784. if (idx >= 0) {
  18785. return idx;
  18786. }
  18787. const int n_kv = gguf_get_n_kv(ctx);
  18788. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18789. ctx->kv[n_kv].key.n = strlen(key);
  18790. ctx->kv[n_kv].key.data = strdup(key);
  18791. ctx->header.n_kv++;
  18792. return n_kv;
  18793. }
  18794. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18795. const int idx = gguf_find_key(ctx, key);
  18796. if (idx >= 0) {
  18797. const int n_kv = gguf_get_n_kv(ctx);
  18798. gguf_free_kv(&ctx->kv[idx]);
  18799. for (int i = idx; i < n_kv-1; ++i) {
  18800. ctx->kv[i] = ctx->kv[i+1];
  18801. }
  18802. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18803. ctx->header.n_kv--;
  18804. }
  18805. }
  18806. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18807. const int idx = gguf_get_or_add_key(ctx, key);
  18808. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18809. ctx->kv[idx].value.uint8 = val;
  18810. }
  18811. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18812. const int idx = gguf_get_or_add_key(ctx, key);
  18813. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18814. ctx->kv[idx].value.int8 = val;
  18815. }
  18816. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18817. const int idx = gguf_get_or_add_key(ctx, key);
  18818. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18819. ctx->kv[idx].value.uint16 = val;
  18820. }
  18821. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18822. const int idx = gguf_get_or_add_key(ctx, key);
  18823. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18824. ctx->kv[idx].value.int16 = val;
  18825. }
  18826. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18827. const int idx = gguf_get_or_add_key(ctx, key);
  18828. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18829. ctx->kv[idx].value.uint32 = val;
  18830. }
  18831. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18832. const int idx = gguf_get_or_add_key(ctx, key);
  18833. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18834. ctx->kv[idx].value.int32 = val;
  18835. }
  18836. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18837. const int idx = gguf_get_or_add_key(ctx, key);
  18838. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18839. ctx->kv[idx].value.float32 = val;
  18840. }
  18841. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18842. const int idx = gguf_get_or_add_key(ctx, key);
  18843. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18844. ctx->kv[idx].value.uint64 = val;
  18845. }
  18846. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18847. const int idx = gguf_get_or_add_key(ctx, key);
  18848. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18849. ctx->kv[idx].value.int64 = val;
  18850. }
  18851. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18852. const int idx = gguf_get_or_add_key(ctx, key);
  18853. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18854. ctx->kv[idx].value.float64 = val;
  18855. }
  18856. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18857. const int idx = gguf_get_or_add_key(ctx, key);
  18858. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18859. ctx->kv[idx].value.bool_ = val;
  18860. }
  18861. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18862. const int idx = gguf_get_or_add_key(ctx, key);
  18863. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18864. ctx->kv[idx].value.str.n = strlen(val);
  18865. ctx->kv[idx].value.str.data = strdup(val);
  18866. }
  18867. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18868. const int idx = gguf_get_or_add_key(ctx, key);
  18869. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18870. ctx->kv[idx].value.arr.type = type;
  18871. ctx->kv[idx].value.arr.n = n;
  18872. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18873. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18874. }
  18875. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18876. const int idx = gguf_get_or_add_key(ctx, key);
  18877. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18878. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18879. ctx->kv[idx].value.arr.n = n;
  18880. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18881. for (int i = 0; i < n; i++) {
  18882. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18883. str->n = strlen(data[i]);
  18884. str->data = strdup(data[i]);
  18885. }
  18886. }
  18887. // set or add KV pairs from another context
  18888. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18889. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18890. switch (src->kv[i].type) {
  18891. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18892. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18893. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18894. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18895. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18896. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18897. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18898. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18899. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18900. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18901. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18902. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18903. case GGUF_TYPE_ARRAY:
  18904. {
  18905. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18906. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18907. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18908. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18909. }
  18910. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18911. GGML_FREE((void *)data);
  18912. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18913. GGML_ASSERT(false && "nested arrays not supported");
  18914. } else {
  18915. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18916. }
  18917. } break;
  18918. default: GGML_ASSERT(false && "invalid type"); break;
  18919. }
  18920. }
  18921. }
  18922. void gguf_add_tensor(
  18923. struct gguf_context * ctx,
  18924. const struct ggml_tensor * tensor) {
  18925. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18926. GGML_ASSERT(false && "duplicated tensor name");
  18927. }
  18928. const int idx = ctx->header.n_tensors;
  18929. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18930. ctx->infos[idx].name.n = strlen(tensor->name);
  18931. ctx->infos[idx].name.data = strdup(tensor->name);
  18932. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18933. ctx->infos[idx].ne[i] = 1;
  18934. }
  18935. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18936. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18937. ctx->infos[idx].ne[i] = tensor->ne[i];
  18938. }
  18939. ctx->infos[idx].type = tensor->type;
  18940. ctx->infos[idx].offset = 0;
  18941. ctx->infos[idx].data = tensor->data;
  18942. ctx->infos[idx].size = ggml_nbytes(tensor);
  18943. if (ctx->header.n_tensors > 0) {
  18944. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18945. }
  18946. ctx->header.n_tensors++;
  18947. }
  18948. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18949. const int idx = gguf_find_tensor(ctx, name);
  18950. if (idx < 0) {
  18951. GGML_ASSERT(false && "tensor not found");
  18952. }
  18953. ctx->infos[idx].type = type;
  18954. }
  18955. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18956. const int idx = gguf_find_tensor(ctx, name);
  18957. if (idx < 0) {
  18958. GGML_ASSERT(false && "tensor not found");
  18959. }
  18960. ctx->infos[idx].data = data;
  18961. ctx->infos[idx].size = size;
  18962. // update offsets
  18963. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18964. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18965. }
  18966. }
  18967. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18968. // fwrite(&val->n, sizeof(val->n), 1, file);
  18969. // fwrite(val->data, sizeof(char), val->n, file);
  18970. //}
  18971. //
  18972. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18973. // fwrite(val, sizeof(char), size, file);
  18974. //}
  18975. struct gguf_buf {
  18976. void * data;
  18977. size_t size;
  18978. size_t offset;
  18979. };
  18980. static struct gguf_buf gguf_buf_init(size_t size) {
  18981. struct gguf_buf buf = {
  18982. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18983. /*buf.size =*/ size,
  18984. /*buf.offset =*/ 0,
  18985. };
  18986. return buf;
  18987. }
  18988. static void gguf_buf_free(struct gguf_buf buf) {
  18989. if (buf.data) {
  18990. GGML_FREE(buf.data);
  18991. }
  18992. }
  18993. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18994. if (buf->offset + size > buf->size) {
  18995. buf->size = 1.5*(buf->offset + size);
  18996. if (buf->data) {
  18997. buf->data = realloc(buf->data, buf->size);
  18998. }
  18999. }
  19000. }
  19001. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19002. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19003. if (buf->data) {
  19004. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19005. }
  19006. buf->offset += sizeof(val->n);
  19007. if (buf->data) {
  19008. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19009. }
  19010. buf->offset += val->n;
  19011. }
  19012. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19013. gguf_buf_grow(buf, el_size);
  19014. if (buf->data) {
  19015. memcpy((char *) buf->data + buf->offset, val, el_size);
  19016. }
  19017. buf->offset += el_size;
  19018. }
  19019. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19020. // write header
  19021. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19022. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19023. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19024. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19025. // write key-value pairs
  19026. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19027. struct gguf_kv * kv = &ctx->kv[i];
  19028. gguf_bwrite_str(buf, &kv->key);
  19029. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19030. switch (kv->type) {
  19031. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19032. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19033. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19034. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19035. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19036. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19037. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19038. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19039. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19040. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19041. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19042. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19043. case GGUF_TYPE_ARRAY:
  19044. {
  19045. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19046. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19047. switch (kv->value.arr.type) {
  19048. case GGUF_TYPE_UINT8:
  19049. case GGUF_TYPE_INT8:
  19050. case GGUF_TYPE_UINT16:
  19051. case GGUF_TYPE_INT16:
  19052. case GGUF_TYPE_UINT32:
  19053. case GGUF_TYPE_INT32:
  19054. case GGUF_TYPE_FLOAT32:
  19055. case GGUF_TYPE_UINT64:
  19056. case GGUF_TYPE_INT64:
  19057. case GGUF_TYPE_FLOAT64:
  19058. case GGUF_TYPE_BOOL:
  19059. {
  19060. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19061. } break;
  19062. case GGUF_TYPE_STRING:
  19063. {
  19064. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19065. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19066. }
  19067. } break;
  19068. case GGUF_TYPE_ARRAY:
  19069. default: GGML_ASSERT(false && "invalid type"); break;
  19070. }
  19071. } break;
  19072. default: GGML_ASSERT(false && "invalid type");
  19073. }
  19074. }
  19075. // write tensor infos
  19076. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19077. struct gguf_tensor_info * info = &ctx->infos[i];
  19078. gguf_bwrite_str(buf, &info->name);
  19079. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19080. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19081. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19082. }
  19083. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19084. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19085. }
  19086. // we require the data section to be aligned, so take into account any padding
  19087. {
  19088. const size_t offset = buf->offset;
  19089. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19090. if (offset_pad != offset) {
  19091. uint8_t pad = 0;
  19092. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19093. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19094. }
  19095. }
  19096. }
  19097. if (only_meta) {
  19098. return;
  19099. }
  19100. size_t offset = 0;
  19101. // write tensor data
  19102. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19103. struct gguf_tensor_info * info = &ctx->infos[i];
  19104. const size_t size = info->size;
  19105. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19106. gguf_bwrite_el(buf, info->data, size);
  19107. if (size_pad != size) {
  19108. uint8_t pad = 0;
  19109. for (size_t j = 0; j < size_pad - size; ++j) {
  19110. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19111. }
  19112. }
  19113. GGML_ASSERT(offset == info->offset);
  19114. offset += size_pad;
  19115. }
  19116. }
  19117. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19118. FILE * file = ggml_fopen(fname, "wb");
  19119. if (!file) {
  19120. GGML_ASSERT(false && "failed to open file for writing");
  19121. }
  19122. struct gguf_buf buf = gguf_buf_init(16*1024);
  19123. gguf_write_to_buf(ctx, &buf, only_meta);
  19124. fwrite(buf.data, 1, buf.offset, file);
  19125. gguf_buf_free(buf);
  19126. fclose(file);
  19127. }
  19128. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19129. // no allocs - only compute size
  19130. struct gguf_buf buf = gguf_buf_init(0);
  19131. gguf_write_to_buf(ctx, &buf, true);
  19132. return buf.offset;
  19133. }
  19134. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19135. struct gguf_buf buf = gguf_buf_init(16*1024);
  19136. gguf_write_to_buf(ctx, &buf, true);
  19137. memcpy(data, buf.data, buf.offset);
  19138. gguf_buf_free(buf);
  19139. }
  19140. ////////////////////////////////////////////////////////////////////////////////
  19141. int ggml_cpu_has_avx(void) {
  19142. #if defined(__AVX__)
  19143. return 1;
  19144. #else
  19145. return 0;
  19146. #endif
  19147. }
  19148. int ggml_cpu_has_avx_vnni(void) {
  19149. #if defined(__AVXVNNI__)
  19150. return 1;
  19151. #else
  19152. return 0;
  19153. #endif
  19154. }
  19155. int ggml_cpu_has_avx2(void) {
  19156. #if defined(__AVX2__)
  19157. return 1;
  19158. #else
  19159. return 0;
  19160. #endif
  19161. }
  19162. int ggml_cpu_has_avx512(void) {
  19163. #if defined(__AVX512F__)
  19164. return 1;
  19165. #else
  19166. return 0;
  19167. #endif
  19168. }
  19169. int ggml_cpu_has_avx512_vbmi(void) {
  19170. #if defined(__AVX512VBMI__)
  19171. return 1;
  19172. #else
  19173. return 0;
  19174. #endif
  19175. }
  19176. int ggml_cpu_has_avx512_vnni(void) {
  19177. #if defined(__AVX512VNNI__)
  19178. return 1;
  19179. #else
  19180. return 0;
  19181. #endif
  19182. }
  19183. int ggml_cpu_has_avx512_bf16(void) {
  19184. #if defined(__AVX512BF16__)
  19185. return 1;
  19186. #else
  19187. return 0;
  19188. #endif
  19189. }
  19190. int ggml_cpu_has_fma(void) {
  19191. #if defined(__FMA__)
  19192. return 1;
  19193. #else
  19194. return 0;
  19195. #endif
  19196. }
  19197. int ggml_cpu_has_neon(void) {
  19198. #if defined(__ARM_NEON)
  19199. return 1;
  19200. #else
  19201. return 0;
  19202. #endif
  19203. }
  19204. int ggml_cpu_has_arm_fma(void) {
  19205. #if defined(__ARM_FEATURE_FMA)
  19206. return 1;
  19207. #else
  19208. return 0;
  19209. #endif
  19210. }
  19211. int ggml_cpu_has_metal(void) {
  19212. #if defined(GGML_USE_METAL)
  19213. return 1;
  19214. #else
  19215. return 0;
  19216. #endif
  19217. }
  19218. int ggml_cpu_has_f16c(void) {
  19219. #if defined(__F16C__)
  19220. return 1;
  19221. #else
  19222. return 0;
  19223. #endif
  19224. }
  19225. int ggml_cpu_has_fp16_va(void) {
  19226. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19227. return 1;
  19228. #else
  19229. return 0;
  19230. #endif
  19231. }
  19232. int ggml_cpu_has_wasm_simd(void) {
  19233. #if defined(__wasm_simd128__)
  19234. return 1;
  19235. #else
  19236. return 0;
  19237. #endif
  19238. }
  19239. int ggml_cpu_has_blas(void) {
  19240. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  19241. return 1;
  19242. #else
  19243. return 0;
  19244. #endif
  19245. }
  19246. int ggml_cpu_has_cuda(void) {
  19247. #if defined(GGML_USE_CUDA)
  19248. return 1;
  19249. #else
  19250. return 0;
  19251. #endif
  19252. }
  19253. int ggml_cpu_has_clblast(void) {
  19254. #if defined(GGML_USE_CLBLAST)
  19255. return 1;
  19256. #else
  19257. return 0;
  19258. #endif
  19259. }
  19260. int ggml_cpu_has_vulkan(void) {
  19261. #if defined(GGML_USE_VULKAN)
  19262. return 1;
  19263. #else
  19264. return 0;
  19265. #endif
  19266. }
  19267. int ggml_cpu_has_kompute(void) {
  19268. #if defined(GGML_USE_KOMPUTE)
  19269. return 1;
  19270. #else
  19271. return 0;
  19272. #endif
  19273. }
  19274. int ggml_cpu_has_sycl(void) {
  19275. #if defined(GGML_USE_SYCL)
  19276. return 1;
  19277. #else
  19278. return 0;
  19279. #endif
  19280. }
  19281. int ggml_cpu_has_gpublas(void) {
  19282. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19283. ggml_cpu_has_sycl();
  19284. }
  19285. int ggml_cpu_has_sse3(void) {
  19286. #if defined(__SSE3__)
  19287. return 1;
  19288. #else
  19289. return 0;
  19290. #endif
  19291. }
  19292. int ggml_cpu_has_ssse3(void) {
  19293. #if defined(__SSSE3__)
  19294. return 1;
  19295. #else
  19296. return 0;
  19297. #endif
  19298. }
  19299. int ggml_cpu_has_vsx(void) {
  19300. #if defined(__POWER9_VECTOR__)
  19301. return 1;
  19302. #else
  19303. return 0;
  19304. #endif
  19305. }
  19306. int ggml_cpu_has_matmul_int8(void) {
  19307. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19308. return 1;
  19309. #else
  19310. return 0;
  19311. #endif
  19312. }
  19313. ////////////////////////////////////////////////////////////////////////////////