constants.py 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  34. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  35. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  36. EXPERT_COUNT = "{arch}.expert_count"
  37. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  38. POOLING_TYPE = "{arch}.pooling_type"
  39. LOGIT_SCALE = "{arch}.logit_scale"
  40. class Attention:
  41. HEAD_COUNT = "{arch}.attention.head_count"
  42. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  43. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  44. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  45. KEY_LENGTH = "{arch}.attention.key_length"
  46. VALUE_LENGTH = "{arch}.attention.value_length"
  47. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  48. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  49. CAUSAL = "{arch}.attention.causal"
  50. class Rope:
  51. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  52. FREQ_BASE = "{arch}.rope.freq_base"
  53. SCALING_TYPE = "{arch}.rope.scaling.type"
  54. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  55. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  56. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  57. class SSM:
  58. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  59. INNER_SIZE = "{arch}.ssm.inner_size"
  60. STATE_SIZE = "{arch}.ssm.state_size"
  61. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  62. class Tokenizer:
  63. MODEL = "tokenizer.ggml.model"
  64. PRE = "tokenizer.ggml.pre"
  65. LIST = "tokenizer.ggml.tokens"
  66. TOKEN_TYPE = "tokenizer.ggml.token_type"
  67. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  68. SCORES = "tokenizer.ggml.scores"
  69. MERGES = "tokenizer.ggml.merges"
  70. BOS_ID = "tokenizer.ggml.bos_token_id"
  71. EOS_ID = "tokenizer.ggml.eos_token_id"
  72. UNK_ID = "tokenizer.ggml.unknown_token_id"
  73. SEP_ID = "tokenizer.ggml.seperator_token_id"
  74. PAD_ID = "tokenizer.ggml.padding_token_id"
  75. CLS_ID = "tokenizer.ggml.cls_token_id"
  76. MASK_ID = "tokenizer.ggml.mask_token_id"
  77. ADD_BOS = "tokenizer.ggml.add_bos_token"
  78. ADD_EOS = "tokenizer.ggml.add_eos_token"
  79. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  80. HF_JSON = "tokenizer.huggingface.json"
  81. RWKV = "tokenizer.rwkv.world"
  82. CHAT_TEMPLATE = "tokenizer.chat_template"
  83. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  84. CHAT_TEMPLATES = "tokenizer.chat_templates"
  85. # FIM/Infill special tokens constants
  86. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  87. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  88. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  89. EOT_ID = "tokenizer.ggml.eot_token_id"
  90. #
  91. # recommended mapping of model tensor names for storage in gguf
  92. #
  93. class MODEL_ARCH(IntEnum):
  94. LLAMA = auto()
  95. FALCON = auto()
  96. BAICHUAN = auto()
  97. GROK = auto()
  98. GPT2 = auto()
  99. GPTJ = auto()
  100. GPTNEOX = auto()
  101. MPT = auto()
  102. STARCODER = auto()
  103. REFACT = auto()
  104. BERT = auto()
  105. NOMIC_BERT = auto()
  106. JINA_BERT_V2 = auto()
  107. BLOOM = auto()
  108. STABLELM = auto()
  109. QWEN = auto()
  110. QWEN2 = auto()
  111. QWEN2MOE = auto()
  112. PHI2 = auto()
  113. PHI3 = auto()
  114. PLAMO = auto()
  115. CODESHELL = auto()
  116. ORION = auto()
  117. INTERNLM2 = auto()
  118. MINICPM = auto()
  119. GEMMA = auto()
  120. STARCODER2 = auto()
  121. MAMBA = auto()
  122. XVERSE = auto()
  123. COMMAND_R = auto()
  124. DBRX = auto()
  125. OLMO = auto()
  126. class MODEL_TENSOR(IntEnum):
  127. TOKEN_EMBD = auto()
  128. TOKEN_EMBD_NORM = auto()
  129. TOKEN_TYPES = auto()
  130. POS_EMBD = auto()
  131. OUTPUT = auto()
  132. OUTPUT_NORM = auto()
  133. ROPE_FREQS = auto()
  134. ATTN_Q = auto()
  135. ATTN_K = auto()
  136. ATTN_V = auto()
  137. ATTN_QKV = auto()
  138. ATTN_OUT = auto()
  139. ATTN_NORM = auto()
  140. ATTN_NORM_2 = auto()
  141. ATTN_OUT_NORM = auto()
  142. ATTN_ROT_EMBD = auto()
  143. FFN_GATE_INP = auto()
  144. FFN_GATE_INP_SHEXP = auto()
  145. FFN_NORM = auto()
  146. FFN_GATE = auto()
  147. FFN_DOWN = auto()
  148. FFN_UP = auto()
  149. FFN_ACT = auto()
  150. FFN_GATE_EXP = auto()
  151. FFN_DOWN_EXP = auto()
  152. FFN_UP_EXP = auto()
  153. FFN_GATE_SHEXP = auto()
  154. FFN_DOWN_SHEXP = auto()
  155. FFN_UP_SHEXP = auto()
  156. ATTN_Q_NORM = auto()
  157. ATTN_K_NORM = auto()
  158. LAYER_OUT_NORM = auto()
  159. SSM_IN = auto()
  160. SSM_CONV1D = auto()
  161. SSM_X = auto()
  162. SSM_DT = auto()
  163. SSM_A = auto()
  164. SSM_D = auto()
  165. SSM_OUT = auto()
  166. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  167. MODEL_ARCH.LLAMA: "llama",
  168. MODEL_ARCH.FALCON: "falcon",
  169. MODEL_ARCH.BAICHUAN: "baichuan",
  170. MODEL_ARCH.GROK: "grok",
  171. MODEL_ARCH.GPT2: "gpt2",
  172. MODEL_ARCH.GPTJ: "gptj",
  173. MODEL_ARCH.GPTNEOX: "gptneox",
  174. MODEL_ARCH.MPT: "mpt",
  175. MODEL_ARCH.STARCODER: "starcoder",
  176. MODEL_ARCH.REFACT: "refact",
  177. MODEL_ARCH.BERT: "bert",
  178. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  179. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  180. MODEL_ARCH.BLOOM: "bloom",
  181. MODEL_ARCH.STABLELM: "stablelm",
  182. MODEL_ARCH.QWEN: "qwen",
  183. MODEL_ARCH.QWEN2: "qwen2",
  184. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  185. MODEL_ARCH.PHI2: "phi2",
  186. MODEL_ARCH.PHI3: "phi3",
  187. MODEL_ARCH.PLAMO: "plamo",
  188. MODEL_ARCH.CODESHELL: "codeshell",
  189. MODEL_ARCH.ORION: "orion",
  190. MODEL_ARCH.INTERNLM2: "internlm2",
  191. MODEL_ARCH.MINICPM: "minicpm",
  192. MODEL_ARCH.GEMMA: "gemma",
  193. MODEL_ARCH.STARCODER2: "starcoder2",
  194. MODEL_ARCH.MAMBA: "mamba",
  195. MODEL_ARCH.XVERSE: "xverse",
  196. MODEL_ARCH.COMMAND_R: "command-r",
  197. MODEL_ARCH.DBRX: "dbrx",
  198. MODEL_ARCH.OLMO: "olmo",
  199. }
  200. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  201. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  202. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  203. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  204. MODEL_TENSOR.POS_EMBD: "position_embd",
  205. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  206. MODEL_TENSOR.OUTPUT: "output",
  207. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  208. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  209. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  210. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  211. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  212. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  213. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  214. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  215. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  216. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  217. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  218. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  219. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  220. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  221. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  222. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  223. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  224. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  225. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  226. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  227. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  228. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  229. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  230. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  231. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  232. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  233. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  234. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  235. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  236. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  237. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  238. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  239. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  240. }
  241. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  242. MODEL_ARCH.LLAMA: [
  243. MODEL_TENSOR.TOKEN_EMBD,
  244. MODEL_TENSOR.OUTPUT_NORM,
  245. MODEL_TENSOR.OUTPUT,
  246. MODEL_TENSOR.ROPE_FREQS,
  247. MODEL_TENSOR.ATTN_NORM,
  248. MODEL_TENSOR.ATTN_Q,
  249. MODEL_TENSOR.ATTN_K,
  250. MODEL_TENSOR.ATTN_V,
  251. MODEL_TENSOR.ATTN_OUT,
  252. MODEL_TENSOR.ATTN_ROT_EMBD,
  253. MODEL_TENSOR.FFN_GATE_INP,
  254. MODEL_TENSOR.FFN_NORM,
  255. MODEL_TENSOR.FFN_GATE,
  256. MODEL_TENSOR.FFN_DOWN,
  257. MODEL_TENSOR.FFN_UP,
  258. MODEL_TENSOR.FFN_GATE_EXP,
  259. MODEL_TENSOR.FFN_DOWN_EXP,
  260. MODEL_TENSOR.FFN_UP_EXP,
  261. ],
  262. MODEL_ARCH.GROK: [
  263. MODEL_TENSOR.TOKEN_EMBD,
  264. MODEL_TENSOR.OUTPUT_NORM,
  265. MODEL_TENSOR.OUTPUT,
  266. MODEL_TENSOR.ROPE_FREQS,
  267. MODEL_TENSOR.ATTN_NORM,
  268. MODEL_TENSOR.ATTN_Q,
  269. MODEL_TENSOR.ATTN_K,
  270. MODEL_TENSOR.ATTN_V,
  271. MODEL_TENSOR.ATTN_OUT,
  272. MODEL_TENSOR.ATTN_ROT_EMBD,
  273. MODEL_TENSOR.ATTN_OUT_NORM,
  274. MODEL_TENSOR.FFN_GATE_INP,
  275. MODEL_TENSOR.FFN_NORM,
  276. MODEL_TENSOR.FFN_GATE,
  277. MODEL_TENSOR.FFN_DOWN,
  278. MODEL_TENSOR.FFN_UP,
  279. MODEL_TENSOR.FFN_GATE_EXP,
  280. MODEL_TENSOR.FFN_DOWN_EXP,
  281. MODEL_TENSOR.FFN_UP_EXP,
  282. MODEL_TENSOR.LAYER_OUT_NORM,
  283. ],
  284. MODEL_ARCH.GPTNEOX: [
  285. MODEL_TENSOR.TOKEN_EMBD,
  286. MODEL_TENSOR.OUTPUT_NORM,
  287. MODEL_TENSOR.OUTPUT,
  288. MODEL_TENSOR.ATTN_NORM,
  289. MODEL_TENSOR.ATTN_QKV,
  290. MODEL_TENSOR.ATTN_OUT,
  291. MODEL_TENSOR.FFN_NORM,
  292. MODEL_TENSOR.FFN_DOWN,
  293. MODEL_TENSOR.FFN_UP,
  294. ],
  295. MODEL_ARCH.FALCON: [
  296. MODEL_TENSOR.TOKEN_EMBD,
  297. MODEL_TENSOR.OUTPUT_NORM,
  298. MODEL_TENSOR.OUTPUT,
  299. MODEL_TENSOR.ATTN_NORM,
  300. MODEL_TENSOR.ATTN_NORM_2,
  301. MODEL_TENSOR.ATTN_QKV,
  302. MODEL_TENSOR.ATTN_OUT,
  303. MODEL_TENSOR.FFN_DOWN,
  304. MODEL_TENSOR.FFN_UP,
  305. ],
  306. MODEL_ARCH.BAICHUAN: [
  307. MODEL_TENSOR.TOKEN_EMBD,
  308. MODEL_TENSOR.OUTPUT_NORM,
  309. MODEL_TENSOR.OUTPUT,
  310. MODEL_TENSOR.ROPE_FREQS,
  311. MODEL_TENSOR.ATTN_NORM,
  312. MODEL_TENSOR.ATTN_Q,
  313. MODEL_TENSOR.ATTN_K,
  314. MODEL_TENSOR.ATTN_V,
  315. MODEL_TENSOR.ATTN_OUT,
  316. MODEL_TENSOR.ATTN_ROT_EMBD,
  317. MODEL_TENSOR.FFN_NORM,
  318. MODEL_TENSOR.FFN_GATE,
  319. MODEL_TENSOR.FFN_DOWN,
  320. MODEL_TENSOR.FFN_UP,
  321. ],
  322. MODEL_ARCH.STARCODER: [
  323. MODEL_TENSOR.TOKEN_EMBD,
  324. MODEL_TENSOR.POS_EMBD,
  325. MODEL_TENSOR.OUTPUT_NORM,
  326. MODEL_TENSOR.OUTPUT,
  327. MODEL_TENSOR.ATTN_NORM,
  328. MODEL_TENSOR.ATTN_QKV,
  329. MODEL_TENSOR.ATTN_OUT,
  330. MODEL_TENSOR.FFN_NORM,
  331. MODEL_TENSOR.FFN_DOWN,
  332. MODEL_TENSOR.FFN_UP,
  333. ],
  334. MODEL_ARCH.BERT: [
  335. MODEL_TENSOR.TOKEN_EMBD,
  336. MODEL_TENSOR.TOKEN_EMBD_NORM,
  337. MODEL_TENSOR.TOKEN_TYPES,
  338. MODEL_TENSOR.POS_EMBD,
  339. MODEL_TENSOR.OUTPUT_NORM,
  340. MODEL_TENSOR.ATTN_OUT_NORM,
  341. MODEL_TENSOR.ATTN_Q,
  342. MODEL_TENSOR.ATTN_K,
  343. MODEL_TENSOR.ATTN_V,
  344. MODEL_TENSOR.ATTN_OUT,
  345. MODEL_TENSOR.FFN_DOWN,
  346. MODEL_TENSOR.FFN_UP,
  347. MODEL_TENSOR.LAYER_OUT_NORM,
  348. ],
  349. MODEL_ARCH.NOMIC_BERT: [
  350. MODEL_TENSOR.TOKEN_EMBD,
  351. MODEL_TENSOR.TOKEN_EMBD_NORM,
  352. MODEL_TENSOR.TOKEN_TYPES,
  353. MODEL_TENSOR.POS_EMBD,
  354. MODEL_TENSOR.OUTPUT_NORM,
  355. MODEL_TENSOR.ATTN_OUT_NORM,
  356. MODEL_TENSOR.ATTN_QKV,
  357. MODEL_TENSOR.ATTN_OUT,
  358. MODEL_TENSOR.FFN_GATE,
  359. MODEL_TENSOR.FFN_DOWN,
  360. MODEL_TENSOR.FFN_UP,
  361. MODEL_TENSOR.LAYER_OUT_NORM,
  362. ],
  363. MODEL_ARCH.JINA_BERT_V2: [
  364. MODEL_TENSOR.TOKEN_EMBD,
  365. MODEL_TENSOR.TOKEN_EMBD_NORM,
  366. MODEL_TENSOR.TOKEN_TYPES,
  367. MODEL_TENSOR.ATTN_OUT_NORM,
  368. MODEL_TENSOR.ATTN_Q,
  369. MODEL_TENSOR.ATTN_Q_NORM,
  370. MODEL_TENSOR.ATTN_K,
  371. MODEL_TENSOR.ATTN_K_NORM,
  372. MODEL_TENSOR.ATTN_V,
  373. MODEL_TENSOR.ATTN_OUT,
  374. MODEL_TENSOR.FFN_UP,
  375. MODEL_TENSOR.FFN_GATE,
  376. MODEL_TENSOR.FFN_DOWN,
  377. MODEL_TENSOR.LAYER_OUT_NORM,
  378. ],
  379. MODEL_ARCH.MPT: [
  380. MODEL_TENSOR.TOKEN_EMBD,
  381. MODEL_TENSOR.OUTPUT_NORM,
  382. MODEL_TENSOR.OUTPUT,
  383. MODEL_TENSOR.ATTN_NORM,
  384. MODEL_TENSOR.ATTN_QKV,
  385. MODEL_TENSOR.ATTN_OUT,
  386. MODEL_TENSOR.FFN_NORM,
  387. MODEL_TENSOR.FFN_DOWN,
  388. MODEL_TENSOR.FFN_UP,
  389. MODEL_TENSOR.FFN_ACT,
  390. MODEL_TENSOR.ATTN_Q_NORM,
  391. MODEL_TENSOR.ATTN_K_NORM,
  392. MODEL_TENSOR.POS_EMBD,
  393. ],
  394. MODEL_ARCH.GPTJ: [
  395. MODEL_TENSOR.TOKEN_EMBD,
  396. MODEL_TENSOR.OUTPUT_NORM,
  397. MODEL_TENSOR.OUTPUT,
  398. MODEL_TENSOR.ATTN_NORM,
  399. MODEL_TENSOR.ATTN_Q,
  400. MODEL_TENSOR.ATTN_K,
  401. MODEL_TENSOR.ATTN_V,
  402. MODEL_TENSOR.ATTN_OUT,
  403. MODEL_TENSOR.FFN_DOWN,
  404. MODEL_TENSOR.FFN_UP,
  405. ],
  406. MODEL_ARCH.REFACT: [
  407. MODEL_TENSOR.TOKEN_EMBD,
  408. MODEL_TENSOR.OUTPUT_NORM,
  409. MODEL_TENSOR.OUTPUT,
  410. MODEL_TENSOR.ATTN_NORM,
  411. MODEL_TENSOR.ATTN_Q,
  412. MODEL_TENSOR.ATTN_K,
  413. MODEL_TENSOR.ATTN_V,
  414. MODEL_TENSOR.ATTN_OUT,
  415. MODEL_TENSOR.FFN_NORM,
  416. MODEL_TENSOR.FFN_GATE,
  417. MODEL_TENSOR.FFN_DOWN,
  418. MODEL_TENSOR.FFN_UP,
  419. ],
  420. MODEL_ARCH.BLOOM: [
  421. MODEL_TENSOR.TOKEN_EMBD,
  422. MODEL_TENSOR.TOKEN_EMBD_NORM,
  423. MODEL_TENSOR.OUTPUT_NORM,
  424. MODEL_TENSOR.OUTPUT,
  425. MODEL_TENSOR.ATTN_NORM,
  426. MODEL_TENSOR.ATTN_QKV,
  427. MODEL_TENSOR.ATTN_OUT,
  428. MODEL_TENSOR.FFN_NORM,
  429. MODEL_TENSOR.FFN_DOWN,
  430. MODEL_TENSOR.FFN_UP,
  431. ],
  432. MODEL_ARCH.STABLELM: [
  433. MODEL_TENSOR.TOKEN_EMBD,
  434. MODEL_TENSOR.OUTPUT_NORM,
  435. MODEL_TENSOR.OUTPUT,
  436. MODEL_TENSOR.ROPE_FREQS,
  437. MODEL_TENSOR.ATTN_NORM,
  438. MODEL_TENSOR.ATTN_Q,
  439. MODEL_TENSOR.ATTN_K,
  440. MODEL_TENSOR.ATTN_V,
  441. MODEL_TENSOR.ATTN_OUT,
  442. MODEL_TENSOR.FFN_NORM,
  443. MODEL_TENSOR.FFN_GATE,
  444. MODEL_TENSOR.FFN_DOWN,
  445. MODEL_TENSOR.FFN_UP,
  446. MODEL_TENSOR.ATTN_Q_NORM,
  447. MODEL_TENSOR.ATTN_K_NORM,
  448. ],
  449. MODEL_ARCH.QWEN: [
  450. MODEL_TENSOR.TOKEN_EMBD,
  451. MODEL_TENSOR.OUTPUT_NORM,
  452. MODEL_TENSOR.OUTPUT,
  453. MODEL_TENSOR.ROPE_FREQS,
  454. MODEL_TENSOR.ATTN_NORM,
  455. MODEL_TENSOR.ATTN_QKV,
  456. MODEL_TENSOR.ATTN_OUT,
  457. MODEL_TENSOR.ATTN_ROT_EMBD,
  458. MODEL_TENSOR.FFN_NORM,
  459. MODEL_TENSOR.FFN_GATE,
  460. MODEL_TENSOR.FFN_DOWN,
  461. MODEL_TENSOR.FFN_UP,
  462. ],
  463. MODEL_ARCH.QWEN2: [
  464. MODEL_TENSOR.TOKEN_EMBD,
  465. MODEL_TENSOR.OUTPUT_NORM,
  466. MODEL_TENSOR.OUTPUT,
  467. MODEL_TENSOR.ATTN_NORM,
  468. MODEL_TENSOR.ATTN_Q,
  469. MODEL_TENSOR.ATTN_K,
  470. MODEL_TENSOR.ATTN_V,
  471. MODEL_TENSOR.ATTN_OUT,
  472. MODEL_TENSOR.FFN_NORM,
  473. MODEL_TENSOR.FFN_GATE,
  474. MODEL_TENSOR.FFN_DOWN,
  475. MODEL_TENSOR.FFN_UP,
  476. ],
  477. MODEL_ARCH.QWEN2MOE: [
  478. MODEL_TENSOR.TOKEN_EMBD,
  479. MODEL_TENSOR.OUTPUT_NORM,
  480. MODEL_TENSOR.OUTPUT,
  481. MODEL_TENSOR.ATTN_NORM,
  482. MODEL_TENSOR.ATTN_Q,
  483. MODEL_TENSOR.ATTN_K,
  484. MODEL_TENSOR.ATTN_V,
  485. MODEL_TENSOR.ATTN_OUT,
  486. MODEL_TENSOR.FFN_NORM,
  487. MODEL_TENSOR.FFN_GATE_INP,
  488. MODEL_TENSOR.FFN_GATE_EXP,
  489. MODEL_TENSOR.FFN_DOWN_EXP,
  490. MODEL_TENSOR.FFN_UP_EXP,
  491. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  492. MODEL_TENSOR.FFN_GATE_SHEXP,
  493. MODEL_TENSOR.FFN_DOWN_SHEXP,
  494. MODEL_TENSOR.FFN_UP_SHEXP,
  495. ],
  496. MODEL_ARCH.PLAMO: [
  497. MODEL_TENSOR.TOKEN_EMBD,
  498. MODEL_TENSOR.OUTPUT_NORM,
  499. MODEL_TENSOR.OUTPUT,
  500. MODEL_TENSOR.ROPE_FREQS,
  501. MODEL_TENSOR.ATTN_NORM,
  502. MODEL_TENSOR.ATTN_Q,
  503. MODEL_TENSOR.ATTN_K,
  504. MODEL_TENSOR.ATTN_V,
  505. MODEL_TENSOR.ATTN_OUT,
  506. MODEL_TENSOR.ATTN_ROT_EMBD,
  507. MODEL_TENSOR.FFN_GATE,
  508. MODEL_TENSOR.FFN_DOWN,
  509. MODEL_TENSOR.FFN_UP,
  510. ],
  511. MODEL_ARCH.GPT2: [
  512. MODEL_TENSOR.TOKEN_EMBD,
  513. MODEL_TENSOR.POS_EMBD,
  514. MODEL_TENSOR.OUTPUT_NORM,
  515. MODEL_TENSOR.OUTPUT,
  516. MODEL_TENSOR.ATTN_NORM,
  517. MODEL_TENSOR.ATTN_QKV,
  518. MODEL_TENSOR.ATTN_OUT,
  519. MODEL_TENSOR.FFN_NORM,
  520. MODEL_TENSOR.FFN_DOWN,
  521. MODEL_TENSOR.FFN_UP,
  522. ],
  523. MODEL_ARCH.PHI2: [
  524. MODEL_TENSOR.TOKEN_EMBD,
  525. MODEL_TENSOR.OUTPUT_NORM,
  526. MODEL_TENSOR.OUTPUT,
  527. MODEL_TENSOR.ATTN_NORM,
  528. MODEL_TENSOR.ATTN_QKV,
  529. MODEL_TENSOR.ATTN_Q,
  530. MODEL_TENSOR.ATTN_K,
  531. MODEL_TENSOR.ATTN_V,
  532. MODEL_TENSOR.ATTN_OUT,
  533. MODEL_TENSOR.FFN_NORM,
  534. MODEL_TENSOR.FFN_DOWN,
  535. MODEL_TENSOR.FFN_UP,
  536. ],
  537. MODEL_ARCH.PHI3: [
  538. MODEL_TENSOR.TOKEN_EMBD,
  539. MODEL_TENSOR.OUTPUT_NORM,
  540. MODEL_TENSOR.OUTPUT,
  541. MODEL_TENSOR.ATTN_NORM,
  542. MODEL_TENSOR.ATTN_QKV,
  543. MODEL_TENSOR.ATTN_Q,
  544. MODEL_TENSOR.ATTN_K,
  545. MODEL_TENSOR.ATTN_V,
  546. MODEL_TENSOR.ATTN_OUT,
  547. MODEL_TENSOR.FFN_NORM,
  548. MODEL_TENSOR.FFN_DOWN,
  549. MODEL_TENSOR.FFN_UP,
  550. ],
  551. MODEL_ARCH.CODESHELL: [
  552. MODEL_TENSOR.TOKEN_EMBD,
  553. MODEL_TENSOR.POS_EMBD,
  554. MODEL_TENSOR.OUTPUT_NORM,
  555. MODEL_TENSOR.OUTPUT,
  556. MODEL_TENSOR.ATTN_NORM,
  557. MODEL_TENSOR.ATTN_QKV,
  558. MODEL_TENSOR.ATTN_OUT,
  559. MODEL_TENSOR.ATTN_ROT_EMBD,
  560. MODEL_TENSOR.FFN_NORM,
  561. MODEL_TENSOR.FFN_DOWN,
  562. MODEL_TENSOR.FFN_UP,
  563. ],
  564. MODEL_ARCH.ORION: [
  565. MODEL_TENSOR.TOKEN_EMBD,
  566. MODEL_TENSOR.OUTPUT_NORM,
  567. MODEL_TENSOR.OUTPUT,
  568. MODEL_TENSOR.ROPE_FREQS,
  569. MODEL_TENSOR.ATTN_NORM,
  570. MODEL_TENSOR.ATTN_Q,
  571. MODEL_TENSOR.ATTN_K,
  572. MODEL_TENSOR.ATTN_V,
  573. MODEL_TENSOR.ATTN_OUT,
  574. MODEL_TENSOR.ATTN_ROT_EMBD,
  575. MODEL_TENSOR.FFN_NORM,
  576. MODEL_TENSOR.FFN_GATE,
  577. MODEL_TENSOR.FFN_DOWN,
  578. MODEL_TENSOR.FFN_UP,
  579. ],
  580. MODEL_ARCH.INTERNLM2: [
  581. MODEL_TENSOR.TOKEN_EMBD,
  582. MODEL_TENSOR.OUTPUT_NORM,
  583. MODEL_TENSOR.OUTPUT,
  584. MODEL_TENSOR.ATTN_NORM,
  585. MODEL_TENSOR.ATTN_Q,
  586. MODEL_TENSOR.ATTN_K,
  587. MODEL_TENSOR.ATTN_V,
  588. MODEL_TENSOR.ATTN_OUT,
  589. MODEL_TENSOR.ATTN_ROT_EMBD,
  590. MODEL_TENSOR.FFN_NORM,
  591. MODEL_TENSOR.FFN_GATE,
  592. MODEL_TENSOR.FFN_DOWN,
  593. MODEL_TENSOR.FFN_UP,
  594. ],
  595. MODEL_ARCH.MINICPM: [
  596. MODEL_TENSOR.TOKEN_EMBD,
  597. MODEL_TENSOR.OUTPUT_NORM,
  598. MODEL_TENSOR.ROPE_FREQS,
  599. MODEL_TENSOR.ATTN_NORM,
  600. MODEL_TENSOR.ATTN_Q,
  601. MODEL_TENSOR.ATTN_K,
  602. MODEL_TENSOR.ATTN_V,
  603. MODEL_TENSOR.ATTN_OUT,
  604. MODEL_TENSOR.ATTN_ROT_EMBD,
  605. MODEL_TENSOR.FFN_GATE_INP,
  606. MODEL_TENSOR.FFN_NORM,
  607. MODEL_TENSOR.FFN_GATE,
  608. MODEL_TENSOR.FFN_DOWN,
  609. MODEL_TENSOR.FFN_UP,
  610. MODEL_TENSOR.FFN_GATE_EXP,
  611. MODEL_TENSOR.FFN_DOWN_EXP,
  612. MODEL_TENSOR.FFN_UP_EXP,
  613. ],
  614. MODEL_ARCH.GEMMA: [
  615. MODEL_TENSOR.TOKEN_EMBD,
  616. MODEL_TENSOR.OUTPUT_NORM,
  617. MODEL_TENSOR.ATTN_NORM,
  618. MODEL_TENSOR.ATTN_Q,
  619. MODEL_TENSOR.ATTN_K,
  620. MODEL_TENSOR.ATTN_V,
  621. MODEL_TENSOR.ATTN_OUT,
  622. MODEL_TENSOR.FFN_GATE,
  623. MODEL_TENSOR.FFN_DOWN,
  624. MODEL_TENSOR.FFN_UP,
  625. MODEL_TENSOR.FFN_NORM,
  626. ],
  627. MODEL_ARCH.STARCODER2: [
  628. MODEL_TENSOR.TOKEN_EMBD,
  629. MODEL_TENSOR.OUTPUT_NORM,
  630. MODEL_TENSOR.OUTPUT,
  631. MODEL_TENSOR.ROPE_FREQS,
  632. MODEL_TENSOR.ATTN_NORM,
  633. MODEL_TENSOR.ATTN_Q,
  634. MODEL_TENSOR.ATTN_K,
  635. MODEL_TENSOR.ATTN_V,
  636. MODEL_TENSOR.ATTN_OUT,
  637. MODEL_TENSOR.ATTN_ROT_EMBD,
  638. MODEL_TENSOR.FFN_NORM,
  639. MODEL_TENSOR.FFN_DOWN,
  640. MODEL_TENSOR.FFN_UP,
  641. ],
  642. MODEL_ARCH.MAMBA: [
  643. MODEL_TENSOR.TOKEN_EMBD,
  644. MODEL_TENSOR.OUTPUT_NORM,
  645. MODEL_TENSOR.OUTPUT,
  646. MODEL_TENSOR.ATTN_NORM,
  647. MODEL_TENSOR.SSM_IN,
  648. MODEL_TENSOR.SSM_CONV1D,
  649. MODEL_TENSOR.SSM_X,
  650. MODEL_TENSOR.SSM_DT,
  651. MODEL_TENSOR.SSM_A,
  652. MODEL_TENSOR.SSM_D,
  653. MODEL_TENSOR.SSM_OUT,
  654. ],
  655. MODEL_ARCH.XVERSE: [
  656. MODEL_TENSOR.TOKEN_EMBD,
  657. MODEL_TENSOR.OUTPUT_NORM,
  658. MODEL_TENSOR.OUTPUT,
  659. MODEL_TENSOR.ROPE_FREQS,
  660. MODEL_TENSOR.ATTN_NORM,
  661. MODEL_TENSOR.ATTN_Q,
  662. MODEL_TENSOR.ATTN_K,
  663. MODEL_TENSOR.ATTN_V,
  664. MODEL_TENSOR.ATTN_OUT,
  665. MODEL_TENSOR.ATTN_ROT_EMBD,
  666. MODEL_TENSOR.FFN_NORM,
  667. MODEL_TENSOR.FFN_GATE,
  668. MODEL_TENSOR.FFN_DOWN,
  669. MODEL_TENSOR.FFN_UP,
  670. ],
  671. MODEL_ARCH.COMMAND_R: [
  672. MODEL_TENSOR.TOKEN_EMBD,
  673. MODEL_TENSOR.OUTPUT_NORM,
  674. MODEL_TENSOR.ATTN_NORM,
  675. MODEL_TENSOR.ATTN_Q,
  676. MODEL_TENSOR.ATTN_K,
  677. MODEL_TENSOR.ATTN_V,
  678. MODEL_TENSOR.ATTN_OUT,
  679. MODEL_TENSOR.FFN_GATE,
  680. MODEL_TENSOR.FFN_DOWN,
  681. MODEL_TENSOR.FFN_UP,
  682. MODEL_TENSOR.ATTN_K_NORM,
  683. MODEL_TENSOR.ATTN_Q_NORM,
  684. ],
  685. MODEL_ARCH.DBRX: [
  686. MODEL_TENSOR.TOKEN_EMBD,
  687. MODEL_TENSOR.OUTPUT_NORM,
  688. MODEL_TENSOR.OUTPUT,
  689. MODEL_TENSOR.ATTN_NORM,
  690. MODEL_TENSOR.ATTN_QKV,
  691. MODEL_TENSOR.ATTN_OUT,
  692. MODEL_TENSOR.ATTN_OUT_NORM,
  693. MODEL_TENSOR.FFN_GATE_INP,
  694. MODEL_TENSOR.FFN_GATE_EXP,
  695. MODEL_TENSOR.FFN_DOWN_EXP,
  696. MODEL_TENSOR.FFN_UP_EXP,
  697. ],
  698. MODEL_ARCH.OLMO: [
  699. MODEL_TENSOR.TOKEN_EMBD,
  700. MODEL_TENSOR.OUTPUT,
  701. MODEL_TENSOR.ATTN_Q,
  702. MODEL_TENSOR.ATTN_K,
  703. MODEL_TENSOR.ATTN_V,
  704. MODEL_TENSOR.ATTN_OUT,
  705. MODEL_TENSOR.FFN_GATE,
  706. MODEL_TENSOR.FFN_DOWN,
  707. MODEL_TENSOR.FFN_UP,
  708. ],
  709. # TODO
  710. }
  711. # tensors that will not be serialized
  712. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  713. MODEL_ARCH.LLAMA: [
  714. MODEL_TENSOR.ROPE_FREQS,
  715. MODEL_TENSOR.ATTN_ROT_EMBD,
  716. ],
  717. MODEL_ARCH.BAICHUAN: [
  718. MODEL_TENSOR.ROPE_FREQS,
  719. MODEL_TENSOR.ATTN_ROT_EMBD,
  720. ],
  721. MODEL_ARCH.QWEN: [
  722. MODEL_TENSOR.ROPE_FREQS,
  723. MODEL_TENSOR.ATTN_ROT_EMBD,
  724. ],
  725. MODEL_ARCH.CODESHELL: [
  726. MODEL_TENSOR.ROPE_FREQS,
  727. MODEL_TENSOR.ATTN_ROT_EMBD,
  728. ],
  729. MODEL_ARCH.ORION: [
  730. MODEL_TENSOR.ROPE_FREQS,
  731. MODEL_TENSOR.ATTN_ROT_EMBD,
  732. ],
  733. MODEL_ARCH.STARCODER2: [
  734. MODEL_TENSOR.ROPE_FREQS,
  735. MODEL_TENSOR.ATTN_ROT_EMBD,
  736. ],
  737. MODEL_ARCH.XVERSE: [
  738. MODEL_TENSOR.ROPE_FREQS,
  739. MODEL_TENSOR.ATTN_ROT_EMBD,
  740. ],
  741. }
  742. #
  743. # types
  744. #
  745. class TokenType(IntEnum):
  746. NORMAL = 1
  747. UNKNOWN = 2
  748. CONTROL = 3
  749. USER_DEFINED = 4
  750. UNUSED = 5
  751. BYTE = 6
  752. class RopeScalingType(Enum):
  753. NONE = 'none'
  754. LINEAR = 'linear'
  755. YARN = 'yarn'
  756. class PoolingType(IntEnum):
  757. NONE = 0
  758. MEAN = 1
  759. CLS = 2
  760. class GGMLQuantizationType(IntEnum):
  761. F32 = 0
  762. F16 = 1
  763. Q4_0 = 2
  764. Q4_1 = 3
  765. Q5_0 = 6
  766. Q5_1 = 7
  767. Q8_0 = 8
  768. Q8_1 = 9
  769. Q2_K = 10
  770. Q3_K = 11
  771. Q4_K = 12
  772. Q5_K = 13
  773. Q6_K = 14
  774. Q8_K = 15
  775. IQ2_XXS = 16
  776. IQ2_XS = 17
  777. IQ3_XXS = 18
  778. IQ1_S = 19
  779. IQ4_NL = 20
  780. IQ3_S = 21
  781. IQ2_S = 22
  782. IQ4_XS = 23
  783. I8 = 24
  784. I16 = 25
  785. I32 = 26
  786. I64 = 27
  787. F64 = 28
  788. IQ1_M = 29
  789. BF16 = 30
  790. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  791. # from llama_ftype in llama.h
  792. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  793. class LlamaFileType(IntEnum):
  794. ALL_F32 = 0
  795. MOSTLY_F16 = 1 # except 1d tensors
  796. MOSTLY_Q4_0 = 2 # except 1d tensors
  797. MOSTLY_Q4_1 = 3 # except 1d tensors
  798. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  799. # MOSTLY_Q4_2 = 5 # support has been removed
  800. # MOSTLY_Q4_3 = 6 # support has been removed
  801. MOSTLY_Q8_0 = 7 # except 1d tensors
  802. MOSTLY_Q5_0 = 8 # except 1d tensors
  803. MOSTLY_Q5_1 = 9 # except 1d tensors
  804. MOSTLY_Q2_K = 10 # except 1d tensors
  805. MOSTLY_Q3_K_S = 11 # except 1d tensors
  806. MOSTLY_Q3_K_M = 12 # except 1d tensors
  807. MOSTLY_Q3_K_L = 13 # except 1d tensors
  808. MOSTLY_Q4_K_S = 14 # except 1d tensors
  809. MOSTLY_Q4_K_M = 15 # except 1d tensors
  810. MOSTLY_Q5_K_S = 16 # except 1d tensors
  811. MOSTLY_Q5_K_M = 17 # except 1d tensors
  812. MOSTLY_Q6_K = 18 # except 1d tensors
  813. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  814. MOSTLY_IQ2_XS = 20 # except 1d tensors
  815. MOSTLY_Q2_K_S = 21 # except 1d tensors
  816. MOSTLY_IQ3_XS = 22 # except 1d tensors
  817. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  818. MOSTLY_IQ1_S = 24 # except 1d tensors
  819. MOSTLY_IQ4_NL = 25 # except 1d tensors
  820. MOSTLY_IQ3_S = 26 # except 1d tensors
  821. MOSTLY_IQ3_M = 27 # except 1d tensors
  822. MOSTLY_IQ2_S = 28 # except 1d tensors
  823. MOSTLY_IQ2_M = 29 # except 1d tensors
  824. MOSTLY_IQ4_XS = 30 # except 1d tensors
  825. MOSTLY_IQ1_M = 31 # except 1d tensors
  826. MOSTLY_BF16 = 32 # except 1d tensors
  827. GUESSED = 1024 # not specified in the model file
  828. class GGUFEndian(IntEnum):
  829. LITTLE = 0
  830. BIG = 1
  831. class GGUFValueType(IntEnum):
  832. UINT8 = 0
  833. INT8 = 1
  834. UINT16 = 2
  835. INT16 = 3
  836. UINT32 = 4
  837. INT32 = 5
  838. FLOAT32 = 6
  839. BOOL = 7
  840. STRING = 8
  841. ARRAY = 9
  842. UINT64 = 10
  843. INT64 = 11
  844. FLOAT64 = 12
  845. @staticmethod
  846. def get_type(val: Any) -> GGUFValueType:
  847. if isinstance(val, (str, bytes, bytearray)):
  848. return GGUFValueType.STRING
  849. elif isinstance(val, list):
  850. return GGUFValueType.ARRAY
  851. elif isinstance(val, float):
  852. return GGUFValueType.FLOAT32
  853. elif isinstance(val, bool):
  854. return GGUFValueType.BOOL
  855. elif isinstance(val, int):
  856. return GGUFValueType.INT32
  857. # TODO: need help with 64-bit types in Python
  858. else:
  859. raise ValueError(f"Unknown type: {type(val)}")
  860. # Note: Does not support GGML_QKK_64
  861. QK_K = 256
  862. # Items here are (block size, type size)
  863. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  864. GGMLQuantizationType.F32: (1, 4),
  865. GGMLQuantizationType.F16: (1, 2),
  866. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  867. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  868. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  869. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  870. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  871. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  872. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  873. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  874. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  875. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  876. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  877. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  878. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  879. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  880. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  881. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  882. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  883. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  884. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  885. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  886. GGMLQuantizationType.I8: (1, 1),
  887. GGMLQuantizationType.I16: (1, 2),
  888. GGMLQuantizationType.I32: (1, 4),
  889. GGMLQuantizationType.I64: (1, 8),
  890. GGMLQuantizationType.F64: (1, 8),
  891. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  892. GGMLQuantizationType.BF16: (1, 2),
  893. }
  894. # Aliases for backward compatibility.
  895. # general
  896. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  897. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  898. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  899. KEY_GENERAL_NAME = Keys.General.NAME
  900. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  901. KEY_GENERAL_URL = Keys.General.URL
  902. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  903. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  904. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  905. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  906. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  907. # LLM
  908. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  909. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  910. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  911. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  912. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  913. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  914. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  915. # attention
  916. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  917. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  918. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  919. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  920. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  921. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  922. # RoPE
  923. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  924. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  925. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  926. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  927. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  928. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  929. # SSM
  930. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  931. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  932. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  933. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  934. # tokenization
  935. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  936. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  937. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  938. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  939. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  940. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  941. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  942. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  943. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  944. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  945. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  946. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  947. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  948. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  949. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  950. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  951. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  952. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  953. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID