ggml.c 596 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #endif
  78. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  79. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  80. #ifndef __FMA__
  81. #define __FMA__
  82. #endif
  83. #ifndef __F16C__
  84. #define __F16C__
  85. #endif
  86. #ifndef __SSE3__
  87. #define __SSE3__
  88. #endif
  89. #endif
  90. #ifdef __HAIKU__
  91. #define static_assert(cond, msg) _Static_assert(cond, msg)
  92. #endif
  93. /*#define GGML_PERF*/
  94. #define GGML_DEBUG 0
  95. #define GGML_GELU_FP16
  96. #define GGML_GELU_QUICK_FP16
  97. #define GGML_SILU_FP16
  98. #define GGML_SOFT_MAX_UNROLL 4
  99. #define GGML_VEC_DOT_UNROLL 2
  100. #ifdef GGML_USE_ACCELERATE
  101. // uncomment to use vDSP for soft max computation
  102. // note: not sure if it is actually faster
  103. //#define GGML_SOFT_MAX_ACCELERATE
  104. #endif
  105. #if UINTPTR_MAX == 0xFFFFFFFF
  106. #define GGML_MEM_ALIGN 4
  107. #else
  108. #define GGML_MEM_ALIGN 16
  109. #endif
  110. #if defined(_MSC_VER) || defined(__MINGW32__)
  111. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  112. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  113. #else
  114. inline static void* ggml_aligned_malloc(size_t size) {
  115. void* aligned_memory = NULL;
  116. #ifdef GGML_USE_METAL
  117. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  118. #else
  119. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  120. #endif
  121. if (result != 0) {
  122. // Handle allocation failure
  123. return NULL;
  124. }
  125. return aligned_memory;
  126. }
  127. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  128. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  129. #endif
  130. #define UNUSED(x) (void)(x)
  131. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  132. #if defined(GGML_USE_ACCELERATE)
  133. #include <Accelerate/Accelerate.h>
  134. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  135. #include "ggml-opencl.h"
  136. #endif
  137. #elif defined(GGML_USE_OPENBLAS)
  138. #include <cblas.h>
  139. #elif defined(GGML_USE_CUBLAS)
  140. #include "ggml-cuda.h"
  141. #elif defined(GGML_USE_CLBLAST)
  142. #include "ggml-opencl.h"
  143. #endif
  144. #undef MIN
  145. #undef MAX
  146. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  147. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  148. // floating point type used to accumulate sums
  149. typedef double ggml_float;
  150. // 16-bit float
  151. // on Arm, we use __fp16
  152. // on x86, we use uint16_t
  153. #ifdef __ARM_NEON
  154. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  155. //
  156. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  157. //
  158. #include <arm_neon.h>
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  161. #define GGML_FP16_TO_FP32(x) ((float) (x))
  162. #define GGML_FP32_TO_FP16(x) (x)
  163. #else
  164. #ifdef __wasm_simd128__
  165. #include <wasm_simd128.h>
  166. #else
  167. #ifdef __POWER9_VECTOR__
  168. #include <altivec.h>
  169. #undef bool
  170. #define bool _Bool
  171. #else
  172. #if defined(_MSC_VER) || defined(__MINGW32__)
  173. #include <intrin.h>
  174. #else
  175. #if !defined(__riscv)
  176. #include <immintrin.h>
  177. #endif
  178. #endif
  179. #endif
  180. #endif
  181. #ifdef __F16C__
  182. #ifdef _MSC_VER
  183. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  184. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  185. #else
  186. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  187. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  188. #endif
  189. #elif defined(__POWER9_VECTOR__)
  190. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  191. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  192. /* the inline asm below is about 12% faster than the lookup method */
  193. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  194. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  195. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  196. register float f;
  197. register double d;
  198. __asm__(
  199. "mtfprd %0,%2\n"
  200. "xscvhpdp %0,%0\n"
  201. "frsp %1,%0\n" :
  202. /* temp */ "=d"(d),
  203. /* out */ "=f"(f):
  204. /* in */ "r"(h));
  205. return f;
  206. }
  207. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  208. register double d;
  209. register ggml_fp16_t r;
  210. __asm__( /* xscvdphp can work on double or single precision */
  211. "xscvdphp %0,%2\n"
  212. "mffprd %1,%0\n" :
  213. /* temp */ "=d"(d),
  214. /* out */ "=r"(r):
  215. /* in */ "f"(f));
  216. return r;
  217. }
  218. #else
  219. // FP16 <-> FP32
  220. // ref: https://github.com/Maratyszcza/FP16
  221. static inline float fp32_from_bits(uint32_t w) {
  222. union {
  223. uint32_t as_bits;
  224. float as_value;
  225. } fp32;
  226. fp32.as_bits = w;
  227. return fp32.as_value;
  228. }
  229. static inline uint32_t fp32_to_bits(float f) {
  230. union {
  231. float as_value;
  232. uint32_t as_bits;
  233. } fp32;
  234. fp32.as_value = f;
  235. return fp32.as_bits;
  236. }
  237. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  238. const uint32_t w = (uint32_t) h << 16;
  239. const uint32_t sign = w & UINT32_C(0x80000000);
  240. const uint32_t two_w = w + w;
  241. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  242. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  243. const float exp_scale = 0x1.0p-112f;
  244. #else
  245. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  246. #endif
  247. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  248. const uint32_t magic_mask = UINT32_C(126) << 23;
  249. const float magic_bias = 0.5f;
  250. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  251. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  252. const uint32_t result = sign |
  253. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  254. return fp32_from_bits(result);
  255. }
  256. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  257. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  258. const float scale_to_inf = 0x1.0p+112f;
  259. const float scale_to_zero = 0x1.0p-110f;
  260. #else
  261. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  262. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  263. #endif
  264. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  265. const uint32_t w = fp32_to_bits(f);
  266. const uint32_t shl1_w = w + w;
  267. const uint32_t sign = w & UINT32_C(0x80000000);
  268. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  269. if (bias < UINT32_C(0x71000000)) {
  270. bias = UINT32_C(0x71000000);
  271. }
  272. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  273. const uint32_t bits = fp32_to_bits(base);
  274. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  275. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  276. const uint32_t nonsign = exp_bits + mantissa_bits;
  277. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  278. }
  279. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  280. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  281. #endif // __F16C__
  282. #endif // __ARM_NEON
  283. //
  284. // global data
  285. //
  286. // precomputed gelu table for f16 (128 KB)
  287. static ggml_fp16_t table_gelu_f16[1 << 16];
  288. // precomputed quick gelu table for f16 (128 KB)
  289. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  290. // precomputed silu table for f16 (128 KB)
  291. static ggml_fp16_t table_silu_f16[1 << 16];
  292. // precomputed exp table for f16 (128 KB)
  293. static ggml_fp16_t table_exp_f16[1 << 16];
  294. // precomputed f32 table for f16 (256 KB)
  295. static float table_f32_f16[1 << 16];
  296. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  297. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  298. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  299. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  300. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  301. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  302. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  303. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  304. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  305. // precomputed tables for expanding 8bits to 8 bytes:
  306. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  307. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  308. #endif
  309. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  310. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  311. // This is also true for POWER9.
  312. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  313. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  314. uint16_t s;
  315. memcpy(&s, &f, sizeof(uint16_t));
  316. return table_f32_f16[s];
  317. }
  318. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  319. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  320. #endif
  321. // note: do not use these inside ggml.c
  322. // these are meant to be used via the ggml.h API
  323. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  324. return (float) GGML_FP16_TO_FP32(x);
  325. }
  326. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  327. return GGML_FP32_TO_FP16(x);
  328. }
  329. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  330. for (size_t i = 0; i < n; i++) {
  331. y[i] = GGML_FP16_TO_FP32(x[i]);
  332. }
  333. }
  334. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  335. size_t i = 0;
  336. #if defined(__F16C__)
  337. for (; i + 7 < n; i += 8) {
  338. __m256 x_vec = _mm256_loadu_ps(x + i);
  339. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  340. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  341. }
  342. for(; i + 3 < n; i += 4) {
  343. __m128 x_vec = _mm_loadu_ps(x + i);
  344. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  345. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  346. }
  347. #endif
  348. for (; i < n; i++) {
  349. y[i] = GGML_FP32_TO_FP16(x[i]);
  350. }
  351. }
  352. //
  353. // timing
  354. //
  355. #if defined(_MSC_VER) || defined(__MINGW32__)
  356. static int64_t timer_freq, timer_start;
  357. void ggml_time_init(void) {
  358. LARGE_INTEGER t;
  359. QueryPerformanceFrequency(&t);
  360. timer_freq = t.QuadPart;
  361. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  362. // and the uptime is high enough.
  363. // We subtract the program start time to reduce the likelihood of that happening.
  364. QueryPerformanceCounter(&t);
  365. timer_start = t.QuadPart;
  366. }
  367. int64_t ggml_time_ms(void) {
  368. LARGE_INTEGER t;
  369. QueryPerformanceCounter(&t);
  370. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  371. }
  372. int64_t ggml_time_us(void) {
  373. LARGE_INTEGER t;
  374. QueryPerformanceCounter(&t);
  375. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  376. }
  377. #else
  378. void ggml_time_init(void) {}
  379. int64_t ggml_time_ms(void) {
  380. struct timespec ts;
  381. clock_gettime(CLOCK_MONOTONIC, &ts);
  382. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  383. }
  384. int64_t ggml_time_us(void) {
  385. struct timespec ts;
  386. clock_gettime(CLOCK_MONOTONIC, &ts);
  387. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  388. }
  389. #endif
  390. int64_t ggml_cycles(void) {
  391. return clock();
  392. }
  393. int64_t ggml_cycles_per_ms(void) {
  394. return CLOCKS_PER_SEC/1000;
  395. }
  396. #ifdef GGML_PERF
  397. #define ggml_perf_time_ms() ggml_time_ms()
  398. #define ggml_perf_time_us() ggml_time_us()
  399. #define ggml_perf_cycles() ggml_cycles()
  400. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  401. #else
  402. #define ggml_perf_time_ms() 0
  403. #define ggml_perf_time_us() 0
  404. #define ggml_perf_cycles() 0
  405. #define ggml_perf_cycles_per_ms() 0
  406. #endif
  407. //
  408. // cache line
  409. //
  410. #if defined(__cpp_lib_hardware_interference_size)
  411. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  412. #else
  413. #if defined(__POWER9_VECTOR__)
  414. #define CACHE_LINE_SIZE 128
  415. #else
  416. #define CACHE_LINE_SIZE 64
  417. #endif
  418. #endif
  419. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  420. //
  421. // quantization
  422. //
  423. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  424. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  425. // multiply int8_t, add results pairwise twice
  426. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  427. // Get absolute values of x vectors
  428. const __m128i ax = _mm_sign_epi8(x, x);
  429. // Sign the values of the y vectors
  430. const __m128i sy = _mm_sign_epi8(y, x);
  431. // Perform multiplication and create 16-bit values
  432. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  433. const __m128i ones = _mm_set1_epi16(1);
  434. return _mm_madd_epi16(ones, dot);
  435. }
  436. #if __AVX__ || __AVX2__ || __AVX512F__
  437. // horizontally add 8 floats
  438. static inline float hsum_float_8(const __m256 x) {
  439. __m128 res = _mm256_extractf128_ps(x, 1);
  440. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  441. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  442. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  443. return _mm_cvtss_f32(res);
  444. }
  445. // horizontally add 8 int32_t
  446. static inline int hsum_i32_8(const __m256i a) {
  447. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  448. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  449. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  450. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  451. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  452. }
  453. // horizontally add 4 int32_t
  454. static inline int hsum_i32_4(const __m128i a) {
  455. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  456. const __m128i sum64 = _mm_add_epi32(hi64, a);
  457. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  458. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  459. }
  460. #if defined(__AVX2__) || defined(__AVX512F__)
  461. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  462. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  463. uint32_t x32;
  464. memcpy(&x32, x, sizeof(uint32_t));
  465. const __m256i shuf_mask = _mm256_set_epi64x(
  466. 0x0303030303030303, 0x0202020202020202,
  467. 0x0101010101010101, 0x0000000000000000);
  468. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  469. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  470. bytes = _mm256_or_si256(bytes, bit_mask);
  471. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  472. }
  473. // Unpack 32 4-bit fields into 32 bytes
  474. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  475. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  476. {
  477. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  478. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  479. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  480. return _mm256_and_si256(lowMask, bytes);
  481. }
  482. // add int16_t pairwise and return as float vector
  483. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  484. const __m256i ones = _mm256_set1_epi16(1);
  485. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  486. return _mm256_cvtepi32_ps(summed_pairs);
  487. }
  488. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  489. #if __AVXVNNI__
  490. const __m256i zero = _mm256_setzero_si256();
  491. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  492. return _mm256_cvtepi32_ps(summed_pairs);
  493. #else
  494. // Perform multiplication and create 16-bit values
  495. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  496. return sum_i16_pairs_float(dot);
  497. #endif
  498. }
  499. // multiply int8_t, add results pairwise twice and return as float vector
  500. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  501. #if __AVXVNNIINT8__
  502. const __m256i zero = _mm256_setzero_si256();
  503. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  504. return _mm256_cvtepi32_ps(summed_pairs);
  505. #else
  506. // Get absolute values of x vectors
  507. const __m256i ax = _mm256_sign_epi8(x, x);
  508. // Sign the values of the y vectors
  509. const __m256i sy = _mm256_sign_epi8(y, x);
  510. return mul_sum_us8_pairs_float(ax, sy);
  511. #endif
  512. }
  513. static inline __m128i packNibbles( __m256i bytes )
  514. {
  515. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  516. #if __AVX512F__
  517. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  518. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  519. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  520. #else
  521. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  522. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  523. __m256i low = _mm256_and_si256( lowByte, bytes );
  524. high = _mm256_srli_epi16( high, 4 );
  525. bytes = _mm256_or_si256( low, high );
  526. // Compress uint16_t lanes into bytes
  527. __m128i r0 = _mm256_castsi256_si128( bytes );
  528. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  529. return _mm_packus_epi16( r0, r1 );
  530. #endif
  531. }
  532. #elif defined(__AVX__)
  533. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  534. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  535. uint32_t x32;
  536. memcpy(&x32, x, sizeof(uint32_t));
  537. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  538. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  539. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  540. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  541. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  542. bytesl = _mm_or_si128(bytesl, bit_mask);
  543. bytesh = _mm_or_si128(bytesh, bit_mask);
  544. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  545. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  546. return MM256_SET_M128I(bytesh, bytesl);
  547. }
  548. // Unpack 32 4-bit fields into 32 bytes
  549. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  550. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  551. {
  552. // Load 16 bytes from memory
  553. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  554. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  555. const __m128i lowMask = _mm_set1_epi8(0xF);
  556. tmpl = _mm_and_si128(lowMask, tmpl);
  557. tmph = _mm_and_si128(lowMask, tmph);
  558. return MM256_SET_M128I(tmph, tmpl);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  562. const __m128i ones = _mm_set1_epi16(1);
  563. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  564. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  565. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  566. return _mm256_cvtepi32_ps(summed_pairs);
  567. }
  568. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  569. const __m128i axl = _mm256_castsi256_si128(ax);
  570. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  571. const __m128i syl = _mm256_castsi256_si128(sy);
  572. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  573. // Perform multiplication and create 16-bit values
  574. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  575. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  576. return sum_i16_pairs_float(doth, dotl);
  577. }
  578. // multiply int8_t, add results pairwise twice and return as float vector
  579. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  580. const __m128i xl = _mm256_castsi256_si128(x);
  581. const __m128i xh = _mm256_extractf128_si256(x, 1);
  582. const __m128i yl = _mm256_castsi256_si128(y);
  583. const __m128i yh = _mm256_extractf128_si256(y, 1);
  584. // Get absolute values of x vectors
  585. const __m128i axl = _mm_sign_epi8(xl, xl);
  586. const __m128i axh = _mm_sign_epi8(xh, xh);
  587. // Sign the values of the y vectors
  588. const __m128i syl = _mm_sign_epi8(yl, xl);
  589. const __m128i syh = _mm_sign_epi8(yh, xh);
  590. // Perform multiplication and create 16-bit values
  591. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  592. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  593. return sum_i16_pairs_float(doth, dotl);
  594. }
  595. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  596. {
  597. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  598. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  599. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  600. __m128i low = _mm_and_si128( lowByte, bytes1 );
  601. high = _mm_srli_epi16( high, 4 );
  602. bytes1 = _mm_or_si128( low, high );
  603. high = _mm_andnot_si128( lowByte, bytes2 );
  604. low = _mm_and_si128( lowByte, bytes2 );
  605. high = _mm_srli_epi16( high, 4 );
  606. bytes2 = _mm_or_si128( low, high );
  607. return _mm_packus_epi16( bytes1, bytes2);
  608. }
  609. #endif
  610. #elif defined(__SSSE3__)
  611. // horizontally add 4x4 floats
  612. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  613. __m128 res_0 =_mm_hadd_ps(a, b);
  614. __m128 res_1 =_mm_hadd_ps(c, d);
  615. __m128 res =_mm_hadd_ps(res_0, res_1);
  616. res =_mm_hadd_ps(res, res);
  617. res =_mm_hadd_ps(res, res);
  618. return _mm_cvtss_f32(res);
  619. }
  620. #endif // __AVX__ || __AVX2__ || __AVX512F__
  621. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  622. #if defined(__ARM_NEON)
  623. #if !defined(__aarch64__)
  624. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  625. return
  626. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  627. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  628. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  629. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  630. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  631. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  632. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  633. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  634. }
  635. inline static int16_t vaddvq_s8(int8x16_t v) {
  636. return
  637. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  638. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  639. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  640. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  641. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  642. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  643. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  644. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  645. }
  646. inline static int32_t vaddvq_s16(int16x8_t v) {
  647. return
  648. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  649. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  650. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  651. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  652. }
  653. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  654. return
  655. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  656. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  657. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  658. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  659. }
  660. inline static int32_t vaddvq_s32(int32x4_t v) {
  661. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  662. }
  663. inline static float vaddvq_f32(float32x4_t v) {
  664. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  665. }
  666. inline static float vminvq_f32(float32x4_t v) {
  667. return
  668. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  669. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  670. }
  671. inline static float vmaxvq_f32(float32x4_t v) {
  672. return
  673. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  674. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  675. }
  676. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  677. int32x4_t res;
  678. res[0] = roundf(vgetq_lane_f32(v, 0));
  679. res[1] = roundf(vgetq_lane_f32(v, 1));
  680. res[2] = roundf(vgetq_lane_f32(v, 2));
  681. res[3] = roundf(vgetq_lane_f32(v, 3));
  682. return res;
  683. }
  684. #endif
  685. #endif
  686. #define QK4_0 32
  687. typedef struct {
  688. ggml_fp16_t d; // delta
  689. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  690. } block_q4_0;
  691. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  692. #define QK4_1 32
  693. typedef struct {
  694. ggml_fp16_t d; // delta
  695. ggml_fp16_t m; // min
  696. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  697. } block_q4_1;
  698. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  699. #define QK5_0 32
  700. typedef struct {
  701. ggml_fp16_t d; // delta
  702. uint8_t qh[4]; // 5-th bit of quants
  703. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  704. } block_q5_0;
  705. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  706. #define QK5_1 32
  707. typedef struct {
  708. ggml_fp16_t d; // delta
  709. ggml_fp16_t m; // min
  710. uint8_t qh[4]; // 5-th bit of quants
  711. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  712. } block_q5_1;
  713. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  714. #define QK8_0 32
  715. typedef struct {
  716. ggml_fp16_t d; // delta
  717. int8_t qs[QK8_0]; // quants
  718. } block_q8_0;
  719. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  720. #define QK8_1 32
  721. typedef struct {
  722. float d; // delta
  723. float s; // d * sum(qs[i])
  724. int8_t qs[QK8_1]; // quants
  725. } block_q8_1;
  726. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  727. // reference implementation for deterministic creation of model files
  728. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  729. static const int qk = QK4_0;
  730. assert(k % qk == 0);
  731. const int nb = k / qk;
  732. for (int i = 0; i < nb; i++) {
  733. float amax = 0.0f; // absolute max
  734. float max = 0.0f;
  735. for (int j = 0; j < qk; j++) {
  736. const float v = x[i*qk + j];
  737. if (amax < fabsf(v)) {
  738. amax = fabsf(v);
  739. max = v;
  740. }
  741. }
  742. const float d = max / -8;
  743. const float id = d ? 1.0f/d : 0.0f;
  744. y[i].d = GGML_FP32_TO_FP16(d);
  745. for (int j = 0; j < qk/2; ++j) {
  746. const float x0 = x[i*qk + 0 + j]*id;
  747. const float x1 = x[i*qk + qk/2 + j]*id;
  748. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  749. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  750. y[i].qs[j] = xi0;
  751. y[i].qs[j] |= xi1 << 4;
  752. }
  753. }
  754. }
  755. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  756. quantize_row_q4_0_reference(x, y, k);
  757. }
  758. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  759. const int qk = QK4_1;
  760. assert(k % qk == 0);
  761. const int nb = k / qk;
  762. for (int i = 0; i < nb; i++) {
  763. float min = FLT_MAX;
  764. float max = -FLT_MAX;
  765. for (int j = 0; j < qk; j++) {
  766. const float v = x[i*qk + j];
  767. if (v < min) min = v;
  768. if (v > max) max = v;
  769. }
  770. const float d = (max - min) / ((1 << 4) - 1);
  771. const float id = d ? 1.0f/d : 0.0f;
  772. y[i].d = GGML_FP32_TO_FP16(d);
  773. y[i].m = GGML_FP32_TO_FP16(min);
  774. for (int j = 0; j < qk/2; ++j) {
  775. const float x0 = (x[i*qk + 0 + j] - min)*id;
  776. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  777. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  778. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  779. y[i].qs[j] = xi0;
  780. y[i].qs[j] |= xi1 << 4;
  781. }
  782. }
  783. }
  784. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  785. quantize_row_q4_1_reference(x, y, k);
  786. }
  787. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  788. static const int qk = QK5_0;
  789. assert(k % qk == 0);
  790. const int nb = k / qk;
  791. for (int i = 0; i < nb; i++) {
  792. float amax = 0.0f; // absolute max
  793. float max = 0.0f;
  794. for (int j = 0; j < qk; j++) {
  795. const float v = x[i*qk + j];
  796. if (amax < fabsf(v)) {
  797. amax = fabsf(v);
  798. max = v;
  799. }
  800. }
  801. const float d = max / -16;
  802. const float id = d ? 1.0f/d : 0.0f;
  803. y[i].d = GGML_FP32_TO_FP16(d);
  804. uint32_t qh = 0;
  805. for (int j = 0; j < qk/2; ++j) {
  806. const float x0 = x[i*qk + 0 + j]*id;
  807. const float x1 = x[i*qk + qk/2 + j]*id;
  808. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  809. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  810. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  811. // get the 5-th bit and store it in qh at the right position
  812. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  813. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  814. }
  815. memcpy(&y[i].qh, &qh, sizeof(qh));
  816. }
  817. }
  818. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  819. quantize_row_q5_0_reference(x, y, k);
  820. }
  821. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  822. const int qk = QK5_1;
  823. assert(k % qk == 0);
  824. const int nb = k / qk;
  825. for (int i = 0; i < nb; i++) {
  826. float min = FLT_MAX;
  827. float max = -FLT_MAX;
  828. for (int j = 0; j < qk; j++) {
  829. const float v = x[i*qk + j];
  830. if (v < min) min = v;
  831. if (v > max) max = v;
  832. }
  833. const float d = (max - min) / ((1 << 5) - 1);
  834. const float id = d ? 1.0f/d : 0.0f;
  835. y[i].d = GGML_FP32_TO_FP16(d);
  836. y[i].m = GGML_FP32_TO_FP16(min);
  837. uint32_t qh = 0;
  838. for (int j = 0; j < qk/2; ++j) {
  839. const float x0 = (x[i*qk + 0 + j] - min)*id;
  840. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  841. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  842. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  843. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  844. // get the 5-th bit and store it in qh at the right position
  845. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  846. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  847. }
  848. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  849. }
  850. }
  851. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  852. quantize_row_q5_1_reference(x, y, k);
  853. }
  854. // reference implementation for deterministic creation of model files
  855. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  856. assert(k % QK8_0 == 0);
  857. const int nb = k / QK8_0;
  858. for (int i = 0; i < nb; i++) {
  859. float amax = 0.0f; // absolute max
  860. for (int j = 0; j < QK8_0; j++) {
  861. const float v = x[i*QK8_0 + j];
  862. amax = MAX(amax, fabsf(v));
  863. }
  864. const float d = amax / ((1 << 7) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = GGML_FP32_TO_FP16(d);
  867. for (int j = 0; j < QK8_0; ++j) {
  868. const float x0 = x[i*QK8_0 + j]*id;
  869. y[i].qs[j] = roundf(x0);
  870. }
  871. }
  872. }
  873. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  874. assert(QK8_0 == 32);
  875. assert(k % QK8_0 == 0);
  876. const int nb = k / QK8_0;
  877. block_q8_0 * restrict y = vy;
  878. #if defined(__ARM_NEON)
  879. for (int i = 0; i < nb; i++) {
  880. float32x4_t srcv [8];
  881. float32x4_t asrcv[8];
  882. float32x4_t amaxv[8];
  883. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  884. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  885. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  886. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  887. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  888. const float amax = vmaxvq_f32(amaxv[0]);
  889. const float d = amax / ((1 << 7) - 1);
  890. const float id = d ? 1.0f/d : 0.0f;
  891. y[i].d = GGML_FP32_TO_FP16(d);
  892. for (int j = 0; j < 8; j++) {
  893. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  894. const int32x4_t vi = vcvtnq_s32_f32(v);
  895. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  896. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  897. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  898. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  899. }
  900. }
  901. #elif defined(__wasm_simd128__)
  902. for (int i = 0; i < nb; i++) {
  903. v128_t srcv [8];
  904. v128_t asrcv[8];
  905. v128_t amaxv[8];
  906. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  907. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  908. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  909. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  910. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  911. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  912. wasm_f32x4_extract_lane(amaxv[0], 1)),
  913. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  914. wasm_f32x4_extract_lane(amaxv[0], 3)));
  915. const float d = amax / ((1 << 7) - 1);
  916. const float id = d ? 1.0f/d : 0.0f;
  917. y[i].d = GGML_FP32_TO_FP16(d);
  918. for (int j = 0; j < 8; j++) {
  919. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  920. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  921. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  922. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  923. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  924. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  925. }
  926. }
  927. #elif defined(__AVX2__) || defined(__AVX__)
  928. for (int i = 0; i < nb; i++) {
  929. // Load elements into 4 AVX vectors
  930. __m256 v0 = _mm256_loadu_ps( x );
  931. __m256 v1 = _mm256_loadu_ps( x + 8 );
  932. __m256 v2 = _mm256_loadu_ps( x + 16 );
  933. __m256 v3 = _mm256_loadu_ps( x + 24 );
  934. x += 32;
  935. // Compute max(abs(e)) for the block
  936. const __m256 signBit = _mm256_set1_ps( -0.0f );
  937. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  938. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  939. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  940. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  941. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  942. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  943. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  944. const float maxScalar = _mm_cvtss_f32( max4 );
  945. // Quantize these floats
  946. const float d = maxScalar / 127.f;
  947. y[i].d = GGML_FP32_TO_FP16(d);
  948. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  949. const __m256 mul = _mm256_set1_ps( id );
  950. // Apply the multiplier
  951. v0 = _mm256_mul_ps( v0, mul );
  952. v1 = _mm256_mul_ps( v1, mul );
  953. v2 = _mm256_mul_ps( v2, mul );
  954. v3 = _mm256_mul_ps( v3, mul );
  955. // Round to nearest integer
  956. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  957. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  958. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  959. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  960. // Convert floats to integers
  961. __m256i i0 = _mm256_cvtps_epi32( v0 );
  962. __m256i i1 = _mm256_cvtps_epi32( v1 );
  963. __m256i i2 = _mm256_cvtps_epi32( v2 );
  964. __m256i i3 = _mm256_cvtps_epi32( v3 );
  965. #if defined(__AVX2__)
  966. // Convert int32 to int16
  967. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  968. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  969. // Convert int16 to int8
  970. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  971. // We got our precious signed bytes, but the order is now wrong
  972. // These AVX2 pack instructions process 16-byte pieces independently
  973. // The following instruction is fixing the order
  974. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  975. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  976. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  977. #else
  978. // Since we don't have in AVX some necessary functions,
  979. // we split the registers in half and call AVX2 analogs from SSE
  980. __m128i ni0 = _mm256_castsi256_si128( i0 );
  981. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  982. __m128i ni2 = _mm256_castsi256_si128( i1 );
  983. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  984. __m128i ni4 = _mm256_castsi256_si128( i2 );
  985. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  986. __m128i ni6 = _mm256_castsi256_si128( i3 );
  987. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  988. // Convert int32 to int16
  989. ni0 = _mm_packs_epi32( ni0, ni1 );
  990. ni2 = _mm_packs_epi32( ni2, ni3 );
  991. ni4 = _mm_packs_epi32( ni4, ni5 );
  992. ni6 = _mm_packs_epi32( ni6, ni7 );
  993. // Convert int16 to int8
  994. ni0 = _mm_packs_epi16( ni0, ni2 );
  995. ni4 = _mm_packs_epi16( ni4, ni6 );
  996. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  997. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  998. #endif
  999. }
  1000. #else
  1001. // scalar
  1002. quantize_row_q8_0_reference(x, y, k);
  1003. #endif
  1004. }
  1005. // reference implementation for deterministic creation of model files
  1006. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1007. assert(QK8_1 == 32);
  1008. assert(k % QK8_1 == 0);
  1009. const int nb = k / QK8_1;
  1010. for (int i = 0; i < nb; i++) {
  1011. float amax = 0.0f; // absolute max
  1012. for (int j = 0; j < QK8_1; j++) {
  1013. const float v = x[i*QK8_1 + j];
  1014. amax = MAX(amax, fabsf(v));
  1015. }
  1016. const float d = amax / ((1 << 7) - 1);
  1017. const float id = d ? 1.0f/d : 0.0f;
  1018. y[i].d = d;
  1019. int sum = 0;
  1020. for (int j = 0; j < QK8_1/2; ++j) {
  1021. const float v0 = x[i*QK8_1 + j]*id;
  1022. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1023. y[i].qs[ j] = roundf(v0);
  1024. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1025. sum += y[i].qs[ j];
  1026. sum += y[i].qs[QK8_1/2 + j];
  1027. }
  1028. y[i].s = sum*d;
  1029. }
  1030. }
  1031. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1032. assert(k % QK8_1 == 0);
  1033. const int nb = k / QK8_1;
  1034. block_q8_1 * restrict y = vy;
  1035. #if defined(__ARM_NEON)
  1036. for (int i = 0; i < nb; i++) {
  1037. float32x4_t srcv [8];
  1038. float32x4_t asrcv[8];
  1039. float32x4_t amaxv[8];
  1040. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1041. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1042. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1043. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1044. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1045. const float amax = vmaxvq_f32(amaxv[0]);
  1046. const float d = amax / ((1 << 7) - 1);
  1047. const float id = d ? 1.0f/d : 0.0f;
  1048. y[i].d = d;
  1049. int32x4_t accv = vdupq_n_s32(0);
  1050. for (int j = 0; j < 8; j++) {
  1051. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1052. const int32x4_t vi = vcvtnq_s32_f32(v);
  1053. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1054. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1055. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1056. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1057. accv = vaddq_s32(accv, vi);
  1058. }
  1059. y[i].s = d * vaddvq_s32(accv);
  1060. }
  1061. #elif defined(__wasm_simd128__)
  1062. for (int i = 0; i < nb; i++) {
  1063. v128_t srcv [8];
  1064. v128_t asrcv[8];
  1065. v128_t amaxv[8];
  1066. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1067. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1068. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1069. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1070. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1071. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1072. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1073. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1074. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1075. const float d = amax / ((1 << 7) - 1);
  1076. const float id = d ? 1.0f/d : 0.0f;
  1077. y[i].d = d;
  1078. v128_t accv = wasm_i32x4_splat(0);
  1079. for (int j = 0; j < 8; j++) {
  1080. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1081. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1082. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1083. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1084. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1085. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1086. accv = wasm_i32x4_add(accv, vi);
  1087. }
  1088. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1089. wasm_i32x4_extract_lane(accv, 1) +
  1090. wasm_i32x4_extract_lane(accv, 2) +
  1091. wasm_i32x4_extract_lane(accv, 3));
  1092. }
  1093. #elif defined(__AVX2__) || defined(__AVX__)
  1094. for (int i = 0; i < nb; i++) {
  1095. // Load elements into 4 AVX vectors
  1096. __m256 v0 = _mm256_loadu_ps( x );
  1097. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1098. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1099. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1100. x += 32;
  1101. // Compute max(abs(e)) for the block
  1102. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1103. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1104. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1105. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1106. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1107. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1108. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1109. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1110. const float maxScalar = _mm_cvtss_f32( max4 );
  1111. // Quantize these floats
  1112. const float d = maxScalar / 127.f;
  1113. y[i].d = d;
  1114. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1115. const __m256 mul = _mm256_set1_ps( id );
  1116. // Apply the multiplier
  1117. v0 = _mm256_mul_ps( v0, mul );
  1118. v1 = _mm256_mul_ps( v1, mul );
  1119. v2 = _mm256_mul_ps( v2, mul );
  1120. v3 = _mm256_mul_ps( v3, mul );
  1121. // Round to nearest integer
  1122. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1123. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1124. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1125. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1126. // Convert floats to integers
  1127. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1128. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1129. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1130. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1131. #if defined(__AVX2__)
  1132. // Compute the sum of the quants and set y[i].s
  1133. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1134. // Convert int32 to int16
  1135. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1136. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1137. // Convert int16 to int8
  1138. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1139. // We got our precious signed bytes, but the order is now wrong
  1140. // These AVX2 pack instructions process 16-byte pieces independently
  1141. // The following instruction is fixing the order
  1142. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1143. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1144. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1145. #else
  1146. // Since we don't have in AVX some necessary functions,
  1147. // we split the registers in half and call AVX2 analogs from SSE
  1148. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1149. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1150. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1151. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1152. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1153. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1154. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1155. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1156. // Compute the sum of the quants and set y[i].s
  1157. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1158. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1159. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1160. // Convert int32 to int16
  1161. ni0 = _mm_packs_epi32( ni0, ni1 );
  1162. ni2 = _mm_packs_epi32( ni2, ni3 );
  1163. ni4 = _mm_packs_epi32( ni4, ni5 );
  1164. ni6 = _mm_packs_epi32( ni6, ni7 );
  1165. // Convert int16 to int8
  1166. ni0 = _mm_packs_epi16( ni0, ni2 );
  1167. ni4 = _mm_packs_epi16( ni4, ni6 );
  1168. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1169. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1170. #endif
  1171. }
  1172. #else
  1173. // scalar
  1174. quantize_row_q8_1_reference(x, y, k);
  1175. #endif
  1176. }
  1177. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1178. static const int qk = QK4_0;
  1179. assert(k % qk == 0);
  1180. const int nb = k / qk;
  1181. for (int i = 0; i < nb; i++) {
  1182. const float d = GGML_FP16_TO_FP32(x[i].d);
  1183. for (int j = 0; j < qk/2; ++j) {
  1184. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1185. const int x1 = (x[i].qs[j] >> 4) - 8;
  1186. y[i*qk + j + 0 ] = x0*d;
  1187. y[i*qk + j + qk/2] = x1*d;
  1188. }
  1189. }
  1190. }
  1191. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1192. static const int qk = QK4_1;
  1193. assert(k % qk == 0);
  1194. const int nb = k / qk;
  1195. for (int i = 0; i < nb; i++) {
  1196. const float d = GGML_FP16_TO_FP32(x[i].d);
  1197. const float m = GGML_FP16_TO_FP32(x[i].m);
  1198. for (int j = 0; j < qk/2; ++j) {
  1199. const int x0 = (x[i].qs[j] & 0x0F);
  1200. const int x1 = (x[i].qs[j] >> 4);
  1201. y[i*qk + j + 0 ] = x0*d + m;
  1202. y[i*qk + j + qk/2] = x1*d + m;
  1203. }
  1204. }
  1205. }
  1206. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1207. static const int qk = QK5_0;
  1208. assert(k % qk == 0);
  1209. const int nb = k / qk;
  1210. for (int i = 0; i < nb; i++) {
  1211. const float d = GGML_FP16_TO_FP32(x[i].d);
  1212. uint32_t qh;
  1213. memcpy(&qh, x[i].qh, sizeof(qh));
  1214. for (int j = 0; j < qk/2; ++j) {
  1215. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1216. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1217. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1218. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1219. y[i*qk + j + 0 ] = x0*d;
  1220. y[i*qk + j + qk/2] = x1*d;
  1221. }
  1222. }
  1223. }
  1224. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1225. static const int qk = QK5_1;
  1226. assert(k % qk == 0);
  1227. const int nb = k / qk;
  1228. for (int i = 0; i < nb; i++) {
  1229. const float d = GGML_FP16_TO_FP32(x[i].d);
  1230. const float m = GGML_FP16_TO_FP32(x[i].m);
  1231. uint32_t qh;
  1232. memcpy(&qh, x[i].qh, sizeof(qh));
  1233. for (int j = 0; j < qk/2; ++j) {
  1234. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1235. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1236. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1237. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1238. y[i*qk + j + 0 ] = x0*d + m;
  1239. y[i*qk + j + qk/2] = x1*d + m;
  1240. }
  1241. }
  1242. }
  1243. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1244. static const int qk = QK8_0;
  1245. assert(k % qk == 0);
  1246. const int nb = k / qk;
  1247. const block_q8_0 * restrict x = vx;
  1248. for (int i = 0; i < nb; i++) {
  1249. const float d = GGML_FP16_TO_FP32(x[i].d);
  1250. for (int j = 0; j < qk; ++j) {
  1251. y[i*qk + j] = x[i].qs[j]*d;
  1252. }
  1253. }
  1254. }
  1255. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1256. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1257. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1258. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1259. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1260. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1261. [GGML_TYPE_Q4_0] = {
  1262. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1263. .quantize_row_q = quantize_row_q4_0,
  1264. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1265. .quantize_row_q_dot = quantize_row_q8_0,
  1266. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1267. .vec_dot_type = GGML_TYPE_Q8_0,
  1268. },
  1269. [GGML_TYPE_Q4_1] = {
  1270. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1271. .quantize_row_q = quantize_row_q4_1,
  1272. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1273. .quantize_row_q_dot = quantize_row_q8_1,
  1274. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1275. .vec_dot_type = GGML_TYPE_Q8_1,
  1276. },
  1277. [GGML_TYPE_Q5_0] = {
  1278. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1279. .quantize_row_q = quantize_row_q5_0,
  1280. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1281. .quantize_row_q_dot = quantize_row_q8_0,
  1282. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1283. .vec_dot_type = GGML_TYPE_Q8_0,
  1284. },
  1285. [GGML_TYPE_Q5_1] = {
  1286. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1287. .quantize_row_q = quantize_row_q5_1,
  1288. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1289. .quantize_row_q_dot = quantize_row_q8_1,
  1290. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1291. .vec_dot_type = GGML_TYPE_Q8_1,
  1292. },
  1293. [GGML_TYPE_Q8_0] = {
  1294. .dequantize_row_q = dequantize_row_q8_0,
  1295. .quantize_row_q = quantize_row_q8_0,
  1296. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1297. .quantize_row_q_dot = quantize_row_q8_0,
  1298. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1299. .vec_dot_type = GGML_TYPE_Q8_0,
  1300. },
  1301. [GGML_TYPE_Q8_1] = {
  1302. .dequantize_row_q = NULL, // TODO
  1303. .quantize_row_q = quantize_row_q8_1,
  1304. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1305. .quantize_row_q_dot = quantize_row_q8_1,
  1306. .vec_dot_q = NULL, // TODO
  1307. .vec_dot_type = GGML_TYPE_Q8_1,
  1308. },
  1309. #ifdef GGML_USE_K_QUANTS
  1310. [GGML_TYPE_Q2_K] = {
  1311. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1312. .quantize_row_q = quantize_row_q2_K,
  1313. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1314. .quantize_row_q_dot = quantize_row_q8_K,
  1315. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1316. .vec_dot_type = GGML_TYPE_Q8_K,
  1317. },
  1318. [GGML_TYPE_Q3_K] = {
  1319. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1320. .quantize_row_q = quantize_row_q3_K,
  1321. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1322. .quantize_row_q_dot = quantize_row_q8_K,
  1323. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1324. .vec_dot_type = GGML_TYPE_Q8_K,
  1325. },
  1326. [GGML_TYPE_Q4_K] = {
  1327. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1328. .quantize_row_q = quantize_row_q4_K,
  1329. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1330. .quantize_row_q_dot = quantize_row_q8_K,
  1331. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1332. .vec_dot_type = GGML_TYPE_Q8_K,
  1333. },
  1334. [GGML_TYPE_Q5_K] = {
  1335. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1336. .quantize_row_q = quantize_row_q5_K,
  1337. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1338. .quantize_row_q_dot = quantize_row_q8_K,
  1339. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1340. .vec_dot_type = GGML_TYPE_Q8_K,
  1341. },
  1342. [GGML_TYPE_Q6_K] = {
  1343. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1344. .quantize_row_q = quantize_row_q6_K,
  1345. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1346. .quantize_row_q_dot = quantize_row_q8_K,
  1347. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1348. .vec_dot_type = GGML_TYPE_Q8_K,
  1349. },
  1350. #endif
  1351. };
  1352. // For internal test use
  1353. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1354. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1355. return quantize_fns[i];
  1356. }
  1357. //
  1358. // simd mappings
  1359. //
  1360. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1361. // we then implement the fundamental computation operations below using only these macros
  1362. // adding support for new architectures requires to define the corresponding SIMD macros
  1363. //
  1364. // GGML_F32_STEP / GGML_F16_STEP
  1365. // number of elements to process in a single step
  1366. //
  1367. // GGML_F32_EPR / GGML_F16_EPR
  1368. // number of elements to fit in a single register
  1369. //
  1370. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1371. #define GGML_SIMD
  1372. // F32 NEON
  1373. #define GGML_F32_STEP 16
  1374. #define GGML_F32_EPR 4
  1375. #define GGML_F32x4 float32x4_t
  1376. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1377. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1378. #define GGML_F32x4_LOAD vld1q_f32
  1379. #define GGML_F32x4_STORE vst1q_f32
  1380. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1381. #define GGML_F32x4_ADD vaddq_f32
  1382. #define GGML_F32x4_MUL vmulq_f32
  1383. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1384. #define GGML_F32x4_REDUCE(res, x) \
  1385. { \
  1386. int offset = GGML_F32_ARR >> 1; \
  1387. for (int i = 0; i < offset; ++i) { \
  1388. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1389. } \
  1390. offset >>= 1; \
  1391. for (int i = 0; i < offset; ++i) { \
  1392. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1393. } \
  1394. offset >>= 1; \
  1395. for (int i = 0; i < offset; ++i) { \
  1396. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1397. } \
  1398. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1399. }
  1400. #define GGML_F32_VEC GGML_F32x4
  1401. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1402. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1403. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1404. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1405. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1406. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1407. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1408. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1409. // F16 NEON
  1410. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1411. #define GGML_F16_STEP 32
  1412. #define GGML_F16_EPR 8
  1413. #define GGML_F16x8 float16x8_t
  1414. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1415. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1416. #define GGML_F16x8_LOAD vld1q_f16
  1417. #define GGML_F16x8_STORE vst1q_f16
  1418. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1419. #define GGML_F16x8_ADD vaddq_f16
  1420. #define GGML_F16x8_MUL vmulq_f16
  1421. #define GGML_F16x8_REDUCE(res, x) \
  1422. { \
  1423. int offset = GGML_F16_ARR >> 1; \
  1424. for (int i = 0; i < offset; ++i) { \
  1425. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1426. } \
  1427. offset >>= 1; \
  1428. for (int i = 0; i < offset; ++i) { \
  1429. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1430. } \
  1431. offset >>= 1; \
  1432. for (int i = 0; i < offset; ++i) { \
  1433. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1434. } \
  1435. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1436. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1437. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1438. }
  1439. #define GGML_F16_VEC GGML_F16x8
  1440. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1441. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1442. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1443. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1444. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1445. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1446. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1447. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1448. #else
  1449. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1450. // and take advantage of the vcvt_ functions to convert to/from FP16
  1451. #define GGML_F16_STEP 16
  1452. #define GGML_F16_EPR 4
  1453. #define GGML_F32Cx4 float32x4_t
  1454. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1455. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1456. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1457. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1458. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1459. #define GGML_F32Cx4_ADD vaddq_f32
  1460. #define GGML_F32Cx4_MUL vmulq_f32
  1461. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1462. #define GGML_F16_VEC GGML_F32Cx4
  1463. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1464. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1465. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1466. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1467. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1468. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1469. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1470. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1471. #endif
  1472. #elif defined(__AVX__)
  1473. #define GGML_SIMD
  1474. // F32 AVX
  1475. #define GGML_F32_STEP 32
  1476. #define GGML_F32_EPR 8
  1477. #define GGML_F32x8 __m256
  1478. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1479. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1480. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1481. #define GGML_F32x8_STORE _mm256_storeu_ps
  1482. #if defined(__FMA__)
  1483. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1484. #else
  1485. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1486. #endif
  1487. #define GGML_F32x8_ADD _mm256_add_ps
  1488. #define GGML_F32x8_MUL _mm256_mul_ps
  1489. #define GGML_F32x8_REDUCE(res, x) \
  1490. { \
  1491. int offset = GGML_F32_ARR >> 1; \
  1492. for (int i = 0; i < offset; ++i) { \
  1493. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1494. } \
  1495. offset >>= 1; \
  1496. for (int i = 0; i < offset; ++i) { \
  1497. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1498. } \
  1499. offset >>= 1; \
  1500. for (int i = 0; i < offset; ++i) { \
  1501. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1502. } \
  1503. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1504. _mm256_extractf128_ps(x[0], 1)); \
  1505. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1506. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1507. }
  1508. // TODO: is this optimal ?
  1509. #define GGML_F32_VEC GGML_F32x8
  1510. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1511. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1512. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1513. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1514. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1515. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1516. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1517. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1518. // F16 AVX
  1519. #define GGML_F16_STEP 32
  1520. #define GGML_F16_EPR 8
  1521. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1522. #define GGML_F32Cx8 __m256
  1523. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1524. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1525. #if defined(__F16C__)
  1526. // the _mm256_cvt intrinsics require F16C
  1527. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1528. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1529. #else
  1530. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1531. float tmp[8];
  1532. for (int i = 0; i < 8; i++) {
  1533. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1534. }
  1535. return _mm256_loadu_ps(tmp);
  1536. }
  1537. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1538. float arr[8];
  1539. _mm256_storeu_ps(arr, y);
  1540. for (int i = 0; i < 8; i++)
  1541. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1542. }
  1543. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1544. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1545. #endif
  1546. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1547. #define GGML_F32Cx8_ADD _mm256_add_ps
  1548. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1549. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1550. #define GGML_F16_VEC GGML_F32Cx8
  1551. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1552. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1553. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1554. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1555. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1556. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1557. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1558. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1559. #elif defined(__POWER9_VECTOR__)
  1560. #define GGML_SIMD
  1561. // F32 POWER9
  1562. #define GGML_F32_STEP 32
  1563. #define GGML_F32_EPR 4
  1564. #define GGML_F32x4 vector float
  1565. #define GGML_F32x4_ZERO 0.0f
  1566. #define GGML_F32x4_SET1 vec_splats
  1567. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1568. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1569. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1570. #define GGML_F32x4_ADD vec_add
  1571. #define GGML_F32x4_MUL vec_mul
  1572. #define GGML_F32x4_REDUCE(res, x) \
  1573. { \
  1574. int offset = GGML_F32_ARR >> 1; \
  1575. for (int i = 0; i < offset; ++i) { \
  1576. x[i] = vec_add(x[i], x[offset+i]); \
  1577. } \
  1578. offset >>= 1; \
  1579. for (int i = 0; i < offset; ++i) { \
  1580. x[i] = vec_add(x[i], x[offset+i]); \
  1581. } \
  1582. offset >>= 1; \
  1583. for (int i = 0; i < offset; ++i) { \
  1584. x[i] = vec_add(x[i], x[offset+i]); \
  1585. } \
  1586. res = vec_extract(x[0], 0) + \
  1587. vec_extract(x[0], 1) + \
  1588. vec_extract(x[0], 2) + \
  1589. vec_extract(x[0], 3); \
  1590. }
  1591. #define GGML_F32_VEC GGML_F32x4
  1592. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1593. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1594. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1595. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1596. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1597. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1598. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1599. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1600. // F16 POWER9
  1601. #define GGML_F16_STEP GGML_F32_STEP
  1602. #define GGML_F16_EPR GGML_F32_EPR
  1603. #define GGML_F16_VEC GGML_F32x4
  1604. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1605. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1606. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1607. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1608. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1609. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1610. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1611. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1612. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1613. #define GGML_F16_VEC_STORE(p, r, i) \
  1614. if (i & 0x1) \
  1615. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1616. r[i - GGML_ENDIAN_BYTE(0)]), \
  1617. 0, p - GGML_F16_EPR)
  1618. #elif defined(__wasm_simd128__)
  1619. #define GGML_SIMD
  1620. // F32 WASM
  1621. #define GGML_F32_STEP 16
  1622. #define GGML_F32_EPR 4
  1623. #define GGML_F32x4 v128_t
  1624. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1625. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1626. #define GGML_F32x4_LOAD wasm_v128_load
  1627. #define GGML_F32x4_STORE wasm_v128_store
  1628. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1629. #define GGML_F32x4_ADD wasm_f32x4_add
  1630. #define GGML_F32x4_MUL wasm_f32x4_mul
  1631. #define GGML_F32x4_REDUCE(res, x) \
  1632. { \
  1633. int offset = GGML_F32_ARR >> 1; \
  1634. for (int i = 0; i < offset; ++i) { \
  1635. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1636. } \
  1637. offset >>= 1; \
  1638. for (int i = 0; i < offset; ++i) { \
  1639. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1640. } \
  1641. offset >>= 1; \
  1642. for (int i = 0; i < offset; ++i) { \
  1643. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1644. } \
  1645. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1646. wasm_f32x4_extract_lane(x[0], 1) + \
  1647. wasm_f32x4_extract_lane(x[0], 2) + \
  1648. wasm_f32x4_extract_lane(x[0], 3); \
  1649. }
  1650. #define GGML_F32_VEC GGML_F32x4
  1651. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1652. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1653. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1654. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1655. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1656. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1657. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1658. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1659. // F16 WASM
  1660. #define GGML_F16_STEP 16
  1661. #define GGML_F16_EPR 4
  1662. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1663. float tmp[4];
  1664. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1665. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1666. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1667. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1668. return wasm_v128_load(tmp);
  1669. }
  1670. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1671. float tmp[4];
  1672. wasm_v128_store(tmp, x);
  1673. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1674. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1675. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1676. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1677. }
  1678. #define GGML_F16x4 v128_t
  1679. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1680. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1681. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1682. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1683. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1684. #define GGML_F16x4_ADD wasm_f32x4_add
  1685. #define GGML_F16x4_MUL wasm_f32x4_mul
  1686. #define GGML_F16x4_REDUCE(res, x) \
  1687. { \
  1688. int offset = GGML_F16_ARR >> 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1691. } \
  1692. offset >>= 1; \
  1693. for (int i = 0; i < offset; ++i) { \
  1694. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1695. } \
  1696. offset >>= 1; \
  1697. for (int i = 0; i < offset; ++i) { \
  1698. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1699. } \
  1700. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1701. wasm_f32x4_extract_lane(x[0], 1) + \
  1702. wasm_f32x4_extract_lane(x[0], 2) + \
  1703. wasm_f32x4_extract_lane(x[0], 3); \
  1704. }
  1705. #define GGML_F16_VEC GGML_F16x4
  1706. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1707. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1708. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1709. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1710. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1711. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1712. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1713. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1714. #elif defined(__SSE3__)
  1715. #define GGML_SIMD
  1716. // F32 SSE
  1717. #define GGML_F32_STEP 32
  1718. #define GGML_F32_EPR 4
  1719. #define GGML_F32x4 __m128
  1720. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1721. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1722. #define GGML_F32x4_LOAD _mm_loadu_ps
  1723. #define GGML_F32x4_STORE _mm_storeu_ps
  1724. #if defined(__FMA__)
  1725. // TODO: Does this work?
  1726. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1727. #else
  1728. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1729. #endif
  1730. #define GGML_F32x4_ADD _mm_add_ps
  1731. #define GGML_F32x4_MUL _mm_mul_ps
  1732. #define GGML_F32x4_REDUCE(res, x) \
  1733. { \
  1734. int offset = GGML_F32_ARR >> 1; \
  1735. for (int i = 0; i < offset; ++i) { \
  1736. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1737. } \
  1738. offset >>= 1; \
  1739. for (int i = 0; i < offset; ++i) { \
  1740. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1741. } \
  1742. offset >>= 1; \
  1743. for (int i = 0; i < offset; ++i) { \
  1744. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1745. } \
  1746. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1747. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1748. }
  1749. // TODO: is this optimal ?
  1750. #define GGML_F32_VEC GGML_F32x4
  1751. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1752. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1753. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1754. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1755. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1756. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1757. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1758. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1759. // F16 SSE
  1760. #define GGML_F16_STEP 32
  1761. #define GGML_F16_EPR 4
  1762. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1763. float tmp[4];
  1764. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1765. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1766. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1767. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1768. return _mm_loadu_ps(tmp);
  1769. }
  1770. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1771. float arr[4];
  1772. _mm_storeu_ps(arr, y);
  1773. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1774. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1775. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1776. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1777. }
  1778. #define GGML_F32Cx4 __m128
  1779. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1780. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1781. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1782. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1783. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1784. #define GGML_F32Cx4_ADD _mm_add_ps
  1785. #define GGML_F32Cx4_MUL _mm_mul_ps
  1786. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1787. #define GGML_F16_VEC GGML_F32Cx4
  1788. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1789. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1790. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1791. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1792. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1793. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1794. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1795. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1796. #endif
  1797. // GGML_F32_ARR / GGML_F16_ARR
  1798. // number of registers to use per step
  1799. #ifdef GGML_SIMD
  1800. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1801. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1802. #endif
  1803. //
  1804. // fundamental operations
  1805. //
  1806. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1807. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1808. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1809. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1810. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1811. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1812. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1813. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1814. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1815. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1816. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1817. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1818. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1819. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1820. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1821. #ifdef GGML_SIMD
  1822. float sumf = 0.0f;
  1823. const int np = (n & ~(GGML_F32_STEP - 1));
  1824. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1825. GGML_F32_VEC ax[GGML_F32_ARR];
  1826. GGML_F32_VEC ay[GGML_F32_ARR];
  1827. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1828. for (int j = 0; j < GGML_F32_ARR; j++) {
  1829. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1830. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1831. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1832. }
  1833. }
  1834. // reduce sum0..sum3 to sum0
  1835. GGML_F32_VEC_REDUCE(sumf, sum);
  1836. // leftovers
  1837. for (int i = np; i < n; ++i) {
  1838. sumf += x[i]*y[i];
  1839. }
  1840. #else
  1841. // scalar
  1842. ggml_float sumf = 0.0;
  1843. for (int i = 0; i < n; ++i) {
  1844. sumf += (ggml_float)(x[i]*y[i]);
  1845. }
  1846. #endif
  1847. *s = sumf;
  1848. }
  1849. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1850. ggml_float sumf = 0.0;
  1851. #if defined(GGML_SIMD)
  1852. const int np = (n & ~(GGML_F16_STEP - 1));
  1853. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1854. GGML_F16_VEC ax[GGML_F16_ARR];
  1855. GGML_F16_VEC ay[GGML_F16_ARR];
  1856. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1857. for (int j = 0; j < GGML_F16_ARR; j++) {
  1858. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1859. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1860. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1861. }
  1862. }
  1863. // reduce sum0..sum3 to sum0
  1864. GGML_F16_VEC_REDUCE(sumf, sum);
  1865. // leftovers
  1866. for (int i = np; i < n; ++i) {
  1867. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1868. }
  1869. #else
  1870. for (int i = 0; i < n; ++i) {
  1871. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1872. }
  1873. #endif
  1874. *s = sumf;
  1875. }
  1876. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1877. const int qk = QK8_0;
  1878. const int nb = n / qk;
  1879. assert(n % qk == 0);
  1880. assert(nb % 2 == 0);
  1881. const block_q4_0 * restrict x = vx;
  1882. const block_q8_0 * restrict y = vy;
  1883. #if defined(__ARM_NEON)
  1884. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1885. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1886. for (int i = 0; i < nb; i += 2) {
  1887. const block_q4_0 * restrict x0 = &x[i + 0];
  1888. const block_q4_0 * restrict x1 = &x[i + 1];
  1889. const block_q8_0 * restrict y0 = &y[i + 0];
  1890. const block_q8_0 * restrict y1 = &y[i + 1];
  1891. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1892. const int8x16_t s8b = vdupq_n_s8(0x8);
  1893. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1894. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1895. // 4-bit -> 8-bit
  1896. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1897. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1898. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1899. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1900. // sub 8
  1901. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1902. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1903. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1904. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1905. // load y
  1906. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1907. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1908. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1909. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1910. #if defined(__ARM_FEATURE_DOTPROD)
  1911. // dot product into int32x4_t
  1912. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1913. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1914. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1915. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1916. #else
  1917. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1918. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1919. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1920. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1921. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1922. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1923. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1924. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1925. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1926. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1927. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1928. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1929. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1930. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1931. #endif
  1932. }
  1933. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1934. #elif defined(__AVX2__)
  1935. // Initialize accumulator with zeros
  1936. __m256 acc = _mm256_setzero_ps();
  1937. // Main loop
  1938. for (int i = 0; i < nb; ++i) {
  1939. /* Compute combined scale for the block */
  1940. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1941. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1942. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1943. const __m256i off = _mm256_set1_epi8( 8 );
  1944. bx = _mm256_sub_epi8( bx, off );
  1945. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1946. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1947. /* Multiply q with scale and accumulate */
  1948. acc = _mm256_fmadd_ps( d, q, acc );
  1949. }
  1950. *s = hsum_float_8(acc);
  1951. #elif defined(__AVX__)
  1952. // Initialize accumulator with zeros
  1953. __m256 acc = _mm256_setzero_ps();
  1954. // Main loop
  1955. for (int i = 0; i < nb; ++i) {
  1956. // Compute combined scale for the block
  1957. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1958. const __m128i lowMask = _mm_set1_epi8(0xF);
  1959. const __m128i off = _mm_set1_epi8(8);
  1960. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1961. __m128i bx = _mm_and_si128(lowMask, tmp);
  1962. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1963. bx = _mm_sub_epi8(bx, off);
  1964. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1965. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1966. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1967. bx = _mm_sub_epi8(bx, off);
  1968. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1969. // Convert int32_t to float
  1970. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1971. // Apply the scale, and accumulate
  1972. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1973. }
  1974. *s = hsum_float_8(acc);
  1975. #elif defined(__SSSE3__)
  1976. // set constants
  1977. const __m128i lowMask = _mm_set1_epi8(0xF);
  1978. const __m128i off = _mm_set1_epi8(8);
  1979. // Initialize accumulator with zeros
  1980. __m128 acc_0 = _mm_setzero_ps();
  1981. __m128 acc_1 = _mm_setzero_ps();
  1982. __m128 acc_2 = _mm_setzero_ps();
  1983. __m128 acc_3 = _mm_setzero_ps();
  1984. // First round without accumulation
  1985. {
  1986. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1987. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1988. // Compute combined scale for the block 0 and 1
  1989. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1990. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1991. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1992. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1993. bx_0 = _mm_sub_epi8(bx_0, off);
  1994. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1995. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1996. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1997. bx_1 = _mm_sub_epi8(bx_1, off);
  1998. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1999. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2000. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2001. // Compute combined scale for the block 2 and 3
  2002. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2003. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2004. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2005. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2006. bx_2 = _mm_sub_epi8(bx_2, off);
  2007. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2008. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2009. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2010. bx_3 = _mm_sub_epi8(bx_3, off);
  2011. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2012. // Convert int32_t to float
  2013. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2014. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2015. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2016. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2017. // Apply the scale
  2018. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2019. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2020. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2021. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2022. }
  2023. // Main loop
  2024. for (int i = 2; i < nb; i+=2) {
  2025. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2026. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2027. // Compute combined scale for the block 0 and 1
  2028. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2029. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2030. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2031. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2032. bx_0 = _mm_sub_epi8(bx_0, off);
  2033. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2034. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2035. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2036. bx_1 = _mm_sub_epi8(bx_1, off);
  2037. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2038. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2039. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2040. // Compute combined scale for the block 2 and 3
  2041. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2042. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2043. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2044. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2045. bx_2 = _mm_sub_epi8(bx_2, off);
  2046. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2047. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2048. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2049. bx_3 = _mm_sub_epi8(bx_3, off);
  2050. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2051. // Convert int32_t to float
  2052. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2053. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2054. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2055. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2056. // Apply the scale
  2057. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2058. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2059. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2060. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2061. // Acummulate
  2062. acc_0 = _mm_add_ps(p0_d, acc_0);
  2063. acc_1 = _mm_add_ps(p1_d, acc_1);
  2064. acc_2 = _mm_add_ps(p2_d, acc_2);
  2065. acc_3 = _mm_add_ps(p3_d, acc_3);
  2066. }
  2067. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2068. #else
  2069. // scalar
  2070. float sumf = 0.0;
  2071. for (int i = 0; i < nb; i++) {
  2072. int sumi = 0;
  2073. for (int j = 0; j < qk/2; ++j) {
  2074. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2075. const int v1 = (x[i].qs[j] >> 4) - 8;
  2076. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2077. }
  2078. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2079. }
  2080. *s = sumf;
  2081. #endif
  2082. }
  2083. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2084. const int qk = QK8_1;
  2085. const int nb = n / qk;
  2086. assert(n % qk == 0);
  2087. assert(nb % 2 == 0);
  2088. const block_q4_1 * restrict x = vx;
  2089. const block_q8_1 * restrict y = vy;
  2090. // TODO: add WASM SIMD
  2091. #if defined(__ARM_NEON)
  2092. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2093. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2094. float summs = 0;
  2095. for (int i = 0; i < nb; i += 2) {
  2096. const block_q4_1 * restrict x0 = &x[i + 0];
  2097. const block_q4_1 * restrict x1 = &x[i + 1];
  2098. const block_q8_1 * restrict y0 = &y[i + 0];
  2099. const block_q8_1 * restrict y1 = &y[i + 1];
  2100. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2101. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2102. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2103. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2104. // 4-bit -> 8-bit
  2105. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2106. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2107. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2108. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2109. // load y
  2110. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2111. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2112. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2113. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2114. #if defined(__ARM_FEATURE_DOTPROD)
  2115. // dot product into int32x4_t
  2116. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2117. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2118. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2119. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2120. #else
  2121. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2122. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2123. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2124. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2125. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2126. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2127. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2128. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2129. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2130. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2131. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2132. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2133. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2134. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2135. #endif
  2136. }
  2137. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2138. #elif defined(__AVX2__) || defined(__AVX__)
  2139. // Initialize accumulator with zeros
  2140. __m256 acc = _mm256_setzero_ps();
  2141. float summs = 0;
  2142. // Main loop
  2143. for (int i = 0; i < nb; ++i) {
  2144. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2145. const float d1 = y[i].d;
  2146. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2147. const __m256 d0v = _mm256_set1_ps( d0 );
  2148. const __m256 d1v = _mm256_set1_ps( d1 );
  2149. // Compute combined scales
  2150. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2151. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2152. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2153. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2154. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2155. // Accumulate d0*d1*x*y
  2156. #if defined(__AVX2__)
  2157. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2158. #else
  2159. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2160. #endif
  2161. }
  2162. *s = hsum_float_8(acc) + summs;
  2163. #else
  2164. // scalar
  2165. float sumf = 0.0;
  2166. for (int i = 0; i < nb; i++) {
  2167. int sumi = 0;
  2168. for (int j = 0; j < qk/2; ++j) {
  2169. const int v0 = (x[i].qs[j] & 0x0F);
  2170. const int v1 = (x[i].qs[j] >> 4);
  2171. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2172. }
  2173. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2174. }
  2175. *s = sumf;
  2176. #endif
  2177. }
  2178. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2179. const int qk = QK8_0;
  2180. const int nb = n / qk;
  2181. assert(n % qk == 0);
  2182. assert(nb % 2 == 0);
  2183. assert(qk == QK5_0);
  2184. const block_q5_0 * restrict x = vx;
  2185. const block_q8_0 * restrict y = vy;
  2186. #if defined(__ARM_NEON)
  2187. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2188. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2189. uint32_t qh0;
  2190. uint32_t qh1;
  2191. uint64_t tmp0[4];
  2192. uint64_t tmp1[4];
  2193. for (int i = 0; i < nb; i += 2) {
  2194. const block_q5_0 * restrict x0 = &x[i];
  2195. const block_q5_0 * restrict x1 = &x[i + 1];
  2196. const block_q8_0 * restrict y0 = &y[i];
  2197. const block_q8_0 * restrict y1 = &y[i + 1];
  2198. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2199. // extract the 5th bit via lookup table ((!b) << 4)
  2200. memcpy(&qh0, x0->qh, sizeof(qh0));
  2201. memcpy(&qh1, x1->qh, sizeof(qh1));
  2202. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2203. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2204. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2205. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2206. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2207. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2208. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2209. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2210. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2211. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2212. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2213. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2214. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2215. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2216. // 4-bit -> 8-bit
  2217. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2218. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2219. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2220. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2221. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2222. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2223. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2224. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2225. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2226. // load y
  2227. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2228. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2229. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2230. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2231. #if defined(__ARM_FEATURE_DOTPROD)
  2232. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2233. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2234. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2235. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2236. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2237. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2238. #else
  2239. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2240. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2241. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2242. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2243. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2244. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2245. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2246. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2247. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2248. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2249. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2250. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2251. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2252. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2253. #endif
  2254. }
  2255. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2256. #elif defined(__wasm_simd128__)
  2257. v128_t sumv = wasm_f32x4_splat(0.0f);
  2258. uint32_t qh;
  2259. uint64_t tmp[4];
  2260. // TODO: check if unrolling this is better
  2261. for (int i = 0; i < nb; ++i) {
  2262. const block_q5_0 * restrict x0 = &x[i];
  2263. const block_q8_0 * restrict y0 = &y[i];
  2264. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2265. // extract the 5th bit
  2266. memcpy(&qh, x0->qh, sizeof(qh));
  2267. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2268. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2269. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2270. tmp[3] = table_b2b_1[(qh >> 24) ];
  2271. const v128_t qhl = wasm_v128_load(tmp + 0);
  2272. const v128_t qhh = wasm_v128_load(tmp + 2);
  2273. const v128_t v0 = wasm_v128_load(x0->qs);
  2274. // 4-bit -> 8-bit
  2275. const v128_t v0l = wasm_v128_and (v0, m4b);
  2276. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2277. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2278. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2279. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2280. // load y
  2281. const v128_t v1l = wasm_v128_load(y0->qs);
  2282. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2283. // int8x16 -> int16x8
  2284. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2285. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2286. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2287. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2288. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2289. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2290. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2291. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2292. // dot product
  2293. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2294. wasm_i32x4_add(
  2295. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2296. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2297. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2298. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2299. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2300. }
  2301. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2302. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2303. #elif defined(__AVX2__)
  2304. // Initialize accumulator with zeros
  2305. __m256 acc = _mm256_setzero_ps();
  2306. // Main loop
  2307. for (int i = 0; i < nb; i++) {
  2308. /* Compute combined scale for the block */
  2309. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2310. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2311. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2312. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2313. bx = _mm256_or_si256(bx, bxhi);
  2314. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2315. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2316. /* Multiply q with scale and accumulate */
  2317. acc = _mm256_fmadd_ps(d, q, acc);
  2318. }
  2319. *s = hsum_float_8(acc);
  2320. #elif defined(__AVX__)
  2321. // Initialize accumulator with zeros
  2322. __m256 acc = _mm256_setzero_ps();
  2323. __m128i mask = _mm_set1_epi8((char)0xF0);
  2324. // Main loop
  2325. for (int i = 0; i < nb; i++) {
  2326. /* Compute combined scale for the block */
  2327. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2328. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2329. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2330. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2331. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2332. bxhil = _mm_andnot_si128(bxhil, mask);
  2333. bxhih = _mm_andnot_si128(bxhih, mask);
  2334. __m128i bxl = _mm256_castsi256_si128(bx);
  2335. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2336. bxl = _mm_or_si128(bxl, bxhil);
  2337. bxh = _mm_or_si128(bxh, bxhih);
  2338. bx = MM256_SET_M128I(bxh, bxl);
  2339. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2340. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2341. /* Multiply q with scale and accumulate */
  2342. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2343. }
  2344. *s = hsum_float_8(acc);
  2345. #else
  2346. // scalar
  2347. float sumf = 0.0;
  2348. for (int i = 0; i < nb; i++) {
  2349. uint32_t qh;
  2350. memcpy(&qh, x[i].qh, sizeof(qh));
  2351. int sumi = 0;
  2352. for (int j = 0; j < qk/2; ++j) {
  2353. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2354. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2355. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2356. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2357. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2358. }
  2359. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2360. }
  2361. *s = sumf;
  2362. #endif
  2363. }
  2364. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2365. const int qk = QK8_1;
  2366. const int nb = n / qk;
  2367. assert(n % qk == 0);
  2368. assert(nb % 2 == 0);
  2369. assert(qk == QK5_1);
  2370. const block_q5_1 * restrict x = vx;
  2371. const block_q8_1 * restrict y = vy;
  2372. #if defined(__ARM_NEON)
  2373. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2374. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2375. float summs0 = 0.0f;
  2376. float summs1 = 0.0f;
  2377. uint32_t qh0;
  2378. uint32_t qh1;
  2379. uint64_t tmp0[4];
  2380. uint64_t tmp1[4];
  2381. for (int i = 0; i < nb; i += 2) {
  2382. const block_q5_1 * restrict x0 = &x[i];
  2383. const block_q5_1 * restrict x1 = &x[i + 1];
  2384. const block_q8_1 * restrict y0 = &y[i];
  2385. const block_q8_1 * restrict y1 = &y[i + 1];
  2386. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2387. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2388. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2389. // extract the 5th bit via lookup table ((b) << 4)
  2390. memcpy(&qh0, x0->qh, sizeof(qh0));
  2391. memcpy(&qh1, x1->qh, sizeof(qh1));
  2392. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2393. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2394. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2395. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2396. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2397. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2398. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2399. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2400. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2401. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2402. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2403. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2404. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2405. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2406. // 4-bit -> 8-bit
  2407. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2408. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2409. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2410. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2411. // add high bit
  2412. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2413. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2414. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2415. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2416. // load y
  2417. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2418. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2419. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2420. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2421. #if defined(__ARM_FEATURE_DOTPROD)
  2422. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2423. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2424. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2425. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2426. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2427. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2428. #else
  2429. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2430. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2431. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2432. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2433. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2434. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2435. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2436. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2437. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2438. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2439. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2440. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2441. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2442. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2443. #endif
  2444. }
  2445. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2446. #elif defined(__wasm_simd128__)
  2447. v128_t sumv = wasm_f32x4_splat(0.0f);
  2448. float summs = 0.0f;
  2449. uint32_t qh;
  2450. uint64_t tmp[4];
  2451. // TODO: check if unrolling this is better
  2452. for (int i = 0; i < nb; ++i) {
  2453. const block_q5_1 * restrict x0 = &x[i];
  2454. const block_q8_1 * restrict y0 = &y[i];
  2455. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2456. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2457. // extract the 5th bit
  2458. memcpy(&qh, x0->qh, sizeof(qh));
  2459. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2460. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2461. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2462. tmp[3] = table_b2b_0[(qh >> 24) ];
  2463. const v128_t qhl = wasm_v128_load(tmp + 0);
  2464. const v128_t qhh = wasm_v128_load(tmp + 2);
  2465. const v128_t v0 = wasm_v128_load(x0->qs);
  2466. // 4-bit -> 8-bit
  2467. const v128_t v0l = wasm_v128_and (v0, m4b);
  2468. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2469. // add high bit
  2470. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2471. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2472. // load y
  2473. const v128_t v1l = wasm_v128_load(y0->qs);
  2474. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2475. // int8x16 -> int16x8
  2476. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2477. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2478. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2479. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2480. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2481. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2482. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2483. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2484. // dot product
  2485. sumv = wasm_f32x4_add(sumv,
  2486. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2487. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2488. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2489. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2490. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2491. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2492. }
  2493. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2494. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2495. #elif defined(__AVX2__)
  2496. // Initialize accumulator with zeros
  2497. __m256 acc = _mm256_setzero_ps();
  2498. float summs = 0.0f;
  2499. // Main loop
  2500. for (int i = 0; i < nb; i++) {
  2501. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2502. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2503. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2504. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2505. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2506. bx = _mm256_or_si256(bx, bxhi);
  2507. const __m256 dy = _mm256_set1_ps(y[i].d);
  2508. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2509. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2510. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2511. }
  2512. *s = hsum_float_8(acc) + summs;
  2513. #elif defined(__AVX__)
  2514. // Initialize accumulator with zeros
  2515. __m256 acc = _mm256_setzero_ps();
  2516. __m128i mask = _mm_set1_epi8(0x10);
  2517. float summs = 0.0f;
  2518. // Main loop
  2519. for (int i = 0; i < nb; i++) {
  2520. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2521. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2522. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2523. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2524. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2525. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2526. bxhil = _mm_and_si128(bxhil, mask);
  2527. bxhih = _mm_and_si128(bxhih, mask);
  2528. __m128i bxl = _mm256_castsi256_si128(bx);
  2529. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2530. bxl = _mm_or_si128(bxl, bxhil);
  2531. bxh = _mm_or_si128(bxh, bxhih);
  2532. bx = MM256_SET_M128I(bxh, bxl);
  2533. const __m256 dy = _mm256_set1_ps(y[i].d);
  2534. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2535. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2536. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2537. }
  2538. *s = hsum_float_8(acc) + summs;
  2539. #else
  2540. // scalar
  2541. float sumf = 0.0;
  2542. for (int i = 0; i < nb; i++) {
  2543. uint32_t qh;
  2544. memcpy(&qh, x[i].qh, sizeof(qh));
  2545. int sumi = 0;
  2546. for (int j = 0; j < qk/2; ++j) {
  2547. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2548. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2549. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2550. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2551. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2552. }
  2553. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2554. }
  2555. *s = sumf;
  2556. #endif
  2557. }
  2558. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2559. const int qk = QK8_0;
  2560. const int nb = n / qk;
  2561. assert(n % qk == 0);
  2562. assert(nb % 2 == 0);
  2563. const block_q8_0 * restrict x = vx;
  2564. const block_q8_0 * restrict y = vy;
  2565. #if defined(__ARM_NEON)
  2566. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2567. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2568. for (int i = 0; i < nb; i += 2) {
  2569. const block_q8_0 * restrict x0 = &x[i + 0];
  2570. const block_q8_0 * restrict x1 = &x[i + 1];
  2571. const block_q8_0 * restrict y0 = &y[i + 0];
  2572. const block_q8_0 * restrict y1 = &y[i + 1];
  2573. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2574. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2575. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2576. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2577. // load y
  2578. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2579. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2580. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2581. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2582. #if defined(__ARM_FEATURE_DOTPROD)
  2583. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2584. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2585. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2586. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2587. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2588. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2589. #else
  2590. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2591. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2592. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2593. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2594. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2595. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2596. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2597. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2598. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2599. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2600. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2601. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2602. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2603. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2604. #endif
  2605. }
  2606. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2607. #elif defined(__AVX2__) || defined(__AVX__)
  2608. // Initialize accumulator with zeros
  2609. __m256 acc = _mm256_setzero_ps();
  2610. // Main loop
  2611. for (int i = 0; i < nb; ++i) {
  2612. // Compute combined scale for the block
  2613. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2614. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2615. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2616. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2617. // Multiply q with scale and accumulate
  2618. #if defined(__AVX2__)
  2619. acc = _mm256_fmadd_ps( d, q, acc );
  2620. #else
  2621. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2622. #endif
  2623. }
  2624. *s = hsum_float_8(acc);
  2625. #else
  2626. // scalar
  2627. float sumf = 0.0;
  2628. for (int i = 0; i < nb; i++) {
  2629. int sumi = 0;
  2630. for (int j = 0; j < qk; j++) {
  2631. sumi += x[i].qs[j]*y[i].qs[j];
  2632. }
  2633. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2634. }
  2635. *s = sumf;
  2636. #endif
  2637. }
  2638. // compute GGML_VEC_DOT_UNROLL dot products at once
  2639. // xs - x row stride in bytes
  2640. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2641. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2642. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2643. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2644. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2645. }
  2646. #if defined(GGML_SIMD)
  2647. const int np = (n & ~(GGML_F16_STEP - 1));
  2648. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2649. GGML_F16_VEC ax[GGML_F16_ARR];
  2650. GGML_F16_VEC ay[GGML_F16_ARR];
  2651. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2652. for (int j = 0; j < GGML_F16_ARR; j++) {
  2653. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2654. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2655. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2656. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2657. }
  2658. }
  2659. }
  2660. // reduce sum0..sum3 to sum0
  2661. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2662. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2663. }
  2664. // leftovers
  2665. for (int i = np; i < n; ++i) {
  2666. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2667. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2668. }
  2669. }
  2670. #else
  2671. for (int i = 0; i < n; ++i) {
  2672. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2673. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2674. }
  2675. }
  2676. #endif
  2677. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2678. s[i] = sumf[i];
  2679. }
  2680. }
  2681. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2682. #if defined(GGML_SIMD)
  2683. const int np = (n & ~(GGML_F32_STEP - 1));
  2684. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2685. GGML_F32_VEC ax[GGML_F32_ARR];
  2686. GGML_F32_VEC ay[GGML_F32_ARR];
  2687. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2688. for (int j = 0; j < GGML_F32_ARR; j++) {
  2689. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2690. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2691. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2692. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2693. }
  2694. }
  2695. // leftovers
  2696. for (int i = np; i < n; ++i) {
  2697. y[i] += x[i]*v;
  2698. }
  2699. #else
  2700. // scalar
  2701. for (int i = 0; i < n; ++i) {
  2702. y[i] += x[i]*v;
  2703. }
  2704. #endif
  2705. }
  2706. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2707. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2708. #if defined(GGML_SIMD)
  2709. const int np = (n & ~(GGML_F32_STEP - 1));
  2710. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2711. GGML_F32_VEC ay[GGML_F32_ARR];
  2712. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2713. for (int j = 0; j < GGML_F32_ARR; j++) {
  2714. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2715. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2716. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2717. }
  2718. }
  2719. // leftovers
  2720. for (int i = np; i < n; ++i) {
  2721. y[i] *= v;
  2722. }
  2723. #else
  2724. // scalar
  2725. for (int i = 0; i < n; ++i) {
  2726. y[i] *= v;
  2727. }
  2728. #endif
  2729. }
  2730. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2731. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2732. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2733. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2734. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2735. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2736. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2737. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2738. static const float GELU_COEF_A = 0.044715f;
  2739. static const float GELU_QUICK_COEF = -1.702f;
  2740. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2741. inline static float ggml_gelu_f32(float x) {
  2742. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2743. }
  2744. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2745. const uint16_t * i16 = (const uint16_t *) x;
  2746. for (int i = 0; i < n; ++i) {
  2747. y[i] = table_gelu_f16[i16[i]];
  2748. }
  2749. }
  2750. #ifdef GGML_GELU_FP16
  2751. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2752. uint16_t t;
  2753. for (int i = 0; i < n; ++i) {
  2754. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2755. memcpy(&t, &fp16, sizeof(uint16_t));
  2756. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2757. }
  2758. }
  2759. #else
  2760. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2761. for (int i = 0; i < n; ++i) {
  2762. y[i] = ggml_gelu_f32(x[i]);
  2763. }
  2764. }
  2765. #endif
  2766. inline static float ggml_gelu_quick_f32(float x) {
  2767. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2768. }
  2769. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2770. // const uint16_t * i16 = (const uint16_t *) x;
  2771. // for (int i = 0; i < n; ++i) {
  2772. // y[i] = table_gelu_quick_f16[i16[i]];
  2773. // }
  2774. //}
  2775. #ifdef GGML_GELU_QUICK_FP16
  2776. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2777. uint16_t t;
  2778. for (int i = 0; i < n; ++i) {
  2779. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2780. memcpy(&t, &fp16, sizeof(uint16_t));
  2781. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2782. }
  2783. }
  2784. #else
  2785. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2786. for (int i = 0; i < n; ++i) {
  2787. y[i] = ggml_gelu_quick_f32(x[i]);
  2788. }
  2789. }
  2790. #endif
  2791. // Sigmoid Linear Unit (SiLU) function
  2792. inline static float ggml_silu_f32(float x) {
  2793. return x/(1.0f + expf(-x));
  2794. }
  2795. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2796. // const uint16_t * i16 = (const uint16_t *) x;
  2797. // for (int i = 0; i < n; ++i) {
  2798. // y[i] = table_silu_f16[i16[i]];
  2799. // }
  2800. //}
  2801. #ifdef GGML_SILU_FP16
  2802. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2803. uint16_t t;
  2804. for (int i = 0; i < n; ++i) {
  2805. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2806. memcpy(&t, &fp16, sizeof(uint16_t));
  2807. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2808. }
  2809. }
  2810. #else
  2811. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2812. for (int i = 0; i < n; ++i) {
  2813. y[i] = ggml_silu_f32(x[i]);
  2814. }
  2815. }
  2816. #endif
  2817. inline static float ggml_silu_backward_f32(float x, float dy) {
  2818. const float s = 1.0f/(1.0f + expf(-x));
  2819. return dy*s*(1.0f + x*(1.0f - s));
  2820. }
  2821. #ifdef GGML_SILU_FP16
  2822. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2823. for (int i = 0; i < n; ++i) {
  2824. // we did not use x[i] to compute forward silu but its f16 equivalent
  2825. // take derivative at f16 of x[i]:
  2826. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2827. float usedx = GGML_FP16_TO_FP32(fp16);
  2828. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2829. }
  2830. }
  2831. #else
  2832. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2833. for (int i = 0; i < n; ++i) {
  2834. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2835. }
  2836. }
  2837. #endif
  2838. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2839. #ifndef GGML_USE_ACCELERATE
  2840. ggml_float sum = 0.0;
  2841. for (int i = 0; i < n; ++i) {
  2842. sum += (ggml_float)x[i];
  2843. }
  2844. *s = sum;
  2845. #else
  2846. vDSP_sve(x, 1, s, n);
  2847. #endif
  2848. }
  2849. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2850. ggml_float sum = 0.0;
  2851. for (int i = 0; i < n; ++i) {
  2852. sum += (ggml_float)x[i];
  2853. }
  2854. *s = sum;
  2855. }
  2856. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2857. #ifndef GGML_USE_ACCELERATE
  2858. float max = -INFINITY;
  2859. for (int i = 0; i < n; ++i) {
  2860. max = MAX(max, x[i]);
  2861. }
  2862. *s = max;
  2863. #else
  2864. vDSP_maxv(x, 1, s, n);
  2865. #endif
  2866. }
  2867. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2868. ggml_vec_norm_f32(n, s, x);
  2869. *s = 1.f/(*s);
  2870. }
  2871. //
  2872. // logging
  2873. //
  2874. #if (GGML_DEBUG >= 1)
  2875. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2876. #else
  2877. #define GGML_PRINT_DEBUG(...)
  2878. #endif
  2879. #if (GGML_DEBUG >= 5)
  2880. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2881. #else
  2882. #define GGML_PRINT_DEBUG_5(...)
  2883. #endif
  2884. #if (GGML_DEBUG >= 10)
  2885. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2886. #else
  2887. #define GGML_PRINT_DEBUG_10(...)
  2888. #endif
  2889. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2890. //
  2891. // data types
  2892. //
  2893. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2894. [GGML_TYPE_F32] = 1,
  2895. [GGML_TYPE_F16] = 1,
  2896. [GGML_TYPE_Q4_0] = QK4_0,
  2897. [GGML_TYPE_Q4_1] = QK4_1,
  2898. [GGML_TYPE_Q5_0] = QK5_0,
  2899. [GGML_TYPE_Q5_1] = QK5_1,
  2900. [GGML_TYPE_Q8_0] = QK8_0,
  2901. [GGML_TYPE_Q8_1] = QK8_1,
  2902. #ifdef GGML_USE_K_QUANTS
  2903. [GGML_TYPE_Q2_K] = QK_K,
  2904. [GGML_TYPE_Q3_K] = QK_K,
  2905. [GGML_TYPE_Q4_K] = QK_K,
  2906. [GGML_TYPE_Q5_K] = QK_K,
  2907. [GGML_TYPE_Q6_K] = QK_K,
  2908. [GGML_TYPE_Q8_K] = QK_K,
  2909. #endif
  2910. [GGML_TYPE_I8] = 1,
  2911. [GGML_TYPE_I16] = 1,
  2912. [GGML_TYPE_I32] = 1,
  2913. };
  2914. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2915. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2916. [GGML_TYPE_F32] = sizeof(float),
  2917. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2918. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2919. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2920. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2921. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2922. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2923. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2924. #ifdef GGML_USE_K_QUANTS
  2925. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2926. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2927. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2928. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2929. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2930. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2931. #endif
  2932. [GGML_TYPE_I8] = sizeof(int8_t),
  2933. [GGML_TYPE_I16] = sizeof(int16_t),
  2934. [GGML_TYPE_I32] = sizeof(int32_t),
  2935. };
  2936. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2937. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2938. [GGML_TYPE_F32] = "f32",
  2939. [GGML_TYPE_F16] = "f16",
  2940. [GGML_TYPE_Q4_0] = "q4_0",
  2941. [GGML_TYPE_Q4_1] = "q4_1",
  2942. [GGML_TYPE_Q5_0] = "q5_0",
  2943. [GGML_TYPE_Q5_1] = "q5_1",
  2944. [GGML_TYPE_Q8_0] = "q8_0",
  2945. [GGML_TYPE_Q8_1] = "q8_1",
  2946. [GGML_TYPE_Q2_K] = "q2_K",
  2947. [GGML_TYPE_Q3_K] = "q3_K",
  2948. [GGML_TYPE_Q4_K] = "q4_K",
  2949. [GGML_TYPE_Q5_K] = "q5_K",
  2950. [GGML_TYPE_Q6_K] = "q6_K",
  2951. [GGML_TYPE_Q8_K] = "q8_K",
  2952. [GGML_TYPE_I8] = "i8",
  2953. [GGML_TYPE_I16] = "i16",
  2954. [GGML_TYPE_I32] = "i32",
  2955. };
  2956. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2957. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2958. [GGML_TYPE_F32] = false,
  2959. [GGML_TYPE_F16] = false,
  2960. [GGML_TYPE_Q4_0] = true,
  2961. [GGML_TYPE_Q4_1] = true,
  2962. [GGML_TYPE_Q5_0] = true,
  2963. [GGML_TYPE_Q5_1] = true,
  2964. [GGML_TYPE_Q8_0] = true,
  2965. [GGML_TYPE_Q8_1] = true,
  2966. [GGML_TYPE_Q2_K] = true,
  2967. [GGML_TYPE_Q3_K] = true,
  2968. [GGML_TYPE_Q4_K] = true,
  2969. [GGML_TYPE_Q5_K] = true,
  2970. [GGML_TYPE_Q6_K] = true,
  2971. [GGML_TYPE_Q8_K] = true,
  2972. [GGML_TYPE_I8] = false,
  2973. [GGML_TYPE_I16] = false,
  2974. [GGML_TYPE_I32] = false,
  2975. };
  2976. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2977. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2978. "NONE",
  2979. "DUP",
  2980. "ADD",
  2981. "ADD1",
  2982. "ACC",
  2983. "SUB",
  2984. "MUL",
  2985. "DIV",
  2986. "SQR",
  2987. "SQRT",
  2988. "LOG",
  2989. "SUM",
  2990. "SUM_ROWS",
  2991. "MEAN",
  2992. "REPEAT",
  2993. "REPEAT_BACK",
  2994. "ABS",
  2995. "SGN",
  2996. "NEG",
  2997. "STEP",
  2998. "RELU",
  2999. "GELU",
  3000. "GELU_QUICK",
  3001. "SILU",
  3002. "SILU_BACK",
  3003. "NORM",
  3004. "RMS_NORM",
  3005. "RMS_NORM_BACK",
  3006. "MUL_MAT",
  3007. "OUT_PROD",
  3008. "SCALE",
  3009. "SET",
  3010. "CPY",
  3011. "CONT",
  3012. "RESHAPE",
  3013. "VIEW",
  3014. "PERMUTE",
  3015. "TRANSPOSE",
  3016. "GET_ROWS",
  3017. "GET_ROWS_BACK",
  3018. "DIAG",
  3019. "DIAG_MASK_INF",
  3020. "DIAG_MASK_ZERO",
  3021. "SOFT_MAX",
  3022. "SOFT_MAX_BACK",
  3023. "ROPE",
  3024. "ROPE_BACK",
  3025. "ALIBI",
  3026. "CLAMP",
  3027. "CONV_1D_S1_PH",
  3028. "CONV_1D_S2_PH",
  3029. "CONV_2D_SK_P0",
  3030. "FLASH_ATTN",
  3031. "FLASH_FF",
  3032. "FLASH_ATTN_BACK",
  3033. "WIN_PART",
  3034. "WIN_UNPART",
  3035. "MAP_UNARY",
  3036. "MAP_BINARY",
  3037. "CROSS_ENTROPY_LOSS",
  3038. "CROSS_ENTROPY_LOSS_BACK",
  3039. };
  3040. static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61");
  3041. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3042. "none",
  3043. "x",
  3044. "x+y",
  3045. "x+y",
  3046. "view(x,nb,offset)+=y->x",
  3047. "x-y",
  3048. "x*y",
  3049. "x/y",
  3050. "x^2",
  3051. "√x",
  3052. "log(x)",
  3053. "Σx",
  3054. "Σx_k",
  3055. "Σx/n",
  3056. "repeat(x)",
  3057. "repeat_back(x)",
  3058. "abs(x)",
  3059. "sgn(x)",
  3060. "-x",
  3061. "step(x)",
  3062. "relu(x)",
  3063. "gelu(x)",
  3064. "gelu_quick(x)",
  3065. "silu(x)",
  3066. "silu_back(x)",
  3067. "norm(x)",
  3068. "rms_norm(x)",
  3069. "rms_norm_back(x)",
  3070. "X*Y",
  3071. "X*Y",
  3072. "x*v",
  3073. "y-\\>view(x)",
  3074. "x-\\>y",
  3075. "cont(x)",
  3076. "reshape(x)",
  3077. "view(x)",
  3078. "permute(x)",
  3079. "transpose(x)",
  3080. "get_rows(x)",
  3081. "get_rows_back(x)",
  3082. "diag(x)",
  3083. "diag_mask_inf(x)",
  3084. "diag_mask_zero(x)",
  3085. "soft_max(x)",
  3086. "soft_max_back(x)",
  3087. "rope(x)",
  3088. "rope_back(x)",
  3089. "alibi(x)",
  3090. "clamp(x)",
  3091. "conv_1d_s1_ph(x)",
  3092. "conv_1d_s2_ph(x)",
  3093. "conv_2d_sk_p0(x)",
  3094. "flash_attn(x)",
  3095. "flash_ff(x)",
  3096. "flash_attn_back(x)",
  3097. "win_part(x)",
  3098. "win_unpart(x)",
  3099. "f(x)",
  3100. "f(x,y)",
  3101. "cross_entropy_loss(x,y)",
  3102. "cross_entropy_loss_back(x,y)",
  3103. };
  3104. static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61");
  3105. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3106. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3107. //
  3108. // ggml context
  3109. //
  3110. struct ggml_context {
  3111. size_t mem_size;
  3112. void * mem_buffer;
  3113. bool mem_buffer_owned;
  3114. bool no_alloc;
  3115. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3116. int n_objects;
  3117. struct ggml_object * objects_begin;
  3118. struct ggml_object * objects_end;
  3119. struct ggml_scratch scratch;
  3120. struct ggml_scratch scratch_save;
  3121. };
  3122. struct ggml_context_container {
  3123. bool used;
  3124. struct ggml_context context;
  3125. };
  3126. //
  3127. // ggml state
  3128. //
  3129. struct ggml_state {
  3130. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3131. };
  3132. // global state
  3133. static struct ggml_state g_state;
  3134. static atomic_int g_state_barrier = 0;
  3135. // barrier via spin lock
  3136. inline static void ggml_critical_section_start(void) {
  3137. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3138. while (processing > 0) {
  3139. // wait for other threads to finish
  3140. atomic_fetch_sub(&g_state_barrier, 1);
  3141. sched_yield(); // TODO: reconsider this
  3142. processing = atomic_fetch_add(&g_state_barrier, 1);
  3143. }
  3144. }
  3145. // TODO: make this somehow automatically executed
  3146. // some sort of "sentry" mechanism
  3147. inline static void ggml_critical_section_end(void) {
  3148. atomic_fetch_sub(&g_state_barrier, 1);
  3149. }
  3150. ////////////////////////////////////////////////////////////////////////////////
  3151. void ggml_print_object(const struct ggml_object * obj) {
  3152. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3153. obj->offs, obj->size, (const void *) obj->next);
  3154. }
  3155. void ggml_print_objects(const struct ggml_context * ctx) {
  3156. struct ggml_object * obj = ctx->objects_begin;
  3157. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3158. while (obj != NULL) {
  3159. ggml_print_object(obj);
  3160. obj = obj->next;
  3161. }
  3162. GGML_PRINT("%s: --- end ---\n", __func__);
  3163. }
  3164. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3165. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3166. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3167. }
  3168. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3169. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3170. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3171. }
  3172. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3174. // this should handle cases where the tensor is not contiguous in memory
  3175. // probaby just:
  3176. //
  3177. // return tensor->ne[3]*tensor->nb[3]
  3178. //
  3179. // is enough, but just in case, adding the second part
  3180. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3181. }
  3182. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3183. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3184. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3185. }
  3186. int ggml_blck_size(enum ggml_type type) {
  3187. return GGML_BLCK_SIZE[type];
  3188. }
  3189. size_t ggml_type_size(enum ggml_type type) {
  3190. return GGML_TYPE_SIZE[type];
  3191. }
  3192. float ggml_type_sizef(enum ggml_type type) {
  3193. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3194. }
  3195. const char * ggml_type_name(enum ggml_type type) {
  3196. return GGML_TYPE_NAME[type];
  3197. }
  3198. const char * ggml_op_name(enum ggml_op op) {
  3199. return GGML_OP_NAME[op];
  3200. }
  3201. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3202. return GGML_TYPE_SIZE[tensor->type];
  3203. }
  3204. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3205. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3206. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3207. }
  3208. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3209. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3210. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3211. }
  3212. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3213. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3214. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3215. }
  3216. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3217. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3218. return
  3219. (t0->ne[0] == t1->ne[0]) &&
  3220. (t0->ne[2] == t1->ne[2]) &&
  3221. (t0->ne[3] == t1->ne[3]);
  3222. }
  3223. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3224. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3225. return
  3226. (t0->ne[1] == t1->ne[1]) &&
  3227. (t0->ne[2] == t1->ne[2]) &&
  3228. (t0->ne[3] == t1->ne[3]);
  3229. }
  3230. bool ggml_is_quantized(enum ggml_type type) {
  3231. return GGML_IS_QUANTIZED[type];
  3232. }
  3233. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3234. enum ggml_type wtype = GGML_TYPE_COUNT;
  3235. switch (ftype) {
  3236. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3237. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3238. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3239. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3240. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3241. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3242. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3243. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3244. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3245. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3246. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3247. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3248. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3249. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3250. }
  3251. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3252. return wtype;
  3253. }
  3254. size_t ggml_tensor_overhead(void) {
  3255. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3256. }
  3257. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3258. return tensor->nb[0] > tensor->nb[1];
  3259. }
  3260. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3261. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3262. return
  3263. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3264. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3265. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3266. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3267. }
  3268. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3269. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3270. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3271. }
  3272. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3273. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3274. return
  3275. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3276. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3277. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3278. }
  3279. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3280. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3281. return
  3282. (t0->ne[0] == t1->ne[0] ) &&
  3283. (t0->ne[1] == t1->ne[1] ) &&
  3284. (t0->ne[2] == t1->ne[2] ) &&
  3285. (t0->ne[3] == t1->ne[3] );
  3286. }
  3287. // check if t1 can be represented as a repeatition of t0
  3288. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3289. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3290. return
  3291. (t1->ne[0]%t0->ne[0] == 0) &&
  3292. (t1->ne[1]%t0->ne[1] == 0) &&
  3293. (t1->ne[2]%t0->ne[2] == 0) &&
  3294. (t1->ne[3]%t0->ne[3] == 0);
  3295. }
  3296. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3297. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3298. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3299. }
  3300. static inline int ggml_up32(int n) {
  3301. return (n + 31) & ~31;
  3302. }
  3303. //static inline int ggml_up64(int n) {
  3304. // return (n + 63) & ~63;
  3305. //}
  3306. static inline int ggml_up(int n, int m) {
  3307. // assert m is a power of 2
  3308. GGML_ASSERT((m & (m - 1)) == 0);
  3309. return (n + m - 1) & ~(m - 1);
  3310. }
  3311. // assert that pointer is aligned to GGML_MEM_ALIGN
  3312. #define ggml_assert_aligned(ptr) \
  3313. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3314. ////////////////////////////////////////////////////////////////////////////////
  3315. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3316. // make this function thread safe
  3317. ggml_critical_section_start();
  3318. static bool is_first_call = true;
  3319. if (is_first_call) {
  3320. // initialize time system (required on Windows)
  3321. ggml_time_init();
  3322. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3323. {
  3324. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3325. ggml_fp16_t ii;
  3326. for (int i = 0; i < (1 << 16); ++i) {
  3327. uint16_t ui = i;
  3328. memcpy(&ii, &ui, sizeof(ii));
  3329. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3330. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3331. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3332. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3333. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3334. }
  3335. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3336. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3337. }
  3338. // initialize g_state
  3339. {
  3340. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3341. g_state = (struct ggml_state) {
  3342. /*.contexts =*/ { { 0 } },
  3343. };
  3344. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3345. g_state.contexts[i].used = false;
  3346. }
  3347. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3348. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3349. }
  3350. #if defined(GGML_USE_CUBLAS)
  3351. ggml_init_cublas();
  3352. #elif defined(GGML_USE_CLBLAST)
  3353. ggml_cl_init();
  3354. #endif
  3355. is_first_call = false;
  3356. }
  3357. // find non-used context in g_state
  3358. struct ggml_context * ctx = NULL;
  3359. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3360. if (!g_state.contexts[i].used) {
  3361. g_state.contexts[i].used = true;
  3362. ctx = &g_state.contexts[i].context;
  3363. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3364. break;
  3365. }
  3366. }
  3367. if (ctx == NULL) {
  3368. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3369. ggml_critical_section_end();
  3370. return NULL;
  3371. }
  3372. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3373. *ctx = (struct ggml_context) {
  3374. /*.mem_size =*/ mem_size,
  3375. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3376. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3377. /*.no_alloc =*/ params.no_alloc,
  3378. /*.no_alloc_save =*/ params.no_alloc,
  3379. /*.n_objects =*/ 0,
  3380. /*.objects_begin =*/ NULL,
  3381. /*.objects_end =*/ NULL,
  3382. /*.scratch =*/ { 0, 0, NULL, },
  3383. /*.scratch_save =*/ { 0, 0, NULL, },
  3384. };
  3385. GGML_ASSERT(ctx->mem_buffer != NULL);
  3386. ggml_assert_aligned(ctx->mem_buffer);
  3387. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3388. ggml_critical_section_end();
  3389. return ctx;
  3390. }
  3391. void ggml_free(struct ggml_context * ctx) {
  3392. // make this function thread safe
  3393. ggml_critical_section_start();
  3394. bool found = false;
  3395. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3396. if (&g_state.contexts[i].context == ctx) {
  3397. g_state.contexts[i].used = false;
  3398. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3399. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3400. if (ctx->mem_buffer_owned) {
  3401. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3402. }
  3403. found = true;
  3404. break;
  3405. }
  3406. }
  3407. if (!found) {
  3408. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3409. }
  3410. ggml_critical_section_end();
  3411. }
  3412. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3413. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3414. }
  3415. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3416. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3417. ctx->scratch = scratch;
  3418. return result;
  3419. }
  3420. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3421. ctx->no_alloc = no_alloc;
  3422. }
  3423. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3424. return ctx->mem_buffer;
  3425. }
  3426. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3427. return ctx->mem_size;
  3428. }
  3429. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3430. size_t max_size = 0;
  3431. struct ggml_object * obj = ctx->objects_begin;
  3432. while (obj != NULL) {
  3433. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3434. const size_t size = ggml_nbytes(tensor);
  3435. if (max_size < size) {
  3436. max_size = size;
  3437. }
  3438. obj = obj->next;
  3439. }
  3440. return max_size;
  3441. }
  3442. // IMPORTANT:
  3443. // when creating "opt" tensors, always save and load the scratch buffer
  3444. // this is an error prone process, but it is necessary to support inplace
  3445. // operators when using scratch buffers
  3446. // TODO: implement a better way
  3447. void ggml_scratch_save(struct ggml_context * ctx) {
  3448. // this is needed to allow opt tensors to store their data
  3449. // TODO: again, need to find a better way
  3450. ctx->no_alloc_save = ctx->no_alloc;
  3451. ctx->no_alloc = false;
  3452. ctx->scratch_save = ctx->scratch;
  3453. ctx->scratch.data = NULL;
  3454. }
  3455. void ggml_scratch_load(struct ggml_context * ctx) {
  3456. ctx->no_alloc = ctx->no_alloc_save;
  3457. ctx->scratch = ctx->scratch_save;
  3458. }
  3459. ////////////////////////////////////////////////////////////////////////////////
  3460. struct ggml_tensor * ggml_new_tensor_impl(
  3461. struct ggml_context * ctx,
  3462. enum ggml_type type,
  3463. int n_dims,
  3464. const int64_t* ne,
  3465. void* data) {
  3466. // always insert objects at the end of the context's memory pool
  3467. struct ggml_object * obj_cur = ctx->objects_end;
  3468. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3469. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3470. const size_t cur_end = cur_offs + cur_size;
  3471. size_t size_needed = 0;
  3472. if (data == NULL && !ctx->no_alloc) {
  3473. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3474. for (int i = 1; i < n_dims; i++) {
  3475. size_needed *= ne[i];
  3476. }
  3477. // align to GGML_MEM_ALIGN
  3478. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3479. }
  3480. char * const mem_buffer = ctx->mem_buffer;
  3481. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3482. if (ctx->scratch.data == NULL || data != NULL) {
  3483. size_needed += GGML_TENSOR_SIZE;
  3484. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3485. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3486. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3487. assert(false);
  3488. return NULL;
  3489. }
  3490. *obj_new = (struct ggml_object) {
  3491. .offs = cur_end + GGML_OBJECT_SIZE,
  3492. .size = size_needed,
  3493. .next = NULL,
  3494. };
  3495. } else {
  3496. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3497. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3498. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3499. assert(false);
  3500. return NULL;
  3501. }
  3502. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3503. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3504. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3505. assert(false);
  3506. return NULL;
  3507. }
  3508. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3509. *obj_new = (struct ggml_object) {
  3510. .offs = cur_end + GGML_OBJECT_SIZE,
  3511. .size = GGML_TENSOR_SIZE,
  3512. .next = NULL,
  3513. };
  3514. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3515. ctx->scratch.offs += size_needed;
  3516. }
  3517. if (obj_cur != NULL) {
  3518. obj_cur->next = obj_new;
  3519. } else {
  3520. // this is the first object in this context
  3521. ctx->objects_begin = obj_new;
  3522. }
  3523. ctx->objects_end = obj_new;
  3524. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3525. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3526. ggml_assert_aligned(result);
  3527. *result = (struct ggml_tensor) {
  3528. /*.type =*/ type,
  3529. /*.backend =*/ GGML_BACKEND_CPU,
  3530. /*.n_dims =*/ n_dims,
  3531. /*.ne =*/ { 1, 1, 1, 1 },
  3532. /*.nb =*/ { 0, 0, 0, 0 },
  3533. /*.op =*/ GGML_OP_NONE,
  3534. /*.is_param =*/ false,
  3535. /*.grad =*/ NULL,
  3536. /*.src0 =*/ NULL,
  3537. /*.src1 =*/ NULL,
  3538. /*.opt =*/ { NULL },
  3539. /*.n_tasks =*/ 0,
  3540. /*.perf_runs =*/ 0,
  3541. /*.perf_cycles =*/ 0,
  3542. /*.perf_time_us =*/ 0,
  3543. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3544. /*.name =*/ { 0 },
  3545. /*.extra =*/ NULL,
  3546. /*.pad =*/ { 0 },
  3547. };
  3548. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3549. //ggml_assert_aligned(result->data);
  3550. for (int i = 0; i < n_dims; i++) {
  3551. result->ne[i] = ne[i];
  3552. }
  3553. result->nb[0] = GGML_TYPE_SIZE[type];
  3554. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3555. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3556. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3557. }
  3558. ctx->n_objects++;
  3559. return result;
  3560. }
  3561. struct ggml_tensor * ggml_new_tensor(
  3562. struct ggml_context * ctx,
  3563. enum ggml_type type,
  3564. int n_dims,
  3565. const int64_t * ne) {
  3566. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3567. }
  3568. struct ggml_tensor * ggml_new_tensor_1d(
  3569. struct ggml_context * ctx,
  3570. enum ggml_type type,
  3571. int64_t ne0) {
  3572. return ggml_new_tensor(ctx, type, 1, &ne0);
  3573. }
  3574. struct ggml_tensor * ggml_new_tensor_2d(
  3575. struct ggml_context * ctx,
  3576. enum ggml_type type,
  3577. int64_t ne0,
  3578. int64_t ne1) {
  3579. const int64_t ne[2] = { ne0, ne1 };
  3580. return ggml_new_tensor(ctx, type, 2, ne);
  3581. }
  3582. struct ggml_tensor * ggml_new_tensor_3d(
  3583. struct ggml_context * ctx,
  3584. enum ggml_type type,
  3585. int64_t ne0,
  3586. int64_t ne1,
  3587. int64_t ne2) {
  3588. const int64_t ne[3] = { ne0, ne1, ne2 };
  3589. return ggml_new_tensor(ctx, type, 3, ne);
  3590. }
  3591. struct ggml_tensor * ggml_new_tensor_4d(
  3592. struct ggml_context * ctx,
  3593. enum ggml_type type,
  3594. int64_t ne0,
  3595. int64_t ne1,
  3596. int64_t ne2,
  3597. int64_t ne3) {
  3598. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3599. return ggml_new_tensor(ctx, type, 4, ne);
  3600. }
  3601. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3602. ggml_scratch_save(ctx);
  3603. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3604. ggml_scratch_load(ctx);
  3605. ggml_set_i32(result, value);
  3606. return result;
  3607. }
  3608. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3609. ggml_scratch_save(ctx);
  3610. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3611. ggml_scratch_load(ctx);
  3612. ggml_set_f32(result, value);
  3613. return result;
  3614. }
  3615. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3616. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3617. }
  3618. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3619. memset(tensor->data, 0, ggml_nbytes(tensor));
  3620. return tensor;
  3621. }
  3622. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3623. const int n = ggml_nrows(tensor);
  3624. const int nc = tensor->ne[0];
  3625. const size_t n1 = tensor->nb[1];
  3626. char * const data = tensor->data;
  3627. switch (tensor->type) {
  3628. case GGML_TYPE_I8:
  3629. {
  3630. assert(tensor->nb[0] == sizeof(int8_t));
  3631. for (int i = 0; i < n; i++) {
  3632. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3633. }
  3634. } break;
  3635. case GGML_TYPE_I16:
  3636. {
  3637. assert(tensor->nb[0] == sizeof(int16_t));
  3638. for (int i = 0; i < n; i++) {
  3639. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3640. }
  3641. } break;
  3642. case GGML_TYPE_I32:
  3643. {
  3644. assert(tensor->nb[0] == sizeof(int32_t));
  3645. for (int i = 0; i < n; i++) {
  3646. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3647. }
  3648. } break;
  3649. case GGML_TYPE_F16:
  3650. {
  3651. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3652. for (int i = 0; i < n; i++) {
  3653. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3654. }
  3655. } break;
  3656. case GGML_TYPE_F32:
  3657. {
  3658. assert(tensor->nb[0] == sizeof(float));
  3659. for (int i = 0; i < n; i++) {
  3660. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3661. }
  3662. } break;
  3663. default:
  3664. {
  3665. GGML_ASSERT(false);
  3666. } break;
  3667. }
  3668. return tensor;
  3669. }
  3670. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3671. const int n = ggml_nrows(tensor);
  3672. const int nc = tensor->ne[0];
  3673. const size_t n1 = tensor->nb[1];
  3674. char * const data = tensor->data;
  3675. switch (tensor->type) {
  3676. case GGML_TYPE_I8:
  3677. {
  3678. assert(tensor->nb[0] == sizeof(int8_t));
  3679. for (int i = 0; i < n; i++) {
  3680. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3681. }
  3682. } break;
  3683. case GGML_TYPE_I16:
  3684. {
  3685. assert(tensor->nb[0] == sizeof(int16_t));
  3686. for (int i = 0; i < n; i++) {
  3687. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3688. }
  3689. } break;
  3690. case GGML_TYPE_I32:
  3691. {
  3692. assert(tensor->nb[0] == sizeof(int32_t));
  3693. for (int i = 0; i < n; i++) {
  3694. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3695. }
  3696. } break;
  3697. case GGML_TYPE_F16:
  3698. {
  3699. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3700. for (int i = 0; i < n; i++) {
  3701. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3702. }
  3703. } break;
  3704. case GGML_TYPE_F32:
  3705. {
  3706. assert(tensor->nb[0] == sizeof(float));
  3707. for (int i = 0; i < n; i++) {
  3708. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3709. }
  3710. } break;
  3711. default:
  3712. {
  3713. GGML_ASSERT(false);
  3714. } break;
  3715. }
  3716. return tensor;
  3717. }
  3718. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3719. switch (tensor->type) {
  3720. case GGML_TYPE_I8:
  3721. {
  3722. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3723. return ((int8_t *)(tensor->data))[i];
  3724. } break;
  3725. case GGML_TYPE_I16:
  3726. {
  3727. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3728. return ((int16_t *)(tensor->data))[i];
  3729. } break;
  3730. case GGML_TYPE_I32:
  3731. {
  3732. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3733. return ((int32_t *)(tensor->data))[i];
  3734. } break;
  3735. case GGML_TYPE_F16:
  3736. {
  3737. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3738. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3739. } break;
  3740. case GGML_TYPE_F32:
  3741. {
  3742. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3743. return ((float *)(tensor->data))[i];
  3744. } break;
  3745. default:
  3746. {
  3747. GGML_ASSERT(false);
  3748. } break;
  3749. }
  3750. return 0.0f;
  3751. }
  3752. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3753. switch (tensor->type) {
  3754. case GGML_TYPE_I8:
  3755. {
  3756. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3757. ((int8_t *)(tensor->data))[i] = value;
  3758. } break;
  3759. case GGML_TYPE_I16:
  3760. {
  3761. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3762. ((int16_t *)(tensor->data))[i] = value;
  3763. } break;
  3764. case GGML_TYPE_I32:
  3765. {
  3766. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3767. ((int32_t *)(tensor->data))[i] = value;
  3768. } break;
  3769. case GGML_TYPE_F16:
  3770. {
  3771. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3772. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3773. } break;
  3774. case GGML_TYPE_F32:
  3775. {
  3776. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3777. ((float *)(tensor->data))[i] = value;
  3778. } break;
  3779. default:
  3780. {
  3781. GGML_ASSERT(false);
  3782. } break;
  3783. }
  3784. }
  3785. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3786. switch (tensor->type) {
  3787. case GGML_TYPE_I8:
  3788. {
  3789. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3790. return ((int8_t *)(tensor->data))[i];
  3791. } break;
  3792. case GGML_TYPE_I16:
  3793. {
  3794. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3795. return ((int16_t *)(tensor->data))[i];
  3796. } break;
  3797. case GGML_TYPE_I32:
  3798. {
  3799. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3800. return ((int32_t *)(tensor->data))[i];
  3801. } break;
  3802. case GGML_TYPE_F16:
  3803. {
  3804. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3805. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3806. } break;
  3807. case GGML_TYPE_F32:
  3808. {
  3809. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3810. return ((float *)(tensor->data))[i];
  3811. } break;
  3812. default:
  3813. {
  3814. GGML_ASSERT(false);
  3815. } break;
  3816. }
  3817. return 0.0f;
  3818. }
  3819. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3820. switch (tensor->type) {
  3821. case GGML_TYPE_I8:
  3822. {
  3823. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3824. ((int8_t *)(tensor->data))[i] = value;
  3825. } break;
  3826. case GGML_TYPE_I16:
  3827. {
  3828. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3829. ((int16_t *)(tensor->data))[i] = value;
  3830. } break;
  3831. case GGML_TYPE_I32:
  3832. {
  3833. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3834. ((int32_t *)(tensor->data))[i] = value;
  3835. } break;
  3836. case GGML_TYPE_F16:
  3837. {
  3838. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3839. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3840. } break;
  3841. case GGML_TYPE_F32:
  3842. {
  3843. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3844. ((float *)(tensor->data))[i] = value;
  3845. } break;
  3846. default:
  3847. {
  3848. GGML_ASSERT(false);
  3849. } break;
  3850. }
  3851. }
  3852. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3853. return tensor->data;
  3854. }
  3855. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3856. assert(tensor->type == GGML_TYPE_F32);
  3857. return (float *)(tensor->data);
  3858. }
  3859. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3860. return tensor->name;
  3861. }
  3862. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3863. strncpy(tensor->name, name, sizeof(tensor->name));
  3864. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3865. return tensor;
  3866. }
  3867. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3868. va_list args;
  3869. va_start(args, fmt);
  3870. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3871. va_end(args);
  3872. return tensor;
  3873. }
  3874. struct ggml_tensor * ggml_view_tensor(
  3875. struct ggml_context * ctx,
  3876. const struct ggml_tensor * src) {
  3877. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3878. ggml_format_name(result, "%s (view)", src->name);
  3879. result->nb[0] = src->nb[0];
  3880. result->nb[1] = src->nb[1];
  3881. result->nb[2] = src->nb[2];
  3882. result->nb[3] = src->nb[3];
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3886. struct ggml_object * obj = ctx->objects_begin;
  3887. char * const mem_buffer = ctx->mem_buffer;
  3888. while (obj != NULL) {
  3889. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3890. if (strcmp(cur->name, name) == 0) {
  3891. return cur;
  3892. }
  3893. obj = obj->next;
  3894. }
  3895. return NULL;
  3896. }
  3897. ////////////////////////////////////////////////////////////////////////////////
  3898. // ggml_dup
  3899. struct ggml_tensor * ggml_dup_impl(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a,
  3902. bool inplace) {
  3903. bool is_node = false;
  3904. if (!inplace && (a->grad)) {
  3905. is_node = true;
  3906. }
  3907. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3908. result->op = GGML_OP_DUP;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src0 = a;
  3911. result->src1 = NULL;
  3912. return result;
  3913. }
  3914. struct ggml_tensor * ggml_dup(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a) {
  3917. return ggml_dup_impl(ctx, a, false);
  3918. }
  3919. struct ggml_tensor * ggml_dup_inplace(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a) {
  3922. return ggml_dup_impl(ctx, a, true);
  3923. }
  3924. // ggml_add
  3925. struct ggml_tensor * ggml_add_impl(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. struct ggml_tensor * b,
  3929. bool inplace) {
  3930. GGML_ASSERT(ggml_are_same_shape(a, b));
  3931. bool is_node = false;
  3932. if (a->grad || b->grad) {
  3933. is_node = true;
  3934. }
  3935. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3936. result->op = GGML_OP_ADD;
  3937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3938. result->src0 = a;
  3939. result->src1 = b;
  3940. return result;
  3941. }
  3942. struct ggml_tensor * ggml_add(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b) {
  3946. return ggml_add_impl(ctx, a, b, false);
  3947. }
  3948. struct ggml_tensor * ggml_add_inplace(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. struct ggml_tensor * b) {
  3952. return ggml_add_impl(ctx, a, b, true);
  3953. }
  3954. // ggml_add1
  3955. struct ggml_tensor * ggml_add1_impl(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a,
  3958. struct ggml_tensor * b,
  3959. bool inplace) {
  3960. GGML_ASSERT(ggml_is_scalar(b));
  3961. GGML_ASSERT(ggml_is_padded_1d(a));
  3962. bool is_node = false;
  3963. if (a->grad || b->grad) {
  3964. is_node = true;
  3965. }
  3966. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3967. result->op = GGML_OP_ADD1;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src0 = a;
  3970. result->src1 = b;
  3971. return result;
  3972. }
  3973. struct ggml_tensor * ggml_add1(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. struct ggml_tensor * b) {
  3977. return ggml_add1_impl(ctx, a, b, false);
  3978. }
  3979. struct ggml_tensor * ggml_add1_inplace(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. struct ggml_tensor * b) {
  3983. return ggml_add1_impl(ctx, a, b, true);
  3984. }
  3985. // ggml_acc
  3986. struct ggml_tensor * ggml_acc_impl(
  3987. struct ggml_context * ctx,
  3988. struct ggml_tensor * a,
  3989. struct ggml_tensor * b,
  3990. size_t nb1,
  3991. size_t nb2,
  3992. size_t nb3,
  3993. size_t offset,
  3994. bool inplace) {
  3995. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3996. GGML_ASSERT(ggml_is_contiguous(a));
  3997. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3998. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3999. bool is_node = false;
  4000. if (!inplace && (a->grad || b->grad)) {
  4001. is_node = true;
  4002. }
  4003. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4004. ggml_scratch_save(ctx);
  4005. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4006. ((int32_t *) c->data)[0] = nb1;
  4007. ((int32_t *) c->data)[1] = nb2;
  4008. ((int32_t *) c->data)[2] = nb3;
  4009. ((int32_t *) c->data)[3] = offset;
  4010. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4011. ggml_scratch_load(ctx);
  4012. result->op = GGML_OP_ACC;
  4013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4014. result->src0 = a;
  4015. result->src1 = b;
  4016. result->opt[0] = c;
  4017. return result;
  4018. }
  4019. struct ggml_tensor * ggml_acc(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. struct ggml_tensor * b,
  4023. size_t nb1,
  4024. size_t nb2,
  4025. size_t nb3,
  4026. size_t offset) {
  4027. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4028. }
  4029. struct ggml_tensor * ggml_acc_inplace(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. struct ggml_tensor * b,
  4033. size_t nb1,
  4034. size_t nb2,
  4035. size_t nb3,
  4036. size_t offset) {
  4037. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4038. }
  4039. // ggml_sub
  4040. struct ggml_tensor * ggml_sub_impl(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. struct ggml_tensor * b,
  4044. bool inplace) {
  4045. GGML_ASSERT(ggml_are_same_shape(a, b));
  4046. bool is_node = false;
  4047. if (!inplace && (a->grad || b->grad)) {
  4048. is_node = true;
  4049. }
  4050. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4051. result->op = GGML_OP_SUB;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src0 = a;
  4054. result->src1 = b;
  4055. return result;
  4056. }
  4057. struct ggml_tensor * ggml_sub(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. struct ggml_tensor * b) {
  4061. return ggml_sub_impl(ctx, a, b, false);
  4062. }
  4063. struct ggml_tensor * ggml_sub_inplace(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. struct ggml_tensor * b) {
  4067. return ggml_sub_impl(ctx, a, b, true);
  4068. }
  4069. // ggml_mul
  4070. struct ggml_tensor * ggml_mul_impl(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. struct ggml_tensor * b,
  4074. bool inplace) {
  4075. // TODO: support less-strict constraint
  4076. // GGML_ASSERT(ggml_can_repeat(b, a));
  4077. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4078. bool is_node = false;
  4079. if (!inplace && (a->grad || b->grad)) {
  4080. // TODO: support backward pass for broadcasting
  4081. GGML_ASSERT(ggml_are_same_shape(a, b));
  4082. is_node = true;
  4083. }
  4084. if (inplace) {
  4085. GGML_ASSERT(is_node == false);
  4086. }
  4087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4088. result->op = GGML_OP_MUL;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src0 = a;
  4091. result->src1 = b;
  4092. return result;
  4093. }
  4094. struct ggml_tensor * ggml_mul(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a,
  4097. struct ggml_tensor * b) {
  4098. return ggml_mul_impl(ctx, a, b, false);
  4099. }
  4100. struct ggml_tensor * ggml_mul_inplace(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. struct ggml_tensor * b) {
  4104. return ggml_mul_impl(ctx, a, b, true);
  4105. }
  4106. // ggml_div
  4107. struct ggml_tensor * ggml_div_impl(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. struct ggml_tensor * b,
  4111. bool inplace) {
  4112. GGML_ASSERT(ggml_are_same_shape(a, b));
  4113. bool is_node = false;
  4114. if (!inplace && (a->grad || b->grad)) {
  4115. is_node = true;
  4116. }
  4117. if (inplace) {
  4118. GGML_ASSERT(is_node == false);
  4119. }
  4120. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4121. result->op = GGML_OP_DIV;
  4122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4123. result->src0 = a;
  4124. result->src1 = b;
  4125. return result;
  4126. }
  4127. struct ggml_tensor * ggml_div(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. struct ggml_tensor * b) {
  4131. return ggml_div_impl(ctx, a, b, false);
  4132. }
  4133. struct ggml_tensor * ggml_div_inplace(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. struct ggml_tensor * b) {
  4137. return ggml_div_impl(ctx, a, b, true);
  4138. }
  4139. // ggml_sqr
  4140. struct ggml_tensor * ggml_sqr_impl(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. bool inplace) {
  4144. bool is_node = false;
  4145. if (!inplace && (a->grad)) {
  4146. is_node = true;
  4147. }
  4148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4149. result->op = GGML_OP_SQR;
  4150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4151. result->src0 = a;
  4152. result->src1 = NULL;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_sqr(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a) {
  4158. return ggml_sqr_impl(ctx, a, false);
  4159. }
  4160. struct ggml_tensor * ggml_sqr_inplace(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_sqr_impl(ctx, a, true);
  4164. }
  4165. // ggml_sqrt
  4166. struct ggml_tensor * ggml_sqrt_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. bool inplace) {
  4170. bool is_node = false;
  4171. if (!inplace && (a->grad)) {
  4172. is_node = true;
  4173. }
  4174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4175. result->op = GGML_OP_SQRT;
  4176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4177. result->src0 = a;
  4178. result->src1 = NULL;
  4179. return result;
  4180. }
  4181. struct ggml_tensor * ggml_sqrt(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_sqrt_impl(ctx, a, false);
  4185. }
  4186. struct ggml_tensor * ggml_sqrt_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_sqrt_impl(ctx, a, true);
  4190. }
  4191. // ggml_log
  4192. struct ggml_tensor * ggml_log_impl(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. bool inplace) {
  4196. bool is_node = false;
  4197. if (!inplace && (a->grad)) {
  4198. is_node = true;
  4199. }
  4200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4201. result->op = GGML_OP_LOG;
  4202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4203. result->src0 = a;
  4204. result->src1 = NULL;
  4205. return result;
  4206. }
  4207. struct ggml_tensor * ggml_log(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_log_impl(ctx, a, false);
  4211. }
  4212. struct ggml_tensor * ggml_log_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_log_impl(ctx, a, true);
  4216. }
  4217. // ggml_sum
  4218. struct ggml_tensor * ggml_sum(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. bool is_node = false;
  4222. if (a->grad) {
  4223. is_node = true;
  4224. }
  4225. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4226. result->op = GGML_OP_SUM;
  4227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4228. result->src0 = a;
  4229. result->src1 = NULL;
  4230. return result;
  4231. }
  4232. // ggml_sum_rows
  4233. struct ggml_tensor * ggml_sum_rows(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. bool is_node = false;
  4237. if (a->grad) {
  4238. is_node = true;
  4239. }
  4240. int64_t ne[4] = {1,1,1,1};
  4241. for (int i=1; i<a->n_dims; ++i) {
  4242. ne[i] = a->ne[i];
  4243. }
  4244. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4245. result->op = GGML_OP_SUM_ROWS;
  4246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4247. result->src0 = a;
  4248. result->src1 = NULL;
  4249. return result;
  4250. }
  4251. // ggml_mean
  4252. struct ggml_tensor * ggml_mean(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a) {
  4255. bool is_node = false;
  4256. if (a->grad) {
  4257. GGML_ASSERT(false); // TODO: implement
  4258. is_node = true;
  4259. }
  4260. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4261. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4262. result->op = GGML_OP_MEAN;
  4263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4264. result->src0 = a;
  4265. result->src1 = NULL;
  4266. return result;
  4267. }
  4268. // ggml_repeat
  4269. struct ggml_tensor * ggml_repeat(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a,
  4272. struct ggml_tensor * b) {
  4273. GGML_ASSERT(ggml_can_repeat(a, b));
  4274. bool is_node = false;
  4275. if (a->grad) {
  4276. is_node = true;
  4277. }
  4278. if (ggml_are_same_shape(a, b) && !is_node) {
  4279. return a;
  4280. }
  4281. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4282. result->op = GGML_OP_REPEAT;
  4283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4284. result->src0 = a;
  4285. result->src1 = b;
  4286. return result;
  4287. }
  4288. // ggml_repeat_back
  4289. struct ggml_tensor * ggml_repeat_back(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b) {
  4293. GGML_ASSERT(ggml_can_repeat(b, a));
  4294. bool is_node = false;
  4295. if (a->grad) {
  4296. is_node = true;
  4297. }
  4298. if (ggml_are_same_shape(a, b) && !is_node) {
  4299. return a;
  4300. }
  4301. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4302. result->op = GGML_OP_REPEAT_BACK;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src0 = a;
  4305. result->src1 = b;
  4306. return result;
  4307. }
  4308. // ggml_abs
  4309. struct ggml_tensor * ggml_abs_impl(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. bool inplace) {
  4313. bool is_node = false;
  4314. if (!inplace && (a->grad)) {
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_ABS;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src0 = a;
  4321. result->src1 = NULL;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_abs(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_abs_impl(ctx, a, false);
  4328. }
  4329. struct ggml_tensor * ggml_abs_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a) {
  4332. return ggml_abs_impl(ctx, a, true);
  4333. }
  4334. // ggml_sgn
  4335. struct ggml_tensor * ggml_sgn_impl(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. bool inplace) {
  4339. bool is_node = false;
  4340. if (!inplace && (a->grad)) {
  4341. is_node = true;
  4342. }
  4343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4344. result->op = GGML_OP_SGN;
  4345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4346. result->src0 = a;
  4347. result->src1 = NULL;
  4348. return result;
  4349. }
  4350. struct ggml_tensor * ggml_sgn(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a) {
  4353. return ggml_sgn_impl(ctx, a, false);
  4354. }
  4355. struct ggml_tensor * ggml_sgn_inplace(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a) {
  4358. return ggml_sgn_impl(ctx, a, true);
  4359. }
  4360. // ggml_neg
  4361. struct ggml_tensor * ggml_neg_impl(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. bool inplace) {
  4365. bool is_node = false;
  4366. if (!inplace && (a->grad)) {
  4367. is_node = true;
  4368. }
  4369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4370. result->op = GGML_OP_NEG;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src0 = a;
  4373. result->src1 = NULL;
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_neg(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_neg_impl(ctx, a, false);
  4380. }
  4381. struct ggml_tensor * ggml_neg_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a) {
  4384. return ggml_neg_impl(ctx, a, true);
  4385. }
  4386. // ggml_step
  4387. struct ggml_tensor * ggml_step_impl(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. bool inplace) {
  4391. bool is_node = false;
  4392. if (!inplace && (a->grad)) {
  4393. is_node = true;
  4394. }
  4395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4396. result->op = GGML_OP_STEP;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src0 = a;
  4399. result->src1 = NULL;
  4400. return result;
  4401. }
  4402. struct ggml_tensor * ggml_step(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. return ggml_step_impl(ctx, a, false);
  4406. }
  4407. struct ggml_tensor * ggml_step_inplace(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a) {
  4410. return ggml_step_impl(ctx, a, true);
  4411. }
  4412. // ggml_relu
  4413. struct ggml_tensor * ggml_relu_impl(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. bool inplace) {
  4417. bool is_node = false;
  4418. if (!inplace && (a->grad)) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. result->op = GGML_OP_RELU;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src0 = a;
  4425. result->src1 = NULL;
  4426. return result;
  4427. }
  4428. struct ggml_tensor * ggml_relu(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a) {
  4431. return ggml_relu_impl(ctx, a, false);
  4432. }
  4433. struct ggml_tensor * ggml_relu_inplace(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a) {
  4436. return ggml_relu_impl(ctx, a, true);
  4437. }
  4438. // ggml_gelu
  4439. struct ggml_tensor * ggml_gelu_impl(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. bool inplace) {
  4443. bool is_node = false;
  4444. if (!inplace && (a->grad)) {
  4445. is_node = true;
  4446. }
  4447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4448. result->op = GGML_OP_GELU;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src0 = a;
  4451. result->src1 = NULL;
  4452. return result;
  4453. }
  4454. struct ggml_tensor * ggml_gelu(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a) {
  4457. return ggml_gelu_impl(ctx, a, false);
  4458. }
  4459. struct ggml_tensor * ggml_gelu_inplace(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a) {
  4462. return ggml_gelu_impl(ctx, a, true);
  4463. }
  4464. // ggml_gelu_quick
  4465. struct ggml_tensor * ggml_gelu_quick_impl(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. bool inplace) {
  4469. bool is_node = false;
  4470. if (!inplace && (a->grad)) {
  4471. is_node = true;
  4472. }
  4473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4474. result->op = GGML_OP_GELU_QUICK;
  4475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4476. result->src0 = a;
  4477. result->src1 = NULL;
  4478. return result;
  4479. }
  4480. struct ggml_tensor * ggml_gelu_quick(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. return ggml_gelu_quick_impl(ctx, a, false);
  4484. }
  4485. struct ggml_tensor * ggml_gelu_quick_inplace(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a) {
  4488. return ggml_gelu_quick_impl(ctx, a, true);
  4489. }
  4490. // ggml_silu
  4491. struct ggml_tensor * ggml_silu_impl(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. bool inplace) {
  4495. bool is_node = false;
  4496. if (!inplace && (a->grad)) {
  4497. is_node = true;
  4498. }
  4499. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4500. result->op = GGML_OP_SILU;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src0 = a;
  4503. result->src1 = NULL;
  4504. return result;
  4505. }
  4506. struct ggml_tensor * ggml_silu(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a) {
  4509. return ggml_silu_impl(ctx, a, false);
  4510. }
  4511. struct ggml_tensor * ggml_silu_inplace(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a) {
  4514. return ggml_silu_impl(ctx, a, true);
  4515. }
  4516. // ggml_silu_back
  4517. struct ggml_tensor * ggml_silu_back(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. struct ggml_tensor * b) {
  4521. bool is_node = false;
  4522. if (a->grad || b->grad) {
  4523. // TODO: implement backward
  4524. is_node = true;
  4525. }
  4526. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4527. result->op = GGML_OP_SILU_BACK;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src0 = a;
  4530. result->src1 = b;
  4531. return result;
  4532. }
  4533. // ggml_norm
  4534. struct ggml_tensor * ggml_norm_impl(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. bool inplace) {
  4538. bool is_node = false;
  4539. if (!inplace && (a->grad)) {
  4540. GGML_ASSERT(false); // TODO: implement backward
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4544. result->op = GGML_OP_NORM;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src0 = a;
  4547. result->src1 = NULL; // TODO: maybe store epsilon here?
  4548. return result;
  4549. }
  4550. struct ggml_tensor * ggml_norm(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a) {
  4553. return ggml_norm_impl(ctx, a, false);
  4554. }
  4555. struct ggml_tensor * ggml_norm_inplace(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a) {
  4558. return ggml_norm_impl(ctx, a, true);
  4559. }
  4560. struct ggml_tensor * ggml_rms_norm_impl(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. bool inplace) {
  4564. bool is_node = false;
  4565. if (!inplace && (a->grad)) {
  4566. is_node = true;
  4567. }
  4568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4569. result->op = GGML_OP_RMS_NORM;
  4570. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4571. result->src0 = a;
  4572. result->src1 = NULL; // TODO: maybe store epsilon here?
  4573. return result;
  4574. }
  4575. struct ggml_tensor * ggml_rms_norm(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. return ggml_rms_norm_impl(ctx, a, false);
  4579. }
  4580. struct ggml_tensor * ggml_rms_norm_inplace(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a) {
  4583. return ggml_rms_norm_impl(ctx, a, true);
  4584. }
  4585. struct ggml_tensor * ggml_rms_norm_back(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. struct ggml_tensor * b) {
  4589. bool is_node = false;
  4590. if (a->grad) {
  4591. // TODO: implement backward
  4592. is_node = true;
  4593. }
  4594. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4595. result->op = GGML_OP_RMS_NORM_BACK;
  4596. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4597. result->src0 = a;
  4598. result->src1 = b;
  4599. return result;
  4600. }
  4601. // ggml_mul_mat
  4602. struct ggml_tensor * ggml_mul_mat(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b) {
  4606. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4607. GGML_ASSERT(!ggml_is_transposed(a));
  4608. bool is_node = false;
  4609. if (a->grad || b->grad) {
  4610. is_node = true;
  4611. }
  4612. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4613. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4614. result->op = GGML_OP_MUL_MAT;
  4615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4616. result->src0 = a;
  4617. result->src1 = b;
  4618. return result;
  4619. }
  4620. // ggml_out_prod
  4621. struct ggml_tensor * ggml_out_prod(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. struct ggml_tensor * b) {
  4625. GGML_ASSERT(ggml_can_out_prod(a, b));
  4626. GGML_ASSERT(!ggml_is_transposed(a));
  4627. bool is_node = false;
  4628. if (a->grad || b->grad) {
  4629. is_node = true;
  4630. }
  4631. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4632. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4633. result->op = GGML_OP_OUT_PROD;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src0 = a;
  4636. result->src1 = b;
  4637. return result;
  4638. }
  4639. // ggml_scale
  4640. struct ggml_tensor * ggml_scale_impl(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. struct ggml_tensor * b,
  4644. bool inplace) {
  4645. GGML_ASSERT(ggml_is_scalar(b));
  4646. GGML_ASSERT(ggml_is_padded_1d(a));
  4647. bool is_node = false;
  4648. if (a->grad || b->grad) {
  4649. is_node = true;
  4650. }
  4651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4652. result->op = GGML_OP_SCALE;
  4653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4654. result->src0 = a;
  4655. result->src1 = b;
  4656. return result;
  4657. }
  4658. struct ggml_tensor * ggml_scale(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. struct ggml_tensor * b) {
  4662. return ggml_scale_impl(ctx, a, b, false);
  4663. }
  4664. struct ggml_tensor * ggml_scale_inplace(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. struct ggml_tensor * b) {
  4668. return ggml_scale_impl(ctx, a, b, true);
  4669. }
  4670. // ggml_set
  4671. struct ggml_tensor * ggml_set_impl(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. struct ggml_tensor * b,
  4675. size_t nb1,
  4676. size_t nb2,
  4677. size_t nb3,
  4678. size_t offset,
  4679. bool inplace) {
  4680. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4681. bool is_node = false;
  4682. if (a->grad || b->grad) {
  4683. is_node = true;
  4684. }
  4685. // make a view of the destination
  4686. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4687. ggml_scratch_save(ctx);
  4688. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4689. (( int32_t * ) c->data)[0] = nb1;
  4690. (( int32_t * ) c->data)[1] = nb2;
  4691. (( int32_t * ) c->data)[2] = nb3;
  4692. (( int32_t * ) c->data)[3] = offset;
  4693. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4694. ggml_scratch_load(ctx);
  4695. result->op = GGML_OP_SET;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src0 = a;
  4698. result->src1 = b;
  4699. result->opt[0] = c;
  4700. return result;
  4701. }
  4702. struct ggml_tensor * ggml_set(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. struct ggml_tensor * b,
  4706. size_t nb1,
  4707. size_t nb2,
  4708. size_t nb3,
  4709. size_t offset) {
  4710. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4711. }
  4712. struct ggml_tensor * ggml_set_inplace(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. struct ggml_tensor * b,
  4716. size_t nb1,
  4717. size_t nb2,
  4718. size_t nb3,
  4719. size_t offset) {
  4720. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4721. }
  4722. struct ggml_tensor * ggml_set_1d(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b,
  4726. size_t offset) {
  4727. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4728. }
  4729. struct ggml_tensor * ggml_set_1d_inplace(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. struct ggml_tensor * b,
  4733. size_t offset) {
  4734. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4735. }
  4736. struct ggml_tensor * ggml_set_2d(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * b,
  4740. size_t nb1,
  4741. size_t offset) {
  4742. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4743. }
  4744. struct ggml_tensor * ggml_set_2d_inplace(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. size_t nb1,
  4749. size_t offset) {
  4750. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4751. }
  4752. // ggml_cpy
  4753. struct ggml_tensor * ggml_cpy_impl(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a,
  4756. struct ggml_tensor * b,
  4757. bool inplace) {
  4758. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4759. bool is_node = false;
  4760. if (!inplace && (a->grad || b->grad)) {
  4761. is_node = true;
  4762. }
  4763. // make a view of the destination
  4764. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4765. if (strlen(b->name) > 0) {
  4766. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4767. } else {
  4768. ggml_format_name(result, "%s (copy)", a->name);
  4769. }
  4770. result->op = GGML_OP_CPY;
  4771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4772. result->src0 = a;
  4773. result->src1 = b;
  4774. return result;
  4775. }
  4776. struct ggml_tensor * ggml_cpy(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. struct ggml_tensor * b) {
  4780. return ggml_cpy_impl(ctx, a, b, false);
  4781. }
  4782. struct ggml_tensor * ggml_cpy_inplace(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * b) {
  4786. return ggml_cpy_impl(ctx, a, b, true);
  4787. }
  4788. // ggml_cont
  4789. struct ggml_tensor * ggml_cont_impl(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. bool inplace) {
  4793. bool is_node = false;
  4794. if (!inplace && a->grad) {
  4795. is_node = true;
  4796. }
  4797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4798. ggml_format_name(result, "%s (cont)", a->name);
  4799. result->op = GGML_OP_CONT;
  4800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4801. result->src0 = a;
  4802. result->src1 = NULL;
  4803. return result;
  4804. }
  4805. struct ggml_tensor * ggml_cont(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a) {
  4808. return ggml_cont_impl(ctx, a, false);
  4809. }
  4810. struct ggml_tensor * ggml_cont_inplace(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a) {
  4813. return ggml_cont_impl(ctx, a, true);
  4814. }
  4815. // ggml_reshape
  4816. struct ggml_tensor * ggml_reshape(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b) {
  4820. GGML_ASSERT(ggml_is_contiguous(a));
  4821. GGML_ASSERT(ggml_is_contiguous(b));
  4822. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4823. bool is_node = false;
  4824. if (a->grad) {
  4825. is_node = true;
  4826. }
  4827. if (b->grad) {
  4828. // gradient propagation is not supported
  4829. //GGML_ASSERT(false);
  4830. }
  4831. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4832. ggml_format_name(result, "%s (reshaped)", a->name);
  4833. result->op = GGML_OP_RESHAPE;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src0 = a;
  4836. result->src1 = NULL;
  4837. return result;
  4838. }
  4839. struct ggml_tensor * ggml_reshape_1d(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. int64_t ne0) {
  4843. GGML_ASSERT(ggml_is_contiguous(a));
  4844. GGML_ASSERT(ggml_nelements(a) == ne0);
  4845. bool is_node = false;
  4846. if (a->grad) {
  4847. is_node = true;
  4848. }
  4849. const int64_t ne[1] = { ne0 };
  4850. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4851. ggml_format_name(result, "%s (reshaped)", a->name);
  4852. result->op = GGML_OP_RESHAPE;
  4853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4854. result->src0 = a;
  4855. result->src1 = NULL;
  4856. return result;
  4857. }
  4858. struct ggml_tensor * ggml_reshape_2d(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. int64_t ne0,
  4862. int64_t ne1) {
  4863. GGML_ASSERT(ggml_is_contiguous(a));
  4864. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4865. bool is_node = false;
  4866. if (a->grad) {
  4867. is_node = true;
  4868. }
  4869. const int64_t ne[2] = { ne0, ne1 };
  4870. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4871. ggml_format_name(result, "%s (reshaped)", a->name);
  4872. result->op = GGML_OP_RESHAPE;
  4873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4874. result->src0 = a;
  4875. result->src1 = NULL;
  4876. return result;
  4877. }
  4878. struct ggml_tensor * ggml_reshape_3d(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. int64_t ne0,
  4882. int64_t ne1,
  4883. int64_t ne2) {
  4884. GGML_ASSERT(ggml_is_contiguous(a));
  4885. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4886. bool is_node = false;
  4887. if (a->grad) {
  4888. is_node = true;
  4889. }
  4890. const int64_t ne[3] = { ne0, ne1, ne2 };
  4891. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4892. ggml_format_name(result, "%s (reshaped)", a->name);
  4893. result->op = GGML_OP_RESHAPE;
  4894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4895. result->src0 = a;
  4896. result->src1 = NULL;
  4897. return result;
  4898. }
  4899. struct ggml_tensor * ggml_reshape_4d(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. int64_t ne0,
  4903. int64_t ne1,
  4904. int64_t ne2,
  4905. int64_t ne3) {
  4906. GGML_ASSERT(ggml_is_contiguous(a));
  4907. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4908. bool is_node = false;
  4909. if (a->grad) {
  4910. is_node = true;
  4911. }
  4912. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4913. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4914. ggml_format_name(result, "%s (reshaped)", a->name);
  4915. result->op = GGML_OP_RESHAPE;
  4916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4917. result->src0 = a;
  4918. result->src1 = NULL;
  4919. return result;
  4920. }
  4921. // ggml_view_1d
  4922. struct ggml_tensor * ggml_view_1d(
  4923. struct ggml_context * ctx,
  4924. struct ggml_tensor * a,
  4925. int64_t ne0,
  4926. size_t offset) {
  4927. bool is_node = false;
  4928. if (a->grad) {
  4929. is_node = true;
  4930. }
  4931. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4932. ggml_format_name(result, "%s (view)", a->name);
  4933. ggml_scratch_save(ctx);
  4934. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4935. ggml_set_name(offs, "offset");
  4936. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4937. ggml_scratch_load(ctx);
  4938. result->op = GGML_OP_VIEW;
  4939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4940. result->src0 = a;
  4941. result->src1 = NULL;
  4942. result->opt[0] = offs;
  4943. return result;
  4944. }
  4945. // ggml_view_2d
  4946. struct ggml_tensor * ggml_view_2d(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. int64_t ne0,
  4950. int64_t ne1,
  4951. size_t nb1,
  4952. size_t offset) {
  4953. bool is_node = false;
  4954. if (a->grad) {
  4955. is_node = true;
  4956. }
  4957. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4958. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4959. ggml_format_name(result, "%s (view)", a->name);
  4960. ggml_scratch_save(ctx);
  4961. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4962. ggml_set_name(offs, "offset");
  4963. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4964. ggml_scratch_load(ctx);
  4965. result->nb[1] = nb1;
  4966. result->nb[2] = result->nb[1]*ne1;
  4967. result->nb[3] = result->nb[2];
  4968. result->op = GGML_OP_VIEW;
  4969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4970. result->src0 = a;
  4971. result->src1 = NULL;
  4972. result->opt[0] = offs;
  4973. return result;
  4974. }
  4975. // ggml_view_3d
  4976. struct ggml_tensor * ggml_view_3d(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. int64_t ne0,
  4980. int64_t ne1,
  4981. int64_t ne2,
  4982. size_t nb1,
  4983. size_t nb2,
  4984. size_t offset) {
  4985. bool is_node = false;
  4986. if (a->grad) {
  4987. is_node = true;
  4988. }
  4989. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4990. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4991. ggml_format_name(result, "%s (view)", a->name);
  4992. ggml_scratch_save(ctx);
  4993. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4994. ggml_set_name(offs, "offset");
  4995. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4996. ggml_scratch_load(ctx);
  4997. result->nb[1] = nb1;
  4998. result->nb[2] = nb2;
  4999. result->nb[3] = result->nb[2]*ne2;
  5000. result->op = GGML_OP_VIEW;
  5001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5002. result->src0 = a;
  5003. result->src1 = NULL;
  5004. result->opt[0] = offs;
  5005. return result;
  5006. }
  5007. // ggml_view_4d
  5008. struct ggml_tensor * ggml_view_4d(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * a,
  5011. int64_t ne0,
  5012. int64_t ne1,
  5013. int64_t ne2,
  5014. int64_t ne3,
  5015. size_t nb1,
  5016. size_t nb2,
  5017. size_t nb3,
  5018. size_t offset) {
  5019. bool is_node = false;
  5020. if (a->grad) {
  5021. is_node = true;
  5022. }
  5023. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5024. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5025. ggml_format_name(result, "%s (view)", a->name);
  5026. ggml_scratch_save(ctx);
  5027. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5028. ggml_set_name(offs, "offset");
  5029. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5030. ggml_scratch_load(ctx);
  5031. result->nb[1] = nb1;
  5032. result->nb[2] = nb2;
  5033. result->nb[3] = nb3;
  5034. result->op = GGML_OP_VIEW;
  5035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5036. result->src0 = a;
  5037. result->src1 = NULL;
  5038. result->opt[0] = offs;
  5039. return result;
  5040. }
  5041. // ggml_permute
  5042. struct ggml_tensor * ggml_permute(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. int axis0,
  5046. int axis1,
  5047. int axis2,
  5048. int axis3) {
  5049. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5050. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5051. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5052. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5053. GGML_ASSERT(axis0 != axis1);
  5054. GGML_ASSERT(axis0 != axis2);
  5055. GGML_ASSERT(axis0 != axis3);
  5056. GGML_ASSERT(axis1 != axis2);
  5057. GGML_ASSERT(axis1 != axis3);
  5058. GGML_ASSERT(axis2 != axis3);
  5059. bool is_node = false;
  5060. if (a->grad) {
  5061. is_node = true;
  5062. }
  5063. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5064. ggml_format_name(result, "%s (permuted)", a->name);
  5065. int ne[GGML_MAX_DIMS];
  5066. int nb[GGML_MAX_DIMS];
  5067. ne[axis0] = a->ne[0];
  5068. ne[axis1] = a->ne[1];
  5069. ne[axis2] = a->ne[2];
  5070. ne[axis3] = a->ne[3];
  5071. nb[axis0] = a->nb[0];
  5072. nb[axis1] = a->nb[1];
  5073. nb[axis2] = a->nb[2];
  5074. nb[axis3] = a->nb[3];
  5075. result->ne[0] = ne[0];
  5076. result->ne[1] = ne[1];
  5077. result->ne[2] = ne[2];
  5078. result->ne[3] = ne[3];
  5079. result->nb[0] = nb[0];
  5080. result->nb[1] = nb[1];
  5081. result->nb[2] = nb[2];
  5082. result->nb[3] = nb[3];
  5083. result->op = GGML_OP_PERMUTE;
  5084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5085. result->src0 = a;
  5086. result->src1 = NULL;
  5087. if (is_node) {
  5088. ggml_scratch_save(ctx);
  5089. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5090. ((int32_t *) b->data)[0] = axis0;
  5091. ((int32_t *) b->data)[1] = axis1;
  5092. ((int32_t *) b->data)[2] = axis2;
  5093. ((int32_t *) b->data)[3] = axis3;
  5094. ggml_scratch_load(ctx);
  5095. result->opt[0] = b;
  5096. }
  5097. return result;
  5098. }
  5099. // ggml_transpose
  5100. struct ggml_tensor * ggml_transpose(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a) {
  5103. bool is_node = false;
  5104. if (a->grad) {
  5105. is_node = true;
  5106. }
  5107. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5108. ggml_format_name(result, "%s (transposed)", a->name);
  5109. result->ne[0] = a->ne[1];
  5110. result->ne[1] = a->ne[0];
  5111. result->nb[0] = a->nb[1];
  5112. result->nb[1] = a->nb[0];
  5113. result->op = GGML_OP_TRANSPOSE;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src0 = a;
  5116. result->src1 = NULL;
  5117. return result;
  5118. }
  5119. // ggml_get_rows
  5120. struct ggml_tensor * ggml_get_rows(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. struct ggml_tensor * b) {
  5124. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5125. bool is_node = false;
  5126. if (a->grad || b->grad) {
  5127. is_node = true;
  5128. }
  5129. // TODO: implement non F32 return
  5130. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5131. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5132. result->op = GGML_OP_GET_ROWS;
  5133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5134. result->src0 = a;
  5135. result->src1 = b;
  5136. return result;
  5137. }
  5138. // ggml_get_rows_back
  5139. struct ggml_tensor * ggml_get_rows_back(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b,
  5143. struct ggml_tensor * c) {
  5144. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5145. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5146. bool is_node = false;
  5147. if (a->grad || b->grad) {
  5148. is_node = true;
  5149. }
  5150. // TODO: implement non F32 return
  5151. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5152. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5153. result->op = GGML_OP_GET_ROWS_BACK;
  5154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5155. result->src0 = a;
  5156. result->src1 = b;
  5157. result->opt[0] = c;
  5158. return result;
  5159. }
  5160. // ggml_diag
  5161. struct ggml_tensor * ggml_diag(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a) {
  5164. GGML_ASSERT(a->ne[1] == 1);
  5165. bool is_node = false;
  5166. if (a->grad) {
  5167. is_node = true;
  5168. }
  5169. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5170. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5171. result->op = GGML_OP_DIAG;
  5172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5173. result->src0 = a;
  5174. result->src1 = NULL;
  5175. return result;
  5176. }
  5177. // ggml_diag_mask_inf
  5178. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5179. struct ggml_context * ctx,
  5180. struct ggml_tensor * a,
  5181. int n_past,
  5182. bool inplace) {
  5183. bool is_node = false;
  5184. if (a->grad) {
  5185. is_node = true;
  5186. }
  5187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5188. ggml_scratch_save(ctx);
  5189. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5190. ((int32_t *) b->data)[0] = n_past;
  5191. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5192. ggml_scratch_load(ctx);
  5193. result->op = GGML_OP_DIAG_MASK_INF;
  5194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5195. result->src0 = a;
  5196. result->src1 = b;
  5197. return result;
  5198. }
  5199. struct ggml_tensor * ggml_diag_mask_inf(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. int n_past) {
  5203. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5204. }
  5205. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5206. struct ggml_context * ctx,
  5207. struct ggml_tensor * a,
  5208. int n_past) {
  5209. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5210. }
  5211. // ggml_diag_mask_zero
  5212. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. int n_past,
  5216. bool inplace) {
  5217. bool is_node = false;
  5218. if (a->grad) {
  5219. is_node = true;
  5220. }
  5221. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5222. ggml_scratch_save(ctx);
  5223. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5224. ggml_set_name(b, "n_past, inplace");
  5225. ((int32_t *) b->data)[0] = n_past;
  5226. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5227. ggml_scratch_load(ctx);
  5228. result->op = GGML_OP_DIAG_MASK_ZERO;
  5229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5230. result->src0 = a;
  5231. result->src1 = b;
  5232. return result;
  5233. }
  5234. struct ggml_tensor * ggml_diag_mask_zero(
  5235. struct ggml_context * ctx,
  5236. struct ggml_tensor * a,
  5237. int n_past) {
  5238. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5239. }
  5240. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. int n_past) {
  5244. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5245. }
  5246. // ggml_soft_max
  5247. struct ggml_tensor * ggml_soft_max_impl(
  5248. struct ggml_context * ctx,
  5249. struct ggml_tensor * a,
  5250. bool inplace) {
  5251. bool is_node = false;
  5252. if (a->grad) {
  5253. is_node = true;
  5254. }
  5255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5256. result->op = GGML_OP_SOFT_MAX;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src0 = a;
  5259. result->src1 = NULL;
  5260. return result;
  5261. }
  5262. struct ggml_tensor * ggml_soft_max(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a) {
  5265. return ggml_soft_max_impl(ctx, a, false);
  5266. }
  5267. struct ggml_tensor * ggml_soft_max_inplace(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a) {
  5270. return ggml_soft_max_impl(ctx, a, true);
  5271. }
  5272. // ggml_soft_max_back
  5273. struct ggml_tensor * ggml_soft_max_back_impl(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. struct ggml_tensor * b,
  5277. bool inplace) {
  5278. bool is_node = false;
  5279. if (a->grad || b->grad) {
  5280. is_node = true; // TODO : implement backward pass
  5281. }
  5282. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5283. result->op = GGML_OP_SOFT_MAX_BACK;
  5284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5285. result->src0 = a;
  5286. result->src1 = b;
  5287. return result;
  5288. }
  5289. struct ggml_tensor * ggml_soft_max_back(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. struct ggml_tensor * b) {
  5293. return ggml_soft_max_back_impl(ctx, a, b, false);
  5294. }
  5295. struct ggml_tensor * ggml_soft_max_back_inplace(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. struct ggml_tensor * b) {
  5299. return ggml_soft_max_back_impl(ctx, a, b, true);
  5300. }
  5301. // ggml_rope
  5302. struct ggml_tensor * ggml_rope_impl(
  5303. struct ggml_context * ctx,
  5304. struct ggml_tensor * a,
  5305. int n_past,
  5306. int n_dims,
  5307. int mode,
  5308. bool inplace) {
  5309. GGML_ASSERT(n_past >= 0);
  5310. bool is_node = false;
  5311. if (a->grad) {
  5312. is_node = true;
  5313. }
  5314. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5315. ggml_scratch_save(ctx);
  5316. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5317. ((int32_t *) b->data)[0] = n_past;
  5318. ((int32_t *) b->data)[1] = n_dims;
  5319. ((int32_t *) b->data)[2] = mode;
  5320. ggml_scratch_load(ctx);
  5321. result->op = GGML_OP_ROPE;
  5322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5323. result->src0 = a;
  5324. result->src1 = b;
  5325. return result;
  5326. }
  5327. struct ggml_tensor * ggml_rope(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. int n_past,
  5331. int n_dims,
  5332. int mode) {
  5333. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5334. }
  5335. struct ggml_tensor * ggml_rope_inplace(
  5336. struct ggml_context * ctx,
  5337. struct ggml_tensor * a,
  5338. int n_past,
  5339. int n_dims,
  5340. int mode) {
  5341. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5342. }
  5343. // ggml_rope_back
  5344. struct ggml_tensor * ggml_rope_back(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a,
  5347. int n_past,
  5348. int n_dims,
  5349. int mode) {
  5350. GGML_ASSERT(n_past >= 0);
  5351. bool is_node = false;
  5352. if (a->grad) {
  5353. is_node = false; // TODO: implement backward
  5354. }
  5355. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5356. ggml_scratch_save(ctx);
  5357. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5358. ggml_set_name(b, "n_past, n_dims, mode");
  5359. ((int32_t *) b->data)[0] = n_past;
  5360. ((int32_t *) b->data)[1] = n_dims;
  5361. ((int32_t *) b->data)[2] = mode;
  5362. ggml_scratch_load(ctx);
  5363. result->op = GGML_OP_ROPE_BACK;
  5364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5365. result->src0 = a;
  5366. result->src1 = b;
  5367. return result;
  5368. }
  5369. // ggml_alibi
  5370. struct ggml_tensor * ggml_alibi(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * a,
  5373. int n_past,
  5374. int n_head,
  5375. float bias_max) {
  5376. GGML_ASSERT(n_past >= 0);
  5377. bool is_node = false;
  5378. if (a->grad) {
  5379. GGML_ASSERT(false); // TODO: implement backward
  5380. is_node = true;
  5381. }
  5382. // TODO: when implement backward, fix this:
  5383. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5384. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5385. ggml_scratch_save(ctx);
  5386. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5387. ((int32_t *) b->data)[0] = n_past;
  5388. ((int32_t *) b->data)[1] = n_head;
  5389. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5390. (((float *) b->data)[2]) = bias_max;
  5391. ggml_scratch_load(ctx);
  5392. result->op = GGML_OP_ALIBI;
  5393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5394. result->src0 = a;
  5395. result->src1 = b;
  5396. return result;
  5397. }
  5398. // ggml_clamp
  5399. struct ggml_tensor * ggml_clamp(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. float min,
  5403. float max) {
  5404. bool is_node = false;
  5405. if (a->grad) {
  5406. GGML_ASSERT(false); // TODO: implement backward
  5407. is_node = true;
  5408. }
  5409. // TODO: when implement backward, fix this:
  5410. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5411. ggml_scratch_save(ctx);
  5412. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5413. ((float *) b->data)[0] = min;
  5414. ((float *) b->data)[1] = max;
  5415. ggml_scratch_load(ctx);
  5416. result->op = GGML_OP_CLAMP;
  5417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5418. result->src0 = a;
  5419. result->src1 = b;
  5420. return result;
  5421. }
  5422. // ggml_conv_1d_s1_ph
  5423. struct ggml_tensor * ggml_conv_1d_s1_ph(
  5424. struct ggml_context * ctx,
  5425. struct ggml_tensor * a,
  5426. struct ggml_tensor * b) {
  5427. GGML_ASSERT(ggml_is_matrix(b));
  5428. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5429. GGML_ASSERT(a->ne[3] == 1);
  5430. bool is_node = false;
  5431. if (a->grad || b->grad) {
  5432. GGML_ASSERT(false); // TODO: implement backward
  5433. is_node = true;
  5434. }
  5435. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5437. result->op = GGML_OP_CONV_1D_S1_PH;
  5438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5439. result->src0 = a;
  5440. result->src1 = b;
  5441. return result;
  5442. }
  5443. // ggml_conv_1d_s2_ph
  5444. struct ggml_tensor * ggml_conv_1d_s2_ph(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * a,
  5447. struct ggml_tensor * b) {
  5448. GGML_ASSERT(ggml_is_matrix(b));
  5449. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5450. GGML_ASSERT(a->ne[3] == 1);
  5451. bool is_node = false;
  5452. if (a->grad || b->grad) {
  5453. GGML_ASSERT(false); // TODO: implement backward
  5454. is_node = true;
  5455. }
  5456. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5458. result->op = GGML_OP_CONV_1D_S2_PH;
  5459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5460. result->src0 = a;
  5461. result->src1 = b;
  5462. return result;
  5463. }
  5464. // ggml_conv_2d_sk_p0
  5465. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. struct ggml_tensor * b) {
  5469. GGML_ASSERT(b->ne[3] == 1);
  5470. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5471. GGML_ASSERT(b->ne[0] % a->ne[0] == 0);
  5472. GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
  5473. bool is_node = false;
  5474. if (a->grad || b->grad) {
  5475. GGML_ASSERT(false); // TODO: implement backward
  5476. is_node = true;
  5477. }
  5478. const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, };
  5479. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5480. result->op = GGML_OP_CONV_2D_SK_P0;
  5481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5482. result->src0 = a;
  5483. result->src1 = b;
  5484. return result;
  5485. }
  5486. // ggml_flash_attn
  5487. struct ggml_tensor * ggml_flash_attn(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * q,
  5490. struct ggml_tensor * k,
  5491. struct ggml_tensor * v,
  5492. bool masked) {
  5493. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5494. // TODO: check if vT can be multiplied by (k*qT)
  5495. bool is_node = false;
  5496. if (q->grad || k->grad || v->grad) {
  5497. is_node = true;
  5498. }
  5499. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5500. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5501. result->op = GGML_OP_FLASH_ATTN;
  5502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5503. result->src0 = q;
  5504. result->src1 = k;
  5505. result->opt[0] = v;
  5506. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5507. return result;
  5508. }
  5509. // ggml_flash_ff
  5510. struct ggml_tensor * ggml_flash_ff(
  5511. struct ggml_context * ctx,
  5512. struct ggml_tensor * a,
  5513. struct ggml_tensor * b0,
  5514. struct ggml_tensor * b1,
  5515. struct ggml_tensor * c0,
  5516. struct ggml_tensor * c1) {
  5517. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5518. // TODO: more checks
  5519. bool is_node = false;
  5520. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5521. is_node = true;
  5522. }
  5523. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5524. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5525. result->op = GGML_OP_FLASH_FF;
  5526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5527. result->src0 = a;
  5528. result->src1 = b0;
  5529. result->opt[0] = b1;
  5530. result->opt[1] = c0;
  5531. result->opt[2] = c1;
  5532. return result;
  5533. }
  5534. // ggml_flash_attn_back
  5535. struct ggml_tensor * ggml_flash_attn_back(
  5536. struct ggml_context * ctx,
  5537. struct ggml_tensor * q,
  5538. struct ggml_tensor * k,
  5539. struct ggml_tensor * v,
  5540. struct ggml_tensor * d,
  5541. bool masked) {
  5542. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5543. // TODO: check if vT can be multiplied by (k*qT)
  5544. // d shape [D,N,ne2,ne3]
  5545. // q shape [D,N,ne2,ne3]
  5546. // k shape [D,M,ne2,ne3]
  5547. // v shape [M,D,ne2,ne3]
  5548. const int64_t D = q->ne[0];
  5549. const int64_t N = q->ne[1];
  5550. const int64_t M = k->ne[1];
  5551. const int64_t ne2 = q->ne[2];
  5552. const int64_t ne3 = q->ne[3];
  5553. GGML_ASSERT(k->ne[0] == D);
  5554. GGML_ASSERT(v->ne[0] == M);
  5555. GGML_ASSERT(v->ne[1] == D);
  5556. GGML_ASSERT(d->ne[0] == D);
  5557. GGML_ASSERT(d->ne[1] == N);
  5558. GGML_ASSERT(k->ne[2] == ne2);
  5559. GGML_ASSERT(k->ne[3] == ne3);
  5560. GGML_ASSERT(v->ne[2] == ne2);
  5561. GGML_ASSERT(v->ne[3] == ne3);
  5562. GGML_ASSERT(d->ne[2] == ne2);
  5563. GGML_ASSERT(d->ne[3] == ne3);
  5564. bool is_node = false;
  5565. if (q->grad || k->grad || v->grad) {
  5566. // when using this operation (in backwards pass) these grads are set.
  5567. // we don't want to create (big) grad of our result, so is_node is false.
  5568. is_node = false;
  5569. }
  5570. // store gradients of q, k and v as continuous tensors concatenated in result.
  5571. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5572. // gradq->data = result->data
  5573. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5574. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5575. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5576. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5578. result->op = GGML_OP_FLASH_ATTN_BACK;
  5579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5580. result->src0 = q;
  5581. result->src1 = k;
  5582. result->opt[0] = v;
  5583. result->opt[1] = d;
  5584. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5585. return result;
  5586. }
  5587. // ggml_win_part
  5588. struct ggml_tensor * ggml_win_part(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * a,
  5591. int w) {
  5592. GGML_ASSERT(a->ne[3] == 1);
  5593. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5594. bool is_node = false;
  5595. if (a->grad) {
  5596. GGML_ASSERT(false); // TODO: implement backward
  5597. is_node = true;
  5598. }
  5599. // padding
  5600. const int px = (w - a->ne[1]%w)%w;
  5601. const int py = (w - a->ne[2]%w)%w;
  5602. const int npx = (px + a->ne[1])/w;
  5603. const int npy = (py + a->ne[2])/w;
  5604. const int np = npx*npy;
  5605. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5606. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5607. ggml_scratch_save(ctx);
  5608. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5609. ((int32_t *) b->data)[0] = npx;
  5610. ((int32_t *) b->data)[1] = npy;
  5611. ((int32_t *) b->data)[2] = w;
  5612. ggml_scratch_load(ctx);
  5613. result->op = GGML_OP_WIN_PART;
  5614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5615. result->src0 = a;
  5616. result->src1 = NULL;
  5617. result->opt[0] = b;
  5618. return result;
  5619. }
  5620. // ggml_win_unpart
  5621. struct ggml_tensor * ggml_win_unpart(
  5622. struct ggml_context * ctx,
  5623. struct ggml_tensor * a,
  5624. int w0,
  5625. int h0,
  5626. int w) {
  5627. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5628. bool is_node = false;
  5629. if (a->grad) {
  5630. GGML_ASSERT(false); // TODO: implement backward
  5631. is_node = true;
  5632. }
  5633. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5634. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5635. ggml_scratch_save(ctx);
  5636. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5637. ((int32_t *) b->data)[0] = w;
  5638. ggml_scratch_load(ctx);
  5639. result->op = GGML_OP_WIN_UNPART;
  5640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5641. result->src0 = a;
  5642. result->src1 = NULL;
  5643. result->opt[0] = b;
  5644. return result;
  5645. }
  5646. // ggml_map_unary
  5647. struct ggml_tensor * ggml_map_unary_impl_f32(
  5648. struct ggml_context * ctx,
  5649. struct ggml_tensor * a,
  5650. const ggml_unary_op_f32_t fun,
  5651. bool inplace) {
  5652. bool is_node = false;
  5653. if (!inplace && a->grad) {
  5654. is_node = true;
  5655. }
  5656. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5657. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5658. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5659. result->op = GGML_OP_MAP_UNARY;
  5660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5661. result->src0 = a;
  5662. result->opt[0] = addr_tensor;
  5663. return result;
  5664. }
  5665. struct ggml_tensor * ggml_map_unary_f32(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. const ggml_unary_op_f32_t fun) {
  5669. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5670. }
  5671. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. const ggml_unary_op_f32_t fun) {
  5675. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5676. }
  5677. // ggml_map_binary
  5678. struct ggml_tensor * ggml_map_binary_impl_f32(
  5679. struct ggml_context * ctx,
  5680. struct ggml_tensor * a,
  5681. struct ggml_tensor * b,
  5682. const ggml_binary_op_f32_t fun,
  5683. bool inplace) {
  5684. GGML_ASSERT(ggml_are_same_shape(a, b));
  5685. bool is_node = false;
  5686. if (!inplace && (a->grad || b->grad)) {
  5687. is_node = true;
  5688. }
  5689. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5690. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5691. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5692. result->op = GGML_OP_MAP_BINARY;
  5693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5694. result->src0 = a;
  5695. result->src1 = b;
  5696. result->opt[0] = addr_tensor;
  5697. return result;
  5698. }
  5699. struct ggml_tensor * ggml_map_binary_f32(
  5700. struct ggml_context * ctx,
  5701. struct ggml_tensor * a,
  5702. struct ggml_tensor * b,
  5703. const ggml_binary_op_f32_t fun) {
  5704. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5705. }
  5706. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5707. struct ggml_context * ctx,
  5708. struct ggml_tensor * a,
  5709. struct ggml_tensor * b,
  5710. const ggml_binary_op_f32_t fun) {
  5711. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5712. }
  5713. // ggml_cross_entropy_loss
  5714. struct ggml_tensor * ggml_cross_entropy_loss(
  5715. struct ggml_context * ctx,
  5716. struct ggml_tensor * a,
  5717. struct ggml_tensor * b) {
  5718. GGML_ASSERT(ggml_are_same_shape(a, b));
  5719. bool is_node = false;
  5720. if (a->grad || b->grad) {
  5721. is_node = true;
  5722. }
  5723. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5724. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5726. result->src0 = a;
  5727. result->src1 = b;
  5728. return result;
  5729. }
  5730. // ggml_cross_entropy_loss_back
  5731. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. struct ggml_tensor * b,
  5735. struct ggml_tensor * c) {
  5736. GGML_ASSERT(ggml_are_same_shape(a, b));
  5737. GGML_ASSERT(ggml_is_scalar(c));
  5738. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5739. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5740. result->grad = NULL;
  5741. result->src0 = a;
  5742. result->src1 = b;
  5743. result->opt[0] = c;
  5744. return result;
  5745. }
  5746. ////////////////////////////////////////////////////////////////////////////////
  5747. void ggml_set_param(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * tensor) {
  5750. tensor->is_param = true;
  5751. GGML_ASSERT(tensor->grad == NULL);
  5752. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5753. }
  5754. // ggml_compute_forward_dup
  5755. static void ggml_compute_forward_dup_same_cont(
  5756. const struct ggml_compute_params * params,
  5757. const struct ggml_tensor * src0,
  5758. struct ggml_tensor * dst) {
  5759. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5760. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5761. GGML_ASSERT(src0->type == dst->type);
  5762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5763. return;
  5764. }
  5765. const size_t nb00 = src0->nb[0];
  5766. const size_t nb0 = dst->nb[0];
  5767. const int ith = params->ith; // thread index
  5768. const int nth = params->nth; // number of threads
  5769. // parallelize by elements
  5770. const int ne = ggml_nelements(dst);
  5771. const int dr = (ne + nth - 1) / nth;
  5772. const int ie0 = dr * ith;
  5773. const int ie1 = MIN(ie0 + dr, ne);
  5774. if (ie0 < ie1) {
  5775. memcpy(
  5776. ((char *) dst->data + ie0*nb0),
  5777. ((char *) src0->data + ie0*nb00),
  5778. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5779. }
  5780. }
  5781. static void ggml_compute_forward_dup_f16(
  5782. const struct ggml_compute_params * params,
  5783. const struct ggml_tensor * src0,
  5784. struct ggml_tensor * dst) {
  5785. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5787. return;
  5788. }
  5789. const int64_t ne00 = src0->ne[0];
  5790. const int64_t ne01 = src0->ne[1];
  5791. const int64_t ne02 = src0->ne[2];
  5792. const int64_t ne03 = src0->ne[3];
  5793. const int64_t ne0 = dst->ne[0];
  5794. const int64_t ne1 = dst->ne[1];
  5795. const int64_t ne2 = dst->ne[2];
  5796. const int64_t ne3 = dst->ne[3];
  5797. const size_t nb00 = src0->nb[0];
  5798. const size_t nb01 = src0->nb[1];
  5799. const size_t nb02 = src0->nb[2];
  5800. const size_t nb03 = src0->nb[3];
  5801. const size_t nb0 = dst->nb[0];
  5802. const size_t nb1 = dst->nb[1];
  5803. const size_t nb2 = dst->nb[2];
  5804. const size_t nb3 = dst->nb[3];
  5805. const int ith = params->ith; // thread index
  5806. const int nth = params->nth; // number of threads
  5807. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5808. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5809. return;
  5810. }
  5811. // parallelize by rows
  5812. const int nr = ne01;
  5813. // number of rows per thread
  5814. const int dr = (nr + nth - 1) / nth;
  5815. // row range for this thread
  5816. const int ir0 = dr * ith;
  5817. const int ir1 = MIN(ir0 + dr, nr);
  5818. if (src0->type == dst->type &&
  5819. ne00 == ne0 &&
  5820. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5821. // copy by rows
  5822. const size_t rs = ne00*nb00;
  5823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5825. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5826. memcpy(
  5827. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5828. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5829. rs);
  5830. }
  5831. }
  5832. }
  5833. return;
  5834. }
  5835. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5836. if (ggml_is_contiguous(dst)) {
  5837. if (nb00 == sizeof(ggml_fp16_t)) {
  5838. if (dst->type == GGML_TYPE_F16) {
  5839. size_t id = 0;
  5840. const size_t rs = ne00 * nb00;
  5841. char * dst_ptr = (char *) dst->data;
  5842. for (int i03 = 0; i03 < ne03; i03++) {
  5843. for (int i02 = 0; i02 < ne02; i02++) {
  5844. id += rs * ir0;
  5845. for (int i01 = ir0; i01 < ir1; i01++) {
  5846. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5847. memcpy(dst_ptr + id, src0_ptr, rs);
  5848. id += rs;
  5849. }
  5850. id += rs * (ne01 - ir1);
  5851. }
  5852. }
  5853. } else if (dst->type == GGML_TYPE_F32) {
  5854. size_t id = 0;
  5855. float * dst_ptr = (float *) dst->data;
  5856. for (int i03 = 0; i03 < ne03; i03++) {
  5857. for (int i02 = 0; i02 < ne02; i02++) {
  5858. id += ne00 * ir0;
  5859. for (int i01 = ir0; i01 < ir1; i01++) {
  5860. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5861. for (int i00 = 0; i00 < ne00; i00++) {
  5862. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5863. id++;
  5864. }
  5865. }
  5866. id += ne00 * (ne01 - ir1);
  5867. }
  5868. }
  5869. } else if (ggml_is_quantized(dst->type)) {
  5870. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5871. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5872. size_t id = 0;
  5873. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5874. char * dst_ptr = (char *) dst->data;
  5875. for (int i03 = 0; i03 < ne03; i03++) {
  5876. for (int i02 = 0; i02 < ne02; i02++) {
  5877. id += rs * ir0;
  5878. for (int i01 = ir0; i01 < ir1; i01++) {
  5879. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5880. for (int i00 = 0; i00 < ne00; i00++) {
  5881. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5882. }
  5883. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5884. id += rs;
  5885. }
  5886. id += rs * (ne01 - ir1);
  5887. }
  5888. }
  5889. } else {
  5890. GGML_ASSERT(false); // TODO: implement
  5891. }
  5892. } else {
  5893. //printf("%s: this is not optimal - fix me\n", __func__);
  5894. if (dst->type == GGML_TYPE_F32) {
  5895. size_t id = 0;
  5896. float * dst_ptr = (float *) dst->data;
  5897. for (int i03 = 0; i03 < ne03; i03++) {
  5898. for (int i02 = 0; i02 < ne02; i02++) {
  5899. id += ne00 * ir0;
  5900. for (int i01 = ir0; i01 < ir1; i01++) {
  5901. for (int i00 = 0; i00 < ne00; i00++) {
  5902. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5903. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5904. id++;
  5905. }
  5906. }
  5907. id += ne00 * (ne01 - ir1);
  5908. }
  5909. }
  5910. } else if (dst->type == GGML_TYPE_F16) {
  5911. size_t id = 0;
  5912. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5913. for (int i03 = 0; i03 < ne03; i03++) {
  5914. for (int i02 = 0; i02 < ne02; i02++) {
  5915. id += ne00 * ir0;
  5916. for (int i01 = ir0; i01 < ir1; i01++) {
  5917. for (int i00 = 0; i00 < ne00; i00++) {
  5918. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5919. dst_ptr[id] = *src0_ptr;
  5920. id++;
  5921. }
  5922. }
  5923. id += ne00 * (ne01 - ir1);
  5924. }
  5925. }
  5926. } else {
  5927. GGML_ASSERT(false); // TODO: implement
  5928. }
  5929. }
  5930. return;
  5931. }
  5932. // dst counters
  5933. int64_t i10 = 0;
  5934. int64_t i11 = 0;
  5935. int64_t i12 = 0;
  5936. int64_t i13 = 0;
  5937. if (dst->type == GGML_TYPE_F16) {
  5938. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5939. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5940. i10 += ne00 * ir0;
  5941. while (i10 >= ne0) {
  5942. i10 -= ne0;
  5943. if (++i11 == ne1) {
  5944. i11 = 0;
  5945. if (++i12 == ne2) {
  5946. i12 = 0;
  5947. if (++i13 == ne3) {
  5948. i13 = 0;
  5949. }
  5950. }
  5951. }
  5952. }
  5953. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5954. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5955. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5956. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5957. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5958. if (++i10 == ne00) {
  5959. i10 = 0;
  5960. if (++i11 == ne01) {
  5961. i11 = 0;
  5962. if (++i12 == ne02) {
  5963. i12 = 0;
  5964. if (++i13 == ne03) {
  5965. i13 = 0;
  5966. }
  5967. }
  5968. }
  5969. }
  5970. }
  5971. }
  5972. i10 += ne00 * (ne01 - ir1);
  5973. while (i10 >= ne0) {
  5974. i10 -= ne0;
  5975. if (++i11 == ne1) {
  5976. i11 = 0;
  5977. if (++i12 == ne2) {
  5978. i12 = 0;
  5979. if (++i13 == ne3) {
  5980. i13 = 0;
  5981. }
  5982. }
  5983. }
  5984. }
  5985. }
  5986. }
  5987. } else if (dst->type == GGML_TYPE_F32) {
  5988. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5989. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5990. i10 += ne00 * ir0;
  5991. while (i10 >= ne0) {
  5992. i10 -= ne0;
  5993. if (++i11 == ne1) {
  5994. i11 = 0;
  5995. if (++i12 == ne2) {
  5996. i12 = 0;
  5997. if (++i13 == ne3) {
  5998. i13 = 0;
  5999. }
  6000. }
  6001. }
  6002. }
  6003. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6004. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6005. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6006. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6007. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6008. if (++i10 == ne0) {
  6009. i10 = 0;
  6010. if (++i11 == ne1) {
  6011. i11 = 0;
  6012. if (++i12 == ne2) {
  6013. i12 = 0;
  6014. if (++i13 == ne3) {
  6015. i13 = 0;
  6016. }
  6017. }
  6018. }
  6019. }
  6020. }
  6021. }
  6022. i10 += ne00 * (ne01 - ir1);
  6023. while (i10 >= ne0) {
  6024. i10 -= ne0;
  6025. if (++i11 == ne1) {
  6026. i11 = 0;
  6027. if (++i12 == ne2) {
  6028. i12 = 0;
  6029. if (++i13 == ne3) {
  6030. i13 = 0;
  6031. }
  6032. }
  6033. }
  6034. }
  6035. }
  6036. }
  6037. } else {
  6038. GGML_ASSERT(false); // TODO: implement
  6039. }
  6040. }
  6041. static void ggml_compute_forward_dup_f32(
  6042. const struct ggml_compute_params * params,
  6043. const struct ggml_tensor * src0,
  6044. struct ggml_tensor * dst) {
  6045. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6047. return;
  6048. }
  6049. const int64_t ne00 = src0->ne[0];
  6050. const int64_t ne01 = src0->ne[1];
  6051. const int64_t ne02 = src0->ne[2];
  6052. const int64_t ne03 = src0->ne[3];
  6053. const int64_t ne0 = dst->ne[0];
  6054. const int64_t ne1 = dst->ne[1];
  6055. const int64_t ne2 = dst->ne[2];
  6056. const int64_t ne3 = dst->ne[3];
  6057. const size_t nb00 = src0->nb[0];
  6058. const size_t nb01 = src0->nb[1];
  6059. const size_t nb02 = src0->nb[2];
  6060. const size_t nb03 = src0->nb[3];
  6061. const size_t nb0 = dst->nb[0];
  6062. const size_t nb1 = dst->nb[1];
  6063. const size_t nb2 = dst->nb[2];
  6064. const size_t nb3 = dst->nb[3];
  6065. const int ith = params->ith; // thread index
  6066. const int nth = params->nth; // number of threads
  6067. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6068. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6069. return;
  6070. }
  6071. // parallelize by rows
  6072. const int nr = ne01;
  6073. // number of rows per thread
  6074. const int dr = (nr + nth - 1) / nth;
  6075. // row range for this thread
  6076. const int ir0 = dr * ith;
  6077. const int ir1 = MIN(ir0 + dr, nr);
  6078. if (src0->type == dst->type &&
  6079. ne00 == ne0 &&
  6080. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6081. // copy by rows
  6082. const size_t rs = ne00*nb00;
  6083. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6085. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6086. memcpy(
  6087. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6088. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6089. rs);
  6090. }
  6091. }
  6092. }
  6093. return;
  6094. }
  6095. if (ggml_is_contiguous(dst)) {
  6096. // TODO: simplify
  6097. if (nb00 == sizeof(float)) {
  6098. if (dst->type == GGML_TYPE_F32) {
  6099. size_t id = 0;
  6100. const size_t rs = ne00 * nb00;
  6101. char * dst_ptr = (char *) dst->data;
  6102. for (int i03 = 0; i03 < ne03; i03++) {
  6103. for (int i02 = 0; i02 < ne02; i02++) {
  6104. id += rs * ir0;
  6105. for (int i01 = ir0; i01 < ir1; i01++) {
  6106. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6107. memcpy(dst_ptr + id, src0_ptr, rs);
  6108. id += rs;
  6109. }
  6110. id += rs * (ne01 - ir1);
  6111. }
  6112. }
  6113. } else if (dst->type == GGML_TYPE_F16) {
  6114. size_t id = 0;
  6115. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6116. for (int i03 = 0; i03 < ne03; i03++) {
  6117. for (int i02 = 0; i02 < ne02; i02++) {
  6118. id += ne00 * ir0;
  6119. for (int i01 = ir0; i01 < ir1; i01++) {
  6120. for (int i00 = 0; i00 < ne00; i00++) {
  6121. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6122. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6123. id++;
  6124. }
  6125. }
  6126. id += ne00 * (ne01 - ir1);
  6127. }
  6128. }
  6129. } else if (ggml_is_quantized(dst->type)) {
  6130. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6131. size_t id = 0;
  6132. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6133. char * dst_ptr = (char *) dst->data;
  6134. for (int i03 = 0; i03 < ne03; i03++) {
  6135. for (int i02 = 0; i02 < ne02; i02++) {
  6136. id += rs * ir0;
  6137. for (int i01 = ir0; i01 < ir1; i01++) {
  6138. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6139. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6140. id += rs;
  6141. }
  6142. id += rs * (ne01 - ir1);
  6143. }
  6144. }
  6145. } else {
  6146. GGML_ASSERT(false); // TODO: implement
  6147. }
  6148. } else {
  6149. //printf("%s: this is not optimal - fix me\n", __func__);
  6150. if (dst->type == GGML_TYPE_F32) {
  6151. size_t id = 0;
  6152. float * dst_ptr = (float *) dst->data;
  6153. for (int i03 = 0; i03 < ne03; i03++) {
  6154. for (int i02 = 0; i02 < ne02; i02++) {
  6155. id += ne00 * ir0;
  6156. for (int i01 = ir0; i01 < ir1; i01++) {
  6157. for (int i00 = 0; i00 < ne00; i00++) {
  6158. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6159. dst_ptr[id] = *src0_ptr;
  6160. id++;
  6161. }
  6162. }
  6163. id += ne00 * (ne01 - ir1);
  6164. }
  6165. }
  6166. } else if (dst->type == GGML_TYPE_F16) {
  6167. size_t id = 0;
  6168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6169. for (int i03 = 0; i03 < ne03; i03++) {
  6170. for (int i02 = 0; i02 < ne02; i02++) {
  6171. id += ne00 * ir0;
  6172. for (int i01 = ir0; i01 < ir1; i01++) {
  6173. for (int i00 = 0; i00 < ne00; i00++) {
  6174. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6175. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6176. id++;
  6177. }
  6178. }
  6179. id += ne00 * (ne01 - ir1);
  6180. }
  6181. }
  6182. } else {
  6183. GGML_ASSERT(false); // TODO: implement
  6184. }
  6185. }
  6186. return;
  6187. }
  6188. // dst counters
  6189. int64_t i10 = 0;
  6190. int64_t i11 = 0;
  6191. int64_t i12 = 0;
  6192. int64_t i13 = 0;
  6193. if (dst->type == GGML_TYPE_F32) {
  6194. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6195. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6196. i10 += ne00 * ir0;
  6197. while (i10 >= ne0) {
  6198. i10 -= ne0;
  6199. if (++i11 == ne1) {
  6200. i11 = 0;
  6201. if (++i12 == ne2) {
  6202. i12 = 0;
  6203. if (++i13 == ne3) {
  6204. i13 = 0;
  6205. }
  6206. }
  6207. }
  6208. }
  6209. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6211. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6212. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6213. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6214. if (++i10 == ne0) {
  6215. i10 = 0;
  6216. if (++i11 == ne1) {
  6217. i11 = 0;
  6218. if (++i12 == ne2) {
  6219. i12 = 0;
  6220. if (++i13 == ne3) {
  6221. i13 = 0;
  6222. }
  6223. }
  6224. }
  6225. }
  6226. }
  6227. }
  6228. i10 += ne00 * (ne01 - ir1);
  6229. while (i10 >= ne0) {
  6230. i10 -= ne0;
  6231. if (++i11 == ne1) {
  6232. i11 = 0;
  6233. if (++i12 == ne2) {
  6234. i12 = 0;
  6235. if (++i13 == ne3) {
  6236. i13 = 0;
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. } else if (dst->type == GGML_TYPE_F16) {
  6244. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6245. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6246. i10 += ne00 * ir0;
  6247. while (i10 >= ne0) {
  6248. i10 -= ne0;
  6249. if (++i11 == ne1) {
  6250. i11 = 0;
  6251. if (++i12 == ne2) {
  6252. i12 = 0;
  6253. if (++i13 == ne3) {
  6254. i13 = 0;
  6255. }
  6256. }
  6257. }
  6258. }
  6259. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6261. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6262. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6263. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6264. if (++i10 == ne0) {
  6265. i10 = 0;
  6266. if (++i11 == ne1) {
  6267. i11 = 0;
  6268. if (++i12 == ne2) {
  6269. i12 = 0;
  6270. if (++i13 == ne3) {
  6271. i13 = 0;
  6272. }
  6273. }
  6274. }
  6275. }
  6276. }
  6277. }
  6278. i10 += ne00 * (ne01 - ir1);
  6279. while (i10 >= ne0) {
  6280. i10 -= ne0;
  6281. if (++i11 == ne1) {
  6282. i11 = 0;
  6283. if (++i12 == ne2) {
  6284. i12 = 0;
  6285. if (++i13 == ne3) {
  6286. i13 = 0;
  6287. }
  6288. }
  6289. }
  6290. }
  6291. }
  6292. }
  6293. } else {
  6294. GGML_ASSERT(false); // TODO: implement
  6295. }
  6296. }
  6297. static void ggml_compute_forward_dup(
  6298. const struct ggml_compute_params * params,
  6299. const struct ggml_tensor * src0,
  6300. struct ggml_tensor * dst) {
  6301. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6302. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6303. return;
  6304. }
  6305. switch (src0->type) {
  6306. case GGML_TYPE_F16:
  6307. {
  6308. ggml_compute_forward_dup_f16(params, src0, dst);
  6309. } break;
  6310. case GGML_TYPE_F32:
  6311. {
  6312. ggml_compute_forward_dup_f32(params, src0, dst);
  6313. } break;
  6314. default:
  6315. {
  6316. GGML_ASSERT(false);
  6317. } break;
  6318. }
  6319. }
  6320. // ggml_compute_forward_add
  6321. static void ggml_compute_forward_add_f32(
  6322. const struct ggml_compute_params * params,
  6323. const struct ggml_tensor * src0,
  6324. const struct ggml_tensor * src1,
  6325. struct ggml_tensor * dst) {
  6326. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6328. return;
  6329. }
  6330. const int ith = params->ith;
  6331. const int nth = params->nth;
  6332. const int nr = ggml_nrows(src0);
  6333. const int64_t ne0 = src0->ne[0];
  6334. const int64_t ne1 = src0->ne[1];
  6335. const int64_t ne2 = src0->ne[2];
  6336. const size_t nb00 = src0->nb[0];
  6337. const size_t nb01 = src0->nb[1];
  6338. const size_t nb02 = src0->nb[2];
  6339. const size_t nb03 = src0->nb[3];
  6340. const size_t nb10 = src1->nb[0];
  6341. const size_t nb11 = src1->nb[1];
  6342. const size_t nb12 = src1->nb[2];
  6343. const size_t nb13 = src1->nb[3];
  6344. const size_t nb0 = dst->nb[0];
  6345. const size_t nb1 = dst->nb[1];
  6346. const size_t nb2 = dst->nb[2];
  6347. const size_t nb3 = dst->nb[3];
  6348. GGML_ASSERT( nb0 == sizeof(float));
  6349. GGML_ASSERT(nb00 == sizeof(float));
  6350. // rows per thread
  6351. const int dr = (nr + nth - 1)/nth;
  6352. // row range for this thread
  6353. const int ir0 = dr*ith;
  6354. const int ir1 = MIN(ir0 + dr, nr);
  6355. if (nb10 == sizeof(float)) {
  6356. for (int ir = ir0; ir < ir1; ++ir) {
  6357. // src0, src1 and dst are same shape => same indices
  6358. const int i3 = ir/(ne2*ne1);
  6359. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6360. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6361. #ifdef GGML_USE_ACCELERATE
  6362. vDSP_vadd(
  6363. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6364. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6366. ne0);
  6367. #else
  6368. ggml_vec_add_f32(ne0,
  6369. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6370. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6371. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6372. #endif
  6373. // }
  6374. // }
  6375. }
  6376. } else {
  6377. // src1 is not contiguous
  6378. for (int ir = ir0; ir < ir1; ++ir) {
  6379. // src0, src1 and dst are same shape => same indices
  6380. const int i3 = ir/(ne2*ne1);
  6381. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6382. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6383. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6384. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6385. for (int i0 = 0; i0 < ne0; i0++) {
  6386. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6387. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6388. }
  6389. }
  6390. }
  6391. }
  6392. static void ggml_compute_forward_add_f16_f32(
  6393. const struct ggml_compute_params * params,
  6394. const struct ggml_tensor * src0,
  6395. const struct ggml_tensor * src1,
  6396. struct ggml_tensor * dst) {
  6397. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6399. return;
  6400. }
  6401. const int ith = params->ith;
  6402. const int nth = params->nth;
  6403. const int nr = ggml_nrows(src0);
  6404. const int64_t ne0 = src0->ne[0];
  6405. const int64_t ne1 = src0->ne[1];
  6406. const int64_t ne2 = src0->ne[2];
  6407. const size_t nb00 = src0->nb[0];
  6408. const size_t nb01 = src0->nb[1];
  6409. const size_t nb02 = src0->nb[2];
  6410. const size_t nb03 = src0->nb[3];
  6411. const size_t nb10 = src1->nb[0];
  6412. const size_t nb11 = src1->nb[1];
  6413. const size_t nb12 = src1->nb[2];
  6414. const size_t nb13 = src1->nb[3];
  6415. const size_t nb0 = dst->nb[0];
  6416. const size_t nb1 = dst->nb[1];
  6417. const size_t nb2 = dst->nb[2];
  6418. const size_t nb3 = dst->nb[3];
  6419. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6420. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6421. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6422. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6423. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6424. // rows per thread
  6425. const int dr = (nr + nth - 1)/nth;
  6426. // row range for this thread
  6427. const int ir0 = dr*ith;
  6428. const int ir1 = MIN(ir0 + dr, nr);
  6429. if (nb10 == sizeof(float)) {
  6430. for (int ir = ir0; ir < ir1; ++ir) {
  6431. // src0, src1 and dst are same shape => same indices
  6432. const int i3 = ir/(ne2*ne1);
  6433. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6434. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6435. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6436. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6437. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6438. for (int i = 0; i < ne0; i++) {
  6439. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6440. }
  6441. }
  6442. }
  6443. else {
  6444. // src1 is not contiguous
  6445. GGML_ASSERT(false);
  6446. }
  6447. }
  6448. static void ggml_compute_forward_add_f16_f16(
  6449. const struct ggml_compute_params * params,
  6450. const struct ggml_tensor * src0,
  6451. const struct ggml_tensor * src1,
  6452. struct ggml_tensor * dst) {
  6453. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6455. return;
  6456. }
  6457. const int ith = params->ith;
  6458. const int nth = params->nth;
  6459. const int nr = ggml_nrows(src0);
  6460. const int64_t ne0 = src0->ne[0];
  6461. const int64_t ne1 = src0->ne[1];
  6462. const int64_t ne2 = src0->ne[2];
  6463. const size_t nb00 = src0->nb[0];
  6464. const size_t nb01 = src0->nb[1];
  6465. const size_t nb02 = src0->nb[2];
  6466. const size_t nb03 = src0->nb[3];
  6467. const size_t nb10 = src1->nb[0];
  6468. const size_t nb11 = src1->nb[1];
  6469. const size_t nb12 = src1->nb[2];
  6470. const size_t nb13 = src1->nb[3];
  6471. const size_t nb0 = dst->nb[0];
  6472. const size_t nb1 = dst->nb[1];
  6473. const size_t nb2 = dst->nb[2];
  6474. const size_t nb3 = dst->nb[3];
  6475. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6476. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6477. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6478. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6479. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6480. // rows per thread
  6481. const int dr = (nr + nth - 1)/nth;
  6482. // row range for this thread
  6483. const int ir0 = dr*ith;
  6484. const int ir1 = MIN(ir0 + dr, nr);
  6485. if (nb10 == sizeof(ggml_fp16_t)) {
  6486. for (int ir = ir0; ir < ir1; ++ir) {
  6487. // src0, src1 and dst are same shape => same indices
  6488. const int i3 = ir/(ne2*ne1);
  6489. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6490. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6491. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6492. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6493. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6494. for (int i = 0; i < ne0; i++) {
  6495. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6496. }
  6497. }
  6498. }
  6499. else {
  6500. // src1 is not contiguous
  6501. GGML_ASSERT(false);
  6502. }
  6503. }
  6504. static void ggml_compute_forward_add_q_f32(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. const struct ggml_tensor * src1,
  6508. struct ggml_tensor * dst) {
  6509. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6511. return;
  6512. }
  6513. const int nr = ggml_nrows(src0);
  6514. const int64_t ne00 = src0->ne[0];
  6515. const int64_t ne01 = src0->ne[1];
  6516. const int64_t ne02 = src0->ne[2];
  6517. //const int64_t ne03 = src0->ne[3];
  6518. const size_t nb00 = src0->nb[0];
  6519. const size_t nb01 = src0->nb[1];
  6520. const size_t nb02 = src0->nb[2];
  6521. const size_t nb03 = src0->nb[3];
  6522. const size_t nb10 = src1->nb[0];
  6523. const size_t nb11 = src1->nb[1];
  6524. const size_t nb12 = src1->nb[2];
  6525. const size_t nb13 = src1->nb[3];
  6526. const size_t nb0 = dst->nb[0];
  6527. const size_t nb1 = dst->nb[1];
  6528. const size_t nb2 = dst->nb[2];
  6529. const size_t nb3 = dst->nb[3];
  6530. const int ith = params->ith;
  6531. const int nth = params->nth;
  6532. const enum ggml_type type = src0->type;
  6533. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6534. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6535. // we don't support permuted src0 or src1
  6536. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6537. GGML_ASSERT(nb10 == sizeof(float));
  6538. // dst cannot be transposed or permuted
  6539. GGML_ASSERT(nb0 <= nb1);
  6540. GGML_ASSERT(nb1 <= nb2);
  6541. GGML_ASSERT(nb2 <= nb3);
  6542. GGML_ASSERT(ggml_is_quantized(src0->type));
  6543. GGML_ASSERT(dst->type == src0->type);
  6544. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6545. // rows per thread
  6546. const int dr = (nr + nth - 1)/nth;
  6547. // row range for this thread
  6548. const int ir0 = dr*ith;
  6549. const int ir1 = MIN(ir0 + dr, nr);
  6550. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6551. for (int ir = ir0; ir < ir1; ++ir) {
  6552. // src0 indices
  6553. const int i03 = ir/(ne02*ne01);
  6554. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6555. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6556. // src1 and dst are same shape as src0 => same indices
  6557. const int i13 = i03;
  6558. const int i12 = i02;
  6559. const int i11 = i01;
  6560. const int i3 = i03;
  6561. const int i2 = i02;
  6562. const int i1 = i01;
  6563. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6564. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6565. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6566. assert(ne00 % 32 == 0);
  6567. // unquantize row from src0 to temp buffer
  6568. dequantize_row_q(src0_row, wdata, ne00);
  6569. // add src1
  6570. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6571. // quantize row to dst
  6572. quantize_row_q(wdata, dst_row, ne00);
  6573. }
  6574. }
  6575. static void ggml_compute_forward_add(
  6576. const struct ggml_compute_params * params,
  6577. const struct ggml_tensor * src0,
  6578. const struct ggml_tensor * src1,
  6579. struct ggml_tensor * dst) {
  6580. switch (src0->type) {
  6581. case GGML_TYPE_F32:
  6582. {
  6583. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6584. } break;
  6585. case GGML_TYPE_F16:
  6586. {
  6587. if (src1->type == GGML_TYPE_F16) {
  6588. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6589. }
  6590. else if (src1->type == GGML_TYPE_F32) {
  6591. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6592. }
  6593. else {
  6594. GGML_ASSERT(false);
  6595. }
  6596. } break;
  6597. case GGML_TYPE_Q4_0:
  6598. case GGML_TYPE_Q4_1:
  6599. case GGML_TYPE_Q5_0:
  6600. case GGML_TYPE_Q5_1:
  6601. case GGML_TYPE_Q8_0:
  6602. case GGML_TYPE_Q2_K:
  6603. case GGML_TYPE_Q3_K:
  6604. case GGML_TYPE_Q4_K:
  6605. case GGML_TYPE_Q5_K:
  6606. case GGML_TYPE_Q6_K:
  6607. {
  6608. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6609. } break;
  6610. default:
  6611. {
  6612. GGML_ASSERT(false);
  6613. } break;
  6614. }
  6615. }
  6616. // ggml_compute_forward_add1
  6617. static void ggml_compute_forward_add1_f32(
  6618. const struct ggml_compute_params * params,
  6619. const struct ggml_tensor * src0,
  6620. const struct ggml_tensor * src1,
  6621. struct ggml_tensor * dst) {
  6622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6623. GGML_ASSERT(ggml_is_scalar(src1));
  6624. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6625. return;
  6626. }
  6627. const int ith = params->ith;
  6628. const int nth = params->nth;
  6629. const int nr = ggml_nrows(src0);
  6630. const int64_t ne0 = src0->ne[0];
  6631. const int64_t ne1 = src0->ne[1];
  6632. const int64_t ne2 = src0->ne[2];
  6633. const size_t nb00 = src0->nb[0];
  6634. const size_t nb01 = src0->nb[1];
  6635. const size_t nb02 = src0->nb[2];
  6636. const size_t nb03 = src0->nb[3];
  6637. const size_t nb0 = dst->nb[0];
  6638. const size_t nb1 = dst->nb[1];
  6639. const size_t nb2 = dst->nb[2];
  6640. const size_t nb3 = dst->nb[3];
  6641. GGML_ASSERT( nb0 == sizeof(float));
  6642. GGML_ASSERT(nb00 == sizeof(float));
  6643. // rows per thread
  6644. const int dr = (nr + nth - 1)/nth;
  6645. // row range for this thread
  6646. const int ir0 = dr*ith;
  6647. const int ir1 = MIN(ir0 + dr, nr);
  6648. for (int ir = ir0; ir < ir1; ++ir) {
  6649. // src0 and dst are same shape => same indices
  6650. const int i3 = ir/(ne2*ne1);
  6651. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6652. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6653. #ifdef GGML_USE_ACCELERATE
  6654. UNUSED(ggml_vec_add1_f32);
  6655. vDSP_vadd(
  6656. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6657. (float *) ((char *) src1->data), 0,
  6658. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6659. ne0);
  6660. #else
  6661. ggml_vec_add1_f32(ne0,
  6662. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6663. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6664. *(float *) src1->data);
  6665. #endif
  6666. }
  6667. }
  6668. static void ggml_compute_forward_add1_f16_f32(
  6669. const struct ggml_compute_params * params,
  6670. const struct ggml_tensor * src0,
  6671. const struct ggml_tensor * src1,
  6672. struct ggml_tensor * dst) {
  6673. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6674. GGML_ASSERT(ggml_is_scalar(src1));
  6675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6676. return;
  6677. }
  6678. // scalar to add
  6679. const float v = *(float *) src1->data;
  6680. const int ith = params->ith;
  6681. const int nth = params->nth;
  6682. const int nr = ggml_nrows(src0);
  6683. const int64_t ne0 = src0->ne[0];
  6684. const int64_t ne1 = src0->ne[1];
  6685. const int64_t ne2 = src0->ne[2];
  6686. const size_t nb00 = src0->nb[0];
  6687. const size_t nb01 = src0->nb[1];
  6688. const size_t nb02 = src0->nb[2];
  6689. const size_t nb03 = src0->nb[3];
  6690. const size_t nb0 = dst->nb[0];
  6691. const size_t nb1 = dst->nb[1];
  6692. const size_t nb2 = dst->nb[2];
  6693. const size_t nb3 = dst->nb[3];
  6694. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6695. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6696. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6697. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6698. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6699. // rows per thread
  6700. const int dr = (nr + nth - 1)/nth;
  6701. // row range for this thread
  6702. const int ir0 = dr*ith;
  6703. const int ir1 = MIN(ir0 + dr, nr);
  6704. for (int ir = ir0; ir < ir1; ++ir) {
  6705. // src0 and dst are same shape => same indices
  6706. const int i3 = ir/(ne2*ne1);
  6707. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6708. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6709. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6710. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6711. for (int i = 0; i < ne0; i++) {
  6712. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6713. }
  6714. }
  6715. }
  6716. static void ggml_compute_forward_add1_f16_f16(
  6717. const struct ggml_compute_params * params,
  6718. const struct ggml_tensor * src0,
  6719. const struct ggml_tensor * src1,
  6720. struct ggml_tensor * dst) {
  6721. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6722. GGML_ASSERT(ggml_is_scalar(src1));
  6723. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6724. return;
  6725. }
  6726. // scalar to add
  6727. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6728. const int ith = params->ith;
  6729. const int nth = params->nth;
  6730. const int nr = ggml_nrows(src0);
  6731. const int64_t ne0 = src0->ne[0];
  6732. const int64_t ne1 = src0->ne[1];
  6733. const int64_t ne2 = src0->ne[2];
  6734. const size_t nb00 = src0->nb[0];
  6735. const size_t nb01 = src0->nb[1];
  6736. const size_t nb02 = src0->nb[2];
  6737. const size_t nb03 = src0->nb[3];
  6738. const size_t nb0 = dst->nb[0];
  6739. const size_t nb1 = dst->nb[1];
  6740. const size_t nb2 = dst->nb[2];
  6741. const size_t nb3 = dst->nb[3];
  6742. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6743. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6744. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6745. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6746. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6747. // rows per thread
  6748. const int dr = (nr + nth - 1)/nth;
  6749. // row range for this thread
  6750. const int ir0 = dr*ith;
  6751. const int ir1 = MIN(ir0 + dr, nr);
  6752. for (int ir = ir0; ir < ir1; ++ir) {
  6753. // src0 and dst are same shape => same indices
  6754. const int i3 = ir/(ne2*ne1);
  6755. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6756. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6757. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6758. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6759. for (int i = 0; i < ne0; i++) {
  6760. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6761. }
  6762. }
  6763. }
  6764. static void ggml_compute_forward_add1_q_f32(
  6765. const struct ggml_compute_params * params,
  6766. const struct ggml_tensor * src0,
  6767. const struct ggml_tensor * src1,
  6768. struct ggml_tensor * dst) {
  6769. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6770. GGML_ASSERT(ggml_is_scalar(src1));
  6771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6772. return;
  6773. }
  6774. // scalar to add
  6775. const float v = *(float *) src1->data;
  6776. const int ith = params->ith;
  6777. const int nth = params->nth;
  6778. const int nr = ggml_nrows(src0);
  6779. const int64_t ne0 = src0->ne[0];
  6780. const int64_t ne1 = src0->ne[1];
  6781. const int64_t ne2 = src0->ne[2];
  6782. const size_t nb00 = src0->nb[0];
  6783. const size_t nb01 = src0->nb[1];
  6784. const size_t nb02 = src0->nb[2];
  6785. const size_t nb03 = src0->nb[3];
  6786. const size_t nb0 = dst->nb[0];
  6787. const size_t nb1 = dst->nb[1];
  6788. const size_t nb2 = dst->nb[2];
  6789. const size_t nb3 = dst->nb[3];
  6790. const enum ggml_type type = src0->type;
  6791. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6792. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6793. // we don't support permuted src0
  6794. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6795. // dst cannot be transposed or permuted
  6796. GGML_ASSERT(nb0 <= nb1);
  6797. GGML_ASSERT(nb1 <= nb2);
  6798. GGML_ASSERT(nb2 <= nb3);
  6799. GGML_ASSERT(ggml_is_quantized(src0->type));
  6800. GGML_ASSERT(dst->type == src0->type);
  6801. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6802. // rows per thread
  6803. const int dr = (nr + nth - 1)/nth;
  6804. // row range for this thread
  6805. const int ir0 = dr*ith;
  6806. const int ir1 = MIN(ir0 + dr, nr);
  6807. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6808. for (int ir = ir0; ir < ir1; ++ir) {
  6809. // src0 and dst are same shape => same indices
  6810. const int i3 = ir/(ne2*ne1);
  6811. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6812. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6813. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6814. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6815. assert(ne0 % 32 == 0);
  6816. // unquantize row from src0 to temp buffer
  6817. dequantize_row_q(src0_row, wdata, ne0);
  6818. // add src1
  6819. ggml_vec_acc1_f32(ne0, wdata, v);
  6820. // quantize row to dst
  6821. quantize_row_q(wdata, dst_row, ne0);
  6822. }
  6823. }
  6824. static void ggml_compute_forward_add1(
  6825. const struct ggml_compute_params * params,
  6826. const struct ggml_tensor * src0,
  6827. const struct ggml_tensor * src1,
  6828. struct ggml_tensor * dst) {
  6829. switch (src0->type) {
  6830. case GGML_TYPE_F32:
  6831. {
  6832. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6833. } break;
  6834. case GGML_TYPE_F16:
  6835. {
  6836. if (src1->type == GGML_TYPE_F16) {
  6837. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6838. }
  6839. else if (src1->type == GGML_TYPE_F32) {
  6840. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6841. }
  6842. else {
  6843. GGML_ASSERT(false);
  6844. }
  6845. } break;
  6846. case GGML_TYPE_Q4_0:
  6847. case GGML_TYPE_Q4_1:
  6848. case GGML_TYPE_Q5_0:
  6849. case GGML_TYPE_Q5_1:
  6850. case GGML_TYPE_Q8_0:
  6851. case GGML_TYPE_Q8_1:
  6852. case GGML_TYPE_Q2_K:
  6853. case GGML_TYPE_Q3_K:
  6854. case GGML_TYPE_Q4_K:
  6855. case GGML_TYPE_Q5_K:
  6856. case GGML_TYPE_Q6_K:
  6857. {
  6858. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6859. } break;
  6860. default:
  6861. {
  6862. GGML_ASSERT(false);
  6863. } break;
  6864. }
  6865. }
  6866. // ggml_compute_forward_acc
  6867. static void ggml_compute_forward_acc_f32(
  6868. const struct ggml_compute_params * params,
  6869. const struct ggml_tensor * src0,
  6870. const struct ggml_tensor * src1,
  6871. const struct ggml_tensor * opt0,
  6872. struct ggml_tensor * dst) {
  6873. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6874. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6875. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6876. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6877. // view src0 and dst with these strides and data offset inbytes during acc
  6878. // nb0 is implicitely element_size because src0 and dst are contiguous
  6879. size_t nb1 = ((int32_t *) opt0->data)[0];
  6880. size_t nb2 = ((int32_t *) opt0->data)[1];
  6881. size_t nb3 = ((int32_t *) opt0->data)[2];
  6882. size_t offset = ((int32_t *) opt0->data)[3];
  6883. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6884. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6885. // memcpy needs to be synchronized across threads to avoid race conditions.
  6886. // => do it in INIT phase
  6887. memcpy(
  6888. ((char *) dst->data),
  6889. ((char *) src0->data),
  6890. ggml_nbytes(dst));
  6891. }
  6892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6893. return;
  6894. }
  6895. const int ith = params->ith;
  6896. const int nth = params->nth;
  6897. const int nr = ggml_nrows(src1);
  6898. const int nc = src1->ne[0];
  6899. const int64_t ne10 = src1->ne[0];
  6900. const int64_t ne11 = src1->ne[1];
  6901. const int64_t ne12 = src1->ne[2];
  6902. const int64_t ne13 = src1->ne[3];
  6903. const size_t nb10 = src1->nb[0];
  6904. const size_t nb11 = src1->nb[1];
  6905. const size_t nb12 = src1->nb[2];
  6906. const size_t nb13 = src1->nb[3];
  6907. // src0 and dst as viewed during acc
  6908. const size_t nb0 = ggml_element_size(src0);
  6909. const size_t nb00 = nb0;
  6910. const size_t nb01 = nb1;
  6911. const size_t nb02 = nb2;
  6912. const size_t nb03 = nb3;
  6913. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6914. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6915. GGML_ASSERT(nb10 == sizeof(float));
  6916. // rows per thread
  6917. const int dr = (nr + nth - 1)/nth;
  6918. // row range for this thread
  6919. const int ir0 = dr*ith;
  6920. const int ir1 = MIN(ir0 + dr, nr);
  6921. for (int ir = ir0; ir < ir1; ++ir) {
  6922. // src0 and dst are viewed with shape of src1 and offset
  6923. // => same indices
  6924. const int i3 = ir/(ne12*ne11);
  6925. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6926. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6927. #ifdef GGML_USE_ACCELERATE
  6928. vDSP_vadd(
  6929. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6930. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6931. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6932. #else
  6933. ggml_vec_add_f32(nc,
  6934. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6935. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6936. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6937. #endif
  6938. }
  6939. }
  6940. static void ggml_compute_forward_acc(
  6941. const struct ggml_compute_params * params,
  6942. const struct ggml_tensor * src0,
  6943. const struct ggml_tensor * src1,
  6944. const struct ggml_tensor * opt0,
  6945. struct ggml_tensor * dst) {
  6946. switch (src0->type) {
  6947. case GGML_TYPE_F32:
  6948. {
  6949. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6950. } break;
  6951. case GGML_TYPE_F16:
  6952. case GGML_TYPE_Q4_0:
  6953. case GGML_TYPE_Q4_1:
  6954. case GGML_TYPE_Q5_0:
  6955. case GGML_TYPE_Q5_1:
  6956. case GGML_TYPE_Q8_0:
  6957. case GGML_TYPE_Q8_1:
  6958. case GGML_TYPE_Q2_K:
  6959. case GGML_TYPE_Q3_K:
  6960. case GGML_TYPE_Q4_K:
  6961. case GGML_TYPE_Q5_K:
  6962. case GGML_TYPE_Q6_K:
  6963. default:
  6964. {
  6965. GGML_ASSERT(false);
  6966. } break;
  6967. }
  6968. }
  6969. // ggml_compute_forward_sub
  6970. static void ggml_compute_forward_sub_f32(
  6971. const struct ggml_compute_params * params,
  6972. const struct ggml_tensor * src0,
  6973. const struct ggml_tensor * src1,
  6974. struct ggml_tensor * dst) {
  6975. assert(params->ith == 0);
  6976. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6978. return;
  6979. }
  6980. const int nr = ggml_nrows(src0);
  6981. const int64_t ne0 = src0->ne[0];
  6982. const int64_t ne1 = src0->ne[1];
  6983. const int64_t ne2 = src0->ne[2];
  6984. const size_t nb00 = src0->nb[0];
  6985. const size_t nb01 = src0->nb[1];
  6986. const size_t nb02 = src0->nb[2];
  6987. const size_t nb03 = src0->nb[3];
  6988. const size_t nb10 = src1->nb[0];
  6989. const size_t nb11 = src1->nb[1];
  6990. const size_t nb12 = src1->nb[2];
  6991. const size_t nb13 = src1->nb[3];
  6992. const size_t nb0 = dst->nb[0];
  6993. const size_t nb1 = dst->nb[1];
  6994. const size_t nb2 = dst->nb[2];
  6995. const size_t nb3 = dst->nb[3];
  6996. GGML_ASSERT( nb0 == sizeof(float));
  6997. GGML_ASSERT(nb00 == sizeof(float));
  6998. if (nb10 == sizeof(float)) {
  6999. for (int ir = 0; ir < nr; ++ir) {
  7000. // src0, src1 and dst are same shape => same indices
  7001. const int i3 = ir/(ne2*ne1);
  7002. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7003. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7004. #ifdef GGML_USE_ACCELERATE
  7005. vDSP_vsub(
  7006. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7007. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7008. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7009. ne0);
  7010. #else
  7011. ggml_vec_sub_f32(ne0,
  7012. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7013. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7014. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7015. #endif
  7016. // }
  7017. // }
  7018. }
  7019. } else {
  7020. // src1 is not contiguous
  7021. for (int ir = 0; ir < nr; ++ir) {
  7022. // src0, src1 and dst are same shape => same indices
  7023. const int i3 = ir/(ne2*ne1);
  7024. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7025. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7026. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7027. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7028. for (int i0 = 0; i0 < ne0; i0++) {
  7029. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7030. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7031. }
  7032. }
  7033. }
  7034. }
  7035. static void ggml_compute_forward_sub(
  7036. const struct ggml_compute_params * params,
  7037. const struct ggml_tensor * src0,
  7038. const struct ggml_tensor * src1,
  7039. struct ggml_tensor * dst) {
  7040. switch (src0->type) {
  7041. case GGML_TYPE_F32:
  7042. {
  7043. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7044. } break;
  7045. default:
  7046. {
  7047. GGML_ASSERT(false);
  7048. } break;
  7049. }
  7050. }
  7051. // ggml_compute_forward_mul
  7052. static void ggml_compute_forward_mul_f32(
  7053. const struct ggml_compute_params * params,
  7054. const struct ggml_tensor * src0,
  7055. const struct ggml_tensor * src1,
  7056. struct ggml_tensor * dst) {
  7057. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. const int ith = params->ith;
  7062. const int nth = params->nth;
  7063. #ifdef GGML_USE_CLBLAST
  7064. if (src1->backend == GGML_BACKEND_GPU) {
  7065. if (ith == 0) {
  7066. ggml_cl_mul(src0, src1, dst);
  7067. }
  7068. return;
  7069. }
  7070. #endif
  7071. const int64_t nr = ggml_nrows(src0);
  7072. const int64_t ne00 = src0->ne[0];
  7073. const int64_t ne01 = src0->ne[1];
  7074. const int64_t ne02 = src0->ne[2];
  7075. const int64_t ne10 = src1->ne[0];
  7076. const int64_t ne11 = src1->ne[1];
  7077. const int64_t ne12 = src1->ne[2];
  7078. const int64_t ne13 = src1->ne[3];
  7079. const size_t nb00 = src0->nb[0];
  7080. const size_t nb01 = src0->nb[1];
  7081. const size_t nb02 = src0->nb[2];
  7082. const size_t nb03 = src0->nb[3];
  7083. const size_t nb10 = src1->nb[0];
  7084. const size_t nb11 = src1->nb[1];
  7085. const size_t nb12 = src1->nb[2];
  7086. const size_t nb13 = src1->nb[3];
  7087. const size_t nb0 = dst->nb[0];
  7088. const size_t nb1 = dst->nb[1];
  7089. const size_t nb2 = dst->nb[2];
  7090. const size_t nb3 = dst->nb[3];
  7091. GGML_ASSERT( nb0 == sizeof(float));
  7092. GGML_ASSERT(nb00 == sizeof(float));
  7093. GGML_ASSERT(ne00 == ne10);
  7094. if (nb10 == sizeof(float)) {
  7095. for (int64_t ir = ith; ir < nr; ir += nth) {
  7096. // src0 and dst are same shape => same indices
  7097. const int64_t i03 = ir/(ne02*ne01);
  7098. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7099. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7100. const int64_t i13 = i03 % ne13;
  7101. const int64_t i12 = i02 % ne12;
  7102. const int64_t i11 = i01 % ne11;
  7103. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7104. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7105. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7106. #ifdef GGML_USE_ACCELERATE
  7107. UNUSED(ggml_vec_mul_f32);
  7108. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7109. #else
  7110. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7111. #endif
  7112. // }
  7113. // }
  7114. }
  7115. } else {
  7116. // src1 is not contiguous
  7117. for (int64_t ir = ith; ir < nr; ir += nth) {
  7118. // src0 and dst are same shape => same indices
  7119. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7120. const int64_t i03 = ir/(ne02*ne01);
  7121. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7122. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7123. const int64_t i13 = i03 % ne13;
  7124. const int64_t i12 = i02 % ne12;
  7125. const int64_t i11 = i01 % ne11;
  7126. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7127. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7128. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7129. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7130. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7131. }
  7132. }
  7133. }
  7134. }
  7135. static void ggml_compute_forward_mul(
  7136. const struct ggml_compute_params * params,
  7137. const struct ggml_tensor * src0,
  7138. const struct ggml_tensor * src1,
  7139. struct ggml_tensor * dst) {
  7140. switch (src0->type) {
  7141. case GGML_TYPE_F32:
  7142. {
  7143. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7144. } break;
  7145. default:
  7146. {
  7147. GGML_ASSERT(false);
  7148. } break;
  7149. }
  7150. }
  7151. // ggml_compute_forward_div
  7152. static void ggml_compute_forward_div_f32(
  7153. const struct ggml_compute_params * params,
  7154. const struct ggml_tensor * src0,
  7155. const struct ggml_tensor * src1,
  7156. struct ggml_tensor * dst) {
  7157. assert(params->ith == 0);
  7158. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7160. return;
  7161. }
  7162. const int nr = ggml_nrows(src0);
  7163. const int64_t ne0 = src0->ne[0];
  7164. const int64_t ne1 = src0->ne[1];
  7165. const int64_t ne2 = src0->ne[2];
  7166. const size_t nb00 = src0->nb[0];
  7167. const size_t nb01 = src0->nb[1];
  7168. const size_t nb02 = src0->nb[2];
  7169. const size_t nb03 = src0->nb[3];
  7170. const size_t nb10 = src1->nb[0];
  7171. const size_t nb11 = src1->nb[1];
  7172. const size_t nb12 = src1->nb[2];
  7173. const size_t nb13 = src1->nb[3];
  7174. const size_t nb0 = dst->nb[0];
  7175. const size_t nb1 = dst->nb[1];
  7176. const size_t nb2 = dst->nb[2];
  7177. const size_t nb3 = dst->nb[3];
  7178. GGML_ASSERT( nb0 == sizeof(float));
  7179. GGML_ASSERT(nb00 == sizeof(float));
  7180. if (nb10 == sizeof(float)) {
  7181. for (int ir = 0; ir < nr; ++ir) {
  7182. // src0, src1 and dst are same shape => same indices
  7183. const int i3 = ir/(ne2*ne1);
  7184. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7185. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7186. #ifdef GGML_USE_ACCELERATE
  7187. vDSP_vdiv(
  7188. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7189. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7190. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7191. ne0);
  7192. #else
  7193. ggml_vec_div_f32(ne0,
  7194. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7195. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7196. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7197. #endif
  7198. // }
  7199. // }
  7200. }
  7201. } else {
  7202. // src1 is not contiguous
  7203. for (int ir = 0; ir < nr; ++ir) {
  7204. // src0, src1 and dst are same shape => same indices
  7205. const int i3 = ir/(ne2*ne1);
  7206. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7207. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7208. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7209. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7210. for (int i0 = 0; i0 < ne0; i0++) {
  7211. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7212. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7213. }
  7214. }
  7215. }
  7216. }
  7217. static void ggml_compute_forward_div(
  7218. const struct ggml_compute_params * params,
  7219. const struct ggml_tensor * src0,
  7220. const struct ggml_tensor * src1,
  7221. struct ggml_tensor * dst) {
  7222. switch (src0->type) {
  7223. case GGML_TYPE_F32:
  7224. {
  7225. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7226. } break;
  7227. default:
  7228. {
  7229. GGML_ASSERT(false);
  7230. } break;
  7231. }
  7232. }
  7233. // ggml_compute_forward_sqr
  7234. static void ggml_compute_forward_sqr_f32(
  7235. const struct ggml_compute_params * params,
  7236. const struct ggml_tensor * src0,
  7237. struct ggml_tensor * dst) {
  7238. assert(params->ith == 0);
  7239. assert(ggml_are_same_shape(src0, dst));
  7240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7241. return;
  7242. }
  7243. const int n = ggml_nrows(src0);
  7244. const int nc = src0->ne[0];
  7245. assert( dst->nb[0] == sizeof(float));
  7246. assert(src0->nb[0] == sizeof(float));
  7247. for (int i = 0; i < n; i++) {
  7248. ggml_vec_sqr_f32(nc,
  7249. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7250. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7251. }
  7252. }
  7253. static void ggml_compute_forward_sqr(
  7254. const struct ggml_compute_params * params,
  7255. const struct ggml_tensor * src0,
  7256. struct ggml_tensor * dst) {
  7257. switch (src0->type) {
  7258. case GGML_TYPE_F32:
  7259. {
  7260. ggml_compute_forward_sqr_f32(params, src0, dst);
  7261. } break;
  7262. default:
  7263. {
  7264. GGML_ASSERT(false);
  7265. } break;
  7266. }
  7267. }
  7268. // ggml_compute_forward_sqrt
  7269. static void ggml_compute_forward_sqrt_f32(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. struct ggml_tensor * dst) {
  7273. assert(params->ith == 0);
  7274. assert(ggml_are_same_shape(src0, dst));
  7275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7276. return;
  7277. }
  7278. const int n = ggml_nrows(src0);
  7279. const int nc = src0->ne[0];
  7280. assert( dst->nb[0] == sizeof(float));
  7281. assert(src0->nb[0] == sizeof(float));
  7282. for (int i = 0; i < n; i++) {
  7283. ggml_vec_sqrt_f32(nc,
  7284. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7285. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7286. }
  7287. }
  7288. static void ggml_compute_forward_sqrt(
  7289. const struct ggml_compute_params * params,
  7290. const struct ggml_tensor * src0,
  7291. struct ggml_tensor * dst) {
  7292. switch (src0->type) {
  7293. case GGML_TYPE_F32:
  7294. {
  7295. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7296. } break;
  7297. default:
  7298. {
  7299. GGML_ASSERT(false);
  7300. } break;
  7301. }
  7302. }
  7303. // ggml_compute_forward_log
  7304. static void ggml_compute_forward_log_f32(
  7305. const struct ggml_compute_params * params,
  7306. const struct ggml_tensor * src0,
  7307. struct ggml_tensor * dst) {
  7308. GGML_ASSERT(params->ith == 0);
  7309. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7311. return;
  7312. }
  7313. const int n = ggml_nrows(src0);
  7314. const int nc = src0->ne[0];
  7315. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7316. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7317. for (int i = 0; i < n; i++) {
  7318. ggml_vec_log_f32(nc,
  7319. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7320. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7321. }
  7322. }
  7323. static void ggml_compute_forward_log(
  7324. const struct ggml_compute_params * params,
  7325. const struct ggml_tensor * src0,
  7326. struct ggml_tensor * dst) {
  7327. switch (src0->type) {
  7328. case GGML_TYPE_F32:
  7329. {
  7330. ggml_compute_forward_log_f32(params, src0, dst);
  7331. } break;
  7332. default:
  7333. {
  7334. GGML_ASSERT(false);
  7335. } break;
  7336. }
  7337. }
  7338. // ggml_compute_forward_sum
  7339. static void ggml_compute_forward_sum_f32(
  7340. const struct ggml_compute_params * params,
  7341. const struct ggml_tensor * src0,
  7342. struct ggml_tensor * dst) {
  7343. assert(params->ith == 0);
  7344. assert(ggml_is_scalar(dst));
  7345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7346. return;
  7347. }
  7348. assert(ggml_is_scalar(dst));
  7349. assert(src0->nb[0] == sizeof(float));
  7350. const int64_t ne00 = src0->ne[0];
  7351. const int64_t ne01 = src0->ne[1];
  7352. const int64_t ne02 = src0->ne[2];
  7353. const int64_t ne03 = src0->ne[3];
  7354. const size_t nb01 = src0->nb[1];
  7355. const size_t nb02 = src0->nb[2];
  7356. const size_t nb03 = src0->nb[3];
  7357. ggml_float sum = 0;
  7358. ggml_float row_sum = 0;
  7359. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7360. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7361. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7362. ggml_vec_sum_ggf(ne00,
  7363. &row_sum,
  7364. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7365. sum += row_sum;
  7366. }
  7367. }
  7368. }
  7369. ((float *) dst->data)[0] = sum;
  7370. }
  7371. static void ggml_compute_forward_sum(
  7372. const struct ggml_compute_params * params,
  7373. const struct ggml_tensor * src0,
  7374. struct ggml_tensor * dst) {
  7375. switch (src0->type) {
  7376. case GGML_TYPE_F32:
  7377. {
  7378. ggml_compute_forward_sum_f32(params, src0, dst);
  7379. } break;
  7380. default:
  7381. {
  7382. GGML_ASSERT(false);
  7383. } break;
  7384. }
  7385. }
  7386. // ggml_compute_forward_sum_rows
  7387. static void ggml_compute_forward_sum_rows_f32(
  7388. const struct ggml_compute_params * params,
  7389. const struct ggml_tensor * src0,
  7390. struct ggml_tensor * dst) {
  7391. GGML_ASSERT(params->ith == 0);
  7392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7393. return;
  7394. }
  7395. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7396. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7397. const int64_t ne00 = src0->ne[0];
  7398. const int64_t ne01 = src0->ne[1];
  7399. const int64_t ne02 = src0->ne[2];
  7400. const int64_t ne03 = src0->ne[3];
  7401. const int64_t ne0 = dst->ne[0];
  7402. const int64_t ne1 = dst->ne[1];
  7403. const int64_t ne2 = dst->ne[2];
  7404. const int64_t ne3 = dst->ne[3];
  7405. GGML_ASSERT(ne0 == 1);
  7406. GGML_ASSERT(ne1 == ne01);
  7407. GGML_ASSERT(ne2 == ne02);
  7408. GGML_ASSERT(ne3 == ne03);
  7409. const size_t nb01 = src0->nb[1];
  7410. const size_t nb02 = src0->nb[2];
  7411. const size_t nb03 = src0->nb[3];
  7412. const size_t nb1 = dst->nb[1];
  7413. const size_t nb2 = dst->nb[2];
  7414. const size_t nb3 = dst->nb[3];
  7415. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7416. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7417. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7418. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7419. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7420. float row_sum = 0;
  7421. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7422. dst_row[0] = row_sum;
  7423. }
  7424. }
  7425. }
  7426. }
  7427. static void ggml_compute_forward_sum_rows(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. struct ggml_tensor * dst) {
  7431. switch (src0->type) {
  7432. case GGML_TYPE_F32:
  7433. {
  7434. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7435. } break;
  7436. default:
  7437. {
  7438. GGML_ASSERT(false);
  7439. } break;
  7440. }
  7441. }
  7442. // ggml_compute_forward_mean
  7443. static void ggml_compute_forward_mean_f32(
  7444. const struct ggml_compute_params * params,
  7445. const struct ggml_tensor * src0,
  7446. struct ggml_tensor * dst) {
  7447. assert(params->ith == 0);
  7448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7449. return;
  7450. }
  7451. assert(src0->nb[0] == sizeof(float));
  7452. const int64_t ne00 = src0->ne[0];
  7453. const int64_t ne01 = src0->ne[1];
  7454. const int64_t ne02 = src0->ne[2];
  7455. const int64_t ne03 = src0->ne[3];
  7456. const size_t nb01 = src0->nb[1];
  7457. const size_t nb02 = src0->nb[2];
  7458. const size_t nb03 = src0->nb[3];
  7459. const int64_t ne0 = dst->ne[0];
  7460. const int64_t ne1 = dst->ne[1];
  7461. const int64_t ne2 = dst->ne[2];
  7462. const int64_t ne3 = dst->ne[3];
  7463. assert(ne0 == 1);
  7464. assert(ne1 == ne01);
  7465. assert(ne2 == ne02);
  7466. assert(ne3 == ne03);
  7467. UNUSED(ne0);
  7468. UNUSED(ne1);
  7469. UNUSED(ne2);
  7470. UNUSED(ne3);
  7471. const size_t nb1 = dst->nb[1];
  7472. const size_t nb2 = dst->nb[2];
  7473. const size_t nb3 = dst->nb[3];
  7474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7476. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7477. ggml_vec_sum_f32(ne00,
  7478. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7479. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7480. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7481. }
  7482. }
  7483. }
  7484. }
  7485. static void ggml_compute_forward_mean(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. struct ggml_tensor * dst) {
  7489. switch (src0->type) {
  7490. case GGML_TYPE_F32:
  7491. {
  7492. ggml_compute_forward_mean_f32(params, src0, dst);
  7493. } break;
  7494. default:
  7495. {
  7496. GGML_ASSERT(false);
  7497. } break;
  7498. }
  7499. }
  7500. // ggml_compute_forward_repeat
  7501. static void ggml_compute_forward_repeat_f32(
  7502. const struct ggml_compute_params * params,
  7503. const struct ggml_tensor * src0,
  7504. struct ggml_tensor * dst) {
  7505. GGML_ASSERT(params->ith == 0);
  7506. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7508. return;
  7509. }
  7510. const int64_t ne0 = dst->ne[0];
  7511. const int64_t ne1 = dst->ne[1];
  7512. const int64_t ne2 = dst->ne[2];
  7513. const int64_t ne3 = dst->ne[3];
  7514. const int64_t ne00 = src0->ne[0];
  7515. const int64_t ne01 = src0->ne[1];
  7516. const int64_t ne02 = src0->ne[2];
  7517. const int64_t ne03 = src0->ne[3];
  7518. const size_t nb0 = dst->nb[0];
  7519. const size_t nb1 = dst->nb[1];
  7520. const size_t nb2 = dst->nb[2];
  7521. const size_t nb3 = dst->nb[3];
  7522. const size_t nb00 = src0->nb[0];
  7523. const size_t nb01 = src0->nb[1];
  7524. const size_t nb02 = src0->nb[2];
  7525. const size_t nb03 = src0->nb[3];
  7526. // guaranteed to be an integer due to the check in ggml_can_repeat
  7527. const int nr0 = (int)(ne0/ne00);
  7528. const int nr1 = (int)(ne1/ne01);
  7529. const int nr2 = (int)(ne2/ne02);
  7530. const int nr3 = (int)(ne3/ne03);
  7531. // TODO: support for transposed / permuted tensors
  7532. GGML_ASSERT(nb0 == sizeof(float));
  7533. GGML_ASSERT(nb00 == sizeof(float));
  7534. // TODO: maybe this is not optimal?
  7535. for (int i3 = 0; i3 < nr3; i3++) {
  7536. for (int k3 = 0; k3 < ne03; k3++) {
  7537. for (int i2 = 0; i2 < nr2; i2++) {
  7538. for (int k2 = 0; k2 < ne02; k2++) {
  7539. for (int i1 = 0; i1 < nr1; i1++) {
  7540. for (int k1 = 0; k1 < ne01; k1++) {
  7541. for (int i0 = 0; i0 < nr0; i0++) {
  7542. ggml_vec_cpy_f32(ne00,
  7543. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7544. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7545. }
  7546. }
  7547. }
  7548. }
  7549. }
  7550. }
  7551. }
  7552. }
  7553. static void ggml_compute_forward_repeat(
  7554. const struct ggml_compute_params * params,
  7555. const struct ggml_tensor * src0,
  7556. struct ggml_tensor * dst) {
  7557. switch (src0->type) {
  7558. case GGML_TYPE_F32:
  7559. {
  7560. ggml_compute_forward_repeat_f32(params, src0, dst);
  7561. } break;
  7562. default:
  7563. {
  7564. GGML_ASSERT(false);
  7565. } break;
  7566. }
  7567. }
  7568. // ggml_compute_forward_repeat_back
  7569. static void ggml_compute_forward_repeat_back_f32(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * src0,
  7572. struct ggml_tensor * dst) {
  7573. GGML_ASSERT(params->ith == 0);
  7574. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7576. return;
  7577. }
  7578. const int64_t ne0 = dst->ne[0];
  7579. const int64_t ne1 = dst->ne[1];
  7580. const int64_t ne2 = dst->ne[2];
  7581. const int64_t ne3 = dst->ne[3];
  7582. const int64_t ne00 = src0->ne[0];
  7583. const int64_t ne01 = src0->ne[1];
  7584. const int64_t ne02 = src0->ne[2];
  7585. const int64_t ne03 = src0->ne[3];
  7586. const size_t nb0 = dst->nb[0];
  7587. const size_t nb1 = dst->nb[1];
  7588. const size_t nb2 = dst->nb[2];
  7589. const size_t nb3 = dst->nb[3];
  7590. const size_t nb00 = src0->nb[0];
  7591. const size_t nb01 = src0->nb[1];
  7592. const size_t nb02 = src0->nb[2];
  7593. const size_t nb03 = src0->nb[3];
  7594. // guaranteed to be an integer due to the check in ggml_can_repeat
  7595. const int nr0 = (int)(ne00/ne0);
  7596. const int nr1 = (int)(ne01/ne1);
  7597. const int nr2 = (int)(ne02/ne2);
  7598. const int nr3 = (int)(ne03/ne3);
  7599. // TODO: support for transposed / permuted tensors
  7600. GGML_ASSERT(nb0 == sizeof(float));
  7601. GGML_ASSERT(nb00 == sizeof(float));
  7602. if (ggml_is_contiguous(dst)) {
  7603. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7604. } else {
  7605. for (int k3 = 0; k3 < ne3; k3++) {
  7606. for (int k2 = 0; k2 < ne2; k2++) {
  7607. for (int k1 = 0; k1 < ne1; k1++) {
  7608. ggml_vec_set_f32(ne0,
  7609. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7610. 0);
  7611. }
  7612. }
  7613. }
  7614. }
  7615. // TODO: maybe this is not optimal?
  7616. for (int i3 = 0; i3 < nr3; i3++) {
  7617. for (int k3 = 0; k3 < ne3; k3++) {
  7618. for (int i2 = 0; i2 < nr2; i2++) {
  7619. for (int k2 = 0; k2 < ne2; k2++) {
  7620. for (int i1 = 0; i1 < nr1; i1++) {
  7621. for (int k1 = 0; k1 < ne1; k1++) {
  7622. for (int i0 = 0; i0 < nr0; i0++) {
  7623. ggml_vec_acc_f32(ne0,
  7624. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7625. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7626. }
  7627. }
  7628. }
  7629. }
  7630. }
  7631. }
  7632. }
  7633. }
  7634. static void ggml_compute_forward_repeat_back(
  7635. const struct ggml_compute_params * params,
  7636. const struct ggml_tensor * src0,
  7637. struct ggml_tensor * dst) {
  7638. switch (src0->type) {
  7639. case GGML_TYPE_F32:
  7640. {
  7641. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7642. } break;
  7643. default:
  7644. {
  7645. GGML_ASSERT(false);
  7646. } break;
  7647. }
  7648. }
  7649. // ggml_compute_forward_abs
  7650. static void ggml_compute_forward_abs_f32(
  7651. const struct ggml_compute_params * params,
  7652. const struct ggml_tensor * src0,
  7653. struct ggml_tensor * dst) {
  7654. assert(params->ith == 0);
  7655. assert(ggml_are_same_shape(src0, dst));
  7656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7657. return;
  7658. }
  7659. const int n = ggml_nrows(src0);
  7660. const int nc = src0->ne[0];
  7661. assert(dst->nb[0] == sizeof(float));
  7662. assert(src0->nb[0] == sizeof(float));
  7663. for (int i = 0; i < n; i++) {
  7664. ggml_vec_abs_f32(nc,
  7665. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7666. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7667. }
  7668. }
  7669. static void ggml_compute_forward_abs(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. struct ggml_tensor * dst) {
  7673. switch (src0->type) {
  7674. case GGML_TYPE_F32:
  7675. {
  7676. ggml_compute_forward_abs_f32(params, src0, dst);
  7677. } break;
  7678. default:
  7679. {
  7680. GGML_ASSERT(false);
  7681. } break;
  7682. }
  7683. }
  7684. // ggml_compute_forward_sgn
  7685. static void ggml_compute_forward_sgn_f32(
  7686. const struct ggml_compute_params * params,
  7687. const struct ggml_tensor * src0,
  7688. struct ggml_tensor * dst) {
  7689. assert(params->ith == 0);
  7690. assert(ggml_are_same_shape(src0, dst));
  7691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7692. return;
  7693. }
  7694. const int n = ggml_nrows(src0);
  7695. const int nc = src0->ne[0];
  7696. assert(dst->nb[0] == sizeof(float));
  7697. assert(src0->nb[0] == sizeof(float));
  7698. for (int i = 0; i < n; i++) {
  7699. ggml_vec_sgn_f32(nc,
  7700. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7701. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7702. }
  7703. }
  7704. static void ggml_compute_forward_sgn(
  7705. const struct ggml_compute_params * params,
  7706. const struct ggml_tensor * src0,
  7707. struct ggml_tensor * dst) {
  7708. switch (src0->type) {
  7709. case GGML_TYPE_F32:
  7710. {
  7711. ggml_compute_forward_sgn_f32(params, src0, dst);
  7712. } break;
  7713. default:
  7714. {
  7715. GGML_ASSERT(false);
  7716. } break;
  7717. }
  7718. }
  7719. // ggml_compute_forward_neg
  7720. static void ggml_compute_forward_neg_f32(
  7721. const struct ggml_compute_params * params,
  7722. const struct ggml_tensor * src0,
  7723. struct ggml_tensor * dst) {
  7724. assert(params->ith == 0);
  7725. assert(ggml_are_same_shape(src0, dst));
  7726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7727. return;
  7728. }
  7729. const int n = ggml_nrows(src0);
  7730. const int nc = src0->ne[0];
  7731. assert(dst->nb[0] == sizeof(float));
  7732. assert(src0->nb[0] == sizeof(float));
  7733. for (int i = 0; i < n; i++) {
  7734. ggml_vec_neg_f32(nc,
  7735. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7736. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7737. }
  7738. }
  7739. static void ggml_compute_forward_neg(
  7740. const struct ggml_compute_params * params,
  7741. const struct ggml_tensor * src0,
  7742. struct ggml_tensor * dst) {
  7743. switch (src0->type) {
  7744. case GGML_TYPE_F32:
  7745. {
  7746. ggml_compute_forward_neg_f32(params, src0, dst);
  7747. } break;
  7748. default:
  7749. {
  7750. GGML_ASSERT(false);
  7751. } break;
  7752. }
  7753. }
  7754. // ggml_compute_forward_step
  7755. static void ggml_compute_forward_step_f32(
  7756. const struct ggml_compute_params * params,
  7757. const struct ggml_tensor * src0,
  7758. struct ggml_tensor * dst) {
  7759. assert(params->ith == 0);
  7760. assert(ggml_are_same_shape(src0, dst));
  7761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7762. return;
  7763. }
  7764. const int n = ggml_nrows(src0);
  7765. const int nc = src0->ne[0];
  7766. assert(dst->nb[0] == sizeof(float));
  7767. assert(src0->nb[0] == sizeof(float));
  7768. for (int i = 0; i < n; i++) {
  7769. ggml_vec_step_f32(nc,
  7770. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7771. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7772. }
  7773. }
  7774. static void ggml_compute_forward_step(
  7775. const struct ggml_compute_params * params,
  7776. const struct ggml_tensor * src0,
  7777. struct ggml_tensor * dst) {
  7778. switch (src0->type) {
  7779. case GGML_TYPE_F32:
  7780. {
  7781. ggml_compute_forward_step_f32(params, src0, dst);
  7782. } break;
  7783. default:
  7784. {
  7785. GGML_ASSERT(false);
  7786. } break;
  7787. }
  7788. }
  7789. // ggml_compute_forward_relu
  7790. static void ggml_compute_forward_relu_f32(
  7791. const struct ggml_compute_params * params,
  7792. const struct ggml_tensor * src0,
  7793. struct ggml_tensor * dst) {
  7794. assert(params->ith == 0);
  7795. assert(ggml_are_same_shape(src0, dst));
  7796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7797. return;
  7798. }
  7799. const int n = ggml_nrows(src0);
  7800. const int nc = src0->ne[0];
  7801. assert(dst->nb[0] == sizeof(float));
  7802. assert(src0->nb[0] == sizeof(float));
  7803. for (int i = 0; i < n; i++) {
  7804. ggml_vec_relu_f32(nc,
  7805. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7806. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7807. }
  7808. }
  7809. static void ggml_compute_forward_relu(
  7810. const struct ggml_compute_params * params,
  7811. const struct ggml_tensor * src0,
  7812. struct ggml_tensor * dst) {
  7813. switch (src0->type) {
  7814. case GGML_TYPE_F32:
  7815. {
  7816. ggml_compute_forward_relu_f32(params, src0, dst);
  7817. } break;
  7818. default:
  7819. {
  7820. GGML_ASSERT(false);
  7821. } break;
  7822. }
  7823. }
  7824. // ggml_compute_forward_gelu
  7825. static void ggml_compute_forward_gelu_f32(
  7826. const struct ggml_compute_params * params,
  7827. const struct ggml_tensor * src0,
  7828. struct ggml_tensor * dst) {
  7829. GGML_ASSERT(ggml_is_contiguous(src0));
  7830. GGML_ASSERT(ggml_is_contiguous(dst));
  7831. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7833. return;
  7834. }
  7835. const int ith = params->ith;
  7836. const int nth = params->nth;
  7837. const int nc = src0->ne[0];
  7838. const int nr = ggml_nrows(src0);
  7839. // rows per thread
  7840. const int dr = (nr + nth - 1)/nth;
  7841. // row range for this thread
  7842. const int ir0 = dr*ith;
  7843. const int ir1 = MIN(ir0 + dr, nr);
  7844. for (int i1 = ir0; i1 < ir1; i1++) {
  7845. ggml_vec_gelu_f32(nc,
  7846. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7847. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7848. #ifndef NDEBUG
  7849. for (int k = 0; k < nc; k++) {
  7850. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7851. UNUSED(x);
  7852. assert(!isnan(x));
  7853. assert(!isinf(x));
  7854. }
  7855. #endif
  7856. }
  7857. }
  7858. static void ggml_compute_forward_gelu(
  7859. const struct ggml_compute_params * params,
  7860. const struct ggml_tensor * src0,
  7861. struct ggml_tensor * dst) {
  7862. switch (src0->type) {
  7863. case GGML_TYPE_F32:
  7864. {
  7865. ggml_compute_forward_gelu_f32(params, src0, dst);
  7866. } break;
  7867. default:
  7868. {
  7869. GGML_ASSERT(false);
  7870. } break;
  7871. }
  7872. }
  7873. // ggml_compute_forward_gelu_quick
  7874. static void ggml_compute_forward_gelu_quick_f32(
  7875. const struct ggml_compute_params * params,
  7876. const struct ggml_tensor * src0,
  7877. struct ggml_tensor * dst) {
  7878. GGML_ASSERT(ggml_is_contiguous(src0));
  7879. GGML_ASSERT(ggml_is_contiguous(dst));
  7880. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7881. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7882. return;
  7883. }
  7884. const int ith = params->ith;
  7885. const int nth = params->nth;
  7886. const int nc = src0->ne[0];
  7887. const int nr = ggml_nrows(src0);
  7888. // rows per thread
  7889. const int dr = (nr + nth - 1)/nth;
  7890. // row range for this thread
  7891. const int ir0 = dr*ith;
  7892. const int ir1 = MIN(ir0 + dr, nr);
  7893. for (int i1 = ir0; i1 < ir1; i1++) {
  7894. ggml_vec_gelu_quick_f32(nc,
  7895. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7896. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7897. #ifndef NDEBUG
  7898. for (int k = 0; k < nc; k++) {
  7899. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7900. UNUSED(x);
  7901. assert(!isnan(x));
  7902. assert(!isinf(x));
  7903. }
  7904. #endif
  7905. }
  7906. }
  7907. static void ggml_compute_forward_gelu_quick(
  7908. const struct ggml_compute_params * params,
  7909. const struct ggml_tensor * src0,
  7910. struct ggml_tensor * dst) {
  7911. switch (src0->type) {
  7912. case GGML_TYPE_F32:
  7913. {
  7914. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7915. } break;
  7916. default:
  7917. {
  7918. GGML_ASSERT(false);
  7919. } break;
  7920. }
  7921. }
  7922. // ggml_compute_forward_silu
  7923. static void ggml_compute_forward_silu_f32(
  7924. const struct ggml_compute_params * params,
  7925. const struct ggml_tensor * src0,
  7926. struct ggml_tensor * dst) {
  7927. GGML_ASSERT(ggml_is_contiguous(src0));
  7928. GGML_ASSERT(ggml_is_contiguous(dst));
  7929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7931. return;
  7932. }
  7933. const int ith = params->ith;
  7934. const int nth = params->nth;
  7935. const int nc = src0->ne[0];
  7936. const int nr = ggml_nrows(src0);
  7937. // rows per thread
  7938. const int dr = (nr + nth - 1)/nth;
  7939. // row range for this thread
  7940. const int ir0 = dr*ith;
  7941. const int ir1 = MIN(ir0 + dr, nr);
  7942. for (int i1 = ir0; i1 < ir1; i1++) {
  7943. ggml_vec_silu_f32(nc,
  7944. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7945. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7946. #ifndef NDEBUG
  7947. for (int k = 0; k < nc; k++) {
  7948. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7949. UNUSED(x);
  7950. assert(!isnan(x));
  7951. assert(!isinf(x));
  7952. }
  7953. #endif
  7954. }
  7955. }
  7956. static void ggml_compute_forward_silu(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * src0,
  7959. struct ggml_tensor * dst) {
  7960. switch (src0->type) {
  7961. case GGML_TYPE_F32:
  7962. {
  7963. ggml_compute_forward_silu_f32(params, src0, dst);
  7964. } break;
  7965. default:
  7966. {
  7967. GGML_ASSERT(false);
  7968. } break;
  7969. }
  7970. }
  7971. // ggml_compute_forward_silu_back
  7972. static void ggml_compute_forward_silu_back_f32(
  7973. const struct ggml_compute_params * params,
  7974. const struct ggml_tensor * src0,
  7975. const struct ggml_tensor * grad,
  7976. struct ggml_tensor * dst) {
  7977. GGML_ASSERT(ggml_is_contiguous(grad));
  7978. GGML_ASSERT(ggml_is_contiguous(src0));
  7979. GGML_ASSERT(ggml_is_contiguous(dst));
  7980. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7981. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7983. return;
  7984. }
  7985. const int ith = params->ith;
  7986. const int nth = params->nth;
  7987. const int nc = src0->ne[0];
  7988. const int nr = ggml_nrows(src0);
  7989. // rows per thread
  7990. const int dr = (nr + nth - 1)/nth;
  7991. // row range for this thread
  7992. const int ir0 = dr*ith;
  7993. const int ir1 = MIN(ir0 + dr, nr);
  7994. for (int i1 = ir0; i1 < ir1; i1++) {
  7995. ggml_vec_silu_backward_f32(nc,
  7996. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7997. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7998. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7999. #ifndef NDEBUG
  8000. for (int k = 0; k < nc; k++) {
  8001. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8002. UNUSED(x);
  8003. assert(!isnan(x));
  8004. assert(!isinf(x));
  8005. }
  8006. #endif
  8007. }
  8008. }
  8009. static void ggml_compute_forward_silu_back(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. const struct ggml_tensor * grad,
  8013. struct ggml_tensor * dst) {
  8014. switch (src0->type) {
  8015. case GGML_TYPE_F32:
  8016. {
  8017. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8018. } break;
  8019. default:
  8020. {
  8021. GGML_ASSERT(false);
  8022. } break;
  8023. }
  8024. }
  8025. // ggml_compute_forward_norm
  8026. static void ggml_compute_forward_norm_f32(
  8027. const struct ggml_compute_params * params,
  8028. const struct ggml_tensor * src0,
  8029. struct ggml_tensor * dst) {
  8030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8032. return;
  8033. }
  8034. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8035. const int ith = params->ith;
  8036. const int nth = params->nth;
  8037. const int64_t ne00 = src0->ne[0];
  8038. const int64_t ne01 = src0->ne[1];
  8039. const int64_t ne02 = src0->ne[2];
  8040. const int64_t ne03 = src0->ne[3];
  8041. const size_t nb01 = src0->nb[1];
  8042. const size_t nb02 = src0->nb[2];
  8043. const size_t nb03 = src0->nb[3];
  8044. const size_t nb1 = dst->nb[1];
  8045. const size_t nb2 = dst->nb[2];
  8046. const size_t nb3 = dst->nb[3];
  8047. const float eps = 1e-5f; // TODO: make this a parameter
  8048. // TODO: optimize
  8049. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8050. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8051. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8052. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8053. ggml_float sum = 0.0;
  8054. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8055. sum += (ggml_float)x[i00];
  8056. }
  8057. float mean = sum/ne00;
  8058. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8059. ggml_float sum2 = 0.0;
  8060. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8061. float v = x[i00] - mean;
  8062. y[i00] = v;
  8063. sum2 += (ggml_float)(v*v);
  8064. }
  8065. float variance = sum2/ne00;
  8066. const float scale = 1.0f/sqrtf(variance + eps);
  8067. ggml_vec_scale_f32(ne00, y, scale);
  8068. }
  8069. }
  8070. }
  8071. }
  8072. static void ggml_compute_forward_norm(
  8073. const struct ggml_compute_params * params,
  8074. const struct ggml_tensor * src0,
  8075. struct ggml_tensor * dst) {
  8076. switch (src0->type) {
  8077. case GGML_TYPE_F32:
  8078. {
  8079. ggml_compute_forward_norm_f32(params, src0, dst);
  8080. } break;
  8081. default:
  8082. {
  8083. GGML_ASSERT(false);
  8084. } break;
  8085. }
  8086. }
  8087. static void ggml_compute_forward_rms_norm_f32(
  8088. const struct ggml_compute_params * params,
  8089. const struct ggml_tensor * src0,
  8090. struct ggml_tensor * dst) {
  8091. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8092. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8093. return;
  8094. }
  8095. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8096. const int ith = params->ith;
  8097. const int nth = params->nth;
  8098. const int64_t ne00 = src0->ne[0];
  8099. const int64_t ne01 = src0->ne[1];
  8100. const int64_t ne02 = src0->ne[2];
  8101. const int64_t ne03 = src0->ne[3];
  8102. const size_t nb01 = src0->nb[1];
  8103. const size_t nb02 = src0->nb[2];
  8104. const size_t nb03 = src0->nb[3];
  8105. const size_t nb1 = dst->nb[1];
  8106. const size_t nb2 = dst->nb[2];
  8107. const size_t nb3 = dst->nb[3];
  8108. const float eps = 1e-6f; // TODO: make this a parameter
  8109. // TODO: optimize
  8110. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8111. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8112. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8113. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8114. ggml_float sum = 0.0;
  8115. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8116. sum += (ggml_float)(x[i00] * x[i00]);
  8117. }
  8118. const float mean = sum/ne00;
  8119. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8120. memcpy(y, x, ne00 * sizeof(float));
  8121. // for (int i00 = 0; i00 < ne00; i00++) {
  8122. // y[i00] = x[i00];
  8123. // }
  8124. const float scale = 1.0f/sqrtf(mean + eps);
  8125. ggml_vec_scale_f32(ne00, y, scale);
  8126. }
  8127. }
  8128. }
  8129. }
  8130. static void ggml_compute_forward_rms_norm(
  8131. const struct ggml_compute_params * params,
  8132. const struct ggml_tensor * src0,
  8133. struct ggml_tensor * dst) {
  8134. switch (src0->type) {
  8135. case GGML_TYPE_F32:
  8136. {
  8137. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8138. } break;
  8139. default:
  8140. {
  8141. GGML_ASSERT(false);
  8142. } break;
  8143. }
  8144. }
  8145. static void ggml_compute_forward_rms_norm_back_f32(
  8146. const struct ggml_compute_params * params,
  8147. const struct ggml_tensor * src0,
  8148. const struct ggml_tensor * src1,
  8149. struct ggml_tensor * dst) {
  8150. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8152. return;
  8153. }
  8154. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8155. const int ith = params->ith;
  8156. const int nth = params->nth;
  8157. const int64_t ne00 = src0->ne[0];
  8158. const int64_t ne01 = src0->ne[1];
  8159. const int64_t ne02 = src0->ne[2];
  8160. const int64_t ne03 = src0->ne[3];
  8161. const size_t nb01 = src0->nb[1];
  8162. const size_t nb02 = src0->nb[2];
  8163. const size_t nb03 = src0->nb[3];
  8164. const size_t nb11 = src1->nb[1];
  8165. const size_t nb12 = src1->nb[2];
  8166. const size_t nb13 = src1->nb[3];
  8167. const size_t nb1 = dst->nb[1];
  8168. const size_t nb2 = dst->nb[2];
  8169. const size_t nb3 = dst->nb[3];
  8170. const float eps = 1e-6f; // TODO: make this a parameter
  8171. // TODO: optimize
  8172. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8173. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8174. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8175. // src1 is same shape as src0 => same indices
  8176. const int64_t i11 = i01;
  8177. const int64_t i12 = i02;
  8178. const int64_t i13 = i03;
  8179. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8180. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8181. ggml_float sum_xx = 0.0;
  8182. ggml_float sum_xdz = 0.0;
  8183. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8184. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8185. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8186. }
  8187. //const float mean = (float)(sum_xx)/ne00;
  8188. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8189. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8190. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8191. // we could cache rms from forward pass to improve performance.
  8192. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8193. //const float rms = sqrtf(mean_eps);
  8194. const float rrms = 1.0f / sqrtf(mean_eps);
  8195. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8196. {
  8197. // z = rms_norm(x)
  8198. //
  8199. // rms_norm(src0) =
  8200. // scale(
  8201. // src0,
  8202. // div(
  8203. // 1,
  8204. // sqrt(
  8205. // add(
  8206. // scale(
  8207. // sum(
  8208. // sqr(
  8209. // src0)),
  8210. // (1.0/N)),
  8211. // eps))));
  8212. // postorder:
  8213. // ## op args grad
  8214. // 00 param src0 grad[#00]
  8215. // 01 const 1
  8216. // 02 sqr (#00) grad[#02]
  8217. // 03 sum (#02) grad[#03]
  8218. // 04 const 1/N
  8219. // 05 scale (#03, #04) grad[#05]
  8220. // 06 const eps
  8221. // 07 add (#05, #06) grad[#07]
  8222. // 08 sqrt (#07) grad[#08]
  8223. // 09 div (#01,#08) grad[#09]
  8224. // 10 scale (#00,#09) grad[#10]
  8225. //
  8226. // backward pass, given grad[#10]
  8227. // #10: scale
  8228. // grad[#00] += scale(grad[#10],#09)
  8229. // grad[#09] += sum(mul(grad[#10],#00))
  8230. // #09: div
  8231. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8232. // #08: sqrt
  8233. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8234. // #07: add
  8235. // grad[#05] += grad[#07]
  8236. // #05: scale
  8237. // grad[#03] += scale(grad[#05],#04)
  8238. // #03: sum
  8239. // grad[#02] += repeat(grad[#03], #02)
  8240. // #02:
  8241. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8242. //
  8243. // substitute and simplify:
  8244. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8245. // grad[#02] = repeat(grad[#03], #02)
  8246. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8247. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8248. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8249. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8250. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8251. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8252. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8253. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8254. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8255. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8256. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8257. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8258. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8259. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8260. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8261. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8262. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8263. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8264. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8265. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8266. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8267. // a = b*c + d*e
  8268. // a = b*c*f/f + d*e*f/f
  8269. // a = (b*c*f + d*e*f)*(1/f)
  8270. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8271. // a = (b + d*e/c)*c
  8272. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8273. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8274. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8275. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8276. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8277. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8278. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8279. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8280. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8281. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8282. }
  8283. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8284. // post-order:
  8285. // dx := x
  8286. // dx := scale(dx,-mean_xdz/mean_eps)
  8287. // dx := add(dx, dz)
  8288. // dx := scale(dx, rrms)
  8289. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8290. ggml_vec_cpy_f32 (ne00, dx, x);
  8291. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8292. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8293. ggml_vec_acc_f32 (ne00, dx, dz);
  8294. ggml_vec_scale_f32(ne00, dx, rrms);
  8295. }
  8296. }
  8297. }
  8298. }
  8299. static void ggml_compute_forward_rms_norm_back(
  8300. const struct ggml_compute_params * params,
  8301. const struct ggml_tensor * src0,
  8302. const struct ggml_tensor * src1,
  8303. struct ggml_tensor * dst) {
  8304. switch (src0->type) {
  8305. case GGML_TYPE_F32:
  8306. {
  8307. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8308. } break;
  8309. default:
  8310. {
  8311. GGML_ASSERT(false);
  8312. } break;
  8313. }
  8314. }
  8315. // ggml_compute_forward_mul_mat
  8316. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8317. // helper function to determine if it is better to use BLAS or not
  8318. // for large matrices, BLAS is faster
  8319. static bool ggml_compute_forward_mul_mat_use_blas(
  8320. const struct ggml_tensor * src0,
  8321. const struct ggml_tensor * src1,
  8322. struct ggml_tensor * dst) {
  8323. //const int64_t ne00 = src0->ne[0];
  8324. //const int64_t ne01 = src0->ne[1];
  8325. const int64_t ne10 = src1->ne[0];
  8326. const int64_t ne0 = dst->ne[0];
  8327. const int64_t ne1 = dst->ne[1];
  8328. // TODO: find the optimal values for these
  8329. if (ggml_is_contiguous(src0) &&
  8330. ggml_is_contiguous(src1) &&
  8331. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8332. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8333. return true;
  8334. }
  8335. return false;
  8336. }
  8337. #endif
  8338. static void ggml_compute_forward_mul_mat_f32(
  8339. const struct ggml_compute_params * params,
  8340. const struct ggml_tensor * src0,
  8341. const struct ggml_tensor * src1,
  8342. struct ggml_tensor * dst) {
  8343. int64_t t0 = ggml_perf_time_us();
  8344. UNUSED(t0);
  8345. const int64_t ne00 = src0->ne[0];
  8346. const int64_t ne01 = src0->ne[1];
  8347. const int64_t ne02 = src0->ne[2];
  8348. const int64_t ne03 = src0->ne[3];
  8349. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8350. const int64_t ne10 = src1->ne[0];
  8351. #endif
  8352. const int64_t ne11 = src1->ne[1];
  8353. #ifndef NDEBUG
  8354. const int64_t ne12 = src1->ne[2];
  8355. const int64_t ne13 = src1->ne[3];
  8356. const int64_t ne0 = dst->ne[0];
  8357. const int64_t ne1 = dst->ne[1];
  8358. const int64_t ne2 = dst->ne[2];
  8359. const int64_t ne3 = dst->ne[3];
  8360. const int nb00 = src0->nb[0];
  8361. #endif
  8362. const int nb01 = src0->nb[1];
  8363. const int nb02 = src0->nb[2];
  8364. const int nb03 = src0->nb[3];
  8365. #ifndef NDEBUG
  8366. const int nb10 = src1->nb[0];
  8367. #endif
  8368. const int nb11 = src1->nb[1];
  8369. const int nb12 = src1->nb[2];
  8370. const int nb13 = src1->nb[3];
  8371. const int nb0 = dst->nb[0];
  8372. const int nb1 = dst->nb[1];
  8373. const int nb2 = dst->nb[2];
  8374. const int nb3 = dst->nb[3];
  8375. const int ith = params->ith;
  8376. const int nth = params->nth;
  8377. assert(ne02 == ne12);
  8378. assert(ne03 == ne13);
  8379. assert(ne2 == ne12);
  8380. assert(ne3 == ne13);
  8381. // we don't support permuted src0 or src1
  8382. assert(nb00 == sizeof(float));
  8383. assert(nb10 == sizeof(float));
  8384. // dst cannot be transposed or permuted
  8385. assert(nb0 == sizeof(float));
  8386. assert(nb0 <= nb1);
  8387. assert(nb1 <= nb2);
  8388. assert(nb2 <= nb3);
  8389. assert(ne0 == ne01);
  8390. assert(ne1 == ne11);
  8391. assert(ne2 == ne02);
  8392. assert(ne3 == ne03);
  8393. // nb01 >= nb00 - src0 is not transposed
  8394. // compute by src0 rows
  8395. #if defined(GGML_USE_CLBLAST)
  8396. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8397. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8398. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8399. }
  8400. return;
  8401. }
  8402. #endif
  8403. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8404. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8405. if (params->ith != 0) {
  8406. return;
  8407. }
  8408. if (params->type == GGML_TASK_INIT) {
  8409. return;
  8410. }
  8411. if (params->type == GGML_TASK_FINALIZE) {
  8412. return;
  8413. }
  8414. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8415. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8416. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8417. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8418. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8419. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8420. ne11, ne01, ne10,
  8421. 1.0f, y, ne10,
  8422. x, ne00,
  8423. 0.0f, d, ne01);
  8424. }
  8425. }
  8426. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8427. return;
  8428. }
  8429. #endif
  8430. if (params->type == GGML_TASK_INIT) {
  8431. return;
  8432. }
  8433. if (params->type == GGML_TASK_FINALIZE) {
  8434. return;
  8435. }
  8436. // parallelize by src0 rows using ggml_vec_dot_f32
  8437. // total rows in src0
  8438. const int nr = ne01*ne02*ne03;
  8439. // rows per thread
  8440. const int dr = (nr + nth - 1)/nth;
  8441. // row range for this thread
  8442. const int ir0 = dr*ith;
  8443. const int ir1 = MIN(ir0 + dr, nr);
  8444. for (int ir = ir0; ir < ir1; ++ir) {
  8445. // src0 indices
  8446. const int i03 = ir/(ne02*ne01);
  8447. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8448. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8449. for (int64_t ic = 0; ic < ne11; ++ic) {
  8450. // src1 indices
  8451. const int i13 = i03;
  8452. const int i12 = i02;
  8453. const int i11 = ic;
  8454. // dst indices
  8455. const int i0 = i01;
  8456. const int i1 = i11;
  8457. const int i2 = i02;
  8458. const int i3 = i03;
  8459. ggml_vec_dot_f32(ne00,
  8460. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8461. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8462. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8463. }
  8464. }
  8465. //int64_t t1 = ggml_perf_time_us();
  8466. //static int64_t acc = 0;
  8467. //acc += t1 - t0;
  8468. //if (t1 - t0 > 10) {
  8469. // printf("\n");
  8470. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8471. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8472. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8473. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8474. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8475. //}
  8476. }
  8477. static void ggml_compute_forward_mul_mat_f16_f32(
  8478. const struct ggml_compute_params * params,
  8479. const struct ggml_tensor * src0,
  8480. const struct ggml_tensor * src1,
  8481. struct ggml_tensor * dst) {
  8482. int64_t t0 = ggml_perf_time_us();
  8483. UNUSED(t0);
  8484. const int64_t ne00 = src0->ne[0];
  8485. const int64_t ne01 = src0->ne[1];
  8486. const int64_t ne02 = src0->ne[2];
  8487. const int64_t ne03 = src0->ne[3];
  8488. const int64_t ne10 = src1->ne[0];
  8489. const int64_t ne11 = src1->ne[1];
  8490. const int64_t ne12 = src1->ne[2];
  8491. const int64_t ne13 = src1->ne[3];
  8492. const int64_t ne0 = dst->ne[0];
  8493. const int64_t ne1 = dst->ne[1];
  8494. const int64_t ne2 = dst->ne[2];
  8495. const int64_t ne3 = dst->ne[3];
  8496. //const int64_t ne = ne0*ne1*ne2*ne3;
  8497. const int nb00 = src0->nb[0];
  8498. const int nb01 = src0->nb[1];
  8499. const int nb02 = src0->nb[2];
  8500. const int nb03 = src0->nb[3];
  8501. const int nb10 = src1->nb[0];
  8502. const int nb11 = src1->nb[1];
  8503. const int nb12 = src1->nb[2];
  8504. const int nb13 = src1->nb[3];
  8505. const int nb0 = dst->nb[0];
  8506. const int nb1 = dst->nb[1];
  8507. const int nb2 = dst->nb[2];
  8508. const int nb3 = dst->nb[3];
  8509. const int ith = params->ith;
  8510. const int nth = params->nth;
  8511. GGML_ASSERT(ne02 == ne12);
  8512. GGML_ASSERT(ne03 == ne13);
  8513. GGML_ASSERT(ne2 == ne12);
  8514. GGML_ASSERT(ne3 == ne13);
  8515. // TODO: we don't support permuted src0
  8516. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8517. // dst cannot be transposed or permuted
  8518. GGML_ASSERT(nb0 == sizeof(float));
  8519. GGML_ASSERT(nb0 <= nb1);
  8520. GGML_ASSERT(nb1 <= nb2);
  8521. GGML_ASSERT(nb2 <= nb3);
  8522. GGML_ASSERT(ne0 == ne01);
  8523. GGML_ASSERT(ne1 == ne11);
  8524. GGML_ASSERT(ne2 == ne02);
  8525. GGML_ASSERT(ne3 == ne03);
  8526. // nb01 >= nb00 - src0 is not transposed
  8527. // compute by src0 rows
  8528. #if defined(GGML_USE_CLBLAST)
  8529. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8530. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8531. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8532. }
  8533. return;
  8534. }
  8535. #endif
  8536. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8537. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8538. GGML_ASSERT(nb10 == sizeof(float));
  8539. if (params->ith != 0) {
  8540. return;
  8541. }
  8542. if (params->type == GGML_TASK_INIT) {
  8543. return;
  8544. }
  8545. if (params->type == GGML_TASK_FINALIZE) {
  8546. return;
  8547. }
  8548. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8549. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8550. float * const wdata = params->wdata;
  8551. {
  8552. size_t id = 0;
  8553. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8554. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8555. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8556. }
  8557. }
  8558. assert(id*sizeof(float) <= params->wsize);
  8559. }
  8560. const float * x = wdata;
  8561. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8562. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8563. // zT = y * xT
  8564. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8565. ne11, ne01, ne10,
  8566. 1.0f, y, ne10,
  8567. x, ne00,
  8568. 0.0f, d, ne01);
  8569. }
  8570. }
  8571. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8572. return;
  8573. }
  8574. #endif
  8575. if (params->type == GGML_TASK_INIT) {
  8576. ggml_fp16_t * const wdata = params->wdata;
  8577. size_t id = 0;
  8578. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8579. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8580. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8581. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8582. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8583. }
  8584. }
  8585. }
  8586. }
  8587. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8588. return;
  8589. }
  8590. if (params->type == GGML_TASK_FINALIZE) {
  8591. return;
  8592. }
  8593. // fp16 -> half the size, so divide by 2
  8594. // TODO: do not support transposed src1
  8595. assert(nb10/2 == sizeof(ggml_fp16_t));
  8596. // parallelize by src0 rows using ggml_vec_dot_f16
  8597. // total rows in src0
  8598. const int nr = ne01*ne02*ne03;
  8599. // rows per thread
  8600. const int dr = (nr + nth - 1)/nth;
  8601. // row range for this thread
  8602. const int ir0 = dr*ith;
  8603. const int ir1 = MIN(ir0 + dr, nr);
  8604. ggml_fp16_t * wdata = params->wdata;
  8605. for (int ir = ir0; ir < ir1; ++ir) {
  8606. // src0 indices
  8607. const int i03 = ir/(ne02*ne01);
  8608. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8609. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8610. const int i13 = i03;
  8611. const int i12 = i02;
  8612. const int i0 = i01;
  8613. const int i2 = i02;
  8614. const int i3 = i03;
  8615. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8616. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8617. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8618. for (int64_t ic = 0; ic < ne11; ++ic) {
  8619. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8620. }
  8621. }
  8622. //int64_t t1 = ggml_time_us();
  8623. //static int64_t acc = 0;
  8624. //acc += t1 - t0;
  8625. //if (t1 - t0 > 10) {
  8626. // printf("\n");
  8627. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8628. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8629. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8630. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8631. //}
  8632. }
  8633. static void ggml_compute_forward_mul_mat_q_f32(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * src0,
  8636. const struct ggml_tensor * src1,
  8637. struct ggml_tensor * dst) {
  8638. int64_t t0 = ggml_perf_time_us();
  8639. UNUSED(t0);
  8640. const int64_t ne00 = src0->ne[0];
  8641. const int64_t ne01 = src0->ne[1];
  8642. const int64_t ne02 = src0->ne[2];
  8643. const int64_t ne03 = src0->ne[3];
  8644. const int64_t ne10 = src1->ne[0];
  8645. const int64_t ne11 = src1->ne[1];
  8646. const int64_t ne12 = src1->ne[2];
  8647. const int64_t ne13 = src1->ne[3];
  8648. const int64_t ne0 = dst->ne[0];
  8649. const int64_t ne1 = dst->ne[1];
  8650. const int64_t ne2 = dst->ne[2];
  8651. const int64_t ne3 = dst->ne[3];
  8652. const int nb00 = src0->nb[0];
  8653. const int nb01 = src0->nb[1];
  8654. const int nb02 = src0->nb[2];
  8655. const int nb03 = src0->nb[3];
  8656. const int nb10 = src1->nb[0];
  8657. const int nb11 = src1->nb[1];
  8658. const int nb12 = src1->nb[2];
  8659. const int nb13 = src1->nb[3];
  8660. const int nb0 = dst->nb[0];
  8661. const int nb1 = dst->nb[1];
  8662. const int nb2 = dst->nb[2];
  8663. const int nb3 = dst->nb[3];
  8664. const int ith = params->ith;
  8665. const int nth = params->nth;
  8666. GGML_ASSERT(ne02 == ne12);
  8667. GGML_ASSERT(ne03 == ne13);
  8668. GGML_ASSERT(ne2 == ne12);
  8669. GGML_ASSERT(ne3 == ne13);
  8670. const enum ggml_type type = src0->type;
  8671. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8672. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8673. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8674. // we don't support permuted src0 or src1
  8675. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8676. GGML_ASSERT(nb10 == sizeof(float));
  8677. // dst cannot be transposed or permuted
  8678. GGML_ASSERT(nb0 == sizeof(float));
  8679. GGML_ASSERT(nb0 <= nb1);
  8680. GGML_ASSERT(nb1 <= nb2);
  8681. GGML_ASSERT(nb2 <= nb3);
  8682. GGML_ASSERT(ne0 == ne01);
  8683. GGML_ASSERT(ne1 == ne11);
  8684. GGML_ASSERT(ne2 == ne02);
  8685. GGML_ASSERT(ne3 == ne03);
  8686. // nb01 >= nb00 - src0 is not transposed
  8687. // compute by src0 rows
  8688. #if defined(GGML_USE_CLBLAST)
  8689. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8690. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8691. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8692. }
  8693. return;
  8694. }
  8695. #endif
  8696. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8697. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8698. if (params->ith != 0) {
  8699. return;
  8700. }
  8701. if (params->type == GGML_TASK_INIT) {
  8702. return;
  8703. }
  8704. if (params->type == GGML_TASK_FINALIZE) {
  8705. return;
  8706. }
  8707. float * const wdata = params->wdata;
  8708. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8709. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8710. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8711. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8712. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8713. {
  8714. size_t id = 0;
  8715. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8716. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8717. id += ne00;
  8718. }
  8719. assert(id*sizeof(float) <= params->wsize);
  8720. }
  8721. const float * x = wdata;
  8722. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8723. ne11, ne01, ne10,
  8724. 1.0f, y, ne10,
  8725. x, ne00,
  8726. 0.0f, d, ne01);
  8727. }
  8728. }
  8729. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8730. return;
  8731. }
  8732. #endif
  8733. if (params->type == GGML_TASK_INIT) {
  8734. char * wdata = params->wdata;
  8735. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8736. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8737. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8738. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8739. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8740. wdata += row_size;
  8741. }
  8742. }
  8743. }
  8744. return;
  8745. }
  8746. if (params->type == GGML_TASK_FINALIZE) {
  8747. return;
  8748. }
  8749. // parallelize by src0 rows using ggml_vec_dot_q
  8750. // total rows in src0
  8751. const int nr = ne01*ne02*ne03;
  8752. // rows per thread
  8753. const int dr = (nr + nth - 1)/nth;
  8754. // row range for this thread
  8755. const int ir0 = dr*ith;
  8756. const int ir1 = MIN(ir0 + dr, nr);
  8757. void * wdata = params->wdata;
  8758. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8759. for (int ir = ir0; ir < ir1; ++ir) {
  8760. // src0 indices
  8761. const int i03 = ir/(ne02*ne01);
  8762. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8763. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8764. const int i13 = i03;
  8765. const int i12 = i02;
  8766. const int i0 = i01;
  8767. const int i2 = i02;
  8768. const int i3 = i03;
  8769. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8770. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8771. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8772. assert(ne00 % 32 == 0);
  8773. for (int64_t ic = 0; ic < ne11; ++ic) {
  8774. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8775. }
  8776. }
  8777. //int64_t t1 = ggml_time_us();
  8778. //static int64_t acc = 0;
  8779. //acc += t1 - t0;
  8780. //if (t1 - t0 > 10) {
  8781. // printf("\n");
  8782. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8783. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8784. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8785. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8786. //}
  8787. }
  8788. static void ggml_compute_forward_mul_mat(
  8789. const struct ggml_compute_params * params,
  8790. const struct ggml_tensor * src0,
  8791. const struct ggml_tensor * src1,
  8792. struct ggml_tensor * dst) {
  8793. switch (src0->type) {
  8794. case GGML_TYPE_Q4_0:
  8795. case GGML_TYPE_Q4_1:
  8796. case GGML_TYPE_Q5_0:
  8797. case GGML_TYPE_Q5_1:
  8798. case GGML_TYPE_Q8_0:
  8799. case GGML_TYPE_Q8_1:
  8800. case GGML_TYPE_Q2_K:
  8801. case GGML_TYPE_Q3_K:
  8802. case GGML_TYPE_Q4_K:
  8803. case GGML_TYPE_Q5_K:
  8804. case GGML_TYPE_Q6_K:
  8805. {
  8806. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8807. } break;
  8808. case GGML_TYPE_F16:
  8809. {
  8810. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8811. } break;
  8812. case GGML_TYPE_F32:
  8813. {
  8814. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8815. } break;
  8816. default:
  8817. {
  8818. GGML_ASSERT(false);
  8819. } break;
  8820. }
  8821. }
  8822. // ggml_compute_forward_out_prod
  8823. static void ggml_compute_forward_out_prod_f32(
  8824. const struct ggml_compute_params * params,
  8825. const struct ggml_tensor * src0,
  8826. const struct ggml_tensor * src1,
  8827. struct ggml_tensor * dst) {
  8828. int64_t t0 = ggml_perf_time_us();
  8829. UNUSED(t0);
  8830. const int64_t ne00 = src0->ne[0];
  8831. const int64_t ne01 = src0->ne[1];
  8832. const int64_t ne02 = src0->ne[2];
  8833. const int64_t ne03 = src0->ne[3];
  8834. const int64_t ne10 = src1->ne[0];
  8835. //const int64_t ne11 = src1->ne[1];
  8836. const int64_t ne12 = src1->ne[2];
  8837. const int64_t ne13 = src1->ne[3];
  8838. const int64_t ne0 = dst->ne[0];
  8839. const int64_t ne1 = dst->ne[1];
  8840. const int64_t ne2 = dst->ne[2];
  8841. const int64_t ne3 = dst->ne[3];
  8842. const int nb00 = src0->nb[0];
  8843. const int nb01 = src0->nb[1];
  8844. const int nb02 = src0->nb[2];
  8845. const int nb03 = src0->nb[3];
  8846. const int nb10 = src1->nb[0];
  8847. const int nb11 = src1->nb[1];
  8848. const int nb12 = src1->nb[2];
  8849. const int nb13 = src1->nb[3];
  8850. const int nb0 = dst->nb[0];
  8851. const int nb1 = dst->nb[1];
  8852. const int nb2 = dst->nb[2];
  8853. const int nb3 = dst->nb[3];
  8854. const int ith = params->ith;
  8855. const int nth = params->nth;
  8856. GGML_ASSERT(ne02 == ne12);
  8857. GGML_ASSERT(ne03 == ne13);
  8858. GGML_ASSERT(ne2 == ne12);
  8859. GGML_ASSERT(ne3 == ne13);
  8860. // we don't support permuted src0 or src1
  8861. GGML_ASSERT(nb00 == sizeof(float));
  8862. // dst cannot be transposed or permuted
  8863. GGML_ASSERT(nb0 == sizeof(float));
  8864. // GGML_ASSERT(nb0 <= nb1);
  8865. // GGML_ASSERT(nb1 <= nb2);
  8866. // GGML_ASSERT(nb2 <= nb3);
  8867. GGML_ASSERT(ne0 == ne00);
  8868. GGML_ASSERT(ne1 == ne10);
  8869. GGML_ASSERT(ne2 == ne02);
  8870. GGML_ASSERT(ne3 == ne03);
  8871. // nb01 >= nb00 - src0 is not transposed
  8872. // compute by src0 rows
  8873. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8874. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8875. if (params->type == GGML_TASK_INIT) {
  8876. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8877. return;
  8878. }
  8879. if (params->type == GGML_TASK_FINALIZE) {
  8880. return;
  8881. }
  8882. // parallelize by last three dimensions
  8883. // total rows in dst
  8884. const int64_t nr = ne1*ne2*ne3;
  8885. // rows per thread
  8886. const int64_t dr = (nr + nth - 1)/nth;
  8887. // row range for this thread
  8888. const int64_t ir0 = dr*ith;
  8889. const int64_t ir1 = MIN(ir0 + dr, nr);
  8890. // dst[:,:,:,:] = 0
  8891. // for i2,i3:
  8892. // for i1:
  8893. // for i01:
  8894. // for i0:
  8895. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8896. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8897. // dst indices
  8898. const int64_t i3 = ir/(ne2*ne1);
  8899. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8900. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8901. const int64_t i02 = i2;
  8902. const int64_t i03 = i3;
  8903. //const int64_t i10 = i1;
  8904. const int64_t i12 = i2;
  8905. const int64_t i13 = i3;
  8906. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8907. const int64_t i11 = i01;
  8908. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8909. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8910. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8911. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8912. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8913. // d[i0] += s0[i0] * s1[i1];
  8914. // }
  8915. }
  8916. }
  8917. //int64_t t1 = ggml_perf_time_us();
  8918. //static int64_t acc = 0;
  8919. //acc += t1 - t0;
  8920. //if (t1 - t0 > 10) {
  8921. // printf("\n");
  8922. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8923. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8924. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8925. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8926. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8927. //}
  8928. }
  8929. static void ggml_compute_forward_out_prod(
  8930. const struct ggml_compute_params * params,
  8931. const struct ggml_tensor * src0,
  8932. const struct ggml_tensor * src1,
  8933. struct ggml_tensor * dst) {
  8934. switch (src0->type) {
  8935. case GGML_TYPE_Q4_0:
  8936. case GGML_TYPE_Q4_1:
  8937. case GGML_TYPE_Q5_0:
  8938. case GGML_TYPE_Q5_1:
  8939. case GGML_TYPE_Q8_0:
  8940. case GGML_TYPE_Q8_1:
  8941. {
  8942. GGML_ASSERT(false); // todo
  8943. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8944. } break;
  8945. case GGML_TYPE_F16:
  8946. {
  8947. GGML_ASSERT(false); // todo
  8948. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8949. } break;
  8950. case GGML_TYPE_F32:
  8951. {
  8952. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8953. } break;
  8954. default:
  8955. {
  8956. GGML_ASSERT(false);
  8957. } break;
  8958. }
  8959. }
  8960. // ggml_compute_forward_scale
  8961. static void ggml_compute_forward_scale_f32(
  8962. const struct ggml_compute_params * params,
  8963. const struct ggml_tensor * src0,
  8964. const struct ggml_tensor * src1,
  8965. struct ggml_tensor * dst) {
  8966. GGML_ASSERT(ggml_is_contiguous(src0));
  8967. GGML_ASSERT(ggml_is_contiguous(dst));
  8968. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8969. GGML_ASSERT(ggml_is_scalar(src1));
  8970. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8971. return;
  8972. }
  8973. // scale factor
  8974. const float v = *(float *) src1->data;
  8975. const int ith = params->ith;
  8976. const int nth = params->nth;
  8977. const int nc = src0->ne[0];
  8978. const int nr = ggml_nrows(src0);
  8979. // rows per thread
  8980. const int dr = (nr + nth - 1)/nth;
  8981. // row range for this thread
  8982. const int ir0 = dr*ith;
  8983. const int ir1 = MIN(ir0 + dr, nr);
  8984. const size_t nb01 = src0->nb[1];
  8985. const size_t nb1 = dst->nb[1];
  8986. for (int i1 = ir0; i1 < ir1; i1++) {
  8987. if (dst->data != src0->data) {
  8988. // src0 is same shape as dst => same indices
  8989. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8990. }
  8991. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8992. }
  8993. }
  8994. static void ggml_compute_forward_scale(
  8995. const struct ggml_compute_params * params,
  8996. const struct ggml_tensor * src0,
  8997. const struct ggml_tensor * src1,
  8998. struct ggml_tensor * dst) {
  8999. switch (src0->type) {
  9000. case GGML_TYPE_F32:
  9001. {
  9002. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9003. } break;
  9004. default:
  9005. {
  9006. GGML_ASSERT(false);
  9007. } break;
  9008. }
  9009. }
  9010. // ggml_compute_forward_set
  9011. static void ggml_compute_forward_set_f32(
  9012. const struct ggml_compute_params * params,
  9013. const struct ggml_tensor * src0,
  9014. const struct ggml_tensor * src1,
  9015. const struct ggml_tensor * opt0,
  9016. struct ggml_tensor * dst) {
  9017. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9018. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9019. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  9020. GGML_ASSERT(ggml_nelements(opt0) == 5);
  9021. // view src0 and dst with these strides and data offset inbytes during set
  9022. // nb0 is implicitely element_size because src0 and dst are contiguous
  9023. size_t nb1 = ((int32_t *) opt0->data)[0];
  9024. size_t nb2 = ((int32_t *) opt0->data)[1];
  9025. size_t nb3 = ((int32_t *) opt0->data)[2];
  9026. size_t offset = ((int32_t *) opt0->data)[3];
  9027. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  9028. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9029. // memcpy needs to be synchronized across threads to avoid race conditions.
  9030. // => do it in INIT phase
  9031. memcpy(
  9032. ((char *) dst->data),
  9033. ((char *) src0->data),
  9034. ggml_nbytes(dst));
  9035. }
  9036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9037. return;
  9038. }
  9039. const int ith = params->ith;
  9040. const int nth = params->nth;
  9041. const int nr = ggml_nrows(src1);
  9042. const int nc = src1->ne[0];
  9043. const int64_t ne10 = src1->ne[0];
  9044. const int64_t ne11 = src1->ne[1];
  9045. const int64_t ne12 = src1->ne[2];
  9046. const int64_t ne13 = src1->ne[3];
  9047. const size_t nb10 = src1->nb[0];
  9048. const size_t nb11 = src1->nb[1];
  9049. const size_t nb12 = src1->nb[2];
  9050. const size_t nb13 = src1->nb[3];
  9051. // src0 and dst as viewed during set
  9052. const size_t nb0 = ggml_element_size(src0);
  9053. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9054. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9055. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9056. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9057. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9058. GGML_ASSERT(nb10 == sizeof(float));
  9059. // rows per thread
  9060. const int dr = (nr + nth - 1)/nth;
  9061. // row range for this thread
  9062. const int ir0 = dr*ith;
  9063. const int ir1 = MIN(ir0 + dr, nr);
  9064. for (int ir = ir0; ir < ir1; ++ir) {
  9065. // src0 and dst are viewed with shape of src1 and offset
  9066. // => same indices
  9067. const int i3 = ir/(ne12*ne11);
  9068. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9069. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9070. ggml_vec_cpy_f32(nc,
  9071. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9072. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9073. }
  9074. }
  9075. static void ggml_compute_forward_set(
  9076. const struct ggml_compute_params * params,
  9077. const struct ggml_tensor * src0,
  9078. const struct ggml_tensor * src1,
  9079. const struct ggml_tensor * opt0,
  9080. struct ggml_tensor * dst) {
  9081. switch (src0->type) {
  9082. case GGML_TYPE_F32:
  9083. {
  9084. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9085. } break;
  9086. case GGML_TYPE_F16:
  9087. case GGML_TYPE_Q4_0:
  9088. case GGML_TYPE_Q4_1:
  9089. case GGML_TYPE_Q5_0:
  9090. case GGML_TYPE_Q5_1:
  9091. case GGML_TYPE_Q8_0:
  9092. case GGML_TYPE_Q8_1:
  9093. case GGML_TYPE_Q2_K:
  9094. case GGML_TYPE_Q3_K:
  9095. case GGML_TYPE_Q4_K:
  9096. case GGML_TYPE_Q5_K:
  9097. case GGML_TYPE_Q6_K:
  9098. default:
  9099. {
  9100. GGML_ASSERT(false);
  9101. } break;
  9102. }
  9103. }
  9104. // ggml_compute_forward_cpy
  9105. static void ggml_compute_forward_cpy(
  9106. const struct ggml_compute_params * params,
  9107. const struct ggml_tensor * src0,
  9108. struct ggml_tensor * dst) {
  9109. ggml_compute_forward_dup(params, src0, dst);
  9110. }
  9111. // ggml_compute_forward_cont
  9112. static void ggml_compute_forward_cont(
  9113. const struct ggml_compute_params * params,
  9114. const struct ggml_tensor * src0,
  9115. struct ggml_tensor * dst) {
  9116. ggml_compute_forward_dup(params, src0, dst);
  9117. }
  9118. // ggml_compute_forward_reshape
  9119. static void ggml_compute_forward_reshape(
  9120. const struct ggml_compute_params * params,
  9121. const struct ggml_tensor * src0,
  9122. struct ggml_tensor * dst) {
  9123. // NOP
  9124. UNUSED(params);
  9125. UNUSED(src0);
  9126. UNUSED(dst);
  9127. }
  9128. // ggml_compute_forward_view
  9129. static void ggml_compute_forward_view(
  9130. const struct ggml_compute_params * params,
  9131. const struct ggml_tensor * src0) {
  9132. // NOP
  9133. UNUSED(params);
  9134. UNUSED(src0);
  9135. }
  9136. // ggml_compute_forward_permute
  9137. static void ggml_compute_forward_permute(
  9138. const struct ggml_compute_params * params,
  9139. const struct ggml_tensor * src0) {
  9140. // NOP
  9141. UNUSED(params);
  9142. UNUSED(src0);
  9143. }
  9144. // ggml_compute_forward_transpose
  9145. static void ggml_compute_forward_transpose(
  9146. const struct ggml_compute_params * params,
  9147. const struct ggml_tensor * src0) {
  9148. // NOP
  9149. UNUSED(params);
  9150. UNUSED(src0);
  9151. }
  9152. // ggml_compute_forward_get_rows
  9153. static void ggml_compute_forward_get_rows_q(
  9154. const struct ggml_compute_params * params,
  9155. const struct ggml_tensor * src0,
  9156. const struct ggml_tensor * src1,
  9157. struct ggml_tensor * dst) {
  9158. assert(params->ith == 0);
  9159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9160. return;
  9161. }
  9162. const int nc = src0->ne[0];
  9163. const int nr = ggml_nelements(src1);
  9164. const enum ggml_type type = src0->type;
  9165. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  9166. assert( dst->ne[0] == nc);
  9167. assert( dst->ne[1] == nr);
  9168. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9169. for (int i = 0; i < nr; ++i) {
  9170. const int r = ((int32_t *) src1->data)[i];
  9171. dequantize_row_q(
  9172. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9173. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9174. }
  9175. }
  9176. static void ggml_compute_forward_get_rows_f16(
  9177. const struct ggml_compute_params * params,
  9178. const struct ggml_tensor * src0,
  9179. const struct ggml_tensor * src1,
  9180. struct ggml_tensor * dst) {
  9181. assert(params->ith == 0);
  9182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9183. return;
  9184. }
  9185. const int nc = src0->ne[0];
  9186. const int nr = ggml_nelements(src1);
  9187. assert( dst->ne[0] == nc);
  9188. assert( dst->ne[1] == nr);
  9189. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9190. for (int i = 0; i < nr; ++i) {
  9191. const int r = ((int32_t *) src1->data)[i];
  9192. for (int j = 0; j < nc; ++j) {
  9193. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9194. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9195. }
  9196. }
  9197. }
  9198. static void ggml_compute_forward_get_rows_f32(
  9199. const struct ggml_compute_params * params,
  9200. const struct ggml_tensor * src0,
  9201. const struct ggml_tensor * src1,
  9202. struct ggml_tensor * dst) {
  9203. assert(params->ith == 0);
  9204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9205. return;
  9206. }
  9207. const int nc = src0->ne[0];
  9208. const int nr = ggml_nelements(src1);
  9209. assert( dst->ne[0] == nc);
  9210. assert( dst->ne[1] == nr);
  9211. assert(src0->nb[0] == sizeof(float));
  9212. for (int i = 0; i < nr; ++i) {
  9213. const int r = ((int32_t *) src1->data)[i];
  9214. ggml_vec_cpy_f32(nc,
  9215. (float *) ((char *) dst->data + i*dst->nb[1]),
  9216. (float *) ((char *) src0->data + r*src0->nb[1]));
  9217. }
  9218. }
  9219. static void ggml_compute_forward_get_rows(
  9220. const struct ggml_compute_params * params,
  9221. const struct ggml_tensor * src0,
  9222. const struct ggml_tensor * src1,
  9223. struct ggml_tensor * dst) {
  9224. switch (src0->type) {
  9225. case GGML_TYPE_Q4_0:
  9226. case GGML_TYPE_Q4_1:
  9227. case GGML_TYPE_Q5_0:
  9228. case GGML_TYPE_Q5_1:
  9229. case GGML_TYPE_Q8_0:
  9230. case GGML_TYPE_Q8_1:
  9231. case GGML_TYPE_Q2_K:
  9232. case GGML_TYPE_Q3_K:
  9233. case GGML_TYPE_Q4_K:
  9234. case GGML_TYPE_Q5_K:
  9235. case GGML_TYPE_Q6_K:
  9236. {
  9237. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9238. } break;
  9239. case GGML_TYPE_F16:
  9240. {
  9241. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9242. } break;
  9243. case GGML_TYPE_F32:
  9244. {
  9245. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9246. } break;
  9247. default:
  9248. {
  9249. GGML_ASSERT(false);
  9250. } break;
  9251. }
  9252. //static bool first = true;
  9253. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9254. //if (first) {
  9255. // first = false;
  9256. //} else {
  9257. // for (int k = 0; k < dst->ne[1]; ++k) {
  9258. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9259. // for (int i = 0; i < 16; ++i) {
  9260. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9261. // }
  9262. // printf("\n");
  9263. // }
  9264. // printf("\n");
  9265. // }
  9266. // printf("\n");
  9267. // exit(0);
  9268. //}
  9269. }
  9270. // ggml_compute_forward_get_rows_back
  9271. static void ggml_compute_forward_get_rows_back_f32_f16(
  9272. const struct ggml_compute_params * params,
  9273. const struct ggml_tensor * src0,
  9274. const struct ggml_tensor * src1,
  9275. const struct ggml_tensor * opt0,
  9276. struct ggml_tensor * dst) {
  9277. GGML_ASSERT(params->ith == 0);
  9278. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9279. GGML_ASSERT(ggml_is_contiguous(opt0));
  9280. GGML_ASSERT(ggml_is_contiguous(dst));
  9281. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9283. return;
  9284. }
  9285. const int nc = src0->ne[0];
  9286. const int nr = ggml_nelements(src1);
  9287. GGML_ASSERT( dst->ne[0] == nc);
  9288. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9289. for (int i = 0; i < nr; ++i) {
  9290. const int r = ((int32_t *) src1->data)[i];
  9291. for (int j = 0; j < nc; ++j) {
  9292. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9293. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9294. }
  9295. }
  9296. }
  9297. static void ggml_compute_forward_get_rows_back_f32(
  9298. const struct ggml_compute_params * params,
  9299. const struct ggml_tensor * src0,
  9300. const struct ggml_tensor * src1,
  9301. const struct ggml_tensor * opt0,
  9302. struct ggml_tensor * dst) {
  9303. GGML_ASSERT(params->ith == 0);
  9304. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9305. GGML_ASSERT(ggml_is_contiguous(opt0));
  9306. GGML_ASSERT(ggml_is_contiguous(dst));
  9307. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9308. if (params->type == GGML_TASK_INIT) {
  9309. memset(dst->data, 0, ggml_nbytes(dst));
  9310. }
  9311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9312. return;
  9313. }
  9314. const int nc = src0->ne[0];
  9315. const int nr = ggml_nelements(src1);
  9316. GGML_ASSERT( dst->ne[0] == nc);
  9317. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9318. for (int i = 0; i < nr; ++i) {
  9319. const int r = ((int32_t *) src1->data)[i];
  9320. ggml_vec_add_f32(nc,
  9321. (float *) ((char *) dst->data + r*dst->nb[1]),
  9322. (float *) ((char *) dst->data + r*dst->nb[1]),
  9323. (float *) ((char *) src0->data + i*src0->nb[1]));
  9324. }
  9325. }
  9326. static void ggml_compute_forward_get_rows_back(
  9327. const struct ggml_compute_params * params,
  9328. const struct ggml_tensor * src0,
  9329. const struct ggml_tensor * src1,
  9330. const struct ggml_tensor * opt0,
  9331. struct ggml_tensor * dst) {
  9332. switch (src0->type) {
  9333. case GGML_TYPE_F16:
  9334. {
  9335. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9336. } break;
  9337. case GGML_TYPE_F32:
  9338. {
  9339. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9340. } break;
  9341. default:
  9342. {
  9343. GGML_ASSERT(false);
  9344. } break;
  9345. }
  9346. //static bool first = true;
  9347. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9348. //if (first) {
  9349. // first = false;
  9350. //} else {
  9351. // for (int k = 0; k < dst->ne[1]; ++k) {
  9352. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9353. // for (int i = 0; i < 16; ++i) {
  9354. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9355. // }
  9356. // printf("\n");
  9357. // }
  9358. // printf("\n");
  9359. // }
  9360. // printf("\n");
  9361. // exit(0);
  9362. //}
  9363. }
  9364. // ggml_compute_forward_diag
  9365. static void ggml_compute_forward_diag_f32(
  9366. const struct ggml_compute_params * params,
  9367. const struct ggml_tensor * src0,
  9368. struct ggml_tensor * dst) {
  9369. GGML_ASSERT(params->ith == 0);
  9370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9371. return;
  9372. }
  9373. // TODO: handle transposed/permuted matrices
  9374. const int ne00 = src0->ne[0];
  9375. const int ne01 = src0->ne[1];
  9376. const int ne02 = src0->ne[2];
  9377. const int ne03 = src0->ne[3];
  9378. const int ne0 = dst->ne[0];
  9379. const int ne1 = dst->ne[1];
  9380. const int ne2 = dst->ne[2];
  9381. const int ne3 = dst->ne[3];
  9382. GGML_ASSERT(ne00 == ne0);
  9383. GGML_ASSERT(ne00 == ne1);
  9384. GGML_ASSERT(ne01 == 1);
  9385. GGML_ASSERT(ne02 == ne2);
  9386. GGML_ASSERT(ne03 == ne3);
  9387. const int nb00 = src0->nb[0];
  9388. //const int nb01 = src0->nb[1];
  9389. const int nb02 = src0->nb[2];
  9390. const int nb03 = src0->nb[3];
  9391. const int nb0 = dst->nb[0];
  9392. const int nb1 = dst->nb[1];
  9393. const int nb2 = dst->nb[2];
  9394. const int nb3 = dst->nb[3];
  9395. GGML_ASSERT(nb00 == sizeof(float));
  9396. GGML_ASSERT(nb0 == sizeof(float));
  9397. for (int i3 = 0; i3 < ne3; i3++) {
  9398. for (int i2 = 0; i2 < ne2; i2++) {
  9399. for (int i1 = 0; i1 < ne1; i1++) {
  9400. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9401. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9402. for (int i0 = 0; i0 < i1; i0++) {
  9403. d[i0] = 0;
  9404. }
  9405. d[i1] = s[i1];
  9406. for (int i0 = i1+1; i0 < ne0; i0++) {
  9407. d[i0] = 0;
  9408. }
  9409. }
  9410. }
  9411. }
  9412. }
  9413. static void ggml_compute_forward_diag(
  9414. const struct ggml_compute_params * params,
  9415. const struct ggml_tensor * src0,
  9416. struct ggml_tensor * dst) {
  9417. switch (src0->type) {
  9418. case GGML_TYPE_F32:
  9419. {
  9420. ggml_compute_forward_diag_f32(params, src0, dst);
  9421. } break;
  9422. default:
  9423. {
  9424. GGML_ASSERT(false);
  9425. } break;
  9426. }
  9427. }
  9428. // ggml_compute_forward_diag_mask_inf
  9429. static void ggml_compute_forward_diag_mask_f32(
  9430. const struct ggml_compute_params * params,
  9431. const struct ggml_tensor * src0,
  9432. const struct ggml_tensor * src1,
  9433. struct ggml_tensor * dst,
  9434. const float value) {
  9435. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9436. GGML_ASSERT(ggml_nelements(src1) == 2);
  9437. const int ith = params->ith;
  9438. const int nth = params->nth;
  9439. const int n_past = ((int32_t *) src1->data)[0];
  9440. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9441. GGML_ASSERT(n_past >= 0);
  9442. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9443. // memcpy needs to be synchronized across threads to avoid race conditions.
  9444. // => do it in INIT phase
  9445. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9446. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9447. memcpy(
  9448. ((char *) dst->data),
  9449. ((char *) src0->data),
  9450. ggml_nbytes(dst));
  9451. }
  9452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9453. return;
  9454. }
  9455. // TODO: handle transposed/permuted matrices
  9456. const int n = ggml_nrows(src0);
  9457. const int nc = src0->ne[0];
  9458. const int nr = src0->ne[1];
  9459. const int nz = n/nr;
  9460. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9461. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9462. for (int k = 0; k < nz; k++) {
  9463. for (int j = ith; j < nr; j += nth) {
  9464. for (int i = n_past; i < nc; i++) {
  9465. if (i > n_past + j) {
  9466. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9467. }
  9468. }
  9469. }
  9470. }
  9471. }
  9472. static void ggml_compute_forward_diag_mask_inf(
  9473. const struct ggml_compute_params * params,
  9474. const struct ggml_tensor * src0,
  9475. const struct ggml_tensor * src1,
  9476. struct ggml_tensor * dst) {
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. }
  9488. static void ggml_compute_forward_diag_mask_zero(
  9489. const struct ggml_compute_params * params,
  9490. const struct ggml_tensor * src0,
  9491. const struct ggml_tensor * src1,
  9492. struct ggml_tensor * dst) {
  9493. switch (src0->type) {
  9494. case GGML_TYPE_F32:
  9495. {
  9496. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9497. } break;
  9498. default:
  9499. {
  9500. GGML_ASSERT(false);
  9501. } break;
  9502. }
  9503. }
  9504. // ggml_compute_forward_soft_max
  9505. static void ggml_compute_forward_soft_max_f32(
  9506. const struct ggml_compute_params * params,
  9507. const struct ggml_tensor * src0,
  9508. struct ggml_tensor * dst) {
  9509. GGML_ASSERT(ggml_is_contiguous(src0));
  9510. GGML_ASSERT(ggml_is_contiguous(dst));
  9511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9513. return;
  9514. }
  9515. // TODO: handle transposed/permuted matrices
  9516. const int ith = params->ith;
  9517. const int nth = params->nth;
  9518. const int nc = src0->ne[0];
  9519. const int nr = ggml_nrows(src0);
  9520. // rows per thread
  9521. const int dr = (nr + nth - 1)/nth;
  9522. // row range for this thread
  9523. const int ir0 = dr*ith;
  9524. const int ir1 = MIN(ir0 + dr, nr);
  9525. for (int i1 = ir0; i1 < ir1; i1++) {
  9526. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9527. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9528. #ifndef NDEBUG
  9529. for (int i = 0; i < nc; ++i) {
  9530. //printf("p[%d] = %f\n", i, p[i]);
  9531. assert(!isnan(sp[i]));
  9532. }
  9533. #endif
  9534. float max = -INFINITY;
  9535. ggml_vec_max_f32(nc, &max, sp);
  9536. ggml_float sum = 0.0;
  9537. uint16_t scvt;
  9538. for (int i = 0; i < nc; i++) {
  9539. if (sp[i] == -INFINITY) {
  9540. dp[i] = 0.0f;
  9541. } else {
  9542. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9543. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9544. memcpy(&scvt, &s, sizeof(scvt));
  9545. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9546. sum += (ggml_float)val;
  9547. dp[i] = val;
  9548. }
  9549. }
  9550. assert(sum > 0.0);
  9551. sum = 1.0/sum;
  9552. ggml_vec_scale_f32(nc, dp, sum);
  9553. #ifndef NDEBUG
  9554. for (int i = 0; i < nc; ++i) {
  9555. assert(!isnan(dp[i]));
  9556. assert(!isinf(dp[i]));
  9557. }
  9558. #endif
  9559. }
  9560. }
  9561. static void ggml_compute_forward_soft_max(
  9562. const struct ggml_compute_params * params,
  9563. const struct ggml_tensor * src0,
  9564. struct ggml_tensor * dst) {
  9565. switch (src0->type) {
  9566. case GGML_TYPE_F32:
  9567. {
  9568. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9569. } break;
  9570. default:
  9571. {
  9572. GGML_ASSERT(false);
  9573. } break;
  9574. }
  9575. }
  9576. // ggml_compute_forward_soft_max_back
  9577. static void ggml_compute_forward_soft_max_back_f32(
  9578. const struct ggml_compute_params * params,
  9579. const struct ggml_tensor * src0,
  9580. const struct ggml_tensor * src1,
  9581. struct ggml_tensor * dst) {
  9582. GGML_ASSERT(ggml_is_contiguous(src0));
  9583. GGML_ASSERT(ggml_is_contiguous(src1));
  9584. GGML_ASSERT(ggml_is_contiguous(dst));
  9585. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9586. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9588. return;
  9589. }
  9590. // TODO: handle transposed/permuted matrices
  9591. const int ith = params->ith;
  9592. const int nth = params->nth;
  9593. const int nc = src0->ne[0];
  9594. const int nr = ggml_nrows(src0);
  9595. // rows per thread
  9596. const int dr = (nr + nth - 1)/nth;
  9597. // row range for this thread
  9598. const int ir0 = dr*ith;
  9599. const int ir1 = MIN(ir0 + dr, nr);
  9600. for (int i1 = ir0; i1 < ir1; i1++) {
  9601. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9602. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9603. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9604. #ifndef NDEBUG
  9605. for (int i = 0; i < nc; ++i) {
  9606. //printf("p[%d] = %f\n", i, p[i]);
  9607. assert(!isnan(dy[i]));
  9608. assert(!isnan(y[i]));
  9609. }
  9610. #endif
  9611. // Jii = yi - yi*yi
  9612. // Jij = -yi*yj
  9613. // J = diag(y)-y.T*y
  9614. // dx = J * dy
  9615. // dxk = sum_i(Jki * dyi)
  9616. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9617. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9618. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9619. // dxk = -yk * dot(y, dy) + yk*dyk
  9620. // dxk = yk * (- dot(y, dy) + dyk)
  9621. // dxk = yk * (dyk - dot(y, dy))
  9622. //
  9623. // post-order:
  9624. // dot_y_dy := dot(y, dy)
  9625. // dx := dy
  9626. // dx := dx - dot_y_dy
  9627. // dx := dx * y
  9628. // linear runtime, no additional memory
  9629. float dot_y_dy = 0;
  9630. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9631. ggml_vec_cpy_f32 (nc, dx, dy);
  9632. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9633. ggml_vec_mul_f32 (nc, dx, dx, y);
  9634. #ifndef NDEBUG
  9635. for (int i = 0; i < nc; ++i) {
  9636. assert(!isnan(dx[i]));
  9637. assert(!isinf(dx[i]));
  9638. }
  9639. #endif
  9640. }
  9641. }
  9642. static void ggml_compute_forward_soft_max_back(
  9643. const struct ggml_compute_params * params,
  9644. const struct ggml_tensor * src0,
  9645. const struct ggml_tensor * src1,
  9646. struct ggml_tensor * dst) {
  9647. switch (src0->type) {
  9648. case GGML_TYPE_F32:
  9649. {
  9650. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9651. } break;
  9652. default:
  9653. {
  9654. GGML_ASSERT(false);
  9655. } break;
  9656. }
  9657. }
  9658. // ggml_compute_forward_alibi
  9659. static void ggml_compute_forward_alibi_f32(
  9660. const struct ggml_compute_params * params,
  9661. const struct ggml_tensor * src0,
  9662. const struct ggml_tensor * src1,
  9663. struct ggml_tensor * dst) {
  9664. assert(params->ith == 0);
  9665. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9666. GGML_ASSERT(ggml_nelements(src1) == 3);
  9667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9668. return;
  9669. }
  9670. const int n_past = ((int32_t *) src1->data)[0];
  9671. const int n_head = ((int32_t *) src1->data)[1];
  9672. const float max_bias = ((float *) src1->data)[2];
  9673. assert(n_past >= 0);
  9674. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9675. const int ne1 = src0->ne[1]; // seq_len_without_past
  9676. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9677. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9678. const int n = ggml_nrows(src0);
  9679. const int ne2_ne3 = n/ne1; // ne2*ne3
  9680. const int nb0 = src0->nb[0];
  9681. const int nb1 = src0->nb[1];
  9682. const int nb2 = src0->nb[2];
  9683. //const int nb3 = src0->nb[3];
  9684. assert(nb0 == sizeof(float));
  9685. assert(ne1 + n_past == ne0); (void) n_past;
  9686. // add alibi to src0 (KQ_scaled)
  9687. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9688. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9689. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9690. for (int i = 0; i < ne0; i++) {
  9691. for (int j = 0; j < ne1; j++) {
  9692. for (int k = 0; k < ne2_ne3; k++) {
  9693. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9694. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9695. // TODO: k*nb2 or k*nb3
  9696. float m_k;
  9697. if (k < n_heads_log2_floor) {
  9698. m_k = powf(m0, k + 1);
  9699. } else {
  9700. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9701. }
  9702. pdst[0] = (i-ne0+1) * m_k + src[0];
  9703. }
  9704. }
  9705. }
  9706. }
  9707. static void ggml_compute_forward_alibi_f16(
  9708. const struct ggml_compute_params * params,
  9709. const struct ggml_tensor * src0,
  9710. const struct ggml_tensor * src1,
  9711. struct ggml_tensor * dst) {
  9712. assert(params->ith == 0);
  9713. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9714. GGML_ASSERT(ggml_nelements(src1) == 3);
  9715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9716. return;
  9717. }
  9718. const int n_past = ((int32_t *) src1->data)[0];
  9719. const int n_head = ((int32_t *) src1->data)[1];
  9720. const float max_bias = ((float *) src1->data)[2];
  9721. assert(n_past >= 0);
  9722. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9723. const int ne1 = src0->ne[1]; // seq_len_without_past
  9724. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9725. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9726. const int n = ggml_nrows(src0);
  9727. const int ne2_ne3 = n/ne1; // ne2*ne3
  9728. const int nb0 = src0->nb[0];
  9729. const int nb1 = src0->nb[1];
  9730. const int nb2 = src0->nb[2];
  9731. //const int nb3 = src0->nb[3];
  9732. assert(nb0 == sizeof(ggml_fp16_t));
  9733. assert(ne1 + n_past == ne0); (void) n_past;
  9734. // add alibi to src0 (KQ_scaled)
  9735. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9736. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9737. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9738. for (int i = 0; i < ne0; i++) {
  9739. for (int j = 0; j < ne1; j++) {
  9740. for (int k = 0; k < ne2_ne3; k++) {
  9741. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9742. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9743. // TODO: k*nb2 or k*nb3
  9744. float m_k;
  9745. if (k < n_heads_log2_floor) {
  9746. m_k = powf(m0, k + 1);
  9747. } else {
  9748. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9749. }
  9750. // we return F32
  9751. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9752. }
  9753. }
  9754. }
  9755. }
  9756. static void ggml_compute_forward_alibi(
  9757. const struct ggml_compute_params * params,
  9758. const struct ggml_tensor * src0,
  9759. const struct ggml_tensor * src1,
  9760. struct ggml_tensor * dst) {
  9761. switch (src0->type) {
  9762. case GGML_TYPE_F16:
  9763. {
  9764. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9765. } break;
  9766. case GGML_TYPE_F32:
  9767. {
  9768. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9769. } break;
  9770. case GGML_TYPE_Q4_0:
  9771. case GGML_TYPE_Q4_1:
  9772. case GGML_TYPE_Q5_0:
  9773. case GGML_TYPE_Q5_1:
  9774. case GGML_TYPE_Q8_0:
  9775. case GGML_TYPE_Q8_1:
  9776. case GGML_TYPE_Q2_K:
  9777. case GGML_TYPE_Q3_K:
  9778. case GGML_TYPE_Q4_K:
  9779. case GGML_TYPE_Q5_K:
  9780. case GGML_TYPE_Q6_K:
  9781. case GGML_TYPE_Q8_K:
  9782. case GGML_TYPE_I8:
  9783. case GGML_TYPE_I16:
  9784. case GGML_TYPE_I32:
  9785. case GGML_TYPE_COUNT:
  9786. {
  9787. GGML_ASSERT(false);
  9788. } break;
  9789. }
  9790. }
  9791. // ggml_compute_forward_clamp
  9792. static void ggml_compute_forward_clamp_f32(
  9793. const struct ggml_compute_params * params,
  9794. const struct ggml_tensor * src0,
  9795. const struct ggml_tensor * src1,
  9796. struct ggml_tensor * dst) {
  9797. assert(params->ith == 0);
  9798. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9799. GGML_ASSERT(ggml_nelements(src1) == 2);
  9800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9801. return;
  9802. }
  9803. const float min = ((float *) src1->data)[0];
  9804. const float max = ((float *) src1->data)[1];
  9805. const int ith = params->ith;
  9806. const int nth = params->nth;
  9807. const int n = ggml_nrows(src0);
  9808. const int nc = src0->ne[0];
  9809. const size_t nb00 = src0->nb[0];
  9810. const size_t nb01 = src0->nb[1];
  9811. const size_t nb0 = dst->nb[0];
  9812. const size_t nb1 = dst->nb[1];
  9813. GGML_ASSERT( nb0 == sizeof(float));
  9814. GGML_ASSERT(nb00 == sizeof(float));
  9815. for (int j = ith; j < n; j += nth) {
  9816. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9817. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9818. for (int i = 0; i < nc; i++) {
  9819. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9820. }
  9821. }
  9822. }
  9823. static void ggml_compute_forward_clamp(
  9824. const struct ggml_compute_params * params,
  9825. const struct ggml_tensor * src0,
  9826. const struct ggml_tensor * src1,
  9827. struct ggml_tensor * dst) {
  9828. switch (src0->type) {
  9829. case GGML_TYPE_F32:
  9830. {
  9831. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9832. } break;
  9833. case GGML_TYPE_F16:
  9834. case GGML_TYPE_Q4_0:
  9835. case GGML_TYPE_Q4_1:
  9836. case GGML_TYPE_Q5_0:
  9837. case GGML_TYPE_Q5_1:
  9838. case GGML_TYPE_Q8_0:
  9839. case GGML_TYPE_Q8_1:
  9840. case GGML_TYPE_Q2_K:
  9841. case GGML_TYPE_Q3_K:
  9842. case GGML_TYPE_Q4_K:
  9843. case GGML_TYPE_Q5_K:
  9844. case GGML_TYPE_Q6_K:
  9845. case GGML_TYPE_Q8_K:
  9846. case GGML_TYPE_I8:
  9847. case GGML_TYPE_I16:
  9848. case GGML_TYPE_I32:
  9849. case GGML_TYPE_COUNT:
  9850. {
  9851. GGML_ASSERT(false);
  9852. } break;
  9853. }
  9854. }
  9855. // ggml_compute_forward_rope
  9856. static void ggml_compute_forward_rope_f32(
  9857. const struct ggml_compute_params * params,
  9858. const struct ggml_tensor * src0,
  9859. const struct ggml_tensor * src1,
  9860. struct ggml_tensor * dst) {
  9861. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9862. GGML_ASSERT(ggml_nelements(src1) == 3);
  9863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9864. return;
  9865. }
  9866. const int n_past = ((int32_t *) src1->data)[0];
  9867. const int n_dims = ((int32_t *) src1->data)[1];
  9868. const int mode = ((int32_t *) src1->data)[2];
  9869. assert(n_past >= 0);
  9870. const size_t nb00 = src0->nb[0];
  9871. const size_t nb01 = src0->nb[1];
  9872. const size_t nb02 = src0->nb[2];
  9873. const size_t nb03 = src0->nb[3];
  9874. const int64_t ne0 = dst->ne[0];
  9875. const int64_t ne1 = dst->ne[1];
  9876. const int64_t ne2 = dst->ne[2];
  9877. const int64_t ne3 = dst->ne[3];
  9878. const size_t nb0 = dst->nb[0];
  9879. const size_t nb1 = dst->nb[1];
  9880. const size_t nb2 = dst->nb[2];
  9881. const size_t nb3 = dst->nb[3];
  9882. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9883. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9884. GGML_ASSERT(nb00 == sizeof(float));
  9885. const int ith = params->ith;
  9886. const int nth = params->nth;
  9887. const int nr = ggml_nrows(dst);
  9888. GGML_ASSERT(n_dims <= ne0);
  9889. GGML_ASSERT(n_dims % 2 == 0);
  9890. // rows per thread
  9891. const int dr = (nr + nth - 1)/nth;
  9892. // row range for this thread
  9893. const int ir0 = dr*ith;
  9894. const int ir1 = MIN(ir0 + dr, nr);
  9895. // row index used to determine which thread to use
  9896. int ir = 0;
  9897. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9898. const bool is_neox = mode & 2;
  9899. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9900. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9901. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9902. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9903. if (ir++ < ir0) continue;
  9904. if (ir > ir1) break;
  9905. float theta = (float)p;
  9906. if (!is_neox) {
  9907. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9908. const float cos_theta = cosf(theta);
  9909. const float sin_theta = sinf(theta);
  9910. theta *= theta_scale;
  9911. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9912. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9913. const float x0 = src[0];
  9914. const float x1 = src[1];
  9915. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9916. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9917. }
  9918. } else {
  9919. // TODO: this is probably wrong, but I can't figure it out ..
  9920. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9921. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9922. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9923. const float cos_theta = cosf(theta);
  9924. const float sin_theta = sinf(theta);
  9925. theta *= theta_scale;
  9926. const int64_t i0 = ib*n_dims + ic/2;
  9927. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9928. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9929. const float x0 = src[0];
  9930. const float x1 = src[n_dims/2];
  9931. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9932. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9933. }
  9934. }
  9935. }
  9936. }
  9937. }
  9938. }
  9939. }
  9940. static void ggml_compute_forward_rope_f16(
  9941. const struct ggml_compute_params * params,
  9942. const struct ggml_tensor * src0,
  9943. const struct ggml_tensor * src1,
  9944. struct ggml_tensor * dst) {
  9945. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9946. GGML_ASSERT(ggml_nelements(src1) == 3);
  9947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9948. return;
  9949. }
  9950. const int n_past = ((int32_t *) src1->data)[0];
  9951. const int n_dims = ((int32_t *) src1->data)[1];
  9952. const int mode = ((int32_t *) src1->data)[2];
  9953. assert(n_past >= 0);
  9954. const size_t nb00 = src0->nb[0];
  9955. const size_t nb01 = src0->nb[1];
  9956. const size_t nb02 = src0->nb[2];
  9957. const size_t nb03 = src0->nb[3];
  9958. const int64_t ne0 = dst->ne[0];
  9959. const int64_t ne1 = dst->ne[1];
  9960. const int64_t ne2 = dst->ne[2];
  9961. const int64_t ne3 = dst->ne[3];
  9962. const size_t nb0 = dst->nb[0];
  9963. const size_t nb1 = dst->nb[1];
  9964. const size_t nb2 = dst->nb[2];
  9965. const size_t nb3 = dst->nb[3];
  9966. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9967. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9968. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9969. const int ith = params->ith;
  9970. const int nth = params->nth;
  9971. const int nr = ggml_nrows(dst);
  9972. GGML_ASSERT(n_dims <= ne0);
  9973. GGML_ASSERT(n_dims % 2 == 0);
  9974. // rows per thread
  9975. const int dr = (nr + nth - 1)/nth;
  9976. // row range for this thread
  9977. const int ir0 = dr*ith;
  9978. const int ir1 = MIN(ir0 + dr, nr);
  9979. // row index used to determine which thread to use
  9980. int ir = 0;
  9981. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9982. const bool is_neox = mode & 2;
  9983. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9984. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9985. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9986. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9987. if (ir++ < ir0) continue;
  9988. if (ir > ir1) break;
  9989. float theta = (float)p;
  9990. if (!is_neox) {
  9991. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9992. const float cos_theta = cosf(theta);
  9993. const float sin_theta = sinf(theta);
  9994. theta *= theta_scale;
  9995. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9996. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9997. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9998. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9999. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10000. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10001. }
  10002. } else {
  10003. // TODO: this is probably wrong, but I can't figure it out ..
  10004. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10005. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10006. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10007. const float cos_theta = cosf(theta);
  10008. const float sin_theta = sinf(theta);
  10009. theta *= theta_scale;
  10010. const int64_t i0 = ib*n_dims + ic/2;
  10011. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10012. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10013. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10014. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10015. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10016. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10017. }
  10018. }
  10019. }
  10020. }
  10021. }
  10022. }
  10023. }
  10024. static void ggml_compute_forward_rope(
  10025. const struct ggml_compute_params * params,
  10026. const struct ggml_tensor * src0,
  10027. const struct ggml_tensor * src1,
  10028. struct ggml_tensor * dst) {
  10029. switch (src0->type) {
  10030. case GGML_TYPE_F16:
  10031. {
  10032. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10033. } break;
  10034. case GGML_TYPE_F32:
  10035. {
  10036. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10037. } break;
  10038. default:
  10039. {
  10040. GGML_ASSERT(false);
  10041. } break;
  10042. }
  10043. }
  10044. // ggml_compute_forward_rope_back
  10045. static void ggml_compute_forward_rope_back_f32(
  10046. const struct ggml_compute_params * params,
  10047. const struct ggml_tensor * src0,
  10048. const struct ggml_tensor * src1,
  10049. struct ggml_tensor * dst) {
  10050. assert(src1->type == GGML_TYPE_I32);
  10051. assert(ggml_nelements(src1) == 3);
  10052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10053. return;
  10054. }
  10055. // y = rope(x, src1)
  10056. // dx = rope_back(dy, src1)
  10057. // src0 is dy, src1 contains options
  10058. const int n_past = ((int32_t *) src1->data)[0];
  10059. const int n_dims = ((int32_t *) src1->data)[1];
  10060. const int mode = ((int32_t *) src1->data)[2];
  10061. assert(n_past >= 0);
  10062. const size_t nb00 = src0->nb[0];
  10063. const size_t nb01 = src0->nb[1];
  10064. const size_t nb02 = src0->nb[2];
  10065. const size_t nb03 = src0->nb[3];
  10066. const int64_t ne0 = dst->ne[0];
  10067. const int64_t ne1 = dst->ne[1];
  10068. const int64_t ne2 = dst->ne[2];
  10069. const int64_t ne3 = dst->ne[3];
  10070. const size_t nb0 = dst->nb[0];
  10071. const size_t nb1 = dst->nb[1];
  10072. const size_t nb2 = dst->nb[2];
  10073. const size_t nb3 = dst->nb[3];
  10074. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10075. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10076. assert(nb0 == sizeof(float));
  10077. const int ith = params->ith;
  10078. const int nth = params->nth;
  10079. const int nr = ggml_nrows(dst);
  10080. // rows per thread
  10081. const int dr = (nr + nth - 1)/nth;
  10082. // row range for this thread
  10083. const int ir0 = dr*ith;
  10084. const int ir1 = MIN(ir0 + dr, nr);
  10085. // row index used to determine which thread to use
  10086. int ir = 0;
  10087. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10088. const bool is_neox = mode & 2;
  10089. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10090. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10091. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10092. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10093. if (ir++ < ir0) continue;
  10094. if (ir > ir1) break;
  10095. float theta = (float)p;
  10096. if (!is_neox) {
  10097. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10098. const float cos_theta = cosf(theta);
  10099. const float sin_theta = sinf(theta);
  10100. theta *= theta_scale;
  10101. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10102. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10103. const float dy0 = dy[0];
  10104. const float dy1 = dy[1];
  10105. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10106. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10107. }
  10108. } else {
  10109. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10110. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10111. const float cos_theta = cosf(theta);
  10112. const float sin_theta = sinf(theta);
  10113. theta *= theta_scale;
  10114. const int64_t i0 = ib*n_dims + ic/2;
  10115. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10116. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10117. const float dy0 = dy[0];
  10118. const float dy1 = dy[n_dims/2];
  10119. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10120. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10121. }
  10122. }
  10123. }
  10124. }
  10125. }
  10126. }
  10127. }
  10128. static void ggml_compute_forward_rope_back_f16(
  10129. const struct ggml_compute_params * params,
  10130. const struct ggml_tensor * src0,
  10131. const struct ggml_tensor * src1,
  10132. struct ggml_tensor * dst) {
  10133. assert(src1->type == GGML_TYPE_I32);
  10134. assert(ggml_nelements(src1) == 3);
  10135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10136. return;
  10137. }
  10138. // y = rope(x, src1)
  10139. // dx = rope_back(dy, src1)
  10140. // src0 is dy, src1 contains options
  10141. const int n_past = ((int32_t *) src1->data)[0];
  10142. const int n_dims = ((int32_t *) src1->data)[1];
  10143. const int mode = ((int32_t *) src1->data)[2];
  10144. assert(n_past >= 0);
  10145. const size_t nb00 = src0->nb[0];
  10146. const size_t nb01 = src0->nb[1];
  10147. const size_t nb02 = src0->nb[2];
  10148. const size_t nb03 = src0->nb[3];
  10149. const int64_t ne0 = dst->ne[0];
  10150. const int64_t ne1 = dst->ne[1];
  10151. const int64_t ne2 = dst->ne[2];
  10152. const int64_t ne3 = dst->ne[3];
  10153. const size_t nb0 = dst->nb[0];
  10154. const size_t nb1 = dst->nb[1];
  10155. const size_t nb2 = dst->nb[2];
  10156. const size_t nb3 = dst->nb[3];
  10157. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10158. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10159. assert(nb0 == sizeof(ggml_fp16_t));
  10160. const int ith = params->ith;
  10161. const int nth = params->nth;
  10162. const int nr = ggml_nrows(dst);
  10163. // rows per thread
  10164. const int dr = (nr + nth - 1)/nth;
  10165. // row range for this thread
  10166. const int ir0 = dr*ith;
  10167. const int ir1 = MIN(ir0 + dr, nr);
  10168. // row index used to determine which thread to use
  10169. int ir = 0;
  10170. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10171. const bool is_neox = mode & 2;
  10172. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10173. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10174. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10175. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10176. if (ir++ < ir0) continue;
  10177. if (ir > ir1) break;
  10178. float theta = (float)p;
  10179. if (!is_neox) {
  10180. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10181. const float cos_theta = cosf(theta);
  10182. const float sin_theta = sinf(theta);
  10183. theta *= theta_scale;
  10184. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10185. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10186. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10187. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10188. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10189. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10190. }
  10191. } else {
  10192. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10193. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10194. const float cos_theta = cosf(theta);
  10195. const float sin_theta = sinf(theta);
  10196. theta *= theta_scale;
  10197. const int64_t i0 = ib*n_dims + ic/2;
  10198. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10199. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10200. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10201. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10202. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10203. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10204. }
  10205. }
  10206. }
  10207. }
  10208. }
  10209. }
  10210. }
  10211. static void ggml_compute_forward_rope_back(
  10212. const struct ggml_compute_params * params,
  10213. const struct ggml_tensor * src0,
  10214. const struct ggml_tensor * src1,
  10215. struct ggml_tensor * dst) {
  10216. switch (src0->type) {
  10217. case GGML_TYPE_F16:
  10218. {
  10219. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10220. } break;
  10221. case GGML_TYPE_F32:
  10222. {
  10223. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10224. } break;
  10225. default:
  10226. {
  10227. GGML_ASSERT(false);
  10228. } break;
  10229. }
  10230. }
  10231. // ggml_compute_forward_conv_1d_s1_ph
  10232. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10233. const struct ggml_compute_params * params,
  10234. const struct ggml_tensor * src0,
  10235. const struct ggml_tensor * src1,
  10236. struct ggml_tensor * dst) {
  10237. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10238. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10239. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10240. int64_t t0 = ggml_perf_time_us();
  10241. UNUSED(t0);
  10242. const int64_t ne00 = src0->ne[0];
  10243. const int64_t ne01 = src0->ne[1];
  10244. const int64_t ne02 = src0->ne[2];
  10245. //const int64_t ne03 = src0->ne[3];
  10246. const int64_t ne10 = src1->ne[0];
  10247. const int64_t ne11 = src1->ne[1];
  10248. //const int64_t ne12 = src1->ne[2];
  10249. //const int64_t ne13 = src1->ne[3];
  10250. //const int64_t ne0 = dst->ne[0];
  10251. //const int64_t ne1 = dst->ne[1];
  10252. //const int64_t ne2 = dst->ne[2];
  10253. //const int64_t ne3 = dst->ne[3];
  10254. //const int64_t ne = ne0*ne1*ne2*ne3;
  10255. const int nb00 = src0->nb[0];
  10256. const int nb01 = src0->nb[1];
  10257. const int nb02 = src0->nb[2];
  10258. //const int nb03 = src0->nb[3];
  10259. const int nb10 = src1->nb[0];
  10260. const int nb11 = src1->nb[1];
  10261. //const int nb12 = src1->nb[2];
  10262. //const int nb13 = src1->nb[3];
  10263. //const int nb0 = dst->nb[0];
  10264. const int nb1 = dst->nb[1];
  10265. //const int nb2 = dst->nb[2];
  10266. //const int nb3 = dst->nb[3];
  10267. const int ith = params->ith;
  10268. const int nth = params->nth;
  10269. const int nk = ne00;
  10270. const int nh = nk/2;
  10271. const int ew0 = ggml_up32(ne01);
  10272. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10273. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10274. GGML_ASSERT(nb10 == sizeof(float));
  10275. if (params->type == GGML_TASK_INIT) {
  10276. // TODO: fix this memset (wsize is overestimated)
  10277. memset(params->wdata, 0, params->wsize);
  10278. // prepare kernel data (src0)
  10279. {
  10280. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10281. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10282. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10283. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10284. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10285. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10286. dst_data[i00*ew0 + i01] = src[i00];
  10287. }
  10288. }
  10289. }
  10290. }
  10291. // prepare source data (src1)
  10292. {
  10293. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10294. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10295. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10296. ggml_fp16_t * dst_data = wdata;
  10297. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10298. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10299. }
  10300. }
  10301. }
  10302. return;
  10303. }
  10304. if (params->type == GGML_TASK_FINALIZE) {
  10305. return;
  10306. }
  10307. // total rows in dst
  10308. const int nr = ne02;
  10309. // rows per thread
  10310. const int dr = (nr + nth - 1)/nth;
  10311. // row range for this thread
  10312. const int ir0 = dr*ith;
  10313. const int ir1 = MIN(ir0 + dr, nr);
  10314. for (int i1 = ir0; i1 < ir1; i1++) {
  10315. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10316. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10317. dst_data[i0] = 0;
  10318. for (int k = -nh; k <= nh; k++) {
  10319. float v = 0.0f;
  10320. ggml_vec_dot_f16(ew0, &v,
  10321. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10322. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10323. dst_data[i0] += v;
  10324. }
  10325. }
  10326. }
  10327. }
  10328. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10329. const struct ggml_compute_params * params,
  10330. const struct ggml_tensor * src0,
  10331. const struct ggml_tensor * src1,
  10332. struct ggml_tensor * dst) {
  10333. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10334. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10335. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10336. int64_t t0 = ggml_perf_time_us();
  10337. UNUSED(t0);
  10338. const int64_t ne00 = src0->ne[0];
  10339. const int64_t ne01 = src0->ne[1];
  10340. const int64_t ne02 = src0->ne[2];
  10341. //const int64_t ne03 = src0->ne[3];
  10342. const int64_t ne10 = src1->ne[0];
  10343. const int64_t ne11 = src1->ne[1];
  10344. //const int64_t ne12 = src1->ne[2];
  10345. //const int64_t ne13 = src1->ne[3];
  10346. //const int64_t ne0 = dst->ne[0];
  10347. //const int64_t ne1 = dst->ne[1];
  10348. //const int64_t ne2 = dst->ne[2];
  10349. //const int64_t ne3 = dst->ne[3];
  10350. //const int64_t ne = ne0*ne1*ne2*ne3;
  10351. const int nb00 = src0->nb[0];
  10352. const int nb01 = src0->nb[1];
  10353. const int nb02 = src0->nb[2];
  10354. //const int nb03 = src0->nb[3];
  10355. const int nb10 = src1->nb[0];
  10356. const int nb11 = src1->nb[1];
  10357. //const int nb12 = src1->nb[2];
  10358. //const int nb13 = src1->nb[3];
  10359. //const int nb0 = dst->nb[0];
  10360. const int nb1 = dst->nb[1];
  10361. //const int nb2 = dst->nb[2];
  10362. //const int nb3 = dst->nb[3];
  10363. const int ith = params->ith;
  10364. const int nth = params->nth;
  10365. const int nk = ne00;
  10366. const int nh = nk/2;
  10367. const int ew0 = ggml_up32(ne01);
  10368. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10369. GGML_ASSERT(nb00 == sizeof(float));
  10370. GGML_ASSERT(nb10 == sizeof(float));
  10371. if (params->type == GGML_TASK_INIT) {
  10372. // TODO: fix this memset (wsize is overestimated)
  10373. memset(params->wdata, 0, params->wsize);
  10374. // prepare kernel data (src0)
  10375. {
  10376. float * const wdata = (float *) params->wdata + 0;
  10377. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10378. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10379. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10380. float * dst_data = wdata + i02*ew0*ne00;
  10381. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10382. dst_data[i00*ew0 + i01] = src[i00];
  10383. }
  10384. }
  10385. }
  10386. }
  10387. // prepare source data (src1)
  10388. {
  10389. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10390. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10391. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10392. float * dst_data = wdata;
  10393. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10394. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10395. }
  10396. }
  10397. }
  10398. return;
  10399. }
  10400. if (params->type == GGML_TASK_FINALIZE) {
  10401. return;
  10402. }
  10403. // total rows in dst
  10404. const int nr = ne02;
  10405. // rows per thread
  10406. const int dr = (nr + nth - 1)/nth;
  10407. // row range for this thread
  10408. const int ir0 = dr*ith;
  10409. const int ir1 = MIN(ir0 + dr, nr);
  10410. for (int i1 = ir0; i1 < ir1; i1++) {
  10411. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10412. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10413. dst_data[i0] = 0;
  10414. for (int k = -nh; k <= nh; k++) {
  10415. float v = 0.0f;
  10416. ggml_vec_dot_f32(ew0, &v,
  10417. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10418. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10419. dst_data[i0] += v;
  10420. }
  10421. }
  10422. }
  10423. }
  10424. static void ggml_compute_forward_conv_1d_s1_ph(
  10425. const struct ggml_compute_params * params,
  10426. const struct ggml_tensor * src0,
  10427. const struct ggml_tensor * src1,
  10428. struct ggml_tensor * dst) {
  10429. switch (src0->type) {
  10430. case GGML_TYPE_F16:
  10431. {
  10432. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10433. } break;
  10434. case GGML_TYPE_F32:
  10435. {
  10436. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10437. } break;
  10438. default:
  10439. {
  10440. GGML_ASSERT(false);
  10441. } break;
  10442. }
  10443. }
  10444. // ggml_compute_forward_conv_1d_s2_ph
  10445. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10446. const struct ggml_compute_params * params,
  10447. const struct ggml_tensor * src0,
  10448. const struct ggml_tensor * src1,
  10449. struct ggml_tensor * dst) {
  10450. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10451. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10452. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10453. int64_t t0 = ggml_perf_time_us();
  10454. UNUSED(t0);
  10455. const int64_t ne00 = src0->ne[0];
  10456. const int64_t ne01 = src0->ne[1];
  10457. const int64_t ne02 = src0->ne[2];
  10458. //const int64_t ne03 = src0->ne[3];
  10459. const int64_t ne10 = src1->ne[0];
  10460. const int64_t ne11 = src1->ne[1];
  10461. //const int64_t ne12 = src1->ne[2];
  10462. //const int64_t ne13 = src1->ne[3];
  10463. //const int64_t ne0 = dst->ne[0];
  10464. //const int64_t ne1 = dst->ne[1];
  10465. //const int64_t ne2 = dst->ne[2];
  10466. //const int64_t ne3 = dst->ne[3];
  10467. //const int64_t ne = ne0*ne1*ne2*ne3;
  10468. const int nb00 = src0->nb[0];
  10469. const int nb01 = src0->nb[1];
  10470. const int nb02 = src0->nb[2];
  10471. //const int nb03 = src0->nb[3];
  10472. const int nb10 = src1->nb[0];
  10473. const int nb11 = src1->nb[1];
  10474. //const int nb12 = src1->nb[2];
  10475. //const int nb13 = src1->nb[3];
  10476. //const int nb0 = dst->nb[0];
  10477. const int nb1 = dst->nb[1];
  10478. //const int nb2 = dst->nb[2];
  10479. //const int nb3 = dst->nb[3];
  10480. const int ith = params->ith;
  10481. const int nth = params->nth;
  10482. const int nk = ne00;
  10483. const int nh = nk/2;
  10484. const int ew0 = ggml_up32(ne01);
  10485. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10486. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10487. GGML_ASSERT(nb10 == sizeof(float));
  10488. if (params->type == GGML_TASK_INIT) {
  10489. // TODO: fix this memset (wsize is overestimated)
  10490. memset(params->wdata, 0, params->wsize);
  10491. // prepare kernel data (src0)
  10492. {
  10493. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10495. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10496. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10497. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10498. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10499. dst_data[i00*ew0 + i01] = src[i00];
  10500. }
  10501. }
  10502. }
  10503. }
  10504. // prepare source data (src1)
  10505. {
  10506. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10507. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10508. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10509. ggml_fp16_t * dst_data = wdata;
  10510. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10511. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10512. }
  10513. }
  10514. }
  10515. return;
  10516. }
  10517. if (params->type == GGML_TASK_FINALIZE) {
  10518. return;
  10519. }
  10520. // total rows in dst
  10521. const int nr = ne02;
  10522. // rows per thread
  10523. const int dr = (nr + nth - 1)/nth;
  10524. // row range for this thread
  10525. const int ir0 = dr*ith;
  10526. const int ir1 = MIN(ir0 + dr, nr);
  10527. for (int i1 = ir0; i1 < ir1; i1++) {
  10528. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10529. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10530. dst_data[i0/2] = 0;
  10531. for (int k = -nh; k <= nh; k++) {
  10532. float v = 0.0f;
  10533. ggml_vec_dot_f16(ew0, &v,
  10534. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10535. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10536. dst_data[i0/2] += v;
  10537. }
  10538. }
  10539. }
  10540. }
  10541. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10542. const struct ggml_compute_params * params,
  10543. const struct ggml_tensor * src0,
  10544. const struct ggml_tensor * src1,
  10545. struct ggml_tensor * dst) {
  10546. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10547. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10548. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10549. int64_t t0 = ggml_perf_time_us();
  10550. UNUSED(t0);
  10551. const int64_t ne00 = src0->ne[0];
  10552. const int64_t ne01 = src0->ne[1];
  10553. const int64_t ne02 = src0->ne[2];
  10554. //const int64_t ne03 = src0->ne[3];
  10555. const int64_t ne10 = src1->ne[0];
  10556. const int64_t ne11 = src1->ne[1];
  10557. //const int64_t ne12 = src1->ne[2];
  10558. //const int64_t ne13 = src1->ne[3];
  10559. //const int64_t ne0 = dst->ne[0];
  10560. //const int64_t ne1 = dst->ne[1];
  10561. //const int64_t ne2 = dst->ne[2];
  10562. //const int64_t ne3 = dst->ne[3];
  10563. //const int64_t ne = ne0*ne1*ne2*ne3;
  10564. const int nb00 = src0->nb[0];
  10565. const int nb01 = src0->nb[1];
  10566. const int nb02 = src0->nb[2];
  10567. //const int nb03 = src0->nb[3];
  10568. const int nb10 = src1->nb[0];
  10569. const int nb11 = src1->nb[1];
  10570. //const int nb12 = src1->nb[2];
  10571. //const int nb13 = src1->nb[3];
  10572. //const int nb0 = dst->nb[0];
  10573. const int nb1 = dst->nb[1];
  10574. //const int nb2 = dst->nb[2];
  10575. //const int nb3 = dst->nb[3];
  10576. const int ith = params->ith;
  10577. const int nth = params->nth;
  10578. const int nk = ne00;
  10579. const int nh = nk/2;
  10580. const int ew0 = ggml_up32(ne01);
  10581. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10582. GGML_ASSERT(nb00 == sizeof(float));
  10583. GGML_ASSERT(nb10 == sizeof(float));
  10584. if (params->type == GGML_TASK_INIT) {
  10585. // TODO: fix this memset (wsize is overestimated)
  10586. memset(params->wdata, 0, params->wsize);
  10587. // prepare kernel data (src0)
  10588. {
  10589. float * const wdata = (float *) params->wdata + 0;
  10590. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10591. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10592. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10593. float * dst_data = wdata + i02*ew0*ne00;
  10594. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10595. dst_data[i00*ew0 + i01] = src[i00];
  10596. }
  10597. }
  10598. }
  10599. }
  10600. // prepare source data (src1)
  10601. {
  10602. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10603. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10604. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10605. float * dst_data = wdata;
  10606. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10607. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10608. }
  10609. }
  10610. }
  10611. return;
  10612. }
  10613. if (params->type == GGML_TASK_FINALIZE) {
  10614. return;
  10615. }
  10616. // total rows in dst
  10617. const int nr = ne02;
  10618. // rows per thread
  10619. const int dr = (nr + nth - 1)/nth;
  10620. // row range for this thread
  10621. const int ir0 = dr*ith;
  10622. const int ir1 = MIN(ir0 + dr, nr);
  10623. for (int i1 = ir0; i1 < ir1; i1++) {
  10624. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10625. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10626. dst_data[i0/2] = 0;
  10627. for (int k = -nh; k <= nh; k++) {
  10628. float v = 0.0f;
  10629. ggml_vec_dot_f32(ew0, &v,
  10630. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10631. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10632. dst_data[i0/2] += v;
  10633. }
  10634. }
  10635. }
  10636. }
  10637. static void ggml_compute_forward_conv_1d_s2_ph(
  10638. const struct ggml_compute_params * params,
  10639. const struct ggml_tensor * src0,
  10640. const struct ggml_tensor * src1,
  10641. struct ggml_tensor * dst) {
  10642. switch (src0->type) {
  10643. case GGML_TYPE_F16:
  10644. {
  10645. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10646. } break;
  10647. case GGML_TYPE_F32:
  10648. {
  10649. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10650. } break;
  10651. default:
  10652. {
  10653. GGML_ASSERT(false);
  10654. } break;
  10655. }
  10656. }
  10657. // ggml_compute_forward_conv_2d_sk_p0
  10658. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10659. const struct ggml_compute_params * params,
  10660. const struct ggml_tensor * src0,
  10661. const struct ggml_tensor * src1,
  10662. struct ggml_tensor * dst) {
  10663. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10664. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10665. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10666. int64_t t0 = ggml_perf_time_us();
  10667. UNUSED(t0);
  10668. const int ne00 = src0->ne[0];
  10669. const int ne01 = src0->ne[1];
  10670. const int ne02 = src0->ne[2];
  10671. //const int ne03 = src0->ne[3];
  10672. const int ne10 = src1->ne[0];
  10673. //const int ne11 = src1->ne[1];
  10674. const int ne12 = src1->ne[2];
  10675. //const int ne13 = src1->ne[3];
  10676. const int ne0 = dst->ne[0];
  10677. const int ne1 = dst->ne[1];
  10678. const int ne2 = dst->ne[2];
  10679. //const int ne3 = dst->ne[3];
  10680. //const int ne = ne0*ne1*ne2*ne3;
  10681. const int nb00 = src0->nb[0];
  10682. //const int nb01 = src0->nb[1];
  10683. //const int nb02 = src0->nb[2];
  10684. const int nb03 = src0->nb[3];
  10685. const int nb10 = src1->nb[0];
  10686. //const int nb11 = src1->nb[1];
  10687. const int nb12 = src1->nb[2];
  10688. //const int nb13 = src1->nb[3];
  10689. //const int nb0 = dst->nb[0];
  10690. //const int nb1 = dst->nb[1];
  10691. const int nb2 = dst->nb[2];
  10692. //const int nb3 = dst->nb[3];
  10693. const int ith = params->ith;
  10694. const int nth = params->nth;
  10695. const int nk0 = ne00;
  10696. const int nk1 = ne01;
  10697. // size of the convolution row - the kernel size unrolled across all channels
  10698. // round-up so it is more suitable for SIMD
  10699. const int ew0 = ggml_up32(nk0*nk1*ne02);
  10700. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10701. GGML_ASSERT(nb10 == sizeof(float));
  10702. if (params->type == GGML_TASK_INIT) {
  10703. // TODO: fix this memset (wsize is overestimated)
  10704. memset(params->wdata, 0, params->wsize);
  10705. // prepare source data (src1)
  10706. {
  10707. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10708. for (int i12 = 0; i12 < ne12; i12++) {
  10709. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10710. ggml_fp16_t * dst_data = wdata;
  10711. for (int i1 = 0; i1 < ne1; i1++) {
  10712. for (int i0 = 0; i0 < ne0; i0++) {
  10713. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10714. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10715. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10716. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10717. }
  10718. }
  10719. }
  10720. }
  10721. }
  10722. }
  10723. return;
  10724. }
  10725. if (params->type == GGML_TASK_FINALIZE) {
  10726. return;
  10727. }
  10728. // total patches in dst
  10729. const int np = ne2;
  10730. // patches per thread
  10731. const int dp = (np + nth - 1)/nth;
  10732. // patch range for this thread
  10733. const int ip0 = dp*ith;
  10734. const int ip1 = MIN(ip0 + dp, np);
  10735. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10736. for (int i2 = ip0; i2 < ip1; i2++) {
  10737. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10738. for (int i1 = 0; i1 < ne1; ++i1) {
  10739. for (int i0 = 0; i0 < ne0; ++i0) {
  10740. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10741. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10742. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10743. }
  10744. }
  10745. }
  10746. }
  10747. static void ggml_compute_forward_conv_2d_sk_p0(
  10748. const struct ggml_compute_params * params,
  10749. const struct ggml_tensor * src0,
  10750. const struct ggml_tensor * src1,
  10751. struct ggml_tensor * dst) {
  10752. switch (src0->type) {
  10753. case GGML_TYPE_F16:
  10754. {
  10755. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10756. } break;
  10757. case GGML_TYPE_F32:
  10758. {
  10759. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10760. GGML_ASSERT(false);
  10761. } break;
  10762. default:
  10763. {
  10764. GGML_ASSERT(false);
  10765. } break;
  10766. }
  10767. }
  10768. // ggml_compute_forward_flash_attn
  10769. static void ggml_compute_forward_flash_attn_f32(
  10770. const struct ggml_compute_params * params,
  10771. const struct ggml_tensor * q,
  10772. const struct ggml_tensor * k,
  10773. const struct ggml_tensor * v,
  10774. const bool masked,
  10775. struct ggml_tensor * dst) {
  10776. int64_t t0 = ggml_perf_time_us();
  10777. UNUSED(t0);
  10778. const int64_t neq0 = q->ne[0];
  10779. const int64_t neq1 = q->ne[1];
  10780. const int64_t neq2 = q->ne[2];
  10781. const int64_t neq3 = q->ne[3];
  10782. const int64_t nek0 = k->ne[0];
  10783. const int64_t nek1 = k->ne[1];
  10784. //const int64_t nek2 = k->ne[2];
  10785. //const int64_t nek3 = k->ne[3];
  10786. //const int64_t nev0 = v->ne[0];
  10787. const int64_t nev1 = v->ne[1];
  10788. //const int64_t nev2 = v->ne[2];
  10789. //const int64_t nev3 = v->ne[3];
  10790. const int64_t ne0 = dst->ne[0];
  10791. const int64_t ne1 = dst->ne[1];
  10792. //const int64_t ne2 = dst->ne[2];
  10793. //const int64_t ne3 = dst->ne[3];
  10794. const int nbk0 = k->nb[0];
  10795. const int nbk1 = k->nb[1];
  10796. const int nbk2 = k->nb[2];
  10797. const int nbk3 = k->nb[3];
  10798. const int nbq0 = q->nb[0];
  10799. const int nbq1 = q->nb[1];
  10800. const int nbq2 = q->nb[2];
  10801. const int nbq3 = q->nb[3];
  10802. const int nbv0 = v->nb[0];
  10803. const int nbv1 = v->nb[1];
  10804. const int nbv2 = v->nb[2];
  10805. const int nbv3 = v->nb[3];
  10806. const int nb0 = dst->nb[0];
  10807. const int nb1 = dst->nb[1];
  10808. const int nb2 = dst->nb[2];
  10809. const int nb3 = dst->nb[3];
  10810. const int ith = params->ith;
  10811. const int nth = params->nth;
  10812. const int64_t D = neq0;
  10813. const int64_t N = neq1;
  10814. const int64_t P = nek1 - N;
  10815. const int64_t M = P + N;
  10816. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10817. GGML_ASSERT(ne0 == D);
  10818. GGML_ASSERT(ne1 == N);
  10819. GGML_ASSERT(P >= 0);
  10820. GGML_ASSERT(nbq0 == sizeof(float));
  10821. GGML_ASSERT(nbk0 == sizeof(float));
  10822. GGML_ASSERT(nbv0 == sizeof(float));
  10823. GGML_ASSERT(neq0 == D);
  10824. GGML_ASSERT(nek0 == D);
  10825. GGML_ASSERT(nev1 == D);
  10826. GGML_ASSERT(neq1 == N);
  10827. GGML_ASSERT(nek1 == N + P);
  10828. GGML_ASSERT(nev1 == D);
  10829. // dst cannot be transposed or permuted
  10830. GGML_ASSERT(nb0 == sizeof(float));
  10831. GGML_ASSERT(nb0 <= nb1);
  10832. GGML_ASSERT(nb1 <= nb2);
  10833. GGML_ASSERT(nb2 <= nb3);
  10834. if (params->type == GGML_TASK_INIT) {
  10835. return;
  10836. }
  10837. if (params->type == GGML_TASK_FINALIZE) {
  10838. return;
  10839. }
  10840. // parallelize by q rows using ggml_vec_dot_f32
  10841. // total rows in q
  10842. const int nr = neq1*neq2*neq3;
  10843. // rows per thread
  10844. const int dr = (nr + nth - 1)/nth;
  10845. // row range for this thread
  10846. const int ir0 = dr*ith;
  10847. const int ir1 = MIN(ir0 + dr, nr);
  10848. const float scale = 1.0f/sqrtf(D);
  10849. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10850. for (int ir = ir0; ir < ir1; ++ir) {
  10851. // q indices
  10852. const int iq3 = ir/(neq2*neq1);
  10853. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10854. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10855. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10856. for (int i = M; i < Mup; ++i) {
  10857. S[i] = -INFINITY;
  10858. }
  10859. for (int64_t ic = 0; ic < nek1; ++ic) {
  10860. // k indices
  10861. const int ik3 = iq3;
  10862. const int ik2 = iq2;
  10863. const int ik1 = ic;
  10864. // S indices
  10865. const int i1 = ik1;
  10866. ggml_vec_dot_f32(neq0,
  10867. S + i1,
  10868. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10869. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10870. }
  10871. // scale
  10872. ggml_vec_scale_f32(nek1, S, scale);
  10873. if (masked) {
  10874. for (int64_t i = P; i < M; i++) {
  10875. if (i > P + iq1) {
  10876. S[i] = -INFINITY;
  10877. }
  10878. }
  10879. }
  10880. // softmax
  10881. {
  10882. float max = -INFINITY;
  10883. ggml_vec_max_f32(M, &max, S);
  10884. ggml_float sum = 0.0;
  10885. {
  10886. #ifdef GGML_SOFT_MAX_ACCELERATE
  10887. max = -max;
  10888. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10889. vvexpf(S, S, &Mup);
  10890. ggml_vec_sum_f32(Mup, &sum, S);
  10891. #else
  10892. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10893. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10894. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10895. float * SS = S + i;
  10896. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10897. if (SS[j] == -INFINITY) {
  10898. SS[j] = 0.0f;
  10899. } else {
  10900. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10901. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10902. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10903. sump[j] += (ggml_float)val;
  10904. SS[j] = val;
  10905. }
  10906. }
  10907. }
  10908. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10909. sum += sump[i];
  10910. }
  10911. #endif
  10912. }
  10913. assert(sum > 0.0);
  10914. sum = 1.0/sum;
  10915. ggml_vec_scale_f32(M, S, sum);
  10916. #ifndef NDEBUG
  10917. for (int i = 0; i < M; ++i) {
  10918. assert(!isnan(S[i]));
  10919. assert(!isinf(S[i]));
  10920. }
  10921. #endif
  10922. }
  10923. for (int64_t ic = 0; ic < nev1; ++ic) {
  10924. // dst indices
  10925. const int i1 = iq1;
  10926. const int i2 = iq2;
  10927. const int i3 = iq3;
  10928. ggml_vec_dot_f32(nek1,
  10929. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10930. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10931. S);
  10932. }
  10933. }
  10934. }
  10935. static void ggml_compute_forward_flash_attn_f16(
  10936. const struct ggml_compute_params * params,
  10937. const struct ggml_tensor * q,
  10938. const struct ggml_tensor * k,
  10939. const struct ggml_tensor * v,
  10940. const bool masked,
  10941. struct ggml_tensor * dst) {
  10942. int64_t t0 = ggml_perf_time_us();
  10943. UNUSED(t0);
  10944. const int64_t neq0 = q->ne[0];
  10945. const int64_t neq1 = q->ne[1];
  10946. const int64_t neq2 = q->ne[2];
  10947. const int64_t neq3 = q->ne[3];
  10948. const int64_t nek0 = k->ne[0];
  10949. const int64_t nek1 = k->ne[1];
  10950. //const int64_t nek2 = k->ne[2];
  10951. //const int64_t nek3 = k->ne[3];
  10952. //const int64_t nev0 = v->ne[0];
  10953. const int64_t nev1 = v->ne[1];
  10954. //const int64_t nev2 = v->ne[2];
  10955. //const int64_t nev3 = v->ne[3];
  10956. const int64_t ne0 = dst->ne[0];
  10957. const int64_t ne1 = dst->ne[1];
  10958. //const int64_t ne2 = dst->ne[2];
  10959. //const int64_t ne3 = dst->ne[3];
  10960. const int nbk0 = k->nb[0];
  10961. const int nbk1 = k->nb[1];
  10962. const int nbk2 = k->nb[2];
  10963. const int nbk3 = k->nb[3];
  10964. const int nbq0 = q->nb[0];
  10965. const int nbq1 = q->nb[1];
  10966. const int nbq2 = q->nb[2];
  10967. const int nbq3 = q->nb[3];
  10968. const int nbv0 = v->nb[0];
  10969. const int nbv1 = v->nb[1];
  10970. const int nbv2 = v->nb[2];
  10971. const int nbv3 = v->nb[3];
  10972. const int nb0 = dst->nb[0];
  10973. const int nb1 = dst->nb[1];
  10974. const int nb2 = dst->nb[2];
  10975. const int nb3 = dst->nb[3];
  10976. const int ith = params->ith;
  10977. const int nth = params->nth;
  10978. const int64_t D = neq0;
  10979. const int64_t N = neq1;
  10980. const int64_t P = nek1 - N;
  10981. const int64_t M = P + N;
  10982. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10983. GGML_ASSERT(ne0 == D);
  10984. GGML_ASSERT(ne1 == N);
  10985. GGML_ASSERT(P >= 0);
  10986. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10987. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10988. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10989. GGML_ASSERT(neq0 == D);
  10990. GGML_ASSERT(nek0 == D);
  10991. GGML_ASSERT(nev1 == D);
  10992. GGML_ASSERT(neq1 == N);
  10993. GGML_ASSERT(nek1 == N + P);
  10994. GGML_ASSERT(nev1 == D);
  10995. // dst cannot be transposed or permuted
  10996. GGML_ASSERT(nb0 == sizeof(float));
  10997. GGML_ASSERT(nb0 <= nb1);
  10998. GGML_ASSERT(nb1 <= nb2);
  10999. GGML_ASSERT(nb2 <= nb3);
  11000. if (params->type == GGML_TASK_INIT) {
  11001. return;
  11002. }
  11003. if (params->type == GGML_TASK_FINALIZE) {
  11004. return;
  11005. }
  11006. // parallelize by q rows using ggml_vec_dot_f32
  11007. // total rows in q
  11008. const int nr = neq1*neq2*neq3;
  11009. // rows per thread
  11010. const int dr = (nr + nth - 1)/nth;
  11011. // row range for this thread
  11012. const int ir0 = dr*ith;
  11013. const int ir1 = MIN(ir0 + dr, nr);
  11014. const float scale = 1.0f/sqrtf(D);
  11015. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11016. for (int ir = ir0; ir < ir1; ++ir) {
  11017. // q indices
  11018. const int iq3 = ir/(neq2*neq1);
  11019. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11020. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11021. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11022. for (int i = M; i < Mup; ++i) {
  11023. S[i] = -INFINITY;
  11024. }
  11025. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11026. for (int64_t ic = 0; ic < nek1; ++ic) {
  11027. // k indices
  11028. const int ik3 = iq3;
  11029. const int ik2 = iq2;
  11030. const int ik1 = ic;
  11031. // S indices
  11032. const int i1 = ik1;
  11033. ggml_vec_dot_f16(neq0,
  11034. S + i1,
  11035. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11036. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11037. }
  11038. } else {
  11039. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11040. // k indices
  11041. const int ik3 = iq3;
  11042. const int ik2 = iq2;
  11043. const int ik1 = ic;
  11044. // S indices
  11045. const int i1 = ik1;
  11046. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11047. S + i1,
  11048. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11049. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11050. }
  11051. }
  11052. // scale
  11053. ggml_vec_scale_f32(nek1, S, scale);
  11054. if (masked) {
  11055. for (int64_t i = P; i < M; i++) {
  11056. if (i > P + iq1) {
  11057. S[i] = -INFINITY;
  11058. }
  11059. }
  11060. }
  11061. // softmax
  11062. {
  11063. float max = -INFINITY;
  11064. ggml_vec_max_f32(M, &max, S);
  11065. ggml_float sum = 0.0;
  11066. {
  11067. #ifdef GGML_SOFT_MAX_ACCELERATE
  11068. max = -max;
  11069. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11070. vvexpf(S, S, &Mup);
  11071. ggml_vec_sum_f32(Mup, &sum, S);
  11072. #else
  11073. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11074. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11075. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11076. float * SS = S + i;
  11077. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11078. if (SS[j] == -INFINITY) {
  11079. SS[j] = 0.0f;
  11080. } else {
  11081. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11082. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11083. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11084. sump[j] += (ggml_float)val;
  11085. SS[j] = val;
  11086. }
  11087. }
  11088. }
  11089. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11090. sum += sump[i];
  11091. }
  11092. #endif
  11093. }
  11094. assert(sum > 0.0);
  11095. sum = 1.0/sum;
  11096. ggml_vec_scale_f32(M, S, sum);
  11097. #ifndef NDEBUG
  11098. for (int i = 0; i < M; ++i) {
  11099. assert(!isnan(S[i]));
  11100. assert(!isinf(S[i]));
  11101. }
  11102. #endif
  11103. }
  11104. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11105. for (int64_t i = 0; i < M; i++) {
  11106. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11107. }
  11108. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11109. for (int64_t ic = 0; ic < nev1; ++ic) {
  11110. // dst indices
  11111. const int i1 = iq1;
  11112. const int i2 = iq2;
  11113. const int i3 = iq3;
  11114. ggml_vec_dot_f16(nek1,
  11115. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11116. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11117. S16);
  11118. }
  11119. } else {
  11120. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11121. // dst indices
  11122. const int i1 = iq1;
  11123. const int i2 = iq2;
  11124. const int i3 = iq3;
  11125. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11126. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11127. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11128. S16);
  11129. }
  11130. }
  11131. }
  11132. }
  11133. static void ggml_compute_forward_flash_attn(
  11134. const struct ggml_compute_params * params,
  11135. const struct ggml_tensor * q,
  11136. const struct ggml_tensor * k,
  11137. const struct ggml_tensor * v,
  11138. const bool masked,
  11139. struct ggml_tensor * dst) {
  11140. switch (q->type) {
  11141. case GGML_TYPE_F16:
  11142. {
  11143. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11144. } break;
  11145. case GGML_TYPE_F32:
  11146. {
  11147. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11148. } break;
  11149. default:
  11150. {
  11151. GGML_ASSERT(false);
  11152. } break;
  11153. }
  11154. }
  11155. // ggml_compute_forward_flash_ff
  11156. static void ggml_compute_forward_flash_ff_f16(
  11157. const struct ggml_compute_params * params,
  11158. const struct ggml_tensor * a, // F16
  11159. const struct ggml_tensor * b0, // F16 fc_w
  11160. const struct ggml_tensor * b1, // F32 fc_b
  11161. const struct ggml_tensor * c0, // F16 proj_w
  11162. const struct ggml_tensor * c1, // F32 proj_b
  11163. struct ggml_tensor * dst) {
  11164. int64_t t0 = ggml_perf_time_us();
  11165. UNUSED(t0);
  11166. const int64_t nea0 = a->ne[0];
  11167. const int64_t nea1 = a->ne[1];
  11168. const int64_t nea2 = a->ne[2];
  11169. const int64_t nea3 = a->ne[3];
  11170. const int64_t neb00 = b0->ne[0];
  11171. const int64_t neb01 = b0->ne[1];
  11172. //const int64_t neb02 = b0->ne[2];
  11173. //const int64_t neb03 = b0->ne[3];
  11174. const int64_t neb10 = b1->ne[0];
  11175. const int64_t neb11 = b1->ne[1];
  11176. //const int64_t neb12 = b1->ne[2];
  11177. //const int64_t neb13 = b1->ne[3];
  11178. const int64_t nec00 = c0->ne[0];
  11179. const int64_t nec01 = c0->ne[1];
  11180. //const int64_t nec02 = c0->ne[2];
  11181. //const int64_t nec03 = c0->ne[3];
  11182. const int64_t nec10 = c1->ne[0];
  11183. const int64_t nec11 = c1->ne[1];
  11184. //const int64_t nec12 = c1->ne[2];
  11185. //const int64_t nec13 = c1->ne[3];
  11186. const int64_t ne0 = dst->ne[0];
  11187. const int64_t ne1 = dst->ne[1];
  11188. const int64_t ne2 = dst->ne[2];
  11189. //const int64_t ne3 = dst->ne[3];
  11190. const int nba0 = a->nb[0];
  11191. const int nba1 = a->nb[1];
  11192. const int nba2 = a->nb[2];
  11193. const int nba3 = a->nb[3];
  11194. const int nbb00 = b0->nb[0];
  11195. const int nbb01 = b0->nb[1];
  11196. const int nbb02 = b0->nb[2];
  11197. const int nbb03 = b0->nb[3];
  11198. const int nbb10 = b1->nb[0];
  11199. //const int nbb11 = b1->nb[1];
  11200. //const int nbb12 = b1->nb[2];
  11201. //const int nbb13 = b1->nb[3];
  11202. const int nbc00 = c0->nb[0];
  11203. const int nbc01 = c0->nb[1];
  11204. const int nbc02 = c0->nb[2];
  11205. const int nbc03 = c0->nb[3];
  11206. const int nbc10 = c1->nb[0];
  11207. //const int nbc11 = c1->nb[1];
  11208. //const int nbc12 = c1->nb[2];
  11209. //const int nbc13 = c1->nb[3];
  11210. const int nb0 = dst->nb[0];
  11211. const int nb1 = dst->nb[1];
  11212. const int nb2 = dst->nb[2];
  11213. const int nb3 = dst->nb[3];
  11214. const int ith = params->ith;
  11215. const int nth = params->nth;
  11216. const int64_t D = nea0;
  11217. //const int64_t N = nea1;
  11218. const int64_t M = neb01;
  11219. GGML_ASSERT(ne0 == nea0);
  11220. GGML_ASSERT(ne1 == nea1);
  11221. GGML_ASSERT(ne2 == nea2);
  11222. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11223. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11224. GGML_ASSERT(nbb10 == sizeof(float));
  11225. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11226. GGML_ASSERT(nbc10 == sizeof(float));
  11227. GGML_ASSERT(neb00 == D);
  11228. GGML_ASSERT(neb01 == M);
  11229. GGML_ASSERT(neb10 == M);
  11230. GGML_ASSERT(neb11 == 1);
  11231. GGML_ASSERT(nec00 == M);
  11232. GGML_ASSERT(nec01 == D);
  11233. GGML_ASSERT(nec10 == D);
  11234. GGML_ASSERT(nec11 == 1);
  11235. // dst cannot be transposed or permuted
  11236. GGML_ASSERT(nb0 == sizeof(float));
  11237. GGML_ASSERT(nb0 <= nb1);
  11238. GGML_ASSERT(nb1 <= nb2);
  11239. GGML_ASSERT(nb2 <= nb3);
  11240. if (params->type == GGML_TASK_INIT) {
  11241. return;
  11242. }
  11243. if (params->type == GGML_TASK_FINALIZE) {
  11244. return;
  11245. }
  11246. // parallelize by a rows using ggml_vec_dot_f32
  11247. // total rows in a
  11248. const int nr = nea1*nea2*nea3;
  11249. // rows per thread
  11250. const int dr = (nr + nth - 1)/nth;
  11251. // row range for this thread
  11252. const int ir0 = dr*ith;
  11253. const int ir1 = MIN(ir0 + dr, nr);
  11254. for (int ir = ir0; ir < ir1; ++ir) {
  11255. // a indices
  11256. const int ia3 = ir/(nea2*nea1);
  11257. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11258. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11259. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11260. for (int64_t ic = 0; ic < neb01; ++ic) {
  11261. // b0 indices
  11262. const int ib03 = ia3;
  11263. const int ib02 = ia2;
  11264. const int ib01 = ic;
  11265. // S indices
  11266. const int i1 = ib01;
  11267. ggml_vec_dot_f16(nea0,
  11268. S + i1,
  11269. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11270. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11271. }
  11272. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11273. //ggml_vec_gelu_f32(neb01, S, S);
  11274. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11275. for (int64_t i = 0; i < M; i++) {
  11276. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11277. }
  11278. ggml_vec_gelu_f16(neb01, S16, S16);
  11279. {
  11280. // dst indices
  11281. const int i1 = ia1;
  11282. const int i2 = ia2;
  11283. const int i3 = ia3;
  11284. for (int64_t ic = 0; ic < nec01; ++ic) {
  11285. ggml_vec_dot_f16(neb01,
  11286. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11287. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11288. S16);
  11289. }
  11290. ggml_vec_add_f32(nec01,
  11291. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11292. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11293. (float *) c1->data);
  11294. }
  11295. }
  11296. }
  11297. static void ggml_compute_forward_flash_ff(
  11298. const struct ggml_compute_params * params,
  11299. const struct ggml_tensor * a,
  11300. const struct ggml_tensor * b0,
  11301. const struct ggml_tensor * b1,
  11302. const struct ggml_tensor * c0,
  11303. const struct ggml_tensor * c1,
  11304. struct ggml_tensor * dst) {
  11305. switch (b0->type) {
  11306. case GGML_TYPE_F16:
  11307. {
  11308. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11309. } break;
  11310. case GGML_TYPE_F32:
  11311. {
  11312. GGML_ASSERT(false); // TODO
  11313. } break;
  11314. default:
  11315. {
  11316. GGML_ASSERT(false);
  11317. } break;
  11318. }
  11319. }
  11320. // ggml_compute_forward_flash_attn_back
  11321. static void ggml_compute_forward_flash_attn_back_f32(
  11322. const struct ggml_compute_params * params,
  11323. const struct ggml_tensor * q,
  11324. const struct ggml_tensor * k,
  11325. const struct ggml_tensor * v,
  11326. const struct ggml_tensor * d,
  11327. const bool masked,
  11328. struct ggml_tensor * dst) {
  11329. int64_t t0 = ggml_perf_time_us();
  11330. UNUSED(t0);
  11331. const int64_t neq0 = q->ne[0];
  11332. const int64_t neq1 = q->ne[1];
  11333. const int64_t neq2 = q->ne[2];
  11334. const int64_t neq3 = q->ne[3];
  11335. const int64_t nek0 = k->ne[0];
  11336. const int64_t nek1 = k->ne[1];
  11337. //const int64_t nek2 = k->ne[2];
  11338. //const int64_t nek3 = k->ne[3];
  11339. const int64_t nev0 = v->ne[0];
  11340. const int64_t nev1 = v->ne[1];
  11341. //const int64_t nev2 = v->ne[2];
  11342. //const int64_t nev3 = v->ne[3];
  11343. const int64_t ned0 = d->ne[0];
  11344. const int64_t ned1 = d->ne[1];
  11345. //const int64_t ned2 = d->ne[2];
  11346. //const int64_t ned3 = d->ne[3];
  11347. const int64_t ne0 = dst->ne[0];
  11348. const int64_t ne1 = dst->ne[1];
  11349. const int64_t ne2 = dst->ne[2];
  11350. const int64_t ne3 = dst->ne[3];
  11351. const int nbk0 = k->nb[0];
  11352. const int nbk1 = k->nb[1];
  11353. const int nbk2 = k->nb[2];
  11354. const int nbk3 = k->nb[3];
  11355. const int nbq0 = q->nb[0];
  11356. const int nbq1 = q->nb[1];
  11357. const int nbq2 = q->nb[2];
  11358. const int nbq3 = q->nb[3];
  11359. const int nbv0 = v->nb[0];
  11360. const int nbv1 = v->nb[1];
  11361. const int nbv2 = v->nb[2];
  11362. const int nbv3 = v->nb[3];
  11363. const int nbd0 = d->nb[0];
  11364. const int nbd1 = d->nb[1];
  11365. const int nbd2 = d->nb[2];
  11366. const int nbd3 = d->nb[3];
  11367. const int nb0 = dst->nb[0];
  11368. const int nb1 = dst->nb[1];
  11369. const int nb2 = dst->nb[2];
  11370. const int nb3 = dst->nb[3];
  11371. const int ith = params->ith;
  11372. const int nth = params->nth;
  11373. const int64_t D = neq0;
  11374. const int64_t N = neq1;
  11375. const int64_t P = nek1 - N;
  11376. const int64_t M = P + N;
  11377. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11378. const int mxDM = MAX(D, Mup);
  11379. // GGML_ASSERT(ne0 == D);
  11380. // GGML_ASSERT(ne1 == N);
  11381. GGML_ASSERT(P >= 0);
  11382. GGML_ASSERT(nbq0 == sizeof(float));
  11383. GGML_ASSERT(nbk0 == sizeof(float));
  11384. GGML_ASSERT(nbv0 == sizeof(float));
  11385. GGML_ASSERT(neq0 == D);
  11386. GGML_ASSERT(nek0 == D);
  11387. GGML_ASSERT(nev1 == D);
  11388. GGML_ASSERT(ned0 == D);
  11389. GGML_ASSERT(neq1 == N);
  11390. GGML_ASSERT(nek1 == N + P);
  11391. GGML_ASSERT(nev1 == D);
  11392. GGML_ASSERT(ned1 == N);
  11393. // dst cannot be transposed or permuted
  11394. GGML_ASSERT(nb0 == sizeof(float));
  11395. GGML_ASSERT(nb0 <= nb1);
  11396. GGML_ASSERT(nb1 <= nb2);
  11397. GGML_ASSERT(nb2 <= nb3);
  11398. if (params->type == GGML_TASK_INIT) {
  11399. if (ith == 0) {
  11400. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11401. }
  11402. return;
  11403. }
  11404. if (params->type == GGML_TASK_FINALIZE) {
  11405. return;
  11406. }
  11407. // parallelize by q rows using ggml_vec_dot_f32
  11408. // total rows in q
  11409. const int nr = neq2*neq3;
  11410. // rows per thread
  11411. const int dr = (nr + nth - 1)/nth;
  11412. // row range for this thread
  11413. const int ir0 = dr*ith;
  11414. const int ir1 = MIN(ir0 + dr, nr);
  11415. const float scale = 1.0f/sqrtf(D);
  11416. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11417. for (int ir = ir0; ir < ir1; ++ir) {
  11418. // q indices
  11419. const int iq3 = ir/(neq2);
  11420. const int iq2 = ir - iq3*neq2;
  11421. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11422. // not sure about CACHE_LINE_SIZE_F32..
  11423. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11424. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11425. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11426. for (int i = M; i < Mup; ++i) {
  11427. S[i] = -INFINITY;
  11428. }
  11429. for (int64_t ic = 0; ic < nek1; ++ic) {
  11430. // k indices
  11431. const int ik3 = iq3;
  11432. const int ik2 = iq2;
  11433. const int ik1 = ic;
  11434. // S indices
  11435. const int i1 = ik1;
  11436. ggml_vec_dot_f32(neq0,
  11437. S + i1,
  11438. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11439. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11440. }
  11441. // scale
  11442. ggml_vec_scale_f32(nek1, S, scale);
  11443. if (masked) {
  11444. for (int64_t i = P; i < M; i++) {
  11445. if (i > P + iq1) {
  11446. S[i] = -INFINITY;
  11447. }
  11448. }
  11449. }
  11450. // softmax
  11451. {
  11452. float max = -INFINITY;
  11453. ggml_vec_max_f32(M, &max, S);
  11454. ggml_float sum = 0.0;
  11455. {
  11456. #ifdef GGML_SOFT_MAX_ACCELERATE
  11457. max = -max;
  11458. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11459. vvexpf(SM, SM, &Mup);
  11460. ggml_vec_sum_f32(Mup, &sum, SM);
  11461. #else
  11462. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11463. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11464. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11465. float * SR = S + i;
  11466. float * SW = SM + i;
  11467. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11468. if (SR[j] == -INFINITY) {
  11469. SW[j] = 0.0f;
  11470. } else {
  11471. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11472. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11473. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11474. sump[j] += (ggml_float)val;
  11475. SW[j] = val;
  11476. }
  11477. }
  11478. }
  11479. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11480. sum += sump[i];
  11481. }
  11482. #endif
  11483. }
  11484. assert(sum > 0.0);
  11485. sum = 1.0/sum;
  11486. ggml_vec_scale_f32(M, SM, sum);
  11487. }
  11488. // step-by-step explanation
  11489. {
  11490. // forward-process shape grads from backward process
  11491. // parallel_for iq2,iq3:
  11492. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11493. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11494. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11495. // for iq1:
  11496. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11497. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11498. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11499. // S0 = -Inf [D,1,1,1]
  11500. // ~S1[i] = dot(kcur[:D,i], qcur)
  11501. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11502. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11503. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11504. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11505. // ~S5[i] = dot(vcur[:,i], S4)
  11506. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11507. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11508. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11509. // dst backward-/ grad[dst] = d
  11510. //
  11511. // output gradients with their dependencies:
  11512. //
  11513. // grad[kcur] = grad[S1].T @ qcur
  11514. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11515. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11516. // grad[S4] = grad[S5] @ vcur
  11517. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11518. // grad[qcur] = grad[S1] @ kcur
  11519. // grad[vcur] = grad[S5].T @ S4
  11520. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11521. //
  11522. // in post-order:
  11523. //
  11524. // S1 = qcur @ kcur.T
  11525. // S2 = S1 * scale
  11526. // S3 = diag_mask_inf(S2, P)
  11527. // S4 = softmax(S3)
  11528. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11529. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11530. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11531. // grad[qcur] = grad[S1] @ kcur
  11532. // grad[kcur] = grad[S1].T @ qcur
  11533. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11534. //
  11535. // using less variables (SM=S4):
  11536. //
  11537. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11538. // SM = softmax(S)
  11539. // S = d[:D,iq1,iq2,iq3] @ vcur
  11540. // dot_SM_gradSM = dot(SM, S)
  11541. // S = SM * (S - dot(SM, S))
  11542. // S = diag_mask_zero(S, P) * scale
  11543. //
  11544. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11545. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11546. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11547. }
  11548. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11549. // S = d[:D,iq1,iq2,iq3] @ vcur
  11550. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11551. ggml_vec_set_f32(M, S, 0);
  11552. for (int64_t ic = 0; ic < D; ++ic) {
  11553. // dst indices
  11554. const int i1 = iq1;
  11555. const int i2 = iq2;
  11556. const int i3 = iq3;
  11557. ggml_vec_mad_f32(M,
  11558. S,
  11559. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11560. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11561. }
  11562. // S = SM * (S - dot(SM, S))
  11563. float dot_SM_gradSM = 0;
  11564. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11565. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11566. ggml_vec_mul_f32 (M, S, S, SM);
  11567. // S = diag_mask_zero(S, P) * scale
  11568. if (masked) {
  11569. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11570. // S[i] = 0;
  11571. // }
  11572. for (int64_t i = P; i < M; i++) {
  11573. if (i > P + iq1) {
  11574. S[i] = 0;
  11575. }
  11576. }
  11577. }
  11578. ggml_vec_scale_f32(M, S, scale);
  11579. void * grad_q = (char *) dst->data;
  11580. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11581. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11582. const size_t nbgq1 = nb0*neq0;
  11583. const size_t nbgq2 = nb0*neq0*neq1;
  11584. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11585. const size_t nbgk1 = nb0*nek0;
  11586. const size_t nbgk2 = nb0*nek0*nek1;
  11587. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11588. const size_t nbgv1 = nb0*nev0;
  11589. const size_t nbgv2 = nb0*nev0*nev1;
  11590. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11591. // S shape [M,1]
  11592. // SM shape [M,1]
  11593. // kcur shape [D,M]
  11594. // qcur shape [D,1]
  11595. // vcur shape [M,D]
  11596. //
  11597. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11598. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11599. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11600. //
  11601. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11602. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11603. for (int64_t ic = 0; ic < M; ++ic) {
  11604. // dst indices
  11605. const int i1 = iq1;
  11606. const int i2 = iq2;
  11607. const int i3 = iq3;
  11608. ggml_vec_mad_f32(D,
  11609. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11610. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11611. S[ic]);
  11612. }
  11613. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11614. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11615. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11616. for (int64_t ic = 0; ic < M; ++ic) {
  11617. // dst indices
  11618. const int i1 = iq1;
  11619. const int i2 = iq2;
  11620. const int i3 = iq3;
  11621. // ggml_vec_set_f32(D,
  11622. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11623. // 0);
  11624. ggml_vec_mad_f32(D,
  11625. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11626. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11627. S[ic]);
  11628. }
  11629. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11630. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11631. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11632. for (int64_t ic = 0; ic < D; ++ic) {
  11633. // dst indices
  11634. const int i1 = iq1;
  11635. const int i2 = iq2;
  11636. const int i3 = iq3;
  11637. // ggml_vec_set_f32(M,
  11638. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11639. // 0);
  11640. ggml_vec_mad_f32(M,
  11641. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11642. SM,
  11643. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11644. }
  11645. }
  11646. }
  11647. }
  11648. static void ggml_compute_forward_flash_attn_back(
  11649. const struct ggml_compute_params * params,
  11650. const struct ggml_tensor * q,
  11651. const struct ggml_tensor * k,
  11652. const struct ggml_tensor * v,
  11653. const struct ggml_tensor * d,
  11654. const bool masked,
  11655. struct ggml_tensor * dst) {
  11656. switch (q->type) {
  11657. case GGML_TYPE_F32:
  11658. {
  11659. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11660. } break;
  11661. default:
  11662. {
  11663. GGML_ASSERT(false);
  11664. } break;
  11665. }
  11666. }
  11667. // ggml_compute_forward_win_part
  11668. static void ggml_compute_forward_win_part_f32(
  11669. const struct ggml_compute_params * params,
  11670. const struct ggml_tensor * src0,
  11671. const struct ggml_tensor * opt0,
  11672. struct ggml_tensor * dst) {
  11673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11674. return;
  11675. }
  11676. const int64_t ne00 = src0->ne[0]; UNUSED(ne00);
  11677. const int64_t ne01 = src0->ne[1];
  11678. const int64_t ne02 = src0->ne[2];
  11679. const int64_t ne03 = src0->ne[3]; UNUSED(ne03);
  11680. const int64_t ne0 = dst->ne[0];
  11681. const int64_t ne1 = dst->ne[1];
  11682. const int64_t ne2 = dst->ne[2];
  11683. const int64_t ne3 = dst->ne[3]; UNUSED(ne3);
  11684. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11685. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11686. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11687. assert(ne00 == ne0);
  11688. assert(ne3 == nep0*nep1);
  11689. // TODO: optimize / multi-thread
  11690. for (int py = 0; py < nep1; ++py) {
  11691. for (int px = 0; px < nep0; ++px) {
  11692. const int64_t i3 = py*nep0 + px;
  11693. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11694. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11695. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11696. const int64_t i02 = py*w + i2;
  11697. const int64_t i01 = px*w + i1;
  11698. const int64_t i00 = i0;
  11699. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11700. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11701. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11702. ((float *) dst->data)[i] = 0.0f;
  11703. } else {
  11704. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11705. }
  11706. }
  11707. }
  11708. }
  11709. }
  11710. }
  11711. }
  11712. static void ggml_compute_forward_win_part(
  11713. const struct ggml_compute_params * params,
  11714. const struct ggml_tensor * src0,
  11715. const struct ggml_tensor * opt0,
  11716. struct ggml_tensor * dst) {
  11717. switch (src0->type) {
  11718. case GGML_TYPE_F32:
  11719. {
  11720. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11721. } break;
  11722. default:
  11723. {
  11724. GGML_ASSERT(false);
  11725. } break;
  11726. }
  11727. }
  11728. // ggml_compute_forward_win_unpart
  11729. static void ggml_compute_forward_win_unpart_f32(
  11730. const struct ggml_compute_params * params,
  11731. const struct ggml_tensor * src0,
  11732. const struct ggml_tensor * opt0,
  11733. struct ggml_tensor * dst) {
  11734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11735. return;
  11736. }
  11737. const int64_t ne00 = src0->ne[0];
  11738. const int64_t ne01 = src0->ne[1];
  11739. const int64_t ne02 = src0->ne[2];
  11740. //const int64_t ne03 = src0->ne[3];
  11741. const int64_t ne0 = dst->ne[0];
  11742. const int64_t ne1 = dst->ne[1];
  11743. const int64_t ne2 = dst->ne[2];
  11744. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11745. // padding
  11746. const int px = (w - ne1%w)%w;
  11747. //const int py = (w - ne2%w)%w;
  11748. const int npx = (px + ne1)/w;
  11749. //const int npy = (py + ne2)/w;
  11750. assert(ne0 == ne00);
  11751. // TODO: optimize / multi-thread
  11752. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11753. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11754. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11755. const int ip2 = i2/w;
  11756. const int ip1 = i1/w;
  11757. const int64_t i02 = i2%w;
  11758. const int64_t i01 = i1%w;
  11759. const int64_t i00 = i0;
  11760. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11761. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11762. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11763. }
  11764. }
  11765. }
  11766. }
  11767. static void ggml_compute_forward_win_unpart(
  11768. const struct ggml_compute_params * params,
  11769. const struct ggml_tensor * src0,
  11770. const struct ggml_tensor * opt0,
  11771. struct ggml_tensor * dst) {
  11772. switch (src0->type) {
  11773. case GGML_TYPE_F32:
  11774. {
  11775. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11776. } break;
  11777. default:
  11778. {
  11779. GGML_ASSERT(false);
  11780. } break;
  11781. }
  11782. }
  11783. // ggml_compute_forward_map_unary
  11784. static void ggml_compute_forward_map_unary_f32(
  11785. const struct ggml_compute_params * params,
  11786. const struct ggml_tensor * src0,
  11787. struct ggml_tensor * dst,
  11788. const ggml_unary_op_f32_t fun) {
  11789. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11790. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11791. return;
  11792. }
  11793. const int n = ggml_nrows(src0);
  11794. const int nc = src0->ne[0];
  11795. assert( dst->nb[0] == sizeof(float));
  11796. assert(src0->nb[0] == sizeof(float));
  11797. for (int i = 0; i < n; i++) {
  11798. fun(nc,
  11799. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11800. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11801. }
  11802. }
  11803. static void ggml_compute_forward_map_unary(
  11804. const struct ggml_compute_params * params,
  11805. const struct ggml_tensor * src0,
  11806. struct ggml_tensor * dst,
  11807. const ggml_unary_op_f32_t fun) {
  11808. switch (src0->type) {
  11809. case GGML_TYPE_F32:
  11810. {
  11811. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11812. } break;
  11813. default:
  11814. {
  11815. GGML_ASSERT(false);
  11816. } break;
  11817. }
  11818. }
  11819. // ggml_compute_forward_map_binary
  11820. static void ggml_compute_forward_map_binary_f32(
  11821. const struct ggml_compute_params * params,
  11822. const struct ggml_tensor * src0,
  11823. const struct ggml_tensor * src1,
  11824. struct ggml_tensor * dst,
  11825. const ggml_binary_op_f32_t fun) {
  11826. assert(params->ith == 0);
  11827. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11829. return;
  11830. }
  11831. const int n = ggml_nrows(src0);
  11832. const int nc = src0->ne[0];
  11833. assert( dst->nb[0] == sizeof(float));
  11834. assert(src0->nb[0] == sizeof(float));
  11835. assert(src1->nb[0] == sizeof(float));
  11836. for (int i = 0; i < n; i++) {
  11837. fun(nc,
  11838. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11839. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11840. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11841. }
  11842. }
  11843. static void ggml_compute_forward_map_binary(
  11844. const struct ggml_compute_params * params,
  11845. const struct ggml_tensor * src0,
  11846. const struct ggml_tensor * src1,
  11847. struct ggml_tensor * dst,
  11848. const ggml_binary_op_f32_t fun) {
  11849. switch (src0->type) {
  11850. case GGML_TYPE_F32:
  11851. {
  11852. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11853. } break;
  11854. default:
  11855. {
  11856. GGML_ASSERT(false);
  11857. } break;
  11858. }
  11859. }
  11860. // ggml_compute_forward_cross_entropy_loss
  11861. static void ggml_compute_forward_cross_entropy_loss_f32(
  11862. const struct ggml_compute_params * params,
  11863. const struct ggml_tensor * src0,
  11864. const struct ggml_tensor * src1,
  11865. struct ggml_tensor * dst) {
  11866. GGML_ASSERT(ggml_is_contiguous(src0));
  11867. GGML_ASSERT(ggml_is_contiguous(src1));
  11868. GGML_ASSERT(ggml_is_scalar(dst));
  11869. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11870. const int ith = params->ith;
  11871. const int nth = params->nth;
  11872. float * sums = (float *) params->wdata;
  11873. // TODO: handle transposed/permuted matrices
  11874. const int nc = src0->ne[0];
  11875. const int nr = ggml_nrows(src0);
  11876. if (params->type == GGML_TASK_INIT) {
  11877. if (ith == 0) {
  11878. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11879. }
  11880. return;
  11881. }
  11882. if (params->type == GGML_TASK_FINALIZE) {
  11883. if (ith == 0) {
  11884. float * dp = (float *) dst->data;
  11885. ggml_vec_sum_f32(nth, dp, sums);
  11886. dp[0] *= -1.0f;
  11887. }
  11888. return;
  11889. }
  11890. const double eps = 1e-9;
  11891. // rows per thread
  11892. const int dr = (nr + nth - 1)/nth;
  11893. // row range for this thread
  11894. const int ir0 = dr*ith;
  11895. const int ir1 = MIN(ir0 + dr, nr);
  11896. for (int i1 = ir0; i1 < ir1; i1++) {
  11897. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11898. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11899. float * st = (float *) params->wdata + nth + ith*nc;
  11900. #ifndef NDEBUG
  11901. for (int i = 0; i < nc; ++i) {
  11902. //printf("p[%d] = %f\n", i, p[i]);
  11903. assert(!isnan(s0[i]));
  11904. assert(!isnan(s1[i]));
  11905. }
  11906. #endif
  11907. // soft_max
  11908. ggml_float sum = 0.0;
  11909. {
  11910. float max = -INFINITY;
  11911. ggml_vec_max_f32(nc, &max, s0);
  11912. uint16_t scvt;
  11913. for (int i = 0; i < nc; i++) {
  11914. if (s0[i] == -INFINITY) {
  11915. st[i] = 0.0f;
  11916. } else {
  11917. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11918. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11919. memcpy(&scvt, &s, sizeof(scvt));
  11920. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11921. sum += (ggml_float)val;
  11922. st[i] = val;
  11923. }
  11924. }
  11925. assert(sum > 0.0);
  11926. // sum = 1.0/sum;
  11927. }
  11928. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11929. sum = (1.0 - eps) / sum;
  11930. ggml_vec_scale_f32(nc, st, sum);
  11931. ggml_vec_add1_f32(nc, st, st, eps);
  11932. ggml_vec_log_f32(nc, st, st);
  11933. ggml_vec_mul_f32(nc, st, st, s1);
  11934. ggml_vec_sum_f32(nc, sums + ith, st);
  11935. #ifndef NDEBUG
  11936. for (int i = 0; i < nc; ++i) {
  11937. assert(!isnan(st[i]));
  11938. assert(!isinf(st[i]));
  11939. }
  11940. #endif
  11941. }
  11942. }
  11943. static void ggml_compute_forward_cross_entropy_loss(
  11944. const struct ggml_compute_params * params,
  11945. const struct ggml_tensor * src0,
  11946. const struct ggml_tensor * src1,
  11947. struct ggml_tensor * dst) {
  11948. switch (src0->type) {
  11949. case GGML_TYPE_F32:
  11950. {
  11951. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11952. } break;
  11953. default:
  11954. {
  11955. GGML_ASSERT(false);
  11956. } break;
  11957. }
  11958. }
  11959. // ggml_compute_forward_cross_entropy_loss_back
  11960. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11961. const struct ggml_compute_params * params,
  11962. const struct ggml_tensor * src0,
  11963. const struct ggml_tensor * src1,
  11964. const struct ggml_tensor * opt0,
  11965. struct ggml_tensor * dst) {
  11966. GGML_ASSERT(ggml_is_contiguous(dst));
  11967. GGML_ASSERT(ggml_is_contiguous(src0));
  11968. GGML_ASSERT(ggml_is_contiguous(src1));
  11969. GGML_ASSERT(ggml_is_contiguous(opt0));
  11970. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11971. const int64_t ith = params->ith;
  11972. const int64_t nth = params->nth;
  11973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11974. return;
  11975. }
  11976. const float eps = 1e-9f;
  11977. // TODO: handle transposed/permuted matrices
  11978. const int64_t nc = src0->ne[0];
  11979. const int64_t nr = ggml_nrows(src0);
  11980. // rows per thread
  11981. const int64_t dr = (nr + nth - 1)/nth;
  11982. // row range for this thread
  11983. const int64_t ir0 = dr*ith;
  11984. const int64_t ir1 = MIN(ir0 + dr, nr);
  11985. float * d = (float *) opt0->data;
  11986. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11987. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11988. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11989. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11990. float * sm = (float *) params->wdata + ith*nc;
  11991. #ifndef NDEBUG
  11992. for (int i = 0; i < nc; ++i) {
  11993. //printf("p[%d] = %f\n", i, p[i]);
  11994. assert(!isnan(s0[i]));
  11995. assert(!isnan(s1[i]));
  11996. }
  11997. #endif
  11998. // step by step explanation:
  11999. {
  12000. //float * sums = (float *) params->wdata;
  12001. // forward pass with annotated gradients from backward pass
  12002. // (built by going in reverse operation order, adding to gradients of current operation args)
  12003. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12004. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12005. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12006. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12007. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12008. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12009. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12010. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12011. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12012. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12013. // postorder:
  12014. // grad[st1] := softmax(s0)
  12015. // grad[st1] := grad[st1]*(1.0 - eps)
  12016. // grad[st1] := grad[st1] + eps
  12017. // grad[st1] := s1 / grad[st1]
  12018. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12019. // src0 gradients by going through softmax_back
  12020. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12021. // from softmax_back:
  12022. // dxk = yk * (dyk - dot(y, dy))
  12023. // dot_y_dy := dot(y, dy)
  12024. // dx := dy
  12025. // dx := dx - dot_y_dy
  12026. // dx := dx * y
  12027. // postorder:
  12028. // dot_st1_dst1 := dot(st1, grad[st1])
  12029. // grad[s0] := grad[st1]
  12030. // grad[s0] := grad[s0] - dot_st1_dst1
  12031. // grad[s0] := grad[s0] * st1
  12032. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12033. // sm := softmax(s0)
  12034. // grad[s0] := sm*(1.0 - eps)
  12035. // grad[s0] := grad[s0] + eps
  12036. // grad[s0] := s1 / grad[s0]
  12037. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12038. // dot_st1_dst1 := dot(sm, grad[s0])
  12039. // grad[s0] := grad[s0] - dot_st1_dst1
  12040. // grad[s0] := grad[s0] * sm
  12041. }
  12042. // soft_max
  12043. ggml_float sum = 0.0;
  12044. {
  12045. float max = -INFINITY;
  12046. ggml_vec_max_f32(nc, &max, s0);
  12047. uint16_t scvt;
  12048. for (int i = 0; i < nc; i++) {
  12049. if (s0[i] == -INFINITY) {
  12050. sm[i] = 0.0f;
  12051. } else {
  12052. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12053. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12054. memcpy(&scvt, &s, sizeof(scvt));
  12055. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12056. sum += (ggml_float)val;
  12057. sm[i] = val;
  12058. }
  12059. }
  12060. assert(sum > 0.0);
  12061. sum = 1.0/sum;
  12062. }
  12063. float dot_st1_dst1 = 0;
  12064. ggml_vec_scale_f32(nc, sm, sum);
  12065. ggml_vec_cpy_f32 (nc, ds0, sm);
  12066. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12067. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12068. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12069. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12070. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12071. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12072. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12073. #ifndef NDEBUG
  12074. for (int i = 0; i < nc; ++i) {
  12075. assert(!isnan(sm[i]));
  12076. assert(!isinf(sm[i]));
  12077. assert(!isnan(ds0[i]));
  12078. assert(!isinf(ds0[i]));
  12079. }
  12080. #endif
  12081. }
  12082. }
  12083. static void ggml_compute_forward_cross_entropy_loss_back(
  12084. const struct ggml_compute_params * params,
  12085. const struct ggml_tensor * src0,
  12086. const struct ggml_tensor * src1,
  12087. const struct ggml_tensor * opt0,
  12088. struct ggml_tensor * dst) {
  12089. switch (src0->type) {
  12090. case GGML_TYPE_F32:
  12091. {
  12092. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12093. } break;
  12094. default:
  12095. {
  12096. GGML_ASSERT(false);
  12097. } break;
  12098. }
  12099. }
  12100. /////////////////////////////////
  12101. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12102. GGML_ASSERT(params);
  12103. #ifdef GGML_USE_CUBLAS
  12104. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12105. if (skip_cpu) {
  12106. return;
  12107. }
  12108. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  12109. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  12110. #endif // GGML_USE_CUBLAS
  12111. switch (tensor->op) {
  12112. case GGML_OP_DUP:
  12113. {
  12114. ggml_compute_forward_dup(params, tensor->src0, tensor);
  12115. } break;
  12116. case GGML_OP_ADD:
  12117. {
  12118. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  12119. } break;
  12120. case GGML_OP_ADD1:
  12121. {
  12122. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  12123. } break;
  12124. case GGML_OP_ACC:
  12125. {
  12126. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12127. } break;
  12128. case GGML_OP_SUB:
  12129. {
  12130. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  12131. } break;
  12132. case GGML_OP_MUL:
  12133. {
  12134. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  12135. } break;
  12136. case GGML_OP_DIV:
  12137. {
  12138. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  12139. } break;
  12140. case GGML_OP_SQR:
  12141. {
  12142. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  12143. } break;
  12144. case GGML_OP_SQRT:
  12145. {
  12146. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  12147. } break;
  12148. case GGML_OP_LOG:
  12149. {
  12150. ggml_compute_forward_log(params, tensor->src0, tensor);
  12151. } break;
  12152. case GGML_OP_SUM:
  12153. {
  12154. ggml_compute_forward_sum(params, tensor->src0, tensor);
  12155. } break;
  12156. case GGML_OP_SUM_ROWS:
  12157. {
  12158. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  12159. } break;
  12160. case GGML_OP_MEAN:
  12161. {
  12162. ggml_compute_forward_mean(params, tensor->src0, tensor);
  12163. } break;
  12164. case GGML_OP_REPEAT:
  12165. {
  12166. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  12167. } break;
  12168. case GGML_OP_REPEAT_BACK:
  12169. {
  12170. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  12171. } break;
  12172. case GGML_OP_ABS:
  12173. {
  12174. ggml_compute_forward_abs(params, tensor->src0, tensor);
  12175. } break;
  12176. case GGML_OP_SGN:
  12177. {
  12178. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  12179. } break;
  12180. case GGML_OP_NEG:
  12181. {
  12182. ggml_compute_forward_neg(params, tensor->src0, tensor);
  12183. } break;
  12184. case GGML_OP_STEP:
  12185. {
  12186. ggml_compute_forward_step(params, tensor->src0, tensor);
  12187. } break;
  12188. case GGML_OP_RELU:
  12189. {
  12190. ggml_compute_forward_relu(params, tensor->src0, tensor);
  12191. } break;
  12192. case GGML_OP_GELU:
  12193. {
  12194. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  12195. } break;
  12196. case GGML_OP_GELU_QUICK:
  12197. {
  12198. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  12199. } break;
  12200. case GGML_OP_SILU:
  12201. {
  12202. ggml_compute_forward_silu(params, tensor->src0, tensor);
  12203. } break;
  12204. case GGML_OP_SILU_BACK:
  12205. {
  12206. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  12207. } break;
  12208. case GGML_OP_NORM:
  12209. {
  12210. ggml_compute_forward_norm(params, tensor->src0, tensor);
  12211. } break;
  12212. case GGML_OP_RMS_NORM:
  12213. {
  12214. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  12215. } break;
  12216. case GGML_OP_RMS_NORM_BACK:
  12217. {
  12218. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  12219. } break;
  12220. case GGML_OP_MUL_MAT:
  12221. {
  12222. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  12223. } break;
  12224. case GGML_OP_OUT_PROD:
  12225. {
  12226. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  12227. } break;
  12228. case GGML_OP_SCALE:
  12229. {
  12230. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  12231. } break;
  12232. case GGML_OP_SET:
  12233. {
  12234. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12235. } break;
  12236. case GGML_OP_CPY:
  12237. {
  12238. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  12239. } break;
  12240. case GGML_OP_CONT:
  12241. {
  12242. ggml_compute_forward_cont(params, tensor->src0, tensor);
  12243. } break;
  12244. case GGML_OP_RESHAPE:
  12245. {
  12246. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  12247. } break;
  12248. case GGML_OP_VIEW:
  12249. {
  12250. ggml_compute_forward_view(params, tensor->src0);
  12251. } break;
  12252. case GGML_OP_PERMUTE:
  12253. {
  12254. ggml_compute_forward_permute(params, tensor->src0);
  12255. } break;
  12256. case GGML_OP_TRANSPOSE:
  12257. {
  12258. ggml_compute_forward_transpose(params, tensor->src0);
  12259. } break;
  12260. case GGML_OP_GET_ROWS:
  12261. {
  12262. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  12263. } break;
  12264. case GGML_OP_GET_ROWS_BACK:
  12265. {
  12266. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12267. } break;
  12268. case GGML_OP_DIAG:
  12269. {
  12270. ggml_compute_forward_diag(params, tensor->src0, tensor);
  12271. } break;
  12272. case GGML_OP_DIAG_MASK_INF:
  12273. {
  12274. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12275. } break;
  12276. case GGML_OP_DIAG_MASK_ZERO:
  12277. {
  12278. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12279. } break;
  12280. case GGML_OP_SOFT_MAX:
  12281. {
  12282. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12283. } break;
  12284. case GGML_OP_SOFT_MAX_BACK:
  12285. {
  12286. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12287. } break;
  12288. case GGML_OP_ROPE:
  12289. {
  12290. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12291. } break;
  12292. case GGML_OP_ROPE_BACK:
  12293. {
  12294. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12295. } break;
  12296. case GGML_OP_ALIBI:
  12297. {
  12298. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12299. } break;
  12300. case GGML_OP_CLAMP:
  12301. {
  12302. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12303. } break;
  12304. case GGML_OP_CONV_1D_S1_PH:
  12305. {
  12306. ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor);
  12307. } break;
  12308. case GGML_OP_CONV_1D_S2_PH:
  12309. {
  12310. ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor);
  12311. } break;
  12312. case GGML_OP_CONV_2D_SK_P0:
  12313. {
  12314. ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor);
  12315. } break;
  12316. case GGML_OP_FLASH_ATTN:
  12317. {
  12318. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12319. GGML_ASSERT(t == 0 || t == 1);
  12320. const bool masked = t != 0;
  12321. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12322. } break;
  12323. case GGML_OP_FLASH_FF:
  12324. {
  12325. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12326. } break;
  12327. case GGML_OP_FLASH_ATTN_BACK:
  12328. {
  12329. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12330. GGML_ASSERT(t == 0 || t == 1);
  12331. bool masked = t != 0;
  12332. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12333. } break;
  12334. case GGML_OP_WIN_PART:
  12335. {
  12336. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12337. } break;
  12338. case GGML_OP_WIN_UNPART:
  12339. {
  12340. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12341. } break;
  12342. case GGML_OP_MAP_UNARY:
  12343. {
  12344. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12345. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12346. }
  12347. break;
  12348. case GGML_OP_MAP_BINARY:
  12349. {
  12350. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12351. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12352. }
  12353. break;
  12354. case GGML_OP_CROSS_ENTROPY_LOSS:
  12355. {
  12356. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12357. }
  12358. break;
  12359. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12360. {
  12361. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12362. }
  12363. break;
  12364. case GGML_OP_NONE:
  12365. {
  12366. // nop
  12367. } break;
  12368. case GGML_OP_COUNT:
  12369. {
  12370. GGML_ASSERT(false);
  12371. } break;
  12372. }
  12373. }
  12374. ////////////////////////////////////////////////////////////////////////////////
  12375. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12376. struct ggml_tensor * src0 = tensor->src0;
  12377. struct ggml_tensor * src1 = tensor->src1;
  12378. switch (tensor->op) {
  12379. case GGML_OP_DUP:
  12380. {
  12381. if (src0->grad) {
  12382. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12383. }
  12384. } break;
  12385. case GGML_OP_ADD:
  12386. {
  12387. if (src0->grad) {
  12388. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12389. }
  12390. if (src1->grad) {
  12391. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12392. }
  12393. } break;
  12394. case GGML_OP_ADD1:
  12395. {
  12396. if (src0->grad) {
  12397. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12398. }
  12399. if (src1->grad) {
  12400. src1->grad = ggml_add_impl(ctx,
  12401. src1->grad,
  12402. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12403. inplace);
  12404. }
  12405. } break;
  12406. case GGML_OP_ACC:
  12407. {
  12408. if (src0->grad) {
  12409. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12410. }
  12411. if (src1->grad) {
  12412. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12413. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12414. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12415. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12416. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12417. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12418. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12419. tensor->grad,
  12420. src1->grad->ne[0],
  12421. src1->grad->ne[1],
  12422. src1->grad->ne[2],
  12423. src1->grad->ne[3],
  12424. nb1, nb2, nb3, offset);
  12425. src1->grad =
  12426. ggml_add_impl(ctx,
  12427. src1->grad,
  12428. ggml_reshape(ctx,
  12429. ggml_cont(ctx, tensor_grad_view),
  12430. src1->grad),
  12431. inplace);
  12432. }
  12433. } break;
  12434. case GGML_OP_SUB:
  12435. {
  12436. if (src0->grad) {
  12437. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12438. }
  12439. if (src1->grad) {
  12440. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12441. }
  12442. } break;
  12443. case GGML_OP_MUL:
  12444. {
  12445. if (src0->grad) {
  12446. src0->grad =
  12447. ggml_add_impl(ctx,
  12448. src0->grad,
  12449. ggml_mul(ctx, src1, tensor->grad),
  12450. inplace);
  12451. }
  12452. if (src1->grad) {
  12453. src1->grad =
  12454. ggml_add_impl(ctx,
  12455. src1->grad,
  12456. ggml_mul(ctx, src0, tensor->grad),
  12457. inplace);
  12458. }
  12459. } break;
  12460. case GGML_OP_DIV:
  12461. {
  12462. if (src0->grad) {
  12463. src0->grad =
  12464. ggml_add_impl(ctx,
  12465. src0->grad,
  12466. ggml_div(ctx, tensor->grad, src1),
  12467. inplace);
  12468. }
  12469. if (src1->grad) {
  12470. src1->grad =
  12471. ggml_sub_impl(ctx,
  12472. src1->grad,
  12473. ggml_mul(ctx,
  12474. tensor->grad,
  12475. ggml_div(ctx, tensor, src1)),
  12476. inplace);
  12477. }
  12478. } break;
  12479. case GGML_OP_SQR:
  12480. {
  12481. if (src0->grad) {
  12482. src0->grad =
  12483. ggml_add_impl(ctx,
  12484. src0->grad,
  12485. ggml_scale(ctx,
  12486. ggml_mul(ctx, src0, tensor->grad),
  12487. ggml_new_f32(ctx, 2.0f)),
  12488. inplace);
  12489. }
  12490. } break;
  12491. case GGML_OP_SQRT:
  12492. {
  12493. if (src0->grad) {
  12494. src0->grad =
  12495. ggml_add_impl(ctx,
  12496. src0->grad,
  12497. ggml_scale(ctx,
  12498. ggml_div(ctx,
  12499. tensor->grad,
  12500. tensor),
  12501. ggml_new_f32(ctx, 0.5f)),
  12502. inplace);
  12503. }
  12504. } break;
  12505. case GGML_OP_LOG:
  12506. {
  12507. if (src0->grad) {
  12508. src0->grad =
  12509. ggml_add_impl(ctx,
  12510. src0->grad,
  12511. ggml_div(ctx,
  12512. tensor->grad,
  12513. src0),
  12514. inplace);
  12515. }
  12516. } break;
  12517. case GGML_OP_SUM:
  12518. {
  12519. if (src0->grad) {
  12520. src0->grad =
  12521. ggml_add1_impl(ctx,
  12522. src0->grad,
  12523. tensor->grad,
  12524. inplace);
  12525. }
  12526. } break;
  12527. case GGML_OP_SUM_ROWS:
  12528. {
  12529. if (src0->grad) {
  12530. src0->grad =
  12531. ggml_add_impl(ctx,
  12532. src0->grad,
  12533. ggml_repeat(ctx,
  12534. tensor->grad,
  12535. src0->grad),
  12536. inplace);
  12537. }
  12538. } break;
  12539. case GGML_OP_MEAN:
  12540. {
  12541. GGML_ASSERT(false); // TODO: implement
  12542. } break;
  12543. case GGML_OP_REPEAT:
  12544. {
  12545. // necessary for llama
  12546. if (src0->grad) {
  12547. src0->grad = ggml_add_impl(ctx,
  12548. src0->grad,
  12549. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12550. inplace);
  12551. }
  12552. } break;
  12553. case GGML_OP_REPEAT_BACK:
  12554. {
  12555. if (src0->grad) {
  12556. // TODO: test this
  12557. src0->grad = ggml_add_impl(ctx,
  12558. src0->grad,
  12559. ggml_repeat(ctx, tensor->grad, src0->grad),
  12560. inplace);
  12561. }
  12562. } break;
  12563. case GGML_OP_ABS:
  12564. {
  12565. if (src0->grad) {
  12566. src0->grad =
  12567. ggml_add_impl(ctx,
  12568. src0->grad,
  12569. ggml_mul(ctx,
  12570. ggml_sgn(ctx, src0),
  12571. tensor->grad),
  12572. inplace);
  12573. }
  12574. } break;
  12575. case GGML_OP_SGN:
  12576. {
  12577. if (src0->grad) {
  12578. // noop
  12579. }
  12580. } break;
  12581. case GGML_OP_NEG:
  12582. {
  12583. if (src0->grad) {
  12584. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12585. }
  12586. } break;
  12587. case GGML_OP_STEP:
  12588. {
  12589. if (src0->grad) {
  12590. // noop
  12591. }
  12592. } break;
  12593. case GGML_OP_RELU:
  12594. {
  12595. if (src0->grad) {
  12596. src0->grad = ggml_sub_impl(ctx,
  12597. src0->grad,
  12598. ggml_mul(ctx,
  12599. ggml_step(ctx, src0),
  12600. tensor->grad),
  12601. inplace);
  12602. }
  12603. } break;
  12604. case GGML_OP_GELU:
  12605. {
  12606. GGML_ASSERT(false); // TODO: not implemented
  12607. } break;
  12608. case GGML_OP_GELU_QUICK:
  12609. {
  12610. GGML_ASSERT(false); // TODO: not implemented
  12611. } break;
  12612. case GGML_OP_ALIBI:
  12613. {
  12614. GGML_ASSERT(false); // TODO: not implemented
  12615. } break;
  12616. case GGML_OP_CLAMP:
  12617. {
  12618. GGML_ASSERT(false); // TODO: not implemented
  12619. } break;
  12620. case GGML_OP_SILU:
  12621. {
  12622. // necessary for llama
  12623. if (src0->grad) {
  12624. src0->grad = ggml_add_impl(ctx,
  12625. src0->grad,
  12626. ggml_silu_back(ctx, src0, tensor->grad),
  12627. inplace);
  12628. }
  12629. } break;
  12630. case GGML_OP_SILU_BACK:
  12631. {
  12632. GGML_ASSERT(false); // TODO: not implemented
  12633. } break;
  12634. case GGML_OP_NORM:
  12635. {
  12636. GGML_ASSERT(false); // TODO: not implemented
  12637. } break;
  12638. case GGML_OP_RMS_NORM:
  12639. {
  12640. // necessary for llama
  12641. if (src0->grad) {
  12642. src0->grad = ggml_add_impl(ctx,
  12643. src0->grad,
  12644. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12645. inplace);
  12646. }
  12647. } break;
  12648. case GGML_OP_RMS_NORM_BACK:
  12649. {
  12650. GGML_ASSERT(false); // TODO: not implemented
  12651. } break;
  12652. case GGML_OP_MUL_MAT:
  12653. {
  12654. // https://cs231n.github.io/optimization-2/#staged
  12655. // # forward pass
  12656. // s0 = np.random.randn(5, 10)
  12657. // s1 = np.random.randn(10, 3)
  12658. // t = s0.dot(s1)
  12659. // # now suppose we had the gradient on t from above in the circuit
  12660. // dt = np.random.randn(*t.shape) # same shape as t
  12661. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12662. // ds1 = t.T.dot(dt)
  12663. // tensor.shape [m,p]
  12664. // src0.shape [n,m]
  12665. // src1.shape [n,p]
  12666. // necessary for llama
  12667. if (src0->grad) {
  12668. src0->grad =
  12669. ggml_add_impl(ctx,
  12670. src0->grad,
  12671. ggml_out_prod(ctx, // [n,m]
  12672. src1, // [n,p]
  12673. tensor->grad), // [m,p]
  12674. inplace);
  12675. }
  12676. if (src1->grad) {
  12677. src1->grad =
  12678. ggml_add_impl(ctx,
  12679. src1->grad,
  12680. // ggml_mul_mat(ctx, // [n,p]
  12681. // ggml_cont(ctx, // [m,n]
  12682. // ggml_transpose(ctx, src0)), // [m,n]
  12683. // tensor->grad), // [m,p]
  12684. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12685. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12686. // // and then use ggml_out_prod
  12687. ggml_out_prod(ctx, // [n,p]
  12688. src0, // [n,m]
  12689. ggml_transpose(ctx, // [p,m]
  12690. tensor->grad)), // [m,p]
  12691. inplace);
  12692. }
  12693. } break;
  12694. case GGML_OP_OUT_PROD:
  12695. {
  12696. GGML_ASSERT(false); // TODO: not implemented
  12697. } break;
  12698. case GGML_OP_SCALE:
  12699. {
  12700. // necessary for llama
  12701. if (src0->grad) {
  12702. src0->grad =
  12703. ggml_add_impl(ctx,
  12704. src0->grad,
  12705. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12706. inplace);
  12707. }
  12708. if (src1->grad) {
  12709. src1->grad =
  12710. ggml_add_impl(ctx,
  12711. src1->grad,
  12712. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12713. inplace);
  12714. }
  12715. } break;
  12716. case GGML_OP_SET:
  12717. {
  12718. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12719. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12720. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12721. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12722. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12723. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12724. struct ggml_tensor * tensor_grad_view = NULL;
  12725. if (src0->grad || src1->grad) {
  12726. GGML_ASSERT(src0->type == tensor->type);
  12727. GGML_ASSERT(tensor->grad->type == tensor->type);
  12728. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12729. tensor_grad_view = ggml_view_4d(ctx,
  12730. tensor->grad,
  12731. src1->grad->ne[0],
  12732. src1->grad->ne[1],
  12733. src1->grad->ne[2],
  12734. src1->grad->ne[3],
  12735. nb1, nb2, nb3, offset);
  12736. }
  12737. if (src0->grad) {
  12738. src0->grad = ggml_add_impl(ctx,
  12739. src0->grad,
  12740. ggml_acc_impl(ctx,
  12741. tensor->grad,
  12742. ggml_neg(ctx, tensor_grad_view),
  12743. nb1, nb2, nb3, offset, false),
  12744. inplace);
  12745. }
  12746. if (src1->grad) {
  12747. src1->grad =
  12748. ggml_add_impl(ctx,
  12749. src1->grad,
  12750. ggml_reshape(ctx,
  12751. ggml_cont(ctx, tensor_grad_view),
  12752. src1->grad),
  12753. inplace);
  12754. }
  12755. } break;
  12756. case GGML_OP_CPY:
  12757. {
  12758. // necessary for llama
  12759. // cpy overwrites value of src1 by src0 and returns view(src1)
  12760. // the overwriting is mathematically equivalent to:
  12761. // tensor = src0 * 1 + src1 * 0
  12762. if (src0->grad) {
  12763. // dsrc0 = dtensor * 1
  12764. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12765. }
  12766. if (src1->grad) {
  12767. // dsrc1 = dtensor * 0 -> noop
  12768. }
  12769. } break;
  12770. case GGML_OP_CONT:
  12771. {
  12772. // same as cpy
  12773. if (src0->grad) {
  12774. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12775. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12776. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12777. }
  12778. } break;
  12779. case GGML_OP_RESHAPE:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. src0->grad =
  12784. ggml_add_impl(ctx, src0->grad,
  12785. ggml_reshape(ctx, tensor->grad, src0->grad),
  12786. inplace);
  12787. }
  12788. } break;
  12789. case GGML_OP_VIEW:
  12790. {
  12791. // necessary for llama
  12792. if (src0->grad) {
  12793. size_t offset;
  12794. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12795. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12796. size_t nb1 = tensor->nb[1];
  12797. size_t nb2 = tensor->nb[2];
  12798. size_t nb3 = tensor->nb[3];
  12799. if (src0->type != src0->grad->type) {
  12800. // gradient is typically F32, but src0 could be other type
  12801. size_t ng = ggml_element_size(src0->grad);
  12802. size_t n0 = ggml_element_size(src0);
  12803. GGML_ASSERT(offset % n0 == 0);
  12804. GGML_ASSERT(nb1 % n0 == 0);
  12805. GGML_ASSERT(nb2 % n0 == 0);
  12806. GGML_ASSERT(nb3 % n0 == 0);
  12807. offset = (offset / n0) * ng;
  12808. nb1 = (nb1 / n0) * ng;
  12809. nb2 = (nb2 / n0) * ng;
  12810. nb3 = (nb3 / n0) * ng;
  12811. }
  12812. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12813. }
  12814. } break;
  12815. case GGML_OP_PERMUTE:
  12816. {
  12817. // necessary for llama
  12818. if (src0->grad) {
  12819. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12820. int axis0 = axes[0] & 0x3;
  12821. int axis1 = axes[1] & 0x3;
  12822. int axis2 = axes[2] & 0x3;
  12823. int axis3 = axes[3] & 0x3;
  12824. int axes_backward[4] = {0,0,0,0};
  12825. axes_backward[axis0] = 0;
  12826. axes_backward[axis1] = 1;
  12827. axes_backward[axis2] = 2;
  12828. axes_backward[axis3] = 3;
  12829. src0->grad =
  12830. ggml_add_impl(ctx, src0->grad,
  12831. ggml_permute(ctx,
  12832. tensor->grad,
  12833. axes_backward[0],
  12834. axes_backward[1],
  12835. axes_backward[2],
  12836. axes_backward[3]),
  12837. inplace);
  12838. }
  12839. } break;
  12840. case GGML_OP_TRANSPOSE:
  12841. {
  12842. // necessary for llama
  12843. if (src0->grad) {
  12844. src0->grad =
  12845. ggml_add_impl(ctx, src0->grad,
  12846. ggml_transpose(ctx, tensor->grad),
  12847. inplace);
  12848. }
  12849. } break;
  12850. case GGML_OP_GET_ROWS:
  12851. {
  12852. // necessary for llama (only for tokenizer)
  12853. if (src0->grad) {
  12854. src0->grad =
  12855. ggml_add_impl(ctx, src0->grad,
  12856. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12857. inplace);
  12858. }
  12859. if (src1->grad) {
  12860. // noop
  12861. }
  12862. } break;
  12863. case GGML_OP_GET_ROWS_BACK:
  12864. {
  12865. GGML_ASSERT(false); // TODO: not implemented
  12866. } break;
  12867. case GGML_OP_DIAG:
  12868. {
  12869. GGML_ASSERT(false); // TODO: not implemented
  12870. } break;
  12871. case GGML_OP_DIAG_MASK_INF:
  12872. {
  12873. // necessary for llama
  12874. if (src0->grad) {
  12875. assert(src1->type == GGML_TYPE_I32);
  12876. assert(ggml_nelements(src1) == 2);
  12877. const int n_past = ((int32_t *) src1->data)[0];
  12878. src0->grad =
  12879. ggml_add_impl(ctx, src0->grad,
  12880. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12881. inplace);
  12882. }
  12883. if (src1->grad) {
  12884. // noop
  12885. }
  12886. } break;
  12887. case GGML_OP_DIAG_MASK_ZERO:
  12888. {
  12889. // necessary for llama
  12890. if (src0->grad) {
  12891. assert(src1->type == GGML_TYPE_I32);
  12892. assert(ggml_nelements(src1) == 2);
  12893. const int n_past = ((int32_t *) src1->data)[0];
  12894. src0->grad =
  12895. ggml_add_impl(ctx, src0->grad,
  12896. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12897. inplace);
  12898. }
  12899. if (src1->grad) {
  12900. // noop
  12901. }
  12902. } break;
  12903. case GGML_OP_SOFT_MAX:
  12904. {
  12905. // necessary for llama
  12906. if (src0->grad) {
  12907. src0->grad =
  12908. ggml_add_impl(ctx, src0->grad,
  12909. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12910. inplace);
  12911. }
  12912. } break;
  12913. case GGML_OP_SOFT_MAX_BACK:
  12914. {
  12915. GGML_ASSERT(false); // TODO: not implemented
  12916. } break;
  12917. case GGML_OP_ROPE:
  12918. {
  12919. // necessary for llama
  12920. if (src0->grad) {
  12921. assert(src1->type == GGML_TYPE_I32);
  12922. assert(ggml_nelements(src1) == 3);
  12923. const int n_past = ((int32_t *) src1->data)[0];
  12924. const int n_dims = ((int32_t *) src1->data)[1];
  12925. const int mode = ((int32_t *) src1->data)[2];
  12926. src0->grad = ggml_add_impl(ctx,
  12927. src0->grad,
  12928. ggml_rope_back(ctx,
  12929. tensor->grad,
  12930. n_past,
  12931. n_dims,
  12932. mode),
  12933. inplace);
  12934. }
  12935. if (src1->grad) {
  12936. // noop
  12937. }
  12938. } break;
  12939. case GGML_OP_ROPE_BACK:
  12940. {
  12941. if (src0->grad) {
  12942. assert(src1->type == GGML_TYPE_I32);
  12943. assert(ggml_nelements(src1) == 3);
  12944. const int n_past = ((int32_t *) src1->data)[0];
  12945. const int n_dims = ((int32_t *) src1->data)[1];
  12946. const int mode = ((int32_t *) src1->data)[2];
  12947. src0->grad = ggml_add_impl(ctx,
  12948. src0->grad,
  12949. ggml_rope(ctx,
  12950. tensor->grad,
  12951. n_past,
  12952. n_dims,
  12953. mode),
  12954. inplace);
  12955. }
  12956. if (src1->grad) {
  12957. // noop
  12958. }
  12959. } break;
  12960. case GGML_OP_CONV_1D_S1_PH:
  12961. {
  12962. GGML_ASSERT(false); // TODO: not implemented
  12963. } break;
  12964. case GGML_OP_CONV_1D_S2_PH:
  12965. {
  12966. GGML_ASSERT(false); // TODO: not implemented
  12967. } break;
  12968. case GGML_OP_CONV_2D_SK_P0:
  12969. {
  12970. GGML_ASSERT(false); // TODO: not implemented
  12971. } break;
  12972. case GGML_OP_FLASH_ATTN:
  12973. {
  12974. struct ggml_tensor * flash_grad = NULL;
  12975. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12976. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12977. GGML_ASSERT(t == 0 || t == 1);
  12978. bool masked = t != 0;
  12979. flash_grad =
  12980. ggml_flash_attn_back(ctx,
  12981. src0,
  12982. src1,
  12983. tensor->opt[0],
  12984. tensor->grad,
  12985. masked);
  12986. }
  12987. if (src0->grad) {
  12988. struct ggml_tensor * grad_q = NULL;
  12989. const size_t nb0 = flash_grad->nb[0];
  12990. const size_t offset = 0;
  12991. switch(src0->n_dims) {
  12992. case 2:
  12993. {
  12994. grad_q = ggml_view_2d(ctx,
  12995. flash_grad,
  12996. src0->ne[0],
  12997. src0->ne[1],
  12998. nb0*src0->ne[0],
  12999. offset);
  13000. } break;
  13001. case 3:
  13002. {
  13003. grad_q = ggml_view_3d(ctx,
  13004. flash_grad,
  13005. src0->ne[0],
  13006. src0->ne[1],
  13007. src0->ne[2],
  13008. nb0*src0->ne[0],
  13009. nb0*src0->ne[0]*src0->ne[1],
  13010. offset);
  13011. } break;
  13012. case 4:
  13013. {
  13014. grad_q = ggml_view_4d(ctx,
  13015. flash_grad,
  13016. src0->ne[0],
  13017. src0->ne[1],
  13018. src0->ne[2],
  13019. src0->ne[3],
  13020. nb0*src0->ne[0],
  13021. nb0*src0->ne[0]*src0->ne[1],
  13022. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13023. offset);
  13024. } break;
  13025. }
  13026. src0->grad = ggml_add_impl(ctx,
  13027. src0->grad,
  13028. grad_q,
  13029. inplace);
  13030. }
  13031. if (src1->grad) {
  13032. struct ggml_tensor * grad_k = NULL;
  13033. const size_t nb0 = flash_grad->nb[0];
  13034. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13035. switch(src1->n_dims) {
  13036. case 2:
  13037. {
  13038. grad_k = ggml_view_2d(ctx,
  13039. flash_grad,
  13040. src1->ne[0],
  13041. src1->ne[1],
  13042. nb0*src1->ne[0],
  13043. offset);
  13044. } break;
  13045. case 3:
  13046. {
  13047. grad_k = ggml_view_3d(ctx,
  13048. flash_grad,
  13049. src1->ne[0],
  13050. src1->ne[1],
  13051. src1->ne[2],
  13052. nb0*src1->ne[0],
  13053. nb0*src1->ne[0]*src1->ne[1],
  13054. offset);
  13055. } break;
  13056. case 4:
  13057. {
  13058. grad_k = ggml_view_4d(ctx,
  13059. flash_grad,
  13060. src1->ne[0],
  13061. src1->ne[1],
  13062. src1->ne[2],
  13063. src1->ne[3],
  13064. nb0*src1->ne[0],
  13065. nb0*src1->ne[0]*src1->ne[1],
  13066. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13067. offset);
  13068. } break;
  13069. }
  13070. src1->grad = ggml_add_impl(ctx,
  13071. src1->grad,
  13072. grad_k,
  13073. inplace);
  13074. }
  13075. struct ggml_tensor * opt0 = tensor->opt[0];
  13076. if (opt0->grad) {
  13077. struct ggml_tensor * grad_v = NULL;
  13078. const size_t nb0 = flash_grad->nb[0];
  13079. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13080. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13081. switch(opt0->n_dims) {
  13082. case 2:
  13083. {
  13084. grad_v = ggml_view_2d(ctx,
  13085. flash_grad,
  13086. opt0->ne[0],
  13087. opt0->ne[1],
  13088. nb0*opt0->ne[0],
  13089. offset);
  13090. } break;
  13091. case 3:
  13092. {
  13093. grad_v = ggml_view_3d(ctx,
  13094. flash_grad,
  13095. opt0->ne[0],
  13096. opt0->ne[1],
  13097. opt0->ne[2],
  13098. nb0*opt0->ne[0],
  13099. nb0*opt0->ne[0]*opt0->ne[1],
  13100. offset);
  13101. } break;
  13102. case 4:
  13103. {
  13104. grad_v = ggml_view_4d(ctx,
  13105. flash_grad,
  13106. opt0->ne[0],
  13107. opt0->ne[1],
  13108. opt0->ne[2],
  13109. opt0->ne[3],
  13110. nb0*opt0->ne[0],
  13111. nb0*opt0->ne[0]*opt0->ne[1],
  13112. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13113. offset);
  13114. } break;
  13115. }
  13116. opt0->grad = ggml_add_impl(ctx,
  13117. opt0->grad,
  13118. grad_v,
  13119. inplace);
  13120. }
  13121. } break;
  13122. case GGML_OP_FLASH_FF:
  13123. {
  13124. GGML_ASSERT(false); // not supported
  13125. } break;
  13126. case GGML_OP_FLASH_ATTN_BACK:
  13127. {
  13128. GGML_ASSERT(false); // not supported
  13129. } break;
  13130. case GGML_OP_WIN_PART:
  13131. case GGML_OP_WIN_UNPART:
  13132. case GGML_OP_MAP_UNARY:
  13133. case GGML_OP_MAP_BINARY:
  13134. {
  13135. GGML_ASSERT(false); // not supported
  13136. } break;
  13137. case GGML_OP_CROSS_ENTROPY_LOSS:
  13138. {
  13139. if (src0->grad) {
  13140. src0->grad = ggml_add_impl(ctx,
  13141. src0->grad,
  13142. ggml_cross_entropy_loss_back(ctx,
  13143. src0,
  13144. src1,
  13145. tensor->grad),
  13146. inplace);
  13147. }
  13148. } break;
  13149. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13150. {
  13151. GGML_ASSERT(false); // not supported
  13152. } break;
  13153. case GGML_OP_NONE:
  13154. {
  13155. // nop
  13156. } break;
  13157. case GGML_OP_COUNT:
  13158. {
  13159. GGML_ASSERT(false);
  13160. } break;
  13161. }
  13162. }
  13163. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13164. if (node->grad == NULL) {
  13165. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13166. // it can also happen during forward pass, if the user performs computations with constants
  13167. if (node->op != GGML_OP_NONE) {
  13168. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13169. }
  13170. }
  13171. // check if already visited
  13172. for (int i = 0; i < cgraph->n_nodes; i++) {
  13173. if (cgraph->nodes[i] == node) {
  13174. return;
  13175. }
  13176. }
  13177. for (int i = 0; i < cgraph->n_leafs; i++) {
  13178. if (cgraph->leafs[i] == node) {
  13179. return;
  13180. }
  13181. }
  13182. if (node->src0) {
  13183. ggml_visit_parents(cgraph, node->src0);
  13184. }
  13185. if (node->src1) {
  13186. ggml_visit_parents(cgraph, node->src1);
  13187. }
  13188. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  13189. if (node->opt[i]) {
  13190. ggml_visit_parents(cgraph, node->opt[i]);
  13191. }
  13192. }
  13193. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13194. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13195. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13196. if (strlen(node->name) == 0) {
  13197. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13198. }
  13199. cgraph->leafs[cgraph->n_leafs] = node;
  13200. cgraph->n_leafs++;
  13201. } else {
  13202. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13203. if (strlen(node->name) == 0) {
  13204. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13205. }
  13206. cgraph->nodes[cgraph->n_nodes] = node;
  13207. cgraph->grads[cgraph->n_nodes] = node->grad;
  13208. cgraph->n_nodes++;
  13209. }
  13210. }
  13211. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13212. if (!expand) {
  13213. cgraph->n_nodes = 0;
  13214. cgraph->n_leafs = 0;
  13215. }
  13216. const int n0 = cgraph->n_nodes;
  13217. UNUSED(n0);
  13218. ggml_visit_parents(cgraph, tensor);
  13219. const int n_new = cgraph->n_nodes - n0;
  13220. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13221. if (n_new > 0) {
  13222. // the last added node should always be starting point
  13223. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13224. }
  13225. }
  13226. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13227. ggml_build_forward_impl(cgraph, tensor, true);
  13228. }
  13229. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13230. struct ggml_cgraph result = {
  13231. /*.n_nodes =*/ 0,
  13232. /*.n_leafs =*/ 0,
  13233. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  13234. /*.work_size =*/ 0,
  13235. /*.work =*/ NULL,
  13236. /*.nodes =*/ { NULL },
  13237. /*.grads =*/ { NULL },
  13238. /*.leafs =*/ { NULL },
  13239. /*.perf_runs =*/ 0,
  13240. /*.perf_cycles =*/ 0,
  13241. /*.perf_time_us =*/ 0,
  13242. };
  13243. ggml_build_forward_impl(&result, tensor, false);
  13244. return result;
  13245. }
  13246. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13247. struct ggml_cgraph result = *gf;
  13248. GGML_ASSERT(gf->n_nodes > 0);
  13249. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13250. if (keep) {
  13251. for (int i = 0; i < gf->n_nodes; i++) {
  13252. struct ggml_tensor * node = gf->nodes[i];
  13253. if (node->grad) {
  13254. node->grad = ggml_dup_tensor(ctx, node);
  13255. gf->grads[i] = node->grad;
  13256. }
  13257. }
  13258. }
  13259. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13260. struct ggml_tensor * node = gf->nodes[i];
  13261. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13262. if (node->grad) {
  13263. ggml_compute_backward(ctx, node, keep);
  13264. }
  13265. }
  13266. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13267. struct ggml_tensor * node = gf->nodes[i];
  13268. if (node->is_param) {
  13269. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13270. ggml_build_forward_impl(&result, node->grad, true);
  13271. }
  13272. }
  13273. return result;
  13274. }
  13275. //
  13276. // thread data
  13277. //
  13278. // synchronization is done via busy loops
  13279. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13280. //
  13281. #ifdef __APPLE__
  13282. //#include <os/lock.h>
  13283. //
  13284. //typedef os_unfair_lock ggml_lock_t;
  13285. //
  13286. //#define ggml_lock_init(x) UNUSED(x)
  13287. //#define ggml_lock_destroy(x) UNUSED(x)
  13288. //#define ggml_lock_lock os_unfair_lock_lock
  13289. //#define ggml_lock_unlock os_unfair_lock_unlock
  13290. //
  13291. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13292. typedef int ggml_lock_t;
  13293. #define ggml_lock_init(x) UNUSED(x)
  13294. #define ggml_lock_destroy(x) UNUSED(x)
  13295. #define ggml_lock_lock(x) UNUSED(x)
  13296. #define ggml_lock_unlock(x) UNUSED(x)
  13297. #define GGML_LOCK_INITIALIZER 0
  13298. typedef pthread_t ggml_thread_t;
  13299. #define ggml_thread_create pthread_create
  13300. #define ggml_thread_join pthread_join
  13301. #else
  13302. //typedef pthread_spinlock_t ggml_lock_t;
  13303. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13304. //#define ggml_lock_destroy pthread_spin_destroy
  13305. //#define ggml_lock_lock pthread_spin_lock
  13306. //#define ggml_lock_unlock pthread_spin_unlock
  13307. typedef int ggml_lock_t;
  13308. #define ggml_lock_init(x) UNUSED(x)
  13309. #define ggml_lock_destroy(x) UNUSED(x)
  13310. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13311. #define ggml_lock_lock(x) _mm_pause()
  13312. #else
  13313. #define ggml_lock_lock(x) UNUSED(x)
  13314. #endif
  13315. #define ggml_lock_unlock(x) UNUSED(x)
  13316. #define GGML_LOCK_INITIALIZER 0
  13317. typedef pthread_t ggml_thread_t;
  13318. #define ggml_thread_create pthread_create
  13319. #define ggml_thread_join pthread_join
  13320. #endif
  13321. struct ggml_compute_state_shared {
  13322. ggml_lock_t spin;
  13323. int n_threads;
  13324. // synchronization primitives
  13325. atomic_int n_ready;
  13326. atomic_bool has_work;
  13327. atomic_bool stop; // stop all threads
  13328. };
  13329. struct ggml_compute_state {
  13330. ggml_thread_t thrd;
  13331. struct ggml_compute_params params;
  13332. struct ggml_tensor * node;
  13333. struct ggml_compute_state_shared * shared;
  13334. };
  13335. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13336. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13337. const int n_threads = state->shared->n_threads;
  13338. while (true) {
  13339. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  13340. atomic_store(&state->shared->has_work, false);
  13341. } else {
  13342. while (atomic_load(&state->shared->has_work)) {
  13343. if (atomic_load(&state->shared->stop)) {
  13344. return 0;
  13345. }
  13346. ggml_lock_lock (&state->shared->spin);
  13347. ggml_lock_unlock(&state->shared->spin);
  13348. }
  13349. }
  13350. atomic_fetch_sub(&state->shared->n_ready, 1);
  13351. // wait for work
  13352. while (!atomic_load(&state->shared->has_work)) {
  13353. if (atomic_load(&state->shared->stop)) {
  13354. return 0;
  13355. }
  13356. ggml_lock_lock (&state->shared->spin);
  13357. ggml_lock_unlock(&state->shared->spin);
  13358. }
  13359. // check if we should stop
  13360. if (atomic_load(&state->shared->stop)) {
  13361. break;
  13362. }
  13363. if (state->node) {
  13364. if (state->params.ith < state->params.nth) {
  13365. ggml_compute_forward(&state->params, state->node);
  13366. }
  13367. state->node = NULL;
  13368. } else {
  13369. break;
  13370. }
  13371. }
  13372. return 0;
  13373. }
  13374. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13375. const int n_threads = cgraph->n_threads;
  13376. struct ggml_compute_state_shared state_shared = {
  13377. /*.spin =*/ GGML_LOCK_INITIALIZER,
  13378. /*.n_threads =*/ n_threads,
  13379. /*.n_ready =*/ 0,
  13380. /*.has_work =*/ false,
  13381. /*.stop =*/ false,
  13382. };
  13383. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  13384. // create thread pool
  13385. if (n_threads > 1) {
  13386. ggml_lock_init(&state_shared.spin);
  13387. atomic_store(&state_shared.has_work, true);
  13388. for (int j = 0; j < n_threads - 1; j++) {
  13389. workers[j] = (struct ggml_compute_state) {
  13390. .thrd = 0,
  13391. .params = {
  13392. .type = GGML_TASK_COMPUTE,
  13393. .ith = j + 1,
  13394. .nth = n_threads,
  13395. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13396. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13397. },
  13398. .node = NULL,
  13399. .shared = &state_shared,
  13400. };
  13401. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13402. GGML_ASSERT(rc == 0);
  13403. UNUSED(rc);
  13404. }
  13405. }
  13406. // initialize tasks + work buffer
  13407. {
  13408. size_t work_size = 0;
  13409. // thread scheduling for the different operations
  13410. for (int i = 0; i < cgraph->n_nodes; i++) {
  13411. struct ggml_tensor * node = cgraph->nodes[i];
  13412. switch (node->op) {
  13413. case GGML_OP_CPY:
  13414. case GGML_OP_DUP:
  13415. {
  13416. node->n_tasks = n_threads;
  13417. size_t cur = 0;
  13418. if (ggml_is_quantized(node->type)) {
  13419. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13420. }
  13421. work_size = MAX(work_size, cur);
  13422. } break;
  13423. case GGML_OP_ADD:
  13424. case GGML_OP_ADD1:
  13425. {
  13426. node->n_tasks = n_threads;
  13427. size_t cur = 0;
  13428. if (ggml_is_quantized(node->src0->type)) {
  13429. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13430. }
  13431. work_size = MAX(work_size, cur);
  13432. } break;
  13433. case GGML_OP_ACC:
  13434. {
  13435. node->n_tasks = n_threads;
  13436. size_t cur = 0;
  13437. if (ggml_is_quantized(node->src0->type)) {
  13438. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13439. }
  13440. work_size = MAX(work_size, cur);
  13441. } break;
  13442. case GGML_OP_SUB:
  13443. case GGML_OP_DIV:
  13444. case GGML_OP_SQR:
  13445. case GGML_OP_SQRT:
  13446. case GGML_OP_LOG:
  13447. case GGML_OP_SUM:
  13448. case GGML_OP_SUM_ROWS:
  13449. case GGML_OP_MEAN:
  13450. case GGML_OP_REPEAT:
  13451. case GGML_OP_REPEAT_BACK:
  13452. case GGML_OP_ABS:
  13453. case GGML_OP_SGN:
  13454. case GGML_OP_NEG:
  13455. case GGML_OP_STEP:
  13456. case GGML_OP_RELU:
  13457. {
  13458. node->n_tasks = 1;
  13459. } break;
  13460. case GGML_OP_MUL:
  13461. case GGML_OP_GELU:
  13462. case GGML_OP_GELU_QUICK:
  13463. case GGML_OP_SILU:
  13464. case GGML_OP_SILU_BACK:
  13465. case GGML_OP_NORM:
  13466. case GGML_OP_RMS_NORM:
  13467. case GGML_OP_RMS_NORM_BACK:
  13468. {
  13469. node->n_tasks = n_threads;
  13470. } break;
  13471. case GGML_OP_MUL_MAT:
  13472. case GGML_OP_OUT_PROD:
  13473. {
  13474. node->n_tasks = n_threads;
  13475. // TODO: use different scheduling for different matrix sizes
  13476. //const int nr0 = ggml_nrows(node->src0);
  13477. //const int nr1 = ggml_nrows(node->src1);
  13478. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13479. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13480. size_t cur = 0;
  13481. #if defined(GGML_USE_CUBLAS)
  13482. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13483. node->n_tasks = 1; // TODO: this actually is doing nothing
  13484. // the threads are still spinning
  13485. }
  13486. else
  13487. #elif defined(GGML_USE_CLBLAST)
  13488. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13489. node->n_tasks = 1; // TODO: this actually is doing nothing
  13490. // the threads are still spinning
  13491. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13492. }
  13493. else
  13494. #endif
  13495. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  13496. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13497. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13498. node->n_tasks = 1; // TODO: this actually is doing nothing
  13499. // the threads are still spinning
  13500. // here we need memory just for single 2D matrix from src0
  13501. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13502. } else {
  13503. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13504. }
  13505. #else
  13506. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13507. #endif
  13508. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  13509. cur = 0;
  13510. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13511. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13512. node->n_tasks = 1;
  13513. }
  13514. #endif
  13515. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13516. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13517. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13518. node->n_tasks = 1;
  13519. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13520. } else
  13521. #endif
  13522. {
  13523. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13524. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13525. }
  13526. } else {
  13527. GGML_ASSERT(false);
  13528. }
  13529. work_size = MAX(work_size, cur);
  13530. } break;
  13531. case GGML_OP_SCALE:
  13532. {
  13533. node->n_tasks = n_threads;
  13534. } break;
  13535. case GGML_OP_SET:
  13536. case GGML_OP_CONT:
  13537. case GGML_OP_RESHAPE:
  13538. case GGML_OP_VIEW:
  13539. case GGML_OP_PERMUTE:
  13540. case GGML_OP_TRANSPOSE:
  13541. case GGML_OP_GET_ROWS:
  13542. case GGML_OP_GET_ROWS_BACK:
  13543. case GGML_OP_DIAG:
  13544. case GGML_OP_DIAG_MASK_ZERO:
  13545. {
  13546. node->n_tasks = 1;
  13547. } break;
  13548. case GGML_OP_DIAG_MASK_INF:
  13549. case GGML_OP_SOFT_MAX:
  13550. case GGML_OP_SOFT_MAX_BACK:
  13551. case GGML_OP_ROPE:
  13552. case GGML_OP_ROPE_BACK:
  13553. {
  13554. node->n_tasks = n_threads;
  13555. } break;
  13556. case GGML_OP_ALIBI:
  13557. {
  13558. node->n_tasks = 1; //TODO
  13559. } break;
  13560. case GGML_OP_CLAMP:
  13561. {
  13562. node->n_tasks = 1; //TODO
  13563. } break;
  13564. case GGML_OP_CONV_1D_S1_PH:
  13565. case GGML_OP_CONV_1D_S2_PH:
  13566. {
  13567. node->n_tasks = n_threads;
  13568. GGML_ASSERT(node->src0->ne[3] == 1);
  13569. GGML_ASSERT(node->src1->ne[2] == 1);
  13570. GGML_ASSERT(node->src1->ne[3] == 1);
  13571. size_t cur = 0;
  13572. const int nk = node->src0->ne[0];
  13573. if (node->src0->type == GGML_TYPE_F16 &&
  13574. node->src1->type == GGML_TYPE_F32) {
  13575. cur = sizeof(ggml_fp16_t)*(
  13576. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13577. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13578. );
  13579. } else if (node->src0->type == GGML_TYPE_F32 &&
  13580. node->src1->type == GGML_TYPE_F32) {
  13581. cur = sizeof(float)*(
  13582. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13583. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13584. );
  13585. } else {
  13586. GGML_ASSERT(false);
  13587. }
  13588. work_size = MAX(work_size, cur);
  13589. } break;
  13590. case GGML_OP_CONV_2D_SK_P0:
  13591. {
  13592. node->n_tasks = n_threads;
  13593. GGML_ASSERT(node->src1->ne[3] == 1);
  13594. const int64_t ne00 = node->src0->ne[0]; // W
  13595. const int64_t ne01 = node->src0->ne[1]; // H
  13596. const int64_t ne02 = node->src0->ne[2]; // C
  13597. const int64_t ne03 = node->src0->ne[3]; // N
  13598. const int64_t ne10 = node->src1->ne[0]; // W
  13599. const int64_t ne11 = node->src1->ne[1]; // H
  13600. const int64_t ne12 = node->src1->ne[2]; // C
  13601. const int64_t nk = ne00*ne01;
  13602. UNUSED(ne02);
  13603. UNUSED(ne03);
  13604. UNUSED(nk);
  13605. size_t cur = 0;
  13606. if (node->src0->type == GGML_TYPE_F16 &&
  13607. node->src1->type == GGML_TYPE_F32) {
  13608. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13609. } else if (node->src0->type == GGML_TYPE_F32 &&
  13610. node->src1->type == GGML_TYPE_F32) {
  13611. cur = sizeof(float)* (ne10*ne11*ne12);
  13612. } else {
  13613. GGML_ASSERT(false);
  13614. }
  13615. work_size = MAX(work_size, cur);
  13616. } break;
  13617. case GGML_OP_FLASH_ATTN:
  13618. {
  13619. node->n_tasks = n_threads;
  13620. size_t cur = 0;
  13621. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13622. if (node->src1->type == GGML_TYPE_F32) {
  13623. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13624. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13625. }
  13626. if (node->src1->type == GGML_TYPE_F16) {
  13627. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13628. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13629. }
  13630. work_size = MAX(work_size, cur);
  13631. } break;
  13632. case GGML_OP_FLASH_FF:
  13633. {
  13634. node->n_tasks = n_threads;
  13635. size_t cur = 0;
  13636. if (node->src1->type == GGML_TYPE_F32) {
  13637. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13638. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13639. }
  13640. if (node->src1->type == GGML_TYPE_F16) {
  13641. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13642. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13643. }
  13644. work_size = MAX(work_size, cur);
  13645. } break;
  13646. case GGML_OP_FLASH_ATTN_BACK:
  13647. {
  13648. node->n_tasks = n_threads;
  13649. size_t cur = 0;
  13650. const int64_t D = node->src0->ne[0];
  13651. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13652. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13653. if (node->src1->type == GGML_TYPE_F32) {
  13654. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13655. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13656. }
  13657. if (node->src1->type == GGML_TYPE_F16) {
  13658. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13659. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13660. }
  13661. work_size = MAX(work_size, cur);
  13662. } break;
  13663. case GGML_OP_WIN_PART:
  13664. case GGML_OP_WIN_UNPART:
  13665. case GGML_OP_MAP_UNARY:
  13666. case GGML_OP_MAP_BINARY:
  13667. {
  13668. node->n_tasks = 1;
  13669. } break;
  13670. case GGML_OP_CROSS_ENTROPY_LOSS:
  13671. {
  13672. node->n_tasks = n_threads;
  13673. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13674. work_size = MAX(work_size, cur);
  13675. } break;
  13676. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13677. {
  13678. node->n_tasks = n_threads;
  13679. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13680. work_size = MAX(work_size, cur);
  13681. } break;
  13682. case GGML_OP_NONE:
  13683. {
  13684. node->n_tasks = 1;
  13685. } break;
  13686. case GGML_OP_COUNT:
  13687. {
  13688. GGML_ASSERT(false);
  13689. } break;
  13690. }
  13691. }
  13692. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13693. GGML_ASSERT(false); // TODO: better handling
  13694. }
  13695. if (work_size > 0 && cgraph->work == NULL) {
  13696. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13697. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13698. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13699. }
  13700. }
  13701. const int64_t perf_start_cycles = ggml_perf_cycles();
  13702. const int64_t perf_start_time_us = ggml_perf_time_us();
  13703. for (int i = 0; i < cgraph->n_nodes; i++) {
  13704. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  13705. struct ggml_tensor * node = cgraph->nodes[i];
  13706. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  13707. //if (node->grad == NULL && node->perf_runs > 0) {
  13708. // continue;
  13709. //}
  13710. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  13711. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  13712. // INIT
  13713. struct ggml_compute_params params = {
  13714. /*.type =*/ GGML_TASK_INIT,
  13715. /*.ith =*/ 0,
  13716. /*.nth =*/ node->n_tasks,
  13717. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13718. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13719. };
  13720. ggml_compute_forward(&params, node);
  13721. // COMPUTE
  13722. if (node->n_tasks > 1) {
  13723. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13724. atomic_store(&state_shared.has_work, false);
  13725. }
  13726. while (atomic_load(&state_shared.has_work)) {
  13727. ggml_lock_lock (&state_shared.spin);
  13728. ggml_lock_unlock(&state_shared.spin);
  13729. }
  13730. // launch thread pool
  13731. for (int j = 0; j < n_threads - 1; j++) {
  13732. workers[j].params = (struct ggml_compute_params) {
  13733. .type = GGML_TASK_COMPUTE,
  13734. .ith = j + 1,
  13735. .nth = node->n_tasks,
  13736. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13737. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13738. };
  13739. workers[j].node = node;
  13740. }
  13741. atomic_fetch_sub(&state_shared.n_ready, 1);
  13742. while (atomic_load(&state_shared.n_ready) > 0) {
  13743. ggml_lock_lock (&state_shared.spin);
  13744. ggml_lock_unlock(&state_shared.spin);
  13745. }
  13746. atomic_store(&state_shared.has_work, true);
  13747. }
  13748. params.type = GGML_TASK_COMPUTE;
  13749. ggml_compute_forward(&params, node);
  13750. // wait for thread pool
  13751. if (node->n_tasks > 1) {
  13752. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13753. atomic_store(&state_shared.has_work, false);
  13754. }
  13755. while (atomic_load(&state_shared.has_work)) {
  13756. ggml_lock_lock (&state_shared.spin);
  13757. ggml_lock_unlock(&state_shared.spin);
  13758. }
  13759. atomic_fetch_sub(&state_shared.n_ready, 1);
  13760. while (atomic_load(&state_shared.n_ready) != 0) {
  13761. ggml_lock_lock (&state_shared.spin);
  13762. ggml_lock_unlock(&state_shared.spin);
  13763. }
  13764. }
  13765. // FINALIZE
  13766. if (node->n_tasks > 1) {
  13767. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13768. atomic_store(&state_shared.has_work, false);
  13769. }
  13770. while (atomic_load(&state_shared.has_work)) {
  13771. ggml_lock_lock (&state_shared.spin);
  13772. ggml_lock_unlock(&state_shared.spin);
  13773. }
  13774. // launch thread pool
  13775. for (int j = 0; j < n_threads - 1; j++) {
  13776. workers[j].params = (struct ggml_compute_params) {
  13777. .type = GGML_TASK_FINALIZE,
  13778. .ith = j + 1,
  13779. .nth = node->n_tasks,
  13780. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13781. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13782. };
  13783. workers[j].node = node;
  13784. }
  13785. atomic_fetch_sub(&state_shared.n_ready, 1);
  13786. while (atomic_load(&state_shared.n_ready) > 0) {
  13787. ggml_lock_lock (&state_shared.spin);
  13788. ggml_lock_unlock(&state_shared.spin);
  13789. }
  13790. atomic_store(&state_shared.has_work, true);
  13791. }
  13792. params.type = GGML_TASK_FINALIZE;
  13793. ggml_compute_forward(&params, node);
  13794. // wait for thread pool
  13795. if (node->n_tasks > 1) {
  13796. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13797. atomic_store(&state_shared.has_work, false);
  13798. }
  13799. while (atomic_load(&state_shared.has_work)) {
  13800. ggml_lock_lock (&state_shared.spin);
  13801. ggml_lock_unlock(&state_shared.spin);
  13802. }
  13803. atomic_fetch_sub(&state_shared.n_ready, 1);
  13804. while (atomic_load(&state_shared.n_ready) != 0) {
  13805. ggml_lock_lock (&state_shared.spin);
  13806. ggml_lock_unlock(&state_shared.spin);
  13807. }
  13808. }
  13809. // performance stats (node)
  13810. {
  13811. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  13812. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  13813. node->perf_runs++;
  13814. node->perf_cycles += perf_cycles_cur;
  13815. node->perf_time_us += perf_time_us_cur;
  13816. }
  13817. }
  13818. // join thread pool
  13819. if (n_threads > 1) {
  13820. atomic_store(&state_shared.stop, true);
  13821. atomic_store(&state_shared.has_work, true);
  13822. for (int j = 0; j < n_threads - 1; j++) {
  13823. int rc = ggml_thread_join(workers[j].thrd, NULL);
  13824. GGML_ASSERT(rc == 0);
  13825. UNUSED(rc);
  13826. }
  13827. ggml_lock_destroy(&state_shared.spin);
  13828. }
  13829. // performance stats (graph)
  13830. {
  13831. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13832. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13833. cgraph->perf_runs++;
  13834. cgraph->perf_cycles += perf_cycles_cur;
  13835. cgraph->perf_time_us += perf_time_us_cur;
  13836. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13837. __func__, cgraph->perf_runs,
  13838. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13839. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13840. (double) perf_time_us_cur / 1000.0,
  13841. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13842. }
  13843. }
  13844. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13845. for (int i = 0; i < cgraph->n_nodes; i++) {
  13846. struct ggml_tensor * grad = cgraph->grads[i];
  13847. if (grad) {
  13848. ggml_set_zero(grad);
  13849. }
  13850. }
  13851. }
  13852. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13853. for (int i = 0; i < cgraph->n_leafs; i++) {
  13854. struct ggml_tensor * leaf = cgraph->leafs[i];
  13855. if (strcmp(leaf->name, name) == 0) {
  13856. return leaf;
  13857. }
  13858. }
  13859. for (int i = 0; i < cgraph->n_nodes; i++) {
  13860. struct ggml_tensor * node = cgraph->nodes[i];
  13861. if (strcmp(node->name, name) == 0) {
  13862. return node;
  13863. }
  13864. }
  13865. return NULL;
  13866. }
  13867. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13868. const int64_t * ne = tensor->ne;
  13869. const size_t * nb = tensor->nb;
  13870. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13871. ggml_type_name(tensor->type),
  13872. ggml_op_name (tensor->op),
  13873. tensor->n_dims,
  13874. ne[0], ne[1], ne[2], ne[3],
  13875. nb[0], nb[1], nb[2], nb[3],
  13876. tensor->data,
  13877. tensor->name);
  13878. }
  13879. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13880. const int64_t * ne = tensor->ne;
  13881. const size_t * nb = tensor->nb;
  13882. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13883. arg,
  13884. ggml_type_name(tensor->type),
  13885. ggml_op_name (tensor->op),
  13886. tensor->n_dims,
  13887. ne[0], ne[1], ne[2], ne[3],
  13888. nb[0], nb[1], nb[2], nb[3],
  13889. tensor->n_tasks,
  13890. tensor->data,
  13891. tensor->name);
  13892. }
  13893. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13894. //assert(cgraph->work == NULL);
  13895. //assert(cgraph->work_size == 0);
  13896. uint64_t size_eval = 0;
  13897. // compute size of intermediate results
  13898. // TODO: does not take into account scratch buffers !!!!
  13899. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13900. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13901. }
  13902. // print
  13903. {
  13904. FILE * fout = stdout;
  13905. fprintf(fout, "\n");
  13906. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13907. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13908. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13909. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13910. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13911. // header
  13912. fprintf(fout, "\n");
  13913. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13914. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13915. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13916. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13917. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13918. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13919. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13920. }
  13921. // header
  13922. fprintf(fout, "\n");
  13923. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13924. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13925. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13926. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13927. if (cgraph->nodes[i]->src0) {
  13928. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13929. }
  13930. if (cgraph->nodes[i]->src1) {
  13931. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13932. }
  13933. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13934. if (cgraph->nodes[i]->opt[j]) {
  13935. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13936. }
  13937. }
  13938. fprintf(fout, "\n");
  13939. }
  13940. fprintf(fout, "\n");
  13941. }
  13942. // write binary data
  13943. {
  13944. FILE * fout = fopen(fname, "wb");
  13945. if (!fout) {
  13946. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13947. return;
  13948. }
  13949. // header
  13950. {
  13951. const uint32_t magic = GGML_FILE_MAGIC;
  13952. const uint32_t version = GGML_FILE_VERSION;
  13953. const uint32_t n_leafs = cgraph->n_leafs;
  13954. const uint32_t nodes = cgraph->n_nodes;
  13955. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13956. fwrite(&version, sizeof(uint32_t), 1, fout);
  13957. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13958. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13959. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13960. }
  13961. // leafs
  13962. {
  13963. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13964. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13965. const uint32_t type = tensor->type;
  13966. const uint32_t op = tensor->op;
  13967. const uint32_t n_dims = tensor->n_dims;
  13968. fwrite(&type, sizeof(uint32_t), 1, fout);
  13969. fwrite(&op, sizeof(uint32_t), 1, fout);
  13970. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13971. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13972. const uint64_t ne = tensor->ne[j];
  13973. const uint64_t nb = tensor->nb[j];
  13974. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13975. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13976. }
  13977. // store the pointer address
  13978. {
  13979. const uint64_t ptr = (uint64_t) tensor->data;
  13980. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13981. }
  13982. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13983. // dump the data
  13984. // TODO: pad this to 32 byte boundary
  13985. {
  13986. const size_t size = ggml_nbytes(tensor);
  13987. fwrite(tensor->data, sizeof(char), size, fout);
  13988. }
  13989. }
  13990. }
  13991. // nodes
  13992. {
  13993. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13994. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13995. const uint32_t type = tensor->type;
  13996. const uint32_t op = tensor->op;
  13997. const uint32_t n_dims = tensor->n_dims;
  13998. fwrite(&type, sizeof(uint32_t), 1, fout);
  13999. fwrite(&op, sizeof(uint32_t), 1, fout);
  14000. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14001. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14002. const uint64_t ne = tensor->ne[j];
  14003. const uint64_t nb = tensor->nb[j];
  14004. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14005. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14006. }
  14007. // store the pointer address
  14008. {
  14009. const uint64_t ptr = (uint64_t) tensor->data;
  14010. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14011. }
  14012. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14013. // output the op arguments
  14014. {
  14015. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14016. args[0] = tensor->src0;
  14017. args[1] = tensor->src1;
  14018. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14019. args[2 + j] = tensor->opt[j];
  14020. }
  14021. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14022. if (args[j]) {
  14023. int32_t idx = -1;
  14024. // check if leaf
  14025. {
  14026. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14027. if (args[j] == cgraph->leafs[k]) {
  14028. idx = k;
  14029. break;
  14030. }
  14031. }
  14032. }
  14033. // check if node
  14034. if (idx == -1) {
  14035. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14036. if (args[j] == cgraph->nodes[k]) {
  14037. idx = GGML_MAX_NODES + k;
  14038. break;
  14039. }
  14040. }
  14041. }
  14042. if (idx == -1) {
  14043. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14044. return;
  14045. }
  14046. fwrite(&idx, sizeof(int32_t), 1, fout);
  14047. } else {
  14048. const int32_t nul = -1;
  14049. fwrite(&nul, sizeof(int32_t), 1, fout);
  14050. }
  14051. }
  14052. }
  14053. }
  14054. }
  14055. fclose(fout);
  14056. }
  14057. }
  14058. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14059. assert(*ctx_data == NULL);
  14060. assert(*ctx_eval == NULL);
  14061. struct ggml_cgraph result = { 0 };
  14062. struct ggml_tensor * data = NULL;
  14063. // read file into data
  14064. {
  14065. FILE * fin = fopen(fname, "rb");
  14066. if (!fin) {
  14067. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14068. return result;
  14069. }
  14070. size_t fsize = 0;
  14071. fseek(fin, 0, SEEK_END);
  14072. fsize = ftell(fin);
  14073. fseek(fin, 0, SEEK_SET);
  14074. // create the data context
  14075. {
  14076. const size_t overhead = 1*ggml_tensor_overhead();
  14077. struct ggml_init_params params = {
  14078. .mem_size = fsize + overhead,
  14079. .mem_buffer = NULL,
  14080. .no_alloc = false,
  14081. };
  14082. *ctx_data = ggml_init(params);
  14083. if (!*ctx_data) {
  14084. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14085. fclose(fin);
  14086. return result;
  14087. }
  14088. }
  14089. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14090. {
  14091. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14092. if (ret != fsize) {
  14093. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14094. fclose(fin);
  14095. return result;
  14096. }
  14097. }
  14098. fclose(fin);
  14099. }
  14100. // populate result
  14101. {
  14102. char * ptr = (char *) data->data;
  14103. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14104. if (magic != GGML_FILE_MAGIC) {
  14105. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14106. return result;
  14107. }
  14108. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14109. if (version != GGML_FILE_VERSION) {
  14110. fprintf(stderr, "%s: invalid version number\n", __func__);
  14111. return result;
  14112. }
  14113. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14114. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14115. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14116. result.n_leafs = n_leafs;
  14117. result.n_nodes = n_nodes;
  14118. // create the data context
  14119. {
  14120. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14121. struct ggml_init_params params = {
  14122. .mem_size = size_eval + overhead,
  14123. .mem_buffer = NULL,
  14124. .no_alloc = true,
  14125. };
  14126. *ctx_eval = ggml_init(params);
  14127. if (!*ctx_eval) {
  14128. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14129. return result;
  14130. }
  14131. }
  14132. // leafs
  14133. {
  14134. uint32_t type;
  14135. uint32_t op;
  14136. uint32_t n_dims;
  14137. for (uint32_t i = 0; i < n_leafs; ++i) {
  14138. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14139. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14140. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14141. int64_t ne[GGML_MAX_DIMS];
  14142. size_t nb[GGML_MAX_DIMS];
  14143. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14144. uint64_t ne_cur;
  14145. uint64_t nb_cur;
  14146. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14147. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14148. ne[j] = ne_cur;
  14149. nb[j] = nb_cur;
  14150. }
  14151. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14152. tensor->op = (enum ggml_op) op;
  14153. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  14154. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14155. tensor->data = (void *) ptr;
  14156. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14157. tensor->nb[j] = nb[j];
  14158. }
  14159. result.leafs[i] = tensor;
  14160. ptr += ggml_nbytes(tensor);
  14161. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14162. }
  14163. }
  14164. ggml_set_no_alloc(*ctx_eval, false);
  14165. // nodes
  14166. {
  14167. uint32_t type;
  14168. uint32_t op;
  14169. uint32_t n_dims;
  14170. for (uint32_t i = 0; i < n_nodes; ++i) {
  14171. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14172. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14173. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14174. enum ggml_op eop = (enum ggml_op) op;
  14175. int64_t ne[GGML_MAX_DIMS];
  14176. size_t nb[GGML_MAX_DIMS];
  14177. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14178. uint64_t ne_cur;
  14179. uint64_t nb_cur;
  14180. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14181. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14182. ne[j] = ne_cur;
  14183. nb[j] = nb_cur;
  14184. }
  14185. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  14186. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14187. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  14188. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14189. // parse args
  14190. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14191. const int32_t arg_idx = ptr_arg_idx[j];
  14192. if (arg_idx == -1) {
  14193. continue;
  14194. }
  14195. if (arg_idx < GGML_MAX_NODES) {
  14196. args[j] = result.leafs[arg_idx];
  14197. } else {
  14198. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14199. }
  14200. }
  14201. // create the tensor
  14202. // "view" operations are handled differently
  14203. // TODO: handle inplace ops - currently a copy is always made
  14204. struct ggml_tensor * tensor = NULL;
  14205. switch (eop) {
  14206. // TODO: implement other view ops
  14207. case GGML_OP_RESHAPE:
  14208. {
  14209. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14210. } break;
  14211. case GGML_OP_VIEW:
  14212. {
  14213. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14214. uint64_t offs;
  14215. memcpy(&offs, args[2]->data, sizeof(offs));
  14216. tensor->data = ((char *) tensor->data) + offs;
  14217. } break;
  14218. case GGML_OP_TRANSPOSE:
  14219. {
  14220. tensor = ggml_transpose(*ctx_eval, args[0]);
  14221. } break;
  14222. case GGML_OP_PERMUTE:
  14223. {
  14224. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14225. } break;
  14226. default:
  14227. {
  14228. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14229. tensor->op = eop;
  14230. } break;
  14231. }
  14232. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14233. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14234. tensor->nb[j] = nb[j];
  14235. }
  14236. tensor->src0 = args[0];
  14237. tensor->src1 = args[1];
  14238. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14239. tensor->opt[j] = args[2 + j];
  14240. }
  14241. result.nodes[i] = tensor;
  14242. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14243. }
  14244. }
  14245. }
  14246. return result;
  14247. }
  14248. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14249. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14250. GGML_PRINT("=== GRAPH ===\n");
  14251. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14252. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14253. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14254. for (int i = 0; i < cgraph->n_nodes; i++) {
  14255. struct ggml_tensor * node = cgraph->nodes[i];
  14256. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14257. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14258. i,
  14259. node->ne[0], node->ne[1], node->ne[2],
  14260. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14261. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14262. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14263. (double) node->perf_time_us / 1000.0,
  14264. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14265. }
  14266. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14267. for (int i = 0; i < cgraph->n_leafs; i++) {
  14268. struct ggml_tensor * node = cgraph->leafs[i];
  14269. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14270. i,
  14271. node->ne[0], node->ne[1],
  14272. GGML_OP_NAME[node->op]);
  14273. }
  14274. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14275. if (perf_total_per_op_us[i] == 0) {
  14276. continue;
  14277. }
  14278. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14279. }
  14280. GGML_PRINT("========================================\n");
  14281. }
  14282. // check if node is part of the graph
  14283. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14284. if (cgraph == NULL) {
  14285. return true;
  14286. }
  14287. for (int i = 0; i < cgraph->n_nodes; i++) {
  14288. if (cgraph->nodes[i] == node) {
  14289. return true;
  14290. }
  14291. }
  14292. return false;
  14293. }
  14294. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14295. for (int i = 0; i < cgraph->n_nodes; i++) {
  14296. struct ggml_tensor * parent = cgraph->nodes[i];
  14297. if (parent->grad == node) {
  14298. return parent;
  14299. }
  14300. }
  14301. return NULL;
  14302. }
  14303. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14304. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14305. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14306. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14307. gparent0 ? (void *) gparent0 : (void *) parent,
  14308. gparent0 ? "g" : "x",
  14309. gparent ? (void *) gparent : (void *) node,
  14310. gparent ? "g" : "x",
  14311. gparent ? "empty" : "vee",
  14312. gparent ? "dashed" : "solid",
  14313. label);
  14314. }
  14315. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14316. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14317. (void *) parent, "x",
  14318. (void *) node, "x",
  14319. label);
  14320. }
  14321. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14322. char color[16];
  14323. FILE * fp = fopen(filename, "w");
  14324. GGML_ASSERT(fp);
  14325. fprintf(fp, "digraph G {\n");
  14326. fprintf(fp, " newrank = true;\n");
  14327. fprintf(fp, " rankdir = LR;\n");
  14328. for (int i = 0; i < gb->n_nodes; i++) {
  14329. struct ggml_tensor * node = gb->nodes[i];
  14330. if (ggml_graph_get_parent(gb, node) != NULL) {
  14331. continue;
  14332. }
  14333. if (node->is_param) {
  14334. snprintf(color, sizeof(color), "yellow");
  14335. } else if (node->grad) {
  14336. if (ggml_graph_find(gf, node)) {
  14337. snprintf(color, sizeof(color), "green");
  14338. } else {
  14339. snprintf(color, sizeof(color), "lightblue");
  14340. }
  14341. } else {
  14342. snprintf(color, sizeof(color), "white");
  14343. }
  14344. fprintf(fp, " \"%p\" [ "
  14345. "style = filled; fillcolor = %s; shape = record; "
  14346. "label=\"",
  14347. (void *) node, color);
  14348. if (strlen(node->name) > 0) {
  14349. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14350. } else {
  14351. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14352. }
  14353. if (node->n_dims == 2) {
  14354. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14355. } else {
  14356. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14357. }
  14358. if (node->grad) {
  14359. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14360. } else {
  14361. fprintf(fp, "\"; ]\n");
  14362. }
  14363. }
  14364. for (int i = 0; i < gb->n_leafs; i++) {
  14365. struct ggml_tensor * node = gb->leafs[i];
  14366. snprintf(color, sizeof(color), "pink");
  14367. fprintf(fp, " \"%p\" [ "
  14368. "style = filled; fillcolor = %s; shape = record; "
  14369. "label=\"<x>",
  14370. (void *) node, color);
  14371. if (strlen(node->name) > 0) {
  14372. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14373. } else {
  14374. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14375. }
  14376. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14377. if (ggml_nelements(node) < 5) {
  14378. fprintf(fp, " | (");
  14379. for (int j = 0; j < ggml_nelements(node); j++) {
  14380. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14381. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14382. }
  14383. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14384. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14385. }
  14386. else {
  14387. fprintf(fp, "#");
  14388. }
  14389. if (j < ggml_nelements(node) - 1) {
  14390. fprintf(fp, ", ");
  14391. }
  14392. }
  14393. fprintf(fp, ")");
  14394. }
  14395. fprintf(fp, "\"; ]\n");
  14396. }
  14397. for (int i = 0; i < gb->n_nodes; i++) {
  14398. struct ggml_tensor * node = gb->nodes[i];
  14399. if (node->src0) {
  14400. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14401. }
  14402. if (node->src1) {
  14403. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14404. }
  14405. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14406. if (node->opt[j]) {
  14407. char label[16];
  14408. snprintf(label, sizeof(label), "opt %d", j);
  14409. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14410. }
  14411. }
  14412. }
  14413. for (int i = 0; i < gb->n_leafs; i++) {
  14414. struct ggml_tensor * node = gb->leafs[i];
  14415. if (node->src0) {
  14416. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14417. }
  14418. if (node->src1) {
  14419. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14420. }
  14421. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14422. if (node->opt[j]) {
  14423. char label[16];
  14424. snprintf(label, sizeof(label), "opt %d", j);
  14425. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14426. }
  14427. }
  14428. }
  14429. fprintf(fp, "}\n");
  14430. fclose(fp);
  14431. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14432. }
  14433. ////////////////////////////////////////////////////////////////////////////////
  14434. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14435. int i = 0;
  14436. for (int p = 0; p < np; ++p) {
  14437. const int64_t ne = ggml_nelements(ps[p]) ;
  14438. // TODO: add function to set tensor from array
  14439. for (int64_t j = 0; j < ne; ++j) {
  14440. ggml_set_f32_1d(ps[p], j, x[i++]);
  14441. }
  14442. }
  14443. }
  14444. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14445. int i = 0;
  14446. for (int p = 0; p < np; ++p) {
  14447. const int64_t ne = ggml_nelements(ps[p]) ;
  14448. // TODO: add function to get all elements at once
  14449. for (int64_t j = 0; j < ne; ++j) {
  14450. x[i++] = ggml_get_f32_1d(ps[p], j);
  14451. }
  14452. }
  14453. }
  14454. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14455. int i = 0;
  14456. for (int p = 0; p < np; ++p) {
  14457. const int64_t ne = ggml_nelements(ps[p]) ;
  14458. // TODO: add function to get all elements at once
  14459. for (int64_t j = 0; j < ne; ++j) {
  14460. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14461. }
  14462. }
  14463. }
  14464. //
  14465. // ADAM
  14466. //
  14467. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14468. //
  14469. static enum ggml_opt_result ggml_opt_adam(
  14470. struct ggml_context * ctx,
  14471. struct ggml_opt_context * opt,
  14472. struct ggml_opt_params params,
  14473. struct ggml_tensor * f,
  14474. struct ggml_cgraph * gf,
  14475. struct ggml_cgraph * gb) {
  14476. GGML_ASSERT(ggml_is_scalar(f));
  14477. gf->n_threads = params.n_threads;
  14478. gb->n_threads = params.n_threads;
  14479. // these will store the parameters we want to optimize
  14480. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14481. int np = 0;
  14482. int nx = 0;
  14483. for (int i = 0; i < gf->n_nodes; ++i) {
  14484. if (gf->nodes[i]->is_param) {
  14485. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14486. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14487. ps[np++] = gf->nodes[i];
  14488. nx += ggml_nelements(gf->nodes[i]);
  14489. }
  14490. }
  14491. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14492. int iter = opt->iter;
  14493. ggml_opt_init(opt->ctx, opt, params, nx);
  14494. opt->iter = iter;
  14495. }
  14496. // constants
  14497. const float sched = params.adam.sched;
  14498. const float decay = params.adam.decay * sched;
  14499. const float alpha = params.adam.alpha * sched;
  14500. const float beta1 = params.adam.beta1;
  14501. const float beta2 = params.adam.beta2;
  14502. const float eps = params.adam.eps;
  14503. float * x = opt->adam.x->data; // view of the parameters
  14504. float * g1 = opt->adam.g1->data; // gradient
  14505. float * g2 = opt->adam.g2->data; // gradient squared
  14506. float * m = opt->adam.m->data; // first moment
  14507. float * v = opt->adam.v->data; // second moment
  14508. float * mh = opt->adam.mh->data; // first moment hat
  14509. float * vh = opt->adam.vh->data; // second moment hat
  14510. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14511. // update view
  14512. ggml_opt_get_params(np, ps, x);
  14513. // compute the function value
  14514. ggml_graph_reset (gf);
  14515. ggml_set_f32 (f->grad, 1.0f);
  14516. ggml_graph_compute(ctx, gb);
  14517. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14518. opt->adam.fx_best = opt->adam.fx_prev;
  14519. if (pf) {
  14520. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14521. }
  14522. // initialize
  14523. if (opt->just_initialized) {
  14524. opt->adam.n_no_improvement = 0;
  14525. opt->just_initialized = false;
  14526. }
  14527. float * fx_best = &opt->adam.fx_best;
  14528. float * fx_prev = &opt->adam.fx_prev;
  14529. int * n_no_improvement = &opt->adam.n_no_improvement;
  14530. int iter0 = opt->iter;
  14531. // run the optimizer
  14532. for (int t = 0; t < params.adam.n_iter; ++t) {
  14533. opt->iter = iter0 + t + 1;
  14534. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14535. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14536. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14537. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14538. for (int i = 0; i < np; ++i) {
  14539. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14540. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14541. }
  14542. const int64_t t_start_wall = ggml_time_us();
  14543. const int64_t t_start_cpu = ggml_cycles();
  14544. UNUSED(t_start_wall);
  14545. UNUSED(t_start_cpu);
  14546. {
  14547. // update the gradient
  14548. ggml_opt_get_grad(np, ps, g1);
  14549. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14550. ggml_vec_scale_f32(nx, m, beta1);
  14551. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14552. // g2 = g1^2
  14553. ggml_vec_sqr_f32 (nx, g2, g1);
  14554. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14555. ggml_vec_scale_f32(nx, v, beta2);
  14556. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14557. // m^hat = m_t / (1 - beta1^t)
  14558. // v^hat = v_t / (1 - beta2^t)
  14559. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14560. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14561. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14562. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14563. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14564. ggml_vec_cpy_f32 (nx, mh, m);
  14565. ggml_vec_cpy_f32 (nx, vh, v);
  14566. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14567. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14568. ggml_vec_sqrt_f32 (nx, vh, vh);
  14569. ggml_vec_acc1_f32 (nx, vh, eps);
  14570. ggml_vec_div_f32 (nx, mh, mh, vh);
  14571. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14572. ggml_vec_sub_f32 (nx, x, x, mh);
  14573. // update the parameters
  14574. ggml_opt_set_params(np, ps, x);
  14575. }
  14576. ggml_graph_reset (gf);
  14577. ggml_set_f32 (f->grad, 1.0f);
  14578. ggml_graph_compute(ctx, gb);
  14579. const float fx = ggml_get_f32_1d(f, 0);
  14580. // check convergence
  14581. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14582. GGML_PRINT_DEBUG("converged\n");
  14583. return GGML_OPT_OK;
  14584. }
  14585. // delta-based convergence test
  14586. if (pf != NULL) {
  14587. // need at least params.past iterations to start checking for convergence
  14588. if (params.past <= iter0 + t) {
  14589. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14590. if (fabsf(rate) < params.delta) {
  14591. return GGML_OPT_OK;
  14592. }
  14593. }
  14594. pf[(iter0 + t)%params.past] = fx;
  14595. }
  14596. // check for improvement
  14597. if (params.max_no_improvement > 0) {
  14598. if (fx_best[0] > fx) {
  14599. fx_best[0] = fx;
  14600. n_no_improvement[0] = 0;
  14601. } else {
  14602. ++n_no_improvement[0];
  14603. if (n_no_improvement[0] >= params.max_no_improvement) {
  14604. return GGML_OPT_OK;
  14605. }
  14606. }
  14607. }
  14608. fx_prev[0] = fx;
  14609. {
  14610. const int64_t t_end_cpu = ggml_cycles();
  14611. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14612. UNUSED(t_end_cpu);
  14613. const int64_t t_end_wall = ggml_time_us();
  14614. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14615. UNUSED(t_end_wall);
  14616. }
  14617. }
  14618. return GGML_OPT_DID_NOT_CONVERGE;
  14619. }
  14620. //
  14621. // L-BFGS
  14622. //
  14623. // the L-BFGS implementation below is based on the following implementation:
  14624. //
  14625. // https://github.com/chokkan/liblbfgs
  14626. //
  14627. struct ggml_lbfgs_iteration_data {
  14628. float alpha;
  14629. float ys;
  14630. float * s;
  14631. float * y;
  14632. };
  14633. static enum ggml_opt_result linesearch_backtracking(
  14634. struct ggml_context * ctx,
  14635. const struct ggml_opt_params * params,
  14636. int nx,
  14637. float * x,
  14638. float * fx,
  14639. float * g,
  14640. float * d,
  14641. float * step,
  14642. const float * xp,
  14643. struct ggml_tensor * f,
  14644. struct ggml_cgraph * gf,
  14645. struct ggml_cgraph * gb,
  14646. const int np,
  14647. struct ggml_tensor * ps[]) {
  14648. int count = 0;
  14649. float width = 0.0f;
  14650. float dg = 0.0f;
  14651. float finit = 0.0f;
  14652. float dginit = 0.0f;
  14653. float dgtest = 0.0f;
  14654. const float dec = 0.5f;
  14655. const float inc = 2.1f;
  14656. if (*step <= 0.f) {
  14657. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14658. }
  14659. // compute the initial gradient in the search direction
  14660. ggml_vec_dot_f32(nx, &dginit, g, d);
  14661. // make sure that d points to a descent direction
  14662. if (0 < dginit) {
  14663. return GGML_LINESEARCH_FAIL;
  14664. }
  14665. // initialize local variables
  14666. finit = *fx;
  14667. dgtest = params->lbfgs.ftol*dginit;
  14668. while (true) {
  14669. ggml_vec_cpy_f32(nx, x, xp);
  14670. ggml_vec_mad_f32(nx, x, d, *step);
  14671. // evaluate the function and gradient values
  14672. {
  14673. ggml_opt_set_params(np, ps, x);
  14674. ggml_graph_reset (gf);
  14675. ggml_set_f32 (f->grad, 1.0f);
  14676. ggml_graph_compute(ctx, gb);
  14677. ggml_opt_get_grad(np, ps, g);
  14678. *fx = ggml_get_f32_1d(f, 0);
  14679. }
  14680. ++count;
  14681. if (*fx > finit + (*step)*dgtest) {
  14682. width = dec;
  14683. } else {
  14684. // Armijo condition is satisfied
  14685. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14686. return count;
  14687. }
  14688. ggml_vec_dot_f32(nx, &dg, g, d);
  14689. // check the Wolfe condition
  14690. if (dg < params->lbfgs.wolfe * dginit) {
  14691. width = inc;
  14692. } else {
  14693. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14694. // regular Wolfe conditions
  14695. return count;
  14696. }
  14697. if(dg > -params->lbfgs.wolfe*dginit) {
  14698. width = dec;
  14699. } else {
  14700. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14701. return count;
  14702. }
  14703. return count;
  14704. }
  14705. }
  14706. if (*step < params->lbfgs.min_step) {
  14707. return GGML_LINESEARCH_MINIMUM_STEP;
  14708. }
  14709. if (*step > params->lbfgs.max_step) {
  14710. return GGML_LINESEARCH_MAXIMUM_STEP;
  14711. }
  14712. if (params->lbfgs.max_linesearch <= count) {
  14713. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14714. }
  14715. (*step) *= width;
  14716. }
  14717. return GGML_LINESEARCH_FAIL;
  14718. }
  14719. static enum ggml_opt_result ggml_opt_lbfgs(
  14720. struct ggml_context * ctx,
  14721. struct ggml_opt_context * opt,
  14722. struct ggml_opt_params params,
  14723. struct ggml_tensor * f,
  14724. struct ggml_cgraph * gf,
  14725. struct ggml_cgraph * gb) {
  14726. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14727. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14728. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14729. return GGML_OPT_INVALID_WOLFE;
  14730. }
  14731. }
  14732. gf->n_threads = params.n_threads;
  14733. gb->n_threads = params.n_threads;
  14734. const int m = params.lbfgs.m;
  14735. // these will store the parameters we want to optimize
  14736. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14737. int np = 0;
  14738. int nx = 0;
  14739. for (int i = 0; i < gf->n_nodes; ++i) {
  14740. if (gf->nodes[i]->is_param) {
  14741. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14742. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14743. ps[np++] = gf->nodes[i];
  14744. nx += ggml_nelements(gf->nodes[i]);
  14745. }
  14746. }
  14747. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14748. int iter = opt->iter;
  14749. ggml_opt_init(ctx, opt, params, nx);
  14750. opt->iter = iter;
  14751. }
  14752. float * x = opt->lbfgs.x->data; // current parameters
  14753. float * xp = opt->lbfgs.xp->data; // previous parameters
  14754. float * g = opt->lbfgs.g->data; // current gradient
  14755. float * gp = opt->lbfgs.gp->data; // previous gradient
  14756. float * d = opt->lbfgs.d->data; // search direction
  14757. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14758. float fx = 0.0f; // cost function value
  14759. float xnorm = 0.0f; // ||x||
  14760. float gnorm = 0.0f; // ||g||
  14761. // initialize x from the graph nodes
  14762. ggml_opt_get_params(np, ps, x);
  14763. // the L-BFGS memory
  14764. float * lm_alpha = opt->lbfgs.lmal->data;
  14765. float * lm_ys = opt->lbfgs.lmys->data;
  14766. float * lm_s = opt->lbfgs.lms->data;
  14767. float * lm_y = opt->lbfgs.lmy->data;
  14768. // evaluate the function value and its gradient
  14769. {
  14770. ggml_opt_set_params(np, ps, x);
  14771. ggml_graph_reset (gf);
  14772. ggml_set_f32 (f->grad, 1.0f);
  14773. ggml_graph_compute(ctx, gb);
  14774. ggml_opt_get_grad(np, ps, g);
  14775. fx = ggml_get_f32_1d(f, 0);
  14776. }
  14777. // search direction = -gradient
  14778. ggml_vec_neg_f32(nx, d, g);
  14779. // ||x||, ||g||
  14780. ggml_vec_norm_f32(nx, &xnorm, x);
  14781. ggml_vec_norm_f32(nx, &gnorm, g);
  14782. if (xnorm < 1.0f) {
  14783. xnorm = 1.0f;
  14784. }
  14785. // already optimized
  14786. if (gnorm/xnorm <= params.lbfgs.eps) {
  14787. return GGML_OPT_OK;
  14788. }
  14789. if (opt->just_initialized) {
  14790. if (pf) {
  14791. pf[0] = fx;
  14792. }
  14793. opt->lbfgs.fx_best = fx;
  14794. // initial step
  14795. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14796. opt->lbfgs.j = 0;
  14797. opt->lbfgs.k = 1;
  14798. opt->lbfgs.end = 0;
  14799. opt->lbfgs.n_no_improvement = 0;
  14800. opt->just_initialized = false;
  14801. }
  14802. float * fx_best = &opt->lbfgs.fx_best;
  14803. float * step = &opt->lbfgs.step;
  14804. int * j = &opt->lbfgs.j;
  14805. int * k = &opt->lbfgs.k;
  14806. int * end = &opt->lbfgs.end;
  14807. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14808. int ls = 0;
  14809. int bound = 0;
  14810. float ys = 0.0f;
  14811. float yy = 0.0f;
  14812. float beta = 0.0f;
  14813. int it = 0;
  14814. while (true) {
  14815. // store the current position and gradient vectors
  14816. ggml_vec_cpy_f32(nx, xp, x);
  14817. ggml_vec_cpy_f32(nx, gp, g);
  14818. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14819. if (ls < 0) {
  14820. // linesearch failed - go back to the previous point and return
  14821. ggml_vec_cpy_f32(nx, x, xp);
  14822. ggml_vec_cpy_f32(nx, g, gp);
  14823. return ls;
  14824. }
  14825. ggml_vec_norm_f32(nx, &xnorm, x);
  14826. ggml_vec_norm_f32(nx, &gnorm, g);
  14827. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14828. if (xnorm < 1.0f) {
  14829. xnorm = 1.0f;
  14830. }
  14831. if (gnorm/xnorm <= params.lbfgs.eps) {
  14832. // converged
  14833. return GGML_OPT_OK;
  14834. }
  14835. // delta-based convergence test
  14836. if (pf != NULL) {
  14837. // need at least params.past iterations to start checking for convergence
  14838. if (params.past <= k[0]) {
  14839. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14840. if (fabsf(rate) < params.delta) {
  14841. return GGML_OPT_OK;
  14842. }
  14843. }
  14844. pf[k[0]%params.past] = fx;
  14845. }
  14846. // check for improvement
  14847. if (params.max_no_improvement > 0) {
  14848. if (fx < fx_best[0]) {
  14849. fx_best[0] = fx;
  14850. n_no_improvement[0] = 0;
  14851. } else {
  14852. n_no_improvement[0]++;
  14853. if (n_no_improvement[0] >= params.max_no_improvement) {
  14854. return GGML_OPT_OK;
  14855. }
  14856. }
  14857. }
  14858. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14859. // reached the maximum number of iterations
  14860. return GGML_OPT_DID_NOT_CONVERGE;
  14861. }
  14862. // update vectors s and y:
  14863. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14864. // y_{k+1} = g_{k+1} - g_{k}.
  14865. //
  14866. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14867. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14868. // compute scalars ys and yy:
  14869. // ys = y^t \cdot s -> 1 / \rho.
  14870. // yy = y^t \cdot y.
  14871. //
  14872. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14873. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14874. lm_ys[end[0]] = ys;
  14875. // find new search direction
  14876. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14877. bound = (m <= k[0]) ? m : k[0];
  14878. k[0]++;
  14879. it++;
  14880. end[0] = (end[0] + 1)%m;
  14881. // initialize search direction with -g
  14882. ggml_vec_neg_f32(nx, d, g);
  14883. j[0] = end[0];
  14884. for (int i = 0; i < bound; ++i) {
  14885. j[0] = (j[0] + m - 1) % m;
  14886. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14887. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14888. lm_alpha[j[0]] /= lm_ys[j[0]];
  14889. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14890. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14891. }
  14892. ggml_vec_scale_f32(nx, d, ys/yy);
  14893. for (int i = 0; i < bound; ++i) {
  14894. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14895. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14896. beta /= lm_ys[j[0]];
  14897. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14898. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14899. j[0] = (j[0] + 1)%m;
  14900. }
  14901. step[0] = 1.0;
  14902. }
  14903. return GGML_OPT_DID_NOT_CONVERGE;
  14904. }
  14905. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14906. struct ggml_opt_params result;
  14907. switch (type) {
  14908. case GGML_OPT_ADAM:
  14909. {
  14910. result = (struct ggml_opt_params) {
  14911. .type = GGML_OPT_ADAM,
  14912. .n_threads = 1,
  14913. .past = 0,
  14914. .delta = 1e-5f,
  14915. .max_no_improvement = 100,
  14916. .print_forward_graph = true,
  14917. .print_backward_graph = true,
  14918. .adam = {
  14919. .n_iter = 10000,
  14920. .sched = 1.000f,
  14921. .decay = 0.001f,
  14922. .alpha = 0.001f,
  14923. .beta1 = 0.9f,
  14924. .beta2 = 0.999f,
  14925. .eps = 1e-8f,
  14926. .eps_f = 1e-5f,
  14927. .eps_g = 1e-3f,
  14928. },
  14929. };
  14930. } break;
  14931. case GGML_OPT_LBFGS:
  14932. {
  14933. result = (struct ggml_opt_params) {
  14934. .type = GGML_OPT_LBFGS,
  14935. .n_threads = 1,
  14936. .past = 0,
  14937. .delta = 1e-5f,
  14938. .max_no_improvement = 0,
  14939. .print_forward_graph = true,
  14940. .print_backward_graph = true,
  14941. .lbfgs = {
  14942. .m = 6,
  14943. .n_iter = 100,
  14944. .max_linesearch = 20,
  14945. .eps = 1e-5f,
  14946. .ftol = 1e-4f,
  14947. .wolfe = 0.9f,
  14948. .min_step = 1e-20f,
  14949. .max_step = 1e+20f,
  14950. .linesearch = GGML_LINESEARCH_DEFAULT,
  14951. },
  14952. };
  14953. } break;
  14954. }
  14955. return result;
  14956. }
  14957. GGML_API void ggml_opt_init(
  14958. struct ggml_context * ctx,
  14959. struct ggml_opt_context * opt,
  14960. struct ggml_opt_params params,
  14961. int64_t nx) {
  14962. opt->ctx = ctx;
  14963. opt->params = params;
  14964. opt->iter = 0;
  14965. opt->nx = nx;
  14966. opt->just_initialized = true;
  14967. switch (opt->params.type) {
  14968. case GGML_OPT_ADAM:
  14969. {
  14970. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14971. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14972. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14973. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14974. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14975. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14976. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14977. opt->adam.pf = params.past > 0
  14978. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14979. : NULL;
  14980. ggml_set_zero(opt->adam.x);
  14981. ggml_set_zero(opt->adam.g1);
  14982. ggml_set_zero(opt->adam.g2);
  14983. ggml_set_zero(opt->adam.m);
  14984. ggml_set_zero(opt->adam.v);
  14985. ggml_set_zero(opt->adam.mh);
  14986. ggml_set_zero(opt->adam.vh);
  14987. if (opt->adam.pf) {
  14988. ggml_set_zero(opt->adam.pf);
  14989. }
  14990. } break;
  14991. case GGML_OPT_LBFGS:
  14992. {
  14993. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14994. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14995. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14996. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14997. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14998. opt->lbfgs.pf = params.past > 0
  14999. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15000. : NULL;
  15001. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15002. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15003. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15004. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15005. ggml_set_zero(opt->lbfgs.x);
  15006. ggml_set_zero(opt->lbfgs.xp);
  15007. ggml_set_zero(opt->lbfgs.g);
  15008. ggml_set_zero(opt->lbfgs.gp);
  15009. ggml_set_zero(opt->lbfgs.d);
  15010. if (opt->lbfgs.pf) {
  15011. ggml_set_zero(opt->lbfgs.pf);
  15012. }
  15013. ggml_set_zero(opt->lbfgs.lmal);
  15014. ggml_set_zero(opt->lbfgs.lmys);
  15015. ggml_set_zero(opt->lbfgs.lms);
  15016. ggml_set_zero(opt->lbfgs.lmy);
  15017. } break;
  15018. }
  15019. }
  15020. enum ggml_opt_result ggml_opt(
  15021. struct ggml_context * ctx,
  15022. struct ggml_opt_params params,
  15023. struct ggml_tensor * f) {
  15024. bool free_ctx = false;
  15025. if (ctx == NULL) {
  15026. struct ggml_init_params params_ctx = {
  15027. .mem_size = 16*1024*1024,
  15028. .mem_buffer = NULL,
  15029. .no_alloc = false,
  15030. };
  15031. ctx = ggml_init(params_ctx);
  15032. if (ctx == NULL) {
  15033. return GGML_OPT_NO_CONTEXT;
  15034. }
  15035. free_ctx = true;
  15036. }
  15037. enum ggml_opt_result result = GGML_OPT_OK;
  15038. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15039. ggml_opt_init(ctx, opt, params, 0);
  15040. result = ggml_opt_resume(ctx, opt, f);
  15041. if (free_ctx) {
  15042. ggml_free(ctx);
  15043. }
  15044. return result;
  15045. }
  15046. enum ggml_opt_result ggml_opt_resume(
  15047. struct ggml_context * ctx,
  15048. struct ggml_opt_context * opt,
  15049. struct ggml_tensor * f) {
  15050. // build forward + backward compute graphs
  15051. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15052. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15053. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15054. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15055. *gf = ggml_build_forward (f);
  15056. *gb = ggml_build_backward(ctx, gf, true);
  15057. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15058. }
  15059. enum ggml_opt_result ggml_opt_resume_g(
  15060. struct ggml_context * ctx,
  15061. struct ggml_opt_context * opt,
  15062. struct ggml_tensor * f,
  15063. struct ggml_cgraph * gf,
  15064. struct ggml_cgraph * gb) {
  15065. // build forward + backward compute graphs
  15066. enum ggml_opt_result result = GGML_OPT_OK;
  15067. switch (opt->params.type) {
  15068. case GGML_OPT_ADAM:
  15069. {
  15070. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15071. } break;
  15072. case GGML_OPT_LBFGS:
  15073. {
  15074. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15075. } break;
  15076. }
  15077. if (opt->params.print_forward_graph) {
  15078. ggml_graph_print (gf);
  15079. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15080. }
  15081. if (opt->params.print_backward_graph) {
  15082. ggml_graph_print (gb);
  15083. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15084. }
  15085. return result;
  15086. }
  15087. ////////////////////////////////////////////////////////////////////////////////
  15088. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15089. assert(k % QK4_0 == 0);
  15090. const int nb = k / QK4_0;
  15091. for (int b = 0; b < n; b += k) {
  15092. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15093. quantize_row_q4_0_reference(src + b, y, k);
  15094. for (int i = 0; i < nb; i++) {
  15095. for (int j = 0; j < QK4_0; j += 2) {
  15096. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15097. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15098. hist[vi0]++;
  15099. hist[vi1]++;
  15100. }
  15101. }
  15102. }
  15103. return (n/QK4_0*sizeof(block_q4_0));
  15104. }
  15105. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15106. assert(k % QK4_1 == 0);
  15107. const int nb = k / QK4_1;
  15108. for (int b = 0; b < n; b += k) {
  15109. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15110. quantize_row_q4_1_reference(src + b, y, k);
  15111. for (int i = 0; i < nb; i++) {
  15112. for (int j = 0; j < QK4_1; j += 2) {
  15113. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15114. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15115. hist[vi0]++;
  15116. hist[vi1]++;
  15117. }
  15118. }
  15119. }
  15120. return (n/QK4_1*sizeof(block_q4_1));
  15121. }
  15122. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15123. assert(k % QK5_0 == 0);
  15124. const int nb = k / QK5_0;
  15125. for (int b = 0; b < n; b += k) {
  15126. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15127. quantize_row_q5_0_reference(src + b, y, k);
  15128. for (int i = 0; i < nb; i++) {
  15129. uint32_t qh;
  15130. memcpy(&qh, &y[i].qh, sizeof(qh));
  15131. for (int j = 0; j < QK5_0; j += 2) {
  15132. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15133. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15134. // cast to 16 bins
  15135. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15136. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15137. hist[vi0]++;
  15138. hist[vi1]++;
  15139. }
  15140. }
  15141. }
  15142. return (n/QK5_0*sizeof(block_q5_0));
  15143. }
  15144. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15145. assert(k % QK5_1 == 0);
  15146. const int nb = k / QK5_1;
  15147. for (int b = 0; b < n; b += k) {
  15148. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15149. quantize_row_q5_1_reference(src + b, y, k);
  15150. for (int i = 0; i < nb; i++) {
  15151. uint32_t qh;
  15152. memcpy(&qh, &y[i].qh, sizeof(qh));
  15153. for (int j = 0; j < QK5_1; j += 2) {
  15154. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15155. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15156. // cast to 16 bins
  15157. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15158. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15159. hist[vi0]++;
  15160. hist[vi1]++;
  15161. }
  15162. }
  15163. }
  15164. return (n/QK5_1*sizeof(block_q5_1));
  15165. }
  15166. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15167. assert(k % QK8_0 == 0);
  15168. const int nb = k / QK8_0;
  15169. for (int b = 0; b < n; b += k) {
  15170. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15171. quantize_row_q8_0_reference(src + b, y, k);
  15172. for (int i = 0; i < nb; i++) {
  15173. for (int j = 0; j < QK8_0; ++j) {
  15174. const int8_t vi = y[i].qs[j];
  15175. hist[vi/16 + 8]++;
  15176. }
  15177. }
  15178. }
  15179. return (n/QK8_0*sizeof(block_q8_0));
  15180. }
  15181. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15182. size_t result = 0;
  15183. switch (type) {
  15184. case GGML_TYPE_Q4_0:
  15185. {
  15186. GGML_ASSERT(start % QK4_0 == 0);
  15187. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15188. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15189. } break;
  15190. case GGML_TYPE_Q4_1:
  15191. {
  15192. GGML_ASSERT(start % QK4_1 == 0);
  15193. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15194. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15195. } break;
  15196. case GGML_TYPE_Q5_0:
  15197. {
  15198. GGML_ASSERT(start % QK5_0 == 0);
  15199. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15200. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15201. } break;
  15202. case GGML_TYPE_Q5_1:
  15203. {
  15204. GGML_ASSERT(start % QK5_1 == 0);
  15205. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15206. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15207. } break;
  15208. case GGML_TYPE_Q8_0:
  15209. {
  15210. GGML_ASSERT(start % QK8_0 == 0);
  15211. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15212. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15213. } break;
  15214. #ifdef GGML_USE_K_QUANTS
  15215. case GGML_TYPE_Q2_K:
  15216. {
  15217. GGML_ASSERT(start % QK_K == 0);
  15218. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15219. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15220. } break;
  15221. case GGML_TYPE_Q3_K:
  15222. {
  15223. GGML_ASSERT(start % QK_K == 0);
  15224. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15225. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15226. } break;
  15227. case GGML_TYPE_Q4_K:
  15228. {
  15229. GGML_ASSERT(start % QK_K == 0);
  15230. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15231. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15232. } break;
  15233. case GGML_TYPE_Q5_K:
  15234. {
  15235. GGML_ASSERT(start % QK_K == 0);
  15236. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15237. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15238. } break;
  15239. case GGML_TYPE_Q6_K:
  15240. {
  15241. GGML_ASSERT(start % QK_K == 0);
  15242. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15243. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15244. } break;
  15245. #endif
  15246. case GGML_TYPE_F16:
  15247. {
  15248. int elemsize = sizeof(ggml_fp16_t);
  15249. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15250. result = n * elemsize;
  15251. } break;
  15252. case GGML_TYPE_F32:
  15253. {
  15254. int elemsize = sizeof(float);
  15255. result = n * elemsize;
  15256. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15257. } break;
  15258. default:
  15259. assert(false);
  15260. }
  15261. return result;
  15262. }
  15263. ////////////////////////////////////////////////////////////////////////////////
  15264. int ggml_cpu_has_avx(void) {
  15265. #if defined(__AVX__)
  15266. return 1;
  15267. #else
  15268. return 0;
  15269. #endif
  15270. }
  15271. int ggml_cpu_has_avx2(void) {
  15272. #if defined(__AVX2__)
  15273. return 1;
  15274. #else
  15275. return 0;
  15276. #endif
  15277. }
  15278. int ggml_cpu_has_avx512(void) {
  15279. #if defined(__AVX512F__)
  15280. return 1;
  15281. #else
  15282. return 0;
  15283. #endif
  15284. }
  15285. int ggml_cpu_has_avx512_vbmi(void) {
  15286. #if defined(__AVX512VBMI__)
  15287. return 1;
  15288. #else
  15289. return 0;
  15290. #endif
  15291. }
  15292. int ggml_cpu_has_avx512_vnni(void) {
  15293. #if defined(__AVX512VNNI__)
  15294. return 1;
  15295. #else
  15296. return 0;
  15297. #endif
  15298. }
  15299. int ggml_cpu_has_fma(void) {
  15300. #if defined(__FMA__)
  15301. return 1;
  15302. #else
  15303. return 0;
  15304. #endif
  15305. }
  15306. int ggml_cpu_has_neon(void) {
  15307. #if defined(__ARM_NEON)
  15308. return 1;
  15309. #else
  15310. return 0;
  15311. #endif
  15312. }
  15313. int ggml_cpu_has_arm_fma(void) {
  15314. #if defined(__ARM_FEATURE_FMA)
  15315. return 1;
  15316. #else
  15317. return 0;
  15318. #endif
  15319. }
  15320. int ggml_cpu_has_f16c(void) {
  15321. #if defined(__F16C__)
  15322. return 1;
  15323. #else
  15324. return 0;
  15325. #endif
  15326. }
  15327. int ggml_cpu_has_fp16_va(void) {
  15328. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15329. return 1;
  15330. #else
  15331. return 0;
  15332. #endif
  15333. }
  15334. int ggml_cpu_has_wasm_simd(void) {
  15335. #if defined(__wasm_simd128__)
  15336. return 1;
  15337. #else
  15338. return 0;
  15339. #endif
  15340. }
  15341. int ggml_cpu_has_blas(void) {
  15342. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15343. return 1;
  15344. #else
  15345. return 0;
  15346. #endif
  15347. }
  15348. int ggml_cpu_has_cublas(void) {
  15349. #if defined(GGML_USE_CUBLAS)
  15350. return 1;
  15351. #else
  15352. return 0;
  15353. #endif
  15354. }
  15355. int ggml_cpu_has_clblast(void) {
  15356. #if defined(GGML_USE_CLBLAST)
  15357. return 1;
  15358. #else
  15359. return 0;
  15360. #endif
  15361. }
  15362. int ggml_cpu_has_gpublas(void) {
  15363. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15364. }
  15365. int ggml_cpu_has_sse3(void) {
  15366. #if defined(__SSE3__)
  15367. return 1;
  15368. #else
  15369. return 0;
  15370. #endif
  15371. }
  15372. int ggml_cpu_has_vsx(void) {
  15373. #if defined(__POWER9_VECTOR__)
  15374. return 1;
  15375. #else
  15376. return 0;
  15377. #endif
  15378. }
  15379. ////////////////////////////////////////////////////////////////////////////////