convert_hf_to_gguf.py 523 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. # Handle empty tensor_map for models with block_count=0 (like MobileNetV5)
  448. if self.tensor_map.mapping:
  449. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  450. else:
  451. max_name_len = len("vision_encoder.weight,") # Default reasonable length
  452. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  453. # we don't need these
  454. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  455. continue
  456. old_dtype = data_torch.dtype
  457. # convert any unsupported data types to float32
  458. if data_torch.dtype not in (torch.float16, torch.float32):
  459. data_torch = data_torch.to(torch.float32)
  460. # use the first number-like part of the tensor name as the block id
  461. bid = None
  462. for part in name.split("."):
  463. if part.isdecimal():
  464. bid = int(part)
  465. break
  466. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  467. # TODO: why do we squeeze here?
  468. # data = data_torch.squeeze().numpy()
  469. data = data_torch.numpy()
  470. n_dims = len(data.shape)
  471. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  472. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  473. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  474. data_qtype = gguf.GGMLQuantizationType.F32
  475. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  476. # Some tensor types are always in float32
  477. if data_qtype is False and (
  478. any(
  479. self.match_model_tensor_name(new_name, key, bid)
  480. for key in (
  481. gguf.MODEL_TENSOR.FFN_GATE_INP,
  482. gguf.MODEL_TENSOR.POS_EMBD,
  483. gguf.MODEL_TENSOR.TOKEN_TYPES,
  484. gguf.MODEL_TENSOR.SSM_CONV1D,
  485. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  486. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  487. gguf.MODEL_TENSOR.TIME_MIX_W1,
  488. gguf.MODEL_TENSOR.TIME_MIX_W2,
  489. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  490. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  491. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  492. gguf.MODEL_TENSOR.POSNET_NORM1,
  493. gguf.MODEL_TENSOR.POSNET_NORM2,
  494. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  495. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  496. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  497. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  498. )
  499. )
  500. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  501. ):
  502. data_qtype = gguf.GGMLQuantizationType.F32
  503. if data_qtype is False and any(
  504. self.match_model_tensor_name(new_name, key, bid)
  505. for key in (
  506. gguf.MODEL_TENSOR.TOKEN_EMBD,
  507. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  508. gguf.MODEL_TENSOR.OUTPUT,
  509. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  510. gguf.MODEL_TENSOR.LAUREL_L,
  511. gguf.MODEL_TENSOR.LAUREL_R,
  512. )
  513. ):
  514. if self.ftype in (
  515. gguf.LlamaFileType.MOSTLY_TQ1_0,
  516. gguf.LlamaFileType.MOSTLY_TQ2_0,
  517. ):
  518. # TODO: use Q4_K and Q6_K
  519. data_qtype = gguf.GGMLQuantizationType.F16
  520. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  521. if isinstance(data_qtype, bool):
  522. if self.ftype == gguf.LlamaFileType.ALL_F32:
  523. data_qtype = gguf.GGMLQuantizationType.F32
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  525. data_qtype = gguf.GGMLQuantizationType.F16
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  527. data_qtype = gguf.GGMLQuantizationType.BF16
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  529. data_qtype = gguf.GGMLQuantizationType.Q8_0
  530. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  531. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  532. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  533. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  534. else:
  535. raise ValueError(f"Unknown file type: {self.ftype.name}")
  536. try:
  537. data = gguf.quants.quantize(data, data_qtype)
  538. except gguf.QuantError as e:
  539. logger.warning("%s, %s", e, "falling back to F16")
  540. data_qtype = gguf.GGMLQuantizationType.F16
  541. data = gguf.quants.quantize(data, data_qtype)
  542. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  543. # reverse shape to make it similar to the internal ggml dimension order
  544. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  545. # n_dims is implicit in the shape
  546. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  547. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  548. def set_type(self):
  549. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  550. def prepare_metadata(self, vocab_only: bool):
  551. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  552. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  553. # If we are using HF model id, set the metadata name to the model id
  554. if self.remote_hf_model_id:
  555. self.metadata.name = self.remote_hf_model_id
  556. # Fallback to model directory name if metadata name is still missing
  557. if self.metadata.name is None:
  558. self.metadata.name = self.dir_model.name
  559. # Generate parameter weight class (useful for leader boards) if not yet determined
  560. if self.metadata.size_label is None and total_params > 0:
  561. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  562. self.set_type()
  563. logger.info("Set meta model")
  564. self.metadata.set_gguf_meta_model(self.gguf_writer)
  565. logger.info("Set model parameters")
  566. self.set_gguf_parameters()
  567. logger.info("Set model quantization version")
  568. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  569. def write_vocab(self):
  570. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  571. def write(self):
  572. self.prepare_tensors()
  573. self.prepare_metadata(vocab_only=False)
  574. self.gguf_writer.write_header_to_file(path=self.fname_out)
  575. self.gguf_writer.write_kv_data_to_file()
  576. self.gguf_writer.write_tensors_to_file(progress=True)
  577. self.gguf_writer.close()
  578. @staticmethod
  579. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  580. part_names: list[str] = []
  581. for filename in os.listdir(dir_model):
  582. if filename.startswith(prefix) and filename.endswith(suffix):
  583. part_names.append(filename)
  584. part_names.sort()
  585. return part_names
  586. @staticmethod
  587. def load_hparams(dir_model: Path, is_mistral_format: bool):
  588. if is_mistral_format:
  589. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  590. config = json.load(f)
  591. return config
  592. try:
  593. # for security reason, we don't allow loading remote code by default
  594. # if a model need remote code, we will fallback to config.json
  595. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  596. except Exception as e:
  597. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  598. logger.warning("Trying to load config.json instead")
  599. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  600. config = json.load(f)
  601. if "llm_config" in config:
  602. # rename for InternVL
  603. config["text_config"] = config["llm_config"]
  604. if "lm_config" in config:
  605. # rename for GlmASR
  606. config["text_config"] = config["lm_config"]
  607. if "thinker_config" in config:
  608. # rename for Qwen2.5-Omni
  609. config["text_config"] = config["thinker_config"]["text_config"]
  610. if "lfm" in config:
  611. # rename for LFM2-Audio
  612. config["text_config"] = config["lfm"]
  613. return config
  614. @classmethod
  615. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  616. assert names
  617. def func(modelcls: AnyModel) -> AnyModel:
  618. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  619. for name in names:
  620. cls._model_classes[model_type][name] = modelcls
  621. return modelcls
  622. return func
  623. @classmethod
  624. def print_registered_models(cls):
  625. for model_type, model_classes in cls._model_classes.items():
  626. logger.error(f"{model_type.name} models:")
  627. for name in sorted(model_classes.keys()):
  628. logger.error(f" - {name}")
  629. @classmethod
  630. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  631. try:
  632. return cls._model_classes[model_type][arch]
  633. except KeyError:
  634. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  635. class TextModel(ModelBase):
  636. model_type = ModelType.TEXT
  637. hf_arch: str
  638. def __init__(self, *args, **kwargs):
  639. super().__init__(*args, **kwargs)
  640. if not self.is_mistral_format:
  641. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  642. else:
  643. self.hf_arch = ""
  644. if "text_config" in self.hparams:
  645. # move the text_config to the root level
  646. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  647. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  648. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  649. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  650. rope_theta = self.find_hparam(["global_rope_theta", "rope_global_theta", "rope_theta_global", "rope_theta", "rotary_emb_base"], optional=True)
  651. local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "rope_theta_local", "swa_rope_theta", "rope_local_base_freq"], optional=True)
  652. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  653. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  654. if local_rope_theta is not None:
  655. self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
  656. if "rope_theta" not in self.rope_parameters and rope_theta is not None:
  657. self.rope_parameters["rope_theta"] = rope_theta
  658. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  659. self.rope_parameters["rope_type"] = rope_type
  660. @classmethod
  661. def __init_subclass__(cls):
  662. # can't use an abstract property, because overriding it without type errors
  663. # would require using decorated functions instead of simply defining the property
  664. if "model_arch" not in cls.__dict__:
  665. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  666. def set_vocab(self):
  667. self._set_vocab_gpt2()
  668. def prepare_metadata(self, vocab_only: bool):
  669. super().prepare_metadata(vocab_only=vocab_only)
  670. total_params = self.gguf_writer.get_total_parameter_count()[0]
  671. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  672. output_type: str = self.ftype.name.partition("_")[2]
  673. # Filename Output
  674. if self.fname_out.is_dir():
  675. # Generate default filename based on model specification and available metadata
  676. if not vocab_only:
  677. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  678. else:
  679. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  680. # Use the default filename
  681. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  682. else:
  683. # Output path is a custom defined templated filename
  684. # Note: `not is_dir()` is used because `.is_file()` will not detect
  685. # file template strings as it doesn't actually exist as a file
  686. # Process templated file name with the output ftype, useful with the "auto" ftype
  687. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  688. logger.info("Set model tokenizer")
  689. self.set_vocab()
  690. def set_gguf_parameters(self):
  691. self.gguf_writer.add_block_count(self.block_count)
  692. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  693. self.gguf_writer.add_context_length(n_ctx)
  694. logger.info(f"gguf: context length = {n_ctx}")
  695. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  696. self.gguf_writer.add_embedding_length(n_embd)
  697. logger.info(f"gguf: embedding length = {n_embd}")
  698. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  699. self.gguf_writer.add_feed_forward_length(n_ff)
  700. logger.info(f"gguf: feed forward length = {n_ff}")
  701. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  702. self.gguf_writer.add_head_count(n_head)
  703. logger.info(f"gguf: head count = {n_head}")
  704. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  705. self.gguf_writer.add_head_count_kv(n_head_kv)
  706. logger.info(f"gguf: key-value head count = {n_head_kv}")
  707. # TODO: Handle "sliding_attention" similarly when models start implementing it
  708. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  709. if (rope_type := rope_params.get("rope_type")) is not None:
  710. rope_factor = rope_params.get("factor")
  711. rope_gguf_type = gguf.RopeScalingType.NONE
  712. if rope_type == "linear" and rope_factor is not None:
  713. rope_gguf_type = gguf.RopeScalingType.LINEAR
  714. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  715. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  716. elif rope_type == "yarn" and rope_factor is not None:
  717. rope_gguf_type = gguf.RopeScalingType.YARN
  718. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  719. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  720. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  721. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  722. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  723. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  724. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  725. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  726. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  727. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  728. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  729. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  730. elif rope_type == "su" or rope_type == "longrope":
  731. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  732. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  733. elif rope_type == "dynamic":
  734. # HunYuan, handled in model class
  735. pass
  736. elif rope_type.lower() == "llama3":
  737. # Handled in generate_extra_tensors
  738. pass
  739. else:
  740. logger.warning(f"Unknown RoPE type: {rope_type}")
  741. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  742. if "mrope_section" in self.rope_parameters:
  743. mrope_section = self.rope_parameters["mrope_section"]
  744. # Pad to 4 dimensions [time, height, width, extra]
  745. while len(mrope_section) < 4:
  746. mrope_section.append(0)
  747. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  748. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  749. if (rope_theta := rope_params.get("rope_theta")) is not None:
  750. self.gguf_writer.add_rope_freq_base(rope_theta)
  751. logger.info(f"gguf: rope theta = {rope_theta}")
  752. if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
  753. self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
  754. logger.info(f"gguf: rope theta swa = {local_rope_theta}")
  755. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  756. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  757. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  758. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  759. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  760. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  761. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  762. self.gguf_writer.add_expert_count(n_experts)
  763. logger.info(f"gguf: expert count = {n_experts}")
  764. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  765. self.gguf_writer.add_expert_used_count(n_experts_used)
  766. logger.info(f"gguf: experts used count = {n_experts_used}")
  767. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  768. self.gguf_writer.add_expert_group_count(n_expert_groups)
  769. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  770. if (n_group_used := self.hparams.get("topk_group")) is not None:
  771. self.gguf_writer.add_expert_group_used_count(n_group_used)
  772. logger.info(f"gguf: expert groups used count = {n_group_used}")
  773. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  774. if score_func == "sigmoid":
  775. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  776. elif score_func == "softmax":
  777. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  778. else:
  779. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  780. logger.info(f"gguf: expert score gating function = {score_func}")
  781. if (head_dim := self.hparams.get("head_dim")) is not None:
  782. self.gguf_writer.add_key_length(head_dim)
  783. self.gguf_writer.add_value_length(head_dim)
  784. self.gguf_writer.add_file_type(self.ftype)
  785. logger.info(f"gguf: file type = {self.ftype}")
  786. def write_vocab(self):
  787. if len(self.gguf_writer.tensors) != 1:
  788. raise ValueError('Splitting the vocabulary is not supported')
  789. self.prepare_metadata(vocab_only=True)
  790. self.gguf_writer.write_header_to_file(path=self.fname_out)
  791. self.gguf_writer.write_kv_data_to_file()
  792. self.gguf_writer.close()
  793. def does_token_look_special(self, token: str | bytes) -> bool:
  794. if isinstance(token, (bytes, bytearray)):
  795. token_text = token.decode(encoding="utf-8")
  796. elif isinstance(token, memoryview):
  797. token_text = token.tobytes().decode(encoding="utf-8")
  798. else:
  799. token_text = token
  800. # Some models mark some added tokens which ought to be control tokens as not special.
  801. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  802. seems_special = token_text in (
  803. "<pad>", # deepseek-coder
  804. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  805. )
  806. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  807. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  808. # TODO: should these be marked as UNUSED instead? (maybe not)
  809. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  810. return seems_special
  811. # used for GPT-2 BPE and WordPiece vocabs
  812. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  813. tokens: list[str] = []
  814. toktypes: list[int] = []
  815. from transformers import AutoTokenizer
  816. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  817. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  818. assert max(tokenizer.vocab.values()) < vocab_size
  819. tokpre = self.get_vocab_base_pre(tokenizer)
  820. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  821. added_vocab = tokenizer.get_added_vocab()
  822. added_tokens_decoder = tokenizer.added_tokens_decoder
  823. for i in range(vocab_size):
  824. if i not in reverse_vocab:
  825. tokens.append(f"[PAD{i}]")
  826. toktypes.append(gguf.TokenType.UNUSED)
  827. else:
  828. token: str = reverse_vocab[i]
  829. if token in added_vocab:
  830. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  831. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  832. if not added_tokens_decoder[i].normalized:
  833. previous_token = token
  834. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  835. if previous_token != token:
  836. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  837. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  838. toktypes.append(gguf.TokenType.CONTROL)
  839. else:
  840. # NOTE: this was added for Gemma.
  841. # Encoding and decoding the tokens above isn't sufficient for this case.
  842. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  843. toktypes.append(gguf.TokenType.USER_DEFINED)
  844. else:
  845. toktypes.append(gguf.TokenType.NORMAL)
  846. tokens.append(token)
  847. return tokens, toktypes, tokpre
  848. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  849. # do not modify it manually!
  850. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  851. # Marker: Start get_vocab_base_pre
  852. def get_vocab_base_pre(self, tokenizer) -> str:
  853. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  854. # is specific for the BPE pre-tokenizer used by the model
  855. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  856. # use in llama.cpp to implement the same pre-tokenizer
  857. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  858. chktok = tokenizer.encode(chktxt)
  859. chkhsh = sha256(str(chktok).encode()).hexdigest()
  860. logger.debug(f"chktok: {chktok}")
  861. logger.debug(f"chkhsh: {chkhsh}")
  862. res = None
  863. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  864. # or pull the latest version of the model from Huggingface
  865. # don't edit the hashes manually!
  866. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  867. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  868. res = "chatglm-bpe"
  869. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  870. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  871. res = "chatglm-bpe"
  872. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  873. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  874. res = "glm4"
  875. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  876. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  877. res = "glm4"
  878. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  879. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  880. res = "minerva-7b"
  881. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  882. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  883. res = "hunyuan"
  884. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  885. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  886. res = "hunyuan-dense"
  887. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  888. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  889. res = "falcon-h1"
  890. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  891. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  892. res = "falcon-h1"
  893. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  894. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  895. res = "falcon-h1"
  896. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  897. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  898. res = "falcon-h1"
  899. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  900. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  901. res = "kimi-k2"
  902. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  903. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  904. res = "qwen2"
  905. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  906. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  907. res = "grok-2"
  908. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  909. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  910. res = "jina-v2-de"
  911. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  912. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  913. res = "llama-bpe"
  914. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  915. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  916. res = "deepseek-llm"
  917. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  918. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  919. res = "deepseek-coder"
  920. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  921. # ref: https://huggingface.co/tiiuae/falcon-7b
  922. res = "falcon"
  923. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  924. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  925. res = "bert-bge"
  926. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  927. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  928. res = "falcon3"
  929. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  930. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  931. res = "bert-bge-large"
  932. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  933. # ref: https://huggingface.co/mosaicml/mpt-7b
  934. res = "mpt"
  935. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  936. # ref: https://huggingface.co/bigcode/starcoder2-3b
  937. res = "starcoder"
  938. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  939. # ref: https://huggingface.co/openai-community/gpt2
  940. res = "gpt-2"
  941. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  942. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  943. res = "stablelm2"
  944. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  945. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  946. res = "refact"
  947. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  948. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  949. res = "command-r"
  950. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  951. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  952. res = "qwen2"
  953. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  954. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  955. res = "olmo"
  956. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  957. # ref: https://huggingface.co/databricks/dbrx-base
  958. res = "dbrx"
  959. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  960. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  961. res = "jina-v1-en"
  962. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  963. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  964. res = "jina-v2-en"
  965. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  966. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  967. res = "jina-v2-es"
  968. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  969. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  970. res = "jina-v2-de"
  971. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  972. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  973. res = "smaug-bpe"
  974. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  975. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  976. res = "poro-chat"
  977. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  978. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  979. res = "jina-v2-code"
  980. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  981. # ref: https://huggingface.co/LumiOpen/Viking-7B
  982. res = "viking"
  983. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  984. # ref: https://huggingface.co/core42/jais-13b
  985. res = "jais"
  986. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  987. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  988. res = "codeshell"
  989. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  990. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  991. res = "tekken"
  992. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  993. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  994. res = "smollm"
  995. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  996. # ref: https://huggingface.co/bigscience/bloom
  997. res = "bloom"
  998. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  999. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  1000. res = "gpt3-finnish"
  1001. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  1002. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  1003. res = "exaone"
  1004. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  1005. # ref: https://huggingface.co/microsoft/phi-2
  1006. res = "phi-2"
  1007. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  1008. # ref: https://huggingface.co/facebook/chameleon-7b
  1009. res = "chameleon"
  1010. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  1011. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1012. res = "roberta-bpe"
  1013. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1014. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1015. res = "gigachat"
  1016. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1017. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1018. res = "megrez"
  1019. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1020. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1021. res = "deepseek-v3"
  1022. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1023. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1024. res = "deepseek-r1-qwen"
  1025. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1026. # ref: https://huggingface.co/Xenova/gpt-4o
  1027. res = "gpt-4o"
  1028. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1029. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1030. res = "superbpe"
  1031. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1032. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1033. res = "trillion"
  1034. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1035. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1036. res = "bailingmoe"
  1037. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1038. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1039. res = "llama4"
  1040. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1041. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1042. res = "pixtral"
  1043. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1044. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1045. res = "seed-coder"
  1046. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1047. # ref: https://huggingface.co/skt/A.X-4.0
  1048. res = "a.x-4.0"
  1049. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1050. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1051. res = "midm-2.0"
  1052. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1053. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1054. res = "lfm2"
  1055. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1056. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1057. res = "exaone4"
  1058. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1059. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1060. res = "mellum"
  1061. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1062. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1063. res = "modern-bert"
  1064. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1065. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1066. res = "afmoe"
  1067. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1068. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1069. res = "bailingmoe2"
  1070. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1071. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1072. res = "granite-docling"
  1073. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1074. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1075. res = "minimax-m2"
  1076. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1077. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1078. res = "kormo"
  1079. if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
  1080. # ref: https://huggingface.co/tencent/Youtu-LLM-2B
  1081. res = "youtu"
  1082. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1083. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1084. res = "solar-open"
  1085. if chkhsh == "6c81ce329e0802883b22eabab0d3fa48357337ef1ecb45443828bf1f6254833f":
  1086. # ref: https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B
  1087. res = "exaone-moe"
  1088. if res is None:
  1089. logger.warning("\n")
  1090. logger.warning("**************************************************************************************")
  1091. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1092. logger.warning("** There are 2 possible reasons for this:")
  1093. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1094. logger.warning("** - the pre-tokenization config has changed upstream")
  1095. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1096. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1097. logger.warning("**")
  1098. logger.warning(f"** chkhsh: {chkhsh}")
  1099. logger.warning("**************************************************************************************")
  1100. logger.warning("\n")
  1101. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1102. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1103. logger.debug(f"chkhsh: {chkhsh}")
  1104. return res
  1105. # Marker: End get_vocab_base_pre
  1106. def _set_vocab_none(self) -> None:
  1107. self.gguf_writer.add_tokenizer_model("none")
  1108. def _set_vocab_gpt2(self) -> None:
  1109. tokens, toktypes, tokpre = self.get_vocab_base()
  1110. self.gguf_writer.add_tokenizer_model("gpt2")
  1111. self.gguf_writer.add_tokenizer_pre(tokpre)
  1112. self.gguf_writer.add_token_list(tokens)
  1113. self.gguf_writer.add_token_types(toktypes)
  1114. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1115. special_vocab.add_to_gguf(self.gguf_writer)
  1116. def _set_vocab_qwen(self):
  1117. dir_model = self.dir_model
  1118. hparams = self.hparams
  1119. tokens: list[str] = []
  1120. toktypes: list[int] = []
  1121. from transformers import AutoTokenizer
  1122. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1123. vocab_size = hparams["vocab_size"]
  1124. assert max(tokenizer.get_vocab().values()) < vocab_size
  1125. tokpre = self.get_vocab_base_pre(tokenizer)
  1126. merges = []
  1127. vocab = {}
  1128. mergeable_ranks = tokenizer.mergeable_ranks
  1129. for token, rank in mergeable_ranks.items():
  1130. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1131. if len(token) == 1:
  1132. continue
  1133. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1134. assert len(merged) == 2
  1135. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1136. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1137. added_vocab = tokenizer.special_tokens
  1138. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1139. for i in range(vocab_size):
  1140. if i not in reverse_vocab:
  1141. tokens.append(f"[PAD{i}]")
  1142. toktypes.append(gguf.TokenType.UNUSED)
  1143. elif reverse_vocab[i] in added_vocab:
  1144. tokens.append(reverse_vocab[i])
  1145. toktypes.append(gguf.TokenType.CONTROL)
  1146. else:
  1147. tokens.append(reverse_vocab[i])
  1148. toktypes.append(gguf.TokenType.NORMAL)
  1149. self.gguf_writer.add_tokenizer_model("gpt2")
  1150. self.gguf_writer.add_tokenizer_pre(tokpre)
  1151. self.gguf_writer.add_token_list(tokens)
  1152. self.gguf_writer.add_token_types(toktypes)
  1153. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1154. special_vocab.merges = merges
  1155. # only add special tokens when they were not already loaded from config.json
  1156. if len(special_vocab.special_token_ids) == 0:
  1157. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1158. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1159. # this one is usually not in config.json anyway
  1160. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1161. special_vocab.add_to_gguf(self.gguf_writer)
  1162. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1163. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1164. self.gguf_writer.add_tokenizer_model("llama")
  1165. self.gguf_writer.add_tokenizer_pre("default")
  1166. self.gguf_writer.add_token_list(tokens)
  1167. self.gguf_writer.add_token_scores(scores)
  1168. self.gguf_writer.add_token_types(toktypes)
  1169. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1170. special_vocab.add_to_gguf(self.gguf_writer)
  1171. def _create_vocab_sentencepiece(self):
  1172. from sentencepiece import SentencePieceProcessor
  1173. tokenizer_path = self.dir_model / 'tokenizer.model'
  1174. if not tokenizer_path.is_file():
  1175. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1176. tokenizer = SentencePieceProcessor()
  1177. tokenizer.LoadFromFile(str(tokenizer_path))
  1178. vocab_size = self.find_hparam([
  1179. "vocab_size_per_layer_input", # gemma3n
  1180. "vocab_size",
  1181. ], optional=True) or tokenizer.vocab_size()
  1182. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1183. scores: list[float] = [-10000.0] * vocab_size
  1184. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1185. for token_id in range(tokenizer.vocab_size()):
  1186. if token_id >= vocab_size:
  1187. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1188. break
  1189. piece = tokenizer.IdToPiece(token_id)
  1190. text = piece.encode("utf-8")
  1191. score = tokenizer.GetScore(token_id)
  1192. toktype = SentencePieceTokenTypes.NORMAL
  1193. if tokenizer.IsUnknown(token_id):
  1194. toktype = SentencePieceTokenTypes.UNKNOWN
  1195. elif tokenizer.IsControl(token_id):
  1196. toktype = SentencePieceTokenTypes.CONTROL
  1197. elif tokenizer.IsUnused(token_id):
  1198. toktype = SentencePieceTokenTypes.UNUSED
  1199. elif tokenizer.IsByte(token_id):
  1200. toktype = SentencePieceTokenTypes.BYTE
  1201. tokens[token_id] = text
  1202. scores[token_id] = score
  1203. toktypes[token_id] = toktype
  1204. added_tokens_file = self.dir_model / 'added_tokens.json'
  1205. if added_tokens_file.is_file():
  1206. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1207. added_tokens_json = json.load(f)
  1208. for key in added_tokens_json:
  1209. token_id = added_tokens_json[key]
  1210. if token_id >= vocab_size:
  1211. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1212. continue
  1213. tokens[token_id] = key.encode("utf-8")
  1214. scores[token_id] = -1000.0
  1215. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1216. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1217. if tokenizer_config_file.is_file():
  1218. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1219. tokenizer_config_json = json.load(f)
  1220. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1221. for token_id, token_data in added_tokens_decoder.items():
  1222. token_id = int(token_id)
  1223. token: str = token_data["content"]
  1224. if token_id >= vocab_size:
  1225. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1226. continue
  1227. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1228. if tokens[token_id] != token.encode("utf-8"):
  1229. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1230. if token_data.get("special") or self.does_token_look_special(token):
  1231. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1232. else:
  1233. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1234. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1235. scores[token_id] = -1000.0
  1236. tokens[token_id] = token.encode("utf-8")
  1237. if vocab_size > len(tokens):
  1238. pad_count = vocab_size - len(tokens)
  1239. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1240. for i in range(1, pad_count + 1):
  1241. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1242. scores.append(-1000.0)
  1243. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1244. return tokens, scores, toktypes
  1245. def _set_vocab_llama_hf(self):
  1246. vocab = gguf.LlamaHfVocab(self.dir_model)
  1247. tokens = []
  1248. scores = []
  1249. toktypes = []
  1250. for text, score, toktype in vocab.all_tokens():
  1251. tokens.append(text)
  1252. scores.append(score)
  1253. toktypes.append(toktype)
  1254. assert len(tokens) == vocab.vocab_size
  1255. self.gguf_writer.add_tokenizer_model("llama")
  1256. self.gguf_writer.add_tokenizer_pre("default")
  1257. self.gguf_writer.add_token_list(tokens)
  1258. self.gguf_writer.add_token_scores(scores)
  1259. self.gguf_writer.add_token_types(toktypes)
  1260. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1261. special_vocab.add_to_gguf(self.gguf_writer)
  1262. def _set_vocab_rwkv_world(self):
  1263. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1264. vocab_size = self.hparams.get("vocab_size", 65536)
  1265. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1266. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1267. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1268. lines = f.readlines()
  1269. for line in lines:
  1270. parts = line.split(' ')
  1271. assert len(parts) >= 3
  1272. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1273. token = token.encode("utf-8") if isinstance(token, str) else token
  1274. assert isinstance(token, bytes)
  1275. assert len(token) == token_len
  1276. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1277. tokens.append(token_text.encode("utf-8"))
  1278. toktypes.append(gguf.TokenType.NORMAL)
  1279. remainder = vocab_size - len(tokens)
  1280. assert remainder >= 0
  1281. for i in range(len(tokens), vocab_size):
  1282. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1283. toktypes.append(gguf.TokenType.UNUSED)
  1284. self.gguf_writer.add_tokenizer_model("rwkv")
  1285. self.gguf_writer.add_token_list(tokens)
  1286. self.gguf_writer.add_token_types(toktypes)
  1287. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1288. if special_vocab.chat_template is None:
  1289. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1290. if template_path.is_file():
  1291. with open(template_path, "r", encoding="utf-8") as f:
  1292. template = f.read()
  1293. else:
  1294. template = "rwkv-world"
  1295. special_vocab.chat_template = template
  1296. # hack: Add '\n\n' as the EOT token to make it chat normally
  1297. special_vocab._set_special_token("eot", 261)
  1298. # hack: Override these as they have already been set (incorrectly)
  1299. special_vocab.special_token_ids["bos"] = 0
  1300. special_vocab.special_token_ids["eos"] = 0
  1301. special_vocab.add_to_gguf(self.gguf_writer)
  1302. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1303. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1304. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1305. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1306. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1307. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1308. assert field # tokenizer model
  1309. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1310. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1311. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1312. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1313. assert field # token list
  1314. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1315. if model_name == "llama-spm":
  1316. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1317. assert field # token scores
  1318. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1319. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1320. assert field # token types
  1321. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1322. if model_name != "llama-spm":
  1323. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1324. assert field # token merges
  1325. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1326. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1327. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1328. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1329. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1330. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1331. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1332. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1333. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1334. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1335. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1336. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1337. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1338. def _try_set_pooling_type(self) -> None:
  1339. # get pooling path
  1340. pooling_path = None
  1341. module_path = self.dir_model / "modules.json"
  1342. if module_path.is_file():
  1343. with open(module_path, encoding="utf-8") as f:
  1344. modules = json.load(f)
  1345. for mod in modules:
  1346. if mod["type"] == "sentence_transformers.models.Pooling":
  1347. pooling_path = mod["path"]
  1348. break
  1349. # get pooling type
  1350. if pooling_path is not None:
  1351. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1352. pooling = json.load(f)
  1353. if pooling["pooling_mode_mean_tokens"]:
  1354. pooling_type = gguf.PoolingType.MEAN
  1355. elif pooling["pooling_mode_cls_token"]:
  1356. pooling_type = gguf.PoolingType.CLS
  1357. elif pooling["pooling_mode_lasttoken"]:
  1358. pooling_type = gguf.PoolingType.LAST
  1359. else:
  1360. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1361. self.gguf_writer.add_pooling_type(pooling_type)
  1362. def _set_vocab_glmedge(self):
  1363. from transformers import AutoTokenizer
  1364. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1365. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1366. tokens, toktypes, tokpre = self.get_vocab_base()
  1367. self.gguf_writer.add_tokenizer_model("gpt2")
  1368. self.gguf_writer.add_tokenizer_pre(tokpre)
  1369. self.gguf_writer.add_token_list(tokens)
  1370. self.gguf_writer.add_token_types(toktypes)
  1371. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1372. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1373. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1374. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1375. special_vocab.add_to_gguf(self.gguf_writer)
  1376. def _set_vocab_interns1(self):
  1377. tokens: list[str] = []
  1378. toktypes: list[int] = []
  1379. from transformers import AutoTokenizer
  1380. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1381. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1382. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1383. assert max(vocab.values()) < vocab_size
  1384. tokpre = self.get_vocab_base_pre(tokenizer)
  1385. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1386. added_vocab = tokenizer.get_added_vocab()
  1387. added_tokens_decoder = tokenizer.added_tokens_decoder
  1388. for i in range(vocab_size):
  1389. if i not in reverse_vocab:
  1390. tokens.append(f"[PAD{i}]")
  1391. toktypes.append(gguf.TokenType.UNUSED)
  1392. else:
  1393. token: str = reverse_vocab[i]
  1394. if token in added_vocab:
  1395. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1396. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1397. if not added_tokens_decoder[i].normalized:
  1398. previous_token = token
  1399. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1400. if previous_token != token:
  1401. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1402. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1403. toktypes.append(gguf.TokenType.CONTROL)
  1404. else:
  1405. toktypes.append(gguf.TokenType.USER_DEFINED)
  1406. else:
  1407. toktypes.append(gguf.TokenType.NORMAL)
  1408. tokens.append(token)
  1409. self.gguf_writer.add_tokenizer_model("gpt2")
  1410. self.gguf_writer.add_tokenizer_pre(tokpre)
  1411. self.gguf_writer.add_token_list(tokens)
  1412. self.gguf_writer.add_token_types(toktypes)
  1413. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1414. special_vocab._set_special_token("bos", 151643)
  1415. special_vocab.add_to_gguf(self.gguf_writer)
  1416. def _set_vocab_mistral(self):
  1417. if not _mistral_common_installed:
  1418. raise ImportError(_mistral_import_error_msg)
  1419. vocab = MistralVocab(self.dir_model)
  1420. logger.info(
  1421. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1422. )
  1423. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1424. tokens = []
  1425. scores = []
  1426. toktypes = []
  1427. for text, score, toktype in vocab.all_tokens():
  1428. tokens.append(text)
  1429. scores.append(score)
  1430. toktypes.append(toktype)
  1431. assert len(tokens) == vocab.vocab_size, (
  1432. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1433. )
  1434. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1435. self.gguf_writer.add_tokenizer_pre("tekken")
  1436. self.gguf_writer.add_token_merges(
  1437. vocab.extract_vocab_merges_from_model()
  1438. )
  1439. logger.info(
  1440. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1441. )
  1442. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1443. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1444. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1445. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1446. self.gguf_writer.add_token_list(tokens)
  1447. self.gguf_writer.add_token_scores(scores)
  1448. self.gguf_writer.add_token_types(toktypes)
  1449. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1450. self.gguf_writer.add_add_bos_token(True)
  1451. self.gguf_writer.add_add_eos_token(False)
  1452. local_template_file_path = self.dir_model / "chat_template.jinja"
  1453. if self.is_mistral_format and local_template_file_path.is_file():
  1454. # Ministral-3 and other new Mistral models come with chat templates.
  1455. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1456. logger.info("Using an existing Mistral local chat template.")
  1457. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1458. template = f.read()
  1459. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1460. template_dir = Path(__file__).parent / "models/templates/"
  1461. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1462. if self.is_mistral_format:
  1463. logger.info(
  1464. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1465. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1466. )
  1467. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1468. else:
  1469. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1470. template = None
  1471. if template is not None:
  1472. self.gguf_writer.add_chat_template(template)
  1473. def _set_vocab_plamo(self):
  1474. # PLaMo models use a custom tokenizer with a .jsonl file
  1475. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1476. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1477. if not tokenizer_jsonl_path.is_file():
  1478. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1479. # Load tokenizer config
  1480. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1481. tokenizer_config = json.load(f)
  1482. # Load tokens from JSONL file (actually a list format)
  1483. tokens = []
  1484. scores = []
  1485. toktypes = []
  1486. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1487. for line_num, line in enumerate(f):
  1488. if line.strip():
  1489. token_data = json.loads(line)
  1490. # Format: [token, score, type, ?, ?, ?, ?]
  1491. token = token_data[0].encode("utf-8")
  1492. score = float(token_data[1])
  1493. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1494. tokens.append(token)
  1495. scores.append(score)
  1496. if token_type_str == "UNKNOWN":
  1497. toktypes.append(gguf.TokenType.UNKNOWN)
  1498. elif token_type_str == "CONTROL":
  1499. toktypes.append(gguf.TokenType.CONTROL)
  1500. elif token_type_str == "BYTE":
  1501. toktypes.append(gguf.TokenType.BYTE)
  1502. else:
  1503. token_str = token_data[0]
  1504. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1505. toktypes.append(gguf.TokenType.CONTROL)
  1506. else:
  1507. toktypes.append(gguf.TokenType.NORMAL)
  1508. vocab_size = self.hparams["vocab_size"]
  1509. if vocab_size > len(tokens):
  1510. pad_count = vocab_size - len(tokens)
  1511. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1512. for i in range(1, pad_count + 1):
  1513. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1514. scores.append(-1000.0)
  1515. toktypes.append(gguf.TokenType.UNUSED)
  1516. self.gguf_writer.add_tokenizer_model("plamo2")
  1517. self.gguf_writer.add_tokenizer_pre("default")
  1518. self.gguf_writer.add_token_list(tokens)
  1519. self.gguf_writer.add_token_scores(scores)
  1520. self.gguf_writer.add_token_types(toktypes)
  1521. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1522. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1523. self.gguf_writer.add_bos_token_id(token_id)
  1524. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1525. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1526. self.gguf_writer.add_eos_token_id(token_id)
  1527. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1528. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1529. self.gguf_writer.add_pad_token_id(token_id)
  1530. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1531. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1532. self.gguf_writer.add_sep_token_id(token_id)
  1533. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1534. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1535. self.gguf_writer.add_unk_token_id(token_id)
  1536. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1537. self.gguf_writer.add_eot_token_id(4)
  1538. self.gguf_writer.add_add_space_prefix(False)
  1539. class MmprojModel(ModelBase):
  1540. model_type = ModelType.MMPROJ
  1541. model_arch = gguf.MODEL_ARCH.MMPROJ
  1542. preprocessor_config: dict[str, Any]
  1543. global_config: dict[str, Any]
  1544. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1545. has_vision_encoder: bool = True # by default
  1546. has_audio_encoder: bool = False
  1547. # for models having multiple encoders, we need to separate their hparams
  1548. hparams_vision: dict[str, Any] | None = None
  1549. hparams_audio: dict[str, Any] | None = None
  1550. def __init__(self, *args, **kwargs):
  1551. super().__init__(*args, **kwargs)
  1552. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1553. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1554. # get n_embd of the text model
  1555. if not self.is_mistral_format:
  1556. if "text_config" not in self.hparams:
  1557. self.hparams["text_config"] = {}
  1558. if "audio_config" not in self.hparams:
  1559. self.hparams["audio_config"] = {}
  1560. text_config = {**self.hparams, **self.hparams["text_config"]}
  1561. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1562. else:
  1563. text_config = {
  1564. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1565. }
  1566. self.n_embd_text = text_config.get("hidden_dim", 0)
  1567. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1568. # move vision config to the top level, while preserving the original hparams in global_config
  1569. import copy
  1570. self.global_config = copy.deepcopy(self.hparams)
  1571. self.hparams_vision = self.get_vision_config()
  1572. self.hparams_audio = self.get_audio_config()
  1573. if self.hparams_vision is None and self.hparams_audio is None:
  1574. raise ValueError("vision_config / audio_config not found in hparams")
  1575. # for compat with vision-only models
  1576. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1577. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1578. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1579. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1580. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1581. # load preprocessor config
  1582. self.preprocessor_config = {}
  1583. # prefer preprocessor_config.json if possible
  1584. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1585. if preprocessor_config_path.is_file():
  1586. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1587. self.preprocessor_config = json.load(f)
  1588. # prefer processor_config.json if possible
  1589. processor_config_path = self.dir_model / "processor_config.json"
  1590. if processor_config_path.is_file():
  1591. with open(processor_config_path, "r", encoding="utf-8") as f:
  1592. cfg = json.load(f)
  1593. # move image_processor to root level for compat
  1594. if "image_processor" in cfg:
  1595. cfg = {
  1596. **cfg,
  1597. **cfg["image_processor"],
  1598. }
  1599. # merge configs
  1600. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1601. def get_vision_config(self) -> dict[str, Any] | None:
  1602. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1603. return self.global_config.get(config_name)
  1604. def get_audio_config(self) -> dict[str, Any] | None:
  1605. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1606. return self.global_config.get(mm_config_key)
  1607. def set_type(self):
  1608. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1609. def prepare_metadata(self, vocab_only: bool):
  1610. super().prepare_metadata(vocab_only=vocab_only)
  1611. output_type: str = self.ftype.name.partition("_")[2]
  1612. if self.fname_out.is_dir():
  1613. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1614. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1615. else:
  1616. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1617. def set_gguf_parameters(self):
  1618. self.gguf_writer.add_file_type(self.ftype)
  1619. if self.has_vision_encoder:
  1620. self.gguf_writer.add_clip_has_vision_encoder(True)
  1621. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1622. # vision config
  1623. self.image_size = self.find_vparam(["image_size"])
  1624. self.gguf_writer.add_vision_image_size(self.image_size)
  1625. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1626. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1627. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1628. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1629. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1630. # preprocessor config
  1631. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1632. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1633. self.gguf_writer.add_vision_image_mean(image_mean)
  1634. self.gguf_writer.add_vision_image_std(image_std)
  1635. if self.has_audio_encoder:
  1636. self.gguf_writer.add_clip_has_audio_encoder(True)
  1637. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1638. # audio config
  1639. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1640. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1641. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1642. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1643. if not self.has_vision_encoder and not self.has_audio_encoder:
  1644. raise ValueError("MmprojModel must have either vision or audio encoder")
  1645. def write_vocab(self):
  1646. raise ValueError("MmprojModel does not support vocab writing")
  1647. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1648. assert self.hparams_vision is not None
  1649. return self._find_param(self.hparams_vision, keys, optional)
  1650. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1651. assert self.hparams_audio is not None
  1652. return self._find_param(self.hparams_audio, keys, optional)
  1653. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1654. key = next((k for k in keys if k in obj), None)
  1655. if key is not None:
  1656. return obj[key]
  1657. if optional:
  1658. return None
  1659. raise KeyError(f"could not find any of: {keys}")
  1660. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1661. del bid, name, n_dims # unused
  1662. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1663. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1664. return False
  1665. @ModelBase.register("GPTNeoXForCausalLM")
  1666. class GPTNeoXModel(TextModel):
  1667. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1668. def set_gguf_parameters(self):
  1669. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1670. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1671. self.gguf_writer.add_block_count(self.block_count)
  1672. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1673. self.gguf_writer.add_rope_dimension_count(
  1674. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1675. )
  1676. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1677. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1678. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1679. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1680. del bid # unused
  1681. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1682. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1683. tensors: list[tuple[str, Tensor]] = []
  1684. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1685. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1686. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1687. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1688. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1689. data_torch = torch.cat(
  1690. (
  1691. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1692. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1693. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1694. ),
  1695. dim=0,
  1696. )
  1697. logger.info("re-format attention.linear_qkv.weight")
  1698. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1699. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1700. data_torch = torch.cat(
  1701. (
  1702. qkv_bias[:, 0, :].reshape((n_embed,)),
  1703. qkv_bias[:, 1, :].reshape((n_embed,)),
  1704. qkv_bias[:, 2, :].reshape((n_embed,)),
  1705. ),
  1706. dim=0,
  1707. )
  1708. logger.info("re-format attention.linear_qkv.bias")
  1709. tensors.append((self.map_tensor_name(name), data_torch))
  1710. return tensors
  1711. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1712. class BloomModel(TextModel):
  1713. model_arch = gguf.MODEL_ARCH.BLOOM
  1714. def set_gguf_parameters(self):
  1715. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1716. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1717. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1718. self.gguf_writer.add_embedding_length(n_embed)
  1719. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1720. self.gguf_writer.add_block_count(self.block_count)
  1721. self.gguf_writer.add_head_count(n_head)
  1722. self.gguf_writer.add_head_count_kv(n_head)
  1723. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1724. self.gguf_writer.add_file_type(self.ftype)
  1725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1726. del bid # unused
  1727. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1728. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1729. name = re.sub(r'transformer\.', '', name)
  1730. tensors: list[tuple[str, Tensor]] = []
  1731. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1732. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1733. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1734. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1735. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1736. data_torch = torch.cat(
  1737. (
  1738. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1739. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1740. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1741. ),
  1742. dim=0,
  1743. )
  1744. logger.info("re-format attention.linear_qkv.weight")
  1745. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1746. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1747. data_torch = torch.cat(
  1748. (
  1749. qkv_bias[:, 0, :].reshape((n_embed,)),
  1750. qkv_bias[:, 1, :].reshape((n_embed,)),
  1751. qkv_bias[:, 2, :].reshape((n_embed,)),
  1752. ),
  1753. dim=0,
  1754. )
  1755. logger.info("re-format attention.linear_qkv.bias")
  1756. tensors.append((self.map_tensor_name(name), data_torch))
  1757. return tensors
  1758. @ModelBase.register("MPTForCausalLM")
  1759. class MPTModel(TextModel):
  1760. model_arch = gguf.MODEL_ARCH.MPT
  1761. def set_vocab(self):
  1762. try:
  1763. self._set_vocab_gpt2()
  1764. except Exception:
  1765. # Fallback for SEA-LION model
  1766. self._set_vocab_sentencepiece()
  1767. self.gguf_writer.add_add_bos_token(False)
  1768. self.gguf_writer.add_pad_token_id(3)
  1769. self.gguf_writer.add_eos_token_id(1)
  1770. self.gguf_writer.add_unk_token_id(0)
  1771. def set_gguf_parameters(self):
  1772. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1773. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1774. self.gguf_writer.add_block_count(self.block_count)
  1775. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1776. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1777. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1778. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1779. self.gguf_writer.add_layer_norm_eps(1e-5)
  1780. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1781. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1782. if self.hparams["attn_config"]["alibi"]:
  1783. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1784. else:
  1785. self.gguf_writer.add_max_alibi_bias(0.0)
  1786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1787. del bid # unused
  1788. if "scales" in name:
  1789. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1790. new_name = new_name.replace("scales", "act.scales")
  1791. else:
  1792. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1793. return [(new_name, data_torch)]
  1794. @ModelBase.register("OrionForCausalLM")
  1795. class OrionModel(TextModel):
  1796. model_arch = gguf.MODEL_ARCH.ORION
  1797. def set_vocab(self):
  1798. self._set_vocab_sentencepiece()
  1799. def set_gguf_parameters(self):
  1800. head_count = self.hparams["num_attention_heads"]
  1801. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1802. ctx_length = 0
  1803. if "max_sequence_length" in self.hparams:
  1804. ctx_length = self.hparams["max_sequence_length"]
  1805. elif "max_position_embeddings" in self.hparams:
  1806. ctx_length = self.hparams["max_position_embeddings"]
  1807. elif "model_max_length" in self.hparams:
  1808. ctx_length = self.hparams["model_max_length"]
  1809. else:
  1810. raise ValueError("gguf: can not find ctx length parameter.")
  1811. self.gguf_writer.add_file_type(self.ftype)
  1812. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1813. self.gguf_writer.add_context_length(ctx_length)
  1814. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1815. self.gguf_writer.add_block_count(self.block_count)
  1816. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1817. self.gguf_writer.add_head_count(head_count)
  1818. self.gguf_writer.add_head_count_kv(head_count_kv)
  1819. # note: config provides rms norm but it is actually layer norm
  1820. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1821. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1822. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1823. class BaichuanModel(TextModel):
  1824. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1825. def set_vocab(self):
  1826. self._set_vocab_sentencepiece()
  1827. def set_gguf_parameters(self):
  1828. super().set_gguf_parameters()
  1829. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1830. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1832. head_count = self.hparams["num_attention_heads"]
  1833. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1834. tensors: list[tuple[str, Tensor]] = []
  1835. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1836. logger.info(f"Unpacking and permuting layer {bid}")
  1837. tensors = [
  1838. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1839. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1840. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1841. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1842. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1843. self._reverse_hf_part(data_torch, 2)),
  1844. ]
  1845. else:
  1846. tensors = [(self.map_tensor_name(name), data_torch)]
  1847. return tensors
  1848. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1849. if n_kv_head is not None and n_head != n_kv_head:
  1850. n_head //= n_kv_head
  1851. return (
  1852. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1853. .swapaxes(1, 2)
  1854. .reshape(weights.shape)
  1855. )
  1856. def _reverse_hf_permute_part(
  1857. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1858. ) -> Tensor:
  1859. r = weights.shape[0] // 3
  1860. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1861. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1862. r = weights.shape[0] // 3
  1863. return weights[r * n_part:r * n_part + r, ...]
  1864. @ModelBase.register("XverseForCausalLM")
  1865. class XverseModel(TextModel):
  1866. model_arch = gguf.MODEL_ARCH.XVERSE
  1867. def set_vocab(self):
  1868. assert (self.dir_model / "tokenizer.json").is_file()
  1869. dir_model = self.dir_model
  1870. hparams = self.hparams
  1871. tokens: list[bytes] = []
  1872. toktypes: list[int] = []
  1873. from transformers import AutoTokenizer
  1874. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1875. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1876. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1877. # because vocab_size is the count of items, and indexes start at 0.
  1878. max_vocab_index = max(tokenizer.get_vocab().values())
  1879. if max_vocab_index >= vocab_size:
  1880. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1881. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1882. added_vocab = tokenizer.get_added_vocab()
  1883. for token_id in range(vocab_size):
  1884. token_text = reverse_vocab[token_id].encode('utf-8')
  1885. # replace "\x00" to string with length > 0
  1886. if token_text == b"\x00":
  1887. toktype = gguf.TokenType.BYTE # special
  1888. token_text = f"<{token_text}>".encode('utf-8')
  1889. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1890. toktype = gguf.TokenType.BYTE # special
  1891. elif reverse_vocab[token_id] in added_vocab:
  1892. if tokenizer.added_tokens_decoder[token_id].special:
  1893. toktype = gguf.TokenType.CONTROL
  1894. else:
  1895. toktype = gguf.TokenType.USER_DEFINED
  1896. else:
  1897. toktype = gguf.TokenType.NORMAL
  1898. tokens.append(token_text)
  1899. toktypes.append(toktype)
  1900. self.gguf_writer.add_tokenizer_model("llama")
  1901. self.gguf_writer.add_tokenizer_pre("default")
  1902. self.gguf_writer.add_token_list(tokens)
  1903. self.gguf_writer.add_token_types(toktypes)
  1904. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1905. special_vocab.add_to_gguf(self.gguf_writer)
  1906. def set_gguf_parameters(self):
  1907. super().set_gguf_parameters()
  1908. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1909. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1911. del bid # unused
  1912. head_count = self.hparams["num_attention_heads"]
  1913. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1914. # HF models permute some of the tensors, so we need to undo that
  1915. if name.endswith("q_proj.weight"):
  1916. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1917. if name.endswith("k_proj.weight"):
  1918. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1919. return [(self.map_tensor_name(name), data_torch)]
  1920. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1921. if n_kv_head is not None and n_head != n_kv_head:
  1922. n_head //= n_kv_head
  1923. return (
  1924. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1925. .swapaxes(1, 2)
  1926. .reshape(weights.shape)
  1927. )
  1928. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1929. class FalconModel(TextModel):
  1930. model_arch = gguf.MODEL_ARCH.FALCON
  1931. def set_gguf_parameters(self):
  1932. n_head = self.hparams.get("num_attention_heads")
  1933. if n_head is None:
  1934. n_head = self.hparams["n_head"] # old name
  1935. n_head_kv = self.hparams.get("num_kv_heads")
  1936. if n_head_kv is None:
  1937. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1938. self.gguf_writer.add_context_length(2048) # not in config.json
  1939. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1940. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1941. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1942. self.gguf_writer.add_block_count(self.block_count)
  1943. self.gguf_writer.add_head_count(n_head)
  1944. self.gguf_writer.add_head_count_kv(n_head_kv)
  1945. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1946. self.gguf_writer.add_file_type(self.ftype)
  1947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1948. del bid # unused
  1949. # QKV tensor transform
  1950. # The original query_key_value tensor contains n_head_kv "kv groups",
  1951. # each consisting of n_head/n_head_kv query weights followed by one key
  1952. # and one value weight (shared by all query heads in the kv group).
  1953. # This layout makes it a big pain to work with in GGML.
  1954. # So we rearrange them here,, so that we have n_head query weights
  1955. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1956. # in contiguous fashion.
  1957. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1958. if "query_key_value" in name:
  1959. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1960. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1961. head_dim = self.hparams["hidden_size"] // n_head
  1962. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1963. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1964. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1965. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1966. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1967. return [(self.map_tensor_name(name), data_torch)]
  1968. @ModelBase.register("GPTBigCodeForCausalLM")
  1969. class StarCoderModel(TextModel):
  1970. model_arch = gguf.MODEL_ARCH.STARCODER
  1971. def set_gguf_parameters(self):
  1972. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1973. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1974. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1975. self.gguf_writer.add_block_count(self.block_count)
  1976. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1977. self.gguf_writer.add_head_count_kv(1)
  1978. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1979. self.gguf_writer.add_file_type(self.ftype)
  1980. @ModelBase.register("GPTRefactForCausalLM")
  1981. class RefactModel(TextModel):
  1982. model_arch = gguf.MODEL_ARCH.REFACT
  1983. def set_vocab(self):
  1984. super().set_vocab()
  1985. # TODO: how to determine special FIM tokens automatically?
  1986. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1987. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1988. special_vocab._set_special_token("prefix", 1)
  1989. special_vocab._set_special_token("suffix", 3)
  1990. special_vocab._set_special_token("middle", 2)
  1991. special_vocab.chat_template = None # do not add it twice
  1992. special_vocab.add_to_gguf(self.gguf_writer)
  1993. def set_gguf_parameters(self):
  1994. hidden_dim = self.hparams["n_embd"]
  1995. inner_dim = 4 * hidden_dim
  1996. hidden_dim = int(2 * inner_dim / 3)
  1997. multiple_of = 256
  1998. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1999. # refact uses Alibi. So this is from config.json which might be used by training.
  2000. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2001. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2002. self.gguf_writer.add_feed_forward_length(ff_dim)
  2003. self.gguf_writer.add_block_count(self.block_count)
  2004. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2005. self.gguf_writer.add_head_count_kv(1)
  2006. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2007. self.gguf_writer.add_file_type(self.ftype)
  2008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2009. hidden_dim = self.hparams["n_embd"]
  2010. inner_dim = 4 * hidden_dim
  2011. hidden_dim = int(2 * inner_dim / 3)
  2012. multiple_of = 256
  2013. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  2014. n_head = self.hparams["n_head"]
  2015. n_head_kv = 1
  2016. head_dim = self.hparams["n_embd"] // n_head
  2017. tensors: list[tuple[str, Tensor]] = []
  2018. if bid is not None:
  2019. if name == f"transformer.h.{bid}.attn.kv.weight":
  2020. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2021. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2022. elif name == f"transformer.h.{bid}.attn.q.weight":
  2023. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2024. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2025. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2026. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2027. if len(tensors) == 0:
  2028. tensors.append((self.map_tensor_name(name), data_torch))
  2029. return tensors
  2030. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2031. class StableLMModel(TextModel):
  2032. model_arch = gguf.MODEL_ARCH.STABLELM
  2033. def set_vocab(self):
  2034. if (self.dir_model / "tokenizer.json").is_file():
  2035. self._set_vocab_gpt2()
  2036. else:
  2037. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2038. self._set_vocab_qwen()
  2039. def set_gguf_parameters(self):
  2040. hparams = self.hparams
  2041. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2042. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2043. self.gguf_writer.add_block_count(self.block_count)
  2044. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2045. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2046. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2047. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2048. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2049. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2050. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2051. self.gguf_writer.add_file_type(self.ftype)
  2052. _q_norms: list[dict[str, Tensor]] | None = None
  2053. _k_norms: list[dict[str, Tensor]] | None = None
  2054. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2055. n_head = self.hparams["num_attention_heads"]
  2056. n_kv_head = self.hparams["num_key_value_heads"]
  2057. if name.find("q_layernorm.norms") != -1:
  2058. assert bid is not None
  2059. if self._q_norms is None:
  2060. self._q_norms = [{} for _ in range(self.block_count)]
  2061. self._q_norms[bid][name] = data_torch
  2062. if len(self._q_norms[bid]) >= n_head:
  2063. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2064. else:
  2065. return []
  2066. if name.find("k_layernorm.norms") != -1:
  2067. assert bid is not None
  2068. if self._k_norms is None:
  2069. self._k_norms = [{} for _ in range(self.block_count)]
  2070. self._k_norms[bid][name] = data_torch
  2071. if len(self._k_norms[bid]) >= n_kv_head:
  2072. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2073. else:
  2074. return []
  2075. return [(self.map_tensor_name(name), data_torch)]
  2076. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2077. datas: list[Tensor] = []
  2078. # extract the norms in order
  2079. for xid in range(n_head):
  2080. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2081. datas.append(norms[ename])
  2082. del norms[ename]
  2083. data_torch = torch.stack(datas, dim=0)
  2084. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2085. new_name = self.map_tensor_name(merged_name)
  2086. return [(new_name, data_torch)]
  2087. def prepare_tensors(self):
  2088. super().prepare_tensors()
  2089. if self._q_norms is not None or self._k_norms is not None:
  2090. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2091. norms = (
  2092. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2093. ) + (
  2094. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2095. )
  2096. if len(norms) > 0:
  2097. raise ValueError(f"Unprocessed norms: {norms}")
  2098. @ModelBase.register(
  2099. "LLaMAForCausalLM",
  2100. "LlamaForCausalLM",
  2101. "MistralForCausalLM",
  2102. "MixtralForCausalLM",
  2103. "VLlama3ForCausalLM",
  2104. "LlavaForConditionalGeneration",
  2105. "VoxtralForConditionalGeneration",
  2106. "IQuestCoderForCausalLM",
  2107. "LlamaModel")
  2108. class LlamaModel(TextModel):
  2109. model_arch = gguf.MODEL_ARCH.LLAMA
  2110. undo_permute = True
  2111. def __init__(self, *args, **kwargs):
  2112. super().__init__(*args, **kwargs)
  2113. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2114. if self.hf_arch == "VLlama3ForCausalLM":
  2115. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2116. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2117. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2118. def set_vocab(self):
  2119. if self.origin_hf_arch == "GlmasrModel":
  2120. return self._set_vocab_glmedge()
  2121. if self.is_mistral_format:
  2122. return self._set_vocab_mistral()
  2123. path_tekken_json = self.dir_model / "tekken.json"
  2124. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2125. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2126. self._set_vocab_mistral()
  2127. try:
  2128. self._set_vocab_sentencepiece()
  2129. except FileNotFoundError:
  2130. try:
  2131. self._set_vocab_llama_hf()
  2132. except (FileNotFoundError, TypeError):
  2133. # Llama 3
  2134. self._set_vocab_gpt2()
  2135. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2136. if self.hparams.get("vocab_size", 32000) == 32016:
  2137. special_vocab = gguf.SpecialVocab(
  2138. self.dir_model, load_merges=False,
  2139. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2140. )
  2141. special_vocab._set_special_token("prefix", 32007)
  2142. special_vocab._set_special_token("suffix", 32008)
  2143. special_vocab._set_special_token("middle", 32009)
  2144. special_vocab._set_special_token("eot", 32010)
  2145. special_vocab.add_to_gguf(self.gguf_writer)
  2146. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2147. if tokenizer_config_file.is_file():
  2148. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2149. tokenizer_config_json = json.load(f)
  2150. if "add_prefix_space" in tokenizer_config_json:
  2151. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2152. # Apply to granite small models only
  2153. if self.hparams.get("vocab_size", 32000) == 49152:
  2154. self.gguf_writer.add_add_bos_token(False)
  2155. def set_gguf_parameters(self):
  2156. super().set_gguf_parameters()
  2157. hparams = self.hparams
  2158. if not self.is_mistral_format:
  2159. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2160. if (rope_dim := hparams.get("head_dim")) is None:
  2161. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2162. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2163. @staticmethod
  2164. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2165. if n_head_kv is not None and n_head != n_head_kv:
  2166. n_head = n_head_kv
  2167. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2168. .swapaxes(1, 2)
  2169. .reshape(weights.shape))
  2170. _experts: list[dict[str, Tensor]] | None = None
  2171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2172. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2173. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2174. vision_prefixes = [
  2175. "vision_encoder.",
  2176. "vision_language_adapter.",
  2177. "patch_merger.",
  2178. "pre_mm_projector_norm",
  2179. "audio_encoder.",
  2180. ]
  2181. is_multimodal_tensor = "vision_tower" in name \
  2182. or "vision_model" in name \
  2183. or "audio_tower" in name \
  2184. or "model.connector" in name \
  2185. or "multi_modal_projector" in name \
  2186. or any(
  2187. name.startswith(prefix)
  2188. for prefix in vision_prefixes
  2189. )
  2190. if is_multimodal_tensor:
  2191. return [] # skip vision tensors
  2192. elif self.hf_arch == "LlamaModel":
  2193. name = "model." + name
  2194. elif name.startswith("model.text_model"):
  2195. name = name.replace("text_model.", "") # for SmolVLM
  2196. elif name.startswith("language_model."):
  2197. name = name.replace("language_model.", "") # for the rest
  2198. if self.undo_permute:
  2199. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2200. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2201. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2202. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2203. # process the experts separately
  2204. if name.find("block_sparse_moe.experts") != -1:
  2205. n_experts = self.hparams["num_local_experts"]
  2206. assert bid is not None
  2207. if self._experts is None:
  2208. self._experts = [{} for _ in range(self.block_count)]
  2209. self._experts[bid][name] = data_torch
  2210. if len(self._experts[bid]) >= n_experts * 3:
  2211. tensors: list[tuple[str, Tensor]] = []
  2212. # merge the experts into a single 3d tensor
  2213. for wid in ["w1", "w2", "w3"]:
  2214. datas: list[Tensor] = []
  2215. for xid in range(n_experts):
  2216. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2217. datas.append(self._experts[bid][ename])
  2218. del self._experts[bid][ename]
  2219. data_torch = torch.stack(datas, dim=0)
  2220. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2221. new_name = self.map_tensor_name(merged_name)
  2222. tensors.append((new_name, data_torch))
  2223. return tensors
  2224. else:
  2225. return []
  2226. return [(self.map_tensor_name(name), data_torch)]
  2227. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2228. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2229. if rope_params.get("rope_type", '').lower() == "llama3":
  2230. base = rope_params.get("rope_theta", 10000.0)
  2231. if (dim := self.hparams.get("head_dim")) is None:
  2232. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2233. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2234. factor = rope_params.get("factor", 8.0)
  2235. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2236. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2237. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2238. low_freq_wavelen = old_context_len / low_freq_factor
  2239. high_freq_wavelen = old_context_len / high_freq_factor
  2240. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2241. rope_factors = []
  2242. for freq in freqs:
  2243. wavelen = 2 * math.pi / freq
  2244. if wavelen < high_freq_wavelen:
  2245. rope_factors.append(1)
  2246. elif wavelen > low_freq_wavelen:
  2247. rope_factors.append(factor)
  2248. else:
  2249. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2250. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2251. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2252. def prepare_tensors(self):
  2253. super().prepare_tensors()
  2254. if self._experts is not None:
  2255. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2256. experts = [k for d in self._experts for k in d.keys()]
  2257. if len(experts) > 0:
  2258. raise ValueError(f"Unprocessed experts: {experts}")
  2259. @ModelBase.register("ArceeForCausalLM")
  2260. class ArceeModel(LlamaModel):
  2261. model_arch = gguf.MODEL_ARCH.ARCEE
  2262. def set_gguf_parameters(self):
  2263. super().set_gguf_parameters()
  2264. self._try_set_pooling_type()
  2265. @ModelBase.register("AfmoeForCausalLM")
  2266. class AfmoeModel(LlamaModel):
  2267. model_arch = gguf.MODEL_ARCH.AFMOE
  2268. def set_gguf_parameters(self):
  2269. super().set_gguf_parameters()
  2270. # MoE parameters
  2271. if (n_experts := self.hparams.get("num_experts")) is not None:
  2272. self.gguf_writer.add_expert_count(n_experts)
  2273. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2274. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2275. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2276. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2277. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2278. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2279. # Route normalization and scaling
  2280. if (route_norm := self.hparams.get("route_norm")) is not None:
  2281. self.gguf_writer.add_expert_weights_norm(route_norm)
  2282. if (route_scale := self.hparams.get("route_scale")) is not None:
  2283. self.gguf_writer.add_expert_weights_scale(route_scale)
  2284. # Sliding window attention
  2285. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2286. self.gguf_writer.add_sliding_window(sliding_window)
  2287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2288. # Handle expert weights - they're already merged in the HF format
  2289. # process the experts separately
  2290. if name.find("mlp.experts") != -1:
  2291. n_experts = self.hparams["num_experts"]
  2292. assert bid is not None
  2293. if self._experts is None:
  2294. self._experts = [{} for _ in range(self.block_count)]
  2295. self._experts[bid][name] = data_torch
  2296. if len(self._experts[bid]) >= n_experts * 3:
  2297. tensors: list[tuple[str, Tensor]] = []
  2298. # merge the experts into a single 3d tensor
  2299. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2300. datas: list[Tensor] = []
  2301. for xid in range(n_experts):
  2302. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2303. datas.append(self._experts[bid][ename_to_retrieve])
  2304. del self._experts[bid][ename_to_retrieve]
  2305. data_torch = torch.stack(datas, dim=0)
  2306. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2307. new_name = self.map_tensor_name(merged_name)
  2308. tensors.append((new_name, data_torch))
  2309. return tensors
  2310. else:
  2311. return []
  2312. if name.endswith(".expert_bias"):
  2313. name = name.replace(".expert_bias", ".expert_bias.bias")
  2314. return [(self.map_tensor_name(name), data_torch)]
  2315. @ModelBase.register(
  2316. "LlavaForConditionalGeneration", # pixtral
  2317. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2318. )
  2319. class LlavaVisionModel(MmprojModel):
  2320. img_break_tok_id = -1
  2321. use_break_tok = True
  2322. def __init__(self, *args, **kwargs):
  2323. super().__init__(*args, **kwargs)
  2324. if self.hparams.get("model_type") == "pixtral":
  2325. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2326. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2327. if self.use_break_tok:
  2328. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2329. elif self.is_mistral_format:
  2330. # hparams is already vision config here so norm_eps is only defined in global_config.
  2331. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2332. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2333. if self.use_break_tok:
  2334. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2335. else:
  2336. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2337. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2338. def get_token_id(self, token: str) -> int:
  2339. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2340. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2341. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2342. for id_, token_data in added_tokens_decoder.items():
  2343. if token_data["content"] == token:
  2344. return int(id_)
  2345. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2346. def set_gguf_parameters(self):
  2347. super().set_gguf_parameters()
  2348. hparams = self.hparams
  2349. if hparams.get("model_type") == "pixtral":
  2350. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2351. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2352. # hidden_act
  2353. if hparams["hidden_act"] == "silu":
  2354. self.gguf_writer.add_vision_use_silu(True)
  2355. elif hparams["hidden_act"] == "gelu":
  2356. self.gguf_writer.add_vision_use_gelu(True)
  2357. else:
  2358. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2359. # spatial_merge_size
  2360. if "spatial_merge_size" in self.global_config:
  2361. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2363. del bid # unused
  2364. n_head = (
  2365. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2366. )
  2367. n_kv_head = n_head
  2368. valid_prefixes = (
  2369. "multi_modal_projector.",
  2370. "vision_tower.",
  2371. "vision_encoder.",
  2372. "vision_language_adapter.",
  2373. "patch_merger.",
  2374. "pre_mm_projector_norm",
  2375. )
  2376. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2377. # process vision tensors
  2378. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2379. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2380. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2381. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2382. return [(self.map_tensor_name(name), data_torch)]
  2383. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2384. if self.img_break_tok_id > 0 and embed_key in name:
  2385. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2386. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2387. img_break_embd = data_torch[self.img_break_tok_id]
  2388. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2389. return [(self.map_tensor_name(name), img_break_embd)]
  2390. return [] # skip other tensors
  2391. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2392. class SmolVLMModel(MmprojModel):
  2393. def __init__(self, *args, **kwargs):
  2394. super().__init__(*args, **kwargs)
  2395. if self.hparams["model_type"] == "smolvlm_vision":
  2396. # fix for SmolVLM2, missing some keys in config.json
  2397. # default values are taken from transformers code
  2398. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2399. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2400. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2401. def set_gguf_parameters(self):
  2402. super().set_gguf_parameters()
  2403. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2404. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2405. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2406. self.gguf_writer.add_vision_use_gelu(True)
  2407. # Add the preprocessor longest edge size
  2408. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2409. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2410. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2411. if ".embeddings." in name:
  2412. return gguf.GGMLQuantizationType.F32
  2413. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2414. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2415. del bid # unused
  2416. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2417. if is_vision_tensor:
  2418. return [(self.map_tensor_name(name), data_torch)]
  2419. return [] # skip other tensors
  2420. @ModelBase.register(
  2421. "Llama4ForConditionalGeneration",
  2422. "Llama4ForCausalLM",
  2423. )
  2424. class Llama4Model(LlamaModel):
  2425. model_arch = gguf.MODEL_ARCH.LLAMA4
  2426. undo_permute = False
  2427. def __init__(self, *args, **kwargs):
  2428. super().__init__(*args, **kwargs)
  2429. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2430. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2431. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2432. def set_vocab(self):
  2433. self._set_vocab_gpt2()
  2434. def set_gguf_parameters(self):
  2435. super().set_gguf_parameters()
  2436. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2437. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2438. if "layer_types" in self.hparams:
  2439. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2440. # all layers are full attention (for MobileLLM), disable swa
  2441. self.gguf_writer.add_sliding_window(0)
  2442. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2443. if name.startswith("language_model."):
  2444. name = name.replace("language_model.", "")
  2445. # split the gate_up into gate and up
  2446. if "gate_up_proj" in name:
  2447. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2448. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2449. dim_half = data_torch.shape[-1] // 2
  2450. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2451. return [
  2452. (self.map_tensor_name(name_gate), gate_proj_weight),
  2453. (self.map_tensor_name(name_up), up_proj_weight)
  2454. ]
  2455. if name.endswith("down_proj"):
  2456. name += ".weight"
  2457. data_torch = data_torch.transpose(-1, -2)
  2458. if "multi_modal_projector" in name or "vision_model" in name:
  2459. return []
  2460. return super().modify_tensors(data_torch, name, bid)
  2461. @ModelBase.register("Llama4ForConditionalGeneration")
  2462. class Llama4VisionModel(MmprojModel):
  2463. def set_gguf_parameters(self):
  2464. super().set_gguf_parameters()
  2465. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2466. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2467. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2468. assert self.hparams["hidden_act"] == "gelu"
  2469. self.gguf_writer.add_vision_use_gelu(True)
  2470. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2471. del bid # unused
  2472. if "multi_modal_projector" in name or "vision_model" in name:
  2473. # process vision tensors
  2474. if "positional_embedding_vlm" in name and ".weight" not in name:
  2475. name += ".weight"
  2476. if "multi_modal_projector.linear_1" in name:
  2477. # despite the name with number postfix, this is a single fully connected layer
  2478. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2479. return [(self.map_tensor_name(name), data_torch)]
  2480. return []
  2481. @ModelBase.register("Mistral3ForConditionalGeneration")
  2482. class Mistral3Model(LlamaModel):
  2483. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2484. def __init__(self, *args, **kwargs):
  2485. super().__init__(*args, **kwargs)
  2486. # for compatibility, we use LLAMA arch for older models
  2487. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2488. if self.hparams.get("model_type") != "ministral3":
  2489. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2490. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2491. self.gguf_writer.add_architecture()
  2492. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2493. def set_gguf_parameters(self):
  2494. super().set_gguf_parameters()
  2495. rope_params = self.rope_parameters
  2496. if self.hparams.get("model_type") == "ministral3":
  2497. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2498. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2499. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2500. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2501. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2502. name = name.replace("language_model.", "")
  2503. if "multi_modal_projector" in name or "vision_tower" in name:
  2504. return []
  2505. return super().modify_tensors(data_torch, name, bid)
  2506. @ModelBase.register("DeciLMForCausalLM")
  2507. class DeciModel(TextModel):
  2508. model_arch = gguf.MODEL_ARCH.DECI
  2509. @staticmethod
  2510. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2511. # DeciLM-specific code
  2512. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2513. return DeciModel._find_multiple(intermediate_size, 256)
  2514. @staticmethod
  2515. def _find_multiple(n: int, k: int) -> int:
  2516. # DeciLM-specific code
  2517. if n % k == 0:
  2518. return n
  2519. return n + k - (n % k)
  2520. def __init__(self, *args, **kwargs):
  2521. super().__init__(*args, **kwargs)
  2522. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2523. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2524. assert self.block_count == len(_block_configs)
  2525. self._num_kv_heads = list()
  2526. self._num_heads = list()
  2527. _ffn_multipliers = list()
  2528. # ***linear attention layer***
  2529. # if n_heads_in_group is None and replace_with_linear is True
  2530. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2531. # ***attention-free layer***
  2532. # if n_heads_in_group is None and replace_with_linear is False
  2533. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2534. # ***normal attention-layer***
  2535. # if n_heads_in_group is not None, then
  2536. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2537. # _num_heads[il] is num_attention_head
  2538. # ***dummy layer*** for nemotron 253B
  2539. # if n_heads_in_group is None and ffn_mult is None
  2540. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2541. for il in range(len(_block_configs)):
  2542. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2543. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2544. self._num_kv_heads.append(0)
  2545. self._num_heads.append(self.hparams["num_attention_heads"])
  2546. else:
  2547. self._num_kv_heads.append(0)
  2548. self._num_heads.append(0)
  2549. else:
  2550. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2551. self._num_heads.append(self.hparams["num_attention_heads"])
  2552. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2553. _ffn_multipliers.append(0.0)
  2554. else:
  2555. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2556. assert self.block_count == len(self._num_kv_heads)
  2557. assert self.block_count == len(self._num_heads)
  2558. assert self.block_count == len(_ffn_multipliers)
  2559. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2560. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2561. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2562. self._ffn_dims: list[int] = [
  2563. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2564. for multiplier in _ffn_multipliers
  2565. ]
  2566. def set_vocab(self):
  2567. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2568. # eos_token from '|eot_id|' to '|end_of_text|'
  2569. if self.hparams.get("vocab_size", 128256) == 128256:
  2570. tokens, toktypes, tokpre = self.get_vocab_base()
  2571. self.gguf_writer.add_tokenizer_model("gpt2")
  2572. self.gguf_writer.add_tokenizer_pre(tokpre)
  2573. self.gguf_writer.add_token_list(tokens)
  2574. self.gguf_writer.add_token_types(toktypes)
  2575. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2576. special_vocab.add_to_gguf(self.gguf_writer)
  2577. else:
  2578. # DeciLM-7B
  2579. self._set_vocab_llama_hf()
  2580. def set_gguf_parameters(self):
  2581. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2582. assert self.block_count == len(self._num_kv_heads)
  2583. assert self.block_count == len(self._num_heads)
  2584. assert self.block_count == len(self._ffn_dims)
  2585. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2586. self.gguf_writer.add_rope_freq_base(rope_theta)
  2587. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2588. self.gguf_writer.add_head_count(self._num_heads)
  2589. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2590. self.gguf_writer.add_block_count(self.block_count)
  2591. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2592. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2593. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2594. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2595. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2596. self.gguf_writer.add_file_type(self.ftype)
  2597. else: # DeciLM-7B
  2598. super().set_gguf_parameters()
  2599. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2600. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2601. assert self.block_count == len(self._num_kv_heads)
  2602. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2603. hparams = self.hparams
  2604. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2605. if (rope_dim := hparams.get("head_dim")) is None:
  2606. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2607. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2608. @staticmethod
  2609. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2610. if n_head_kv is not None and n_head != n_head_kv:
  2611. n_head = n_head_kv
  2612. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2613. .swapaxes(1, 2)
  2614. .reshape(weights.shape))
  2615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2616. n_head = self.hparams["num_attention_heads"]
  2617. if bid is not None:
  2618. if "num_key_value_heads_per_layer" in self.hparams:
  2619. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2620. elif "block_configs" in self.hparams:
  2621. n_kv_head = self._num_kv_heads[bid]
  2622. n_head = self._num_heads[bid]
  2623. else:
  2624. n_kv_head = self.hparams.get("num_key_value_heads")
  2625. else:
  2626. n_kv_head = self.hparams.get("num_key_value_heads")
  2627. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2628. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2629. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2630. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2631. return [(self.map_tensor_name(name), data_torch)]
  2632. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2633. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2634. if rope_params.get("rope_type", '').lower() == "llama3":
  2635. base = rope_params.get("rope_theta", 10000.0)
  2636. if (dim := self.hparams.get("head_dim")) is None:
  2637. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2638. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2639. factor = rope_params.get("factor", 8.0)
  2640. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2641. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2642. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2643. low_freq_wavelen = old_context_len / low_freq_factor
  2644. high_freq_wavelen = old_context_len / high_freq_factor
  2645. assert low_freq_wavelen != high_freq_wavelen
  2646. rope_factors = []
  2647. for freq in freqs:
  2648. wavelen = 2 * math.pi / freq
  2649. if wavelen < high_freq_wavelen:
  2650. rope_factors.append(1)
  2651. elif wavelen > low_freq_wavelen:
  2652. rope_factors.append(factor)
  2653. else:
  2654. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2655. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2656. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2657. def prepare_tensors(self):
  2658. super().prepare_tensors()
  2659. @ModelBase.register("BitnetForCausalLM")
  2660. class BitnetModel(TextModel):
  2661. model_arch = gguf.MODEL_ARCH.BITNET
  2662. def set_vocab(self):
  2663. self._set_vocab_sentencepiece()
  2664. def set_gguf_parameters(self):
  2665. super().set_gguf_parameters()
  2666. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2667. self.gguf_writer.add_rope_scaling_factor(1.0)
  2668. def weight_quant(self, weight: Tensor) -> Tensor:
  2669. dtype = weight.dtype
  2670. weight = weight.float()
  2671. scale = weight.abs().mean().clamp(min=1e-5)
  2672. iscale = 1 / scale
  2673. # TODO: multiply by the scale directly instead of inverting it twice
  2674. # (this is also unnecessarily doubly inverted upstream)
  2675. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2676. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2677. return result.type(dtype)
  2678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2679. new_name = self.map_tensor_name(name)
  2680. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2681. gguf.MODEL_TENSOR.ATTN_Q,
  2682. gguf.MODEL_TENSOR.ATTN_K,
  2683. gguf.MODEL_TENSOR.ATTN_V,
  2684. gguf.MODEL_TENSOR.ATTN_OUT,
  2685. gguf.MODEL_TENSOR.FFN_UP,
  2686. gguf.MODEL_TENSOR.FFN_DOWN,
  2687. gguf.MODEL_TENSOR.FFN_GATE,
  2688. ]):
  2689. # transform weight into 1/0/-1 (in fp32)
  2690. data_torch = self.weight_quant(data_torch)
  2691. yield (new_name, data_torch)
  2692. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2693. class GrokModel(TextModel):
  2694. model_arch = gguf.MODEL_ARCH.GROK
  2695. def set_vocab(self):
  2696. if (self.dir_model / 'tokenizer.model').is_file():
  2697. self._set_vocab_sentencepiece()
  2698. return
  2699. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2700. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2701. sys.exit(1)
  2702. self._set_vocab_gpt2()
  2703. def __init__(self, *args, **kwargs):
  2704. super().__init__(*args, **kwargs)
  2705. def set_gguf_parameters(self):
  2706. super().set_gguf_parameters()
  2707. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2708. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2709. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2710. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2711. if (rope_dim := self.hparams.get("head_dim")) is None:
  2712. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2713. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2714. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2715. # Treat "original" as "yarn", seems to have been a mistake
  2716. if self.hparams.get("rope_type") in ("yarn", "original"):
  2717. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2718. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2719. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2720. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2721. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2722. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2723. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2724. if temp_len := self.hparams.get("attn_temperature_len"):
  2725. self.gguf_writer.add_attn_temperature_length(temp_len)
  2726. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2727. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2728. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2729. _experts: list[dict[str, list[Tensor]]] | None = None
  2730. _cur_expert = ""
  2731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2732. tensors: list[tuple[str, Tensor]] = []
  2733. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2734. if not is_expert:
  2735. tensors.append((self.map_tensor_name(name), data_torch))
  2736. # process the experts separately
  2737. if is_expert or self._cur_expert:
  2738. n_experts = self.hparams["num_local_experts"]
  2739. assert bid is not None
  2740. if self._experts is None:
  2741. self._experts = [{} for _ in range(self.block_count)]
  2742. # concatenate split tensors
  2743. if name in self._experts[bid]:
  2744. self._cur_expert = name
  2745. self._experts[bid][name].append(data_torch)
  2746. return []
  2747. elif is_expert:
  2748. self._cur_expert = name
  2749. self._experts[bid][name] = [data_torch]
  2750. return []
  2751. else:
  2752. self._cur_expert = ""
  2753. for bid in range(self.block_count):
  2754. if len(self._experts[bid]) >= n_experts * 3:
  2755. # merge the experts into a single 3d tensor
  2756. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2757. datas: list[Tensor] = []
  2758. for xid in range(n_experts):
  2759. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2760. if ename not in self._experts[bid]:
  2761. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2762. tensor_list = self._experts[bid][ename]
  2763. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2764. del self._experts[bid][ename]
  2765. data_torch = torch.stack(datas, dim=0)
  2766. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2767. new_name = self.map_tensor_name(merged_name)
  2768. yield (new_name, data_torch)
  2769. yield from tensors
  2770. @ModelBase.register("DbrxForCausalLM")
  2771. class DbrxModel(TextModel):
  2772. model_arch = gguf.MODEL_ARCH.DBRX
  2773. def set_gguf_parameters(self):
  2774. ffn_config = self.hparams["ffn_config"]
  2775. attn_config = self.hparams["attn_config"]
  2776. self.gguf_writer.add_block_count(self.block_count)
  2777. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2778. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2779. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2780. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2781. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2782. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2783. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2784. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2785. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2786. self.gguf_writer.add_layer_norm_eps(1e-5)
  2787. self.gguf_writer.add_file_type(self.ftype)
  2788. logger.info(f"gguf: file type = {self.ftype}")
  2789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2790. del bid # unused
  2791. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2792. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2793. n_embd = self.hparams["d_model"]
  2794. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2795. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2796. # But llama.cpp moe graph works differently
  2797. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2798. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2799. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2800. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2801. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2802. experts = False
  2803. for exp_tensor_name in exp_tensor_names.keys():
  2804. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2805. experts = True
  2806. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2807. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2808. data_torch = data_torch.permute(*permute_tensor)
  2809. break
  2810. # map tensor names
  2811. # In MoE models the ffn tensors are typically most of the model weights,
  2812. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2813. # Every other model has the weight names ending in .weight,
  2814. # let's assume that is the convention which is not the case for dbrx:
  2815. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2816. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2817. return [(new_name, data_torch)]
  2818. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2819. del name, new_name, bid # unused
  2820. return n_dims > 1
  2821. @ModelBase.register("MiniCPMForCausalLM")
  2822. class MiniCPMModel(TextModel):
  2823. model_arch = gguf.MODEL_ARCH.MINICPM
  2824. def set_gguf_parameters(self):
  2825. super().set_gguf_parameters()
  2826. embedding_scale = float(self.hparams["scale_emb"])
  2827. self.gguf_writer.add_embedding_scale(embedding_scale)
  2828. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2829. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2830. self.gguf_writer.add_residual_scale(residual_scale)
  2831. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2832. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2833. self.gguf_writer.add_logit_scale(logit_scale)
  2834. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2835. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2836. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2837. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2838. if rope_scaling is not None:
  2839. long_factors = rope_scaling.get('long_factor', None)
  2840. short_factors = rope_scaling.get('short_factor', None)
  2841. if long_factors is None or short_factors is None:
  2842. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2843. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2844. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2845. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2846. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2847. def set_vocab(self):
  2848. self._set_vocab_sentencepiece()
  2849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2850. del bid # unused
  2851. n_head = self.hparams["num_attention_heads"]
  2852. n_kv_head = self.hparams.get("num_key_value_heads")
  2853. # HF models permute some of the tensors, so we need to undo that
  2854. if name.endswith(("q_proj.weight")):
  2855. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2856. if name.endswith(("k_proj.weight")):
  2857. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2858. return [(self.map_tensor_name(name), data_torch)]
  2859. @ModelBase.register("MiniCPM3ForCausalLM")
  2860. class MiniCPM3Model(TextModel):
  2861. model_arch = gguf.MODEL_ARCH.MINICPM3
  2862. def set_gguf_parameters(self):
  2863. hparams = self.hparams
  2864. self.gguf_writer.add_file_type(self.ftype)
  2865. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2866. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2867. self.gguf_writer.add_block_count(self.block_count)
  2868. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2869. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2870. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2871. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2872. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2873. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2874. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2875. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2876. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2877. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2878. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2879. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2880. if rope_scaling is not None:
  2881. rope_dims = self.hparams["qk_rope_head_dim"]
  2882. long_factors = rope_scaling.get('long_factor', None)
  2883. short_factors = rope_scaling.get('short_factor', None)
  2884. if long_factors is None or short_factors is None:
  2885. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2886. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2887. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2888. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2889. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2890. def set_vocab(self):
  2891. self._set_vocab_sentencepiece()
  2892. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2893. if n_kv_head is not None and n_head != n_kv_head:
  2894. n_head //= n_kv_head
  2895. return (
  2896. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2897. .swapaxes(1, 2)
  2898. .reshape(weights.shape)
  2899. )
  2900. @ModelBase.register("QWenLMHeadModel")
  2901. class QwenModel(TextModel):
  2902. model_arch = gguf.MODEL_ARCH.QWEN
  2903. @staticmethod
  2904. def token_bytes_to_string(b):
  2905. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2906. byte_encoder = bytes_to_unicode()
  2907. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2908. @staticmethod
  2909. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2910. parts = [bytes([b]) for b in token]
  2911. while True:
  2912. min_idx = None
  2913. min_rank = None
  2914. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2915. rank = mergeable_ranks.get(pair[0] + pair[1])
  2916. if rank is not None and (min_rank is None or rank < min_rank):
  2917. min_idx = i
  2918. min_rank = rank
  2919. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2920. break
  2921. assert min_idx is not None
  2922. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2923. return parts
  2924. def set_vocab(self):
  2925. self._set_vocab_qwen()
  2926. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2927. class Qwen2Model(TextModel):
  2928. model_arch = gguf.MODEL_ARCH.QWEN2
  2929. def set_vocab(self):
  2930. try:
  2931. self._set_vocab_sentencepiece()
  2932. except FileNotFoundError:
  2933. self._set_vocab_gpt2()
  2934. def set_gguf_parameters(self):
  2935. super().set_gguf_parameters()
  2936. self._try_set_pooling_type()
  2937. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2938. if self.hf_arch == "Qwen2Model":
  2939. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2940. if "language_model." in name:
  2941. name = name.replace("language_model.", "") # for InternVL
  2942. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2943. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2944. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2945. # skip vision and audio tensors
  2946. return []
  2947. yield from super().modify_tensors(data_torch, name, bid)
  2948. @ModelBase.register("DreamModel")
  2949. class DreamModel(TextModel):
  2950. model_arch = gguf.MODEL_ARCH.DREAM
  2951. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2952. tokens: list[str] = []
  2953. toktypes: list[int] = []
  2954. from transformers import AutoTokenizer
  2955. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2956. vocab_dict = tokenizer.get_vocab()
  2957. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2958. assert max(vocab_dict.values()) < vocab_size
  2959. tokpre = self.get_vocab_base_pre(tokenizer)
  2960. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2961. added_vocab = tokenizer.get_added_vocab()
  2962. for i in range(vocab_size):
  2963. if i not in reverse_vocab:
  2964. tokens.append(f"[PAD{i}]")
  2965. toktypes.append(gguf.TokenType.UNUSED)
  2966. elif reverse_vocab[i] in added_vocab:
  2967. tokens.append(reverse_vocab[i])
  2968. # Check if it's a special token - treat special tokens as CONTROL tokens
  2969. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2970. if tokenizer.added_tokens_decoder[i].special:
  2971. toktypes.append(gguf.TokenType.CONTROL)
  2972. else:
  2973. toktypes.append(gguf.TokenType.USER_DEFINED)
  2974. else:
  2975. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2976. toktypes.append(gguf.TokenType.CONTROL)
  2977. else:
  2978. tokens.append(reverse_vocab[i])
  2979. toktypes.append(gguf.TokenType.NORMAL)
  2980. return tokens, toktypes, tokpre
  2981. def set_vocab(self):
  2982. try:
  2983. self._set_vocab_sentencepiece()
  2984. except FileNotFoundError:
  2985. self._set_vocab_gpt2()
  2986. def set_gguf_parameters(self):
  2987. super().set_gguf_parameters()
  2988. self._try_set_pooling_type()
  2989. # Dream models use non-causal attention for diffusion
  2990. self.gguf_writer.add_causal_attention(False)
  2991. # Add Dream-specific parameters
  2992. mask_token_id = self.hparams.get("mask_token_id")
  2993. if mask_token_id is not None:
  2994. self.gguf_writer.add_mask_token_id(mask_token_id)
  2995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2996. # Dream model tensors should be mapped directly since it's the base model
  2997. yield from super().modify_tensors(data_torch, name, bid)
  2998. @ModelBase.register("LLaDAModelLM")
  2999. class LLaDAModel(TextModel):
  3000. model_arch = gguf.MODEL_ARCH.LLADA
  3001. undo_permute = True
  3002. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  3003. tokens: list[str] = []
  3004. toktypes: list[int] = []
  3005. from transformers import AutoTokenizer
  3006. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  3007. vocab_dict = tokenizer.get_vocab()
  3008. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  3009. assert max(vocab_dict.values()) < vocab_size
  3010. tokpre = self.get_vocab_base_pre(tokenizer)
  3011. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  3012. added_vocab = tokenizer.get_added_vocab()
  3013. for i in range(vocab_size):
  3014. if i not in reverse_vocab:
  3015. tokens.append(f"[PAD{i}]")
  3016. toktypes.append(gguf.TokenType.UNUSED)
  3017. elif reverse_vocab[i] in added_vocab:
  3018. tokens.append(reverse_vocab[i])
  3019. # Check if it's a special token - treat special tokens as CONTROL tokens
  3020. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3021. if tokenizer.added_tokens_decoder[i].special:
  3022. toktypes.append(gguf.TokenType.CONTROL)
  3023. else:
  3024. toktypes.append(gguf.TokenType.USER_DEFINED)
  3025. else:
  3026. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3027. toktypes.append(gguf.TokenType.CONTROL)
  3028. else:
  3029. tokens.append(reverse_vocab[i])
  3030. toktypes.append(gguf.TokenType.NORMAL)
  3031. return tokens, toktypes, tokpre
  3032. def set_vocab(self):
  3033. self._set_vocab_gpt2()
  3034. # LLaDA specific parameters
  3035. self.gguf_writer.add_add_bos_token(True)
  3036. def set_gguf_parameters(self):
  3037. super().set_gguf_parameters()
  3038. self._try_set_pooling_type()
  3039. # Add parameters similar to LlamaModel
  3040. hparams = self.hparams
  3041. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3042. if (rope_dim := hparams.get("head_dim")) is None:
  3043. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3044. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3045. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3046. # Set context length for LLaDA
  3047. context_length = self.hparams.get("max_sequence_length", 4096)
  3048. self.gguf_writer.add_context_length(context_length)
  3049. # Set embedding length (dimension size)
  3050. embedding_length = self.hparams.get("d_model", 4096)
  3051. self.gguf_writer.add_embedding_length(embedding_length)
  3052. # Set feed forward length (MLP hidden size)
  3053. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3054. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3055. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3056. self.gguf_writer.add_causal_attention(False)
  3057. # LLaDA models don't shift their logits
  3058. self.gguf_writer.add_diffusion_shift_logits(False)
  3059. @staticmethod
  3060. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3061. if n_head_kv is not None and n_head != n_head_kv:
  3062. n_head = n_head_kv
  3063. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3064. .swapaxes(1, 2)
  3065. .reshape(weights.shape))
  3066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3067. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3068. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3069. if self.undo_permute:
  3070. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3071. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3072. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3073. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3074. # LLaDA model tensors should be mapped directly since it's the base model
  3075. yield from super().modify_tensors(data_torch, name, bid)
  3076. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3077. class Ernie4_5Model(TextModel):
  3078. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3079. def set_vocab(self):
  3080. self._set_vocab_sentencepiece()
  3081. def set_gguf_parameters(self):
  3082. super().set_gguf_parameters()
  3083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3084. num_heads = self.hparams["num_attention_heads"]
  3085. num_kv_heads = self.hparams["num_key_value_heads"]
  3086. if (head_dim := self.hparams.get("head_dim")) is None:
  3087. head_dim = self.hparams["hidden_size"] // num_heads
  3088. if "ernie." in name:
  3089. name = name.replace("ernie.", "model.")
  3090. # split the qkv weights
  3091. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3092. if "qkv_proj" in name:
  3093. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3094. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3095. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3096. total_q_dim = num_heads * head_dim
  3097. total_k_dim = num_kv_heads * head_dim
  3098. total_v_dim = num_kv_heads * head_dim
  3099. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3100. return [
  3101. (self.map_tensor_name(name_q), q_proj_weight),
  3102. (self.map_tensor_name(name_k), k_proj_weight),
  3103. (self.map_tensor_name(name_v), v_proj_weight)
  3104. ]
  3105. # split the up_gate_proj into gate and up
  3106. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3107. if "up_gate_proj" in name:
  3108. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3109. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3110. dim_half = data_torch.shape[0] // 2
  3111. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3112. return [
  3113. (self.map_tensor_name(name_gate), gate_proj_weight),
  3114. (self.map_tensor_name(name_up), up_proj_weight)
  3115. ]
  3116. return [(self.map_tensor_name(name), data_torch)]
  3117. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3118. class Ernie4_5MoeModel(Ernie4_5Model):
  3119. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3120. _experts: list[dict[str, Tensor]] | None = None
  3121. def __init__(self, *args, **kwargs):
  3122. super().__init__(*args, **kwargs)
  3123. self._experts = [{} for _ in range(self.block_count)]
  3124. def set_gguf_parameters(self):
  3125. super().set_gguf_parameters()
  3126. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3127. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3128. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3129. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3130. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3131. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3132. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3133. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3134. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3135. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3137. # Modify correction bias name as in DeepseekV2
  3138. if name.endswith("e_score_correction_bias"):
  3139. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3140. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3141. match = re.match(r"model.mtp_block.(\d+)", name)
  3142. if match:
  3143. return []
  3144. # skip all other MTP tensors for now
  3145. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3146. if match:
  3147. return []
  3148. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3149. if match:
  3150. return []
  3151. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3152. if match:
  3153. return []
  3154. # process the experts separately
  3155. if name.find("mlp.experts") != -1:
  3156. n_experts = self.hparams["moe_num_experts"]
  3157. assert bid is not None
  3158. if self._experts is None:
  3159. self._experts = [{} for _ in range(self.block_count)]
  3160. self._experts[bid][name] = data_torch
  3161. if len(self._experts[bid]) >= n_experts * 3:
  3162. tensors: list[tuple[str, Tensor]] = []
  3163. # merge the experts into a single 3d tensor
  3164. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3165. datas: list[Tensor] = []
  3166. for xid in range(n_experts):
  3167. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3168. datas.append(self._experts[bid][ename_to_retrieve])
  3169. del self._experts[bid][ename_to_retrieve]
  3170. data_torch = torch.stack(datas, dim=0)
  3171. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3172. new_name = self.map_tensor_name(merged_name)
  3173. tensors.append((new_name, data_torch))
  3174. return tensors
  3175. else:
  3176. return []
  3177. return [(self.map_tensor_name(name), data_torch)]
  3178. def prepare_tensors(self):
  3179. super().prepare_tensors()
  3180. if self._experts is not None:
  3181. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3182. experts = [k for d in self._experts for k in d.keys()]
  3183. if len(experts) > 0:
  3184. raise ValueError(f"Unprocessed experts: {experts}")
  3185. @ModelBase.register(
  3186. "Qwen2VLModel",
  3187. "Qwen2VLForConditionalGeneration",
  3188. "Qwen2_5_VLForConditionalGeneration",
  3189. "Qwen2_5OmniModel",
  3190. )
  3191. class Qwen2VLModel(TextModel):
  3192. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3193. def set_gguf_parameters(self):
  3194. super().set_gguf_parameters()
  3195. def set_vocab(self):
  3196. try:
  3197. self._set_vocab_sentencepiece()
  3198. except FileNotFoundError:
  3199. self._set_vocab_gpt2()
  3200. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3201. del bid # unused
  3202. if name.startswith("thinker."):
  3203. name = name.replace("thinker.", "")
  3204. if name.startswith("visual") or name.startswith("audio") or \
  3205. name.startswith("talker") or name.startswith("token2wav"):
  3206. # skip multimodal tensors
  3207. return []
  3208. return [(self.map_tensor_name(name), data_torch)]
  3209. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3210. class Qwen2VLVisionModel(MmprojModel):
  3211. def __init__(self, *args, **kwargs):
  3212. super().__init__(*args, **kwargs)
  3213. assert self.hparams_vision is not None
  3214. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3215. # rename config.json values
  3216. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3217. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3218. if "embed_dim" in self.hparams_vision: # qwen2vl
  3219. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3220. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3221. def set_gguf_parameters(self):
  3222. super().set_gguf_parameters()
  3223. assert self.hparams_vision is not None
  3224. hparams = self.hparams_vision
  3225. model_type = self.global_config['model_type']
  3226. if model_type == 'qwen2_vl':
  3227. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3228. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3229. if model_type == 'qwen2_5_omni':
  3230. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3231. else:
  3232. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3233. self.gguf_writer.add_vision_use_silu(True)
  3234. # find n_wa_pattern (window attention pattern)
  3235. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3236. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3237. n_wa_pattern = fullatt_block_indexes[0] + 1
  3238. # validate n_wa_pattern
  3239. for i in range(1, len(fullatt_block_indexes)):
  3240. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3241. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3242. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3243. else:
  3244. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3245. # default values below are taken from HF tranformers code
  3246. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3247. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3248. if ".position_embd." in new_name:
  3249. return gguf.GGMLQuantizationType.F32
  3250. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3251. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3252. del bid # unused
  3253. if name.startswith("visual."):
  3254. # process visual tensors
  3255. # split QKV tensors if needed
  3256. if ".qkv." in name:
  3257. if data_torch.ndim == 2: # weight
  3258. c3, _ = data_torch.shape
  3259. else: # bias
  3260. c3 = data_torch.shape[0]
  3261. assert c3 % 3 == 0
  3262. c = c3 // 3
  3263. wq = data_torch[:c]
  3264. wk = data_torch[c: c * 2]
  3265. wv = data_torch[c * 2:]
  3266. return [
  3267. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3268. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3269. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3270. ]
  3271. elif 'patch_embed.proj.weight' in name:
  3272. # split Conv3D into Conv2Ds
  3273. c1, c2, kt, kh, kw = data_torch.shape
  3274. del c1, c2, kh, kw # unused
  3275. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3276. return [
  3277. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3278. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3279. ]
  3280. else:
  3281. return [(self.map_tensor_name(name), data_torch)]
  3282. return [] # skip other tensors
  3283. @ModelBase.register("Qwen2_5OmniModel")
  3284. class Qwen25OmniModel(Qwen2VLVisionModel):
  3285. has_vision_encoder = True
  3286. has_audio_encoder = True
  3287. def __init__(self, *args, **kwargs):
  3288. super().__init__(*args, **kwargs)
  3289. assert self.hparams_audio is not None
  3290. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3291. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3292. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3293. def set_gguf_parameters(self):
  3294. super().set_gguf_parameters()
  3295. assert self.hparams_audio is not None
  3296. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3297. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3298. def get_vision_config(self) -> dict[str, Any] | None:
  3299. return self.global_config["thinker_config"].get("vision_config")
  3300. def get_audio_config(self) -> dict[str, Any] | None:
  3301. return self.global_config["thinker_config"].get("audio_config")
  3302. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3303. # SinusoidsPositionEmbedding
  3304. assert self.hparams_audio is not None
  3305. max_timescale = 10000
  3306. length = 1500
  3307. channels = self.hparams_audio["hidden_size"]
  3308. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3309. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3310. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3311. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3312. yield ("audio_tower.embed_positions.weight", pos_embd)
  3313. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3314. if ".conv" in name and ".weight" in name:
  3315. return gguf.GGMLQuantizationType.F16
  3316. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3318. if name.startswith("thinker."):
  3319. name = name.replace("thinker.", "")
  3320. if name.startswith("audio_tower"):
  3321. # process audio tensors
  3322. if "conv1.bias" in name or "conv2.bias" in name:
  3323. # transpose conv1 and conv2 bias
  3324. data_torch = data_torch.unsqueeze(-1)
  3325. if "audio_bos_eos_token" in name:
  3326. # this tensor is left unused in transformers code
  3327. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3328. return []
  3329. return [(self.map_tensor_name(name), data_torch)]
  3330. return super().modify_tensors(data_torch, name, bid)
  3331. @ModelBase.register("InternVisionModel")
  3332. class InternVisionModel(MmprojModel):
  3333. def set_gguf_parameters(self):
  3334. assert self.hparams_vision is not None
  3335. if isinstance(self.hparams_vision['image_size'], list):
  3336. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3337. if isinstance(self.hparams_vision['patch_size'], list):
  3338. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3339. super().set_gguf_parameters()
  3340. hparams = self.hparams
  3341. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3342. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3343. # hidden_act
  3344. if hparams["hidden_act"] == "silu":
  3345. self.gguf_writer.add_vision_use_silu(True)
  3346. elif hparams["hidden_act"] == "gelu":
  3347. self.gguf_writer.add_vision_use_gelu(True)
  3348. else:
  3349. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3350. # downsample_ratio
  3351. downsample_ratio = self.global_config.get("downsample_ratio")
  3352. assert downsample_ratio is not None
  3353. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3354. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3355. if ".position_embd." in new_name:
  3356. return gguf.GGMLQuantizationType.F32
  3357. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3358. def _mapping_interns1_name(self, name):
  3359. names_map = {
  3360. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3361. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3362. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3363. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3364. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3365. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3366. }
  3367. if name in names_map:
  3368. name = names_map[name]
  3369. return name
  3370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3371. del bid # unused
  3372. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3373. # deal with intern-s1 special case
  3374. name = self._mapping_interns1_name(name)
  3375. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3376. # process visual tensors
  3377. # correct name
  3378. if name.startswith("vision_model"):
  3379. name = "vision_tower." + name
  3380. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3381. name += ".weight"
  3382. # split QKV tensors if needed
  3383. if ".qkv." in name:
  3384. if data_torch.ndim == 2: # weight
  3385. c3, _ = data_torch.shape
  3386. else: # bias
  3387. c3 = data_torch.shape[0]
  3388. assert c3 % 3 == 0
  3389. c = c3 // 3
  3390. wq = data_torch[:c]
  3391. wk = data_torch[c: c * 2]
  3392. wv = data_torch[c * 2:]
  3393. return [
  3394. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3395. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3396. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3397. ]
  3398. return [(self.map_tensor_name(name), data_torch)]
  3399. return [] # skip other tensors
  3400. @ModelBase.register("WavTokenizerDec")
  3401. class WavTokenizerDecModel(TextModel):
  3402. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3403. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3404. del bid # unused
  3405. if \
  3406. name.endswith("codebook.cluster_size") or \
  3407. name.endswith("codebook.embed_avg") or \
  3408. name.endswith("codebook.inited"):
  3409. logger.debug(f"Skipping {name!r}")
  3410. return []
  3411. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3412. return [(self.map_tensor_name(name), data_torch)]
  3413. def set_vocab(self):
  3414. self._set_vocab_none()
  3415. def set_gguf_parameters(self):
  3416. super().set_gguf_parameters()
  3417. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3418. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3419. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3420. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3421. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3422. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3423. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3424. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3425. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3426. self.gguf_writer.add_causal_attention(False)
  3427. @ModelBase.register("Qwen2MoeForCausalLM")
  3428. class Qwen2MoeModel(TextModel):
  3429. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3430. def set_gguf_parameters(self):
  3431. super().set_gguf_parameters()
  3432. if (n_experts := self.hparams.get("num_experts")) is not None:
  3433. self.gguf_writer.add_expert_count(n_experts)
  3434. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3435. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3436. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3437. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3438. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3439. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3440. _experts: list[dict[str, Tensor]] | None = None
  3441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3442. # process the experts separately
  3443. name = name.replace("language_model.", "") # InternVL
  3444. # handle aggregated expert tensors
  3445. # GGUF stores dimensions reversed from PyTorch, so:
  3446. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3447. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3448. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3449. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3450. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3451. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3452. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3453. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3454. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3455. permuted = data_torch.permute(0, 2, 1).contiguous()
  3456. return [(self.map_tensor_name(mapped), permuted)]
  3457. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3458. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3459. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3460. split_dim = data_torch.shape[-1] // 2
  3461. gate = data_torch[..., :split_dim].contiguous()
  3462. up = data_torch[..., split_dim:].contiguous()
  3463. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3464. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3465. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3466. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3467. base_name = name.removesuffix(".weight")
  3468. base = base_name.rsplit('.', 1)[0]
  3469. mapped_gate = f"{base}.gate_proj.weight"
  3470. mapped_up = f"{base}.up_proj.weight"
  3471. perm_gate = gate.permute(0, 2, 1).contiguous()
  3472. perm_up = up.permute(0, 2, 1).contiguous()
  3473. return [
  3474. (self.map_tensor_name(mapped_gate), perm_gate),
  3475. (self.map_tensor_name(mapped_up), perm_up),
  3476. ]
  3477. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3478. # skip visual tensors
  3479. return []
  3480. if name.find("experts") != -1:
  3481. n_experts = self.hparams["num_experts"]
  3482. assert bid is not None
  3483. if self._experts is None:
  3484. self._experts = [{} for _ in range(self.block_count)]
  3485. self._experts[bid][name] = data_torch
  3486. if len(self._experts[bid]) >= n_experts * 3:
  3487. tensors: list[tuple[str, Tensor]] = []
  3488. # merge the experts into a single 3d tensor
  3489. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3490. datas: list[Tensor] = []
  3491. for xid in range(n_experts):
  3492. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3493. datas.append(self._experts[bid][ename])
  3494. del self._experts[bid][ename]
  3495. data_torch = torch.stack(datas, dim=0)
  3496. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3497. new_name = self.map_tensor_name(merged_name)
  3498. tensors.append((new_name, data_torch))
  3499. return tensors
  3500. else:
  3501. return []
  3502. return [(self.map_tensor_name(name), data_torch)]
  3503. def prepare_tensors(self):
  3504. super().prepare_tensors()
  3505. if self._experts is not None:
  3506. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3507. experts = [k for d in self._experts for k in d.keys()]
  3508. if len(experts) > 0:
  3509. raise ValueError(f"Unprocessed experts: {experts}")
  3510. @ModelBase.register("Qwen3ForCausalLM")
  3511. class Qwen3Model(Qwen2Model):
  3512. model_arch = gguf.MODEL_ARCH.QWEN3
  3513. # extra logic for rerank models
  3514. is_rerank: bool = False
  3515. is_tied_embeddings: bool = False
  3516. token_false_id: int | None = None
  3517. token_true_id: int | None = None
  3518. def __init__(self, *args, **kwargs):
  3519. super().__init__(*args, **kwargs)
  3520. # track for intern-s1-mini
  3521. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3522. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3523. # a bit hacky, but currently the only way to detect if this is a rerank model
  3524. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3525. readme_path = self.dir_model / "README.md"
  3526. readme_text = ""
  3527. if readme_path.exists():
  3528. with readme_path.open("r", encoding="utf-8") as f:
  3529. readme_text = f.read()
  3530. if "# Qwen3-Reranker" in readme_text:
  3531. self._find_rerank_config()
  3532. def set_vocab(self):
  3533. # deal with intern-s1-mini
  3534. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3535. self._set_vocab_interns1()
  3536. return
  3537. super().set_vocab()
  3538. def _find_rerank_config(self):
  3539. from transformers import AutoTokenizer
  3540. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3541. self.is_rerank = True
  3542. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3543. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3544. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3545. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3546. assert self.token_false_id is not None and self.token_true_id is not None
  3547. def set_gguf_parameters(self):
  3548. super().set_gguf_parameters()
  3549. if self.is_rerank:
  3550. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3551. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3552. self.gguf_writer.add_chat_template([{
  3553. "name": "rerank",
  3554. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3555. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3556. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3557. }])
  3558. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3559. # extract "yes" and "no" tokens from the output lm_head tensor
  3560. false_row = data_torch[self.token_false_id]
  3561. true_row = data_torch[self.token_true_id]
  3562. return torch.stack([true_row, false_row], dim=0)
  3563. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3564. if "model.vision_" in name:
  3565. # skip multimodal tensors
  3566. return []
  3567. if self.is_rerank:
  3568. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3569. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3570. if is_tied_head or is_real_head:
  3571. cls_out_head = (
  3572. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3573. self._get_cls_out_tensor(data_torch),
  3574. )
  3575. if is_tied_head:
  3576. embed = (self.map_tensor_name(name), data_torch)
  3577. return [cls_out_head, embed]
  3578. if is_real_head:
  3579. return [cls_out_head]
  3580. return super().modify_tensors(data_torch, name, bid)
  3581. @ModelBase.register("Qwen3MoeForCausalLM")
  3582. class Qwen3MoeModel(Qwen2MoeModel):
  3583. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3584. def __init__(self, *args, **kwargs):
  3585. super().__init__(*args, **kwargs)
  3586. hparams = ModelBase.load_hparams(self.dir_model, False)
  3587. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3588. def set_vocab(self):
  3589. # deal with intern-s1
  3590. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3591. self._set_vocab_interns1()
  3592. return
  3593. super().set_vocab()
  3594. @ModelBase.register("Qwen3NextForCausalLM")
  3595. class Qwen3NextModel(Qwen2MoeModel):
  3596. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3597. def set_gguf_parameters(self):
  3598. super().set_gguf_parameters()
  3599. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3600. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3601. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3602. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3603. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3604. if (rope_dim := self.hparams.get("head_dim")) is None:
  3605. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3606. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3607. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3608. if name.startswith("mtp"):
  3609. return [] # ignore MTP layers for now
  3610. if name.endswith(".A_log"):
  3611. data_torch = -torch.exp(data_torch)
  3612. elif name.endswith(".dt_bias"):
  3613. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3614. elif "conv1d" in name:
  3615. data_torch = data_torch.squeeze()
  3616. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3617. data_torch = data_torch + 1
  3618. if "in_proj_qkvz.weight" in name:
  3619. # original order: [q, k, v, z] * head_count
  3620. # corrected order: [q * head_count, k * head_count, v * head_count, z * head_count]
  3621. head_k_dim = self.hparams["linear_key_head_dim"]
  3622. head_v_dim = self.hparams["linear_value_head_dim"]
  3623. num_v_heads = self.hparams["linear_num_value_heads"]
  3624. num_k_heads = self.hparams["linear_num_key_heads"]
  3625. hidden_size = self.hparams["hidden_size"]
  3626. split_arg_list_qkvz = [
  3627. head_k_dim, # q partition
  3628. head_k_dim, # k partition
  3629. (num_v_heads // num_k_heads * head_v_dim), # v partition
  3630. (num_v_heads // num_k_heads * head_v_dim), # z partition
  3631. ]
  3632. # view as (n_embd, head_count, [q+k+v+z])
  3633. data_torch = data_torch.permute(1, 0).contiguous()
  3634. data_torch = data_torch.view(-1, num_k_heads, sum(split_arg_list_qkvz))
  3635. # split into q, k, v, z
  3636. q, k, v, z = torch.split(data_torch, split_arg_list_qkvz, dim=-1)
  3637. # flatten dim + head_count
  3638. q = q.contiguous().view(hidden_size, -1)
  3639. k = k.contiguous().view(hidden_size, -1)
  3640. v = v.contiguous().view(hidden_size, -1)
  3641. z = z.contiguous().view(hidden_size, -1)
  3642. # stack back
  3643. qkv = torch.cat([q, k, v], dim=-1).permute(1, 0).contiguous()
  3644. z = z.permute(1, 0).contiguous()
  3645. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_QKV, bid, ".weight"), qkv)
  3646. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_GATE, bid, ".weight"), z)
  3647. else:
  3648. yield from super().modify_tensors(data_torch, name, bid)
  3649. @ModelBase.register("RND1")
  3650. class RND1Model(Qwen2MoeModel):
  3651. model_arch = gguf.MODEL_ARCH.RND1
  3652. def set_gguf_parameters(self):
  3653. super().set_gguf_parameters()
  3654. # RND1 specific parameters
  3655. # RND1 uses bidirectional attention
  3656. self.gguf_writer.add_causal_attention(False)
  3657. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3658. self.gguf_writer.add_mask_token_id(mask_token_id)
  3659. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3660. class Qwen3VLVisionModel(MmprojModel):
  3661. def __init__(self, *args, **kwargs):
  3662. super().__init__(*args, **kwargs)
  3663. assert self.hparams_vision is not None
  3664. # Compute image_size if not present
  3665. if "image_size" not in self.hparams_vision:
  3666. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3667. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3668. patch_size = self.hparams_vision.get("patch_size", 16)
  3669. # num_position_embeddings = (image_size / patch_size) ** 2
  3670. # So image_size = sqrt(num_position_embeddings) * patch_size
  3671. image_size = int(num_pos**0.5 * patch_size)
  3672. self.hparams_vision["image_size"] = image_size
  3673. # Rename config values for compatibility
  3674. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3675. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3676. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3677. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3678. self.is_deepstack_layers[idx] = True
  3679. def set_gguf_parameters(self):
  3680. super().set_gguf_parameters()
  3681. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3682. self.gguf_writer.add_vision_use_gelu(True)
  3683. if self.hparams_vision is not None:
  3684. merge_size = self.hparams_vision.get("spatial_merge_size")
  3685. if merge_size is not None:
  3686. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3687. # Use text config's rms_norm_eps for vision attention layernorm eps
  3688. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3689. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3690. if self.is_deepstack_layers:
  3691. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3692. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3693. assert self.hparams_vision is not None
  3694. # Skip text model tensors - they go in the text model file
  3695. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3696. return []
  3697. if name.startswith("model.visual."):
  3698. name = name.replace("model.visual.", "visual.", 1)
  3699. if name.startswith("visual.deepstack_merger_list."):
  3700. prefix, rest = name.split(".", maxsplit=3)[2:]
  3701. # prefix is the layer index, convert to absolute clip layer index!
  3702. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3703. target = rest
  3704. tensor_type: gguf.MODEL_TENSOR
  3705. if target.startswith("norm."):
  3706. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3707. suffix = target.split(".", 1)[1]
  3708. elif target.startswith("linear_fc1."):
  3709. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3710. suffix = target.split(".", 1)[1]
  3711. elif target.startswith("linear_fc2."):
  3712. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3713. suffix = target.split(".", 1)[1]
  3714. else:
  3715. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3716. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3717. return [(new_name, data_torch)]
  3718. if name.startswith("visual.merger."):
  3719. suffix = name.split(".", 2)[2]
  3720. if suffix.startswith("linear_fc"):
  3721. fc_idx_str, tail = suffix.split(".", 1)
  3722. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3723. # Qwen3VL has linear_fc1 and linear_fc2
  3724. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3725. if fc_num == 1:
  3726. fc_idx = 0
  3727. elif fc_num == 2:
  3728. fc_idx = 2
  3729. else:
  3730. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3731. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3732. elif suffix.startswith("norm."):
  3733. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3734. else:
  3735. raise ValueError(f"Unexpected merger tensor: {name}")
  3736. return [(new_name, data_torch)]
  3737. if name == "visual.patch_embed.proj.weight":
  3738. # split Conv3D into Conv2Ds along temporal dimension
  3739. c1, c2, kt, _, _ = data_torch.shape
  3740. del c1, c2
  3741. if kt != 2:
  3742. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3743. return [
  3744. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3745. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3746. ]
  3747. if name == "visual.patch_embed.proj.bias":
  3748. # Include the bias - it's used by the C++ code
  3749. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3750. if name.startswith("visual."):
  3751. return [(self.map_tensor_name(name), data_torch)]
  3752. # Fall back to parent class for other tensors
  3753. return super().modify_tensors(data_torch, name, bid)
  3754. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3755. class Glm4VVisionModel(Qwen3VLVisionModel):
  3756. def set_gguf_parameters(self):
  3757. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3758. assert self.hparams_vision is not None
  3759. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3760. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3761. if hidden_act == "gelu":
  3762. self.gguf_writer.add_vision_use_gelu(True)
  3763. elif hidden_act == "silu":
  3764. self.gguf_writer.add_vision_use_silu(True)
  3765. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3766. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3768. if name.startswith("model.visual."):
  3769. name = name.replace("model.visual.", "visual.")
  3770. if name.startswith("visual.merger."):
  3771. return [(self.map_tensor_name(name), data_torch)]
  3772. return super().modify_tensors(data_torch, name, bid)
  3773. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3774. class Qwen3VLTextModel(Qwen3Model):
  3775. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3776. def set_gguf_parameters(self):
  3777. super().set_gguf_parameters()
  3778. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3779. vision_config = self.hparams.get("vision_config", {})
  3780. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3781. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3783. # Skip vision tensors - they go in the mmproj file
  3784. if name.startswith("model.visual."):
  3785. return []
  3786. return super().modify_tensors(data_torch, name, bid)
  3787. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3788. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3789. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3790. def set_gguf_parameters(self):
  3791. super().set_gguf_parameters()
  3792. vision_config = self.hparams.get("vision_config", {})
  3793. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3794. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3795. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3796. # Skip vision tensors - they go in the mmproj file
  3797. if name.startswith("model.visual."):
  3798. return []
  3799. return super().modify_tensors(data_torch, name, bid)
  3800. @ModelBase.register("GPT2LMHeadModel")
  3801. class GPT2Model(TextModel):
  3802. model_arch = gguf.MODEL_ARCH.GPT2
  3803. def set_gguf_parameters(self):
  3804. self.gguf_writer.add_block_count(self.block_count)
  3805. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3806. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3807. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3808. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3809. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3810. self.gguf_writer.add_file_type(self.ftype)
  3811. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3812. del bid # unused
  3813. tensors: list[tuple[str, Tensor]] = []
  3814. # we don't need these
  3815. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3816. return tensors
  3817. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3818. data_torch = data_torch.transpose(1, 0)
  3819. new_name = self.map_tensor_name(name)
  3820. tensors.append((new_name, data_torch))
  3821. return tensors
  3822. @ModelBase.register("PhiForCausalLM")
  3823. class Phi2Model(TextModel):
  3824. model_arch = gguf.MODEL_ARCH.PHI2
  3825. def set_gguf_parameters(self):
  3826. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3827. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3828. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3829. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3830. self.gguf_writer.add_embedding_length(n_embd)
  3831. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3832. self.gguf_writer.add_block_count(self.block_count)
  3833. self.gguf_writer.add_head_count(n_head)
  3834. self.gguf_writer.add_head_count_kv(n_head)
  3835. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3836. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3837. self.gguf_writer.add_file_type(self.ftype)
  3838. self.gguf_writer.add_add_bos_token(False)
  3839. @ModelBase.register("Phi3ForCausalLM")
  3840. class Phi3MiniModel(TextModel):
  3841. model_arch = gguf.MODEL_ARCH.PHI3
  3842. def set_vocab(self):
  3843. # Phi-4 model uses GPT2Tokenizer
  3844. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3845. if tokenizer_config_file.is_file():
  3846. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3847. tokenizer_config_json = json.load(f)
  3848. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3849. if tokenizer_class == 'GPT2Tokenizer':
  3850. return self._set_vocab_gpt2()
  3851. from sentencepiece import SentencePieceProcessor
  3852. tokenizer_path = self.dir_model / 'tokenizer.model'
  3853. if not tokenizer_path.is_file():
  3854. raise ValueError(f'Error: Missing {tokenizer_path}')
  3855. tokenizer = SentencePieceProcessor()
  3856. tokenizer.LoadFromFile(str(tokenizer_path))
  3857. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3858. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3859. scores: list[float] = [-10000.0] * vocab_size
  3860. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3861. for token_id in range(tokenizer.vocab_size()):
  3862. piece = tokenizer.IdToPiece(token_id)
  3863. text = piece.encode("utf-8")
  3864. score = tokenizer.GetScore(token_id)
  3865. toktype = SentencePieceTokenTypes.NORMAL
  3866. if tokenizer.IsUnknown(token_id):
  3867. toktype = SentencePieceTokenTypes.UNKNOWN
  3868. elif tokenizer.IsControl(token_id):
  3869. toktype = SentencePieceTokenTypes.CONTROL
  3870. elif tokenizer.IsUnused(token_id):
  3871. toktype = SentencePieceTokenTypes.UNUSED
  3872. elif tokenizer.IsByte(token_id):
  3873. toktype = SentencePieceTokenTypes.BYTE
  3874. tokens[token_id] = text
  3875. scores[token_id] = score
  3876. toktypes[token_id] = toktype
  3877. added_tokens_file = self.dir_model / 'added_tokens.json'
  3878. if added_tokens_file.is_file():
  3879. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3880. added_tokens_json = json.load(f)
  3881. for key in added_tokens_json:
  3882. token_id = added_tokens_json[key]
  3883. if token_id >= vocab_size:
  3884. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3885. continue
  3886. tokens[token_id] = key.encode("utf-8")
  3887. scores[token_id] = -1000.0
  3888. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3889. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3890. if tokenizer_config_file.is_file():
  3891. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3892. tokenizer_config_json = json.load(f)
  3893. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3894. for token_id, foken_data in added_tokens_decoder.items():
  3895. token_id = int(token_id)
  3896. token = foken_data["content"].encode("utf-8")
  3897. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3898. if tokens[token_id] != token:
  3899. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3900. tokens[token_id] = token
  3901. scores[token_id] = -1000.0
  3902. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3903. if foken_data.get("special"):
  3904. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3905. tokenizer_file = self.dir_model / 'tokenizer.json'
  3906. if tokenizer_file.is_file():
  3907. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3908. tokenizer_json = json.load(f)
  3909. added_tokens = tokenizer_json.get("added_tokens", [])
  3910. for foken_data in added_tokens:
  3911. token_id = int(foken_data["id"])
  3912. token = foken_data["content"].encode("utf-8")
  3913. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3914. if tokens[token_id] != token:
  3915. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3916. tokens[token_id] = token
  3917. scores[token_id] = -1000.0
  3918. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3919. if foken_data.get("special"):
  3920. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3921. self.gguf_writer.add_tokenizer_model("llama")
  3922. self.gguf_writer.add_tokenizer_pre("default")
  3923. self.gguf_writer.add_token_list(tokens)
  3924. self.gguf_writer.add_token_scores(scores)
  3925. self.gguf_writer.add_token_types(toktypes)
  3926. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3927. special_vocab.add_to_gguf(self.gguf_writer)
  3928. def set_gguf_parameters(self):
  3929. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3930. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3931. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3932. rms_eps = self.find_hparam(["rms_norm_eps"])
  3933. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3934. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3935. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3936. rope_dims = int(rot_pct * n_embd) // n_head
  3937. self.gguf_writer.add_context_length(max_pos_embds)
  3938. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3939. self.gguf_writer.add_embedding_length(n_embd)
  3940. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3941. self.gguf_writer.add_block_count(self.block_count)
  3942. self.gguf_writer.add_head_count(n_head)
  3943. self.gguf_writer.add_head_count_kv(n_head_kv)
  3944. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3945. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3946. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3947. self.gguf_writer.add_file_type(self.ftype)
  3948. sliding_window = self.hparams.get("sliding_window")
  3949. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3950. if sliding_window is None:
  3951. sliding_window = 0
  3952. self.gguf_writer.add_sliding_window(sliding_window)
  3953. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3954. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3955. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3956. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3957. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3958. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3959. rope_dims = int(rot_pct * n_embd) // n_head
  3960. # write rope scaling for long context (128k) model
  3961. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3962. if rope_scaling is None:
  3963. return
  3964. scale = max_pos_embds / orig_max_pos_embds
  3965. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3966. if len(rope_scaling_type) == 0:
  3967. raise KeyError('Missing the required key rope_scaling.type')
  3968. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3969. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3970. elif rope_scaling_type == 'yarn':
  3971. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3972. else:
  3973. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3974. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3975. long_factors = rope_scaling.get('long_factor', None)
  3976. short_factors = rope_scaling.get('short_factor', None)
  3977. if long_factors is None or short_factors is None:
  3978. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3979. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3980. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3981. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3982. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3983. @ModelBase.register("PhiMoEForCausalLM")
  3984. class PhiMoeModel(Phi3MiniModel):
  3985. model_arch = gguf.MODEL_ARCH.PHIMOE
  3986. _experts: list[dict[str, Tensor]] | None = None
  3987. def set_gguf_parameters(self):
  3988. super().set_gguf_parameters()
  3989. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3990. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3991. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3992. # process the experts separately
  3993. if name.find("block_sparse_moe.experts") != -1:
  3994. n_experts = self.hparams["num_local_experts"]
  3995. assert bid is not None
  3996. if self._experts is None:
  3997. self._experts = [{} for _ in range(self.block_count)]
  3998. self._experts[bid][name] = data_torch
  3999. if len(self._experts[bid]) >= n_experts * 3:
  4000. tensors: list[tuple[str, Tensor]] = []
  4001. # merge the experts into a single 3d tensor
  4002. for w_name in ["w1", "w2", "w3"]:
  4003. datas: list[Tensor] = []
  4004. for xid in range(n_experts):
  4005. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  4006. datas.append(self._experts[bid][ename])
  4007. del self._experts[bid][ename]
  4008. data_torch = torch.stack(datas, dim=0)
  4009. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  4010. new_name = self.map_tensor_name(merged_name)
  4011. tensors.append((new_name, data_torch))
  4012. return tensors
  4013. else:
  4014. return []
  4015. return [(self.map_tensor_name(name), data_torch)]
  4016. def prepare_tensors(self):
  4017. super().prepare_tensors()
  4018. if self._experts is not None:
  4019. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4020. experts = [k for d in self._experts for k in d.keys()]
  4021. if len(experts) > 0:
  4022. raise ValueError(f"Unprocessed experts: {experts}")
  4023. @ModelBase.register("PlamoForCausalLM")
  4024. class PlamoModel(TextModel):
  4025. model_arch = gguf.MODEL_ARCH.PLAMO
  4026. def set_vocab(self):
  4027. self._set_vocab_sentencepiece()
  4028. def set_gguf_parameters(self):
  4029. hparams = self.hparams
  4030. self.gguf_writer.add_context_length(4096) # not in config.json
  4031. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4032. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4033. self.gguf_writer.add_block_count(self.block_count)
  4034. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4035. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  4036. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  4037. self.gguf_writer.add_file_type(self.ftype)
  4038. def shuffle_attn_q_weight(self, data_torch):
  4039. assert data_torch.size() == (5120, 5120)
  4040. data_torch = data_torch.reshape(8, 5, 128, 5120)
  4041. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  4042. data_torch = torch.reshape(data_torch, (5120, 5120))
  4043. return data_torch
  4044. def shuffle_attn_output_weight(self, data_torch):
  4045. assert data_torch.size() == (5120, 5120)
  4046. data_torch = data_torch.reshape(5120, 8, 5, 128)
  4047. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4048. data_torch = torch.reshape(data_torch, (5120, 5120))
  4049. return data_torch
  4050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4051. del bid # unused
  4052. new_name = self.map_tensor_name(name)
  4053. # shuffle for broadcasting of gqa in ggml_mul_mat
  4054. if new_name.endswith("attn_q.weight"):
  4055. data_torch = self.shuffle_attn_q_weight(data_torch)
  4056. elif new_name.endswith("attn_output.weight"):
  4057. data_torch = self.shuffle_attn_output_weight(data_torch)
  4058. return [(new_name, data_torch)]
  4059. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4060. class Plamo2Model(TextModel):
  4061. model_arch = gguf.MODEL_ARCH.PLAMO2
  4062. def set_vocab(self):
  4063. self._set_vocab_plamo()
  4064. def set_gguf_parameters(self):
  4065. hparams = self.hparams
  4066. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4067. # Which layers are Mamba layers
  4068. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4069. # This logic matches modeling_plamo.py's is_mamba function
  4070. mamba_step = hparams.get("mamba_step", 2)
  4071. mamba_enabled = hparams.get("mamba_enabled", True)
  4072. num_key_value_heads = []
  4073. num_attention_heads = []
  4074. if mamba_enabled:
  4075. for i in range(self.block_count):
  4076. if self.block_count <= (mamba_step // 2):
  4077. # use attention in last layer
  4078. is_mamba = (i != self.block_count - 1)
  4079. else:
  4080. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4081. if is_mamba:
  4082. num_key_value_heads.append(0)
  4083. num_attention_heads.append(0)
  4084. else:
  4085. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4086. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4087. if num_key_value_heads and num_attention_heads:
  4088. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4089. self.gguf_writer.add_head_count(num_attention_heads)
  4090. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4091. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4092. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4093. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4094. self.gguf_writer.add_block_count(self.block_count)
  4095. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4096. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4097. # Mamba parameters
  4098. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4099. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4100. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4101. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4102. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4103. self.gguf_writer.add_ssm_group_count(0)
  4104. # MLP feed forward parameters (for attention layers)
  4105. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4106. self.gguf_writer.add_file_type(self.ftype)
  4107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4108. del bid # unused
  4109. if name.endswith(".A_log"):
  4110. data_torch = -torch.exp(data_torch)
  4111. elif name.endswith(".dt_bias"):
  4112. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4113. elif name.endswith(".dt_norm_weight"):
  4114. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4115. elif name.endswith(".B_norm_weight"):
  4116. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4117. elif name.endswith(".C_norm_weight"):
  4118. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4119. elif name.endswith(".k_weight"):
  4120. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4121. elif name.endswith(".q_weight"):
  4122. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4123. elif name.endswith(".conv1d.weight"):
  4124. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4125. assert data_torch.ndim == 2
  4126. elif name.endswith(".pre_mixer_norm.weight"):
  4127. data_torch += 1.0
  4128. elif name.endswith(".post_mixer_norm.weight"):
  4129. data_torch += 1.0 / 5
  4130. elif name.endswith(".pre_mlp_norm.weight"):
  4131. data_torch += 1.0
  4132. elif name.endswith(".post_mlp_norm.weight"):
  4133. data_torch += 1.0 / (5**1.5)
  4134. elif name.endswith(".norm.weight"):
  4135. data_torch += 1.0
  4136. new_name = self.map_tensor_name(name)
  4137. return [(new_name, data_torch)]
  4138. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4139. class Plamo3Model(TextModel):
  4140. model_arch = gguf.MODEL_ARCH.PLAMO3
  4141. def set_vocab(self):
  4142. self._set_vocab_plamo()
  4143. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4144. tokenizer_config = {}
  4145. if tokenizer_config_path.is_file():
  4146. with open(tokenizer_config_path, encoding="utf-8") as f:
  4147. tokenizer_config = json.load(f)
  4148. chat_template = tokenizer_config.get("chat_template")
  4149. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4150. if chat_template_jinja.is_file():
  4151. with open(chat_template_jinja, encoding="utf-8") as f:
  4152. chat_template = f.read()
  4153. if chat_template:
  4154. self.gguf_writer.add_chat_template(chat_template)
  4155. def set_gguf_parameters(self):
  4156. super().set_gguf_parameters()
  4157. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4158. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4159. self.gguf_writer.add_sliding_window(sliding_window)
  4160. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4161. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4162. if name.endswith(".pre_mixer_norm.weight"):
  4163. data_torch = data_torch + 1.0
  4164. elif name.endswith(".post_mixer_norm.weight"):
  4165. data_torch = data_torch + 1.0 / 5
  4166. elif name.endswith(".pre_mlp_norm.weight"):
  4167. data_torch = data_torch + 1.0
  4168. elif name.endswith(".post_mlp_norm.weight"):
  4169. data_torch = data_torch + 1.0 / (5**1.5)
  4170. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4171. data_torch = data_torch + 1.0
  4172. elif name.endswith(".norm.weight"):
  4173. data_torch = data_torch + 1.0
  4174. return [(self.map_tensor_name(name), data_torch)]
  4175. @ModelBase.register("CodeShellForCausalLM")
  4176. class CodeShellModel(TextModel):
  4177. model_arch = gguf.MODEL_ARCH.CODESHELL
  4178. def set_gguf_parameters(self):
  4179. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4180. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4181. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4182. self.gguf_writer.add_block_count(self.block_count)
  4183. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4184. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4185. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4186. self.gguf_writer.add_file_type(self.ftype)
  4187. self.gguf_writer.add_rope_freq_base(10000.0)
  4188. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4189. self.gguf_writer.add_rope_scaling_factor(1.0)
  4190. @ModelBase.register("InternLM2ForCausalLM")
  4191. class InternLM2Model(TextModel):
  4192. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4193. def set_vocab(self):
  4194. # (TODO): Is there a better way?
  4195. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4196. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4197. # recognized as an empty string in C++.
  4198. from sentencepiece import SentencePieceProcessor
  4199. from sentencepiece import sentencepiece_model_pb2 as model
  4200. tokenizer_path = self.dir_model / 'tokenizer.model'
  4201. tokens: list[bytes] = []
  4202. scores: list[float] = []
  4203. toktypes: list[int] = []
  4204. if not tokenizer_path.is_file():
  4205. logger.error(f'Error: Missing {tokenizer_path}')
  4206. sys.exit(1)
  4207. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4208. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4209. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4210. tokenizer = SentencePieceProcessor()
  4211. tokenizer.LoadFromFile(str(tokenizer_path))
  4212. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4213. for token_id in range(vocab_size):
  4214. piece = tokenizer.IdToPiece(token_id)
  4215. text = piece.encode("utf-8")
  4216. score = tokenizer.GetScore(token_id)
  4217. if text == b"\x00":
  4218. # (TODO): fixme
  4219. # Hack here and replace the \x00 characters.
  4220. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4221. text = "🐉".encode("utf-8")
  4222. toktype = SentencePieceTokenTypes.NORMAL
  4223. if tokenizer.IsUnknown(token_id):
  4224. toktype = SentencePieceTokenTypes.UNKNOWN
  4225. elif tokenizer.IsControl(token_id):
  4226. toktype = SentencePieceTokenTypes.CONTROL
  4227. elif tokenizer.IsUnused(token_id):
  4228. toktype = SentencePieceTokenTypes.UNUSED
  4229. elif tokenizer.IsByte(token_id):
  4230. toktype = SentencePieceTokenTypes.BYTE
  4231. # take care of ununsed raw token
  4232. if piece.startswith('[UNUSED'):
  4233. toktype = SentencePieceTokenTypes.UNUSED
  4234. tokens.append(text)
  4235. scores.append(score)
  4236. toktypes.append(toktype)
  4237. added_tokens_file = self.dir_model / 'added_tokens.json'
  4238. if added_tokens_file.is_file():
  4239. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4240. added_tokens_json = json.load(f)
  4241. for key in added_tokens_json:
  4242. tokens.append(key.encode("utf-8"))
  4243. scores.append(-1000.0)
  4244. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4245. chat_eos_token = '<|im_end|>'
  4246. chat_eos_token_id = None
  4247. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4248. if tokenizer_config_file.is_file():
  4249. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4250. tokenizer_config_json = json.load(f)
  4251. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4252. for token_id, foken_data in added_tokens_decoder.items():
  4253. token_id = int(token_id)
  4254. token = foken_data["content"]
  4255. if token == chat_eos_token:
  4256. chat_eos_token_id = token_id
  4257. token = token.encode("utf-8")
  4258. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4259. if tokens[token_id] != token:
  4260. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4261. tokens[token_id] = token
  4262. scores[token_id] = -1000.0
  4263. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4264. if foken_data.get("special"):
  4265. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4266. tokenizer_file = self.dir_model / 'tokenizer.json'
  4267. if tokenizer_file.is_file():
  4268. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4269. tokenizer_json = json.load(f)
  4270. added_tokens = tokenizer_json.get("added_tokens", [])
  4271. for foken_data in added_tokens:
  4272. token_id = int(foken_data["id"])
  4273. token = foken_data["content"]
  4274. if token == chat_eos_token:
  4275. chat_eos_token_id = token_id
  4276. token = token.encode("utf-8")
  4277. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4278. if tokens[token_id] != token:
  4279. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4280. tokens[token_id] = token
  4281. scores[token_id] = -1000.0
  4282. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4283. if foken_data.get("special"):
  4284. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4285. self.gguf_writer.add_tokenizer_model("llama")
  4286. self.gguf_writer.add_tokenizer_pre("default")
  4287. self.gguf_writer.add_token_list(tokens)
  4288. self.gguf_writer.add_token_scores(scores)
  4289. self.gguf_writer.add_token_types(toktypes)
  4290. self.gguf_writer.add_add_space_prefix(add_prefix)
  4291. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4292. old_eos = special_vocab.special_token_ids["eos"]
  4293. if chat_eos_token_id is not None:
  4294. # For the chat model, we replace the eos with '<|im_end|>'.
  4295. # TODO: this is a hack, should be fixed
  4296. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4297. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4298. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4299. " in chat mode so that the conversation can end normally.")
  4300. special_vocab.add_to_gguf(self.gguf_writer)
  4301. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4302. num_heads = self.hparams["num_attention_heads"]
  4303. num_kv_heads = self.hparams["num_key_value_heads"]
  4304. n_embd = self.hparams["hidden_size"]
  4305. q_per_kv = num_heads // num_kv_heads
  4306. head_dim = n_embd // num_heads
  4307. num_groups = num_heads // q_per_kv
  4308. name = name.replace("language_model.", "") # InternVL
  4309. if name.startswith("mlp") or name.startswith("vision_model"):
  4310. # skip visual tensors
  4311. return []
  4312. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4313. qkv = data_torch
  4314. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4315. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4316. # The model weights of q and k equire additional reshape.
  4317. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4318. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4319. v = v.reshape((-1, v.shape[-1]))
  4320. return [
  4321. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4322. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4323. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4324. ]
  4325. else:
  4326. return [(self.map_tensor_name(name), data_torch)]
  4327. @ModelBase.register("InternLM3ForCausalLM")
  4328. class InternLM3Model(TextModel):
  4329. model_arch = gguf.MODEL_ARCH.LLAMA
  4330. def set_vocab(self):
  4331. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4332. self.gguf_writer.add_tokenizer_model("llama")
  4333. self.gguf_writer.add_tokenizer_pre("default")
  4334. self.gguf_writer.add_token_list(tokens)
  4335. self.gguf_writer.add_token_scores(scores)
  4336. self.gguf_writer.add_token_types(toktypes)
  4337. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4338. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4339. if tokenizer_config_file.is_file():
  4340. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4341. tokenizer_config_json = json.load(f)
  4342. if "add_prefix_space" in tokenizer_config_json:
  4343. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4344. if "added_tokens_decoder" in tokenizer_config_json:
  4345. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4346. if token_data.get("special"):
  4347. token_id = int(token_id)
  4348. token = token_data["content"]
  4349. special_vocab._set_special_token(token, token_id)
  4350. # update eos token
  4351. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4352. special_vocab.special_token_ids["eos"] = token_id
  4353. special_vocab.add_to_gguf(self.gguf_writer)
  4354. def set_gguf_parameters(self):
  4355. super().set_gguf_parameters()
  4356. hparams = self.hparams
  4357. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4358. if (rope_dim := hparams.get("head_dim")) is None:
  4359. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4360. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4361. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4362. n_head = self.hparams["num_attention_heads"]
  4363. n_kv_head = self.hparams.get("num_key_value_heads")
  4364. name = name.replace("language_model.", "") # InternVL
  4365. if name.startswith("mlp") or name.startswith("vision_model"):
  4366. # skip visual tensors
  4367. return []
  4368. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4369. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4370. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4371. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4372. return [(self.map_tensor_name(name), data_torch)]
  4373. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4374. class BertModel(TextModel):
  4375. model_arch = gguf.MODEL_ARCH.BERT
  4376. def __init__(self, *args, **kwargs):
  4377. super().__init__(*args, **kwargs)
  4378. self.vocab_size = None
  4379. if cls_out_labels := self.hparams.get("id2label"):
  4380. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4381. # Remove dummy labels added by AutoConfig
  4382. cls_out_labels = None
  4383. self.cls_out_labels = cls_out_labels
  4384. def set_gguf_parameters(self):
  4385. super().set_gguf_parameters()
  4386. self.gguf_writer.add_causal_attention(False)
  4387. self._try_set_pooling_type()
  4388. if self.cls_out_labels:
  4389. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4390. def set_vocab(self):
  4391. tokens, toktypes, tokpre = self.get_vocab_base()
  4392. self.vocab_size = len(tokens)
  4393. # we need this to validate the size of the token_type embeddings
  4394. # though currently we are passing all zeros to the token_type embeddings
  4395. # "Sequence A" or "Sequence B"
  4396. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4397. # convert to phantom space vocab
  4398. def phantom(tok, toktype):
  4399. if toktype == gguf.TokenType.CONTROL:
  4400. return tok
  4401. if tok.startswith("##"):
  4402. return tok[2:]
  4403. return "\u2581" + tok
  4404. assert len(tokens) == len(toktypes)
  4405. tokens = list(map(phantom, tokens, toktypes))
  4406. # add vocab to gguf
  4407. self.gguf_writer.add_tokenizer_model("bert")
  4408. self.gguf_writer.add_tokenizer_pre(tokpre)
  4409. self.gguf_writer.add_token_list(tokens)
  4410. self.gguf_writer.add_token_types(toktypes)
  4411. # handle special tokens
  4412. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4413. special_vocab.add_to_gguf(self.gguf_writer)
  4414. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4415. del bid # unused
  4416. if name.startswith("bert."):
  4417. name = name[5:]
  4418. if name.endswith(".gamma"):
  4419. name = name[:-6] + ".weight"
  4420. if name.endswith(".beta"):
  4421. name = name[:-5] + ".bias"
  4422. # we are only using BERT for embeddings so we don't need the pooling layer
  4423. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4424. return [] # we don't need these
  4425. if name.startswith("cls.predictions"):
  4426. return []
  4427. if name.startswith("cls.seq_relationship"):
  4428. return []
  4429. if self.cls_out_labels:
  4430. # For BertForSequenceClassification (direct projection layer)
  4431. if name == "classifier.weight":
  4432. name = "classifier.out_proj.weight"
  4433. if name == "classifier.bias":
  4434. name = "classifier.out_proj.bias"
  4435. return [(self.map_tensor_name(name), data_torch)]
  4436. def _xlmroberta_tokenizer_init(self) -> None:
  4437. # we need the pad_token_id to know how to chop down position_embd matrix
  4438. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4439. self._position_offset = 1 + pad_token_id
  4440. if "max_position_embeddings" in self.hparams:
  4441. self.hparams["max_position_embeddings"] -= self._position_offset
  4442. else:
  4443. self._position_offset = None
  4444. def _xlmroberta_set_vocab(self) -> None:
  4445. # to avoid TypeError: Descriptors cannot be created directly
  4446. # exception when importing sentencepiece_model_pb2
  4447. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4448. from sentencepiece import SentencePieceProcessor
  4449. from sentencepiece import sentencepiece_model_pb2 as model
  4450. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4451. tokenizer_json = {}
  4452. tokenizer_config_json = {}
  4453. if not tokenizer_path.is_file():
  4454. tokenizer_path = self.dir_model / 'tokenizer.json'
  4455. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4456. if not tokenizer_path.is_file():
  4457. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4458. from base64 import b64decode
  4459. from transformers import AutoTokenizer
  4460. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4461. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4462. tokenizer_json = json.load(fp)
  4463. if tokenizer_config_path.is_file():
  4464. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4465. tokenizer_config_json = json.load(fp)
  4466. add_prefix = tokenizer.add_prefix_space
  4467. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4468. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4469. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4470. else:
  4471. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4472. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4473. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4474. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4475. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4476. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4477. tokenizer = SentencePieceProcessor()
  4478. tokenizer.LoadFromFile(str(tokenizer_path))
  4479. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4480. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4481. scores: list[float] = [-10000.0] * vocab_size
  4482. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4483. if isinstance(tokenizer, SentencePieceProcessor):
  4484. for token_id in range(tokenizer.vocab_size()):
  4485. piece = tokenizer.IdToPiece(token_id)
  4486. text = piece.encode("utf-8")
  4487. score = tokenizer.GetScore(token_id)
  4488. toktype = SentencePieceTokenTypes.NORMAL
  4489. if tokenizer.IsUnknown(token_id):
  4490. toktype = SentencePieceTokenTypes.UNKNOWN
  4491. elif tokenizer.IsControl(token_id):
  4492. toktype = SentencePieceTokenTypes.CONTROL
  4493. elif tokenizer.IsUnused(token_id):
  4494. toktype = SentencePieceTokenTypes.UNUSED
  4495. elif tokenizer.IsByte(token_id):
  4496. toktype = SentencePieceTokenTypes.BYTE
  4497. tokens[token_id] = text
  4498. scores[token_id] = score
  4499. toktypes[token_id] = toktype
  4500. else:
  4501. added_vocab = tokenizer.get_added_vocab()
  4502. unk_token = tokenizer_config_json.get("unk_token")
  4503. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4504. for token_id in range(tokenizer.vocab_size):
  4505. piece = tokenizer._convert_id_to_token(token_id)
  4506. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4507. text = piece.encode("utf-8")
  4508. score = tokenizer_json["model"]["vocab"][token_id][1]
  4509. toktype = SentencePieceTokenTypes.NORMAL
  4510. if token_id == unk_token_id:
  4511. toktype = SentencePieceTokenTypes.UNKNOWN
  4512. elif token_id in tokenizer.all_special_ids:
  4513. toktype = SentencePieceTokenTypes.CONTROL
  4514. elif token_id in added_vocab.values():
  4515. toktype = SentencePieceTokenTypes.USER_DEFINED
  4516. # No reliable way to detect this, but jina doesn't have any
  4517. # elif tokenizer.IsByte(token_id):
  4518. # toktype = SentencePieceTokenTypes.BYTE
  4519. tokens[token_id] = text
  4520. scores[token_id] = score
  4521. toktypes[token_id] = toktype
  4522. if isinstance(tokenizer, SentencePieceProcessor):
  4523. # realign tokens (see HF tokenizer code)
  4524. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4525. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4526. toktypes = [
  4527. SentencePieceTokenTypes.CONTROL,
  4528. SentencePieceTokenTypes.CONTROL,
  4529. SentencePieceTokenTypes.CONTROL,
  4530. SentencePieceTokenTypes.UNKNOWN,
  4531. ] + toktypes[3:-1]
  4532. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4533. # Add mask token missing from sentencepiece.bpe.model
  4534. tokens[250001] = b'<mask>'
  4535. scores[250001] = 0.0
  4536. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4537. self.gguf_writer.add_tokenizer_model("t5")
  4538. self.gguf_writer.add_tokenizer_pre("default")
  4539. self.gguf_writer.add_token_list(tokens)
  4540. self.gguf_writer.add_token_scores(scores)
  4541. self.gguf_writer.add_token_types(toktypes)
  4542. self.gguf_writer.add_add_space_prefix(add_prefix)
  4543. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4544. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4545. if precompiled_charsmap:
  4546. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4547. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4548. special_vocab.add_to_gguf(self.gguf_writer)
  4549. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4550. class DistilBertModel(BertModel):
  4551. model_arch = gguf.MODEL_ARCH.BERT
  4552. def set_gguf_parameters(self):
  4553. self.gguf_writer.add_layer_norm_eps(1e-12)
  4554. logger.info("gguf: layer norm epsilon = 1e-12")
  4555. super().set_gguf_parameters()
  4556. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4557. if name.startswith("distilbert."):
  4558. name = name[11:]
  4559. # These layers act as MLM head, so we don't need them
  4560. if name.startswith("vocab_"):
  4561. return []
  4562. return super().modify_tensors(data_torch, name, bid)
  4563. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4564. class RobertaModel(BertModel):
  4565. model_arch = gguf.MODEL_ARCH.BERT
  4566. def __init__(self, *args, **kwargs):
  4567. super().__init__(*args, **kwargs)
  4568. # we need the pad_token_id to know how to chop down position_embd matrix
  4569. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4570. self._position_offset = 1 + pad_token_id
  4571. if "max_position_embeddings" in self.hparams:
  4572. self.hparams["max_position_embeddings"] -= self._position_offset
  4573. else:
  4574. self._position_offset = None
  4575. def set_vocab(self):
  4576. """Support BPE tokenizers for roberta models"""
  4577. bpe_tok_path = self.dir_model / "tokenizer.json"
  4578. if bpe_tok_path.exists():
  4579. self._set_vocab_gpt2()
  4580. # we need this to validate the size of the token_type embeddings
  4581. # though currently we are passing all zeros to the token_type embeddings
  4582. # "Sequence A" or "Sequence B"
  4583. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4584. else:
  4585. return super().set_vocab()
  4586. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4587. # if name starts with "roberta.", remove the prefix
  4588. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4589. if name.startswith("roberta."):
  4590. name = name[8:]
  4591. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4592. if name == "embeddings.position_embeddings.weight":
  4593. if self._position_offset is not None:
  4594. data_torch = data_torch[self._position_offset:,:]
  4595. return super().modify_tensors(data_torch, name, bid)
  4596. @ModelBase.register("NomicBertModel")
  4597. class NomicBertModel(BertModel):
  4598. model_arch = gguf.MODEL_ARCH.BERT
  4599. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4600. hparams = kwargs.pop("hparams", None)
  4601. if hparams is None:
  4602. hparams = ModelBase.load_hparams(dir_model, False)
  4603. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4604. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4605. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4606. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4607. if self._tokenizer_is_xlmroberta:
  4608. self._xlmroberta_tokenizer_init()
  4609. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4610. if npos == 8192 and mtp == 2048:
  4611. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4612. elif npos == 2048 and mtp == 2048:
  4613. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4614. else:
  4615. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4616. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4617. # this doesn't do anything in the HF version
  4618. assert self.hparams["causal"] is False
  4619. # no bias tensors unless MoE
  4620. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4621. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4622. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4623. # norm at end of layer
  4624. assert self.hparams["prenorm"] is False
  4625. # standard RoPE
  4626. assert self.hparams["rotary_emb_fraction"] == 1.0
  4627. assert self.hparams["rotary_emb_interleaved"] is False
  4628. assert self.hparams["rotary_emb_scale_base"] is None
  4629. def set_vocab(self) -> None:
  4630. if self._tokenizer_is_xlmroberta:
  4631. return self._xlmroberta_set_vocab()
  4632. return super().set_vocab()
  4633. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4634. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4635. if "mlp.experts.bias" in name:
  4636. return [] # Explicitly return an empty list.
  4637. if "mlp.experts.mlp.w1" in name:
  4638. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4639. name += ".weight"
  4640. if "mlp.experts.mlp.w2" in name:
  4641. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4642. data_torch = data_torch.transpose(1, 2)
  4643. name += ".weight"
  4644. return [(self.map_tensor_name(name), data_torch)]
  4645. def set_gguf_parameters(self):
  4646. super().set_gguf_parameters()
  4647. if self.is_moe:
  4648. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4649. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4650. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4651. def _is_tokenizer_xlmroberta(self) -> bool:
  4652. with open(self.dir_model / "tokenizer.json") as f:
  4653. tokenizer_json = json.load(f)
  4654. toktyp = tokenizer_json["model"]["type"]
  4655. if toktyp == "Unigram":
  4656. return True
  4657. if toktyp == "WordPiece":
  4658. return False
  4659. raise ValueError(f"unknown tokenizer: {toktyp}")
  4660. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4661. class NeoBert(BertModel):
  4662. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4663. def set_gguf_parameters(self):
  4664. super().set_gguf_parameters()
  4665. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4666. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4667. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4668. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4669. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4670. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4671. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4672. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4673. def modify_tensors(self, data_torch, name, bid):
  4674. if name.startswith("decoder."):
  4675. return []
  4676. if name.startswith("model."):
  4677. name = name[6:]
  4678. return super().modify_tensors(data_torch, name, bid)
  4679. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4680. class XLMRobertaModel(BertModel):
  4681. model_arch = gguf.MODEL_ARCH.BERT
  4682. _lora_files = {}
  4683. _lora_names = []
  4684. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4685. hparams = kwargs.pop("hparams", None)
  4686. if hparams is None:
  4687. hparams = ModelBase.load_hparams(dir_model, False)
  4688. if lora_names := hparams.get("lora_adaptations"):
  4689. self._lora_names = lora_names
  4690. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4691. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4692. self._xlmroberta_tokenizer_init()
  4693. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4694. if self._lora_names:
  4695. for name in self._lora_names:
  4696. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4697. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4698. return super().generate_extra_tensors()
  4699. def set_type(self):
  4700. for lora_writer in self._lora_files.values():
  4701. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4702. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4703. super().set_type()
  4704. def set_vocab(self):
  4705. self._xlmroberta_set_vocab()
  4706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4707. # if name starts with "roberta.", remove the prefix
  4708. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4709. if name.startswith("roberta."):
  4710. name = name[8:]
  4711. # jina-embeddings-v3
  4712. if ".parametrizations." in name:
  4713. name = name.replace(".parametrizations.", ".")
  4714. if name.endswith(".original"):
  4715. name = name[:-9]
  4716. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4717. if name == "embeddings.position_embeddings.weight":
  4718. if self._position_offset is not None:
  4719. data_torch = data_torch[self._position_offset:,:]
  4720. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4721. if name.startswith("pooler.dense"):
  4722. return []
  4723. num_loras = data_torch.size(0)
  4724. assert num_loras == len(self._lora_names)
  4725. # Split out each LoRA in their own GGUF
  4726. for i, lora_writer in enumerate(self._lora_files.values()):
  4727. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4728. data = data_torch[i, :, :]
  4729. # Transpose/flip token_embd/types into correct shape
  4730. if new_name == "token_embd.weight.lora_b":
  4731. data = data.T
  4732. elif new_name.startswith("token_types.weight."):
  4733. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4734. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4735. return []
  4736. return super().modify_tensors(data_torch, name, bid)
  4737. def set_gguf_parameters(self):
  4738. super().set_gguf_parameters()
  4739. # jina-embeddings-v3
  4740. lora_alpha = self.hparams.get("lora_alpha")
  4741. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4742. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4743. for lora_name, lora_writer in self._lora_files.items():
  4744. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4745. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4746. if lora_prompt_prefixes:
  4747. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4748. def write(self):
  4749. super().write()
  4750. for lora_writer in self._lora_files.values():
  4751. lora_writer.write_header_to_file()
  4752. lora_writer.write_kv_data_to_file()
  4753. lora_writer.write_tensors_to_file(progress=True)
  4754. lora_writer.close()
  4755. @ModelBase.register("GemmaForCausalLM")
  4756. class GemmaModel(TextModel):
  4757. model_arch = gguf.MODEL_ARCH.GEMMA
  4758. def set_vocab(self):
  4759. self._set_vocab_sentencepiece()
  4760. # TODO: these special tokens should be exported only for the CodeGemma family
  4761. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4762. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4763. special_vocab._set_special_token("prefix", 67)
  4764. special_vocab._set_special_token("suffix", 69)
  4765. special_vocab._set_special_token("middle", 68)
  4766. special_vocab._set_special_token("fsep", 70)
  4767. special_vocab._set_special_token("eot", 107)
  4768. special_vocab.chat_template = None # do not add it twice
  4769. special_vocab.add_to_gguf(self.gguf_writer)
  4770. self.gguf_writer.add_add_space_prefix(False)
  4771. def set_gguf_parameters(self):
  4772. hparams = self.hparams
  4773. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4774. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4775. self.gguf_writer.add_block_count(self.block_count)
  4776. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4777. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4778. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4779. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4780. self.gguf_writer.add_key_length(hparams["head_dim"])
  4781. self.gguf_writer.add_value_length(hparams["head_dim"])
  4782. self.gguf_writer.add_file_type(self.ftype)
  4783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4784. del bid # unused
  4785. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4786. # To prevent errors, skip loading lm_head.weight.
  4787. if name == "lm_head.weight":
  4788. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4789. return []
  4790. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4791. if name.endswith("norm.weight"):
  4792. data_torch = data_torch + 1
  4793. return [(self.map_tensor_name(name), data_torch)]
  4794. @ModelBase.register("Gemma2ForCausalLM")
  4795. class Gemma2Model(TextModel):
  4796. model_arch = gguf.MODEL_ARCH.GEMMA2
  4797. def set_vocab(self):
  4798. self._set_vocab_sentencepiece()
  4799. self.gguf_writer.add_add_space_prefix(False)
  4800. def set_gguf_parameters(self):
  4801. hparams = self.hparams
  4802. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4803. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4804. self.gguf_writer.add_block_count(self.block_count)
  4805. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4806. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4807. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4808. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4809. self.gguf_writer.add_key_length(hparams["head_dim"])
  4810. self.gguf_writer.add_value_length(hparams["head_dim"])
  4811. self.gguf_writer.add_file_type(self.ftype)
  4812. self.gguf_writer.add_attn_logit_softcapping(
  4813. self.hparams["attn_logit_softcapping"]
  4814. )
  4815. self.gguf_writer.add_final_logit_softcapping(
  4816. self.hparams["final_logit_softcapping"]
  4817. )
  4818. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4820. del bid # unused
  4821. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4822. # To prevent errors, skip loading lm_head.weight.
  4823. if name == "lm_head.weight":
  4824. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4825. return []
  4826. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4827. if name.endswith("norm.weight"):
  4828. data_torch = data_torch + 1
  4829. return [(self.map_tensor_name(name), data_torch)]
  4830. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4831. class Gemma3Model(TextModel):
  4832. model_arch = gguf.MODEL_ARCH.GEMMA3
  4833. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4834. def set_vocab(self):
  4835. if (self.dir_model / "tokenizer.model").is_file():
  4836. self._set_vocab_sentencepiece()
  4837. self.gguf_writer.add_add_space_prefix(False)
  4838. else:
  4839. self._set_vocab_gpt2()
  4840. def set_gguf_parameters(self):
  4841. super().set_gguf_parameters()
  4842. hparams = self.hparams
  4843. # some default values are not specified in the hparams
  4844. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4845. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4846. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4847. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4848. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4849. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4850. # attn_logit_softcapping is removed in Gemma3
  4851. assert hparams.get("attn_logit_softcapping") is None
  4852. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4853. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4854. if hparams.get("sliding_window_pattern") != 1:
  4855. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4856. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4858. del bid # unused
  4859. if "language_model." in name:
  4860. name = name.replace("language_model.", "")
  4861. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4862. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4863. return [] # skip vision tensors
  4864. # remove OOV (out-of-vocabulary) rows in token_embd
  4865. if "embed_tokens.weight" in name:
  4866. if (self.dir_model / "tokenizer.model").is_file():
  4867. tokens = self._create_vocab_sentencepiece()[0]
  4868. else:
  4869. tokens = self.get_vocab_base()[0]
  4870. data_torch = data_torch[:len(tokens)]
  4871. # ref code in Gemma3RMSNorm
  4872. # output = output * (1.0 + self.weight.float())
  4873. # note: this is not the case on gemma3n
  4874. if name.endswith("norm.weight"):
  4875. data_torch = data_torch + self.norm_shift
  4876. return [(self.map_tensor_name(name), data_torch)]
  4877. @ModelBase.register("Gemma3TextModel")
  4878. class EmbeddingGemma(Gemma3Model):
  4879. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4880. module_paths = []
  4881. dense_features_dims = {}
  4882. def __init__(self, *args, **kwargs):
  4883. super().__init__(*args, **kwargs)
  4884. if self.sentence_transformers_dense_modules:
  4885. # read modules.json to determine if model has Dense layers
  4886. modules_file = self.dir_model / "modules.json"
  4887. if modules_file.is_file():
  4888. with open(modules_file, encoding="utf-8") as modules_json_file:
  4889. mods = json.load(modules_json_file)
  4890. for mod in mods:
  4891. if mod["type"] == "sentence_transformers.models.Dense":
  4892. mod_path = mod["path"]
  4893. # check if model.safetensors file for Dense layer exists
  4894. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4895. if model_tensors_file.is_file():
  4896. self.module_paths.append(mod_path)
  4897. # read config.json of the Dense layer to get in/out features
  4898. mod_conf_file = self.dir_model / mod_path / "config.json"
  4899. if mod_conf_file.is_file():
  4900. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4901. mod_conf = json.load(mod_conf_json_file)
  4902. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4903. prefix = self._get_dense_prefix(mod_path)
  4904. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4905. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4906. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4907. from safetensors.torch import load_file
  4908. module_paths = list(self.module_paths)
  4909. for i, module_path in enumerate(module_paths):
  4910. tensors_file = self.dir_model / module_path / "model.safetensors"
  4911. local_tensors = load_file(tensors_file)
  4912. tensor_name = self._get_dense_prefix(module_path)
  4913. for name, local_tensor in local_tensors.items():
  4914. if not name.endswith(".weight"):
  4915. continue
  4916. orig_name = name.replace("linear", tensor_name)
  4917. name = self.map_tensor_name(orig_name)
  4918. yield name, local_tensor.clone()
  4919. @staticmethod
  4920. def _get_dense_prefix(module_path) -> str:
  4921. """Get the tensor name prefix for the Dense layer from module path."""
  4922. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4923. return tensor_name
  4924. def set_gguf_parameters(self):
  4925. super().set_gguf_parameters()
  4926. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4927. # constructor. We want to use the value from the original model's config.json.
  4928. # ref: https://github.com/huggingface/transformers/pull/40700
  4929. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4930. config = json.load(f)
  4931. orig_sliding_window = config.get("sliding_window")
  4932. if orig_sliding_window is None:
  4933. raise ValueError("sliding_window not found in model config - this is required for the model")
  4934. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4935. f"instead of {self.hparams['sliding_window']}")
  4936. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4937. if self.sentence_transformers_dense_modules:
  4938. for dense, dims in self.dense_features_dims.items():
  4939. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4940. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4941. self._try_set_pooling_type()
  4942. @ModelBase.register("Gemma3ForConditionalGeneration")
  4943. class Gemma3VisionModel(MmprojModel):
  4944. def set_gguf_parameters(self):
  4945. super().set_gguf_parameters()
  4946. hparams = self.hparams
  4947. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4948. # default values below are taken from HF tranformers code
  4949. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4950. self.gguf_writer.add_vision_use_gelu(True)
  4951. # calculate proj_scale_factor (used by tinygemma3 test model)
  4952. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4953. n_per_side = int(image_seq_length ** 0.5)
  4954. image_size = self.hparams["image_size"]
  4955. patch_size = self.hparams["patch_size"]
  4956. proj_scale_factor = (image_size // patch_size) // n_per_side
  4957. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4958. # we only need to write this if it's not the default value
  4959. # in this case, we are converting a test model
  4960. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4961. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4962. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4963. if "input_projection" in name:
  4964. return gguf.GGMLQuantizationType.F16
  4965. if ".embeddings." in name:
  4966. return gguf.GGMLQuantizationType.F32
  4967. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4968. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4969. del bid # unused
  4970. if "vision_model.head." in name:
  4971. return [] # skip redundant tensors for tinygemma3
  4972. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4973. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4974. # process vision tensors
  4975. name = name.replace("_weight", ".weight")
  4976. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4977. # the other norm values are part of SigLIP model, and they are already correct
  4978. # ref code: Gemma3RMSNorm
  4979. if "soft_emb_norm.weight" in name:
  4980. logger.info(f"Correcting norm value for '{name}'")
  4981. data_torch = data_torch + 1
  4982. return [(self.map_tensor_name(name), data_torch)]
  4983. return [] # skip other tensors
  4984. class ConformerAudioModel(MmprojModel):
  4985. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  4986. @staticmethod
  4987. def is_audio_tensor(name: str):
  4988. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  4989. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4990. if ConformerAudioModel.is_audio_tensor(name):
  4991. if ".conv" in name or "_conv" in name and ".weight" in name:
  4992. return gguf.GGMLQuantizationType.F32
  4993. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4995. # fold running_mean, running_var and eps into weight and bias for batch_norm
  4996. if "batch_norm" in name:
  4997. if self._batch_norm_tensors is None:
  4998. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  4999. assert bid is not None
  5000. self._batch_norm_tensors[bid][name] = data_torch
  5001. if len(self._batch_norm_tensors[bid]) < 5:
  5002. return []
  5003. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  5004. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  5005. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  5006. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  5007. eps = 1e-5 # default value
  5008. a = weight / torch.sqrt(running_var + eps)
  5009. b = bias - running_mean * a
  5010. return [
  5011. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  5012. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  5013. ]
  5014. # reshape conv weights
  5015. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  5016. data_torch = data_torch[:, None, None]
  5017. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  5018. assert data_torch.shape[1] == 1
  5019. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  5020. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  5021. assert data_torch.shape[2] == 1
  5022. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  5023. return [(self.map_tensor_name(name), data_torch)]
  5024. @ModelBase.register("Gemma3nForConditionalGeneration")
  5025. class Gemma3nVisionAudioModel(ConformerAudioModel):
  5026. has_audio_encoder = True
  5027. has_vision_encoder = True
  5028. # Double indexed mapping for MobileNetV5 blocks (not supported by tensor_mapping.py)
  5029. # This is the only known model having this, so we prefer implementing it outside of tensor_mapping.py
  5030. block_tensor_mapping = {
  5031. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_exp.weight": "v.blk.{bid}.{sid}.conv_exp.weight",
  5032. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn1.weight": "v.blk.{bid}.{sid}.bn1.weight",
  5033. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_pwl.weight": "v.blk.{bid}.{sid}.conv_pwl.weight",
  5034. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn2.weight": "v.blk.{bid}.{sid}.bn2.weight",
  5035. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.conv.weight": "v.blk.{bid}.{sid}.dw_start.conv.weight",
  5036. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.bn.weight": "v.blk.{bid}.{sid}.dw_start.bn.weight",
  5037. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.conv.weight": "v.blk.{bid}.{sid}.dw_mid.conv.weight",
  5038. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.bn.weight": "v.blk.{bid}.{sid}.dw_mid.bn.weight",
  5039. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.conv.weight": "v.blk.{bid}.{sid}.pw_exp.conv.weight",
  5040. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.bn.weight": "v.blk.{bid}.{sid}.pw_exp.bn.weight",
  5041. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.conv.weight": "v.blk.{bid}.{sid}.pw_proj.conv.weight",
  5042. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.bn.weight": "v.blk.{bid}.{sid}.pw_proj.bn.weight",
  5043. "model.vision_tower.timm_model.blocks.{bid}.{sid}.layer_scale.gamma": "v.blk.{bid}.{sid}.layer_scale.gamma",
  5044. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.query.proj.weight": "v.blk.{bid}.{sid}.attn.query.proj.weight",
  5045. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.proj.weight": "v.blk.{bid}.{sid}.attn.key.proj.weight",
  5046. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.proj.weight": "v.blk.{bid}.{sid}.attn.value.proj.weight",
  5047. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.output.proj.weight": "v.blk.{bid}.{sid}.attn.output.proj.weight",
  5048. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.down_conv.weight": "v.blk.{bid}.{sid}.attn.key.down_conv.weight",
  5049. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.norm.weight": "v.blk.{bid}.{sid}.attn.key.norm.weight",
  5050. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.down_conv.weight": "v.blk.{bid}.{sid}.attn.value.down_conv.weight",
  5051. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.norm.weight": "v.blk.{bid}.{sid}.attn.value.norm.weight",
  5052. "model.vision_tower.timm_model.blocks.{bid}.{sid}.norm.weight": "v.blk.{bid}.{sid}.norm.weight",
  5053. }
  5054. def __init__(self, *args, **kwargs):
  5055. # Parent init will call find_hparam which now returns 0 for empty keys
  5056. super().__init__(*args, **kwargs)
  5057. assert self.hparams_vision is not None
  5058. self.hparams_vision["n_layers"] = 128 # fake value for audio encoder, vision encoder doesn't use it
  5059. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("intermediate_size", 2048) * 4
  5060. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_attention_heads", 8)
  5061. # MobileNetV5 does not use image_mean/std
  5062. self.preprocessor_config["image_mean"] = [0.0 ,0.0 , 0.0]
  5063. self.preprocessor_config["image_std"] = [1.0 ,1.0 ,1.0]
  5064. self.hparams_vision["image_size"] = self.preprocessor_config.get(
  5065. "size", {"height": 768, "width": 768}
  5066. )["height"]
  5067. # Image sequence length (256 tokens = 16x16 for Gemma3n)
  5068. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  5069. image_size = self.hparams_vision["image_size"]
  5070. self.hparams_vision["patch_size"] = image_size // image_seq_length
  5071. # remap audio hparams
  5072. assert self.hparams_audio is not None
  5073. self.hparams_audio["n_layers"] = self.hparams_audio["conf_num_hidden_layers"]
  5074. self.hparams_audio["num_attention_heads"] = self.hparams_audio["conf_num_attention_heads"]
  5075. self.hparams_audio["feat_in"] = self.hparams_audio["input_feat_size"]
  5076. self.hparams_audio["intermediate_size"] = self.hparams_audio.get("intermediate_size", 6144)
  5077. def set_gguf_parameters(self):
  5078. super().set_gguf_parameters()
  5079. # vision params
  5080. self.gguf_writer.add_clip_vision_projector_type(gguf.VisionProjectorType.GEMMA3NV)
  5081. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  5082. # audio params
  5083. assert self.hparams_audio is not None
  5084. self.gguf_writer.add_clip_audio_projector_type(gguf.VisionProjectorType.GEMMA3NA)
  5085. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  5086. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  5087. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5088. # Force quantization settings for specific tensor types
  5089. if "input_projection" in name or "input_proj" in name:
  5090. return gguf.GGMLQuantizationType.F16
  5091. if ".embeddings." in name or "stem" in name:
  5092. return gguf.GGMLQuantizationType.F32
  5093. return super().tensor_force_quant(name, new_name, bid, n_dims)
  5094. def custom_map(self, name: str) -> str:
  5095. """Parses names like model.vision_tower.timm_model.blocks.1.2.suffix and applies template mapping."""
  5096. parts = name.split(".")
  5097. # MobileNet blocks have at least 7 parts: model, vision_tower, timm_model, blocks, bid, sid, and suffix
  5098. if len(parts) >= 7:
  5099. bid, sid = parts[4], parts[5]
  5100. suffix = ".".join(parts[6:])
  5101. template = f"model.vision_tower.timm_model.blocks.{{bid}}.{{sid}}.{suffix}"
  5102. if template in self.block_tensor_mapping:
  5103. return self.block_tensor_mapping[template].format(bid=bid, sid=sid)
  5104. raise ValueError(f"Unknown name: {name}")
  5105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5106. if (ConformerAudioModel.is_audio_tensor(name)):
  5107. name = name.replace("model.audio_tower.conformer.", "conformer.layers.")
  5108. return super().modify_tensors(data_torch, name, bid)
  5109. # Gemma3n uses
  5110. # - model.embed_vision.* for projection layers
  5111. # - model.vision_tower.* for vision encoder
  5112. # Skip non-vision tensors
  5113. if not (name.startswith("model.embed_vision.") or name.startswith("model.vision_tower.")):
  5114. return []
  5115. if name.startswith("model.vision_tower.timm_model.blocks."):
  5116. # Double-indexed block tensors through custom logic
  5117. new_name = self.custom_map(name)
  5118. else:
  5119. # Route non-repeating (conv_stem, msfa, embedding, etc.) and un-catched through tensor_mapping.py
  5120. new_name = self.map_tensor_name(name)
  5121. if new_name.endswith("conv_stem.conv.bias") or new_name.endswith("layer_scale.gamma"):
  5122. data_torch = data_torch.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) # [1, C, 1, 1]
  5123. return [(new_name, data_torch)]
  5124. @ModelBase.register("Gemma3nForCausalLM", "Gemma3nForConditionalGeneration")
  5125. class Gemma3NModel(Gemma3Model):
  5126. model_arch = gguf.MODEL_ARCH.GEMMA3N
  5127. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  5128. _altup_proj: list[Tensor] = []
  5129. _altup_unembd: list[Tensor] = []
  5130. def __init__(self, *args, **kwargs):
  5131. super().__init__(*args, **kwargs)
  5132. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  5133. self._altup_proj = [
  5134. torch.Tensor(), # to be replaced
  5135. torch.Tensor(), # to be replaced
  5136. torch.Tensor(), # to be replaced
  5137. ]
  5138. self._altup_unembd = [
  5139. torch.Tensor(), # to be replaced
  5140. torch.Tensor(), # to be replaced
  5141. torch.Tensor(), # to be replaced
  5142. ]
  5143. def set_vocab(self):
  5144. # For Gemma3n multimodal models, we need the FULL vocab_size (262400)
  5145. # which includes special tokens from 262144-262399 for vision/audio.
  5146. # The vocab_size_per_layer_input (262144) is only the embedding size per layer.
  5147. # Temporarily override the hparams lookup order to prioritize vocab_size.
  5148. # Store original vocab_size_per_layer_input if it exists
  5149. vocab_size_per_layer_input = self.hparams.get("vocab_size_per_layer_input")
  5150. # Temporarily remove vocab_size_per_layer_input to force using vocab_size
  5151. if vocab_size_per_layer_input is not None:
  5152. del self.hparams["vocab_size_per_layer_input"]
  5153. # Call parent set_vocab which will now use vocab_size (262400)
  5154. super().set_vocab()
  5155. # Restore vocab_size_per_layer_input for later use
  5156. if vocab_size_per_layer_input is not None:
  5157. self.hparams["vocab_size_per_layer_input"] = vocab_size_per_layer_input
  5158. def set_gguf_parameters(self):
  5159. super().set_gguf_parameters()
  5160. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  5161. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  5162. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  5163. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  5164. activation_sparsity_scale = []
  5165. for s in self.hparams["activation_sparsity_pattern"]:
  5166. normal_dist = torch.distributions.normal.Normal(0, 1)
  5167. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  5168. activation_sparsity_scale.append(std_multiplier.item())
  5169. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  5170. sliding_window_pattern = []
  5171. for t in self.hparams["layer_types"]:
  5172. sliding_window_pattern.append(t == "sliding_attention")
  5173. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5174. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  5175. has_all = all(m.numel() > 0 for m in matrices)
  5176. if not has_all:
  5177. return None
  5178. else:
  5179. return torch.stack(matrices, dim=0)
  5180. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5181. if name.endswith("_scale"):
  5182. name = name + ".weight"
  5183. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  5184. if "language_model." not in name:
  5185. return [] # skip non-language model tensors
  5186. # Pad token embeddings for vision/audio special tokens (262144-262399)
  5187. if "embed_tokens.weight" in name or "embed_tokens_per_layer" in name:
  5188. # Move to CPU to avoid meta device issues during padding
  5189. data_torch = data_torch.to(device="cpu")
  5190. vocab_size = self.hparams.get("vocab_size", 262400)
  5191. current_size = data_torch.shape[0] # First dimension is vocab_size
  5192. if current_size < vocab_size:
  5193. # Pad with zeros for vision/audio tokens (they get embeddings from vision tower)
  5194. padding_size = vocab_size - current_size
  5195. tensor_type = "per-layer embeddings" if "per_layer" in name else "token embeddings"
  5196. logger.info(f"Padding {tensor_type} shape {list(data_torch.shape)} from {current_size} to {vocab_size} (adding {padding_size} vision/audio token slots)")
  5197. # Create padding with zeros (vision tokens won't use these embeddings)
  5198. padding = torch.zeros((padding_size, data_torch.shape[1]), dtype=data_torch.dtype, device=data_torch.device)
  5199. data_torch = torch.cat([data_torch, padding], dim=0)
  5200. # Continue with normal processing
  5201. name = name.replace("language_model.", "")
  5202. return [(self.map_tensor_name(name), data_torch)]
  5203. if "altup_unembed_projections" in name:
  5204. data_torch = data_torch.to(device="cpu")
  5205. # altup_unembed matrices are [hidden_size, hidden_size], NOT vocab-based
  5206. # They should NOT be padded
  5207. if ".0." in name:
  5208. self._altup_unembd[0] = data_torch
  5209. elif ".1." in name:
  5210. self._altup_unembd[1] = data_torch
  5211. elif ".2." in name:
  5212. self._altup_unembd[2] = data_torch
  5213. else:
  5214. raise ValueError(f"Unknown name: {name}")
  5215. out = self._stack_matrices(self._altup_unembd)
  5216. if out is not None:
  5217. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  5218. else:
  5219. return []
  5220. if "altup_projections" in name:
  5221. data_torch = data_torch.to(device="cpu")
  5222. if ".0." in name:
  5223. self._altup_proj[0] = data_torch
  5224. elif ".1." in name:
  5225. self._altup_proj[1] = data_torch
  5226. elif ".2." in name:
  5227. self._altup_proj[2] = data_torch
  5228. else:
  5229. raise ValueError(f"Unknown name: {name}")
  5230. out = self._stack_matrices(self._altup_proj)
  5231. if out is not None:
  5232. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5233. else:
  5234. return []
  5235. return super().modify_tensors(data_torch, name, bid)
  5236. @ModelBase.register("Starcoder2ForCausalLM")
  5237. class StarCoder2Model(TextModel):
  5238. model_arch = gguf.MODEL_ARCH.STARCODER2
  5239. @ModelBase.register("Rwkv6ForCausalLM")
  5240. class Rwkv6Model(TextModel):
  5241. model_arch = gguf.MODEL_ARCH.RWKV6
  5242. def set_vocab(self):
  5243. self._set_vocab_rwkv_world()
  5244. def set_gguf_parameters(self):
  5245. head_size = self.hparams["head_size"]
  5246. hidden_size = self.hparams["hidden_size"]
  5247. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5248. rescale_every_n_layers = self.hparams["rescale_every"]
  5249. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5250. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5251. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5252. # RWKV isn't context limited
  5253. self.gguf_writer.add_context_length(1048576)
  5254. self.gguf_writer.add_embedding_length(hidden_size)
  5255. self.gguf_writer.add_block_count(self.block_count)
  5256. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5257. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5258. self.gguf_writer.add_wkv_head_size(head_size)
  5259. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5260. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5261. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5262. self.gguf_writer.add_file_type(self.ftype)
  5263. # required by llama.cpp, unused
  5264. self.gguf_writer.add_head_count(0)
  5265. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5266. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5267. new_name = self.map_tensor_name(name)
  5268. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5269. new_name += ".weight"
  5270. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5271. data_torch = data_torch.transpose(0, 1)
  5272. if new_name.endswith("time_mix_w2.weight"):
  5273. data_torch = data_torch.permute(0, 2, 1)
  5274. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5275. data_torch = data_torch.squeeze()
  5276. try:
  5277. rescale_every_n_layers = self.hparams["rescale_every"]
  5278. if rescale_every_n_layers > 0:
  5279. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5280. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5281. except KeyError:
  5282. pass
  5283. # concat time_mix_lerp weights to reduce some cpu overhead
  5284. # also reduces the number of tensors in the model
  5285. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5286. try:
  5287. self.lerp_weights[bid][new_name] = data_torch
  5288. except KeyError:
  5289. self.lerp_weights[bid] = {new_name: data_torch}
  5290. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5291. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5292. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5293. yield (new_name, data)
  5294. return
  5295. yield (new_name, data_torch)
  5296. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5297. class RWKV6Qwen2Model(Rwkv6Model):
  5298. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5299. def set_vocab(self):
  5300. try:
  5301. self._set_vocab_sentencepiece()
  5302. except FileNotFoundError:
  5303. self._set_vocab_gpt2()
  5304. def set_gguf_parameters(self):
  5305. num_attention_heads = self.hparams["num_attention_heads"]
  5306. num_key_value_heads = self.hparams["num_key_value_heads"]
  5307. hidden_size = self.hparams["hidden_size"]
  5308. head_size = hidden_size // num_attention_heads
  5309. rms_norm_eps = self.hparams["rms_norm_eps"]
  5310. intermediate_size = self.hparams["intermediate_size"]
  5311. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5312. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5313. # RWKV isn't context limited
  5314. self.gguf_writer.add_context_length(1048576)
  5315. self.gguf_writer.add_embedding_length(hidden_size)
  5316. self.gguf_writer.add_block_count(self.block_count)
  5317. self.gguf_writer.add_wkv_head_size(head_size)
  5318. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5319. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5320. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5321. self.gguf_writer.add_file_type(self.ftype)
  5322. # special parameters for time_mixing in RWKV6QWEN2
  5323. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5324. self.gguf_writer.add_token_shift_count(1)
  5325. # RWKV6QWEN2 use grouped key/value like GQA
  5326. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5327. # required by llama.cpp, unused
  5328. self.gguf_writer.add_head_count(0)
  5329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5330. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5331. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5332. data = data.view(5, -1, data.shape[-1])
  5333. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5334. # permute them here to avoid code changes
  5335. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5336. if "w2" in new_name:
  5337. data = data.view(5, -1, data.shape[-1])
  5338. yield (new_name, data)
  5339. continue
  5340. yield (new_name, data)
  5341. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5342. class Rwkv7Model(TextModel):
  5343. model_arch = gguf.MODEL_ARCH.RWKV7
  5344. def set_vocab(self):
  5345. self._set_vocab_rwkv_world()
  5346. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5347. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5348. def set_gguf_parameters(self):
  5349. try:
  5350. head_size = self.hparams["head_size"]
  5351. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5352. except KeyError:
  5353. head_size = self.hparams["head_dim"]
  5354. layer_norm_eps = self.hparams["norm_eps"]
  5355. hidden_size = self.hparams["hidden_size"]
  5356. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5357. # ICLR: In-Context-Learning-Rate
  5358. try:
  5359. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5360. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5361. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5362. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5363. except KeyError:
  5364. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5365. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5366. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5367. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5368. # RWKV isn't context limited
  5369. self.gguf_writer.add_context_length(1048576)
  5370. self.gguf_writer.add_embedding_length(hidden_size)
  5371. self.gguf_writer.add_block_count(self.block_count)
  5372. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5373. self.gguf_writer.add_wkv_head_size(head_size)
  5374. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5375. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5376. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5377. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5378. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5379. self.gguf_writer.add_file_type(self.ftype)
  5380. # required by llama.cpp, unused
  5381. self.gguf_writer.add_head_count(0)
  5382. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5383. lora_needs_transpose: bool = True
  5384. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5385. # unify tensor names here to make life easier
  5386. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5387. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5388. name = name.replace("time_mixer.", "")
  5389. # lora layer names in fla-hub's impl
  5390. if "_lora.lora" in name:
  5391. self.lora_needs_transpose = False
  5392. name = name.replace("_lora.lora.0.weight", "1.weight")
  5393. name = name.replace("_lora.lora.2.weight", "2.weight")
  5394. name = name.replace("_lora.lora.2.bias", "0.weight")
  5395. name = name.replace("feed_forward_norm", "ln2")
  5396. name = name.replace("g_norm", "ln_x")
  5397. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5398. # some models have dummy v0/v1/v2 on first layer while others don't
  5399. # ignore them all since they are not used
  5400. return
  5401. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5402. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5403. if bid is not None and "attention.x_" in name:
  5404. if "attention.x_x" in name:
  5405. # already concatenated
  5406. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5407. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5408. yield (new_name, data)
  5409. else:
  5410. try:
  5411. self.lerp_weights[bid][name] = data_torch
  5412. except KeyError:
  5413. self.lerp_weights[bid] = {name: data_torch}
  5414. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5415. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5416. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5417. yield (new_name, data)
  5418. return
  5419. else:
  5420. data_torch = data_torch.squeeze()
  5421. new_name = self.map_tensor_name(name)
  5422. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5423. new_name += ".weight"
  5424. if self.lora_needs_transpose and any(
  5425. new_name.endswith(t) for t in [
  5426. "time_mix_w1.weight", "time_mix_w2.weight",
  5427. "time_mix_a1.weight", "time_mix_a2.weight",
  5428. "time_mix_v1.weight", "time_mix_v2.weight",
  5429. "time_mix_g1.weight", "time_mix_g2.weight",
  5430. ]
  5431. ):
  5432. data_torch = data_torch.transpose(0, 1)
  5433. if 'r_k' in new_name:
  5434. data_torch = data_torch.flatten()
  5435. if bid == 0 and "time_mix_a" in new_name:
  5436. # dummy v0/v1/v2 on first layer
  5437. # easist way to make llama happy
  5438. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5439. yield (new_name, data_torch)
  5440. @ModelBase.register("RwkvHybridForCausalLM")
  5441. class ARwkv7Model(Rwkv7Model):
  5442. model_arch = gguf.MODEL_ARCH.ARWKV7
  5443. def set_vocab(self):
  5444. try:
  5445. self._set_vocab_sentencepiece()
  5446. except FileNotFoundError:
  5447. self._set_vocab_gpt2()
  5448. def set_gguf_parameters(self):
  5449. hidden_size = self.hparams["hidden_size"]
  5450. head_size = self.hparams["head_size"]
  5451. rms_norm_eps = self.hparams["rms_norm_eps"]
  5452. intermediate_size = self.hparams["intermediate_size"]
  5453. wkv_has_gate = self.hparams["wkv_has_gate"]
  5454. assert self.hparams["wkv_version"] == 7
  5455. # ICLR: In-Context-Learning-Rate
  5456. lora_rank_decay = 64
  5457. lora_rank_iclr = 64
  5458. lora_rank_value_residual_mix = 32
  5459. lora_rank_gate = 128 if wkv_has_gate else 0
  5460. # RWKV isn't context limited
  5461. self.gguf_writer.add_context_length(1048576)
  5462. self.gguf_writer.add_embedding_length(hidden_size)
  5463. self.gguf_writer.add_block_count(self.block_count)
  5464. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5465. self.gguf_writer.add_wkv_head_size(head_size)
  5466. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5467. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5468. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5469. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5470. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5471. self.gguf_writer.add_file_type(self.ftype)
  5472. self.gguf_writer.add_token_shift_count(1)
  5473. # required by llama.cpp, unused
  5474. self.gguf_writer.add_head_count(0)
  5475. @ModelBase.register("MaincoderForCausalLM")
  5476. class MaincoderModel(TextModel):
  5477. model_arch = gguf.MODEL_ARCH.MAINCODER
  5478. def set_gguf_parameters(self):
  5479. super().set_gguf_parameters()
  5480. if (head_dim := self.hparams.get("head_dim")) is not None:
  5481. self.gguf_writer.add_rope_dimension_count(head_dim)
  5482. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5483. class MambaModel(TextModel):
  5484. model_arch = gguf.MODEL_ARCH.MAMBA
  5485. def __init__(self, dir_model: Path, *args, **kwargs):
  5486. # Avoid using AutoConfig for hparams
  5487. hparams = kwargs.pop("hparams", None)
  5488. if hparams is None:
  5489. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5490. hparams = json.load(f)
  5491. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5492. def set_vocab(self):
  5493. vocab_size = self.hparams["vocab_size"]
  5494. # Round vocab size to next multiple of 8
  5495. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5496. # pad using ceiling division
  5497. # ref: https://stackoverflow.com/a/17511341/22827863
  5498. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5499. self.hparams["vocab_size"] = vocab_size
  5500. if (self.dir_model / "tokenizer.json").is_file():
  5501. self._set_vocab_gpt2()
  5502. elif (self.dir_model / "tokenizer.model").is_file():
  5503. self._set_vocab_sentencepiece()
  5504. else:
  5505. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5506. self._set_vocab_builtin("gpt-neox", vocab_size)
  5507. def set_gguf_parameters(self):
  5508. d_model = self.find_hparam(["hidden_size", "d_model"])
  5509. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5510. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5511. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5512. # ceiling division
  5513. # ref: https://stackoverflow.com/a/17511341/22827863
  5514. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5515. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5516. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5517. use_dt_b_c_norm = False
  5518. # For falconmamba we do apply RMS norm on B / DT and C layers
  5519. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5520. use_dt_b_c_norm = True
  5521. # Fail early for models which don't have a block expansion factor of 2
  5522. assert d_inner == 2 * d_model
  5523. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5524. self.gguf_writer.add_embedding_length(d_model)
  5525. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5526. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5527. self.gguf_writer.add_block_count(self.block_count)
  5528. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5529. self.gguf_writer.add_ssm_inner_size(d_inner)
  5530. self.gguf_writer.add_ssm_state_size(d_state)
  5531. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5532. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5533. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5534. self.gguf_writer.add_file_type(self.ftype)
  5535. _tok_embd = None
  5536. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5537. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5538. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5539. new_name = self.map_tensor_name(name)
  5540. if name.endswith(".A_log"):
  5541. logger.debug("A_log --> A ==> " + new_name)
  5542. data_torch = -torch.exp(data_torch)
  5543. # [4 1 8192 1] -> [4 8192 1 1]
  5544. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5545. data_torch = data_torch.squeeze()
  5546. # assuming token_embd.weight is seen before output.weight
  5547. if self._tok_embd is not None and new_name == output_name:
  5548. if torch.equal(self._tok_embd, data_torch):
  5549. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5550. return []
  5551. elif new_name == tok_embd_name:
  5552. self._tok_embd = data_torch
  5553. return [(new_name, data_torch)]
  5554. @ModelBase.register("Mamba2ForCausalLM")
  5555. class Mamba2Model(TextModel):
  5556. model_arch = gguf.MODEL_ARCH.MAMBA2
  5557. def __init__(self, dir_model: Path, *args, **kwargs):
  5558. # Avoid using AutoConfig for hparams
  5559. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5560. hparams = kwargs.pop("hparams", None)
  5561. if hparams is None:
  5562. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5563. hparams = json.load(f)
  5564. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5565. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5566. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5567. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5568. def set_vocab(self):
  5569. vocab_size = self.hparams["vocab_size"]
  5570. # Round vocab size to next multiple of 16
  5571. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5572. # pad using ceiling division
  5573. # ref: https://stackoverflow.com/a/17511341/22827863
  5574. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5575. self.hparams["vocab_size"] = vocab_size
  5576. if (self.dir_model / "tokenizer.model").is_file():
  5577. self._set_vocab_sentencepiece()
  5578. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5579. # mamba-codestral
  5580. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5581. elif (self.dir_model / "tokenizer.json").is_file():
  5582. self._set_vocab_gpt2()
  5583. else:
  5584. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5585. self._set_vocab_builtin("gpt-neox", vocab_size)
  5586. def set_gguf_parameters(self):
  5587. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5588. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5589. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5590. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5591. # Fail early for models which don't have a block expansion factor of 2
  5592. # TODO: does this really matter?
  5593. # skip the assertion for FalconH1 Model
  5594. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5595. assert self.d_inner == 2 * self.d_model
  5596. assert self.d_inner % head_dim == 0
  5597. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5598. self.gguf_writer.add_embedding_length(self.d_model)
  5599. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5600. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5601. self.gguf_writer.add_block_count(self.block_count)
  5602. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5603. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5604. self.gguf_writer.add_ssm_state_size(d_state)
  5605. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5606. self.gguf_writer.add_ssm_group_count(self.n_group)
  5607. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5608. self.gguf_writer.add_file_type(self.ftype)
  5609. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5610. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5611. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5612. name = name.removeprefix("model.")
  5613. if name.endswith(".dt_bias"):
  5614. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5615. new_name = self.map_tensor_name(name)
  5616. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5617. data_torch = data_torch.squeeze()
  5618. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5619. gguf.MODEL_TENSOR.SSM_A,
  5620. gguf.MODEL_TENSOR.SSM_D,
  5621. ]):
  5622. # unsqueeze A to use similar shape semantics as Mamba-1
  5623. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5624. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5625. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5626. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5627. if name.endswith(".A_log"):
  5628. logger.debug("A_log --> A ==> " + new_name)
  5629. data_torch = -torch.exp(data_torch)
  5630. yield (new_name, data_torch)
  5631. @ModelBase.register("JambaForCausalLM")
  5632. class JambaModel(TextModel):
  5633. model_arch = gguf.MODEL_ARCH.JAMBA
  5634. def set_vocab(self):
  5635. if (self.dir_model / "tokenizer.model").is_file():
  5636. self._set_vocab_sentencepiece()
  5637. else:
  5638. self._set_vocab_llama_hf()
  5639. self.gguf_writer.add_add_space_prefix(False)
  5640. def set_gguf_parameters(self):
  5641. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5642. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5643. d_inner = self.hparams["mamba_expand"] * d_model
  5644. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5645. # ceiling division
  5646. # ref: https://stackoverflow.com/a/17511341/22827863
  5647. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5648. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5649. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5650. n_kv_head = self.hparams["num_key_value_heads"]
  5651. attn_offset = self.hparams["attn_layer_offset"]
  5652. attn_period = self.hparams["attn_layer_period"]
  5653. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5654. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5655. ]
  5656. self.gguf_writer.add_block_count(self.block_count)
  5657. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5658. self.gguf_writer.add_embedding_length(d_model)
  5659. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5660. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5661. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5662. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5663. self.gguf_writer.add_ssm_inner_size(d_inner)
  5664. self.gguf_writer.add_ssm_state_size(d_state)
  5665. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5666. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5667. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5668. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5669. self.gguf_writer.add_file_type(self.ftype)
  5670. _experts: list[dict[str, Tensor]] | None = None
  5671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5672. # Mini-Jamba
  5673. name = name.replace(".moe.", ".feed_forward.")
  5674. if bid is not None:
  5675. moe_offset = self.hparams["expert_layer_offset"]
  5676. moe_period = self.hparams["expert_layer_period"]
  5677. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5678. name = name.replace(".experts.0.", ".")
  5679. # process the experts separately
  5680. if ".feed_forward.experts." in name:
  5681. n_experts = self.hparams["num_experts"]
  5682. assert bid is not None
  5683. if self._experts is None:
  5684. self._experts = [{} for _ in range(self.block_count)]
  5685. self._experts[bid][name] = data_torch
  5686. if len(self._experts[bid]) >= n_experts * 3:
  5687. # merge the experts into a single 3d tensor
  5688. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5689. datas: list[Tensor] = []
  5690. for xid in range(n_experts):
  5691. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5692. datas.append(self._experts[bid][ename])
  5693. del self._experts[bid][ename]
  5694. data_torch = torch.stack(datas, dim=0)
  5695. # using the same merged name as qwen2moe
  5696. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5697. new_name = self.map_tensor_name(merged_name)
  5698. yield new_name, data_torch
  5699. return
  5700. new_name = self.map_tensor_name(name)
  5701. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5702. data_torch = data_torch.squeeze()
  5703. if name.endswith(".A_log"):
  5704. logger.debug("A_log --> A ==> " + new_name)
  5705. data_torch = -torch.exp(data_torch)
  5706. yield (new_name, data_torch)
  5707. def prepare_tensors(self):
  5708. super().prepare_tensors()
  5709. if self._experts is not None:
  5710. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5711. experts = [k for d in self._experts for k in d.keys()]
  5712. if len(experts) > 0:
  5713. raise ValueError(f"Unprocessed experts: {experts}")
  5714. @ModelBase.register("CohereForCausalLM")
  5715. class CommandR2Model(TextModel):
  5716. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5717. def __init__(self, *args, **kwargs):
  5718. super().__init__(*args, **kwargs)
  5719. # max_position_embeddings = 8192 in config.json but model was actually
  5720. # trained on 128k context length
  5721. # aya-23 models don't have model_max_length specified
  5722. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5723. def set_gguf_parameters(self):
  5724. super().set_gguf_parameters()
  5725. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5726. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5727. @ModelBase.register("Cohere2ForCausalLM")
  5728. class Cohere2Model(TextModel):
  5729. model_arch = gguf.MODEL_ARCH.COHERE2
  5730. def set_gguf_parameters(self):
  5731. super().set_gguf_parameters()
  5732. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5733. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5734. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5735. rotary_pct = self.hparams["rotary_pct"]
  5736. hidden_size = self.hparams["hidden_size"]
  5737. num_attention_heads = self.hparams["num_attention_heads"]
  5738. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5739. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5740. @ModelBase.register("OlmoForCausalLM")
  5741. @ModelBase.register("OLMoForCausalLM")
  5742. class OlmoModel(TextModel):
  5743. model_arch = gguf.MODEL_ARCH.OLMO
  5744. def set_gguf_parameters(self):
  5745. super().set_gguf_parameters()
  5746. self.gguf_writer.add_layer_norm_eps(1e-5)
  5747. clip_qkv = self.hparams.get("clip_qkv")
  5748. if clip_qkv is not None:
  5749. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5750. # Same as super class, but permuting q_proj, k_proj
  5751. # Copied from: LlamaModel
  5752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5753. del bid # unused
  5754. n_head = self.hparams["num_attention_heads"]
  5755. n_kv_head = self.hparams.get("num_key_value_heads")
  5756. if name.endswith("q_proj.weight"):
  5757. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5758. if name.endswith("k_proj.weight"):
  5759. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5760. return [(self.map_tensor_name(name), data_torch)]
  5761. @ModelBase.register("SeedOssForCausalLM")
  5762. class SeedOssModel(TextModel):
  5763. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5764. @ModelBase.register("Olmo2ForCausalLM")
  5765. @ModelBase.register("Olmo3ForCausalLM")
  5766. class Olmo2Model(TextModel):
  5767. model_arch = gguf.MODEL_ARCH.OLMO2
  5768. def set_gguf_parameters(self):
  5769. super().set_gguf_parameters()
  5770. if "sliding_window" in self.hparams:
  5771. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5772. sliding_window_pattern = []
  5773. if "layer_types" in self.hparams:
  5774. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5775. else:
  5776. # Olmo2 does not use sliding window attention.
  5777. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5778. for i in range(self.hparams["num_hidden_layers"]):
  5779. sliding_window_pattern.append((i + 1) % 4 != 0)
  5780. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5781. @ModelBase.register("OlmoeForCausalLM")
  5782. class OlmoeModel(TextModel):
  5783. model_arch = gguf.MODEL_ARCH.OLMOE
  5784. def set_gguf_parameters(self):
  5785. super().set_gguf_parameters()
  5786. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5787. if (n_experts := self.hparams.get("num_experts")) is not None:
  5788. self.gguf_writer.add_expert_count(n_experts)
  5789. _experts: list[dict[str, Tensor]] | None = None
  5790. # Copied from: Qwen2MoeModel
  5791. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5792. # process the experts separately
  5793. if name.find("experts") != -1:
  5794. n_experts = self.hparams["num_experts"]
  5795. assert bid is not None
  5796. if self._experts is None:
  5797. self._experts = [{} for _ in range(self.block_count)]
  5798. self._experts[bid][name] = data_torch
  5799. if len(self._experts[bid]) >= n_experts * 3:
  5800. tensors: list[tuple[str, Tensor]] = []
  5801. # merge the experts into a single 3d tensor
  5802. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5803. datas: list[Tensor] = []
  5804. for xid in range(n_experts):
  5805. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5806. datas.append(self._experts[bid][ename])
  5807. del self._experts[bid][ename]
  5808. data_torch = torch.stack(datas, dim=0)
  5809. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5810. new_name = self.map_tensor_name(merged_name)
  5811. tensors.append((new_name, data_torch))
  5812. return tensors
  5813. else:
  5814. return []
  5815. return [(self.map_tensor_name(name), data_torch)]
  5816. # Copied from: Qwen2MoeModel
  5817. def prepare_tensors(self):
  5818. super().prepare_tensors()
  5819. if self._experts is not None:
  5820. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5821. experts = [k for d in self._experts for k in d.keys()]
  5822. if len(experts) > 0:
  5823. raise ValueError(f"Unprocessed experts: {experts}")
  5824. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5825. class JinaBertV2Model(BertModel):
  5826. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5827. def set_vocab(self):
  5828. tokenizer_class = 'BertTokenizer'
  5829. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5830. tokenizer_class = json.load(f)['tokenizer_class']
  5831. if tokenizer_class == 'BertTokenizer':
  5832. super().set_vocab()
  5833. elif tokenizer_class == 'RobertaTokenizer':
  5834. self._set_vocab_gpt2()
  5835. self.gguf_writer.add_token_type_count(2)
  5836. else:
  5837. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5838. @ModelBase.register("OpenELMForCausalLM")
  5839. class OpenELMModel(TextModel):
  5840. model_arch = gguf.MODEL_ARCH.OPENELM
  5841. @staticmethod
  5842. def _make_divisible(v: float | int, divisor: int) -> int:
  5843. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5844. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5845. # Make sure that round down does not go down by more than 10%.
  5846. if new_v < 0.9 * v:
  5847. new_v += divisor
  5848. return new_v
  5849. def __init__(self, *args, **kwargs):
  5850. super().__init__(*args, **kwargs)
  5851. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5852. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5853. self._n_embd: int = self.hparams["model_dim"]
  5854. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5855. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5856. self._ffn_dims: list[int] = [
  5857. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5858. for multiplier in ffn_multipliers
  5859. ]
  5860. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5861. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5862. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5863. def set_vocab(self):
  5864. try:
  5865. self._set_vocab_sentencepiece()
  5866. except FileNotFoundError:
  5867. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5868. def set_gguf_parameters(self):
  5869. n_embd = self._n_embd
  5870. head_dim = self.hparams["head_dim"]
  5871. rot_pct = 1.0
  5872. assert self.block_count == len(self._num_kv_heads)
  5873. assert self.block_count == len(self._num_query_heads)
  5874. assert self.block_count == len(self._ffn_dims)
  5875. self.gguf_writer.add_block_count(self.block_count)
  5876. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5877. self.gguf_writer.add_embedding_length(n_embd)
  5878. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5879. self.gguf_writer.add_head_count(self._num_query_heads)
  5880. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5881. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5882. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5883. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5884. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5885. self.gguf_writer.add_key_length(head_dim)
  5886. self.gguf_writer.add_value_length(head_dim)
  5887. self.gguf_writer.add_file_type(self.ftype)
  5888. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5889. if "n_layers" in keys:
  5890. return self.hparams["num_transformer_layers"]
  5891. return super().find_hparam(keys, optional)
  5892. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5893. # split ff
  5894. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5895. ff_dim = self._ffn_dims[bid]
  5896. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5897. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5898. return
  5899. yield (self.map_tensor_name(name), data_torch)
  5900. @ModelBase.register("ArcticForCausalLM")
  5901. class ArcticModel(TextModel):
  5902. model_arch = gguf.MODEL_ARCH.ARCTIC
  5903. def set_vocab(self):
  5904. # The reason for using a custom implementation here is that the
  5905. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5906. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5907. from sentencepiece import SentencePieceProcessor
  5908. tokenizer_path = self.dir_model / 'tokenizer.model'
  5909. if not tokenizer_path.is_file():
  5910. logger.error(f'Error: Missing {tokenizer_path}')
  5911. sys.exit(1)
  5912. # Read the whole vocabulary from the tokenizer.model file
  5913. tokenizer = SentencePieceProcessor()
  5914. tokenizer.LoadFromFile(str(tokenizer_path))
  5915. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5916. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5917. scores: list[float] = [-10000.0] * vocab_size
  5918. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5919. for token_id in range(tokenizer.vocab_size()):
  5920. piece = tokenizer.IdToPiece(token_id)
  5921. text = piece.encode("utf-8")
  5922. score = tokenizer.GetScore(token_id)
  5923. toktype = SentencePieceTokenTypes.NORMAL
  5924. if tokenizer.IsUnknown(token_id):
  5925. toktype = SentencePieceTokenTypes.UNKNOWN
  5926. elif tokenizer.IsControl(token_id):
  5927. toktype = SentencePieceTokenTypes.CONTROL
  5928. elif tokenizer.IsUnused(token_id):
  5929. toktype = SentencePieceTokenTypes.UNUSED
  5930. elif tokenizer.IsByte(token_id):
  5931. toktype = SentencePieceTokenTypes.BYTE
  5932. tokens[token_id] = text
  5933. scores[token_id] = score
  5934. toktypes[token_id] = toktype
  5935. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5936. # of information about added/redefined tokens and modify them accordingly.
  5937. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5938. if tokenizer_config_file.is_file():
  5939. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5940. tokenizer_config_json = json.load(f)
  5941. if "added_tokens_decoder" in tokenizer_config_json:
  5942. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5943. for token_id, token_json in added_tokens_decoder.items():
  5944. token_id = int(token_id)
  5945. if token_id >= vocab_size:
  5946. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5947. continue
  5948. token_content = token_json["content"]
  5949. token_type = SentencePieceTokenTypes.USER_DEFINED
  5950. token_score = -10000.0
  5951. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5952. # Set the score to 0.0 as in the original tokenizer.model
  5953. if ("special" in token_json) and token_json["special"]:
  5954. if token_content == tokenizer_config_json["unk_token"]:
  5955. token_type = SentencePieceTokenTypes.UNKNOWN
  5956. else:
  5957. token_type = SentencePieceTokenTypes.CONTROL
  5958. token_score = 0.0
  5959. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5960. tokens[token_id] = token_content.encode("utf-8")
  5961. toktypes[token_id] = token_type
  5962. scores[token_id] = token_score
  5963. self.gguf_writer.add_tokenizer_model("llama")
  5964. self.gguf_writer.add_tokenizer_pre("default")
  5965. self.gguf_writer.add_token_list(tokens)
  5966. self.gguf_writer.add_token_scores(scores)
  5967. self.gguf_writer.add_token_types(toktypes)
  5968. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5969. special_vocab.add_to_gguf(self.gguf_writer)
  5970. def set_gguf_parameters(self):
  5971. super().set_gguf_parameters()
  5972. hparams = self.hparams
  5973. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5974. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5975. _experts: list[dict[str, Tensor]] | None = None
  5976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5977. n_head = self.hparams["num_attention_heads"]
  5978. n_kv_head = self.hparams.get("num_key_value_heads")
  5979. if name.endswith("q_proj.weight"):
  5980. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5981. if name.endswith("k_proj.weight"):
  5982. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5983. # process the experts separately
  5984. if name.find("block_sparse_moe.experts") != -1:
  5985. n_experts = self.hparams["num_local_experts"]
  5986. assert bid is not None
  5987. if self._experts is None:
  5988. self._experts = [{} for _ in range(self.block_count)]
  5989. self._experts[bid][name] = data_torch
  5990. if len(self._experts[bid]) >= n_experts * 3:
  5991. tensors: list[tuple[str, Tensor]] = []
  5992. # merge the experts into a single 3d tensor
  5993. for wid in ["w1", "w2", "w3"]:
  5994. datas: list[Tensor] = []
  5995. for xid in range(n_experts):
  5996. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5997. datas.append(self._experts[bid][ename])
  5998. del self._experts[bid][ename]
  5999. data_torch = torch.stack(datas, dim=0)
  6000. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  6001. new_name = self.map_tensor_name(merged_name)
  6002. tensors.append((new_name, data_torch))
  6003. return tensors
  6004. else:
  6005. return []
  6006. return [(self.map_tensor_name(name), data_torch)]
  6007. def prepare_tensors(self):
  6008. super().prepare_tensors()
  6009. if self._experts is not None:
  6010. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6011. experts = [k for d in self._experts for k in d.keys()]
  6012. if len(experts) > 0:
  6013. raise ValueError(f"Unprocessed experts: {experts}")
  6014. @ModelBase.register("DeepseekForCausalLM")
  6015. class DeepseekModel(TextModel):
  6016. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  6017. def set_vocab(self):
  6018. try:
  6019. self._set_vocab_sentencepiece()
  6020. except FileNotFoundError:
  6021. self._set_vocab_gpt2()
  6022. def set_gguf_parameters(self):
  6023. super().set_gguf_parameters()
  6024. hparams = self.hparams
  6025. if (rope_dim := hparams.get("head_dim")) is None:
  6026. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6027. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6029. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6030. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6031. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6032. self.gguf_writer.add_expert_weights_scale(1.0)
  6033. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  6034. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  6035. _experts: list[dict[str, Tensor]] | None = None
  6036. @staticmethod
  6037. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6038. if n_head_kv is not None and n_head != n_head_kv:
  6039. n_head = n_head_kv
  6040. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6041. .swapaxes(1, 2)
  6042. .reshape(weights.shape))
  6043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6044. n_head = self.hparams["num_attention_heads"]
  6045. n_kv_head = self.hparams.get("num_key_value_heads")
  6046. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6047. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  6048. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6049. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  6050. # process the experts separately
  6051. if name.find("mlp.experts") != -1:
  6052. n_experts = self.hparams["n_routed_experts"]
  6053. assert bid is not None
  6054. if self._experts is None:
  6055. self._experts = [{} for _ in range(self.block_count)]
  6056. self._experts[bid][name] = data_torch
  6057. if len(self._experts[bid]) >= n_experts * 3:
  6058. tensors: list[tuple[str, Tensor]] = []
  6059. # merge the experts into a single 3d tensor
  6060. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6061. datas: list[Tensor] = []
  6062. for xid in range(n_experts):
  6063. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6064. datas.append(self._experts[bid][ename])
  6065. del self._experts[bid][ename]
  6066. data_torch = torch.stack(datas, dim=0)
  6067. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6068. new_name = self.map_tensor_name(merged_name)
  6069. tensors.append((new_name, data_torch))
  6070. return tensors
  6071. else:
  6072. return []
  6073. return [(self.map_tensor_name(name), data_torch)]
  6074. def prepare_tensors(self):
  6075. super().prepare_tensors()
  6076. if self._experts is not None:
  6077. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6078. experts = [k for d in self._experts for k in d.keys()]
  6079. if len(experts) > 0:
  6080. raise ValueError(f"Unprocessed experts: {experts}")
  6081. @ModelBase.register(
  6082. "DeepseekV2ForCausalLM",
  6083. "DeepseekV3ForCausalLM",
  6084. "KimiVLForConditionalGeneration",
  6085. "YoutuForCausalLM",
  6086. "YoutuVLForConditionalGeneration"
  6087. )
  6088. class DeepseekV2Model(TextModel):
  6089. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  6090. def set_vocab(self):
  6091. try:
  6092. self._set_vocab_gpt2()
  6093. return
  6094. except Exception:
  6095. pass
  6096. from transformers import AutoTokenizer
  6097. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6098. tokpre = self.get_vocab_base_pre(tokenizer)
  6099. if tokpre == "kimi-k2":
  6100. # Build merges list using the approach similar to HunYuanMoE
  6101. merges = []
  6102. vocab = {}
  6103. mergeable_ranks = tokenizer.model._mergeable_ranks
  6104. for token, rank in mergeable_ranks.items():
  6105. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6106. if len(token) == 1:
  6107. continue
  6108. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6109. if len(merged) == 2:
  6110. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6111. # Build token list
  6112. vocab_size = self.hparams["vocab_size"]
  6113. special_tokens = tokenizer.special_tokens
  6114. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6115. tokens: list[str] = []
  6116. toktypes: list[int] = []
  6117. for i in range(vocab_size):
  6118. if i not in reverse_vocab:
  6119. tokens.append(f"[PAD{i}]")
  6120. toktypes.append(gguf.TokenType.UNUSED)
  6121. else:
  6122. token = reverse_vocab[i]
  6123. tokens.append(token)
  6124. if i in special_tokens.values():
  6125. toktypes.append(gguf.TokenType.CONTROL)
  6126. else:
  6127. toktypes.append(gguf.TokenType.NORMAL)
  6128. self.gguf_writer.add_tokenizer_model("gpt2")
  6129. self.gguf_writer.add_tokenizer_pre(tokpre)
  6130. self.gguf_writer.add_token_list(tokens)
  6131. self.gguf_writer.add_token_types(toktypes)
  6132. self.gguf_writer.add_token_merges(merges)
  6133. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6134. special_vocab.add_to_gguf(self.gguf_writer)
  6135. else:
  6136. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  6137. def set_gguf_parameters(self):
  6138. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  6139. self.hparams["num_key_value_heads"] = 1
  6140. super().set_gguf_parameters()
  6141. hparams = self.hparams
  6142. # first_k_dense_replace: number of leading layers using dense FFN instead of MoE
  6143. # For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
  6144. # For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
  6145. has_moe = hparams.get("n_routed_experts") is not None
  6146. first_k_dense_replace = hparams.get("first_k_dense_replace")
  6147. if first_k_dense_replace is None:
  6148. # Default: if no MoE, all layers are dense; if MoE, none are dense
  6149. first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
  6150. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6151. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6152. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  6153. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  6154. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6155. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  6156. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  6157. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  6158. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6159. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  6160. # MoE parameters (required by C++ code for DEEPSEEK2 arch)
  6161. # For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
  6162. moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
  6163. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6164. if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
  6165. self.gguf_writer.add_expert_count(n_routed_experts)
  6166. # expert_shared_count is required by C++ code, default to 0 for non-MoE models
  6167. n_shared_experts = hparams.get("n_shared_experts", 0)
  6168. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6169. # When not set, C++ code will use scale_w = false to skip the no-op scaling
  6170. if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
  6171. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6172. if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
  6173. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6174. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6175. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  6176. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  6177. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  6178. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  6179. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  6180. _experts: list[dict[str, Tensor]] | None = None
  6181. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6182. # skip vision tensors and remove "language_model." for Kimi-VL
  6183. if "vision_tower" in name or "multi_modal_projector" in name:
  6184. return []
  6185. if name.startswith("siglip2.") or name.startswith("merger."):
  6186. return []
  6187. if name.startswith("language_model."):
  6188. name = name.replace("language_model.", "")
  6189. # skip lm_head.weight if tie_word_embeddings is True
  6190. if self.hparams.get("tie_word_embeddings", False):
  6191. if name == "lm_head.weight" or name == "model.lm_head.weight":
  6192. logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
  6193. return []
  6194. # rename e_score_correction_bias tensors
  6195. if name.endswith("e_score_correction_bias"):
  6196. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6197. # skip Multi-Token Prediction (MTP) layers
  6198. block_count = self.hparams["num_hidden_layers"]
  6199. match = re.match(r"model.layers.(\d+)", name)
  6200. if match and int(match.group(1)) >= block_count:
  6201. return []
  6202. # process the experts separately
  6203. if name.find("mlp.experts") != -1:
  6204. n_experts = self.hparams["n_routed_experts"]
  6205. assert bid is not None
  6206. if self._experts is None:
  6207. self._experts = [{} for _ in range(self.block_count)]
  6208. self._experts[bid][name] = data_torch
  6209. if len(self._experts[bid]) >= n_experts * 3:
  6210. tensors: list[tuple[str, Tensor]] = []
  6211. # merge the experts into a single 3d tensor
  6212. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6213. datas: list[Tensor] = []
  6214. for xid in range(n_experts):
  6215. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6216. datas.append(self._experts[bid][ename])
  6217. del self._experts[bid][ename]
  6218. data_torch = torch.stack(datas, dim=0)
  6219. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6220. new_name = self.map_tensor_name(merged_name)
  6221. tensors.append((new_name, data_torch))
  6222. return tensors
  6223. else:
  6224. return []
  6225. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  6226. if name.endswith("kv_b_proj.weight"):
  6227. name_kb = name.replace("kv_b_proj", "k_b_proj")
  6228. name_vb = name.replace("kv_b_proj", "v_b_proj")
  6229. n_head_kv = self.hparams["num_key_value_heads"]
  6230. v_head_dim = self.hparams["v_head_dim"]
  6231. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  6232. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  6233. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  6234. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  6235. k_b = k_b.transpose(1, 2)
  6236. return [
  6237. (self.map_tensor_name(name_kb), k_b),
  6238. (self.map_tensor_name(name_vb), v_b)
  6239. ]
  6240. return [(self.map_tensor_name(name), data_torch)]
  6241. def prepare_tensors(self):
  6242. super().prepare_tensors()
  6243. if self._experts is not None:
  6244. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6245. experts = [k for d in self._experts for k in d.keys()]
  6246. if len(experts) > 0:
  6247. raise ValueError(f"Unprocessed experts: {experts}")
  6248. @ModelBase.register("MiniMaxM2ForCausalLM")
  6249. class MiniMaxM2Model(TextModel):
  6250. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6251. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6252. def __init__(self, *args, **kwargs):
  6253. super().__init__(*args, **kwargs)
  6254. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6255. def set_gguf_parameters(self):
  6256. super().set_gguf_parameters()
  6257. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6258. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6260. if name.endswith("e_score_correction_bias"):
  6261. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6262. # merge expert weights
  6263. if 'experts' in name:
  6264. n_experts = self.hparams["num_experts"]
  6265. assert bid is not None
  6266. expert_cache = self._experts_cache.setdefault(bid, {})
  6267. expert_cache[name] = data_torch
  6268. expert_weights = ["w1", "w2", "w3"]
  6269. # not enough expert weights to merge
  6270. if len(expert_cache) < n_experts * len(expert_weights):
  6271. return []
  6272. tensors: list[tuple[str, Tensor]] = []
  6273. for w_name in expert_weights:
  6274. datas: list[Tensor] = []
  6275. for xid in range(n_experts):
  6276. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6277. datas.append(expert_cache[ename])
  6278. del expert_cache[ename]
  6279. data_torch = torch.stack(datas, dim=0)
  6280. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6281. new_name = self.map_tensor_name(merged_name)
  6282. tensors.append((new_name, data_torch))
  6283. del self._experts_cache[bid]
  6284. return tensors
  6285. return super().modify_tensors(data_torch, name, bid)
  6286. @ModelBase.register("MiMoV2FlashForCausalLM")
  6287. class MimoV2Model(TextModel):
  6288. model_arch = gguf.MODEL_ARCH.MIMO2
  6289. def set_gguf_parameters(self):
  6290. super().set_gguf_parameters()
  6291. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6292. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6293. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6294. assert self.hparams["topk_method"] == "noaux_tc"
  6295. n_head_kv = self.hparams["num_key_value_heads"]
  6296. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6297. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6298. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6299. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6300. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6301. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6302. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6303. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6304. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6305. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6306. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6307. _experts: list[dict[str, Tensor]] | None = None
  6308. def modify_tensors(self, data_torch, name, bid):
  6309. if name.endswith("e_score_correction_bias"):
  6310. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6311. if "attention_sink" in name and not name.endswith(".weight"):
  6312. name += ".weight"
  6313. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6314. if "model.mtp." in name:
  6315. return []
  6316. # process the experts separately
  6317. if name.find("mlp.experts") != -1:
  6318. n_experts = self.hparams["n_routed_experts"]
  6319. assert bid is not None
  6320. if self._experts is None:
  6321. self._experts = [{} for _ in range(self.block_count)]
  6322. self._experts[bid][name] = data_torch
  6323. if len(self._experts[bid]) >= n_experts * 3:
  6324. tensors: list[tuple[str, Tensor]] = []
  6325. # merge the experts into a single 3d tensor
  6326. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6327. datas: list[Tensor] = []
  6328. for xid in range(n_experts):
  6329. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6330. datas.append(self._experts[bid][ename_to_retrieve])
  6331. del self._experts[bid][ename_to_retrieve]
  6332. data_torch = torch.stack(datas, dim=0)
  6333. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6334. new_name = self.map_tensor_name(merged_name)
  6335. tensors.append((new_name, data_torch))
  6336. return tensors
  6337. else:
  6338. return []
  6339. return [(self.map_tensor_name(name), data_torch)]
  6340. def prepare_tensors(self):
  6341. super().prepare_tensors()
  6342. if self._experts is not None:
  6343. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6344. experts = [k for d in self._experts for k in d.keys()]
  6345. if len(experts) > 0:
  6346. raise ValueError(f"Unprocessed experts: {experts}")
  6347. @ModelBase.register("PanguEmbeddedForCausalLM")
  6348. class PanguEmbeddedModel(TextModel):
  6349. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6350. def set_vocab(self):
  6351. self._set_vocab_sentencepiece()
  6352. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6353. if tokenizer_config_file.is_file():
  6354. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6355. tokenizer_config_json = json.load(f)
  6356. if "add_prefix_space" in tokenizer_config_json:
  6357. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6358. def set_gguf_parameters(self):
  6359. super().set_gguf_parameters()
  6360. hparams = self.hparams
  6361. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6362. # PanguEmbedded's hparam loaded from config.json without head_dim
  6363. if (rope_dim := hparams.get("head_dim")) is None:
  6364. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6365. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6366. if hparams.get("head_dim") is None:
  6367. self.gguf_writer.add_key_length(rope_dim)
  6368. self.gguf_writer.add_value_length(rope_dim)
  6369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6370. if name == "lm_head.weight":
  6371. if self.hparams.get("tie_word_embeddings", False):
  6372. logger.info("Skipping tied output layer 'lm_head.weight'")
  6373. return []
  6374. return [(self.map_tensor_name(name), data_torch)]
  6375. @ModelBase.register("Dots1ForCausalLM")
  6376. class Dots1Model(Qwen2MoeModel):
  6377. model_arch = gguf.MODEL_ARCH.DOTS1
  6378. def __init__(self, *args, **kwargs):
  6379. super().__init__(*args, **kwargs)
  6380. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6381. def set_gguf_parameters(self):
  6382. super().set_gguf_parameters()
  6383. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6384. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6385. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6386. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6387. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6388. if name.endswith("e_score_correction_bias"):
  6389. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6390. if "shared_experts" in name:
  6391. return [(self.map_tensor_name(name), data_torch)]
  6392. return super().modify_tensors(data_torch, name, bid)
  6393. @ModelBase.register("PLMForCausalLM")
  6394. class PLMModel(TextModel):
  6395. model_arch = gguf.MODEL_ARCH.PLM
  6396. def set_vocab(self):
  6397. self._set_vocab_gpt2()
  6398. def set_gguf_parameters(self):
  6399. super().set_gguf_parameters()
  6400. hparams = self.hparams
  6401. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6402. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6403. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6404. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6405. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6407. return [(self.map_tensor_name(name), data_torch)]
  6408. def prepare_tensors(self):
  6409. super().prepare_tensors()
  6410. @ModelBase.register("T5WithLMHeadModel")
  6411. @ModelBase.register("T5ForConditionalGeneration")
  6412. @ModelBase.register("MT5ForConditionalGeneration")
  6413. @ModelBase.register("UMT5ForConditionalGeneration")
  6414. @ModelBase.register("UMT5Model")
  6415. class T5Model(TextModel):
  6416. model_arch = gguf.MODEL_ARCH.T5
  6417. def __init__(self, *args, **kwargs):
  6418. super().__init__(*args, **kwargs)
  6419. self.shared_token_embeddings_found = False
  6420. def set_vocab(self):
  6421. # to avoid TypeError: Descriptors cannot be created directly
  6422. # exception when importing sentencepiece_model_pb2
  6423. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6424. from sentencepiece import SentencePieceProcessor
  6425. from sentencepiece import sentencepiece_model_pb2 as model
  6426. tokenizer_path = self.dir_model / 'tokenizer.model'
  6427. # many older models use spiece.model tokenizer model filename
  6428. if not tokenizer_path.is_file():
  6429. tokenizer_path = self.dir_model / 'spiece.model'
  6430. if not tokenizer_path.is_file():
  6431. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6432. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6433. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6434. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6435. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6436. # assure the tokenizer model file name is correct
  6437. assert tokenizer_path.name == 'tokenizer.model'
  6438. return self._set_vocab_sentencepiece()
  6439. else:
  6440. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6441. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6442. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6443. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6444. tokenizer = SentencePieceProcessor()
  6445. tokenizer.LoadFromFile(str(tokenizer_path))
  6446. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6447. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6448. scores: list[float] = [-10000.0] * vocab_size
  6449. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6450. for token_id in range(tokenizer.vocab_size()):
  6451. piece = tokenizer.IdToPiece(token_id)
  6452. text = piece.encode("utf-8")
  6453. score = tokenizer.GetScore(token_id)
  6454. toktype = SentencePieceTokenTypes.NORMAL
  6455. if tokenizer.IsUnknown(token_id):
  6456. toktype = SentencePieceTokenTypes.UNKNOWN
  6457. elif tokenizer.IsControl(token_id):
  6458. toktype = SentencePieceTokenTypes.CONTROL
  6459. elif tokenizer.IsUnused(token_id):
  6460. toktype = SentencePieceTokenTypes.UNUSED
  6461. elif tokenizer.IsByte(token_id):
  6462. toktype = SentencePieceTokenTypes.BYTE
  6463. tokens[token_id] = text
  6464. scores[token_id] = score
  6465. toktypes[token_id] = toktype
  6466. added_tokens_file = self.dir_model / 'added_tokens.json'
  6467. if added_tokens_file.is_file():
  6468. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6469. added_tokens_json = json.load(f)
  6470. for key in added_tokens_json:
  6471. token_id = added_tokens_json[key]
  6472. if token_id >= vocab_size:
  6473. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6474. continue
  6475. tokens[token_id] = key.encode("utf-8")
  6476. scores[token_id] = -1000.0
  6477. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6478. if vocab_size > len(tokens):
  6479. pad_count = vocab_size - len(tokens)
  6480. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6481. for i in range(1, pad_count + 1):
  6482. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6483. scores.append(-1000.0)
  6484. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6485. self.gguf_writer.add_tokenizer_model("t5")
  6486. self.gguf_writer.add_tokenizer_pre("default")
  6487. self.gguf_writer.add_token_list(tokens)
  6488. self.gguf_writer.add_token_scores(scores)
  6489. self.gguf_writer.add_token_types(toktypes)
  6490. self.gguf_writer.add_add_space_prefix(add_prefix)
  6491. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6492. if precompiled_charsmap:
  6493. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6494. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6495. special_vocab.add_to_gguf(self.gguf_writer)
  6496. def set_gguf_parameters(self):
  6497. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6498. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6499. n_ctx = 512
  6500. self.gguf_writer.add_context_length(n_ctx)
  6501. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6502. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6503. self.gguf_writer.add_block_count(self.block_count)
  6504. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6505. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6506. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6507. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6508. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6509. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6510. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6511. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6512. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6513. self.gguf_writer.add_file_type(self.ftype)
  6514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6515. del bid # unused
  6516. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6517. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6518. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6519. # and decoder and ignore the remaining ones.
  6520. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6521. if not self.shared_token_embeddings_found:
  6522. name = "shared.weight"
  6523. self.shared_token_embeddings_found = True
  6524. else:
  6525. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6526. return []
  6527. return [(self.map_tensor_name(name), data_torch)]
  6528. @ModelBase.register("T5EncoderModel")
  6529. class T5EncoderModel(TextModel):
  6530. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6531. def __init__(self, *args, **kwargs):
  6532. super().__init__(*args, **kwargs)
  6533. self.shared_token_embeddings_found = False
  6534. def set_vocab(self):
  6535. # to avoid TypeError: Descriptors cannot be created directly
  6536. # exception when importing sentencepiece_model_pb2
  6537. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6538. from sentencepiece import SentencePieceProcessor
  6539. from sentencepiece import sentencepiece_model_pb2 as model
  6540. tokenizer_path = self.dir_model / 'tokenizer.model'
  6541. # many older models use spiece.model tokenizer model filename
  6542. if not tokenizer_path.is_file():
  6543. tokenizer_path = self.dir_model / 'spiece.model'
  6544. if not tokenizer_path.is_file():
  6545. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6546. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6547. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6548. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6549. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6550. # assure the tokenizer model file name is correct
  6551. assert tokenizer_path.name == 'tokenizer.model'
  6552. return self._set_vocab_sentencepiece()
  6553. else:
  6554. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6555. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6556. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6557. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6558. tokenizer = SentencePieceProcessor()
  6559. tokenizer.LoadFromFile(str(tokenizer_path))
  6560. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6561. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6562. scores: list[float] = [-10000.0] * vocab_size
  6563. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6564. for token_id in range(tokenizer.vocab_size()):
  6565. piece = tokenizer.IdToPiece(token_id)
  6566. text = piece.encode("utf-8")
  6567. score = tokenizer.GetScore(token_id)
  6568. toktype = SentencePieceTokenTypes.NORMAL
  6569. if tokenizer.IsUnknown(token_id):
  6570. toktype = SentencePieceTokenTypes.UNKNOWN
  6571. elif tokenizer.IsControl(token_id):
  6572. toktype = SentencePieceTokenTypes.CONTROL
  6573. elif tokenizer.IsUnused(token_id):
  6574. toktype = SentencePieceTokenTypes.UNUSED
  6575. elif tokenizer.IsByte(token_id):
  6576. toktype = SentencePieceTokenTypes.BYTE
  6577. tokens[token_id] = text
  6578. scores[token_id] = score
  6579. toktypes[token_id] = toktype
  6580. added_tokens_file = self.dir_model / 'added_tokens.json'
  6581. if added_tokens_file.is_file():
  6582. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6583. added_tokens_json = json.load(f)
  6584. for key in added_tokens_json:
  6585. token_id = added_tokens_json[key]
  6586. if token_id >= vocab_size:
  6587. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6588. continue
  6589. tokens[token_id] = key.encode("utf-8")
  6590. scores[token_id] = -1000.0
  6591. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6592. if vocab_size > len(tokens):
  6593. pad_count = vocab_size - len(tokens)
  6594. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6595. for i in range(1, pad_count + 1):
  6596. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6597. scores.append(-1000.0)
  6598. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6599. self.gguf_writer.add_tokenizer_model("t5")
  6600. self.gguf_writer.add_tokenizer_pre("default")
  6601. self.gguf_writer.add_token_list(tokens)
  6602. self.gguf_writer.add_token_scores(scores)
  6603. self.gguf_writer.add_token_types(toktypes)
  6604. self.gguf_writer.add_add_space_prefix(add_prefix)
  6605. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6606. if precompiled_charsmap:
  6607. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6608. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6609. special_vocab.add_to_gguf(self.gguf_writer)
  6610. def set_gguf_parameters(self):
  6611. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6612. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6613. n_ctx = 512
  6614. self.gguf_writer.add_context_length(n_ctx)
  6615. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6616. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6617. self.gguf_writer.add_block_count(self.block_count)
  6618. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6619. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6620. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6621. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6622. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6623. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6624. self.gguf_writer.add_file_type(self.ftype)
  6625. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6626. del bid # unused
  6627. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6628. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6629. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6630. # and decoder and ignore the remaining ones.
  6631. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6632. if not self.shared_token_embeddings_found:
  6633. name = "shared.weight"
  6634. self.shared_token_embeddings_found = True
  6635. else:
  6636. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6637. return []
  6638. return [(self.map_tensor_name(name), data_torch)]
  6639. @ModelBase.register("JAISLMHeadModel")
  6640. class JaisModel(TextModel):
  6641. model_arch = gguf.MODEL_ARCH.JAIS
  6642. def __init__(self, *args, **kwargs):
  6643. super().__init__(*args, **kwargs)
  6644. # SwigLU activation
  6645. assert self.hparams["activation_function"] == "swiglu"
  6646. # ALiBi position embedding
  6647. assert self.hparams["position_embedding_type"] == "alibi"
  6648. # Embeddings scale
  6649. self.embeddings_scale = 1.0
  6650. if 'mup_embeddings_scale' in self.hparams:
  6651. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6652. elif 'embeddings_scale' in self.hparams:
  6653. self.embeddings_scale = self.hparams['embeddings_scale']
  6654. else:
  6655. assert False
  6656. self.width_scale = 1.0
  6657. if 'mup_output_alpha' in self.hparams:
  6658. assert 'mup_width_scale' in self.hparams
  6659. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6660. elif 'width_scale' in self.hparams:
  6661. self.width_scale = self.hparams['width_scale']
  6662. else:
  6663. assert False
  6664. self.max_alibi_bias = 8.0
  6665. def set_vocab(self):
  6666. self._set_vocab_gpt2()
  6667. def set_gguf_parameters(self):
  6668. self.gguf_writer.add_block_count(self.block_count)
  6669. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6670. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6671. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6672. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6673. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6674. self.gguf_writer.add_file_type(self.ftype)
  6675. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6676. del bid # unused
  6677. tensors: list[tuple[str, Tensor]] = []
  6678. # we don't need these
  6679. if name.endswith((".attn.bias")):
  6680. return tensors
  6681. if name.endswith(("relative_pe.slopes")):
  6682. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6683. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6684. # but Jais's PyTorch model simply precalculates the slope values and places them
  6685. # in relative_pes.slopes
  6686. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6687. first_val = float(data_torch[0].item())
  6688. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6689. return tensors
  6690. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6691. data_torch = data_torch.transpose(1, 0)
  6692. new_name = self.map_tensor_name(name)
  6693. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6694. tensors.append((new_name, data_torch * self.embeddings_scale))
  6695. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6696. tensors.append((new_name, data_torch * self.width_scale))
  6697. else:
  6698. tensors.append((new_name, data_torch))
  6699. return tensors
  6700. def prepare_tensors(self):
  6701. super().prepare_tensors()
  6702. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6703. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6704. class Glm4Model(TextModel):
  6705. model_arch = gguf.MODEL_ARCH.GLM4
  6706. use_mrope = False
  6707. partial_rotary_factor = 0.5
  6708. def __init__(self, *args, **kwargs):
  6709. super().__init__(*args, **kwargs)
  6710. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6711. if "mrope_section" in self.rope_parameters:
  6712. self.use_mrope = True
  6713. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6714. def set_vocab(self):
  6715. from transformers import AutoTokenizer
  6716. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6717. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6718. tokens, toktypes, tokpre = self.get_vocab_base()
  6719. self.gguf_writer.add_tokenizer_model("gpt2")
  6720. self.gguf_writer.add_tokenizer_pre(tokpre)
  6721. self.gguf_writer.add_token_list(tokens)
  6722. self.gguf_writer.add_token_types(toktypes)
  6723. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6724. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6725. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6726. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6727. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6728. special_vocab.add_to_gguf(self.gguf_writer)
  6729. def set_gguf_parameters(self):
  6730. super().set_gguf_parameters()
  6731. if (rope_dim := self.hparams.get("head_dim")) is None:
  6732. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6733. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6734. @staticmethod
  6735. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6736. orig_shape = weights.shape
  6737. if len(orig_shape) == 1:
  6738. weights = weights.unsqueeze(1) # [out_dim, 1]
  6739. if len(weights.shape) != 2:
  6740. raise ValueError("Only 1D and 2D tensors are supported.")
  6741. n_effective_heads = weights.shape[0] // head_dim
  6742. if n_head_kv is not None and n_effective_heads != n_head:
  6743. if n_effective_heads != n_head_kv:
  6744. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6745. rotary_dim = int(head_dim * partial_rotary_factor)
  6746. if rotary_dim % 2 != 0:
  6747. raise ValueError("rotary_dim must be even.")
  6748. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6749. rot_part = reshaped[:, :rotary_dim, :]
  6750. non_rot_part = reshaped[:, rotary_dim:, :]
  6751. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6752. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6753. result = combined.reshape(weights.shape)
  6754. return result if len(orig_shape) != 1 else result.squeeze(1)
  6755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6756. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6757. return []
  6758. elif name.startswith("model.language_model."):
  6759. name = name.replace("language_model.", "") # for Glm4v
  6760. if self.use_mrope:
  6761. n_head = self.hparams["num_attention_heads"]
  6762. n_kv_head = self.hparams["num_key_value_heads"]
  6763. n_embd = self.hparams["hidden_size"]
  6764. head_dim = n_embd // n_head
  6765. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6766. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6767. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6768. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6769. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6770. return super().modify_tensors(data_torch, name, bid)
  6771. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6772. class Glm4MoeModel(TextModel):
  6773. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6774. def __init__(self, *args, **kwargs):
  6775. super().__init__(*args, **kwargs)
  6776. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6777. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6778. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6779. def set_vocab(self):
  6780. from transformers import AutoTokenizer
  6781. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6782. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6783. tokens, toktypes, tokpre = self.get_vocab_base()
  6784. self.gguf_writer.add_tokenizer_model("gpt2")
  6785. self.gguf_writer.add_tokenizer_pre(tokpre)
  6786. self.gguf_writer.add_token_list(tokens)
  6787. self.gguf_writer.add_token_types(toktypes)
  6788. # Special tokens
  6789. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6790. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6791. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6792. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6793. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6794. special_vocab.add_to_gguf(self.gguf_writer)
  6795. def set_gguf_parameters(self):
  6796. super().set_gguf_parameters()
  6797. if (rope_dim := self.hparams.get("head_dim")) is None:
  6798. rope_dim = (
  6799. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6800. )
  6801. self.gguf_writer.add_rope_dimension_count(
  6802. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6803. )
  6804. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6805. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6806. self.gguf_writer.add_expert_count(n_routed_experts)
  6807. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6808. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6809. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6810. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6811. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6812. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6813. # Expert gating function (sigmoid for GLM4_MOE)
  6814. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6815. # Routed scaling factor
  6816. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6817. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6818. # Normalise topk probabilities
  6819. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6820. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6821. # NextN/MTP prediction layers
  6822. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6823. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6824. _experts: list[dict[str, Tensor]] | None = None
  6825. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6826. def modify_tensors(
  6827. self, data_torch: Tensor, name: str, bid: int | None
  6828. ) -> Iterable[tuple[str, Tensor]]:
  6829. if name.startswith("model.visual."): # ignore visual part
  6830. return []
  6831. elif name.startswith("model.language_model."):
  6832. name = name.replace("language_model.", "") # for multimodal variants
  6833. # Handle main token embedding (but not layer-specific NextN embeddings)
  6834. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6835. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6836. # Handle routed experts
  6837. if name.find("mlp.experts") != -1:
  6838. n_experts = self.hparams["n_routed_experts"]
  6839. assert bid is not None
  6840. if self._experts is None:
  6841. self._experts = [{} for _ in range(self.block_count)]
  6842. self._experts[bid][name] = data_torch
  6843. if len(self._experts[bid]) >= n_experts * 3:
  6844. tensors: list[tuple[str, Tensor]] = []
  6845. # merge the experts into a single 3d tensor
  6846. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6847. datas: list[Tensor] = []
  6848. for xid in range(n_experts):
  6849. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6850. datas.append(self._experts[bid][ename])
  6851. del self._experts[bid][ename]
  6852. data_torch = torch.stack(datas, dim=0)
  6853. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6854. new_name = self.map_tensor_name(merged_name)
  6855. tensors.append((new_name, data_torch))
  6856. return tensors
  6857. else:
  6858. return []
  6859. if name.endswith("e_score_correction_bias"):
  6860. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6861. new_name = self.map_tensor_name(name)
  6862. return [(new_name, data_torch)]
  6863. def prepare_tensors(self):
  6864. super().prepare_tensors()
  6865. if self._experts is not None:
  6866. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6867. experts = [k for d in self._experts for k in d.keys()]
  6868. if len(experts) > 0:
  6869. raise ValueError(f"Unprocessed experts: {experts}")
  6870. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6871. class ChatGLMModel(TextModel):
  6872. model_arch = gguf.MODEL_ARCH.CHATGLM
  6873. def set_vocab_chatglm3(self):
  6874. dir_model = self.dir_model
  6875. hparams = self.hparams
  6876. tokens: list[bytes] = []
  6877. toktypes: list[int] = []
  6878. scores: list[float] = []
  6879. from transformers import AutoTokenizer
  6880. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6881. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6882. assert max(tokenizer.get_vocab().values()) < vocab_size
  6883. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6884. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6885. for token_id in range(vocab_size):
  6886. piece = tokenizer._convert_id_to_token(token_id)
  6887. if token_id == 0:
  6888. piece = "<unk>"
  6889. elif token_id == 1:
  6890. piece = "<bos>"
  6891. elif token_id == 2:
  6892. piece = "<eos>"
  6893. text = piece.encode("utf-8")
  6894. score = 0.0
  6895. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6896. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6897. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6898. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6899. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6900. if piece in special_tokens:
  6901. toktype = SentencePieceTokenTypes.CONTROL
  6902. elif len(piece) == 0:
  6903. text = f"[PAD{token_id}]".encode("utf-8")
  6904. toktype = SentencePieceTokenTypes.UNUSED
  6905. else:
  6906. toktype = SentencePieceTokenTypes.USER_DEFINED
  6907. tokens.append(text)
  6908. scores.append(score)
  6909. toktypes.append(toktype)
  6910. continue
  6911. toktype = SentencePieceTokenTypes.NORMAL
  6912. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6913. toktype = SentencePieceTokenTypes.UNKNOWN
  6914. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6915. toktype = SentencePieceTokenTypes.CONTROL
  6916. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6917. toktype = SentencePieceTokenTypes.UNUSED
  6918. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6919. toktype = SentencePieceTokenTypes.BYTE
  6920. tokens.append(text)
  6921. scores.append(score)
  6922. toktypes.append(toktype)
  6923. self.gguf_writer.add_tokenizer_model("llama")
  6924. # glm3 needs prefix and suffix formatted as:
  6925. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6926. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6927. self.gguf_writer.add_token_list(tokens)
  6928. self.gguf_writer.add_token_scores(scores)
  6929. self.gguf_writer.add_token_types(toktypes)
  6930. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6931. special_vocab.add_to_gguf(self.gguf_writer)
  6932. @staticmethod
  6933. def token_bytes_to_string(b):
  6934. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6935. byte_encoder = bytes_to_unicode()
  6936. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6937. @staticmethod
  6938. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6939. parts = [bytes([b]) for b in token]
  6940. while True:
  6941. min_idx = None
  6942. min_rank = None
  6943. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6944. rank = mergeable_ranks.get(pair[0] + pair[1])
  6945. if rank is not None and (min_rank is None or rank < min_rank):
  6946. min_idx = i
  6947. min_rank = rank
  6948. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6949. break
  6950. assert min_idx is not None
  6951. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6952. return parts
  6953. def set_vocab(self):
  6954. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6955. self.set_vocab_chatglm3()
  6956. return
  6957. dir_model = self.dir_model
  6958. hparams = self.hparams
  6959. tokens: list[str] = []
  6960. toktypes: list[int] = []
  6961. from transformers import AutoTokenizer
  6962. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6963. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6964. assert max(tokenizer.get_vocab().values()) < vocab_size
  6965. tokens, toktypes, tokpre = self.get_vocab_base()
  6966. self.gguf_writer.add_tokenizer_model("gpt2")
  6967. self.gguf_writer.add_tokenizer_pre(tokpre)
  6968. self.gguf_writer.add_token_list(tokens)
  6969. self.gguf_writer.add_token_types(toktypes)
  6970. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6971. # only add special tokens when they were not already loaded from config.json
  6972. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6973. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6974. # this one is usually not in config.json anyway
  6975. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6976. special_vocab.add_to_gguf(self.gguf_writer)
  6977. def set_gguf_parameters(self):
  6978. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6979. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6980. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6981. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6982. self.gguf_writer.add_embedding_length(n_embed)
  6983. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6984. self.gguf_writer.add_block_count(self.block_count)
  6985. self.gguf_writer.add_head_count(n_head)
  6986. self.gguf_writer.add_head_count_kv(n_head_kv)
  6987. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6988. self.gguf_writer.add_file_type(self.ftype)
  6989. if "attention_dim" in self.hparams:
  6990. rope_dim = self.hparams["attention_dim"]
  6991. else:
  6992. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6993. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6994. self.gguf_writer.add_add_bos_token(False)
  6995. rope_freq = 10000
  6996. if "rope_ratio" in self.hparams:
  6997. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6998. self.gguf_writer.add_rope_freq_base(rope_freq)
  6999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7000. del bid # unused
  7001. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  7002. return []
  7003. name = name.removeprefix("transformer.")
  7004. return [(self.map_tensor_name(name), data_torch)]
  7005. @ModelBase.register("NemotronForCausalLM")
  7006. class NemotronModel(TextModel):
  7007. model_arch = gguf.MODEL_ARCH.NEMOTRON
  7008. def set_vocab(self):
  7009. self._set_vocab_sentencepiece()
  7010. self.gguf_writer.add_pad_token_id(0)
  7011. self.gguf_writer.add_unk_token_id(1)
  7012. def set_gguf_parameters(self):
  7013. super().set_gguf_parameters()
  7014. hparams = self.hparams
  7015. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7016. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  7017. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  7018. # * Partial RoPE
  7019. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  7020. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  7021. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  7022. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  7023. # * RopeScaling for Nemotron
  7024. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  7025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7026. else:
  7027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  7028. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  7029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7030. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  7031. # model.layers.{l}.input_layernorm.weight
  7032. # model.layers.{l}.post_attention_layernorm.weight
  7033. # model.norm.weight
  7034. if name.endswith("norm.weight"):
  7035. data_torch = data_torch + 1
  7036. return [(self.map_tensor_name(name), data_torch)]
  7037. @ModelBase.register("ExaoneForCausalLM")
  7038. class ExaoneModel(TextModel):
  7039. model_arch = gguf.MODEL_ARCH.EXAONE
  7040. def set_gguf_parameters(self):
  7041. super().set_gguf_parameters()
  7042. hparams = self.hparams
  7043. assert (hparams["activation_function"] == "silu")
  7044. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  7045. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  7046. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  7047. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7048. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7049. if rope_params.get("rope_type", '').lower() == "llama3":
  7050. base = self.rope_parameters.get("rope_theta", 10000.0)
  7051. if (dim := self.hparams.get("head_dim")) is None:
  7052. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7053. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7054. factor = rope_params.get("factor", 8.0)
  7055. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7056. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7057. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7058. low_freq_wavelen = old_context_len / low_freq_factor
  7059. high_freq_wavelen = old_context_len / high_freq_factor
  7060. assert low_freq_wavelen != high_freq_wavelen
  7061. rope_factors = []
  7062. for freq in freqs:
  7063. wavelen = 2 * math.pi / freq
  7064. if wavelen < high_freq_wavelen:
  7065. rope_factors.append(1)
  7066. elif wavelen > low_freq_wavelen:
  7067. rope_factors.append(factor)
  7068. else:
  7069. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7070. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7071. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7072. @ModelBase.register("Exaone4ForCausalLM")
  7073. class Exaone4Model(TextModel):
  7074. model_arch = gguf.MODEL_ARCH.EXAONE4
  7075. def set_vocab(self):
  7076. tokens, toktypes, tokpre = self.get_vocab_base()
  7077. self.gguf_writer.add_tokenizer_model("gpt2")
  7078. self.gguf_writer.add_tokenizer_pre(tokpre)
  7079. self.gguf_writer.add_token_list(tokens)
  7080. self.gguf_writer.add_token_types(toktypes)
  7081. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  7082. special_vocab.add_to_gguf(self.gguf_writer)
  7083. def set_gguf_parameters(self):
  7084. super().set_gguf_parameters()
  7085. hparams = self.hparams
  7086. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7087. if hparams.get("sliding_window") is not None:
  7088. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  7089. if "layer_types" in hparams:
  7090. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  7091. elif "sliding_window_pattern" in hparams:
  7092. sliding_window_pattern = []
  7093. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  7094. for i in range(hparams["num_hidden_layers"]):
  7095. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  7096. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  7097. for i in range(hparams["num_hidden_layers"]):
  7098. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  7099. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  7100. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  7101. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7102. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7103. if rope_params.get("rope_type", '').lower() == "llama3":
  7104. base = rope_params.get("rope_theta", 10_000.0)
  7105. if (dim := self.hparams.get("head_dim")) is None:
  7106. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7107. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7108. factor = rope_params.get("factor", 16.0)
  7109. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7110. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7111. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7112. low_freq_wavelen = old_context_len / low_freq_factor
  7113. high_freq_wavelen = old_context_len / high_freq_factor
  7114. rope_factors = []
  7115. for freq in freqs:
  7116. wavelen = 2 * math.pi / freq
  7117. if wavelen < high_freq_wavelen:
  7118. rope_factors.append(1)
  7119. elif wavelen > low_freq_wavelen:
  7120. rope_factors.append(factor)
  7121. else:
  7122. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7123. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7124. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7125. @ModelBase.register("ExaoneMoEForCausalLM")
  7126. class ExaoneMoEModel(Exaone4Model):
  7127. model_arch = gguf.MODEL_ARCH.EXAONE_MOE
  7128. def __init__(self, *args, **kwargs):
  7129. super().__init__(*args, **kwargs)
  7130. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  7131. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7132. def set_gguf_parameters(self):
  7133. super().set_gguf_parameters()
  7134. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7135. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7136. num_shared_experts = self.hparams["num_shared_experts"]
  7137. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7138. self.gguf_writer.add_expert_shared_count(num_shared_experts)
  7139. self.gguf_writer.add_expert_shared_feed_forward_length(moe_intermediate_size * num_shared_experts)
  7140. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7141. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7142. n_dense_layer = self.hparams.get("first_k_dense_replace", self.hparams.get("first_last_k_dense_replace", 0))
  7143. self.gguf_writer.add_leading_dense_block_count(n_dense_layer)
  7144. self.gguf_writer.add_nextn_predict_layers(self.hparams.get("num_nextn_predict_layers", 0))
  7145. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7146. _experts: list[dict[str, Tensor]] | None = None
  7147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7148. if name.startswith("mtp."):
  7149. if name.find("layers.") != -1:
  7150. # `mtp.layers.0.[module_name]` format
  7151. name = name.replace(f"mtp.layers.{bid}", f"model.layers.{bid + self.hparams['num_hidden_layers']}")
  7152. else:
  7153. # mtp fc/norm weights
  7154. remapper = {
  7155. "mtp.fc": "model.layers.{bid}.eh_proj",
  7156. "mtp.pre_fc_norm_embedding": "model.layers.{bid}.enorm",
  7157. "mtp.pre_fc_norm_hidden": "model.layers.{bid}.hnorm",
  7158. "mtp.norm": "model.layers.{bid}.shared_head.norm",
  7159. }
  7160. _n = Path(name)
  7161. new_name = remapper[_n.stem] + _n.suffix
  7162. # set shared weights for all NextN/MTP layers
  7163. tensors = []
  7164. for bid in range(self.hparams['num_hidden_layers'], self.block_count):
  7165. new_name = new_name.format(bid=bid)
  7166. tensors.append((self.map_tensor_name(new_name), data_torch))
  7167. return tensors
  7168. if name.endswith("e_score_correction_bias"):
  7169. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7170. if name.find("mlp.experts") != -1:
  7171. n_experts = self.hparams["num_experts"]
  7172. assert bid is not None
  7173. if self._experts is None:
  7174. self._experts = [{} for _ in range(self.block_count)]
  7175. self._experts[bid][name] = data_torch
  7176. if len(self._experts[bid]) >= n_experts * 3:
  7177. tensors: list[tuple[str, Tensor]] = []
  7178. # merge the experts into a single 3d tensor
  7179. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7180. datas: list[Tensor] = []
  7181. for xid in range(n_experts):
  7182. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7183. datas.append(self._experts[bid][ename])
  7184. del self._experts[bid][ename]
  7185. data_torch = torch.stack(datas, dim=0)
  7186. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7187. new_name = self.map_tensor_name(merged_name)
  7188. tensors.append((new_name, data_torch))
  7189. return tensors
  7190. else:
  7191. return []
  7192. return [(self.map_tensor_name(name), data_torch)]
  7193. def prepare_tensors(self):
  7194. super().prepare_tensors()
  7195. if self._experts is not None:
  7196. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7197. experts = [k for d in self._experts for k in d.keys()]
  7198. if len(experts) > 0:
  7199. raise ValueError(f"Unprocessed experts: {experts}")
  7200. @ModelBase.register("GraniteForCausalLM")
  7201. class GraniteModel(LlamaModel):
  7202. """Conversion for IBM's GraniteForCausalLM"""
  7203. model_arch = gguf.MODEL_ARCH.GRANITE
  7204. def set_gguf_parameters(self):
  7205. """Granite uses standard llama parameters with the following differences:
  7206. - No head_dim support
  7207. - New multiplier params:
  7208. - attention_scale
  7209. - embedding_scale
  7210. - residual_scale
  7211. - logits_scaling
  7212. """
  7213. if head_dim := self.hparams.pop("head_dim", None):
  7214. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  7215. super().set_gguf_parameters()
  7216. # NOTE: Convert _multiplier params to _scale params for naming
  7217. # consistency
  7218. if attention_scale := self.hparams.get("attention_multiplier"):
  7219. self.gguf_writer.add_attention_scale(attention_scale)
  7220. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  7221. if embedding_scale := self.hparams.get("embedding_multiplier"):
  7222. self.gguf_writer.add_embedding_scale(embedding_scale)
  7223. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  7224. if residual_scale := self.hparams.get("residual_multiplier"):
  7225. self.gguf_writer.add_residual_scale(residual_scale)
  7226. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  7227. if logits_scale := self.hparams.get("logits_scaling"):
  7228. self.gguf_writer.add_logit_scale(logits_scale)
  7229. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  7230. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  7231. class GraniteMoeModel(GraniteModel):
  7232. """Conversion for IBM's GraniteMoeForCausalLM"""
  7233. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  7234. def set_gguf_parameters(self):
  7235. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  7236. - shared_intermediate_size
  7237. """
  7238. super().set_gguf_parameters()
  7239. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  7240. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  7241. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  7242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7243. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  7244. is used. This essentially merges w1 and w3 into a single tensor with 2x
  7245. the hidden size that is then split during forward. To keep compatibility
  7246. with existing mixtral support, we pull them apart here.
  7247. """
  7248. if name.endswith("block_sparse_moe.input_linear.weight"):
  7249. ffn_dim = self.hparams["intermediate_size"]
  7250. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  7251. gate, up = data_torch.split(ffn_dim, dim=-2)
  7252. return [
  7253. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  7254. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  7255. ]
  7256. has_experts = bool(self.hparams.get('num_local_experts'))
  7257. if name.endswith("shared_mlp.input_linear.weight"):
  7258. ffn_dim = self.hparams["shared_intermediate_size"]
  7259. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  7260. gate, up = data_torch.split(ffn_dim, dim=-2)
  7261. if has_experts:
  7262. return [
  7263. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  7264. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  7265. ]
  7266. return [
  7267. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  7268. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  7269. ]
  7270. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  7271. return [
  7272. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  7273. ]
  7274. return super().modify_tensors(data_torch, name, bid)
  7275. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  7276. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  7277. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  7278. layers and optionally uses MoE w/ a shared expert"""
  7279. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  7280. undo_permute = True
  7281. def __init__(self, *args, **kwargs):
  7282. # Hybrid mamba models use a prefix for the mamba-specific params.
  7283. # TODO: Extend this if the prefix(es) need to be configurable
  7284. self.hparam_prefixes = ["mamba"]
  7285. super().__init__(*args, **kwargs)
  7286. # Lists of which layers use ssm vs attention
  7287. self._attn_layers = self.get_attn_layers()
  7288. self._ssm_layers = [
  7289. i for i in range(self.block_count)
  7290. if i not in self._attn_layers
  7291. ]
  7292. # There are some models in this family that are non-hybrid, but keep the
  7293. # same parent class by setting all layers to "attention." If this is the
  7294. # case, the model architecture needs to be updated to a standard
  7295. # "granite" or "granitemoe" model
  7296. if not self._ssm_layers:
  7297. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  7298. new_arch = (
  7299. gguf.MODEL_ARCH.GRANITE_MOE
  7300. if has_experts else
  7301. gguf.MODEL_ARCH.GRANITE
  7302. )
  7303. self.model_arch = new_arch
  7304. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  7305. self.gguf_writer.add_architecture()
  7306. # n_group and d_inner are used during reshape_tensors for mamba2
  7307. # NOTE: Explicitly include hparam prefix prefix for d_model to
  7308. # disambiguate with top-level head_dim
  7309. # NOTE 2: If needed for future models, this can be isolated in a method
  7310. # to separate the prefix setting and teh keys used
  7311. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  7312. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  7313. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  7314. def get_attn_layers(self):
  7315. # Explicit list of layer type names
  7316. if layer_types := self.hparams.get("layer_types"):
  7317. return [
  7318. i for i, typ in enumerate(layer_types)
  7319. if typ == "attention"
  7320. ]
  7321. # Layer types indicated by index or period
  7322. attn_layers = self.hparams.get("attn_layer_indices", [])
  7323. if not attn_layers:
  7324. attn_period = self.hparams.get("attn_layer_period")
  7325. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7326. attn_offset = self.hparams.get("attn_layer_offset")
  7327. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7328. attn_layers = [
  7329. i for i in range(self.block_count)
  7330. if i % attn_period == attn_offset
  7331. ]
  7332. return attn_layers
  7333. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7334. prefixed = []
  7335. for pfx in self.hparam_prefixes:
  7336. prefixed.extend(
  7337. "_".join([pfx, k])
  7338. for k in keys
  7339. )
  7340. keys = list(keys) + prefixed
  7341. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7342. def modify_tensors(
  7343. self, data_torch: Tensor, name: str, bid: int | None
  7344. ) -> Iterable[tuple[str, Tensor]]:
  7345. if (
  7346. name.endswith("block_sparse_moe.input_linear.weight")
  7347. or "shared_mlp" in name
  7348. ):
  7349. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7350. # Determine whether this is a mamba layer or an attention layer
  7351. if bid in self._ssm_layers:
  7352. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7353. elif bid in self._attn_layers:
  7354. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7355. return [(self.map_tensor_name(name), data_torch)]
  7356. def set_gguf_parameters(self):
  7357. """This method merges params from both parents and some that are
  7358. specific to this model. The result is some duplication of how the params
  7359. get set. The following warnings are expected during conversion:
  7360. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7361. WARNING:Duplicated key name 'granitehybrid.context_length'
  7362. """
  7363. GraniteMoeModel.set_gguf_parameters(self)
  7364. ## Mamba mixer params ##
  7365. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7366. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7367. self.gguf_writer.add_ssm_group_count(self.n_group)
  7368. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7369. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7370. # in llama.cpp
  7371. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7372. ## Attention params ##
  7373. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7374. head_count_kv_vec = [
  7375. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7376. ]
  7377. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7378. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7379. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7380. ## If Bamba or non-hybrid, use rope, otherwise don't
  7381. use_rope = (
  7382. "BambaForCausalLM" in self.hparams["architectures"]
  7383. or not self._ssm_layers
  7384. )
  7385. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7386. if not use_rope:
  7387. self.gguf_writer.add_context_length(2**20)
  7388. ## Validation ##
  7389. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7390. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7391. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7392. def set_vocab(self):
  7393. self.hparams["pad_vocab_size_multiple"] = 8
  7394. Mamba2Model.set_vocab(self)
  7395. @ModelBase.register("NemotronHForCausalLM")
  7396. class NemotronHModel(GraniteHybridModel):
  7397. """Hybrid mamba2/attention model from NVIDIA"""
  7398. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7399. is_moe: bool = False
  7400. def __init__(self, *args, **kwargs):
  7401. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7402. # calling the parent __init__. This is because the parent constructor
  7403. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7404. # mappings would be missed if it were called with the default non-MoE arch.
  7405. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7406. if "num_experts_per_tok" in hparams:
  7407. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7408. self.is_moe = True
  7409. super().__init__(*args, **kwargs)
  7410. # Save the top-level head_dim for later
  7411. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7412. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7413. # Don't use expand to calculate d_inner
  7414. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7415. # Update the ssm / attn / mlp layers
  7416. # M: Mamba2, *: Attention, -: MLP
  7417. # MoE:
  7418. # M: Mamba2, *: Attention, E: Expert
  7419. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7420. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7421. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7422. def get_attn_layers(self):
  7423. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7424. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7425. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7426. def set_gguf_parameters(self):
  7427. super().set_gguf_parameters()
  7428. self.gguf_writer.add_key_length(self.head_dim)
  7429. self.gguf_writer.add_value_length(self.head_dim)
  7430. # Set feed_forward_length
  7431. # NOTE: This will trigger an override warning. This is preferrable to
  7432. # duplicating all the parent logic
  7433. if not self.is_moe:
  7434. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7435. self.gguf_writer.add_feed_forward_length([
  7436. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7437. ])
  7438. else:
  7439. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7440. self.gguf_writer.add_feed_forward_length([
  7441. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7442. ])
  7443. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7444. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7445. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7446. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7447. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7448. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7449. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7450. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7451. # number of experts used per token (top-k)
  7452. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7453. self.gguf_writer.add_expert_used_count(n_experts_used)
  7454. def set_vocab(self):
  7455. super().set_vocab()
  7456. # The tokenizer _does_ add a BOS token (via post_processor type
  7457. # TemplateProcessing) but does not set add_bos_token to true in the
  7458. # config, so we need to explicitly override it here.
  7459. if not self.is_moe:
  7460. self.gguf_writer.add_add_bos_token(True)
  7461. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7462. if self.is_moe and bid is not None:
  7463. if name.endswith("mixer.gate.e_score_correction_bias"):
  7464. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7465. mapped_name = self.map_tensor_name(new_name)
  7466. return [(mapped_name, data_torch)]
  7467. if name.endswith("mixer.dt_bias"):
  7468. new_name = name.replace("dt_bias", "dt.bias")
  7469. mapped_name = self.map_tensor_name(new_name)
  7470. return [(mapped_name, data_torch)]
  7471. if name.endswith("mixer.conv1d.weight"):
  7472. squeezed_data = data_torch.squeeze()
  7473. mapped_name = self.map_tensor_name(name)
  7474. return [(mapped_name, squeezed_data)]
  7475. if name.endswith("mixer.A_log"):
  7476. transformed_data = -torch.exp(data_torch)
  7477. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7478. mapped_name = self.map_tensor_name(name)
  7479. return [(mapped_name, reshaped_data)]
  7480. if name.endswith("mixer.D"):
  7481. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7482. mapped_name = self.map_tensor_name(name)
  7483. return [(mapped_name, reshaped_data)]
  7484. if name.endswith("mixer.norm.weight"):
  7485. reshaped_data = data_torch.reshape(8, 512)
  7486. mapped_name = self.map_tensor_name(name)
  7487. return [(mapped_name, reshaped_data)]
  7488. if name.find("mixer.experts") != -1:
  7489. n_experts = self.hparams["n_routed_experts"]
  7490. assert bid is not None
  7491. if self._experts is None:
  7492. self._experts = [{} for _ in range(self.block_count)]
  7493. self._experts[bid][name] = data_torch
  7494. if len(self._experts[bid]) >= n_experts * 2:
  7495. # merge the experts into a single tensor
  7496. tensors: list[tuple[str, Tensor]] = []
  7497. for w_name in ["down_proj", "up_proj"]:
  7498. datas: list[Tensor] = []
  7499. for xid in range(n_experts):
  7500. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7501. datas.append(self._experts[bid][ename])
  7502. del self._experts[bid][ename]
  7503. data_torch = torch.stack(datas, dim=0)
  7504. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7505. new_name = self.map_tensor_name(merged_name)
  7506. tensors.append((new_name, data_torch))
  7507. return tensors
  7508. else:
  7509. return []
  7510. return super().modify_tensors(data_torch, name, bid)
  7511. def prepare_tensors(self):
  7512. super().prepare_tensors()
  7513. if self._experts is not None:
  7514. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7515. experts = [k for d in self._experts for k in d.keys()]
  7516. if len(experts) > 0:
  7517. raise ValueError(f"Unprocessed experts: {experts}")
  7518. @ModelBase.register("LlamaBidirectionalModel")
  7519. class LlamaEmbedNemotronModel(LlamaModel):
  7520. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7521. @ModelBase.register("BailingMoeForCausalLM")
  7522. class BailingMoeModel(TextModel):
  7523. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7524. def set_vocab(self):
  7525. self._set_vocab_gpt2()
  7526. def set_gguf_parameters(self):
  7527. super().set_gguf_parameters()
  7528. hparams = self.hparams
  7529. if (rope_dim := hparams.get("head_dim")) is None:
  7530. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7531. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7532. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7533. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7534. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7535. self.gguf_writer.add_expert_weights_scale(1.0)
  7536. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7537. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7538. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7539. _experts: list[dict[str, Tensor]] | None = None
  7540. @staticmethod
  7541. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7542. if n_head_kv is not None and n_head != n_head_kv:
  7543. n_head = n_head_kv
  7544. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7545. .swapaxes(1, 2)
  7546. .reshape(weights.shape))
  7547. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7548. n_head = self.hparams["num_attention_heads"]
  7549. n_kv_head = self.hparams.get("num_key_value_heads")
  7550. n_embd = self.hparams["hidden_size"]
  7551. if (head_dim := self.hparams.get("head_dim")) is None:
  7552. head_dim = n_embd // n_head
  7553. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7554. if name.endswith("attention.dense.weight"):
  7555. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7556. elif name.endswith("query_key_value.weight"):
  7557. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7558. return [
  7559. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7560. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7561. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7562. ]
  7563. elif name.find("mlp.experts") != -1:
  7564. n_experts = self.hparams["num_experts"]
  7565. assert bid is not None
  7566. tensors: list[tuple[str, Tensor]] = []
  7567. if self._experts is None:
  7568. self._experts = [{} for _ in range(self.block_count)]
  7569. self._experts[bid][name] = data_torch
  7570. if len(self._experts[bid]) >= n_experts * 3:
  7571. # merge the experts into a single 3d tensor
  7572. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7573. datas: list[Tensor] = []
  7574. for xid in range(n_experts):
  7575. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7576. datas.append(self._experts[bid][ename])
  7577. del self._experts[bid][ename]
  7578. data_torch = torch.stack(datas, dim=0)
  7579. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7580. new_name = self.map_tensor_name(merged_name)
  7581. tensors.append((new_name, data_torch))
  7582. return tensors
  7583. new_name = self.map_tensor_name(name)
  7584. if new_name == output_name and self.hparams.get("norm_head"):
  7585. data_torch = data_torch.float()
  7586. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7587. return [(new_name, data_torch)]
  7588. def prepare_tensors(self):
  7589. super().prepare_tensors()
  7590. if self._experts is not None:
  7591. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7592. experts = [k for d in self._experts for k in d.keys()]
  7593. if len(experts) > 0:
  7594. raise ValueError(f"Unprocessed experts: {experts}")
  7595. @ModelBase.register("BailingMoeV2ForCausalLM")
  7596. class BailingMoeV2Model(TextModel):
  7597. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7598. def __init__(self, *args, **kwargs):
  7599. super().__init__(*args, **kwargs)
  7600. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7601. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7602. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7603. def set_vocab(self):
  7604. self._set_vocab_gpt2()
  7605. def set_gguf_parameters(self):
  7606. super().set_gguf_parameters()
  7607. hparams = self.hparams
  7608. if (rope_dim := hparams.get("head_dim")) is None:
  7609. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7610. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7611. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7612. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7613. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7614. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7615. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7616. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7617. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7618. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7619. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7620. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7621. _experts: list[dict[str, Tensor]] | None = None
  7622. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7623. if "mlp.experts" in name:
  7624. n_experts = self.hparams["num_experts"]
  7625. assert bid is not None
  7626. tensors: list[tuple[str, Tensor]] = []
  7627. if self._experts is None:
  7628. self._experts = [{} for _ in range(self.block_count)]
  7629. self._experts[bid][name] = data_torch
  7630. if len(self._experts[bid]) >= n_experts * 3:
  7631. # merge the experts into a single 3d tensor
  7632. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7633. datas: list[Tensor] = []
  7634. for xid in range(n_experts):
  7635. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7636. datas.append(self._experts[bid][ename])
  7637. del self._experts[bid][ename]
  7638. data_torch = torch.stack(datas, dim=0)
  7639. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7640. new_name = self.map_tensor_name(merged_name)
  7641. tensors.append((new_name, data_torch))
  7642. return tensors
  7643. if name.endswith(".expert_bias"):
  7644. name = name.replace(".expert_bias", ".expert_bias.bias")
  7645. return [(self.map_tensor_name(name), data_torch)]
  7646. def prepare_tensors(self):
  7647. super().prepare_tensors()
  7648. if self._experts is not None:
  7649. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7650. experts = [k for d in self._experts for k in d.keys()]
  7651. if len(experts) > 0:
  7652. raise ValueError(f"Unprocessed experts: {experts}")
  7653. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7654. class GroveMoeModel(TextModel):
  7655. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7656. def set_gguf_parameters(self):
  7657. super().set_gguf_parameters()
  7658. if (n_experts := self.hparams.get("num_experts")) is not None:
  7659. self.gguf_writer.add_expert_count(n_experts)
  7660. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7661. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7662. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7663. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7664. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7665. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7666. self.gguf_writer.add_experts_per_group(2)
  7667. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7668. self.gguf_writer.add_expert_group_scale(0.05)
  7669. _experts: list[dict[str, Tensor]] | None = None
  7670. _chunk_experts: list[dict[str, Tensor]] | None = None
  7671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7672. if name.endswith(".expert_bias"):
  7673. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7674. return []
  7675. # process the experts separately
  7676. if name.find("chunk_experts") != -1:
  7677. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7678. assert bid is not None
  7679. if self._chunk_experts is None:
  7680. self._chunk_experts = [{} for _ in range(self.block_count)]
  7681. self._chunk_experts[bid][name] = data_torch
  7682. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7683. tensors: list[tuple[str, Tensor]] = []
  7684. # merge the experts into a single 3d tensor
  7685. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7686. datas: list[Tensor] = []
  7687. for xid in range(n_experts):
  7688. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7689. datas.append(self._chunk_experts[bid][ename])
  7690. del self._chunk_experts[bid][ename]
  7691. data_torch = torch.stack(datas, dim=0)
  7692. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7693. new_name = self.map_tensor_name(merged_name)
  7694. tensors.append((new_name, data_torch))
  7695. return tensors
  7696. else:
  7697. return []
  7698. elif name.find("experts") != -1:
  7699. n_experts = self.hparams["num_experts"]
  7700. assert bid is not None
  7701. if self._experts is None:
  7702. self._experts = [{} for _ in range(self.block_count)]
  7703. self._experts[bid][name] = data_torch
  7704. if len(self._experts[bid]) >= n_experts * 3:
  7705. tensors: list[tuple[str, Tensor]] = []
  7706. # merge the experts into a single 3d tensor
  7707. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7708. datas: list[Tensor] = []
  7709. for xid in range(n_experts):
  7710. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7711. datas.append(self._experts[bid][ename])
  7712. del self._experts[bid][ename]
  7713. data_torch = torch.stack(datas, dim=0)
  7714. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7715. new_name = self.map_tensor_name(merged_name)
  7716. tensors.append((new_name, data_torch))
  7717. return tensors
  7718. else:
  7719. return []
  7720. return [(self.map_tensor_name(name), data_torch)]
  7721. def prepare_tensors(self):
  7722. super().prepare_tensors()
  7723. if self._chunk_experts is not None:
  7724. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7725. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7726. if len(chunk_experts) > 0:
  7727. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7728. if self._experts is not None:
  7729. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7730. experts = [k for d in self._experts for k in d.keys()]
  7731. if len(experts) > 0:
  7732. raise ValueError(f"Unprocessed experts: {experts}")
  7733. @ModelBase.register("ChameleonForConditionalGeneration")
  7734. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7735. class ChameleonModel(TextModel):
  7736. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7737. def set_gguf_parameters(self):
  7738. super().set_gguf_parameters()
  7739. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7740. def set_vocab(self):
  7741. self._set_vocab_gpt2()
  7742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7743. # ignore image tokenizer for now
  7744. # TODO: remove this once image support is implemented for Chameleon
  7745. if name.startswith("model.vqmodel"):
  7746. return []
  7747. n_head = self.hparams["num_attention_heads"]
  7748. n_kv_head = self.hparams.get("num_key_value_heads")
  7749. hidden_dim = self.hparams.get("hidden_size")
  7750. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7751. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7752. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7753. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7754. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7755. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7756. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7757. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7758. return [(self.map_tensor_name(name), data_torch)]
  7759. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7760. @staticmethod
  7761. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7762. head_dim = hidden_dim // n_heads
  7763. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7764. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7765. return data_torch
  7766. @ModelBase.register("UltravoxModel")
  7767. class UltravoxModel(TextModel):
  7768. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7769. def __init__(self, *args, **kwargs):
  7770. super().__init__(*args, **kwargs)
  7771. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7772. @ModelBase.register("GlmasrModel")
  7773. class GlmASRWhisperEncoderModel(MmprojModel):
  7774. has_vision_encoder = False
  7775. has_audio_encoder = True
  7776. def __init__(self, *args, **kwargs):
  7777. super().__init__(*args, **kwargs)
  7778. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7779. self.hparams["hidden_size"] = self.hparams["d_model"]
  7780. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7781. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7782. def set_gguf_parameters(self):
  7783. super().set_gguf_parameters()
  7784. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7785. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7786. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7787. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7788. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7789. if ".conv" in name and ".weight" in name:
  7790. return gguf.GGMLQuantizationType.F16
  7791. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7793. del bid # unused
  7794. if name.startswith("model.") or name.startswith("lm_head."):
  7795. # skip language model tensors
  7796. return []
  7797. if name.startswith("audio_encoder.whisper."):
  7798. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7799. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7800. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7801. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7802. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7803. if name.startswith("audio_encoder.adapting."):
  7804. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7805. if ".layer_norm." in name:
  7806. name = name.replace(".layer_norm.", ".ln_pre.")
  7807. if ".0." in name:
  7808. name = name.replace(".0.", ".linear_1.")
  7809. if ".2." in name:
  7810. name = name.replace(".2.", ".linear_2.")
  7811. if ".proj." in name:
  7812. return []
  7813. if "conv1.bias" in name or "conv2.bias" in name:
  7814. # transpose conv1 and conv2 bias
  7815. data_torch = data_torch.unsqueeze(-1)
  7816. return [(self.map_tensor_name(name), data_torch)]
  7817. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7818. class WhisperEncoderModel(MmprojModel):
  7819. has_vision_encoder = False # no vision encoder
  7820. has_audio_encoder = True
  7821. def __init__(self, *args, **kwargs):
  7822. super().__init__(*args, **kwargs)
  7823. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7824. self.hparams["hidden_size"] = self.hparams["d_model"]
  7825. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7826. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7827. def set_gguf_parameters(self):
  7828. super().set_gguf_parameters()
  7829. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7830. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7831. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7832. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7833. if ".conv" in name and ".weight" in name:
  7834. return gguf.GGMLQuantizationType.F16
  7835. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7837. del bid # unused
  7838. if name.startswith("language_model."):
  7839. # skip language model tensors
  7840. return []
  7841. # prevent clash naming with vision tensors
  7842. if name.startswith("multi_modal_projector"):
  7843. name = "audio." + name
  7844. if "conv1.bias" in name or "conv2.bias" in name:
  7845. # transpose conv1 and conv2 bias
  7846. data_torch = data_torch.unsqueeze(-1)
  7847. return [(self.map_tensor_name(name), data_torch)]
  7848. @ModelBase.register("UltravoxModel")
  7849. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7850. has_vision_encoder = False # no vision encoder
  7851. has_audio_encoder = True
  7852. def set_gguf_parameters(self):
  7853. super().set_gguf_parameters()
  7854. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7855. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7856. @ModelBase.register("VoxtralForConditionalGeneration")
  7857. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7858. has_vision_encoder = False # no vision encoder
  7859. has_audio_encoder = True
  7860. def set_gguf_parameters(self):
  7861. super().set_gguf_parameters()
  7862. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7863. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7864. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7865. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7866. def set_gguf_parameters(self):
  7867. super().set_gguf_parameters()
  7868. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7869. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7870. if ".conv" in name and ".weight" in name:
  7871. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7872. return gguf.GGMLQuantizationType.F32
  7873. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7874. @ModelBase.register("FalconH1ForCausalLM")
  7875. class FalconH1Model(Mamba2Model):
  7876. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7877. def __init__(self, *args, **kwargs):
  7878. # Set the hparam prefixes for Falcon Mamba2
  7879. self.hparam_prefixes = ["mamba"]
  7880. # Initialize the base Mamba2Model
  7881. super().__init__(*args, **kwargs)
  7882. # Use Llama conversion for attention
  7883. self._transformer_model_class = LlamaModel
  7884. # n_group and d_inner are used during reshape_tensors for mamba2
  7885. self.n_group = self.find_hparam(["n_groups"])
  7886. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7887. self.d_head = self.find_hparam(["d_head"])
  7888. # Initialize any Falcon Mamba2 specific attributes
  7889. self.has_attention = True # Falcon Mamba2 has attention components
  7890. # Load Falcon-H1 multipliers from hyperparameters
  7891. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7892. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7893. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7894. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7895. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7896. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7897. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7898. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7899. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7900. prefixed = []
  7901. for pfx in self.hparam_prefixes:
  7902. prefixed.extend(
  7903. "_".join([pfx, k])
  7904. for k in keys
  7905. )
  7906. keys = list(keys) + prefixed
  7907. return super().find_hparam(keys, *args, **kwargs)
  7908. def set_vocab(self):
  7909. self._set_vocab_gpt2()
  7910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7911. tensors = list(super().modify_tensors(data_torch, name, bid))
  7912. tensor = tensors[0][1]
  7913. if "down_proj" in name:
  7914. tensor = tensor * self.mlp_multipliers[1]
  7915. elif "gate_proj" in name:
  7916. tensor = tensor * self.mlp_multipliers[0]
  7917. elif "k_proj" in name:
  7918. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7919. elif "q_proj" in name:
  7920. tensor = tensor * self.attention_in_multiplier
  7921. elif "v_proj" in name:
  7922. tensor = tensor * self.attention_in_multiplier
  7923. elif "o_proj" in name:
  7924. tensor = tensor * self.attention_out_multiplier
  7925. elif "out_proj" in name:
  7926. tensor = tensor * self.ssm_out_multiplier
  7927. elif "in_proj" in name:
  7928. tensor = tensor * self.ssm_in_multiplier
  7929. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7930. intermediate_size = self.hparams["mamba_d_ssm"]
  7931. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7932. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7933. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7934. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7935. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7936. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7937. elif "lm_head" in name:
  7938. tensor = tensor * self.hparams["lm_head_multiplier"]
  7939. elif "embed_tokens" in name:
  7940. tensor = tensor * self.hparams["embedding_multiplier"]
  7941. elif "mamba.norm" in name:
  7942. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7943. tensors = [(tensors[0][0], tensor)]
  7944. return tensors
  7945. def set_gguf_parameters(self):
  7946. super().set_gguf_parameters()
  7947. ## General Params ##
  7948. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7949. # Override some Mamba2 defaults
  7950. self.gguf_writer.add_block_count(self.block_count)
  7951. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7952. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7953. ## Attention params ##
  7954. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7955. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7956. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7957. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7958. ## Validation ##
  7959. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7960. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7961. # Add any other Falcon Mamba2 specific configuration
  7962. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7963. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7964. class HunYuanMoEModel(TextModel):
  7965. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7966. def set_vocab(self):
  7967. from transformers import AutoTokenizer
  7968. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7969. # 1. Get the pre-tokenizer identifier hash
  7970. tokpre = self.get_vocab_base_pre(tokenizer)
  7971. # 2. Reverse-engineer the merges list from mergeable_ranks
  7972. merges = []
  7973. vocab = {}
  7974. mergeable_ranks = tokenizer.mergeable_ranks
  7975. for token, rank in mergeable_ranks.items():
  7976. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7977. if len(token) == 1:
  7978. continue
  7979. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7980. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7981. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7982. # 3. Generate the tokens and toktypes lists
  7983. vocab_size = self.hparams["vocab_size"]
  7984. assert tokenizer.vocab_size == vocab_size
  7985. special_tokens = tokenizer.special_tokens
  7986. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7987. tokens: list[str] = []
  7988. toktypes: list[int] = []
  7989. for i in range(vocab_size):
  7990. if i not in reverse_vocab:
  7991. tokens.append(f"[PAD{i}]")
  7992. toktypes.append(gguf.TokenType.UNUSED)
  7993. else:
  7994. token = reverse_vocab[i]
  7995. tokens.append(token)
  7996. if i in special_tokens.values():
  7997. toktypes.append(gguf.TokenType.CONTROL)
  7998. else:
  7999. toktypes.append(gguf.TokenType.NORMAL)
  8000. # 4. Write all vocab-related fields to the GGUF writer
  8001. self.gguf_writer.add_tokenizer_model("gpt2")
  8002. self.gguf_writer.add_tokenizer_pre(tokpre)
  8003. self.gguf_writer.add_token_list(tokens)
  8004. self.gguf_writer.add_token_types(toktypes)
  8005. self.gguf_writer.add_token_merges(merges)
  8006. # 5. Add special tokens and chat templates
  8007. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  8008. special_vocab.add_to_gguf(self.gguf_writer)
  8009. # FIX for BOS token: Overwrite incorrect id read from config.json
  8010. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  8011. def set_gguf_parameters(self):
  8012. super().set_gguf_parameters()
  8013. hparams = self.hparams
  8014. self.gguf_writer.add_expert_count(hparams["num_experts"])
  8015. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  8016. moe_intermediate_size = hparams["moe_intermediate_size"]
  8017. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  8018. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  8019. moe_topk = hparams["moe_topk"]
  8020. assert all(topk == moe_topk[0] for topk in moe_topk)
  8021. self.gguf_writer.add_expert_used_count(moe_topk[0])
  8022. moe_shared_expert = hparams["num_shared_expert"]
  8023. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  8024. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  8025. # Rope
  8026. if self.rope_parameters.get("rope_type") == "dynamic":
  8027. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  8028. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  8029. alpha = self.rope_parameters.get("alpha", 1000)
  8030. base = self.rope_parameters.get("rope_theta", 10000.0)
  8031. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  8032. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  8033. self.gguf_writer.add_rope_freq_base(scaled_base)
  8034. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8035. self.gguf_writer.add_rope_scaling_factor(1)
  8036. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  8037. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  8038. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  8039. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  8040. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  8041. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  8042. _experts: list[dict[str, Tensor]] | None = None
  8043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8044. if name == "lm_head.weight":
  8045. if self.hparams.get("tie_word_embeddings", False):
  8046. logger.info("Skipping tied output layer 'lm_head.weight'")
  8047. return []
  8048. if name.find("mlp.experts") != -1:
  8049. n_experts = self.hparams["num_experts"]
  8050. assert bid is not None
  8051. if self._experts is None:
  8052. self._experts = [{} for _ in range(self.block_count)]
  8053. self._experts[bid][name] = data_torch
  8054. if len(self._experts[bid]) >= n_experts * 3:
  8055. # merge the experts into a single 3d tensor
  8056. tensors: list[tuple[str, Tensor]] = []
  8057. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  8058. datas: list[Tensor] = []
  8059. for xid in range(n_experts):
  8060. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  8061. datas.append(self._experts[bid][ename])
  8062. del self._experts[bid][ename]
  8063. data_torch = torch.stack(datas, dim=0)
  8064. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8065. new_name = self.map_tensor_name(merged_name)
  8066. tensors.append((new_name, data_torch))
  8067. return tensors
  8068. else:
  8069. return []
  8070. return [(self.map_tensor_name(name), data_torch)]
  8071. def prepare_tensors(self):
  8072. super().prepare_tensors()
  8073. if self._experts is not None:
  8074. experts = [k for d in self._experts for k in d.keys()]
  8075. if len(experts) > 0:
  8076. raise ValueError(f"Unprocessed experts: {experts}")
  8077. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  8078. class LLaDAMoEModel(TextModel):
  8079. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  8080. def set_gguf_parameters(self):
  8081. super().set_gguf_parameters()
  8082. if (n_experts := self.hparams.get("num_experts")) is not None:
  8083. self.gguf_writer.add_expert_count(n_experts)
  8084. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  8085. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  8086. # number of experts used per token (top-k)
  8087. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  8088. self.gguf_writer.add_expert_used_count(n_experts_used)
  8089. self.gguf_writer.add_mask_token_id(156895)
  8090. self.gguf_writer.add_causal_attention(False)
  8091. self.gguf_writer.add_diffusion_shift_logits(False)
  8092. _experts: list[dict[str, Tensor]] | None = None
  8093. # Copied from: Qwen2MoeModel
  8094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8095. # process the experts separately
  8096. if name.find("experts") != -1:
  8097. n_experts = self.hparams["num_experts"]
  8098. assert bid is not None
  8099. if self._experts is None:
  8100. self._experts = [{} for _ in range(self.block_count)]
  8101. self._experts[bid][name] = data_torch
  8102. if len(self._experts[bid]) >= n_experts * 3:
  8103. tensors: list[tuple[str, Tensor]] = []
  8104. # merge the experts into a single 3d tensor
  8105. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  8106. datas: list[Tensor] = []
  8107. for xid in range(n_experts):
  8108. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  8109. datas.append(self._experts[bid][ename])
  8110. del self._experts[bid][ename]
  8111. data_torch = torch.stack(datas, dim=0)
  8112. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8113. new_name = self.map_tensor_name(merged_name)
  8114. tensors.append((new_name, data_torch))
  8115. return tensors
  8116. else:
  8117. return []
  8118. return [(self.map_tensor_name(name), data_torch)]
  8119. # Copied from: Qwen2MoeModel
  8120. def prepare_tensors(self):
  8121. super().prepare_tensors()
  8122. if self._experts is not None:
  8123. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8124. experts = [k for d in self._experts for k in d.keys()]
  8125. if len(experts) > 0:
  8126. raise ValueError(f"Unprocessed experts: {experts}")
  8127. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  8128. class HunYuanModel(TextModel):
  8129. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  8130. def set_vocab(self):
  8131. if (self.dir_model / "tokenizer.json").is_file():
  8132. self._set_vocab_gpt2()
  8133. else:
  8134. from transformers import AutoTokenizer
  8135. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  8136. # 1. Get the pre-tokenizer identifier hash
  8137. tokpre = self.get_vocab_base_pre(tokenizer)
  8138. # 2. Reverse-engineer the merges list from mergeable_ranks
  8139. merges = []
  8140. vocab = {}
  8141. mergeable_ranks = tokenizer.mergeable_ranks
  8142. for token, rank in mergeable_ranks.items():
  8143. vocab[QwenModel.token_bytes_to_string(token)] = rank
  8144. if len(token) == 1:
  8145. continue
  8146. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  8147. if len(merged) == 2:
  8148. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  8149. # 3. Generate the tokens and toktypes lists
  8150. vocab_size = self.hparams["vocab_size"]
  8151. assert tokenizer.vocab_size == vocab_size
  8152. special_tokens = tokenizer.special_tokens
  8153. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  8154. tokens: list[str] = []
  8155. toktypes: list[int] = []
  8156. for i in range(vocab_size):
  8157. if i not in reverse_vocab:
  8158. tokens.append(f"[PAD{i}]")
  8159. toktypes.append(gguf.TokenType.UNUSED)
  8160. else:
  8161. token = reverse_vocab[i]
  8162. tokens.append(token)
  8163. if i in special_tokens.values():
  8164. toktypes.append(gguf.TokenType.CONTROL)
  8165. else:
  8166. toktypes.append(gguf.TokenType.NORMAL)
  8167. # 4. Write all vocab-related fields to the GGUF writer
  8168. self.gguf_writer.add_tokenizer_model("gpt2")
  8169. self.gguf_writer.add_tokenizer_pre(tokpre)
  8170. self.gguf_writer.add_token_list(tokens)
  8171. self.gguf_writer.add_token_types(toktypes)
  8172. self.gguf_writer.add_token_merges(merges)
  8173. # 5. Add special tokens and chat templates
  8174. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  8175. special_vocab.add_to_gguf(self.gguf_writer)
  8176. # FIX for BOS token: Overwrite incorrect id read from config.json
  8177. if self.hparams['hidden_size'] == 4096:
  8178. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  8179. def set_gguf_parameters(self):
  8180. super().set_gguf_parameters()
  8181. hparams = self.hparams
  8182. # Rope
  8183. if self.rope_parameters.get("rope_type") == "dynamic":
  8184. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  8185. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  8186. alpha = self.rope_parameters.get("alpha", 50)
  8187. base = self.rope_parameters.get("rope_theta", 10000.0)
  8188. dim = hparams["head_dim"]
  8189. scaled_base = base * (alpha ** (dim / (dim - 2)))
  8190. self.gguf_writer.add_rope_freq_base(scaled_base)
  8191. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8192. self.gguf_writer.add_rope_scaling_factor(1)
  8193. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  8194. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  8195. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  8196. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  8197. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  8198. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  8199. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8200. if name == "lm_head.weight":
  8201. if self.hparams.get("tie_word_embeddings", False):
  8202. logger.info("Skipping tied output layer 'lm_head.weight'")
  8203. return []
  8204. return [(self.map_tensor_name(name), data_torch)]
  8205. @ModelBase.register("SmolLM3ForCausalLM")
  8206. class SmolLM3Model(LlamaModel):
  8207. model_arch = gguf.MODEL_ARCH.SMOLLM3
  8208. @ModelBase.register("GptOssForCausalLM")
  8209. class GptOssModel(TextModel):
  8210. model_arch = gguf.MODEL_ARCH.GPT_OSS
  8211. # TODO: remove once MXFP4 is supported more generally
  8212. def dequant_model(self):
  8213. quant_config = self.hparams.get("quantization_config")
  8214. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  8215. return
  8216. return super().dequant_model()
  8217. def transform_nibble_layout(self, tensor):
  8218. assert tensor.dtype == torch.uint8
  8219. assert tensor.shape[-1] == 16
  8220. # swap nibbles
  8221. t_lo = tensor & 0x0F
  8222. t_hi = tensor & 0xF0
  8223. t_swapped = (t_lo << 4) | (t_hi >> 4)
  8224. tensor = t_swapped
  8225. # transform aaaa...bbbb... to abababab...
  8226. blk_a, blk_b = tensor.chunk(2, dim=-1)
  8227. # get a_
  8228. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  8229. blk_a1 = (blk_a << 4).view(-1, 1)
  8230. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  8231. # get _b
  8232. blk_b0 = (blk_b >> 4).view(-1, 1)
  8233. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  8234. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  8235. # swap once more
  8236. out = blk_a | blk_b
  8237. out_h = out & 0xF0
  8238. out_l = out & 0x0F
  8239. out = (out_h >> 4) | (out_l << 4)
  8240. return out
  8241. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  8242. assert blocks.dtype == torch.uint8
  8243. assert scales.dtype == torch.uint8
  8244. scales = scales.unsqueeze(-1)
  8245. assert len(blocks.shape) == 4
  8246. assert len(scales.shape) == 4
  8247. blocks = self.transform_nibble_layout(blocks)
  8248. new_data = torch.concat((scales, blocks), dim=-1)
  8249. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  8250. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  8251. # flatten last dim
  8252. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  8253. new_data = new_data.numpy()
  8254. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  8255. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8256. blocks0: Tensor = torch.zeros(1)
  8257. blocks1: Tensor = torch.zeros(1)
  8258. # we assume that tensors are loaded in the correct order
  8259. for name, data_torch in self.get_tensors():
  8260. if "mlp.experts.down_proj_blocks" in name:
  8261. blocks0 = data_torch
  8262. elif "mlp.experts.down_proj_scales" in name:
  8263. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  8264. self.repack_mxfp4(new_name, blocks0, data_torch)
  8265. elif "mlp.experts.gate_up_proj_blocks" in name:
  8266. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  8267. elif "mlp.experts.gate_up_proj_scales" in name:
  8268. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8269. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  8270. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  8271. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  8272. self.repack_mxfp4(new_name_up, blocks1, scales1)
  8273. return []
  8274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8275. del bid # unused
  8276. if "sinks" in name:
  8277. name += ".weight"
  8278. # correct naming for down_proj
  8279. if "down_proj" in name:
  8280. if name.endswith("_bias"):
  8281. name = name.replace("down_proj_bias", "down_proj.bias")
  8282. elif "_blocks" not in name and "_scales" not in name:
  8283. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8284. name = name.replace("down_proj", "down_proj.weight")
  8285. data_torch = data_torch.transpose(-1, -2)
  8286. else:
  8287. # otherwise, it should already be repacked to ggml MXFP4 format
  8288. return []
  8289. # split the gate_up into gate and up
  8290. if "gate_up_proj" in name:
  8291. if name.endswith("_bias"):
  8292. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  8293. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  8294. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  8295. return [
  8296. (self.map_tensor_name(name_gate), gate_proj_bias),
  8297. (self.map_tensor_name(name_up), up_proj_bias)
  8298. ]
  8299. elif "_blocks" not in name and "_scales" not in name:
  8300. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8301. name_up = name.replace("gate_up_proj", "up_proj.weight")
  8302. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  8303. data_torch = data_torch.transpose(-1, -2)
  8304. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8305. return [
  8306. (self.map_tensor_name(name_gate), gate_proj_weight),
  8307. (self.map_tensor_name(name_up), up_proj_weight)
  8308. ]
  8309. else:
  8310. # otherwise, it should already be repacked to ggml MXFP4 format
  8311. return []
  8312. return [(self.map_tensor_name(name), data_torch)]
  8313. def set_vocab(self):
  8314. self._set_vocab_gpt2()
  8315. def set_gguf_parameters(self):
  8316. super().set_gguf_parameters()
  8317. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  8318. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  8319. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  8320. class LFM2Model(TextModel):
  8321. model_arch = gguf.MODEL_ARCH.LFM2
  8322. def _add_feed_forward_length(self):
  8323. ff_dim = self.hparams["block_ff_dim"]
  8324. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  8325. ff_dim = self.hparams["block_ff_dim"]
  8326. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8327. multiple_of = self.hparams["block_multiple_of"]
  8328. if auto_adjust_ff_dim:
  8329. ff_dim = int(2 * ff_dim / 3)
  8330. # custom dim factor multiplier
  8331. if ffn_dim_multiplier is not None:
  8332. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8333. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8334. self.gguf_writer.add_feed_forward_length(ff_dim)
  8335. def set_gguf_parameters(self):
  8336. # set num_key_value_heads only for attention layers
  8337. self.hparams["num_key_value_heads"] = [
  8338. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8339. for layer_type in self.hparams["layer_types"]
  8340. ]
  8341. super().set_gguf_parameters()
  8342. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8343. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8344. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8345. self._add_feed_forward_length()
  8346. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8347. if self._is_vision_tensor(name) or ConformerAudioModel.is_audio_tensor(name):
  8348. # skip multimodal tensors
  8349. return []
  8350. name = name.replace("language_model.", "") # vision
  8351. name = name.replace("lfm.", "model.") # audio
  8352. # conv op requires 2d tensor
  8353. if 'conv.conv' in name:
  8354. data_torch = data_torch.squeeze(1)
  8355. return [(self.map_tensor_name(name), data_torch)]
  8356. def _is_vision_tensor(self, name: str) -> bool:
  8357. return "vision_tower" in name or "multi_modal_projector" in name
  8358. @ModelBase.register("Lfm2Model")
  8359. class LFM2ColBertModel(LFM2Model):
  8360. model_arch = gguf.MODEL_ARCH.LFM2
  8361. dense_tensor_name = "dense_2"
  8362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8363. if not name.startswith(self.dense_tensor_name):
  8364. name = "model." + name
  8365. return super().modify_tensors(data_torch, name, bid)
  8366. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8367. # dense tensor is stored in a separate safetensors file
  8368. from safetensors.torch import load_file
  8369. tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
  8370. assert tensors_file.is_file()
  8371. tensor = load_file(tensors_file)["linear.weight"]
  8372. self.gguf_writer.add_embedding_length_out(tensor.shape[0])
  8373. yield f"{self.dense_tensor_name}.weight", tensor.clone()
  8374. @ModelBase.register("Lfm2MoeForCausalLM")
  8375. class LFM2MoeModel(TextModel):
  8376. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8377. def set_gguf_parameters(self):
  8378. # set num_key_value_heads only for attention layers
  8379. self.hparams["num_key_value_heads"] = [
  8380. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8381. for layer_type in self.hparams["layer_types"]
  8382. ]
  8383. super().set_gguf_parameters()
  8384. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8385. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8386. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8387. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8388. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8389. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8390. # cache for experts weights for merging
  8391. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8393. # conv op requires 2d tensor
  8394. if 'conv.conv' in name:
  8395. data_torch = data_torch.squeeze(1)
  8396. if name.endswith(".expert_bias"):
  8397. name = name.replace(".expert_bias", ".expert_bias.bias")
  8398. # merge expert weights
  8399. if 'experts' in name:
  8400. n_experts = self.hparams["num_experts"]
  8401. assert bid is not None
  8402. expert_cache = self._experts_cache.setdefault(bid, {})
  8403. expert_cache[name] = data_torch
  8404. expert_weights = ["w1", "w2", "w3"]
  8405. # not enough expert weights to merge
  8406. if len(expert_cache) < n_experts * len(expert_weights):
  8407. return []
  8408. tensors: list[tuple[str, Tensor]] = []
  8409. for w_name in expert_weights:
  8410. datas: list[Tensor] = []
  8411. for xid in range(n_experts):
  8412. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8413. datas.append(expert_cache[ename])
  8414. del expert_cache[ename]
  8415. data_torch = torch.stack(datas, dim=0)
  8416. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8417. new_name = self.map_tensor_name(merged_name)
  8418. tensors.append((new_name, data_torch))
  8419. del self._experts_cache[bid]
  8420. return tensors
  8421. return [(self.map_tensor_name(name), data_torch)]
  8422. def prepare_tensors(self):
  8423. super().prepare_tensors()
  8424. assert not self._experts_cache
  8425. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8426. class LFM2VLModel(MmprojModel):
  8427. def __init__(self, *args, **kwargs):
  8428. super().__init__(*args, **kwargs)
  8429. assert self.hparams_vision is not None
  8430. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8431. self.hparams_vision["image_size"] = 256
  8432. def set_gguf_parameters(self):
  8433. super().set_gguf_parameters()
  8434. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8435. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8436. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8437. self.gguf_writer.add_vision_use_gelu(True)
  8438. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8439. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8440. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8442. del bid # unused
  8443. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8444. if is_vision_tensor:
  8445. # remove "model." prefix
  8446. name = name.replace("model.vision_tower.", "vision_tower.")
  8447. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8448. if "patch_embedding.weight" in name:
  8449. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8450. return [(self.map_tensor_name(name), data_torch)]
  8451. return [] # skip other tensors
  8452. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8453. class LFM2AudioModel(ConformerAudioModel):
  8454. has_vision_encoder = False
  8455. has_audio_encoder = True
  8456. model_name = "Lfm2AudioEncoder"
  8457. def get_audio_config(self) -> dict[str, Any] | None:
  8458. return self.global_config.get("encoder")
  8459. def set_gguf_parameters(self):
  8460. assert self.hparams_audio is not None
  8461. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8462. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8463. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8464. super().set_gguf_parameters()
  8465. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8466. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8467. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8468. def modify_tensors(self, data_torch, name, bid):
  8469. # skip language model tensors
  8470. if name.startswith("lfm."):
  8471. return []
  8472. # for training only
  8473. if any(p in name for p in ["audio_loss_weight"]):
  8474. return []
  8475. # for audio output
  8476. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8477. return []
  8478. return super().modify_tensors(data_torch, name, bid)
  8479. @ModelBase.register("SmallThinkerForCausalLM")
  8480. class SmallThinkerModel(TextModel):
  8481. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8482. def set_gguf_parameters(self):
  8483. super().set_gguf_parameters()
  8484. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8485. self.gguf_writer.add_expert_count(n_experts)
  8486. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8487. self.gguf_writer.add_expert_used_count(n_experts_used)
  8488. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8489. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8490. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8491. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8492. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8493. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8494. else:
  8495. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8496. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8497. if sliding_window_layout:
  8498. for i in sliding_window_layout:
  8499. if i != 0:
  8500. sliding_window = self.hparams.get("sliding_window_size")
  8501. if sliding_window:
  8502. self.gguf_writer.add_sliding_window(sliding_window)
  8503. break
  8504. _experts: list[dict[str, Tensor]] | None = None
  8505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8506. # process the experts separately
  8507. if name.find("experts") != -1:
  8508. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8509. assert bid is not None
  8510. if self._experts is None:
  8511. self._experts = [{} for _ in range(self.block_count)]
  8512. self._experts[bid][name] = data_torch
  8513. if len(self._experts[bid]) >= n_experts * 3:
  8514. tensors: list[tuple[str, Tensor]] = []
  8515. # merge the experts into a single 3d tensor
  8516. for w_name in ["down", "gate", "up"]:
  8517. datas: list[Tensor] = []
  8518. for xid in range(n_experts):
  8519. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8520. datas.append(self._experts[bid][ename])
  8521. del self._experts[bid][ename]
  8522. data_torch = torch.stack(datas, dim=0)
  8523. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8524. new_name = self.map_tensor_name(merged_name)
  8525. tensors.append((new_name, data_torch))
  8526. return tensors
  8527. else:
  8528. return []
  8529. return [(self.map_tensor_name(name), data_torch)]
  8530. def prepare_tensors(self):
  8531. super().prepare_tensors()
  8532. if self._experts is not None:
  8533. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8534. experts = [k for d in self._experts for k in d.keys()]
  8535. if len(experts) > 0:
  8536. raise ValueError(f"Unprocessed experts: {experts}")
  8537. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8538. class ModernBertModel(BertModel):
  8539. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8540. def set_vocab(self):
  8541. self.gguf_writer.add_add_bos_token(True)
  8542. self.gguf_writer.add_add_eos_token(True)
  8543. self.gguf_writer.add_add_sep_token(True)
  8544. self._set_vocab_gpt2()
  8545. def set_gguf_parameters(self):
  8546. super().set_gguf_parameters()
  8547. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8548. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8549. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8550. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8551. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8552. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8553. # these layers act as MLM head, so we don't need them
  8554. if name.startswith("decoder."):
  8555. return []
  8556. if name.startswith("model."):
  8557. name = name[6:]
  8558. return super().modify_tensors(data_torch, name, bid)
  8559. @ModelBase.register("ApertusForCausalLM")
  8560. class ApertusModel(LlamaModel):
  8561. model_arch = gguf.MODEL_ARCH.APERTUS
  8562. undo_permute = False
  8563. _alpha_n = {}
  8564. _alpha_p = {}
  8565. _beta = {}
  8566. _eps = {}
  8567. def modify_tensors(self, data_torch, name, bid):
  8568. # Handle xIELU activation parameters
  8569. n_layers = self.hparams["num_hidden_layers"]
  8570. if name.endswith(".act_fn.alpha_n"):
  8571. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8572. if (len(self._alpha_n) == n_layers):
  8573. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8574. return []
  8575. if name.endswith(".act_fn.alpha_p"):
  8576. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8577. if (len(self._alpha_p) == n_layers):
  8578. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8579. return []
  8580. if name.endswith(".act_fn.beta"):
  8581. self._beta[bid] = data_torch.to("cpu").float().item()
  8582. if (len(self._beta) == n_layers):
  8583. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8584. return []
  8585. if name.endswith(".act_fn.eps"):
  8586. self._eps[bid] = data_torch.to("cpu").float().item()
  8587. if (len(self._eps) == n_layers):
  8588. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8589. return []
  8590. return super().modify_tensors(data_torch, name, bid)
  8591. class MistralModel(LlamaModel):
  8592. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8593. model_name = "Mistral"
  8594. hf_arch = ""
  8595. is_mistral_format = True
  8596. undo_permute = False
  8597. def __init__(self, *args, **kwargs):
  8598. super().__init__(*args, **kwargs)
  8599. # for compatibility, we use LLAMA arch for older models
  8600. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8601. if "llama_4_scaling" not in self.hparams:
  8602. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8603. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8604. self.gguf_writer.add_architecture()
  8605. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8606. def dequant_model(self):
  8607. # transform quantization config into HF format
  8608. quant_config = self.hparams.get("quantization")
  8609. if quant_config is not None:
  8610. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8611. self.hparams["quantization_config"] = {
  8612. "activation_scheme": "static",
  8613. "quant_method": "fp8",
  8614. "weight_block_size": None,
  8615. }
  8616. return super().dequant_model()
  8617. @staticmethod
  8618. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8619. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8620. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8621. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8622. )
  8623. if vocab.tokenizer.version == TokenizerVersion.v1:
  8624. return "mistral-v1"
  8625. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8626. return "mistral-v3"
  8627. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8628. return "mistral-v3-tekken"
  8629. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8630. return "mistral-v7"
  8631. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8632. return "mistral-v7-tekken"
  8633. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8634. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8635. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8636. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8637. else:
  8638. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8639. if is_mistral_format:
  8640. err_message += (
  8641. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8642. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8643. )
  8644. raise ValueError(err_message)
  8645. template_path = templates_dir / template_file
  8646. if not template_path.exists():
  8647. raise FileNotFoundError(f"Template file not found: {template_path}")
  8648. with open(template_path, "r", encoding="utf-8") as f:
  8649. template = f.read()
  8650. return template
  8651. def set_gguf_parameters(self):
  8652. super().set_gguf_parameters()
  8653. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8654. @staticmethod
  8655. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8656. if "yarn" in hparams:
  8657. yarn_params = hparams["yarn"]
  8658. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8659. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8660. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8661. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8662. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8663. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8664. if "llama_4_scaling" in hparams:
  8665. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8666. class MistralMoeModel(DeepseekV2Model):
  8667. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8668. model_name = "Mistral"
  8669. hf_arch = ""
  8670. is_mistral_format = True
  8671. def __init__(self, *args, **kwargs):
  8672. super().__init__(*args, **kwargs)
  8673. logger.info("Using MistralMoeModel")
  8674. # remap hparams from Mistral MoE format to DeepseekV2 format
  8675. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8676. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8677. config = self.hparams
  8678. # Mistral key -> HF key
  8679. config_mapping = {
  8680. "dim": "hidden_size",
  8681. "norm_eps": "rms_norm_eps",
  8682. "n_kv_heads": "num_key_value_heads",
  8683. "n_layers": "num_hidden_layers",
  8684. "n_heads": "num_attention_heads",
  8685. "hidden_dim": "intermediate_size",
  8686. }
  8687. # HF key -> (Mistral key, default value)
  8688. top_level_mapping_with_default = {
  8689. "model_type": ("model_type", "transformer"),
  8690. "hidden_act": ("activation", "silu"),
  8691. "tie_word_embeddings": ("tied_embeddings", False),
  8692. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8693. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8694. }
  8695. # mapping top-level keys
  8696. for key, new_key in config_mapping.items():
  8697. if key in config:
  8698. config[new_key] = config[key]
  8699. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8700. config[new_key] = config.get(key, default_value)
  8701. # mapping MoE-specific keys
  8702. moe_config_map = {
  8703. "route_every_n": "moe_layer_freq",
  8704. "first_k_dense_replace": "first_k_dense_replace",
  8705. "num_experts_per_tok": "num_experts_per_tok",
  8706. "num_experts": "n_routed_experts",
  8707. "expert_hidden_dim": "moe_intermediate_size",
  8708. "routed_scale": "routed_scaling_factor",
  8709. "num_shared_experts": "n_shared_experts",
  8710. "num_expert_groups": "n_group",
  8711. "num_expert_groups_per_tok": "topk_group",
  8712. }
  8713. moe = config["moe"]
  8714. for key, new_key in moe_config_map.items():
  8715. if key in moe:
  8716. config[new_key] = moe[key]
  8717. # provide missing values
  8718. config["topk_method"] = None
  8719. config["norm_topk_prob"] = True
  8720. config["scoring_func"] = "softmax"
  8721. def set_vocab(self):
  8722. self._set_vocab_mistral()
  8723. def set_gguf_parameters(self):
  8724. super().set_gguf_parameters()
  8725. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8726. yarn_params = self.hparams["yarn"]
  8727. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8728. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8729. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8730. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8731. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8732. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8733. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8734. return []
  8735. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8736. if name.endswith(".qscale_act"):
  8737. name = name.replace(".qscale_act", ".input_scale")
  8738. if name.endswith(".qscale_weight"):
  8739. name = name.replace(".qscale_weight", ".weight_scale")
  8740. if ".wkv_b." in name:
  8741. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8742. if ".experts." in name:
  8743. name = name.replace(".experts.", ".mlp.experts.")
  8744. name = name.replace(".w1.", ".gate_proj.")
  8745. name = name.replace(".w2.", ".down_proj.")
  8746. name = name.replace(".w3.", ".up_proj.")
  8747. name = "model." + name
  8748. return super().modify_tensors(data_torch, name, bid)
  8749. class PixtralModel(LlavaVisionModel):
  8750. model_name = "Pixtral"
  8751. hf_arch = ""
  8752. is_mistral_format = True
  8753. def set_gguf_parameters(self):
  8754. super().set_gguf_parameters()
  8755. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8756. self.gguf_writer.add_vision_attention_layernorm_eps(
  8757. self.find_hparam(["norm_eps"])
  8758. )
  8759. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8760. self.gguf_writer.add_vision_use_silu(True)
  8761. # spatial_merge_size
  8762. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8763. self.gguf_writer.add_vision_spatial_merge_size(
  8764. self.find_vparam(["spatial_merge_size"])
  8765. )
  8766. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8767. if name == "vision_language_adapter.w_in.weight":
  8768. return "mm.1.weight"
  8769. elif name == "vision_language_adapter.w_out.weight":
  8770. return "mm.2.weight"
  8771. return super().map_tensor_name(name, try_suffixes)
  8772. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8773. class LightOnOCRVisionModel(LlavaVisionModel):
  8774. is_mistral_format = False
  8775. use_break_tok = False
  8776. def set_gguf_parameters(self):
  8777. super().set_gguf_parameters()
  8778. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8780. name = name.replace("model.vision_encoder.", "vision_tower.")
  8781. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8782. return super().modify_tensors(data_torch, name, bid)
  8783. @ModelBase.register("KimiVLForConditionalGeneration")
  8784. class KimiVLModel(MmprojModel):
  8785. def __init__(self, *args, **kwargs):
  8786. super().__init__(*args, **kwargs)
  8787. assert self.hparams_vision is not None
  8788. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8789. def set_gguf_parameters(self):
  8790. super().set_gguf_parameters()
  8791. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8792. self.gguf_writer.add_vision_use_gelu(True)
  8793. self.gguf_writer.add_vision_projector_scale_factor(2)
  8794. # eps is the same as pytorch's default value
  8795. assert self.hparams_vision is not None
  8796. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8797. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8798. del bid # unused
  8799. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8800. if is_vision_tensor:
  8801. if "pos_emb.weight" in name:
  8802. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8803. elif "wqkv" in name:
  8804. split_dim = 0 if "weight" in name else -1
  8805. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8806. return [
  8807. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8808. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8809. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8810. ]
  8811. return [(self.map_tensor_name(name), data_torch)]
  8812. return [] # skip other tensors
  8813. @ModelBase.register("CogVLMForCausalLM")
  8814. class CogVLMVisionModel(MmprojModel):
  8815. def set_gguf_parameters(self):
  8816. super().set_gguf_parameters()
  8817. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8818. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8820. del bid # unused
  8821. if not name.startswith("model.vision."):
  8822. return []
  8823. return [(self.map_tensor_name(name), data_torch)]
  8824. @ModelBase.register("CogVLMForCausalLM")
  8825. class CogVLMModel(LlamaModel):
  8826. model_arch = gguf.MODEL_ARCH.COGVLM
  8827. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8828. del bid # unused
  8829. # block vision tensors
  8830. if name.startswith("model.vision."):
  8831. return []
  8832. return [(self.map_tensor_name(name), data_torch)]
  8833. @ModelBase.register("JanusForConditionalGeneration")
  8834. class JanusProModel(LlamaModel):
  8835. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8837. # Skip vision, aligner, and generation tensors
  8838. skip_prefixes = (
  8839. 'model.vision_model.',
  8840. 'model.aligner.',
  8841. 'model.vqmodel.',
  8842. 'model.generation_embeddings.',
  8843. 'model.generation_aligner.',
  8844. 'model.generation_head.',
  8845. )
  8846. if name.startswith(skip_prefixes):
  8847. return []
  8848. if name.startswith('model.language_model.'):
  8849. name = name.replace('model.language_model.', 'model.')
  8850. elif name.startswith('language_model.'):
  8851. name = name.replace('language_model.', '')
  8852. return super().modify_tensors(data_torch, name, bid)
  8853. @ModelBase.register("JanusForConditionalGeneration")
  8854. class JanusProVisionModel(MmprojModel):
  8855. def __init__(self, *args, **kwargs):
  8856. super().__init__(*args, **kwargs)
  8857. assert self.hparams_vision is not None
  8858. if "intermediate_size" not in self.hparams_vision:
  8859. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8860. hidden_size = self.hparams_vision.get("hidden_size")
  8861. if mlp_ratio is not None and hidden_size is not None:
  8862. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8863. def set_gguf_parameters(self):
  8864. super().set_gguf_parameters()
  8865. assert self.hparams_vision is not None
  8866. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8867. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8868. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8869. if hidden_act == "gelu":
  8870. self.gguf_writer.add_vision_use_gelu(True)
  8871. elif hidden_act == "silu":
  8872. self.gguf_writer.add_vision_use_silu(True)
  8873. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8874. """Map aligner tensors to projector format"""
  8875. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8876. if name.startswith("model.aligner."):
  8877. local_name = name[len("model.aligner."):]
  8878. elif name.startswith("aligner."):
  8879. local_name = name[len("aligner."):]
  8880. else:
  8881. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8882. if local_name.startswith("fc1."):
  8883. mm_index = 0
  8884. elif local_name.startswith("hidden_layers."):
  8885. parts = local_name.split(".", 2)
  8886. if len(parts) < 3:
  8887. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8888. mm_index = int(parts[1]) + 1
  8889. else:
  8890. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8891. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8892. return [(tensor_name, data_torch)]
  8893. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8894. del bid # unused
  8895. # Skip language model tensors as they will be handled by `JanusProModel`
  8896. if name.startswith(('model.language_model.', 'language_model.')):
  8897. return []
  8898. # Skip generation-related components
  8899. skip_generation_prefixes = (
  8900. 'model.vqmodel.',
  8901. 'vqmodel.',
  8902. 'model.generation_embeddings.',
  8903. 'generation_embeddings.',
  8904. 'model.generation_aligner.',
  8905. 'generation_aligner.',
  8906. 'model.generation_head.',
  8907. 'generation_head.',
  8908. )
  8909. if name.startswith(skip_generation_prefixes):
  8910. return []
  8911. # Handle aligner tensors
  8912. if name.startswith(('model.aligner.', 'aligner.')):
  8913. return list(self._map_aligner_tensor(data_torch, name))
  8914. # Handle vision tensors
  8915. if name.startswith(('model.vision_model.', 'vision_model.')):
  8916. return [(self.map_tensor_name(name), data_torch)]
  8917. return []
  8918. @ModelBase.register("YoutuVLForConditionalGeneration")
  8919. class YoutuVLVisionModel(MmprojModel):
  8920. def __init__(self, *args, **kwargs):
  8921. super().__init__(*args, **kwargs)
  8922. assert self.hparams_vision is not None
  8923. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  8924. def set_gguf_parameters(self):
  8925. super().set_gguf_parameters()
  8926. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
  8927. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8928. # Handle activation function
  8929. hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
  8930. if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
  8931. self.gguf_writer.add_vision_use_gelu(True)
  8932. elif hidden_act == "silu":
  8933. self.gguf_writer.add_vision_use_silu(True)
  8934. else:
  8935. raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
  8936. self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
  8937. window_size = self.hparams.get("window_size")
  8938. if window_size is not None:
  8939. self.gguf_writer.add_vision_window_size(window_size)
  8940. # fullatt_block_indexes contains explicit layer indices that use full attention
  8941. # e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
  8942. # All other layers use window attention
  8943. fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
  8944. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
  8945. # Store the explicit layer indices for YoutuVL (irregular pattern approach)
  8946. self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
  8947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8948. del bid # unused
  8949. # Skip language model tensors
  8950. skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
  8951. if name.startswith(skip_prefixes):
  8952. return []
  8953. # Try to map the tensor using TensorNameMap (handles vision encoder and projector)
  8954. try:
  8955. new_name = self.map_tensor_name(name)
  8956. return [(new_name, data_torch)]
  8957. except ValueError:
  8958. # If mapping fails, log warning and skip
  8959. logger.warning(f"Cannot map tensor: {name}")
  8960. return []
  8961. @ModelBase.register("SolarOpenForCausalLM")
  8962. class SolarOpenModel(Glm4MoeModel):
  8963. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8964. def set_vocab(self):
  8965. from transformers import AutoTokenizer
  8966. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8967. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8968. tokens, toktypes, tokpre = self.get_vocab_base()
  8969. self.gguf_writer.add_tokenizer_model("gpt2")
  8970. self.gguf_writer.add_tokenizer_pre(tokpre)
  8971. self.gguf_writer.add_token_list(tokens)
  8972. self.gguf_writer.add_token_types(toktypes)
  8973. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8974. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8975. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8976. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8977. special_vocab.add_to_gguf(self.gguf_writer)
  8978. ###### CONVERSION LOGIC ######
  8979. # tree of lazy tensors
  8980. class LazyTorchTensor(gguf.LazyBase):
  8981. _tensor_type = torch.Tensor
  8982. # to keep the type-checker happy
  8983. dtype: torch.dtype
  8984. shape: torch.Size
  8985. # only used when converting a torch.Tensor to a np.ndarray
  8986. _dtype_map: dict[torch.dtype, type] = {
  8987. torch.float16: np.float16,
  8988. torch.float32: np.float32,
  8989. torch.uint8: np.uint8,
  8990. }
  8991. # only used when byteswapping data. Only correct size is needed
  8992. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8993. torch.float64: np.float64,
  8994. torch.float32: np.float32,
  8995. torch.bfloat16: np.float16,
  8996. torch.float16: np.float16,
  8997. torch.int64: np.int64,
  8998. torch.uint64: np.uint64,
  8999. torch.int32: np.int32,
  9000. torch.uint32: np.uint32,
  9001. torch.int16: np.int16,
  9002. torch.uint16: np.uint16,
  9003. torch.int8: np.int8,
  9004. torch.uint8: np.uint8,
  9005. torch.bool: np.uint8,
  9006. torch.float8_e4m3fn: np.uint8,
  9007. torch.float8_e5m2: np.uint8,
  9008. }
  9009. # used for safetensors slices
  9010. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  9011. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  9012. _dtype_str_map: dict[str, torch.dtype] = {
  9013. "F64": torch.float64,
  9014. "F32": torch.float32,
  9015. "BF16": torch.bfloat16,
  9016. "F16": torch.float16,
  9017. # "U64": torch.uint64,
  9018. "I64": torch.int64,
  9019. # "U32": torch.uint32,
  9020. "I32": torch.int32,
  9021. # "U16": torch.uint16,
  9022. "I16": torch.int16,
  9023. "U8": torch.uint8,
  9024. "I8": torch.int8,
  9025. "BOOL": torch.bool,
  9026. "F8_E4M3": torch.float8_e4m3fn,
  9027. "F8_E5M2": torch.float8_e5m2,
  9028. }
  9029. def numpy(self) -> gguf.LazyNumpyTensor:
  9030. dtype = self._dtype_map[self.dtype]
  9031. return gguf.LazyNumpyTensor(
  9032. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  9033. args=(self,),
  9034. func=(lambda s: s.numpy())
  9035. )
  9036. @classmethod
  9037. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  9038. return torch.empty(size=shape, dtype=dtype, device="meta")
  9039. @classmethod
  9040. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  9041. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  9042. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  9043. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  9044. return cast(torch.Tensor, lazy)
  9045. @classmethod
  9046. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  9047. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  9048. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  9049. if sys.byteorder == 'big':
  9050. # switch data back to big endian
  9051. tensor = tensor.view(dtype).byteswap(inplace=False)
  9052. return tensor
  9053. dtype = cls._dtype_str_map[tensor.dtype]
  9054. numpy_dtype = cls._dtype_byteswap_map[dtype]
  9055. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  9056. dtype = cls._dtype_str_map[t.dtype]
  9057. shape = t.shape
  9058. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  9059. return cast(torch.Tensor, lazy)
  9060. @classmethod
  9061. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  9062. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  9063. if sys.byteorder == 'big':
  9064. # switch data back to big endian
  9065. tensor = tensor.view(dtype).byteswap(inplace=False)
  9066. return tensor
  9067. dtype = cls._dtype_str_map[remote_tensor.dtype]
  9068. numpy_dtype = cls._dtype_byteswap_map[dtype]
  9069. shape = remote_tensor.shape
  9070. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  9071. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  9072. return cast(torch.Tensor, lazy)
  9073. @classmethod
  9074. def __torch_function__(cls, func, types, args=(), kwargs=None):
  9075. del types # unused
  9076. if kwargs is None:
  9077. kwargs = {}
  9078. if func is torch.Tensor.numpy:
  9079. return args[0].numpy()
  9080. return cls._wrap_fn(func)(*args, **kwargs)
  9081. def parse_args() -> argparse.Namespace:
  9082. parser = argparse.ArgumentParser(
  9083. description="Convert a huggingface model to a GGML compatible file")
  9084. parser.add_argument(
  9085. "--vocab-only", action="store_true",
  9086. help="extract only the vocab",
  9087. )
  9088. parser.add_argument(
  9089. "--outfile", type=Path,
  9090. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  9091. )
  9092. parser.add_argument(
  9093. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  9094. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  9095. )
  9096. parser.add_argument(
  9097. "--bigendian", action="store_true",
  9098. help="model is executed on big endian machine",
  9099. )
  9100. parser.add_argument(
  9101. "model", type=str,
  9102. help="directory containing model file or huggingface repository ID (if --remote)",
  9103. nargs="?",
  9104. )
  9105. parser.add_argument(
  9106. "--use-temp-file", action="store_true",
  9107. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  9108. )
  9109. parser.add_argument(
  9110. "--no-lazy", action="store_true",
  9111. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  9112. )
  9113. parser.add_argument(
  9114. "--model-name", type=str, default=None,
  9115. help="name of the model",
  9116. )
  9117. parser.add_argument(
  9118. "--verbose", action="store_true",
  9119. help="increase output verbosity",
  9120. )
  9121. parser.add_argument(
  9122. "--split-max-tensors", type=int, default=0,
  9123. help="max tensors in each split",
  9124. )
  9125. parser.add_argument(
  9126. "--split-max-size", type=str, default="0",
  9127. help="max size per split N(M|G)",
  9128. )
  9129. parser.add_argument(
  9130. "--dry-run", action="store_true",
  9131. help="only print out a split plan and exit, without writing any new files",
  9132. )
  9133. parser.add_argument(
  9134. "--no-tensor-first-split", action="store_true",
  9135. help="do not add tensors to the first split (disabled by default)"
  9136. )
  9137. parser.add_argument(
  9138. "--metadata", type=Path,
  9139. help="Specify the path for an authorship metadata override file"
  9140. )
  9141. parser.add_argument(
  9142. "--print-supported-models", action="store_true",
  9143. help="Print the supported models"
  9144. )
  9145. parser.add_argument(
  9146. "--remote", action="store_true",
  9147. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  9148. )
  9149. parser.add_argument(
  9150. "--mmproj", action="store_true",
  9151. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  9152. )
  9153. parser.add_argument(
  9154. "--mistral-format", action="store_true",
  9155. help="Whether the model is stored following the Mistral format.",
  9156. )
  9157. parser.add_argument(
  9158. "--disable-mistral-community-chat-template", action="store_true",
  9159. help=(
  9160. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  9161. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  9162. )
  9163. )
  9164. parser.add_argument(
  9165. "--sentence-transformers-dense-modules", action="store_true",
  9166. help=("Whether to include sentence-transformers dense modules. "
  9167. "It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
  9168. "Default these modules are not included.")
  9169. )
  9170. args = parser.parse_args()
  9171. if not args.print_supported_models and args.model is None:
  9172. parser.error("the following arguments are required: model")
  9173. return args
  9174. def split_str_to_n_bytes(split_str: str) -> int:
  9175. if split_str.endswith("K"):
  9176. n = int(split_str[:-1]) * 1000
  9177. elif split_str.endswith("M"):
  9178. n = int(split_str[:-1]) * 1000 * 1000
  9179. elif split_str.endswith("G"):
  9180. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  9181. elif split_str.isnumeric():
  9182. n = int(split_str)
  9183. else:
  9184. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  9185. if n < 0:
  9186. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  9187. return n
  9188. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  9189. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  9190. # maybe we should fallback to text model's arch in that case, since not many models have both
  9191. text_config = hparams.get("text_config", {})
  9192. vision_config = hparams.get("vision_config", {})
  9193. arch = None
  9194. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  9195. arch = arches[0]
  9196. elif "ssm_cfg" in hparams:
  9197. # For non-hf Mamba and Mamba2 models
  9198. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  9199. # if "architectures" is found in the sub-config, use that instead
  9200. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  9201. arch = text_config["architectures"][0]
  9202. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  9203. arch = vision_config["architectures"][0]
  9204. if arch is None:
  9205. raise ValueError("Failed to detect model architecture")
  9206. return arch
  9207. def main() -> None:
  9208. args = parse_args()
  9209. if args.print_supported_models:
  9210. logger.error("Supported models:")
  9211. ModelBase.print_registered_models()
  9212. sys.exit(0)
  9213. if args.verbose:
  9214. logging.basicConfig(level=logging.DEBUG)
  9215. else:
  9216. logging.basicConfig(level=logging.INFO)
  9217. if args.remote:
  9218. hf_repo_id = args.model
  9219. from huggingface_hub import snapshot_download
  9220. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  9221. if args.sentence_transformers_dense_modules:
  9222. # include sentence-transformers dense modules safetensors files
  9223. allowed_patterns.append("*.safetensors")
  9224. local_dir = snapshot_download(
  9225. repo_id=hf_repo_id,
  9226. allow_patterns=allowed_patterns)
  9227. dir_model = Path(local_dir)
  9228. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  9229. else:
  9230. hf_repo_id = None
  9231. dir_model = Path(args.model)
  9232. if not dir_model.is_dir():
  9233. logger.error(f'Error: {dir_model} is not a directory')
  9234. sys.exit(1)
  9235. ftype_map: dict[str, gguf.LlamaFileType] = {
  9236. "f32": gguf.LlamaFileType.ALL_F32,
  9237. "f16": gguf.LlamaFileType.MOSTLY_F16,
  9238. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  9239. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  9240. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  9241. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  9242. "auto": gguf.LlamaFileType.GUESSED,
  9243. }
  9244. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  9245. if args.use_temp_file and is_split:
  9246. logger.error("Error: Cannot use temp file when splitting")
  9247. sys.exit(1)
  9248. if args.outfile is not None:
  9249. fname_out = args.outfile
  9250. elif hf_repo_id:
  9251. # if remote, use the model ID as the output file name
  9252. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  9253. else:
  9254. fname_out = dir_model
  9255. logger.info(f"Loading model: {dir_model.name}")
  9256. is_mistral_format = args.mistral_format
  9257. if is_mistral_format and not _mistral_common_installed:
  9258. raise ImportError(_mistral_import_error_msg)
  9259. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  9260. with torch.inference_mode():
  9261. output_type = ftype_map[args.outtype]
  9262. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  9263. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  9264. if not is_mistral_format:
  9265. model_architecture = get_model_architecture(hparams, model_type)
  9266. logger.info(f"Model architecture: {model_architecture}")
  9267. try:
  9268. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  9269. except NotImplementedError:
  9270. logger.error(f"Model {model_architecture} is not supported")
  9271. sys.exit(1)
  9272. elif args.mmproj:
  9273. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  9274. model_class = PixtralModel
  9275. elif "moe" in hparams:
  9276. model_class = MistralMoeModel
  9277. else:
  9278. model_class = MistralModel
  9279. model_instance = model_class(dir_model, output_type, fname_out,
  9280. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  9281. eager=args.no_lazy,
  9282. metadata_override=args.metadata, model_name=args.model_name,
  9283. split_max_tensors=args.split_max_tensors,
  9284. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  9285. small_first_shard=args.no_tensor_first_split,
  9286. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  9287. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  9288. )
  9289. if args.vocab_only:
  9290. logger.info("Exporting model vocab...")
  9291. model_instance.write_vocab()
  9292. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  9293. else:
  9294. logger.info("Exporting model...")
  9295. model_instance.write()
  9296. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  9297. logger.info(f"Model successfully exported to {out_path}")
  9298. if __name__ == '__main__':
  9299. main()