tensor_mapping.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. ),
  24. # Token type embeddings
  25. MODEL_TENSOR.TOKEN_TYPES: (
  26. "embeddings.token_type_embeddings", # bert nomic-bert
  27. ),
  28. # Normalization of token embeddings
  29. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  30. "word_embeddings_layernorm", # bloom
  31. "embeddings.LayerNorm", # bert
  32. "emb_ln", # nomic-bert
  33. ),
  34. # Position embeddings
  35. MODEL_TENSOR.POS_EMBD: (
  36. "transformer.wpe", # gpt2
  37. "embeddings.position_embeddings", # bert
  38. "wpe", # gpt2
  39. ),
  40. # Output
  41. MODEL_TENSOR.OUTPUT: (
  42. "embed_out", # gptneox
  43. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
  44. "output", # llama-pth bloom internlm2
  45. "word_embeddings_for_head", # persimmon
  46. "lm_head.linear", # phi2
  47. ),
  48. # Output norm
  49. MODEL_TENSOR.OUTPUT_NORM: (
  50. "gpt_neox.final_layer_norm", # gptneox
  51. "transformer.ln_f", # gpt2 gpt-j falcon
  52. "model.norm", # llama-hf baichuan internlm2
  53. "norm", # llama-pth
  54. "transformer.norm_f", # mpt dbrx
  55. "ln_f", # refact bloom qwen gpt2
  56. "language_model.encoder.final_layernorm", # persimmon
  57. "model.final_layernorm", # persimmon
  58. "lm_head.ln", # phi2
  59. "model.norm_f", # mamba-qbert
  60. "backbone.norm_f", # mamba
  61. "transformer.rms_norm", # Grok
  62. ),
  63. # Rope frequencies
  64. MODEL_TENSOR.ROPE_FREQS: (
  65. "rope.freqs", # llama-pth
  66. ),
  67. }
  68. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  69. # Attention norm
  70. MODEL_TENSOR.ATTN_NORM: (
  71. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  72. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  73. "transformer.blocks.{bid}.norm_1", # mpt
  74. "transformer.h.{bid}.input_layernorm", # falcon7b
  75. "h.{bid}.input_layernorm", # bloom
  76. "transformer.h.{bid}.ln_mlp", # falcon40b
  77. "model.layers.{bid}.input_layernorm", # llama-hf
  78. "layers.{bid}.attention_norm", # llama-pth
  79. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  80. "model.layers.{bid}.ln1", # yi
  81. "h.{bid}.ln_1", # gpt2
  82. "transformer.h.{bid}.ln", # phi2
  83. "model.layers.layers.{bid}.norm", # plamo
  84. "model.layers.{bid}.attention_norm", # internlm2
  85. "model.layers.{bid}.norm", # mamba-qbert
  86. "backbone.layers.{bid}.norm", # mamba
  87. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  88. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  89. ),
  90. # Attention norm 2
  91. MODEL_TENSOR.ATTN_NORM_2: (
  92. "transformer.h.{bid}.ln_attn", # falcon40b
  93. ),
  94. # Attention query-key-value
  95. MODEL_TENSOR.ATTN_QKV: (
  96. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  97. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  98. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  99. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  100. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  101. "h.{bid}.self_attention.query_key_value", # bloom
  102. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  103. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  104. "h.{bid}.attn.c_attn", # gpt2
  105. "transformer.h.{bid}.mixer.Wqkv", # phi2
  106. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  107. "model.layers.{bid}.self_attn.qkv_proj" # phi3
  108. ),
  109. # Attention query
  110. MODEL_TENSOR.ATTN_Q: (
  111. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  112. "layers.{bid}.attention.wq", # llama-pth
  113. "encoder.layer.{bid}.attention.self.query", # bert
  114. "transformer.h.{bid}.attn.q_proj", # gpt-j
  115. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  116. "model.layers.{bid}.attention.wq", # internlm2
  117. "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
  118. ),
  119. # Attention key
  120. MODEL_TENSOR.ATTN_K: (
  121. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  122. "layers.{bid}.attention.wk", # llama-pth
  123. "encoder.layer.{bid}.attention.self.key", # bert
  124. "transformer.h.{bid}.attn.k_proj", # gpt-j
  125. "transformer.h.{bid}.attn.k", # refact
  126. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  127. "model.layers.{bid}.attention.wk", # internlm2
  128. "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
  129. ),
  130. # Attention value
  131. MODEL_TENSOR.ATTN_V: (
  132. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  133. "layers.{bid}.attention.wv", # llama-pth
  134. "encoder.layer.{bid}.attention.self.value", # bert
  135. "transformer.h.{bid}.attn.v_proj", # gpt-j
  136. "transformer.h.{bid}.attn.v", # refact
  137. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  138. "model.layers.{bid}.attention.wv", # internlm2
  139. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  140. ),
  141. # Attention output
  142. MODEL_TENSOR.ATTN_OUT: (
  143. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  144. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  145. "transformer.blocks.{bid}.attn.out_proj", # mpt
  146. "transformer.h.{bid}.self_attention.dense", # falcon
  147. "h.{bid}.self_attention.dense", # bloom
  148. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  149. "layers.{bid}.attention.wo", # llama-pth
  150. "encoder.layer.{bid}.attention.output.dense", # bert
  151. "transformer.h.{bid}.attn.out_proj", # gpt-j
  152. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  153. "model.layers.{bid}.self_attn.dense", # persimmon
  154. "h.{bid}.attn.c_proj", # gpt2
  155. "transformer.h.{bid}.mixer.out_proj", # phi2
  156. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  157. "model.layers.{bid}.attention.wo", # internlm2
  158. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  159. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  160. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  161. ),
  162. # Attention output norm
  163. MODEL_TENSOR.ATTN_OUT_NORM: (
  164. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  165. "encoder.layers.{bid}.norm1", # nomic-bert
  166. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  167. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  168. ),
  169. # Rotary embeddings
  170. MODEL_TENSOR.ATTN_ROT_EMBD: (
  171. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  172. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  173. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  174. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  175. ),
  176. # Feed-forward norm
  177. MODEL_TENSOR.FFN_NORM: (
  178. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  179. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  180. "h.{bid}.post_attention_layernorm", # bloom
  181. "transformer.blocks.{bid}.norm_2", # mpt
  182. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  183. "layers.{bid}.ffn_norm", # llama-pth
  184. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  185. "model.layers.{bid}.ln2", # yi
  186. "h.{bid}.ln_2", # gpt2
  187. "model.layers.{bid}.ffn_norm", # internlm2
  188. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  189. ),
  190. MODEL_TENSOR.FFN_GATE_INP: (
  191. "layers.{bid}.feed_forward.gate", # mixtral
  192. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  193. "model.layers.{bid}.mlp.gate", # qwen2moe
  194. "transformer.decoder_layer.{bid}.router", # Grok
  195. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  196. ),
  197. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  198. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  199. ),
  200. # Feed-forward up
  201. MODEL_TENSOR.FFN_UP: (
  202. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  203. "transformer.h.{bid}.mlp.c_fc", # gpt2
  204. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  205. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  206. "h.{bid}.mlp.dense_h_to_4h", # bloom
  207. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  208. "layers.{bid}.feed_forward.w3", # llama-pth
  209. "encoder.layer.{bid}.intermediate.dense", # bert
  210. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  211. "transformer.h.{bid}.mlp.linear_3", # refact
  212. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  213. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  214. "transformer.h.{bid}.mlp.w1", # qwen
  215. "h.{bid}.mlp.c_fc", # gpt2
  216. "transformer.h.{bid}.mlp.fc1", # phi2
  217. "model.layers.{bid}.mlp.fc1", # phi2
  218. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  219. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  220. "model.layers.{bid}.feed_forward.w3", # internlm2
  221. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  222. "model.layers.{bid}.mlp.c_fc", # starcoder2
  223. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  224. ),
  225. MODEL_TENSOR.FFN_UP_EXP: (
  226. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  227. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  228. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  229. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  230. ),
  231. MODEL_TENSOR.FFN_UP_SHEXP: (
  232. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  233. ),
  234. # AWQ-activation gate
  235. MODEL_TENSOR.FFN_ACT: (
  236. "transformer.blocks.{bid}.ffn.act", # mpt
  237. ),
  238. # Feed-forward gate
  239. MODEL_TENSOR.FFN_GATE: (
  240. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  241. "layers.{bid}.feed_forward.w1", # llama-pth
  242. "transformer.h.{bid}.mlp.w2", # qwen
  243. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  244. "model.layers.{bid}.feed_forward.w1", # internlm2
  245. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  246. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  247. "transformer.h.{bid}.mlp.linear_1", # refact
  248. ),
  249. MODEL_TENSOR.FFN_GATE_EXP: (
  250. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  251. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  252. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  253. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  254. ),
  255. MODEL_TENSOR.FFN_GATE_SHEXP: (
  256. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  257. ),
  258. # Feed-forward down
  259. MODEL_TENSOR.FFN_DOWN: (
  260. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  261. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  262. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  263. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  264. "h.{bid}.mlp.dense_4h_to_h", # bloom
  265. "model.layers.{bid}.mlp.down_proj", # llama-hf
  266. "layers.{bid}.feed_forward.w2", # llama-pth
  267. "encoder.layer.{bid}.output.dense", # bert
  268. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  269. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  270. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  271. "h.{bid}.mlp.c_proj", # gpt2
  272. "transformer.h.{bid}.mlp.fc2", # phi2
  273. "model.layers.{bid}.mlp.fc2", # phi2
  274. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  275. "model.layers.{bid}.feed_forward.w2", # internlm2
  276. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  277. "model.layers.{bid}.mlp.c_proj", # starcoder2
  278. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  279. ),
  280. MODEL_TENSOR.FFN_DOWN_EXP: (
  281. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  282. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  283. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  284. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  285. ),
  286. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  287. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  288. ),
  289. MODEL_TENSOR.ATTN_Q_NORM: (
  290. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  291. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  292. "model.layers.{bid}.self_attn.q_norm", # cohere
  293. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  294. "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
  295. ),
  296. MODEL_TENSOR.ATTN_K_NORM: (
  297. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  298. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  299. "model.layers.{bid}.self_attn.k_norm", # cohere
  300. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  301. "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
  302. ),
  303. MODEL_TENSOR.ROPE_FREQS: (
  304. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  305. ),
  306. MODEL_TENSOR.LAYER_OUT_NORM: (
  307. "encoder.layer.{bid}.output.LayerNorm", # bert
  308. "encoder.layers.{bid}.norm2", # nomic-bert
  309. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  310. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  311. ),
  312. MODEL_TENSOR.SSM_IN: (
  313. "model.layers.{bid}.in_proj",
  314. "backbone.layers.{bid}.mixer.in_proj",
  315. ),
  316. MODEL_TENSOR.SSM_CONV1D: (
  317. "model.layers.{bid}.conv1d",
  318. "backbone.layers.{bid}.mixer.conv1d",
  319. ),
  320. MODEL_TENSOR.SSM_X: (
  321. "model.layers.{bid}.x_proj",
  322. "backbone.layers.{bid}.mixer.x_proj",
  323. ),
  324. MODEL_TENSOR.SSM_DT: (
  325. "model.layers.{bid}.dt_proj",
  326. "backbone.layers.{bid}.mixer.dt_proj",
  327. ),
  328. MODEL_TENSOR.SSM_A: (
  329. "model.layers.{bid}.A_log",
  330. "backbone.layers.{bid}.mixer.A_log",
  331. ),
  332. MODEL_TENSOR.SSM_D: (
  333. "model.layers.{bid}.D",
  334. "backbone.layers.{bid}.mixer.D",
  335. ),
  336. MODEL_TENSOR.SSM_OUT: (
  337. "model.layers.{bid}.out_proj",
  338. "backbone.layers.{bid}.mixer.out_proj",
  339. ),
  340. }
  341. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  342. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  343. self.mapping = {}
  344. for tensor, keys in self.mappings_cfg.items():
  345. if tensor not in MODEL_TENSORS[arch]:
  346. continue
  347. tensor_name = TENSOR_NAMES[tensor]
  348. self.mapping[tensor_name] = (tensor, tensor_name)
  349. for key in keys:
  350. self.mapping[key] = (tensor, tensor_name)
  351. for bid in range(n_blocks):
  352. for tensor, keys in self.block_mappings_cfg.items():
  353. if tensor not in MODEL_TENSORS[arch]:
  354. continue
  355. # TODO: make this configurable
  356. n_experts = 60
  357. for xid in range(n_experts):
  358. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  359. self.mapping[tensor_name] = (tensor, tensor_name)
  360. for key in keys:
  361. key = key.format(bid = bid, xid = xid)
  362. self.mapping[key] = (tensor, tensor_name)
  363. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  364. result = self.mapping.get(key)
  365. if result is not None:
  366. return result
  367. for suffix in try_suffixes:
  368. if key.endswith(suffix):
  369. result = self.mapping.get(key[:-len(suffix)])
  370. if result is not None:
  371. return result[0], result[1] + suffix
  372. return None
  373. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  374. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  375. if result is None:
  376. return None
  377. return result[1]
  378. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  379. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  380. if result is None:
  381. return None
  382. return result[0]
  383. def __getitem__(self, key: str) -> str:
  384. try:
  385. return self.mapping[key][1]
  386. except KeyError:
  387. raise KeyError(key)
  388. def __contains__(self, key: str) -> bool:
  389. return key in self.mapping
  390. def __repr__(self) -> str:
  391. return repr(self.mapping)
  392. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  393. return TensorNameMap(arch, n_blocks)