test-backend-ops.cpp 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357
  1. #include <ggml.h>
  2. #include <ggml-alloc.h>
  3. #include <ggml-backend.h>
  4. #include <ggml-backend-impl.h>
  5. #include <algorithm>
  6. #include <array>
  7. #include <cfloat>
  8. #include <cstring>
  9. #include <functional>
  10. #include <memory>
  11. #include <random>
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string>
  15. #include <thread>
  16. #include <vector>
  17. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  18. size_t size = ggml_nelements(tensor);
  19. std::vector<float> data(size);
  20. std::random_device rd;
  21. #if 0
  22. std::default_random_engine generator(rd());
  23. std::uniform_real_distribution<float> distribution(min, max);
  24. for (size_t i = 0; i < size; i++) {
  25. data[i] = distribution(generator);
  26. }
  27. #endif
  28. auto init_thread = [&](size_t start, size_t end) {
  29. std::default_random_engine generator(rd());
  30. std::uniform_real_distribution<float> distribution(min, max);
  31. for (size_t i = start; i < end; i++) {
  32. data[i] = distribution(generator);
  33. }
  34. };
  35. size_t n_threads = std::thread::hardware_concurrency();
  36. std::vector<std::thread> threads;
  37. threads.reserve(n_threads);
  38. for (size_t i = 0; i < n_threads; i++) {
  39. size_t start = i*size/n_threads;
  40. size_t end = (i+1)*size/n_threads;
  41. threads.emplace_back(init_thread, start, end);
  42. }
  43. for (auto & t : threads) {
  44. t.join();
  45. }
  46. if (tensor->type == GGML_TYPE_F32) {
  47. ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
  48. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
  49. GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
  50. std::vector<uint8_t> dataq(ggml_type_size(tensor->type)*size/ggml_blck_size(tensor->type));
  51. int64_t hist[16];
  52. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
  53. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  54. } else {
  55. GGML_ASSERT(false);
  56. }
  57. }
  58. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  59. std::vector<float> tv;
  60. tv.reserve(ggml_nelements(t));
  61. std::vector<uint8_t> buf(ggml_nbytes(t));
  62. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  63. // access elements by index to avoid gaps in views
  64. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  65. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  66. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  67. for (int64_t i0 = 0; i0 < t->ne[0]; i0++) {
  68. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0];
  69. float v;
  70. if (t->type == GGML_TYPE_F16) {
  71. v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]);
  72. } else if (t->type == GGML_TYPE_F32) {
  73. v = *(float *) &buf[i];
  74. } else if (t->type == GGML_TYPE_I32) {
  75. v = *(int32_t *) &buf[i];
  76. } else {
  77. GGML_ASSERT(false);
  78. }
  79. tv.push_back(v);
  80. }
  81. }
  82. }
  83. }
  84. return tv;
  85. }
  86. /*
  87. static double cosine_similarity(const float * v1, const float * v2, size_t n) {
  88. double dot = 0.0;
  89. double mag1 = 0.0;
  90. double mag2 = 0.0;
  91. for (size_t i = 0; i < n; i++) {
  92. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  93. return -1.0f;
  94. }
  95. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  96. continue;
  97. }
  98. dot += v1[i]*v2[i];
  99. mag1 += v1[i]*v1[i];
  100. mag2 += v2[i]*v2[i];
  101. }
  102. return dot/sqrt(mag1*mag2);
  103. }
  104. static float distance(const float * v1, const float * v2, size_t n) {
  105. double d = 0.0;
  106. for (size_t i = 0; i < n; i++) {
  107. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  108. return INFINITY;
  109. }
  110. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  111. continue;
  112. }
  113. d += (v1[i] - v2[i])*(v1[i] - v2[i]);
  114. }
  115. return sqrt(d);
  116. }
  117. static float vec_len(const float * v, size_t n) {
  118. double d = 0.0;
  119. for (size_t i = 0; i < n; i++) {
  120. if (std::isnan(v[i])) {
  121. return INFINITY;
  122. }
  123. if (std::isinf(v[i])) {
  124. continue;
  125. }
  126. d += v[i]*v[i];
  127. }
  128. return sqrt(d);
  129. }
  130. */
  131. // normalized mean squared error = mse(a, b) / mse(a, 0)
  132. static double nmse(const float * a, const float * b, size_t n) {
  133. double mse_a_b = 0.0;
  134. double mse_a_0 = 0.0;
  135. for (size_t i = 0; i < n; i++) {
  136. float a_i = a[i];
  137. float b_i = b[i];
  138. mse_a_b += (a_i - b_i) * (a_i - b_i);
  139. mse_a_0 += a_i * a_i;
  140. }
  141. return mse_a_b / mse_a_0;
  142. }
  143. // utils for printing the variables of the test cases
  144. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  145. template<typename T>
  146. static std::string var_to_str(const T & x) {
  147. return std::to_string(x);
  148. }
  149. template<typename T, size_t N>
  150. static std::string var_to_str(const T (&x)[N]) {
  151. std::string s = "[";
  152. for (size_t i = 0; i < N; i++) {
  153. if (i > 0) {
  154. s += ",";
  155. }
  156. s += var_to_str(x[i]);
  157. }
  158. s += "]";
  159. return s;
  160. }
  161. template<typename T, size_t N>
  162. static std::string var_to_str(const std::array<T, N> & x) {
  163. std::string s = "[";
  164. for (size_t i = 0; i < N; i++) {
  165. if (i > 0) {
  166. s += ",";
  167. }
  168. s += var_to_str(x[i]);
  169. }
  170. s += "]";
  171. return s;
  172. }
  173. //static std::string var_to_str(ggml_unary_op unary_op) {
  174. // return ggml_unary_op_name(unary_op);
  175. //}
  176. static std::string var_to_str(ggml_type type) {
  177. return ggml_type_name(type);
  178. }
  179. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  180. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  181. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  182. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  183. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  184. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  185. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  186. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  187. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  188. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  189. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  190. // accept FLT_MAX as infinity
  191. static bool isinf_or_max(float f) {
  192. return std::isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  193. }
  194. static bool ggml_is_view_op(enum ggml_op op) {
  195. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  196. }
  197. struct test_case {
  198. virtual ~test_case() {}
  199. virtual std::string vars() {
  200. return "";
  201. }
  202. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  203. virtual double max_nmse_err() {
  204. return 1e-6;
  205. }
  206. virtual void initialize_tensors(ggml_context * ctx) {
  207. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  208. init_tensor_uniform(t);
  209. }
  210. }
  211. virtual size_t op_size(ggml_tensor * t) {
  212. size_t size = ggml_nbytes(t);
  213. // add source tensors
  214. for (int i = 0; i < GGML_MAX_SRC; i++) {
  215. if (t->src[i] != NULL) {
  216. size += ggml_nbytes(t->src[i]);
  217. }
  218. }
  219. return size;
  220. }
  221. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  222. ggml_init_params params = {
  223. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  224. /* .mem_base = */ NULL,
  225. /* .no_alloc = */ true,
  226. };
  227. ggml_context * ctx = ggml_init(params);
  228. ggml_tensor * out = build_graph(ctx);
  229. if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
  230. //printf(" %s: skipping\n", ggml_op_desc(out));
  231. ggml_free(ctx);
  232. return true;
  233. }
  234. printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
  235. fflush(stdout);
  236. // check if backends support op
  237. for (ggml_backend_t backend : {backend1, backend2}) {
  238. if (!ggml_backend_supports_op(backend, out)) {
  239. printf("not supported\n");
  240. ggml_free(ctx);
  241. return true;
  242. }
  243. }
  244. // allocate
  245. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  246. // build graph
  247. ggml_cgraph * gf = ggml_new_graph(ctx);
  248. ggml_build_forward_expand(gf, out);
  249. // randomize tensors
  250. initialize_tensors(ctx);
  251. // compare
  252. struct callback_userdata {
  253. bool ok;
  254. double max_err;
  255. };
  256. callback_userdata ud {
  257. true,
  258. max_nmse_err(),
  259. };
  260. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  261. std::vector<float> f1 = tensor_to_float(t1);
  262. std::vector<float> f2 = tensor_to_float(t2);
  263. callback_userdata * ud = (callback_userdata *) user_data;
  264. for (size_t i = 0; i < f1.size(); i++) {
  265. // check for nans
  266. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  267. printf("NaN at index %zu ", i);
  268. ud->ok = false;
  269. return true;
  270. }
  271. // check for infs: both must be inf of the same sign, or both must be finite
  272. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  273. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  274. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  275. printf("inf sign mismatch: %f %f ", f1[i], f2[i]);
  276. ud->ok = false;
  277. return true;
  278. }
  279. } else {
  280. printf("inf mismatch: %f %f ", f1[i], f2[i]);
  281. ud->ok = false;
  282. return true;
  283. }
  284. }
  285. }
  286. double err = nmse(f1.data(), f2.data(), f1.size());
  287. if (err > ud->max_err) {
  288. printf("NMSE = %f ", err);
  289. ud->ok = false;
  290. }
  291. return true;
  292. };
  293. ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  294. if (ud.ok) {
  295. printf("\033[1;32mOK\033[0m\n");
  296. } else {
  297. printf("\033[1;31mFAIL\033[0m\n");
  298. }
  299. ggml_backend_buffer_free(buf);
  300. ggml_free(ctx);
  301. return ud.ok;
  302. }
  303. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  304. static const size_t graph_nodes = 8192;
  305. ggml_init_params params = {
  306. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  307. /* .mem_base = */ NULL,
  308. /* .no_alloc = */ true,
  309. };
  310. ggml_context * ctx = ggml_init(params);
  311. ggml_tensor * out = build_graph(ctx);
  312. if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
  313. //printf(" %s: skipping\n", ggml_op_desc(out));
  314. ggml_free(ctx);
  315. return true;
  316. }
  317. int len = printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
  318. fflush(stdout);
  319. // check if backends support op
  320. if (!ggml_backend_supports_op(backend, out)) {
  321. printf("not supported\n");
  322. ggml_free(ctx);
  323. return true;
  324. }
  325. // align while also leaving some margin for variations in parameters
  326. int align = 20;
  327. int last = (len + align - 1) / align * align;
  328. if (last - len < 5) {
  329. last += align;
  330. }
  331. last = std::max(last, 60);
  332. printf("%*s", last - len, "");
  333. // allocate
  334. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  335. // randomize tensors
  336. initialize_tensors(ctx);
  337. // build graph
  338. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  339. ggml_build_forward_expand(gf, out);
  340. // warmup run
  341. ggml_backend_graph_compute(backend, gf);
  342. // duplicate the op
  343. size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
  344. int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
  345. for (int i = 1; i < n_runs; i++) {
  346. gf->nodes[gf->n_nodes++] = out;
  347. }
  348. // calculate memory
  349. size_t mem = n_runs * op_size(out);
  350. auto tensor_op_size = [](ggml_tensor * t) {
  351. size_t size = ggml_nbytes(t);
  352. // add source tensors
  353. for (int i = 0; i < GGML_MAX_SRC; i++) {
  354. if (t->src[i] != NULL) {
  355. size += ggml_nbytes(t->src[i]);
  356. }
  357. }
  358. return size;
  359. };
  360. for (int i = 0; i < gf->n_nodes; i++) {
  361. if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out)
  362. continue;
  363. mem += tensor_op_size(gf->nodes[i]);
  364. }
  365. // run
  366. ggml_backend_synchronize(backend);
  367. int64_t start_time = ggml_time_us();
  368. ggml_backend_graph_compute(backend, gf);
  369. ggml_backend_synchronize(backend);
  370. int64_t end_time = ggml_time_us();
  371. double time_us = end_time - start_time;
  372. printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
  373. n_runs,
  374. time_us / n_runs,
  375. op_size(out) / 1024,
  376. mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
  377. ggml_backend_buffer_free(buf);
  378. ggml_free(ctx);
  379. return true;
  380. }
  381. };
  382. // GGML_OP_UNARY
  383. struct test_unary : public test_case {
  384. const ggml_unary_op op;
  385. const ggml_type type;
  386. const std::array<int64_t, 4> ne;
  387. std::string vars() override {
  388. return VARS_TO_STR2(type, ne);
  389. }
  390. test_unary(ggml_unary_op op,
  391. ggml_type type = GGML_TYPE_F32,
  392. std::array<int64_t, 4> ne = {128, 10, 10, 10})
  393. : op(op), type(type), ne(ne) {}
  394. ggml_tensor * build_graph(ggml_context * ctx) override {
  395. ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
  396. ggml_tensor * out = ggml_unary(ctx, in, op);
  397. return out;
  398. }
  399. };
  400. // GGML_OP_GET_ROWS
  401. struct test_get_rows : public test_case {
  402. const ggml_type type;
  403. const int n; // cols
  404. const int m; // rows
  405. const int r; // rows to get
  406. std::string vars() override {
  407. return VARS_TO_STR4(type, n, m, r);
  408. }
  409. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3)
  410. : type(type), n(n), m(m), r(r) {}
  411. ggml_tensor * build_graph(ggml_context * ctx) override {
  412. ggml_tensor * in = ggml_new_tensor_2d(ctx, type, n, m);
  413. ggml_tensor * rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, r);
  414. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  415. return out;
  416. }
  417. void initialize_tensors(ggml_context * ctx) override {
  418. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  419. if (t->type == GGML_TYPE_I32) {
  420. // rows
  421. std::vector<int> data(r);
  422. for (int i = 0; i < r; i++) {
  423. data[i] = rand() % m;
  424. }
  425. ggml_backend_tensor_set(t, data.data(), 0, r * sizeof(int));
  426. } else {
  427. init_tensor_uniform(t);
  428. }
  429. }
  430. }
  431. };
  432. // GGML_OP_REPEAT
  433. struct test_repeat : public test_case {
  434. const ggml_type type;
  435. const std::array<int64_t, 4> ne;
  436. const std::array<int, 4> nr;
  437. std::string vars() override {
  438. return VARS_TO_STR3(type, ne, nr);
  439. }
  440. size_t op_size(ggml_tensor * t) override {
  441. return ggml_nbytes(t) * 2;
  442. }
  443. test_repeat(ggml_type type = GGML_TYPE_F32,
  444. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  445. std::array<int, 4> nr = {2, 2, 2, 2})
  446. : type(type), ne(ne), nr(nr) {}
  447. ggml_tensor * build_graph(ggml_context * ctx) override {
  448. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  449. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  450. ggml_tensor * out = ggml_repeat(ctx, src, target);
  451. return out;
  452. }
  453. };
  454. // GGML_OP_DUP
  455. struct test_dup : public test_case {
  456. const ggml_type type;
  457. const std::array<int64_t, 4> ne;
  458. std::string vars() override {
  459. return VARS_TO_STR2(type, ne);
  460. }
  461. test_dup(ggml_type type = GGML_TYPE_F32,
  462. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  463. : type(type), ne(ne) {}
  464. ggml_tensor * build_graph(ggml_context * ctx) override {
  465. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  466. ggml_tensor * out = ggml_dup(ctx, src);
  467. return out;
  468. }
  469. };
  470. // GGML_OP_CPY
  471. struct test_cpy : public test_case {
  472. const ggml_type type_src;
  473. const ggml_type type_dst;
  474. const std::array<int64_t, 4> ne;
  475. std::string vars() override {
  476. return VARS_TO_STR3(type_src, type_dst, ne);
  477. }
  478. size_t op_size(ggml_tensor * t) override {
  479. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  480. }
  481. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  482. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  483. : type_src(type_src), type_dst(type_dst), ne(ne) {}
  484. ggml_tensor * build_graph(ggml_context * ctx) override {
  485. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  486. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
  487. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  488. return out;
  489. }
  490. };
  491. // GGML_OP_CONT
  492. struct test_cont : public test_case {
  493. const ggml_type type;
  494. const std::array<int64_t, 4> ne;
  495. std::string vars() override {
  496. return VARS_TO_STR2(type, ne);
  497. }
  498. test_cont(ggml_type type = GGML_TYPE_F32,
  499. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  500. : type(type), ne(ne) {}
  501. ggml_tensor * build_graph(ggml_context * ctx) override {
  502. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  503. src = ggml_transpose(ctx, src);
  504. ggml_tensor * out = ggml_cont(ctx, src);
  505. return out;
  506. }
  507. };
  508. // GGML_OP_ADD
  509. // GGML_OP_MUL
  510. // GGML_OP_DIV
  511. struct test_bin_bcast : public test_case {
  512. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  513. op_t op;
  514. const ggml_type type;
  515. const std::array<int64_t, 4> ne;
  516. const std::array<int, 4> nr;
  517. std::string vars() override {
  518. return VARS_TO_STR3(type, ne, nr);
  519. }
  520. size_t op_size(ggml_tensor * t) override {
  521. return ggml_nbytes(t) * 3;
  522. }
  523. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  524. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  525. std::array<int, 4> nr = {1, 2, 1, 1})
  526. : op(op), type(type), ne(ne), nr(nr) {}
  527. ggml_tensor * build_graph(ggml_context * ctx) override {
  528. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  529. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  530. ggml_tensor * out = op(ctx, a, b);
  531. return out;
  532. }
  533. void initialize_tensors(ggml_context * ctx) override {
  534. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  535. if (op == ggml_div) {
  536. // avoid division by zero
  537. init_tensor_uniform(t, 1.0f, 2.0f);
  538. } else {
  539. init_tensor_uniform(t);
  540. }
  541. }
  542. }
  543. };
  544. // GGML_OP_SCALE
  545. struct test_scale : public test_case {
  546. const ggml_type type;
  547. const std::array<int64_t, 4> ne;
  548. std::string vars() override {
  549. return VARS_TO_STR2(type, ne);
  550. }
  551. test_scale(ggml_type type = GGML_TYPE_F32,
  552. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  553. : type(type), ne(ne) {}
  554. ggml_tensor * build_graph(ggml_context * ctx) override {
  555. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  556. ggml_tensor * scale = ggml_new_tensor_1d(ctx, type, 1);
  557. ggml_tensor * out = ggml_scale(ctx, a, scale);
  558. return out;
  559. }
  560. };
  561. // GGML_OP_NORM
  562. struct test_norm : public test_case {
  563. const ggml_type type;
  564. const std::array<int64_t, 4> ne;
  565. float eps;
  566. std::string vars() override {
  567. return VARS_TO_STR3(type, ne, eps);
  568. }
  569. test_norm(ggml_type type = GGML_TYPE_F32,
  570. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  571. float eps = 1e-6f)
  572. : type(type), ne(ne), eps(eps) {}
  573. ggml_tensor * build_graph(ggml_context * ctx) override {
  574. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  575. ggml_tensor * out = ggml_norm(ctx, a, eps);
  576. return out;
  577. }
  578. };
  579. // GGML_OP_RMS_NORM
  580. struct test_rms_norm : public test_case {
  581. const ggml_type type;
  582. const std::array<int64_t, 4> ne;
  583. float eps;
  584. std::string vars() override {
  585. return VARS_TO_STR3(type, ne, eps);
  586. }
  587. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  588. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  589. float eps = 1e-6f)
  590. : type(type), ne(ne), eps(eps) {}
  591. ggml_tensor * build_graph(ggml_context * ctx) override {
  592. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  593. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  594. return out;
  595. }
  596. };
  597. // GGML_OP_MUL_MAT
  598. struct test_mul_mat : public test_case {
  599. const ggml_type type_a;
  600. const ggml_type type_b;
  601. const int64_t m;
  602. const int64_t n;
  603. const int64_t k;
  604. const std::array<int64_t, 2> bs; // dims 3 and 4
  605. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  606. std::string vars() override {
  607. return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
  608. }
  609. double max_nmse_err() override {
  610. return 5e-4;
  611. }
  612. size_t op_size(ggml_tensor * t) override {
  613. size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
  614. size_t b = ggml_nbytes(t->src[1]) * m;
  615. size_t c = ggml_nbytes(t);
  616. return a + b + c;
  617. GGML_UNUSED(t);
  618. }
  619. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  620. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  621. std::array<int64_t, 2> bs = {10, 10},
  622. std::array<int64_t, 2> nr = {2, 2})
  623. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
  624. ggml_tensor * build_graph(ggml_context * ctx) override {
  625. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  626. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
  627. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  628. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  629. return out;
  630. }
  631. };
  632. // GGML_OP_MUL_MAT_ID
  633. struct test_mul_mat_id : public test_case {
  634. const ggml_type type_a;
  635. const ggml_type type_b;
  636. const int n_mats;
  637. const int id;
  638. const int64_t m;
  639. const int64_t n;
  640. const int64_t k;
  641. const std::array<int64_t, 2> bs; // dims 3 and 4
  642. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  643. std::string vars() override {
  644. return VARS_TO_STR9(type_a, type_b, n_mats, id, m, n, k, bs, nr);
  645. }
  646. double max_nmse_err() override {
  647. return 5e-4;
  648. }
  649. size_t op_size(ggml_tensor * t) override {
  650. size_t a = ggml_nbytes(t->src[2]) * n * nr[0] * nr[1];
  651. size_t b = ggml_nbytes(t->src[1]) * m;
  652. size_t c = ggml_nbytes(t);
  653. return a + b + c;
  654. GGML_UNUSED(t);
  655. }
  656. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  657. int n_mats = 2, int id = 0,
  658. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  659. std::array<int64_t, 2> bs = {10, 10},
  660. std::array<int64_t, 2> nr = {2, 2})
  661. : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
  662. m(m), n(n), k(k), bs(bs), nr(nr) {}
  663. ggml_tensor * build_graph(ggml_context * ctx) override {
  664. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  665. std::vector<ggml_tensor *> mats;
  666. for (int i = 0; i < n_mats; i++) {
  667. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  668. mats.push_back(a);
  669. }
  670. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_mats);
  671. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  672. ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), ids, id, b);
  673. return out;
  674. }
  675. void initialize_tensors(ggml_context * ctx) override {
  676. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  677. if (t->type == GGML_TYPE_I32) {
  678. // ids
  679. std::vector<int> data(n_mats);
  680. for (int i = 0; i < n_mats; i++) {
  681. data[i] = i;
  682. }
  683. std::shuffle(data.begin(), data.end(), std::default_random_engine(std::random_device()()));
  684. ggml_backend_tensor_set(t, data.data(), 0, n_mats * sizeof(int));
  685. } else {
  686. init_tensor_uniform(t);
  687. }
  688. }
  689. }
  690. };
  691. // GGML_OP_SQR
  692. struct test_sqr : public test_case {
  693. const ggml_type type;
  694. const std::array<int64_t, 4> ne;
  695. std::string vars() override {
  696. return VARS_TO_STR2(type, ne);
  697. }
  698. test_sqr(ggml_type type = GGML_TYPE_F32,
  699. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  700. : type(type), ne(ne) {}
  701. ggml_tensor * build_graph(ggml_context * ctx) override {
  702. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  703. ggml_tensor * out = ggml_sqr(ctx, a);
  704. return out;
  705. }
  706. };
  707. // GGML_OP_CLAMP
  708. struct test_clamp : public test_case {
  709. const ggml_type type;
  710. const std::array<int64_t, 4> ne;
  711. float min;
  712. float max;
  713. std::string vars() override {
  714. return VARS_TO_STR4(type, ne, min, max);
  715. }
  716. test_clamp(ggml_type type = GGML_TYPE_F32,
  717. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  718. float min = -0.5f, float max = 0.5f)
  719. : type(type), ne(ne), min(min), max(max) {}
  720. ggml_tensor * build_graph(ggml_context * ctx) override {
  721. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  722. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  723. return out;
  724. }
  725. };
  726. // GGML_OP_DIAG_MASK_INF
  727. struct test_diag_mask_inf : public test_case {
  728. const ggml_type type;
  729. const std::array<int64_t, 4> ne;
  730. const int n_past;
  731. std::string vars() override {
  732. return VARS_TO_STR3(type, ne, n_past);
  733. }
  734. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  735. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  736. int n_past = 5)
  737. : type(type), ne(ne), n_past(n_past) {}
  738. ggml_tensor * build_graph(ggml_context * ctx) override {
  739. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  740. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  741. return out;
  742. }
  743. };
  744. // GGML_OP_SOFT_MAX
  745. struct test_soft_max : public test_case {
  746. const ggml_type type;
  747. const std::array<int64_t, 4> ne;
  748. std::string vars() override {
  749. return VARS_TO_STR2(type, ne);
  750. }
  751. test_soft_max(ggml_type type = GGML_TYPE_F32,
  752. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  753. : type(type), ne(ne) {}
  754. ggml_tensor * build_graph(ggml_context * ctx) override {
  755. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  756. ggml_tensor * out = ggml_soft_max(ctx, a);
  757. return out;
  758. }
  759. };
  760. // GGML_OP_ROPE
  761. struct test_rope : public test_case {
  762. const ggml_type type;
  763. const std::array<int64_t, 4> ne;
  764. int n_dims;
  765. int mode;
  766. int n_ctx;
  767. std::string vars() override {
  768. return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
  769. }
  770. test_rope(ggml_type type = GGML_TYPE_F32,
  771. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  772. int n_dims = 10, int mode = 0, int n_ctx = 512)
  773. : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
  774. ggml_tensor * build_graph(ggml_context * ctx) override {
  775. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  776. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  777. ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
  778. return out;
  779. }
  780. void initialize_tensors(ggml_context * ctx) override {
  781. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  782. if (t->type == GGML_TYPE_I32) {
  783. // pos
  784. std::vector<int> data(ne[2]);
  785. for (int i = 0; i < ne[2]; i++) {
  786. data[i] = rand() % n_ctx;
  787. }
  788. ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
  789. } else {
  790. init_tensor_uniform(t);
  791. }
  792. }
  793. }
  794. };
  795. // GGML_OP_ALIBI
  796. struct test_alibi : public test_case {
  797. const ggml_type type;
  798. const std::array<int64_t, 4> ne;
  799. int n_past;
  800. int n_head;
  801. float bias_max;
  802. std::string vars() override {
  803. return VARS_TO_STR5(type, ne, n_past, n_head, bias_max);
  804. }
  805. test_alibi(ggml_type type = GGML_TYPE_F32,
  806. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  807. int n_past = 512, int n_head = 10, float bias_max = 0.5f)
  808. : type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {}
  809. ggml_tensor * build_graph(ggml_context * ctx) override {
  810. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  811. ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max);
  812. return out;
  813. }
  814. };
  815. // GGML_OP_IM2COL
  816. struct test_im2col : public test_case {
  817. const ggml_type type_input;
  818. const ggml_type type_kernel;
  819. const std::array<int64_t, 4> ne_input;
  820. const std::array<int64_t, 4> ne_kernel;
  821. // stride
  822. const int s0;
  823. const int s1;
  824. // padding
  825. const int p0;
  826. const int p1;
  827. // dilatation
  828. const int d0;
  829. const int d1;
  830. // mode
  831. const bool is_2D;
  832. std::string vars() override {
  833. return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  834. }
  835. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
  836. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  837. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  838. int s0 = 1, int s1 = 1,
  839. int p0 = 1, int p1 = 1,
  840. int d0 = 1, int d1 = 1,
  841. bool is_2D = true)
  842. : type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  843. ggml_tensor * build_graph(ggml_context * ctx) override {
  844. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  845. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  846. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
  847. return out;
  848. }
  849. };
  850. // GGML_OP_CONCAT
  851. struct test_concat : public test_case {
  852. const ggml_type type;
  853. const std::array<int64_t, 4> ne;
  854. const int64_t b_ne2;
  855. std::string vars() override {
  856. return VARS_TO_STR3(type, ne, b_ne2);
  857. }
  858. test_concat(ggml_type type = GGML_TYPE_F32,
  859. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  860. int64_t b_ne2 = 10)
  861. : type(type), ne(ne), b_ne2(b_ne2) {}
  862. ggml_tensor * build_graph(ggml_context * ctx) override {
  863. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  864. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
  865. ggml_tensor * out = ggml_concat(ctx, a, b);
  866. return out;
  867. }
  868. };
  869. // GGML_OP_ARGSORT
  870. struct test_argsort : public test_case {
  871. const ggml_type type;
  872. const std::array<int64_t, 4> ne;
  873. ggml_sort_order order;
  874. std::string vars() override {
  875. return VARS_TO_STR3(type, ne, order);
  876. }
  877. test_argsort(ggml_type type = GGML_TYPE_F32,
  878. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  879. ggml_sort_order order = GGML_SORT_ASC)
  880. : type(type), ne(ne), order(order) {}
  881. ggml_tensor * build_graph(ggml_context * ctx) override {
  882. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  883. ggml_tensor * out = ggml_argsort(ctx, a, order);
  884. return out;
  885. }
  886. void initialize_tensors(ggml_context * ctx) override {
  887. std::random_device rd;
  888. std::default_random_engine rng(rd());
  889. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  890. if (t->type == GGML_TYPE_I32) {
  891. // indices
  892. std::vector<int> data(ggml_nelements(t));
  893. for (int i = 0; i < ggml_nelements(t); i++) {
  894. data[i] = rand();
  895. }
  896. std::shuffle(data.begin(), data.end(), rng);
  897. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  898. } else if (t->type == GGML_TYPE_F32) {
  899. // initialize with unique values to avoid ties
  900. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  901. std::vector<float> data(t->ne[0]);
  902. for (int i = 0; i < t->ne[0]; i++) {
  903. data[i] = i;
  904. }
  905. std::shuffle(data.begin(), data.end(), rng);
  906. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  907. }
  908. } else {
  909. GGML_ASSERT(false);
  910. }
  911. }
  912. }
  913. };
  914. // GGML_OP_SUM_ROWS
  915. struct test_sum_rows : public test_case {
  916. const ggml_type type;
  917. const std::array<int64_t, 4> ne;
  918. std::string vars() override {
  919. return VARS_TO_STR2(type, ne);
  920. }
  921. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  922. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  923. : type(type), ne(ne) {}
  924. ggml_tensor * build_graph(ggml_context * ctx) override {
  925. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  926. ggml_tensor * out = ggml_sum_rows(ctx, a);
  927. return out;
  928. }
  929. };
  930. enum test_mode {
  931. MODE_TEST,
  932. MODE_PERF,
  933. };
  934. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  935. std::vector<std::unique_ptr<test_case>> test_cases;
  936. // unary ops
  937. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  938. test_cases.emplace_back(new test_unary((ggml_unary_op) op));
  939. }
  940. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  941. test_cases.emplace_back(new test_get_rows(type, 10, 5, 3));
  942. test_cases.emplace_back(new test_get_rows(type, 16, 5, 3));
  943. }
  944. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
  945. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  946. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
  947. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
  948. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
  949. test_cases.emplace_back(new test_dup());
  950. test_cases.emplace_back(new test_cpy());
  951. test_cases.emplace_back(new test_cont());
  952. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  953. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  954. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  955. }
  956. };
  957. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  958. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  959. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
  960. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
  961. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
  962. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
  963. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
  964. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
  965. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
  966. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
  967. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
  968. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
  969. // stable diffusion
  970. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  971. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  972. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  973. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  974. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  975. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  976. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  977. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  978. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  979. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  980. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  981. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  982. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  983. add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  984. add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  985. test_cases.emplace_back(new test_scale());
  986. for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
  987. test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  988. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  989. }
  990. const ggml_type all_types[] = {
  991. GGML_TYPE_F32, GGML_TYPE_F16,
  992. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  993. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  994. GGML_TYPE_Q8_0,
  995. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  996. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  997. GGML_TYPE_Q6_K
  998. };
  999. for (ggml_type type_a : all_types) {
  1000. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1001. // FIXME: CPU crashes on f16xf16
  1002. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1003. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  1004. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  1005. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  1006. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  1007. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  1008. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  1009. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  1010. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  1011. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  1012. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  1013. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  1014. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  1015. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  1016. }
  1017. }
  1018. for (ggml_type type_a : all_types) {
  1019. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1020. for (int n_mats : {1, 2, 4}) {
  1021. for (int id = 0; id < n_mats; id++) {
  1022. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, {1, 1}, {1, 1}));
  1023. }
  1024. }
  1025. }
  1026. }
  1027. test_cases.emplace_back(new test_sqr());
  1028. test_cases.emplace_back(new test_clamp());
  1029. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  1030. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
  1031. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
  1032. test_cases.emplace_back(new test_soft_max());
  1033. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1034. test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
  1035. test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
  1036. test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
  1037. test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
  1038. test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1039. test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
  1040. test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1041. test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
  1042. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
  1043. }
  1044. test_cases.emplace_back(new test_alibi());
  1045. test_cases.emplace_back(new test_im2col());
  1046. test_cases.emplace_back(new test_concat());
  1047. for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
  1048. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  1049. }
  1050. test_cases.emplace_back(new test_sum_rows());
  1051. // run tests
  1052. if (mode == MODE_TEST) {
  1053. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  1054. size_t n_ok = 0;
  1055. for (auto & test : test_cases) {
  1056. if (test->eval(backend, backend_cpu, op_name)) {
  1057. n_ok++;
  1058. }
  1059. }
  1060. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  1061. ggml_backend_free(backend_cpu);
  1062. return n_ok == test_cases.size();
  1063. } else if (mode == MODE_PERF) {
  1064. for (auto & test : test_cases) {
  1065. test->eval_perf(backend, op_name);
  1066. }
  1067. return true;
  1068. } else {
  1069. GGML_ASSERT(false);
  1070. }
  1071. }
  1072. static void usage(char ** argv) {
  1073. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  1074. printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
  1075. printf(" op names are as given by ggml_op_desc()\n");
  1076. }
  1077. int main(int argc, char ** argv) {
  1078. test_mode mode = MODE_TEST;
  1079. const char * op_name = NULL;
  1080. const char * backend = NULL;
  1081. for (int i = 1; i < argc; i++) {
  1082. if (strcmp(argv[i], "test") == 0) {
  1083. mode = MODE_TEST;
  1084. } else if (strcmp(argv[i], "perf") == 0) {
  1085. mode = MODE_PERF;
  1086. } else if (strcmp(argv[i], "-o") == 0) {
  1087. if (i + 1 < argc) {
  1088. op_name = argv[++i];
  1089. } else {
  1090. usage(argv);
  1091. return 1;
  1092. }
  1093. } else if (strcmp(argv[i], "-b") == 0) {
  1094. if (i + 1 < argc) {
  1095. backend = argv[++i];
  1096. } else {
  1097. usage(argv);
  1098. return 1;
  1099. }
  1100. } else {
  1101. usage(argv);
  1102. return 1;
  1103. }
  1104. }
  1105. // enumerate backends
  1106. printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
  1107. size_t n_ok = 0;
  1108. for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
  1109. printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
  1110. if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) {
  1111. printf(" Skipping\n");
  1112. n_ok++;
  1113. continue;
  1114. }
  1115. ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
  1116. GGML_ASSERT(backend != NULL);
  1117. printf(" Backend name: %s\n", ggml_backend_name(backend));
  1118. bool ok = test_backend(backend, mode, op_name);
  1119. printf(" Backend %s: ", ggml_backend_name(backend));
  1120. if (ok) {
  1121. printf("\033[1;32mOK\033[0m\n");
  1122. n_ok++;
  1123. } else {
  1124. printf("\033[1;31mFAIL\033[0m\n");
  1125. }
  1126. printf("\n");
  1127. ggml_backend_free(backend);
  1128. }
  1129. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
  1130. if (n_ok != ggml_backend_reg_get_count()) {
  1131. printf("\033[1;31mFAIL\033[0m\n");
  1132. return 1;
  1133. } else {
  1134. printf("\033[1;32mOK\033[0m\n");
  1135. return 0;
  1136. }
  1137. }