ggml.c 740 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  281. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  289. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  290. return GGML_BF16_TO_FP32(x); // it just left shifts
  291. }
  292. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  293. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  294. return GGML_FP32_TO_BF16(x);
  295. }
  296. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  297. for (int64_t i = 0; i < n; i++) {
  298. y[i] = GGML_FP16_TO_FP32(x[i]);
  299. }
  300. }
  301. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  302. int64_t i = 0;
  303. #if defined(__F16C__)
  304. for (; i + 7 < n; i += 8) {
  305. __m256 x_vec = _mm256_loadu_ps(x + i);
  306. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  307. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  308. }
  309. for(; i + 3 < n; i += 4) {
  310. __m128 x_vec = _mm_loadu_ps(x + i);
  311. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  312. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  313. }
  314. #endif
  315. for (; i < n; i++) {
  316. y[i] = GGML_FP32_TO_FP16(x[i]);
  317. }
  318. }
  319. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  320. int64_t i = 0;
  321. #if defined(__AVX512F__)
  322. for (; i + 16 <= n; i += 16) {
  323. _mm512_storeu_ps(y + i,
  324. _mm512_castsi512_ps(
  325. _mm512_slli_epi32(
  326. _mm512_cvtepu16_epi32(
  327. _mm256_loadu_si256(
  328. (const __m256i *)(x + i))),
  329. 16)));
  330. }
  331. #elif defined(__AVX2__)
  332. for (; i + 8 <= n; i += 8) {
  333. _mm256_storeu_ps(y + i,
  334. _mm256_castsi256_ps(
  335. _mm256_slli_epi32(
  336. _mm256_cvtepu16_epi32(
  337. _mm_loadu_si128(
  338. (const __m128i *)(x + i))),
  339. 16)));
  340. }
  341. #endif
  342. for (; i < n; i++) {
  343. y[i] = GGML_BF16_TO_FP32(x[i]);
  344. }
  345. }
  346. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  347. int i = 0;
  348. #if defined(__AVX512BF16__)
  349. for (; i + 32 <= n; i += 32) {
  350. _mm512_storeu_ps(
  351. (__m512 *)(y + i),
  352. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  353. _mm512_loadu_ps(x + i)));
  354. }
  355. #endif
  356. for (; i < n; i++) {
  357. y[i] = GGML_FP32_TO_BF16(x[i]);
  358. }
  359. }
  360. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  361. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  362. }
  363. //
  364. // timing
  365. //
  366. #if defined(_MSC_VER) || defined(__MINGW32__)
  367. static int64_t timer_freq, timer_start;
  368. void ggml_time_init(void) {
  369. LARGE_INTEGER t;
  370. QueryPerformanceFrequency(&t);
  371. timer_freq = t.QuadPart;
  372. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  373. // and the uptime is high enough.
  374. // We subtract the program start time to reduce the likelihood of that happening.
  375. QueryPerformanceCounter(&t);
  376. timer_start = t.QuadPart;
  377. }
  378. int64_t ggml_time_ms(void) {
  379. LARGE_INTEGER t;
  380. QueryPerformanceCounter(&t);
  381. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  382. }
  383. int64_t ggml_time_us(void) {
  384. LARGE_INTEGER t;
  385. QueryPerformanceCounter(&t);
  386. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  387. }
  388. #else
  389. void ggml_time_init(void) {}
  390. int64_t ggml_time_ms(void) {
  391. struct timespec ts;
  392. clock_gettime(CLOCK_MONOTONIC, &ts);
  393. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  394. }
  395. int64_t ggml_time_us(void) {
  396. struct timespec ts;
  397. clock_gettime(CLOCK_MONOTONIC, &ts);
  398. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  399. }
  400. #endif
  401. int64_t ggml_cycles(void) {
  402. return clock();
  403. }
  404. int64_t ggml_cycles_per_ms(void) {
  405. return CLOCKS_PER_SEC/1000;
  406. }
  407. #ifdef GGML_PERF
  408. #define ggml_perf_time_ms() ggml_time_ms()
  409. #define ggml_perf_time_us() ggml_time_us()
  410. #define ggml_perf_cycles() ggml_cycles()
  411. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  412. #else
  413. #define ggml_perf_time_ms() 0
  414. #define ggml_perf_time_us() 0
  415. #define ggml_perf_cycles() 0
  416. #define ggml_perf_cycles_per_ms() 0
  417. #endif
  418. //
  419. // cross-platform UTF-8 file paths
  420. //
  421. #ifdef _WIN32
  422. static wchar_t * ggml_mbstowcs(const char * mbs) {
  423. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  424. if (!wlen) {
  425. errno = EINVAL;
  426. return NULL;
  427. }
  428. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  429. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  430. if (!wlen) {
  431. GGML_FREE(wbuf);
  432. errno = EINVAL;
  433. return NULL;
  434. }
  435. return wbuf;
  436. }
  437. #endif
  438. FILE * ggml_fopen(const char * fname, const char * mode) {
  439. #ifdef _WIN32
  440. FILE * file = NULL;
  441. // convert fname (UTF-8)
  442. wchar_t * wfname = ggml_mbstowcs(fname);
  443. if (wfname) {
  444. // convert mode (ANSI)
  445. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  446. wchar_t * wmode_p = wmode;
  447. do {
  448. *wmode_p++ = (wchar_t)*mode;
  449. } while (*mode++);
  450. // open file
  451. file = _wfopen(wfname, wmode);
  452. GGML_FREE(wfname);
  453. GGML_FREE(wmode);
  454. }
  455. return file;
  456. #else
  457. return fopen(fname, mode);
  458. #endif
  459. }
  460. //
  461. // cache line
  462. //
  463. #if defined(__cpp_lib_hardware_interference_size)
  464. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  465. #else
  466. #if defined(__POWER9_VECTOR__)
  467. #define CACHE_LINE_SIZE 128
  468. #else
  469. #define CACHE_LINE_SIZE 64
  470. #endif
  471. #endif
  472. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  473. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  474. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  475. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  476. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  477. [GGML_TYPE_I8] = {
  478. .type_name = "i8",
  479. .blck_size = 1,
  480. .type_size = sizeof(int8_t),
  481. .is_quantized = false,
  482. },
  483. [GGML_TYPE_I16] = {
  484. .type_name = "i16",
  485. .blck_size = 1,
  486. .type_size = sizeof(int16_t),
  487. .is_quantized = false,
  488. },
  489. [GGML_TYPE_I32] = {
  490. .type_name = "i32",
  491. .blck_size = 1,
  492. .type_size = sizeof(int32_t),
  493. .is_quantized = false,
  494. },
  495. [GGML_TYPE_I64] = {
  496. .type_name = "i64",
  497. .blck_size = 1,
  498. .type_size = sizeof(int64_t),
  499. .is_quantized = false,
  500. },
  501. [GGML_TYPE_F64] = {
  502. .type_name = "f64",
  503. .blck_size = 1,
  504. .type_size = sizeof(double),
  505. .is_quantized = false,
  506. .nrows = 1,
  507. },
  508. [GGML_TYPE_F32] = {
  509. .type_name = "f32",
  510. .blck_size = 1,
  511. .type_size = sizeof(float),
  512. .is_quantized = false,
  513. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  514. .vec_dot_type = GGML_TYPE_F32,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_F16] = {
  518. .type_name = "f16",
  519. .blck_size = 1,
  520. .type_size = sizeof(ggml_fp16_t),
  521. .is_quantized = false,
  522. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  523. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  524. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  525. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  526. .vec_dot_type = GGML_TYPE_F16,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q4_0] = {
  530. .type_name = "q4_0",
  531. .blck_size = QK4_0,
  532. .type_size = sizeof(block_q4_0),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  535. .from_float = quantize_row_q4_0,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  537. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  538. .vec_dot_type = GGML_TYPE_Q8_0,
  539. #if defined (__ARM_FEATURE_MATMUL_INT8)
  540. .nrows = 2,
  541. #else
  542. .nrows = 1,
  543. #endif
  544. },
  545. [GGML_TYPE_Q4_1] = {
  546. .type_name = "q4_1",
  547. .blck_size = QK4_1,
  548. .type_size = sizeof(block_q4_1),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  551. .from_float = quantize_row_q4_1,
  552. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  553. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  554. .vec_dot_type = GGML_TYPE_Q8_1,
  555. #if defined (__ARM_FEATURE_MATMUL_INT8)
  556. .nrows = 2,
  557. #else
  558. .nrows = 1,
  559. #endif
  560. },
  561. [4] = { // GGML_TYPE_Q4_2
  562. .type_name = "DEPRECATED",
  563. .blck_size = 0,
  564. .type_size = 0,
  565. .is_quantized = false,
  566. .to_float = NULL,
  567. .from_float = NULL,
  568. .from_float_reference = NULL,
  569. .vec_dot = NULL,
  570. .vec_dot_type = GGML_TYPE_COUNT,
  571. .nrows = 1,
  572. },
  573. [5] = { // GGML_TYPE_Q4_3
  574. .type_name = "DEPRECATED",
  575. .blck_size = 0,
  576. .type_size = 0,
  577. .is_quantized = false,
  578. .to_float = NULL,
  579. .from_float = NULL,
  580. .from_float_reference = NULL,
  581. .vec_dot = NULL,
  582. .vec_dot_type = GGML_TYPE_COUNT,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q5_0] = {
  586. .type_name = "q5_0",
  587. .blck_size = QK5_0,
  588. .type_size = sizeof(block_q5_0),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  591. .from_float = quantize_row_q5_0,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  593. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  594. .vec_dot_type = GGML_TYPE_Q8_0,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q5_1] = {
  598. .type_name = "q5_1",
  599. .blck_size = QK5_1,
  600. .type_size = sizeof(block_q5_1),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  603. .from_float = quantize_row_q5_1,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  605. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  606. .vec_dot_type = GGML_TYPE_Q8_1,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q8_0] = {
  610. .type_name = "q8_0",
  611. .blck_size = QK8_0,
  612. .type_size = sizeof(block_q8_0),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  615. .from_float = quantize_row_q8_0,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  617. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  618. .vec_dot_type = GGML_TYPE_Q8_0,
  619. #if defined (__ARM_FEATURE_MATMUL_INT8)
  620. .nrows = 2,
  621. #else
  622. .nrows = 1,
  623. #endif
  624. },
  625. [GGML_TYPE_Q8_1] = {
  626. .type_name = "q8_1",
  627. .blck_size = QK8_1,
  628. .type_size = sizeof(block_q8_1),
  629. .is_quantized = true,
  630. .from_float = quantize_row_q8_1,
  631. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  632. .vec_dot_type = GGML_TYPE_Q8_1,
  633. .nrows = 1,
  634. },
  635. [GGML_TYPE_Q2_K] = {
  636. .type_name = "q2_K",
  637. .blck_size = QK_K,
  638. .type_size = sizeof(block_q2_K),
  639. .is_quantized = true,
  640. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  641. .from_float = quantize_row_q2_K,
  642. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  643. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  644. .vec_dot_type = GGML_TYPE_Q8_K,
  645. .nrows = 1,
  646. },
  647. [GGML_TYPE_Q3_K] = {
  648. .type_name = "q3_K",
  649. .blck_size = QK_K,
  650. .type_size = sizeof(block_q3_K),
  651. .is_quantized = true,
  652. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  653. .from_float = quantize_row_q3_K,
  654. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  655. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  656. .vec_dot_type = GGML_TYPE_Q8_K,
  657. .nrows = 1,
  658. },
  659. [GGML_TYPE_Q4_K] = {
  660. .type_name = "q4_K",
  661. .blck_size = QK_K,
  662. .type_size = sizeof(block_q4_K),
  663. .is_quantized = true,
  664. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  665. .from_float = quantize_row_q4_K,
  666. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  667. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  668. .vec_dot_type = GGML_TYPE_Q8_K,
  669. .nrows = 1,
  670. },
  671. [GGML_TYPE_Q5_K] = {
  672. .type_name = "q5_K",
  673. .blck_size = QK_K,
  674. .type_size = sizeof(block_q5_K),
  675. .is_quantized = true,
  676. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  677. .from_float = quantize_row_q5_K,
  678. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  679. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. .nrows = 1,
  682. },
  683. [GGML_TYPE_Q6_K] = {
  684. .type_name = "q6_K",
  685. .blck_size = QK_K,
  686. .type_size = sizeof(block_q6_K),
  687. .is_quantized = true,
  688. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  689. .from_float = quantize_row_q6_K,
  690. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  691. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  692. .vec_dot_type = GGML_TYPE_Q8_K,
  693. .nrows = 1,
  694. },
  695. [GGML_TYPE_IQ2_XXS] = {
  696. .type_name = "iq2_xxs",
  697. .blck_size = QK_K,
  698. .type_size = sizeof(block_iq2_xxs),
  699. .is_quantized = true,
  700. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  701. .from_float = NULL,
  702. .from_float_reference = NULL,
  703. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  704. .vec_dot_type = GGML_TYPE_Q8_K,
  705. .nrows = 1,
  706. },
  707. [GGML_TYPE_IQ2_XS] = {
  708. .type_name = "iq2_xs",
  709. .blck_size = QK_K,
  710. .type_size = sizeof(block_iq2_xs),
  711. .is_quantized = true,
  712. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  713. .from_float = NULL,
  714. .from_float_reference = NULL,
  715. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  716. .vec_dot_type = GGML_TYPE_Q8_K,
  717. .nrows = 1,
  718. },
  719. [GGML_TYPE_IQ3_XXS] = {
  720. .type_name = "iq3_xxs",
  721. .blck_size = QK_K,
  722. .type_size = sizeof(block_iq3_xxs),
  723. .is_quantized = true,
  724. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  725. .from_float = quantize_row_iq3_xxs,
  726. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  727. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  728. .vec_dot_type = GGML_TYPE_Q8_K,
  729. .nrows = 1,
  730. },
  731. [GGML_TYPE_IQ3_S] = {
  732. .type_name = "iq3_s",
  733. .blck_size = QK_K,
  734. .type_size = sizeof(block_iq3_s),
  735. .is_quantized = true,
  736. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  737. .from_float = quantize_row_iq3_s,
  738. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  739. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  740. .vec_dot_type = GGML_TYPE_Q8_K,
  741. .nrows = 1,
  742. },
  743. [GGML_TYPE_IQ2_S] = {
  744. .type_name = "iq2_s",
  745. .blck_size = QK_K,
  746. .type_size = sizeof(block_iq2_s),
  747. .is_quantized = true,
  748. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  749. .from_float = quantize_row_iq2_s,
  750. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  751. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  752. .vec_dot_type = GGML_TYPE_Q8_K,
  753. .nrows = 1,
  754. },
  755. [GGML_TYPE_IQ1_S] = {
  756. .type_name = "iq1_s",
  757. .blck_size = QK_K,
  758. .type_size = sizeof(block_iq1_s),
  759. .is_quantized = true,
  760. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  761. .from_float = NULL,
  762. .from_float_reference = NULL,
  763. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  764. .vec_dot_type = GGML_TYPE_Q8_K,
  765. .nrows = 1,
  766. },
  767. [GGML_TYPE_IQ1_M] = {
  768. .type_name = "iq1_m",
  769. .blck_size = QK_K,
  770. .type_size = sizeof(block_iq1_m),
  771. .is_quantized = true,
  772. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  773. .from_float = NULL,
  774. .from_float_reference = NULL,
  775. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  776. .vec_dot_type = GGML_TYPE_Q8_K,
  777. .nrows = 1,
  778. },
  779. [GGML_TYPE_IQ4_NL] = {
  780. .type_name = "iq4_nl",
  781. .blck_size = QK4_NL,
  782. .type_size = sizeof(block_iq4_nl),
  783. .is_quantized = true,
  784. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  785. .from_float = quantize_row_iq4_nl,
  786. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  787. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  788. .vec_dot_type = GGML_TYPE_Q8_0,
  789. .nrows = 1,
  790. },
  791. [GGML_TYPE_IQ4_XS] = {
  792. .type_name = "iq4_xs",
  793. #if QK_K == 64
  794. .blck_size = QK4_NL,
  795. #else
  796. .blck_size = QK_K,
  797. #endif
  798. .type_size = sizeof(block_iq4_xs),
  799. .is_quantized = true,
  800. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  801. .from_float = quantize_row_iq4_xs,
  802. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  803. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  804. #if QK_K == 64
  805. .vec_dot_type = GGML_TYPE_Q8_0,
  806. #else
  807. .vec_dot_type = GGML_TYPE_Q8_K,
  808. #endif
  809. .nrows = 1,
  810. },
  811. [GGML_TYPE_Q8_K] = {
  812. .type_name = "q8_K",
  813. .blck_size = QK_K,
  814. .type_size = sizeof(block_q8_K),
  815. .is_quantized = true,
  816. .from_float = quantize_row_q8_K,
  817. },
  818. [GGML_TYPE_BF16] = {
  819. .type_name = "bf16",
  820. .blck_size = 1,
  821. .type_size = sizeof(ggml_bf16_t),
  822. .is_quantized = false,
  823. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  824. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  825. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  826. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  827. .vec_dot_type = GGML_TYPE_BF16,
  828. .nrows = 1,
  829. }
  830. };
  831. // For internal test use
  832. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  833. GGML_ASSERT(type < GGML_TYPE_COUNT);
  834. return type_traits[type];
  835. }
  836. //
  837. // simd mappings
  838. //
  839. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  840. // we then implement the fundamental computation operations below using only these macros
  841. // adding support for new architectures requires to define the corresponding SIMD macros
  842. //
  843. // GGML_F32_STEP / GGML_F16_STEP
  844. // number of elements to process in a single step
  845. //
  846. // GGML_F32_EPR / GGML_F16_EPR
  847. // number of elements to fit in a single register
  848. //
  849. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  850. #define GGML_SIMD
  851. // F32 NEON
  852. #define GGML_F32_STEP 16
  853. #define GGML_F32_EPR 4
  854. #define GGML_F32x4 float32x4_t
  855. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  856. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  857. #define GGML_F32x4_LOAD vld1q_f32
  858. #define GGML_F32x4_STORE vst1q_f32
  859. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  860. #define GGML_F32x4_ADD vaddq_f32
  861. #define GGML_F32x4_MUL vmulq_f32
  862. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  863. #define GGML_F32x4_REDUCE(res, x) \
  864. { \
  865. int offset = GGML_F32_ARR >> 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. offset >>= 1; \
  874. for (int i = 0; i < offset; ++i) { \
  875. x[i] = vaddq_f32(x[i], x[offset+i]); \
  876. } \
  877. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  878. }
  879. #define GGML_F32_VEC GGML_F32x4
  880. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  881. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  882. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  883. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  884. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  885. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  886. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  887. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  888. // F16 NEON
  889. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  890. #define GGML_F16_STEP 32
  891. #define GGML_F16_EPR 8
  892. #define GGML_F16x8 float16x8_t
  893. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  894. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  895. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  896. #define GGML_F16x8_STORE vst1q_f16
  897. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  898. #define GGML_F16x8_ADD vaddq_f16
  899. #define GGML_F16x8_MUL vmulq_f16
  900. #define GGML_F16x8_REDUCE(res, x) \
  901. do { \
  902. int offset = GGML_F16_ARR >> 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. offset >>= 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = vaddq_f16(x[i], x[offset+i]); \
  913. } \
  914. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  915. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  916. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  917. } while (0)
  918. #define GGML_F16_VEC GGML_F16x8
  919. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  920. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  921. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  923. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  924. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  925. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  926. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  927. #else
  928. // if FP16 vector arithmetic is not supported, we use FP32 instead
  929. // and take advantage of the vcvt_ functions to convert to/from FP16
  930. #define GGML_F16_STEP 16
  931. #define GGML_F16_EPR 4
  932. #define GGML_F32Cx4 float32x4_t
  933. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  934. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  935. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  936. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  937. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  938. #define GGML_F32Cx4_ADD vaddq_f32
  939. #define GGML_F32Cx4_MUL vmulq_f32
  940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  941. #define GGML_F16_VEC GGML_F32Cx4
  942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  950. #endif
  951. #elif defined(__AVX512F__)
  952. #define GGML_SIMD
  953. // F32 AVX512
  954. #define GGML_F32_STEP 64
  955. #define GGML_F32_EPR 16
  956. #define GGML_F32x16 __m512
  957. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  958. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  959. #define GGML_F32x16_LOAD _mm512_loadu_ps
  960. #define GGML_F32x16_STORE _mm512_storeu_ps
  961. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  962. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  963. #define GGML_F32x16_ADD _mm512_add_ps
  964. #define GGML_F32x16_MUL _mm512_mul_ps
  965. #define GGML_F32x16_REDUCE(res, x) \
  966. do { \
  967. int offset = GGML_F32_ARR >> 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. offset >>= 1; \
  976. for (int i = 0; i < offset; ++i) { \
  977. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  978. } \
  979. res = _mm512_reduce_add_ps(x[0]); \
  980. } while (0)
  981. // TODO: is this optimal ?
  982. #define GGML_F32_VEC GGML_F32x16
  983. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  984. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  985. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  986. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  987. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  988. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  989. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  990. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  991. // F16 AVX512
  992. // F16 AVX
  993. #define GGML_F16_STEP 64
  994. #define GGML_F16_EPR 16
  995. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  996. #define GGML_F32Cx16 __m512
  997. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  998. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  999. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1000. // so F16C guard isn't required
  1001. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1002. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1003. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1004. #define GGML_F32Cx16_ADD _mm512_add_ps
  1005. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1006. #define GGML_F32Cx16_REDUCE(res, x) \
  1007. do { \
  1008. int offset = GGML_F32_ARR >> 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. offset >>= 1; \
  1017. for (int i = 0; i < offset; ++i) { \
  1018. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1019. } \
  1020. res = _mm512_reduce_add_ps(x[0]); \
  1021. } while (0)
  1022. #define GGML_F16_VEC GGML_F32Cx16
  1023. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1024. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1025. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1026. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1027. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1028. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1029. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1030. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1031. #elif defined(__AVX__)
  1032. #define GGML_SIMD
  1033. // F32 AVX
  1034. #define GGML_F32_STEP 32
  1035. #define GGML_F32_EPR 8
  1036. #define GGML_F32x8 __m256
  1037. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1038. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1039. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1040. #define GGML_F32x8_STORE _mm256_storeu_ps
  1041. #if defined(__FMA__)
  1042. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1043. #else
  1044. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1045. #endif
  1046. #define GGML_F32x8_ADD _mm256_add_ps
  1047. #define GGML_F32x8_MUL _mm256_mul_ps
  1048. #define GGML_F32x8_REDUCE(res, x) \
  1049. do { \
  1050. int offset = GGML_F32_ARR >> 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. offset >>= 1; \
  1059. for (int i = 0; i < offset; ++i) { \
  1060. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1061. } \
  1062. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1063. _mm256_extractf128_ps(x[0], 1)); \
  1064. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1065. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1066. } while (0)
  1067. // TODO: is this optimal ?
  1068. #define GGML_F32_VEC GGML_F32x8
  1069. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1070. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1071. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1072. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1073. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1074. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1075. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1076. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1077. // F16 AVX
  1078. #define GGML_F16_STEP 32
  1079. #define GGML_F16_EPR 8
  1080. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1081. #define GGML_F32Cx8 __m256
  1082. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1083. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1084. #if defined(__F16C__)
  1085. // the _mm256_cvt intrinsics require F16C
  1086. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1087. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1088. #else
  1089. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1090. float tmp[8];
  1091. for (int i = 0; i < 8; i++) {
  1092. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1093. }
  1094. return _mm256_loadu_ps(tmp);
  1095. }
  1096. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1097. float arr[8];
  1098. _mm256_storeu_ps(arr, y);
  1099. for (int i = 0; i < 8; i++)
  1100. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1101. }
  1102. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1103. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1104. #endif
  1105. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1106. #define GGML_F32Cx8_ADD _mm256_add_ps
  1107. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1108. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1109. #define GGML_F16_VEC GGML_F32Cx8
  1110. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1111. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1112. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1113. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1114. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1115. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1116. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1117. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1118. #elif defined(__POWER9_VECTOR__)
  1119. #define GGML_SIMD
  1120. // F32 POWER9
  1121. #define GGML_F32_STEP 32
  1122. #define GGML_F32_EPR 4
  1123. #define GGML_F32x4 vector float
  1124. #define GGML_F32x4_ZERO 0.0f
  1125. #define GGML_F32x4_SET1 vec_splats
  1126. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1127. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1128. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1129. #define GGML_F32x4_ADD vec_add
  1130. #define GGML_F32x4_MUL vec_mul
  1131. #define GGML_F32x4_REDUCE(res, x) \
  1132. { \
  1133. int offset = GGML_F32_ARR >> 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. offset >>= 1; \
  1142. for (int i = 0; i < offset; ++i) { \
  1143. x[i] = vec_add(x[i], x[offset+i]); \
  1144. } \
  1145. res = vec_extract(x[0], 0) + \
  1146. vec_extract(x[0], 1) + \
  1147. vec_extract(x[0], 2) + \
  1148. vec_extract(x[0], 3); \
  1149. }
  1150. #define GGML_F32_VEC GGML_F32x4
  1151. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1154. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1155. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1156. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1157. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1158. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1159. // F16 POWER9
  1160. #define GGML_F16_STEP GGML_F32_STEP
  1161. #define GGML_F16_EPR GGML_F32_EPR
  1162. #define GGML_F16_VEC GGML_F32x4
  1163. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1164. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1165. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1166. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1167. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1168. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1169. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1170. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1171. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1172. #define GGML_F16_VEC_STORE(p, r, i) \
  1173. if (i & 0x1) \
  1174. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1175. r[i - GGML_ENDIAN_BYTE(0)]), \
  1176. 0, p - GGML_F16_EPR)
  1177. #elif defined(__wasm_simd128__)
  1178. #define GGML_SIMD
  1179. // F32 WASM
  1180. #define GGML_F32_STEP 16
  1181. #define GGML_F32_EPR 4
  1182. #define GGML_F32x4 v128_t
  1183. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1184. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1185. #define GGML_F32x4_LOAD wasm_v128_load
  1186. #define GGML_F32x4_STORE wasm_v128_store
  1187. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1188. #define GGML_F32x4_ADD wasm_f32x4_add
  1189. #define GGML_F32x4_MUL wasm_f32x4_mul
  1190. #define GGML_F32x4_REDUCE(res, x) \
  1191. { \
  1192. int offset = GGML_F32_ARR >> 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1195. } \
  1196. offset >>= 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. offset >>= 1; \
  1201. for (int i = 0; i < offset; ++i) { \
  1202. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1203. } \
  1204. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1205. wasm_f32x4_extract_lane(x[0], 1) + \
  1206. wasm_f32x4_extract_lane(x[0], 2) + \
  1207. wasm_f32x4_extract_lane(x[0], 3); \
  1208. }
  1209. #define GGML_F32_VEC GGML_F32x4
  1210. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1211. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1212. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1213. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1214. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1215. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1216. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1217. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1218. // F16 WASM
  1219. #define GGML_F16_STEP 16
  1220. #define GGML_F16_EPR 4
  1221. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1222. float tmp[4];
  1223. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1224. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1225. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1226. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1227. return wasm_v128_load(tmp);
  1228. }
  1229. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1230. float tmp[4];
  1231. wasm_v128_store(tmp, x);
  1232. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1233. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1234. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1235. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1236. }
  1237. #define GGML_F16x4 v128_t
  1238. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1239. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1240. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1241. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1242. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1243. #define GGML_F16x4_ADD wasm_f32x4_add
  1244. #define GGML_F16x4_MUL wasm_f32x4_mul
  1245. #define GGML_F16x4_REDUCE(res, x) \
  1246. { \
  1247. int offset = GGML_F16_ARR >> 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. offset >>= 1; \
  1256. for (int i = 0; i < offset; ++i) { \
  1257. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1258. } \
  1259. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1260. wasm_f32x4_extract_lane(x[0], 1) + \
  1261. wasm_f32x4_extract_lane(x[0], 2) + \
  1262. wasm_f32x4_extract_lane(x[0], 3); \
  1263. }
  1264. #define GGML_F16_VEC GGML_F16x4
  1265. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1266. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1267. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1268. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1269. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1270. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1271. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1272. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1273. #elif defined(__SSE3__)
  1274. #define GGML_SIMD
  1275. // F32 SSE
  1276. #define GGML_F32_STEP 32
  1277. #define GGML_F32_EPR 4
  1278. #define GGML_F32x4 __m128
  1279. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1280. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1281. #define GGML_F32x4_LOAD _mm_loadu_ps
  1282. #define GGML_F32x4_STORE _mm_storeu_ps
  1283. #if defined(__FMA__)
  1284. // TODO: Does this work?
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1286. #else
  1287. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1288. #endif
  1289. #define GGML_F32x4_ADD _mm_add_ps
  1290. #define GGML_F32x4_MUL _mm_mul_ps
  1291. #define GGML_F32x4_REDUCE(res, x) \
  1292. { \
  1293. int offset = GGML_F32_ARR >> 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1304. } \
  1305. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1306. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1307. }
  1308. // TODO: is this optimal ?
  1309. #define GGML_F32_VEC GGML_F32x4
  1310. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1311. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1312. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1313. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1314. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1315. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1316. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1317. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1318. // F16 SSE
  1319. #define GGML_F16_STEP 32
  1320. #define GGML_F16_EPR 4
  1321. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1322. float tmp[4];
  1323. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1324. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1325. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1326. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1327. return _mm_loadu_ps(tmp);
  1328. }
  1329. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1330. float arr[4];
  1331. _mm_storeu_ps(arr, y);
  1332. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1333. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1334. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1335. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1336. }
  1337. #define GGML_F32Cx4 __m128
  1338. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1339. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1340. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1341. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1342. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1343. #define GGML_F32Cx4_ADD _mm_add_ps
  1344. #define GGML_F32Cx4_MUL _mm_mul_ps
  1345. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1346. #define GGML_F16_VEC GGML_F32Cx4
  1347. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1348. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1349. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1350. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1351. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1352. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1353. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1354. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1355. #endif
  1356. // GGML_F32_ARR / GGML_F16_ARR
  1357. // number of registers to use per step
  1358. #ifdef GGML_SIMD
  1359. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1360. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1361. #endif
  1362. //
  1363. // fundamental operations
  1364. //
  1365. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1366. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1367. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1368. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1369. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1370. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1371. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1372. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1373. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1374. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1375. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1376. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1377. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1378. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1379. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1380. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1381. assert(nrc == 1);
  1382. UNUSED(nrc);
  1383. UNUSED(bx);
  1384. UNUSED(by);
  1385. UNUSED(bs);
  1386. #if defined(GGML_SIMD)
  1387. float sumf = 0.0f;
  1388. const int np = (n & ~(GGML_F32_STEP - 1));
  1389. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1390. GGML_F32_VEC ax[GGML_F32_ARR];
  1391. GGML_F32_VEC ay[GGML_F32_ARR];
  1392. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1393. for (int j = 0; j < GGML_F32_ARR; j++) {
  1394. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1395. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1396. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1397. }
  1398. }
  1399. // reduce sum0..sum3 to sum0
  1400. GGML_F32_VEC_REDUCE(sumf, sum);
  1401. // leftovers
  1402. for (int i = np; i < n; ++i) {
  1403. sumf += x[i]*y[i];
  1404. }
  1405. #else
  1406. // scalar
  1407. ggml_float sumf = 0.0;
  1408. for (int i = 0; i < n; ++i) {
  1409. sumf += (ggml_float)(x[i]*y[i]);
  1410. }
  1411. #endif
  1412. *s = sumf;
  1413. }
  1414. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1415. assert(nrc == 1);
  1416. UNUSED(nrc);
  1417. UNUSED(bx);
  1418. UNUSED(by);
  1419. UNUSED(bs);
  1420. int i = 0;
  1421. ggml_float sumf = 0;
  1422. #if defined(__AVX512BF16__)
  1423. __m512 c1 = _mm512_setzero_ps();
  1424. __m512 c2 = _mm512_setzero_ps();
  1425. for (; i + 64 <= n; i += 64) {
  1426. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1427. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1428. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1429. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1430. }
  1431. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1432. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1433. #elif defined(__AVX512F__)
  1434. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1435. __m512 c1 = _mm512_setzero_ps();
  1436. __m512 c2 = _mm512_setzero_ps();
  1437. for (; i + 32 <= n; i += 32) {
  1438. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1439. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1440. }
  1441. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1442. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1443. #undef LOAD
  1444. #elif defined(__AVX2__)
  1445. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1446. __m256 c1 = _mm256_setzero_ps();
  1447. __m256 c2 = _mm256_setzero_ps();
  1448. __m256 c3 = _mm256_setzero_ps();
  1449. __m256 c4 = _mm256_setzero_ps();
  1450. for (; i + 32 <= n; i += 32) {
  1451. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1452. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1453. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1454. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1455. }
  1456. __m128 g;
  1457. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1458. _mm256_add_ps(c2, c4));
  1459. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1460. _mm256_castps256_ps128(c1));
  1461. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1462. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1463. sumf += (ggml_float)_mm_cvtss_f32(g);
  1464. #undef LOAD
  1465. #endif
  1466. for (; i < n; ++i) {
  1467. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1468. GGML_BF16_TO_FP32(y[i]));
  1469. }
  1470. *s = sumf;
  1471. }
  1472. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1473. assert(nrc == 1);
  1474. UNUSED(nrc);
  1475. UNUSED(bx);
  1476. UNUSED(by);
  1477. UNUSED(bs);
  1478. ggml_float sumf = 0.0;
  1479. #if defined(GGML_SIMD)
  1480. const int np = (n & ~(GGML_F16_STEP - 1));
  1481. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1482. GGML_F16_VEC ax[GGML_F16_ARR];
  1483. GGML_F16_VEC ay[GGML_F16_ARR];
  1484. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1485. for (int j = 0; j < GGML_F16_ARR; j++) {
  1486. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1487. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1488. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1489. }
  1490. }
  1491. // reduce sum0..sum3 to sum0
  1492. GGML_F16_VEC_REDUCE(sumf, sum);
  1493. // leftovers
  1494. for (int i = np; i < n; ++i) {
  1495. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1496. }
  1497. #else
  1498. for (int i = 0; i < n; ++i) {
  1499. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1500. }
  1501. #endif
  1502. *s = sumf;
  1503. }
  1504. // compute GGML_VEC_DOT_UNROLL dot products at once
  1505. // xs - x row stride in bytes
  1506. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1507. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1508. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1509. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1510. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1511. }
  1512. #if defined(GGML_SIMD)
  1513. const int np = (n & ~(GGML_F16_STEP - 1));
  1514. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1515. GGML_F16_VEC ax[GGML_F16_ARR];
  1516. GGML_F16_VEC ay[GGML_F16_ARR];
  1517. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1518. for (int j = 0; j < GGML_F16_ARR; j++) {
  1519. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1520. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1521. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1522. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1523. }
  1524. }
  1525. }
  1526. // reduce sum0..sum3 to sum0
  1527. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1528. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1529. }
  1530. // leftovers
  1531. for (int i = np; i < n; ++i) {
  1532. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1533. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1534. }
  1535. }
  1536. #else
  1537. for (int i = 0; i < n; ++i) {
  1538. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1539. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1540. }
  1541. }
  1542. #endif
  1543. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1544. s[i] = sumf[i];
  1545. }
  1546. }
  1547. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1548. #if defined(GGML_SIMD)
  1549. const int np = (n & ~(GGML_F32_STEP - 1));
  1550. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1551. GGML_F32_VEC ax[GGML_F32_ARR];
  1552. GGML_F32_VEC ay[GGML_F32_ARR];
  1553. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1554. for (int j = 0; j < GGML_F32_ARR; j++) {
  1555. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1556. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1557. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1558. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1559. }
  1560. }
  1561. // leftovers
  1562. for (int i = np; i < n; ++i) {
  1563. y[i] += x[i]*v;
  1564. }
  1565. #else
  1566. // scalar
  1567. for (int i = 0; i < n; ++i) {
  1568. y[i] += x[i]*v;
  1569. }
  1570. #endif
  1571. }
  1572. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1573. #if defined(GGML_SIMD)
  1574. const int np = (n & ~(GGML_F16_STEP - 1));
  1575. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1576. GGML_F16_VEC ax[GGML_F16_ARR];
  1577. GGML_F16_VEC ay[GGML_F16_ARR];
  1578. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1579. for (int j = 0; j < GGML_F16_ARR; j++) {
  1580. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1581. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1582. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1583. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1584. }
  1585. }
  1586. // leftovers
  1587. for (int i = np; i < n; ++i) {
  1588. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1589. }
  1590. #else
  1591. // scalar
  1592. for (int i = 0; i < n; ++i) {
  1593. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1594. }
  1595. #endif
  1596. }
  1597. // xs and vs are byte strides of x and v
  1598. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1599. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1600. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1601. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1602. x[i] = (const float *) ((const char *) xv + i*xs);
  1603. v[i] = (const float *) ((const char *) vv + i*vs);
  1604. }
  1605. #if defined(GGML_SIMD)
  1606. const int np = (n & ~(GGML_F32_STEP - 1));
  1607. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1608. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1609. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1610. }
  1611. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1612. GGML_F32_VEC ay[GGML_F32_ARR];
  1613. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1614. for (int j = 0; j < GGML_F32_ARR; j++) {
  1615. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1616. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1617. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1618. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1619. }
  1620. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1621. }
  1622. }
  1623. // leftovers
  1624. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1625. for (int i = np; i < n; ++i) {
  1626. y[i] += x[k][i]*v[k][0];
  1627. }
  1628. }
  1629. #else
  1630. // scalar
  1631. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1632. for (int i = 0; i < n; ++i) {
  1633. y[i] += x[k][i]*v[k][0];
  1634. }
  1635. }
  1636. #endif
  1637. }
  1638. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1639. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1640. #if defined(GGML_USE_ACCELERATE)
  1641. vDSP_vsmul(y, 1, &v, y, 1, n);
  1642. #elif defined(GGML_SIMD)
  1643. const int np = (n & ~(GGML_F32_STEP - 1));
  1644. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1645. GGML_F32_VEC ay[GGML_F32_ARR];
  1646. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1647. for (int j = 0; j < GGML_F32_ARR; j++) {
  1648. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1649. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1650. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1651. }
  1652. }
  1653. // leftovers
  1654. for (int i = np; i < n; ++i) {
  1655. y[i] *= v;
  1656. }
  1657. #else
  1658. // scalar
  1659. for (int i = 0; i < n; ++i) {
  1660. y[i] *= v;
  1661. }
  1662. #endif
  1663. }
  1664. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1668. GGML_F16_VEC ay[GGML_F16_ARR];
  1669. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1670. for (int j = 0; j < GGML_F16_ARR; j++) {
  1671. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1672. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1673. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1674. }
  1675. }
  1676. // leftovers
  1677. for (int i = np; i < n; ++i) {
  1678. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1679. }
  1680. #else
  1681. // scalar
  1682. for (int i = 0; i < n; ++i) {
  1683. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1684. }
  1685. #endif
  1686. }
  1687. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1688. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1689. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1690. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1691. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1692. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1693. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1694. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1695. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1696. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1697. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1698. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1699. // TODO: optimize performance
  1700. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1701. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1702. static const float GELU_COEF_A = 0.044715f;
  1703. static const float GELU_QUICK_COEF = -1.702f;
  1704. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1705. inline static float ggml_gelu_f32(float x) {
  1706. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1707. }
  1708. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1709. const uint16_t * i16 = (const uint16_t *) x;
  1710. for (int i = 0; i < n; ++i) {
  1711. y[i] = ggml_table_gelu_f16[i16[i]];
  1712. }
  1713. }
  1714. #ifdef GGML_GELU_FP16
  1715. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1716. uint16_t t;
  1717. for (int i = 0; i < n; ++i) {
  1718. if (x[i] <= -10.0f) {
  1719. y[i] = 0.0f;
  1720. } else if (x[i] >= 10.0f) {
  1721. y[i] = x[i];
  1722. } else {
  1723. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1724. memcpy(&t, &fp16, sizeof(uint16_t));
  1725. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1726. }
  1727. }
  1728. }
  1729. #else
  1730. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1731. for (int i = 0; i < n; ++i) {
  1732. y[i] = ggml_gelu_f32(x[i]);
  1733. }
  1734. }
  1735. #endif
  1736. inline static float ggml_gelu_quick_f32(float x) {
  1737. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1738. }
  1739. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1740. // const uint16_t * i16 = (const uint16_t *) x;
  1741. // for (int i = 0; i < n; ++i) {
  1742. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1743. // }
  1744. //}
  1745. #ifdef GGML_GELU_QUICK_FP16
  1746. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1747. uint16_t t;
  1748. for (int i = 0; i < n; ++i) {
  1749. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1750. memcpy(&t, &fp16, sizeof(uint16_t));
  1751. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1752. }
  1753. }
  1754. #else
  1755. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1756. for (int i = 0; i < n; ++i) {
  1757. y[i] = ggml_gelu_quick_f32(x[i]);
  1758. }
  1759. }
  1760. #endif
  1761. // Sigmoid Linear Unit (SiLU) function
  1762. inline static float ggml_silu_f32(float x) {
  1763. return x/(1.0f + expf(-x));
  1764. }
  1765. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1766. // const uint16_t * i16 = (const uint16_t *) x;
  1767. // for (int i = 0; i < n; ++i) {
  1768. // y[i] = ggml_table_silu_f16[i16[i]];
  1769. // }
  1770. //}
  1771. #ifdef GGML_SILU_FP16
  1772. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1773. uint16_t t;
  1774. for (int i = 0; i < n; ++i) {
  1775. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1776. memcpy(&t, &fp16, sizeof(uint16_t));
  1777. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1778. }
  1779. }
  1780. #else
  1781. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1782. for (int i = 0; i < n; ++i) {
  1783. y[i] = ggml_silu_f32(x[i]);
  1784. }
  1785. }
  1786. #endif
  1787. inline static float ggml_silu_backward_f32(float x, float dy) {
  1788. const float s = 1.0f/(1.0f + expf(-x));
  1789. return dy*s*(1.0f + x*(1.0f - s));
  1790. }
  1791. #ifdef GGML_SILU_FP16
  1792. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1793. for (int i = 0; i < n; ++i) {
  1794. // we did not use x[i] to compute forward silu but its f16 equivalent
  1795. // take derivative at f16 of x[i]:
  1796. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1797. float usedx = GGML_FP16_TO_FP32(fp16);
  1798. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1799. }
  1800. }
  1801. #else
  1802. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1803. for (int i = 0; i < n; ++i) {
  1804. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1805. }
  1806. }
  1807. #endif
  1808. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1809. #ifndef GGML_USE_ACCELERATE
  1810. ggml_float sum = 0.0;
  1811. for (int i = 0; i < n; ++i) {
  1812. sum += (ggml_float)x[i];
  1813. }
  1814. *s = sum;
  1815. #else
  1816. vDSP_sve(x, 1, s, n);
  1817. #endif
  1818. }
  1819. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1820. ggml_float sum = 0.0;
  1821. for (int i = 0; i < n; ++i) {
  1822. sum += (ggml_float)x[i];
  1823. }
  1824. *s = sum;
  1825. }
  1826. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1827. float sum = 0.0f;
  1828. for (int i = 0; i < n; ++i) {
  1829. sum += GGML_FP16_TO_FP32(x[i]);
  1830. }
  1831. *s = sum;
  1832. }
  1833. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1834. float sum = 0.0f;
  1835. for (int i = 0; i < n; ++i) {
  1836. sum += GGML_BF16_TO_FP32(x[i]);
  1837. }
  1838. *s = sum;
  1839. }
  1840. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1841. #ifndef GGML_USE_ACCELERATE
  1842. float max = -INFINITY;
  1843. for (int i = 0; i < n; ++i) {
  1844. max = MAX(max, x[i]);
  1845. }
  1846. *s = max;
  1847. #else
  1848. vDSP_maxv(x, 1, s, n);
  1849. #endif
  1850. }
  1851. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1852. ggml_vec_norm_f32(n, s, x);
  1853. *s = 1.f/(*s);
  1854. }
  1855. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1856. float max = -INFINITY;
  1857. int idx = 0;
  1858. for (int i = 0; i < n; ++i) {
  1859. max = MAX(max, x[i]);
  1860. if (max == x[i]) { idx = i; }
  1861. }
  1862. *s = idx;
  1863. }
  1864. //
  1865. // data types
  1866. //
  1867. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1868. "NONE",
  1869. "DUP",
  1870. "ADD",
  1871. "ADD1",
  1872. "ACC",
  1873. "SUB",
  1874. "MUL",
  1875. "DIV",
  1876. "SQR",
  1877. "SQRT",
  1878. "LOG",
  1879. "SUM",
  1880. "SUM_ROWS",
  1881. "MEAN",
  1882. "ARGMAX",
  1883. "REPEAT",
  1884. "REPEAT_BACK",
  1885. "CONCAT",
  1886. "SILU_BACK",
  1887. "NORM",
  1888. "RMS_NORM",
  1889. "RMS_NORM_BACK",
  1890. "GROUP_NORM",
  1891. "MUL_MAT",
  1892. "MUL_MAT_ID",
  1893. "OUT_PROD",
  1894. "SCALE",
  1895. "SET",
  1896. "CPY",
  1897. "CONT",
  1898. "RESHAPE",
  1899. "VIEW",
  1900. "PERMUTE",
  1901. "TRANSPOSE",
  1902. "GET_ROWS",
  1903. "GET_ROWS_BACK",
  1904. "DIAG",
  1905. "DIAG_MASK_INF",
  1906. "DIAG_MASK_ZERO",
  1907. "SOFT_MAX",
  1908. "SOFT_MAX_BACK",
  1909. "ROPE",
  1910. "ROPE_BACK",
  1911. "CLAMP",
  1912. "CONV_TRANSPOSE_1D",
  1913. "IM2COL",
  1914. "CONV_TRANSPOSE_2D",
  1915. "POOL_1D",
  1916. "POOL_2D",
  1917. "UPSCALE",
  1918. "PAD",
  1919. "ARANGE",
  1920. "TIMESTEP_EMBEDDING",
  1921. "ARGSORT",
  1922. "LEAKY_RELU",
  1923. "FLASH_ATTN",
  1924. "FLASH_ATTN_EXT",
  1925. "FLASH_FF",
  1926. "FLASH_ATTN_BACK",
  1927. "SSM_CONV",
  1928. "SSM_SCAN",
  1929. "WIN_PART",
  1930. "WIN_UNPART",
  1931. "GET_REL_POS",
  1932. "ADD_REL_POS",
  1933. "UNARY",
  1934. "MAP_UNARY",
  1935. "MAP_BINARY",
  1936. "MAP_CUSTOM1_F32",
  1937. "MAP_CUSTOM2_F32",
  1938. "MAP_CUSTOM3_F32",
  1939. "MAP_CUSTOM1",
  1940. "MAP_CUSTOM2",
  1941. "MAP_CUSTOM3",
  1942. "CROSS_ENTROPY_LOSS",
  1943. "CROSS_ENTROPY_LOSS_BACK",
  1944. };
  1945. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1946. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1947. "none",
  1948. "x",
  1949. "x+y",
  1950. "x+y",
  1951. "view(x,nb,offset)+=y->x",
  1952. "x-y",
  1953. "x*y",
  1954. "x/y",
  1955. "x^2",
  1956. "√x",
  1957. "log(x)",
  1958. "Σx",
  1959. "Σx_k",
  1960. "Σx/n",
  1961. "argmax(x)",
  1962. "repeat(x)",
  1963. "repeat_back(x)",
  1964. "concat(x, y)",
  1965. "silu_back(x)",
  1966. "norm(x)",
  1967. "rms_norm(x)",
  1968. "rms_norm_back(x)",
  1969. "group_norm(x)",
  1970. "X*Y",
  1971. "X[i]*Y",
  1972. "X*Y",
  1973. "x*v",
  1974. "y-\\>view(x)",
  1975. "x-\\>y",
  1976. "cont(x)",
  1977. "reshape(x)",
  1978. "view(x)",
  1979. "permute(x)",
  1980. "transpose(x)",
  1981. "get_rows(x)",
  1982. "get_rows_back(x)",
  1983. "diag(x)",
  1984. "diag_mask_inf(x)",
  1985. "diag_mask_zero(x)",
  1986. "soft_max(x)",
  1987. "soft_max_back(x)",
  1988. "rope(x)",
  1989. "rope_back(x)",
  1990. "clamp(x)",
  1991. "conv_transpose_1d(x)",
  1992. "im2col(x)",
  1993. "conv_transpose_2d(x)",
  1994. "pool_1d(x)",
  1995. "pool_2d(x)",
  1996. "upscale(x)",
  1997. "pad(x)",
  1998. "arange(start, stop, step)",
  1999. "timestep_embedding(timesteps, dim, max_period)",
  2000. "argsort(x)",
  2001. "leaky_relu(x)",
  2002. "flash_attn(x)",
  2003. "flash_attn_ext(x)",
  2004. "flash_ff(x)",
  2005. "flash_attn_back(x)",
  2006. "ssm_conv(x)",
  2007. "ssm_scan(x)",
  2008. "win_part(x)",
  2009. "win_unpart(x)",
  2010. "get_rel_pos(x)",
  2011. "add_rel_pos(x)",
  2012. "unary(x)",
  2013. "f(x)",
  2014. "f(x,y)",
  2015. "custom_f32(x)",
  2016. "custom_f32(x,y)",
  2017. "custom_f32(x,y,z)",
  2018. "custom(x)",
  2019. "custom(x,y)",
  2020. "custom(x,y,z)",
  2021. "cross_entropy_loss(x,y)",
  2022. "cross_entropy_loss_back(x,y)",
  2023. };
  2024. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2025. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2026. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2027. "ABS",
  2028. "SGN",
  2029. "NEG",
  2030. "STEP",
  2031. "TANH",
  2032. "ELU",
  2033. "RELU",
  2034. "SIGMOID",
  2035. "GELU",
  2036. "GELU_QUICK",
  2037. "SILU",
  2038. "HARDSWISH",
  2039. "HARDSIGMOID",
  2040. };
  2041. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2042. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2043. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2044. // WARN:
  2045. // Mis-configuration can lead to problem that's hard to reason about:
  2046. // * At best it crash or talks nosense.
  2047. // * At worst it talks slightly difference but hard to perceive.
  2048. //
  2049. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2050. // Take care about compile options (e.g., GGML_USE_xxx).
  2051. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2052. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2053. static void ggml_setup_op_has_task_pass(void) {
  2054. { // INIT
  2055. bool * p = GGML_OP_HAS_INIT;
  2056. p[GGML_OP_ACC ] = true;
  2057. p[GGML_OP_MUL_MAT ] = true;
  2058. p[GGML_OP_MUL_MAT_ID ] = true;
  2059. p[GGML_OP_OUT_PROD ] = true;
  2060. p[GGML_OP_SET ] = true;
  2061. p[GGML_OP_GET_ROWS_BACK ] = true;
  2062. p[GGML_OP_DIAG_MASK_INF ] = true;
  2063. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2064. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2065. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2066. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2067. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2068. p[GGML_OP_ADD_REL_POS ] = true;
  2069. }
  2070. { // FINALIZE
  2071. bool * p = GGML_OP_HAS_FINALIZE;
  2072. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2073. }
  2074. }
  2075. //
  2076. // ggml context
  2077. //
  2078. struct ggml_context {
  2079. size_t mem_size;
  2080. void * mem_buffer;
  2081. bool mem_buffer_owned;
  2082. bool no_alloc;
  2083. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  2084. int n_objects;
  2085. struct ggml_object * objects_begin;
  2086. struct ggml_object * objects_end;
  2087. struct ggml_scratch scratch;
  2088. struct ggml_scratch scratch_save;
  2089. };
  2090. struct ggml_context_container {
  2091. bool used;
  2092. struct ggml_context context;
  2093. };
  2094. //
  2095. // NUMA support
  2096. //
  2097. #define GGML_NUMA_MAX_NODES 8
  2098. #define GGML_NUMA_MAX_CPUS 512
  2099. struct ggml_numa_node {
  2100. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2101. uint32_t n_cpus;
  2102. };
  2103. struct ggml_numa_nodes {
  2104. enum ggml_numa_strategy numa_strategy;
  2105. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2106. uint32_t n_nodes;
  2107. uint32_t total_cpus; // hardware threads on system
  2108. uint32_t current_node; // node on which main process is execting
  2109. #if defined(__gnu_linux__)
  2110. cpu_set_t cpuset; // cpuset from numactl
  2111. #else
  2112. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2113. #endif
  2114. };
  2115. //
  2116. // ggml state
  2117. //
  2118. struct ggml_state {
  2119. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2120. struct ggml_numa_nodes numa;
  2121. };
  2122. // global state
  2123. static struct ggml_state g_state;
  2124. static atomic_int g_state_barrier = 0;
  2125. // barrier via spin lock
  2126. inline static void ggml_critical_section_start(void) {
  2127. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2128. while (processing > 0) {
  2129. // wait for other threads to finish
  2130. atomic_fetch_sub(&g_state_barrier, 1);
  2131. sched_yield(); // TODO: reconsider this
  2132. processing = atomic_fetch_add(&g_state_barrier, 1);
  2133. }
  2134. }
  2135. // TODO: make this somehow automatically executed
  2136. // some sort of "sentry" mechanism
  2137. inline static void ggml_critical_section_end(void) {
  2138. atomic_fetch_sub(&g_state_barrier, 1);
  2139. }
  2140. #if defined(__gnu_linux__)
  2141. static cpu_set_t ggml_get_numa_affinity(void) {
  2142. cpu_set_t cpuset;
  2143. pthread_t thread;
  2144. thread = pthread_self();
  2145. CPU_ZERO(&cpuset);
  2146. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2147. return cpuset;
  2148. }
  2149. #else
  2150. static uint32_t ggml_get_numa_affinity(void) {
  2151. return 0; // no NUMA support
  2152. }
  2153. #endif
  2154. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2155. if (g_state.numa.n_nodes > 0) {
  2156. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2157. return;
  2158. }
  2159. #if defined(__gnu_linux__)
  2160. struct stat st;
  2161. char path[256];
  2162. int rv;
  2163. // set numa scheme
  2164. g_state.numa.numa_strategy = numa_flag;
  2165. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2166. g_state.numa.cpuset = ggml_get_numa_affinity();
  2167. // enumerate nodes
  2168. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2169. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2170. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2171. if (stat(path, &st) != 0) { break; }
  2172. ++g_state.numa.n_nodes;
  2173. }
  2174. // enumerate CPUs
  2175. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2176. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2177. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2178. if (stat(path, &st) != 0) { break; }
  2179. ++g_state.numa.total_cpus;
  2180. }
  2181. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2182. // figure out which node we're on
  2183. uint current_cpu;
  2184. int getcpu_ret = 0;
  2185. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2186. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2187. #else
  2188. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2189. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2190. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2191. # endif
  2192. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2193. #endif
  2194. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2195. g_state.numa.n_nodes = 0;
  2196. return;
  2197. }
  2198. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2199. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2200. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2201. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2202. node->n_cpus = 0;
  2203. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2204. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2205. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2206. if (stat(path, &st) == 0) {
  2207. node->cpus[node->n_cpus++] = c;
  2208. GGML_PRINT_DEBUG(" %u", c);
  2209. }
  2210. }
  2211. GGML_PRINT_DEBUG("\n");
  2212. }
  2213. if (ggml_is_numa()) {
  2214. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2215. if (fptr != NULL) {
  2216. char buf[42];
  2217. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2218. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2219. }
  2220. fclose(fptr);
  2221. }
  2222. }
  2223. #else
  2224. GGML_UNUSED(numa_flag);
  2225. // TODO
  2226. #endif
  2227. }
  2228. bool ggml_is_numa(void) {
  2229. return g_state.numa.n_nodes > 1;
  2230. }
  2231. ////////////////////////////////////////////////////////////////////////////////
  2232. void ggml_print_object(const struct ggml_object * obj) {
  2233. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2234. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2235. }
  2236. void ggml_print_objects(const struct ggml_context * ctx) {
  2237. struct ggml_object * obj = ctx->objects_begin;
  2238. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2239. while (obj != NULL) {
  2240. ggml_print_object(obj);
  2241. obj = obj->next;
  2242. }
  2243. GGML_PRINT("%s: --- end ---\n", __func__);
  2244. }
  2245. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2247. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2248. }
  2249. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2252. }
  2253. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2254. size_t nbytes;
  2255. size_t blck_size = ggml_blck_size(tensor->type);
  2256. if (blck_size == 1) {
  2257. nbytes = ggml_type_size(tensor->type);
  2258. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2259. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2260. }
  2261. }
  2262. else {
  2263. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2264. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2265. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2266. }
  2267. }
  2268. return nbytes;
  2269. }
  2270. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2271. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2272. }
  2273. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2274. return type_traits[type].blck_size;
  2275. }
  2276. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2277. return type_traits[type].type_size;
  2278. }
  2279. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2280. assert(ne % ggml_blck_size(type) == 0);
  2281. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2282. }
  2283. double ggml_type_sizef(enum ggml_type type) {
  2284. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2285. }
  2286. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2287. return type_traits[type].type_name;
  2288. }
  2289. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2290. return type_traits[type].is_quantized;
  2291. }
  2292. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2293. return GGML_OP_NAME[op];
  2294. }
  2295. const char * ggml_op_symbol(enum ggml_op op) {
  2296. return GGML_OP_SYMBOL[op];
  2297. }
  2298. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2299. return GGML_UNARY_OP_NAME[op];
  2300. }
  2301. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2302. if (t->op == GGML_OP_UNARY) {
  2303. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2304. return ggml_unary_op_name(uop);
  2305. }
  2306. else {
  2307. return ggml_op_name(t->op);
  2308. }
  2309. }
  2310. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2311. return ggml_type_size(tensor->type);
  2312. }
  2313. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2314. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2315. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2316. }
  2317. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2318. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2319. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2320. }
  2321. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2322. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2323. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2324. }
  2325. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2326. return tensor->ne[3] == 1;
  2327. }
  2328. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2329. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2330. if (tensor->ne[i] > 1) {
  2331. return i + 1;
  2332. }
  2333. }
  2334. return 1;
  2335. }
  2336. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2337. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2338. return (t0->ne[0] == t1->ne[0]) &&
  2339. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2340. (t1->ne[3]%t0->ne[3] == 0);
  2341. }
  2342. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2343. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2344. return (t0->ne[1] == t1->ne[1]) &&
  2345. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2346. (t1->ne[3]%t0->ne[3] == 0);
  2347. }
  2348. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2349. enum ggml_type wtype = GGML_TYPE_COUNT;
  2350. switch (ftype) {
  2351. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2352. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2353. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2354. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2355. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2356. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2357. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2358. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2359. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2360. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2361. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2362. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2363. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2364. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2365. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2366. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2367. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2368. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2369. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2370. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2371. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2372. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2373. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2374. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2375. }
  2376. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2377. return wtype;
  2378. }
  2379. size_t ggml_tensor_overhead(void) {
  2380. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2381. }
  2382. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2383. return tensor->nb[0] > tensor->nb[1];
  2384. }
  2385. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2386. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2387. return
  2388. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2389. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2390. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2391. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2392. }
  2393. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2394. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2395. return
  2396. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2397. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2398. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2399. }
  2400. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2401. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2402. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2403. }
  2404. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2406. return
  2407. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2408. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2409. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2410. }
  2411. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2412. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2413. if (tensor->ne[i] == 0) {
  2414. // empty if any dimension has no elements
  2415. return true;
  2416. }
  2417. }
  2418. return false;
  2419. }
  2420. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2421. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2422. return
  2423. (t0->ne[0] == t1->ne[0] ) &&
  2424. (t0->ne[1] == t1->ne[1] ) &&
  2425. (t0->ne[2] == t1->ne[2] ) &&
  2426. (t0->ne[3] == t1->ne[3] );
  2427. }
  2428. // check if t1 can be represented as a repeatition of t0
  2429. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2430. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2431. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2432. (t1->ne[0]%t0->ne[0] == 0) &&
  2433. (t1->ne[1]%t0->ne[1] == 0) &&
  2434. (t1->ne[2]%t0->ne[2] == 0) &&
  2435. (t1->ne[3]%t0->ne[3] == 0);
  2436. }
  2437. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2438. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2439. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2440. }
  2441. static inline int ggml_up32(int n) {
  2442. return (n + 31) & ~31;
  2443. }
  2444. //static inline int ggml_up64(int n) {
  2445. // return (n + 63) & ~63;
  2446. //}
  2447. static inline int ggml_up(int n, int m) {
  2448. // assert m is a power of 2
  2449. GGML_ASSERT((m & (m - 1)) == 0);
  2450. return (n + m - 1) & ~(m - 1);
  2451. }
  2452. // assert that pointer is aligned to GGML_MEM_ALIGN
  2453. #define ggml_assert_aligned(ptr) \
  2454. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2455. ////////////////////////////////////////////////////////////////////////////////
  2456. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2457. // make this function thread safe
  2458. ggml_critical_section_start();
  2459. static bool is_first_call = true;
  2460. if (is_first_call) {
  2461. // initialize time system (required on Windows)
  2462. ggml_time_init();
  2463. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2464. {
  2465. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2466. for (int i = 0; i < (1 << 16); ++i) {
  2467. union {
  2468. uint16_t u16;
  2469. ggml_fp16_t fp16;
  2470. } u = {i};
  2471. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2472. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2473. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2474. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2475. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2476. }
  2477. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2478. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2479. }
  2480. // initialize g_state
  2481. {
  2482. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2483. g_state = (struct ggml_state) {
  2484. /*.contexts =*/ { { 0 } },
  2485. /*.numa =*/ {
  2486. .n_nodes = 0,
  2487. .total_cpus = 0,
  2488. },
  2489. };
  2490. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2491. g_state.contexts[i].used = false;
  2492. }
  2493. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2494. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2495. }
  2496. #if defined(GGML_USE_CLBLAST)
  2497. ggml_cl_init();
  2498. #endif
  2499. ggml_setup_op_has_task_pass();
  2500. is_first_call = false;
  2501. }
  2502. // find non-used context in g_state
  2503. struct ggml_context * ctx = NULL;
  2504. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2505. if (!g_state.contexts[i].used) {
  2506. g_state.contexts[i].used = true;
  2507. ctx = &g_state.contexts[i].context;
  2508. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2509. break;
  2510. }
  2511. }
  2512. if (ctx == NULL) {
  2513. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2514. ggml_critical_section_end();
  2515. return NULL;
  2516. }
  2517. // allow to call ggml_init with 0 size
  2518. if (params.mem_size == 0) {
  2519. params.mem_size = GGML_MEM_ALIGN;
  2520. }
  2521. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2522. *ctx = (struct ggml_context) {
  2523. /*.mem_size =*/ mem_size,
  2524. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2525. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2526. /*.no_alloc =*/ params.no_alloc,
  2527. /*.no_alloc_save =*/ params.no_alloc,
  2528. /*.n_objects =*/ 0,
  2529. /*.objects_begin =*/ NULL,
  2530. /*.objects_end =*/ NULL,
  2531. /*.scratch =*/ { 0, 0, NULL, },
  2532. /*.scratch_save =*/ { 0, 0, NULL, },
  2533. };
  2534. GGML_ASSERT(ctx->mem_buffer != NULL);
  2535. ggml_assert_aligned(ctx->mem_buffer);
  2536. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2537. ggml_critical_section_end();
  2538. return ctx;
  2539. }
  2540. void ggml_free(struct ggml_context * ctx) {
  2541. if (ctx == NULL) {
  2542. return;
  2543. }
  2544. // make this function thread safe
  2545. ggml_critical_section_start();
  2546. bool found = false;
  2547. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2548. if (&g_state.contexts[i].context == ctx) {
  2549. g_state.contexts[i].used = false;
  2550. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2551. __func__, i, ggml_used_mem(ctx));
  2552. if (ctx->mem_buffer_owned) {
  2553. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2554. }
  2555. found = true;
  2556. break;
  2557. }
  2558. }
  2559. if (!found) {
  2560. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2561. }
  2562. ggml_critical_section_end();
  2563. }
  2564. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2565. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2566. }
  2567. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2568. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2569. ctx->scratch = scratch;
  2570. return result;
  2571. }
  2572. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2573. return ctx->no_alloc;
  2574. }
  2575. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2576. ctx->no_alloc = no_alloc;
  2577. }
  2578. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2579. return ctx->mem_buffer;
  2580. }
  2581. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2582. return ctx->mem_size;
  2583. }
  2584. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2585. size_t max_size = 0;
  2586. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2587. size_t bytes = ggml_nbytes(tensor);
  2588. max_size = MAX(max_size, bytes);
  2589. }
  2590. return max_size;
  2591. }
  2592. // IMPORTANT:
  2593. // when creating "opt" tensors, always save and load the scratch buffer
  2594. // this is an error prone process, but it is necessary to support inplace
  2595. // operators when using scratch buffers
  2596. // TODO: implement a better way
  2597. static void ggml_scratch_save(struct ggml_context * ctx) {
  2598. // this is needed to allow opt tensors to store their data
  2599. // TODO: again, need to find a better way
  2600. ctx->no_alloc_save = ctx->no_alloc;
  2601. ctx->no_alloc = false;
  2602. ctx->scratch_save = ctx->scratch;
  2603. ctx->scratch.data = NULL;
  2604. }
  2605. static void ggml_scratch_load(struct ggml_context * ctx) {
  2606. ctx->no_alloc = ctx->no_alloc_save;
  2607. ctx->scratch = ctx->scratch_save;
  2608. }
  2609. ////////////////////////////////////////////////////////////////////////////////
  2610. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2611. // always insert objects at the end of the context's memory pool
  2612. struct ggml_object * obj_cur = ctx->objects_end;
  2613. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2614. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2615. const size_t cur_end = cur_offs + cur_size;
  2616. // align to GGML_MEM_ALIGN
  2617. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2618. char * const mem_buffer = ctx->mem_buffer;
  2619. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2620. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2621. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2622. __func__, cur_end + size_needed, ctx->mem_size);
  2623. assert(false);
  2624. return NULL;
  2625. }
  2626. *obj_new = (struct ggml_object) {
  2627. .offs = cur_end + GGML_OBJECT_SIZE,
  2628. .size = size_needed,
  2629. .next = NULL,
  2630. .type = type,
  2631. };
  2632. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2633. if (obj_cur != NULL) {
  2634. obj_cur->next = obj_new;
  2635. } else {
  2636. // this is the first object in this context
  2637. ctx->objects_begin = obj_new;
  2638. }
  2639. ctx->objects_end = obj_new;
  2640. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2641. return obj_new;
  2642. }
  2643. static struct ggml_tensor * ggml_new_tensor_impl(
  2644. struct ggml_context * ctx,
  2645. enum ggml_type type,
  2646. int n_dims,
  2647. const int64_t * ne,
  2648. struct ggml_tensor * view_src,
  2649. size_t view_offs) {
  2650. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2651. // find the base tensor and absolute offset
  2652. if (view_src != NULL && view_src->view_src != NULL) {
  2653. view_offs += view_src->view_offs;
  2654. view_src = view_src->view_src;
  2655. }
  2656. size_t data_size = ggml_row_size(type, ne[0]);
  2657. for (int i = 1; i < n_dims; i++) {
  2658. data_size *= ne[i];
  2659. }
  2660. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2661. void * data = view_src != NULL ? view_src->data : NULL;
  2662. if (data != NULL) {
  2663. data = (char *) data + view_offs;
  2664. }
  2665. size_t obj_alloc_size = 0;
  2666. if (view_src == NULL && !ctx->no_alloc) {
  2667. if (ctx->scratch.data != NULL) {
  2668. // allocate tensor data in the scratch buffer
  2669. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2670. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2671. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2672. assert(false);
  2673. return NULL;
  2674. }
  2675. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2676. ctx->scratch.offs += data_size;
  2677. } else {
  2678. // allocate tensor data in the context's memory pool
  2679. obj_alloc_size = data_size;
  2680. }
  2681. }
  2682. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2683. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2684. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2685. *result = (struct ggml_tensor) {
  2686. /*.type =*/ type,
  2687. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2688. /*.buffer =*/ NULL,
  2689. /*.ne =*/ { 1, 1, 1, 1 },
  2690. /*.nb =*/ { 0, 0, 0, 0 },
  2691. /*.op =*/ GGML_OP_NONE,
  2692. /*.op_params =*/ { 0 },
  2693. /*.flags =*/ 0,
  2694. /*.grad =*/ NULL,
  2695. /*.src =*/ { NULL },
  2696. /*.perf_runs =*/ 0,
  2697. /*.perf_cycles =*/ 0,
  2698. /*.perf_time_us =*/ 0,
  2699. /*.view_src =*/ view_src,
  2700. /*.view_offs =*/ view_offs,
  2701. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2702. /*.name =*/ { 0 },
  2703. /*.extra =*/ NULL,
  2704. /*.padding =*/ { 0 },
  2705. };
  2706. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2707. //ggml_assert_aligned(result->data);
  2708. for (int i = 0; i < n_dims; i++) {
  2709. result->ne[i] = ne[i];
  2710. }
  2711. result->nb[0] = ggml_type_size(type);
  2712. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2713. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2714. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2715. }
  2716. ctx->n_objects++;
  2717. return result;
  2718. }
  2719. struct ggml_tensor * ggml_new_tensor(
  2720. struct ggml_context * ctx,
  2721. enum ggml_type type,
  2722. int n_dims,
  2723. const int64_t * ne) {
  2724. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2725. }
  2726. struct ggml_tensor * ggml_new_tensor_1d(
  2727. struct ggml_context * ctx,
  2728. enum ggml_type type,
  2729. int64_t ne0) {
  2730. return ggml_new_tensor(ctx, type, 1, &ne0);
  2731. }
  2732. struct ggml_tensor * ggml_new_tensor_2d(
  2733. struct ggml_context * ctx,
  2734. enum ggml_type type,
  2735. int64_t ne0,
  2736. int64_t ne1) {
  2737. const int64_t ne[2] = { ne0, ne1 };
  2738. return ggml_new_tensor(ctx, type, 2, ne);
  2739. }
  2740. struct ggml_tensor * ggml_new_tensor_3d(
  2741. struct ggml_context * ctx,
  2742. enum ggml_type type,
  2743. int64_t ne0,
  2744. int64_t ne1,
  2745. int64_t ne2) {
  2746. const int64_t ne[3] = { ne0, ne1, ne2 };
  2747. return ggml_new_tensor(ctx, type, 3, ne);
  2748. }
  2749. struct ggml_tensor * ggml_new_tensor_4d(
  2750. struct ggml_context * ctx,
  2751. enum ggml_type type,
  2752. int64_t ne0,
  2753. int64_t ne1,
  2754. int64_t ne2,
  2755. int64_t ne3) {
  2756. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2757. return ggml_new_tensor(ctx, type, 4, ne);
  2758. }
  2759. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2760. ggml_scratch_save(ctx);
  2761. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2762. ggml_scratch_load(ctx);
  2763. ggml_set_i32(result, value);
  2764. return result;
  2765. }
  2766. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2767. ggml_scratch_save(ctx);
  2768. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2769. ggml_scratch_load(ctx);
  2770. ggml_set_f32(result, value);
  2771. return result;
  2772. }
  2773. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2774. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2775. }
  2776. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2777. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2778. assert(params_size <= GGML_MAX_OP_PARAMS);
  2779. memcpy(tensor->op_params, params, params_size);
  2780. }
  2781. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2782. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2783. return ((const int32_t *)(tensor->op_params))[i];
  2784. }
  2785. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2786. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2787. return ((const float *)(tensor->op_params))[i];
  2788. }
  2789. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2790. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2791. ((int32_t *)(tensor->op_params))[i] = value;
  2792. }
  2793. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2794. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2795. ((float *)(tensor->op_params))[i] = value;
  2796. }
  2797. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2798. memset(tensor->data, 0, ggml_nbytes(tensor));
  2799. return tensor;
  2800. }
  2801. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2802. const int n = ggml_nrows(tensor);
  2803. const int nc = tensor->ne[0];
  2804. const size_t n1 = tensor->nb[1];
  2805. char * const data = tensor->data;
  2806. switch (tensor->type) {
  2807. case GGML_TYPE_I8:
  2808. {
  2809. assert(tensor->nb[0] == sizeof(int8_t));
  2810. for (int i = 0; i < n; i++) {
  2811. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2812. }
  2813. } break;
  2814. case GGML_TYPE_I16:
  2815. {
  2816. assert(tensor->nb[0] == sizeof(int16_t));
  2817. for (int i = 0; i < n; i++) {
  2818. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2819. }
  2820. } break;
  2821. case GGML_TYPE_I32:
  2822. {
  2823. assert(tensor->nb[0] == sizeof(int32_t));
  2824. for (int i = 0; i < n; i++) {
  2825. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2826. }
  2827. } break;
  2828. case GGML_TYPE_F16:
  2829. {
  2830. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2831. for (int i = 0; i < n; i++) {
  2832. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2833. }
  2834. } break;
  2835. case GGML_TYPE_BF16:
  2836. {
  2837. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2838. for (int i = 0; i < n; i++) {
  2839. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2840. }
  2841. } break;
  2842. case GGML_TYPE_F32:
  2843. {
  2844. assert(tensor->nb[0] == sizeof(float));
  2845. for (int i = 0; i < n; i++) {
  2846. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2847. }
  2848. } break;
  2849. default:
  2850. {
  2851. GGML_ASSERT(false);
  2852. } break;
  2853. }
  2854. return tensor;
  2855. }
  2856. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2857. const int n = ggml_nrows(tensor);
  2858. const int nc = tensor->ne[0];
  2859. const size_t n1 = tensor->nb[1];
  2860. char * const data = tensor->data;
  2861. switch (tensor->type) {
  2862. case GGML_TYPE_I8:
  2863. {
  2864. assert(tensor->nb[0] == sizeof(int8_t));
  2865. for (int i = 0; i < n; i++) {
  2866. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2867. }
  2868. } break;
  2869. case GGML_TYPE_I16:
  2870. {
  2871. assert(tensor->nb[0] == sizeof(int16_t));
  2872. for (int i = 0; i < n; i++) {
  2873. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2874. }
  2875. } break;
  2876. case GGML_TYPE_I32:
  2877. {
  2878. assert(tensor->nb[0] == sizeof(int32_t));
  2879. for (int i = 0; i < n; i++) {
  2880. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2881. }
  2882. } break;
  2883. case GGML_TYPE_F16:
  2884. {
  2885. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2886. for (int i = 0; i < n; i++) {
  2887. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2888. }
  2889. } break;
  2890. case GGML_TYPE_BF16:
  2891. {
  2892. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2893. for (int i = 0; i < n; i++) {
  2894. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2895. }
  2896. } break;
  2897. case GGML_TYPE_F32:
  2898. {
  2899. assert(tensor->nb[0] == sizeof(float));
  2900. for (int i = 0; i < n; i++) {
  2901. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2902. }
  2903. } break;
  2904. default:
  2905. {
  2906. GGML_ASSERT(false);
  2907. } break;
  2908. }
  2909. return tensor;
  2910. }
  2911. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2912. const int64_t ne2 = tensor->ne[2];
  2913. const int64_t ne1 = tensor->ne[1];
  2914. const int64_t ne0 = tensor->ne[0];
  2915. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2916. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2917. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2918. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2919. if (i0) {
  2920. * i0 = i0_;
  2921. }
  2922. if (i1) {
  2923. * i1 = i1_;
  2924. }
  2925. if (i2) {
  2926. * i2 = i2_;
  2927. }
  2928. if (i3) {
  2929. * i3 = i3_;
  2930. }
  2931. }
  2932. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2933. if (!ggml_is_contiguous(tensor)) {
  2934. int64_t id[4] = { 0, 0, 0, 0 };
  2935. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2936. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2937. }
  2938. switch (tensor->type) {
  2939. case GGML_TYPE_I8:
  2940. {
  2941. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2942. return ((int8_t *)(tensor->data))[i];
  2943. }
  2944. case GGML_TYPE_I16:
  2945. {
  2946. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2947. return ((int16_t *)(tensor->data))[i];
  2948. }
  2949. case GGML_TYPE_I32:
  2950. {
  2951. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2952. return ((int32_t *)(tensor->data))[i];
  2953. }
  2954. case GGML_TYPE_F16:
  2955. {
  2956. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2957. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2958. }
  2959. case GGML_TYPE_BF16:
  2960. {
  2961. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2962. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2963. }
  2964. case GGML_TYPE_F32:
  2965. {
  2966. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2967. return ((float *)(tensor->data))[i];
  2968. }
  2969. default:
  2970. {
  2971. GGML_ASSERT(false);
  2972. }
  2973. }
  2974. return 0.0f;
  2975. }
  2976. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2977. if (!ggml_is_contiguous(tensor)) {
  2978. int64_t id[4] = { 0, 0, 0, 0 };
  2979. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2980. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2981. return;
  2982. }
  2983. switch (tensor->type) {
  2984. case GGML_TYPE_I8:
  2985. {
  2986. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2987. ((int8_t *)(tensor->data))[i] = value;
  2988. } break;
  2989. case GGML_TYPE_I16:
  2990. {
  2991. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2992. ((int16_t *)(tensor->data))[i] = value;
  2993. } break;
  2994. case GGML_TYPE_I32:
  2995. {
  2996. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2997. ((int32_t *)(tensor->data))[i] = value;
  2998. } break;
  2999. case GGML_TYPE_F16:
  3000. {
  3001. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3002. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3003. } break;
  3004. case GGML_TYPE_BF16:
  3005. {
  3006. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3007. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3008. } break;
  3009. case GGML_TYPE_F32:
  3010. {
  3011. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3012. ((float *)(tensor->data))[i] = value;
  3013. } break;
  3014. default:
  3015. {
  3016. GGML_ASSERT(false);
  3017. } break;
  3018. }
  3019. }
  3020. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3021. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3022. switch (tensor->type) {
  3023. case GGML_TYPE_I8:
  3024. return ((int8_t *) data)[0];
  3025. case GGML_TYPE_I16:
  3026. return ((int16_t *) data)[0];
  3027. case GGML_TYPE_I32:
  3028. return ((int32_t *) data)[0];
  3029. case GGML_TYPE_F16:
  3030. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3031. case GGML_TYPE_BF16:
  3032. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3033. case GGML_TYPE_F32:
  3034. return ((float *) data)[0];
  3035. default:
  3036. GGML_ASSERT(false);
  3037. }
  3038. return 0.0f;
  3039. }
  3040. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3041. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3042. switch (tensor->type) {
  3043. case GGML_TYPE_I8:
  3044. {
  3045. ((int8_t *)(data))[0] = value;
  3046. } break;
  3047. case GGML_TYPE_I16:
  3048. {
  3049. ((int16_t *)(data))[0] = value;
  3050. } break;
  3051. case GGML_TYPE_I32:
  3052. {
  3053. ((int32_t *)(data))[0] = value;
  3054. } break;
  3055. case GGML_TYPE_F16:
  3056. {
  3057. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3058. } break;
  3059. case GGML_TYPE_BF16:
  3060. {
  3061. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3062. } break;
  3063. case GGML_TYPE_F32:
  3064. {
  3065. ((float *)(data))[0] = value;
  3066. } break;
  3067. default:
  3068. {
  3069. GGML_ASSERT(false);
  3070. } break;
  3071. }
  3072. }
  3073. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3074. if (!ggml_is_contiguous(tensor)) {
  3075. int64_t id[4] = { 0, 0, 0, 0 };
  3076. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3077. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3078. }
  3079. switch (tensor->type) {
  3080. case GGML_TYPE_I8:
  3081. {
  3082. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3083. return ((int8_t *)(tensor->data))[i];
  3084. }
  3085. case GGML_TYPE_I16:
  3086. {
  3087. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3088. return ((int16_t *)(tensor->data))[i];
  3089. }
  3090. case GGML_TYPE_I32:
  3091. {
  3092. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3093. return ((int32_t *)(tensor->data))[i];
  3094. }
  3095. case GGML_TYPE_F16:
  3096. {
  3097. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3098. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3099. }
  3100. case GGML_TYPE_BF16:
  3101. {
  3102. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3103. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3104. }
  3105. case GGML_TYPE_F32:
  3106. {
  3107. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3108. return ((float *)(tensor->data))[i];
  3109. }
  3110. default:
  3111. {
  3112. GGML_ASSERT(false);
  3113. }
  3114. }
  3115. return 0.0f;
  3116. }
  3117. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3118. if (!ggml_is_contiguous(tensor)) {
  3119. int64_t id[4] = { 0, 0, 0, 0 };
  3120. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3121. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3122. return;
  3123. }
  3124. switch (tensor->type) {
  3125. case GGML_TYPE_I8:
  3126. {
  3127. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3128. ((int8_t *)(tensor->data))[i] = value;
  3129. } break;
  3130. case GGML_TYPE_I16:
  3131. {
  3132. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3133. ((int16_t *)(tensor->data))[i] = value;
  3134. } break;
  3135. case GGML_TYPE_I32:
  3136. {
  3137. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3138. ((int32_t *)(tensor->data))[i] = value;
  3139. } break;
  3140. case GGML_TYPE_F16:
  3141. {
  3142. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3143. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3144. } break;
  3145. case GGML_TYPE_BF16:
  3146. {
  3147. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3148. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3149. } break;
  3150. case GGML_TYPE_F32:
  3151. {
  3152. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3153. ((float *)(tensor->data))[i] = value;
  3154. } break;
  3155. default:
  3156. {
  3157. GGML_ASSERT(false);
  3158. } break;
  3159. }
  3160. }
  3161. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3162. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3163. switch (tensor->type) {
  3164. case GGML_TYPE_I8:
  3165. return ((int8_t *) data)[0];
  3166. case GGML_TYPE_I16:
  3167. return ((int16_t *) data)[0];
  3168. case GGML_TYPE_I32:
  3169. return ((int32_t *) data)[0];
  3170. case GGML_TYPE_F16:
  3171. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3172. case GGML_TYPE_BF16:
  3173. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3174. case GGML_TYPE_F32:
  3175. return ((float *) data)[0];
  3176. default:
  3177. GGML_ASSERT(false);
  3178. }
  3179. return 0.0f;
  3180. }
  3181. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3182. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3183. switch (tensor->type) {
  3184. case GGML_TYPE_I8:
  3185. {
  3186. ((int8_t *)(data))[0] = value;
  3187. } break;
  3188. case GGML_TYPE_I16:
  3189. {
  3190. ((int16_t *)(data))[0] = value;
  3191. } break;
  3192. case GGML_TYPE_I32:
  3193. {
  3194. ((int32_t *)(data))[0] = value;
  3195. } break;
  3196. case GGML_TYPE_F16:
  3197. {
  3198. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3199. } break;
  3200. case GGML_TYPE_BF16:
  3201. {
  3202. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3203. } break;
  3204. case GGML_TYPE_F32:
  3205. {
  3206. ((float *)(data))[0] = value;
  3207. } break;
  3208. default:
  3209. {
  3210. GGML_ASSERT(false);
  3211. } break;
  3212. }
  3213. }
  3214. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3215. return tensor->data;
  3216. }
  3217. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3218. assert(tensor->type == GGML_TYPE_F32);
  3219. return (float *)(tensor->data);
  3220. }
  3221. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3222. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3223. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3224. }
  3225. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3226. return tensor->name;
  3227. }
  3228. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3229. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3230. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3231. return tensor;
  3232. }
  3233. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3234. va_list args;
  3235. va_start(args, fmt);
  3236. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3237. va_end(args);
  3238. return tensor;
  3239. }
  3240. struct ggml_tensor * ggml_view_tensor(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * src) {
  3243. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3244. ggml_format_name(result, "%s (view)", src->name);
  3245. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3246. result->nb[i] = src->nb[i];
  3247. }
  3248. return result;
  3249. }
  3250. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3251. struct ggml_object * obj = ctx->objects_begin;
  3252. char * const mem_buffer = ctx->mem_buffer;
  3253. while (obj != NULL) {
  3254. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3255. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3256. }
  3257. obj = obj->next;
  3258. }
  3259. return NULL;
  3260. }
  3261. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3262. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3263. obj = obj->next;
  3264. char * const mem_buffer = ctx->mem_buffer;
  3265. while (obj != NULL) {
  3266. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3267. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3268. }
  3269. obj = obj->next;
  3270. }
  3271. return NULL;
  3272. }
  3273. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3274. struct ggml_object * obj = ctx->objects_begin;
  3275. char * const mem_buffer = ctx->mem_buffer;
  3276. while (obj != NULL) {
  3277. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3278. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3279. if (strcmp(cur->name, name) == 0) {
  3280. return cur;
  3281. }
  3282. }
  3283. obj = obj->next;
  3284. }
  3285. return NULL;
  3286. }
  3287. ////////////////////////////////////////////////////////////////////////////////
  3288. // ggml_dup
  3289. static struct ggml_tensor * ggml_dup_impl(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a,
  3292. bool inplace) {
  3293. bool is_node = false;
  3294. if (!inplace && (a->grad)) {
  3295. is_node = true;
  3296. }
  3297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3298. result->op = GGML_OP_DUP;
  3299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3300. result->src[0] = a;
  3301. return result;
  3302. }
  3303. struct ggml_tensor * ggml_dup(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a) {
  3306. return ggml_dup_impl(ctx, a, false);
  3307. }
  3308. struct ggml_tensor * ggml_dup_inplace(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a) {
  3311. return ggml_dup_impl(ctx, a, true);
  3312. }
  3313. // ggml_add
  3314. static struct ggml_tensor * ggml_add_impl(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. struct ggml_tensor * b,
  3318. bool inplace) {
  3319. GGML_ASSERT(ggml_can_repeat(b, a));
  3320. bool is_node = false;
  3321. if (!inplace && (a->grad || b->grad)) {
  3322. // TODO: support backward pass for broadcasting
  3323. GGML_ASSERT(ggml_are_same_shape(a, b));
  3324. is_node = true;
  3325. }
  3326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3327. result->op = GGML_OP_ADD;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src[0] = a;
  3330. result->src[1] = b;
  3331. return result;
  3332. }
  3333. struct ggml_tensor * ggml_add(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a,
  3336. struct ggml_tensor * b) {
  3337. return ggml_add_impl(ctx, a, b, false);
  3338. }
  3339. struct ggml_tensor * ggml_add_inplace(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a,
  3342. struct ggml_tensor * b) {
  3343. return ggml_add_impl(ctx, a, b, true);
  3344. }
  3345. // ggml_add_cast
  3346. static struct ggml_tensor * ggml_add_cast_impl(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a,
  3349. struct ggml_tensor * b,
  3350. enum ggml_type type) {
  3351. // TODO: support less-strict constraint
  3352. // GGML_ASSERT(ggml_can_repeat(b, a));
  3353. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3354. // currently only supported for quantized input and f16
  3355. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3356. a->type == GGML_TYPE_F16 ||
  3357. a->type == GGML_TYPE_BF16);
  3358. bool is_node = false;
  3359. if (a->grad || b->grad) {
  3360. // TODO: support backward pass for broadcasting
  3361. GGML_ASSERT(ggml_are_same_shape(a, b));
  3362. is_node = true;
  3363. }
  3364. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3365. result->op = GGML_OP_ADD;
  3366. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3367. result->src[0] = a;
  3368. result->src[1] = b;
  3369. return result;
  3370. }
  3371. struct ggml_tensor * ggml_add_cast(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. struct ggml_tensor * b,
  3375. enum ggml_type type) {
  3376. return ggml_add_cast_impl(ctx, a, b, type);
  3377. }
  3378. // ggml_add1
  3379. static struct ggml_tensor * ggml_add1_impl(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a,
  3382. struct ggml_tensor * b,
  3383. bool inplace) {
  3384. GGML_ASSERT(ggml_is_scalar(b));
  3385. GGML_ASSERT(ggml_is_padded_1d(a));
  3386. bool is_node = false;
  3387. if (a->grad || b->grad) {
  3388. is_node = true;
  3389. }
  3390. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3391. result->op = GGML_OP_ADD1;
  3392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3393. result->src[0] = a;
  3394. result->src[1] = b;
  3395. return result;
  3396. }
  3397. struct ggml_tensor * ggml_add1(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a,
  3400. struct ggml_tensor * b) {
  3401. return ggml_add1_impl(ctx, a, b, false);
  3402. }
  3403. struct ggml_tensor * ggml_add1_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a,
  3406. struct ggml_tensor * b) {
  3407. return ggml_add1_impl(ctx, a, b, true);
  3408. }
  3409. // ggml_acc
  3410. static struct ggml_tensor * ggml_acc_impl(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a,
  3413. struct ggml_tensor * b,
  3414. size_t nb1,
  3415. size_t nb2,
  3416. size_t nb3,
  3417. size_t offset,
  3418. bool inplace) {
  3419. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3420. GGML_ASSERT(ggml_is_contiguous(a));
  3421. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3422. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3423. bool is_node = false;
  3424. if (!inplace && (a->grad || b->grad)) {
  3425. is_node = true;
  3426. }
  3427. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3428. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3429. ggml_set_op_params(result, params, sizeof(params));
  3430. result->op = GGML_OP_ACC;
  3431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3432. result->src[0] = a;
  3433. result->src[1] = b;
  3434. return result;
  3435. }
  3436. struct ggml_tensor * ggml_acc(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. struct ggml_tensor * b,
  3440. size_t nb1,
  3441. size_t nb2,
  3442. size_t nb3,
  3443. size_t offset) {
  3444. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3445. }
  3446. struct ggml_tensor * ggml_acc_inplace(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a,
  3449. struct ggml_tensor * b,
  3450. size_t nb1,
  3451. size_t nb2,
  3452. size_t nb3,
  3453. size_t offset) {
  3454. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3455. }
  3456. // ggml_sub
  3457. static struct ggml_tensor * ggml_sub_impl(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. struct ggml_tensor * b,
  3461. bool inplace) {
  3462. GGML_ASSERT(ggml_are_same_shape(a, b));
  3463. bool is_node = false;
  3464. if (!inplace && (a->grad || b->grad)) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. result->op = GGML_OP_SUB;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src[0] = a;
  3471. result->src[1] = b;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_sub(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. struct ggml_tensor * b) {
  3478. return ggml_sub_impl(ctx, a, b, false);
  3479. }
  3480. struct ggml_tensor * ggml_sub_inplace(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. struct ggml_tensor * b) {
  3484. return ggml_sub_impl(ctx, a, b, true);
  3485. }
  3486. // ggml_mul
  3487. static struct ggml_tensor * ggml_mul_impl(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. bool inplace) {
  3492. GGML_ASSERT(ggml_can_repeat(b, a));
  3493. bool is_node = false;
  3494. if (!inplace && (a->grad || b->grad)) {
  3495. // TODO: support backward pass for broadcasting
  3496. GGML_ASSERT(ggml_are_same_shape(a, b));
  3497. is_node = true;
  3498. }
  3499. if (inplace) {
  3500. GGML_ASSERT(!is_node);
  3501. }
  3502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3503. result->op = GGML_OP_MUL;
  3504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3505. result->src[0] = a;
  3506. result->src[1] = b;
  3507. return result;
  3508. }
  3509. struct ggml_tensor * ggml_mul(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a,
  3512. struct ggml_tensor * b) {
  3513. return ggml_mul_impl(ctx, a, b, false);
  3514. }
  3515. struct ggml_tensor * ggml_mul_inplace(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b) {
  3519. return ggml_mul_impl(ctx, a, b, true);
  3520. }
  3521. // ggml_div
  3522. static struct ggml_tensor * ggml_div_impl(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a,
  3525. struct ggml_tensor * b,
  3526. bool inplace) {
  3527. GGML_ASSERT(ggml_can_repeat(b, a));
  3528. bool is_node = false;
  3529. if (!inplace && (a->grad || b->grad)) {
  3530. is_node = true;
  3531. }
  3532. if (inplace) {
  3533. GGML_ASSERT(!is_node);
  3534. }
  3535. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3536. result->op = GGML_OP_DIV;
  3537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3538. result->src[0] = a;
  3539. result->src[1] = b;
  3540. return result;
  3541. }
  3542. struct ggml_tensor * ggml_div(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b) {
  3546. return ggml_div_impl(ctx, a, b, false);
  3547. }
  3548. struct ggml_tensor * ggml_div_inplace(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a,
  3551. struct ggml_tensor * b) {
  3552. return ggml_div_impl(ctx, a, b, true);
  3553. }
  3554. // ggml_sqr
  3555. static struct ggml_tensor * ggml_sqr_impl(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. bool inplace) {
  3559. bool is_node = false;
  3560. if (!inplace && (a->grad)) {
  3561. is_node = true;
  3562. }
  3563. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3564. result->op = GGML_OP_SQR;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src[0] = a;
  3567. return result;
  3568. }
  3569. struct ggml_tensor * ggml_sqr(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_sqr_impl(ctx, a, false);
  3573. }
  3574. struct ggml_tensor * ggml_sqr_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_sqr_impl(ctx, a, true);
  3578. }
  3579. // ggml_sqrt
  3580. static struct ggml_tensor * ggml_sqrt_impl(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a,
  3583. bool inplace) {
  3584. bool is_node = false;
  3585. if (!inplace && (a->grad)) {
  3586. is_node = true;
  3587. }
  3588. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3589. result->op = GGML_OP_SQRT;
  3590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3591. result->src[0] = a;
  3592. return result;
  3593. }
  3594. struct ggml_tensor * ggml_sqrt(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a) {
  3597. return ggml_sqrt_impl(ctx, a, false);
  3598. }
  3599. struct ggml_tensor * ggml_sqrt_inplace(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a) {
  3602. return ggml_sqrt_impl(ctx, a, true);
  3603. }
  3604. // ggml_log
  3605. static struct ggml_tensor * ggml_log_impl(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. bool inplace) {
  3609. bool is_node = false;
  3610. if (!inplace && (a->grad)) {
  3611. is_node = true;
  3612. }
  3613. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3614. result->op = GGML_OP_LOG;
  3615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3616. result->src[0] = a;
  3617. return result;
  3618. }
  3619. struct ggml_tensor * ggml_log(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_log_impl(ctx, a, false);
  3623. }
  3624. struct ggml_tensor * ggml_log_inplace(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_log_impl(ctx, a, true);
  3628. }
  3629. // ggml_sum
  3630. struct ggml_tensor * ggml_sum(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a) {
  3633. bool is_node = false;
  3634. if (a->grad) {
  3635. is_node = true;
  3636. }
  3637. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3638. result->op = GGML_OP_SUM;
  3639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3640. result->src[0] = a;
  3641. return result;
  3642. }
  3643. // ggml_sum_rows
  3644. struct ggml_tensor * ggml_sum_rows(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. bool is_node = false;
  3648. if (a->grad) {
  3649. is_node = true;
  3650. }
  3651. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3652. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3653. ne[i] = a->ne[i];
  3654. }
  3655. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3656. result->op = GGML_OP_SUM_ROWS;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src[0] = a;
  3659. return result;
  3660. }
  3661. // ggml_mean
  3662. struct ggml_tensor * ggml_mean(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a) {
  3665. bool is_node = false;
  3666. if (a->grad) {
  3667. GGML_ASSERT(false); // TODO: implement
  3668. is_node = true;
  3669. }
  3670. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3671. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3672. result->op = GGML_OP_MEAN;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src[0] = a;
  3675. return result;
  3676. }
  3677. // ggml_argmax
  3678. struct ggml_tensor * ggml_argmax(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a) {
  3681. GGML_ASSERT(ggml_is_matrix(a));
  3682. bool is_node = false;
  3683. if (a->grad) {
  3684. GGML_ASSERT(false);
  3685. is_node = true;
  3686. }
  3687. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3688. result->op = GGML_OP_ARGMAX;
  3689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3690. result->src[0] = a;
  3691. return result;
  3692. }
  3693. // ggml_repeat
  3694. struct ggml_tensor * ggml_repeat(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. struct ggml_tensor * b) {
  3698. GGML_ASSERT(ggml_can_repeat(a, b));
  3699. bool is_node = false;
  3700. if (a->grad) {
  3701. is_node = true;
  3702. }
  3703. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3704. result->op = GGML_OP_REPEAT;
  3705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3706. result->src[0] = a;
  3707. return result;
  3708. }
  3709. // ggml_repeat_back
  3710. struct ggml_tensor * ggml_repeat_back(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a,
  3713. struct ggml_tensor * b) {
  3714. GGML_ASSERT(ggml_can_repeat(b, a));
  3715. bool is_node = false;
  3716. if (a->grad) {
  3717. is_node = true;
  3718. }
  3719. if (ggml_are_same_shape(a, b) && !is_node) {
  3720. return a;
  3721. }
  3722. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3723. result->op = GGML_OP_REPEAT_BACK;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src[0] = a;
  3726. return result;
  3727. }
  3728. // ggml_concat
  3729. struct ggml_tensor * ggml_concat(
  3730. struct ggml_context* ctx,
  3731. struct ggml_tensor* a,
  3732. struct ggml_tensor* b) {
  3733. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3734. bool is_node = false;
  3735. if (a->grad || b->grad) {
  3736. is_node = true;
  3737. }
  3738. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3739. result->op = GGML_OP_CONCAT;
  3740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3741. result->src[0] = a;
  3742. result->src[1] = b;
  3743. return result;
  3744. }
  3745. // ggml_abs
  3746. struct ggml_tensor * ggml_abs(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a) {
  3749. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3750. }
  3751. struct ggml_tensor * ggml_abs_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a) {
  3754. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3755. }
  3756. // ggml_sgn
  3757. struct ggml_tensor * ggml_sgn(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a) {
  3760. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3761. }
  3762. struct ggml_tensor * ggml_sgn_inplace(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a) {
  3765. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3766. }
  3767. // ggml_neg
  3768. struct ggml_tensor * ggml_neg(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a) {
  3771. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3772. }
  3773. struct ggml_tensor * ggml_neg_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a) {
  3776. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3777. }
  3778. // ggml_step
  3779. struct ggml_tensor * ggml_step(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a) {
  3782. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3783. }
  3784. struct ggml_tensor * ggml_step_inplace(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a) {
  3787. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3788. }
  3789. // ggml_tanh
  3790. struct ggml_tensor * ggml_tanh(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a) {
  3793. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3794. }
  3795. struct ggml_tensor * ggml_tanh_inplace(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a) {
  3798. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3799. }
  3800. // ggml_elu
  3801. struct ggml_tensor * ggml_elu(
  3802. struct ggml_context * ctx,
  3803. struct ggml_tensor * a) {
  3804. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3805. }
  3806. struct ggml_tensor * ggml_elu_inplace(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3810. }
  3811. // ggml_relu
  3812. struct ggml_tensor * ggml_relu(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a) {
  3815. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3816. }
  3817. struct ggml_tensor * ggml_relu_inplace(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a) {
  3820. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3821. }
  3822. // ggml_leaky_relu
  3823. struct ggml_tensor * ggml_leaky_relu(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3826. bool is_node = false;
  3827. if (!inplace && (a->grad)) {
  3828. is_node = true;
  3829. }
  3830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3831. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3832. result->op = GGML_OP_LEAKY_RELU;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src[0] = a;
  3835. return result;
  3836. }
  3837. // ggml_sigmoid
  3838. struct ggml_tensor * ggml_sigmoid(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a) {
  3841. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  3842. }
  3843. struct ggml_tensor * ggml_sigmoid_inplace(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a) {
  3846. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  3847. }
  3848. // ggml_gelu
  3849. struct ggml_tensor * ggml_gelu(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a) {
  3852. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3853. }
  3854. struct ggml_tensor * ggml_gelu_inplace(
  3855. struct ggml_context * ctx,
  3856. struct ggml_tensor * a) {
  3857. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3858. }
  3859. // ggml_gelu_quick
  3860. struct ggml_tensor * ggml_gelu_quick(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a) {
  3863. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3864. }
  3865. struct ggml_tensor * ggml_gelu_quick_inplace(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3869. }
  3870. // ggml_silu
  3871. struct ggml_tensor * ggml_silu(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a) {
  3874. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3875. }
  3876. struct ggml_tensor * ggml_silu_inplace(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a) {
  3879. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3880. }
  3881. // ggml_silu_back
  3882. struct ggml_tensor * ggml_silu_back(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. bool is_node = false;
  3887. if (a->grad || b->grad) {
  3888. // TODO: implement backward
  3889. is_node = true;
  3890. }
  3891. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3892. result->op = GGML_OP_SILU_BACK;
  3893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3894. result->src[0] = a;
  3895. result->src[1] = b;
  3896. return result;
  3897. }
  3898. // ggml hardswish
  3899. struct ggml_tensor * ggml_hardswish(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a) {
  3902. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3903. }
  3904. // ggml hardsigmoid
  3905. struct ggml_tensor * ggml_hardsigmoid(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a) {
  3908. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3909. }
  3910. // ggml_norm
  3911. static struct ggml_tensor * ggml_norm_impl(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. float eps,
  3915. bool inplace) {
  3916. bool is_node = false;
  3917. if (!inplace && (a->grad)) {
  3918. GGML_ASSERT(false); // TODO: implement backward
  3919. is_node = true;
  3920. }
  3921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3922. ggml_set_op_params(result, &eps, sizeof(eps));
  3923. result->op = GGML_OP_NORM;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src[0] = a;
  3926. return result;
  3927. }
  3928. struct ggml_tensor * ggml_norm(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. float eps) {
  3932. return ggml_norm_impl(ctx, a, eps, false);
  3933. }
  3934. struct ggml_tensor * ggml_norm_inplace(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. float eps) {
  3938. return ggml_norm_impl(ctx, a, eps, true);
  3939. }
  3940. // ggml_rms_norm
  3941. static struct ggml_tensor * ggml_rms_norm_impl(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. float eps,
  3945. bool inplace) {
  3946. bool is_node = false;
  3947. if (!inplace && (a->grad)) {
  3948. is_node = true;
  3949. }
  3950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3951. ggml_set_op_params(result, &eps, sizeof(eps));
  3952. result->op = GGML_OP_RMS_NORM;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src[0] = a;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_rms_norm(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. float eps) {
  3961. return ggml_rms_norm_impl(ctx, a, eps, false);
  3962. }
  3963. struct ggml_tensor * ggml_rms_norm_inplace(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. float eps) {
  3967. return ggml_rms_norm_impl(ctx, a, eps, true);
  3968. }
  3969. // ggml_rms_norm_back
  3970. struct ggml_tensor * ggml_rms_norm_back(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. struct ggml_tensor * b,
  3974. float eps) {
  3975. bool is_node = false;
  3976. if (a->grad) {
  3977. // TODO: implement backward
  3978. is_node = true;
  3979. }
  3980. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3981. ggml_set_op_params(result, &eps, sizeof(eps));
  3982. result->op = GGML_OP_RMS_NORM_BACK;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. result->src[1] = b;
  3986. return result;
  3987. }
  3988. // ggml_group_norm
  3989. static struct ggml_tensor * ggml_group_norm_impl(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. int n_groups,
  3993. bool inplace) {
  3994. bool is_node = false;
  3995. if (!inplace && (a->grad)) {
  3996. GGML_ASSERT(false); // TODO: implement backward
  3997. is_node = true;
  3998. }
  3999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4000. result->op_params[0] = n_groups;
  4001. result->op = GGML_OP_GROUP_NORM;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src[0] = a;
  4004. return result;
  4005. }
  4006. struct ggml_tensor * ggml_group_norm(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. int n_groups) {
  4010. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4011. }
  4012. struct ggml_tensor * ggml_group_norm_inplace(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. int n_groups) {
  4016. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4017. }
  4018. // ggml_mul_mat
  4019. struct ggml_tensor * ggml_mul_mat(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. struct ggml_tensor * b) {
  4023. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4024. GGML_ASSERT(!ggml_is_transposed(a));
  4025. bool is_node = false;
  4026. if (a->grad || b->grad) {
  4027. is_node = true;
  4028. }
  4029. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4030. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4031. result->op = GGML_OP_MUL_MAT;
  4032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4033. result->src[0] = a;
  4034. result->src[1] = b;
  4035. return result;
  4036. }
  4037. void ggml_mul_mat_set_prec(
  4038. struct ggml_tensor * a,
  4039. enum ggml_prec prec) {
  4040. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4041. const int32_t prec_i32 = (int32_t) prec;
  4042. ggml_set_op_params_i32(a, 0, prec_i32);
  4043. }
  4044. // ggml_mul_mat_id
  4045. /*
  4046. c = ggml_mul_mat_id(ctx, as, b, ids);
  4047. as -> [cols, rows, n_expert]
  4048. ids -> [n_experts_used, n_tokens] (i32)
  4049. b -> [cols, n_expert_used, n_tokens]
  4050. c -> [cols, n_expert_used, n_tokens]
  4051. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4052. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4053. */
  4054. struct ggml_tensor * ggml_mul_mat_id(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * as,
  4057. struct ggml_tensor * b,
  4058. struct ggml_tensor * ids) {
  4059. GGML_ASSERT(!ggml_is_transposed(as));
  4060. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4061. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4062. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4063. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4064. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4065. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4066. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4067. bool is_node = false;
  4068. if (as->grad || b->grad) {
  4069. is_node = true;
  4070. }
  4071. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4072. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4073. result->op = GGML_OP_MUL_MAT_ID;
  4074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4075. result->src[0] = as;
  4076. result->src[1] = b;
  4077. result->src[2] = ids;
  4078. return result;
  4079. }
  4080. // ggml_out_prod
  4081. struct ggml_tensor * ggml_out_prod(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. struct ggml_tensor * b) {
  4085. GGML_ASSERT(ggml_can_out_prod(a, b));
  4086. GGML_ASSERT(!ggml_is_transposed(a));
  4087. bool is_node = false;
  4088. if (a->grad || b->grad) {
  4089. is_node = true;
  4090. }
  4091. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4092. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4093. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4094. result->op = GGML_OP_OUT_PROD;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src[0] = a;
  4097. result->src[1] = b;
  4098. return result;
  4099. }
  4100. // ggml_scale
  4101. static struct ggml_tensor * ggml_scale_impl(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. float s,
  4105. bool inplace) {
  4106. GGML_ASSERT(ggml_is_padded_1d(a));
  4107. bool is_node = false;
  4108. if (a->grad) {
  4109. is_node = true;
  4110. }
  4111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4112. ggml_set_op_params(result, &s, sizeof(s));
  4113. result->op = GGML_OP_SCALE;
  4114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4115. result->src[0] = a;
  4116. return result;
  4117. }
  4118. struct ggml_tensor * ggml_scale(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. float s) {
  4122. return ggml_scale_impl(ctx, a, s, false);
  4123. }
  4124. struct ggml_tensor * ggml_scale_inplace(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. float s) {
  4128. return ggml_scale_impl(ctx, a, s, true);
  4129. }
  4130. // ggml_set
  4131. static struct ggml_tensor * ggml_set_impl(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b,
  4135. size_t nb1,
  4136. size_t nb2,
  4137. size_t nb3,
  4138. size_t offset,
  4139. bool inplace) {
  4140. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4141. bool is_node = false;
  4142. if (a->grad || b->grad) {
  4143. is_node = true;
  4144. }
  4145. // make a view of the destination
  4146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4147. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4148. ggml_set_op_params(result, params, sizeof(params));
  4149. result->op = GGML_OP_SET;
  4150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4151. result->src[0] = a;
  4152. result->src[1] = b;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_set(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b,
  4159. size_t nb1,
  4160. size_t nb2,
  4161. size_t nb3,
  4162. size_t offset) {
  4163. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4164. }
  4165. struct ggml_tensor * ggml_set_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. struct ggml_tensor * b,
  4169. size_t nb1,
  4170. size_t nb2,
  4171. size_t nb3,
  4172. size_t offset) {
  4173. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4174. }
  4175. struct ggml_tensor * ggml_set_1d(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b,
  4179. size_t offset) {
  4180. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4181. }
  4182. struct ggml_tensor * ggml_set_1d_inplace(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b,
  4186. size_t offset) {
  4187. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4188. }
  4189. struct ggml_tensor * ggml_set_2d(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. struct ggml_tensor * b,
  4193. size_t nb1,
  4194. size_t offset) {
  4195. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4196. }
  4197. struct ggml_tensor * ggml_set_2d_inplace(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. struct ggml_tensor * b,
  4201. size_t nb1,
  4202. size_t offset) {
  4203. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4204. }
  4205. // ggml_cpy
  4206. static struct ggml_tensor * ggml_cpy_impl(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. struct ggml_tensor * b) {
  4210. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4211. bool is_node = false;
  4212. if (a->grad || b->grad) {
  4213. // inplace is false and either one have a grad
  4214. is_node = true;
  4215. }
  4216. // make a view of the destination
  4217. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4218. if (strlen(b->name) > 0) {
  4219. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4220. } else {
  4221. ggml_format_name(result, "%s (copy)", a->name);
  4222. }
  4223. result->op = GGML_OP_CPY;
  4224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4225. result->src[0] = a;
  4226. result->src[1] = b;
  4227. return result;
  4228. }
  4229. struct ggml_tensor * ggml_cpy(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. struct ggml_tensor * b) {
  4233. return ggml_cpy_impl(ctx, a, b);
  4234. }
  4235. struct ggml_tensor * ggml_cast(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a,
  4238. enum ggml_type type) {
  4239. bool is_node = false;
  4240. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4241. ggml_format_name(result, "%s (copy)", a->name);
  4242. result->op = GGML_OP_CPY;
  4243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4244. result->src[0] = a;
  4245. result->src[1] = result;
  4246. return result;
  4247. }
  4248. // ggml_cont
  4249. static struct ggml_tensor * ggml_cont_impl(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a) {
  4252. bool is_node = false;
  4253. if (a->grad) {
  4254. is_node = true;
  4255. }
  4256. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4257. ggml_format_name(result, "%s (cont)", a->name);
  4258. result->op = GGML_OP_CONT;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src[0] = a;
  4261. return result;
  4262. }
  4263. struct ggml_tensor * ggml_cont(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a) {
  4266. return ggml_cont_impl(ctx, a);
  4267. }
  4268. // make contiguous, with new shape
  4269. GGML_API struct ggml_tensor * ggml_cont_1d(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a,
  4272. int64_t ne0) {
  4273. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4274. }
  4275. GGML_API struct ggml_tensor * ggml_cont_2d(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. int64_t ne0,
  4279. int64_t ne1) {
  4280. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4281. }
  4282. GGML_API struct ggml_tensor * ggml_cont_3d(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. int64_t ne0,
  4286. int64_t ne1,
  4287. int64_t ne2) {
  4288. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4289. }
  4290. struct ggml_tensor * ggml_cont_4d(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. int64_t ne0,
  4294. int64_t ne1,
  4295. int64_t ne2,
  4296. int64_t ne3) {
  4297. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4298. bool is_node = false;
  4299. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4300. ggml_format_name(result, "%s (cont)", a->name);
  4301. result->op = GGML_OP_CONT;
  4302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4303. result->src[0] = a;
  4304. return result;
  4305. }
  4306. // ggml_reshape
  4307. struct ggml_tensor * ggml_reshape(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a,
  4310. struct ggml_tensor * b) {
  4311. GGML_ASSERT(ggml_is_contiguous(a));
  4312. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4313. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4314. bool is_node = false;
  4315. if (a->grad) {
  4316. is_node = true;
  4317. }
  4318. if (b->grad) {
  4319. // gradient propagation is not supported
  4320. //GGML_ASSERT(false);
  4321. }
  4322. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4323. ggml_format_name(result, "%s (reshaped)", a->name);
  4324. result->op = GGML_OP_RESHAPE;
  4325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4326. result->src[0] = a;
  4327. return result;
  4328. }
  4329. struct ggml_tensor * ggml_reshape_1d(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. int64_t ne0) {
  4333. GGML_ASSERT(ggml_is_contiguous(a));
  4334. GGML_ASSERT(ggml_nelements(a) == ne0);
  4335. bool is_node = false;
  4336. if (a->grad) {
  4337. is_node = true;
  4338. }
  4339. const int64_t ne[1] = { ne0 };
  4340. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4341. ggml_format_name(result, "%s (reshaped)", a->name);
  4342. result->op = GGML_OP_RESHAPE;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. return result;
  4346. }
  4347. struct ggml_tensor * ggml_reshape_2d(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. int64_t ne0,
  4351. int64_t ne1) {
  4352. GGML_ASSERT(ggml_is_contiguous(a));
  4353. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4354. bool is_node = false;
  4355. if (a->grad) {
  4356. is_node = true;
  4357. }
  4358. const int64_t ne[2] = { ne0, ne1 };
  4359. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4360. ggml_format_name(result, "%s (reshaped)", a->name);
  4361. result->op = GGML_OP_RESHAPE;
  4362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4363. result->src[0] = a;
  4364. return result;
  4365. }
  4366. struct ggml_tensor * ggml_reshape_3d(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a,
  4369. int64_t ne0,
  4370. int64_t ne1,
  4371. int64_t ne2) {
  4372. GGML_ASSERT(ggml_is_contiguous(a));
  4373. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4374. bool is_node = false;
  4375. if (a->grad) {
  4376. is_node = true;
  4377. }
  4378. const int64_t ne[3] = { ne0, ne1, ne2 };
  4379. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4380. ggml_format_name(result, "%s (reshaped)", a->name);
  4381. result->op = GGML_OP_RESHAPE;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src[0] = a;
  4384. return result;
  4385. }
  4386. struct ggml_tensor * ggml_reshape_4d(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. int64_t ne0,
  4390. int64_t ne1,
  4391. int64_t ne2,
  4392. int64_t ne3) {
  4393. GGML_ASSERT(ggml_is_contiguous(a));
  4394. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4395. bool is_node = false;
  4396. if (a->grad) {
  4397. is_node = true;
  4398. }
  4399. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4400. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4401. ggml_format_name(result, "%s (reshaped)", a->name);
  4402. result->op = GGML_OP_RESHAPE;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src[0] = a;
  4405. return result;
  4406. }
  4407. static struct ggml_tensor * ggml_view_impl(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. int n_dims,
  4411. const int64_t * ne,
  4412. size_t offset) {
  4413. bool is_node = false;
  4414. if (a->grad) {
  4415. is_node = true;
  4416. }
  4417. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4418. ggml_format_name(result, "%s (view)", a->name);
  4419. ggml_set_op_params(result, &offset, sizeof(offset));
  4420. result->op = GGML_OP_VIEW;
  4421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4422. result->src[0] = a;
  4423. return result;
  4424. }
  4425. // ggml_view_1d
  4426. struct ggml_tensor * ggml_view_1d(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. int64_t ne0,
  4430. size_t offset) {
  4431. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4432. return result;
  4433. }
  4434. // ggml_view_2d
  4435. struct ggml_tensor * ggml_view_2d(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int64_t ne0,
  4439. int64_t ne1,
  4440. size_t nb1,
  4441. size_t offset) {
  4442. const int64_t ne[2] = { ne0, ne1 };
  4443. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4444. result->nb[1] = nb1;
  4445. result->nb[2] = result->nb[1]*ne1;
  4446. result->nb[3] = result->nb[2];
  4447. return result;
  4448. }
  4449. // ggml_view_3d
  4450. struct ggml_tensor * ggml_view_3d(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. int64_t ne0,
  4454. int64_t ne1,
  4455. int64_t ne2,
  4456. size_t nb1,
  4457. size_t nb2,
  4458. size_t offset) {
  4459. const int64_t ne[3] = { ne0, ne1, ne2 };
  4460. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4461. result->nb[1] = nb1;
  4462. result->nb[2] = nb2;
  4463. result->nb[3] = result->nb[2]*ne2;
  4464. return result;
  4465. }
  4466. // ggml_view_4d
  4467. struct ggml_tensor * ggml_view_4d(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. int64_t ne0,
  4471. int64_t ne1,
  4472. int64_t ne2,
  4473. int64_t ne3,
  4474. size_t nb1,
  4475. size_t nb2,
  4476. size_t nb3,
  4477. size_t offset) {
  4478. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4479. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4480. result->nb[1] = nb1;
  4481. result->nb[2] = nb2;
  4482. result->nb[3] = nb3;
  4483. return result;
  4484. }
  4485. // ggml_permute
  4486. struct ggml_tensor * ggml_permute(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. int axis0,
  4490. int axis1,
  4491. int axis2,
  4492. int axis3) {
  4493. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4494. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4495. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4496. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4497. GGML_ASSERT(axis0 != axis1);
  4498. GGML_ASSERT(axis0 != axis2);
  4499. GGML_ASSERT(axis0 != axis3);
  4500. GGML_ASSERT(axis1 != axis2);
  4501. GGML_ASSERT(axis1 != axis3);
  4502. GGML_ASSERT(axis2 != axis3);
  4503. bool is_node = false;
  4504. if (a->grad) {
  4505. is_node = true;
  4506. }
  4507. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4508. ggml_format_name(result, "%s (permuted)", a->name);
  4509. int ne[GGML_MAX_DIMS];
  4510. int nb[GGML_MAX_DIMS];
  4511. ne[axis0] = a->ne[0];
  4512. ne[axis1] = a->ne[1];
  4513. ne[axis2] = a->ne[2];
  4514. ne[axis3] = a->ne[3];
  4515. nb[axis0] = a->nb[0];
  4516. nb[axis1] = a->nb[1];
  4517. nb[axis2] = a->nb[2];
  4518. nb[axis3] = a->nb[3];
  4519. result->ne[0] = ne[0];
  4520. result->ne[1] = ne[1];
  4521. result->ne[2] = ne[2];
  4522. result->ne[3] = ne[3];
  4523. result->nb[0] = nb[0];
  4524. result->nb[1] = nb[1];
  4525. result->nb[2] = nb[2];
  4526. result->nb[3] = nb[3];
  4527. result->op = GGML_OP_PERMUTE;
  4528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4529. result->src[0] = a;
  4530. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4531. ggml_set_op_params(result, params, sizeof(params));
  4532. return result;
  4533. }
  4534. // ggml_transpose
  4535. struct ggml_tensor * ggml_transpose(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a) {
  4538. bool is_node = false;
  4539. if (a->grad) {
  4540. is_node = true;
  4541. }
  4542. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4543. ggml_format_name(result, "%s (transposed)", a->name);
  4544. result->ne[0] = a->ne[1];
  4545. result->ne[1] = a->ne[0];
  4546. result->nb[0] = a->nb[1];
  4547. result->nb[1] = a->nb[0];
  4548. result->op = GGML_OP_TRANSPOSE;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src[0] = a;
  4551. return result;
  4552. }
  4553. // ggml_get_rows
  4554. struct ggml_tensor * ggml_get_rows(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. struct ggml_tensor * b) {
  4558. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4559. GGML_ASSERT(b->ne[3] == 1);
  4560. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4561. bool is_node = false;
  4562. if (a->grad || b->grad) {
  4563. is_node = true;
  4564. }
  4565. // TODO: implement non F32 return
  4566. enum ggml_type type = GGML_TYPE_F32;
  4567. if (a->type == GGML_TYPE_I32) {
  4568. type = a->type;
  4569. }
  4570. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4571. result->op = GGML_OP_GET_ROWS;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src[0] = a;
  4574. result->src[1] = b;
  4575. return result;
  4576. }
  4577. // ggml_get_rows_back
  4578. struct ggml_tensor * ggml_get_rows_back(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. struct ggml_tensor * c) {
  4583. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4584. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4585. bool is_node = false;
  4586. if (a->grad || b->grad) {
  4587. is_node = true;
  4588. }
  4589. // TODO: implement non F32 return
  4590. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4591. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4592. result->op = GGML_OP_GET_ROWS_BACK;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src[0] = a;
  4595. result->src[1] = b;
  4596. return result;
  4597. }
  4598. // ggml_diag
  4599. struct ggml_tensor * ggml_diag(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a) {
  4602. GGML_ASSERT(a->ne[1] == 1);
  4603. bool is_node = false;
  4604. if (a->grad) {
  4605. is_node = true;
  4606. }
  4607. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4608. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4609. result->op = GGML_OP_DIAG;
  4610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4611. result->src[0] = a;
  4612. return result;
  4613. }
  4614. // ggml_diag_mask_inf
  4615. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. int n_past,
  4619. bool inplace) {
  4620. bool is_node = false;
  4621. if (a->grad) {
  4622. is_node = true;
  4623. }
  4624. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4625. int32_t params[] = { n_past };
  4626. ggml_set_op_params(result, params, sizeof(params));
  4627. result->op = GGML_OP_DIAG_MASK_INF;
  4628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4629. result->src[0] = a;
  4630. return result;
  4631. }
  4632. struct ggml_tensor * ggml_diag_mask_inf(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a,
  4635. int n_past) {
  4636. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4637. }
  4638. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. int n_past) {
  4642. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4643. }
  4644. // ggml_diag_mask_zero
  4645. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * a,
  4648. int n_past,
  4649. bool inplace) {
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. is_node = true;
  4653. }
  4654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4655. int32_t params[] = { n_past };
  4656. ggml_set_op_params(result, params, sizeof(params));
  4657. result->op = GGML_OP_DIAG_MASK_ZERO;
  4658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4659. result->src[0] = a;
  4660. return result;
  4661. }
  4662. struct ggml_tensor * ggml_diag_mask_zero(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. int n_past) {
  4666. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4667. }
  4668. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. int n_past) {
  4672. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4673. }
  4674. // ggml_soft_max
  4675. static struct ggml_tensor * ggml_soft_max_impl(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. struct ggml_tensor * mask,
  4679. float scale,
  4680. float max_bias,
  4681. bool inplace) {
  4682. GGML_ASSERT(ggml_is_contiguous(a));
  4683. if (mask) {
  4684. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4685. GGML_ASSERT(ggml_is_contiguous(mask));
  4686. GGML_ASSERT(ggml_is_matrix(mask));
  4687. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4688. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4689. }
  4690. if (max_bias > 0.0f) {
  4691. GGML_ASSERT(mask);
  4692. }
  4693. bool is_node = false;
  4694. if (a->grad) {
  4695. is_node = true;
  4696. }
  4697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4698. float params[] = { scale, max_bias };
  4699. ggml_set_op_params(result, params, sizeof(params));
  4700. result->op = GGML_OP_SOFT_MAX;
  4701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4702. result->src[0] = a;
  4703. result->src[1] = mask;
  4704. return result;
  4705. }
  4706. struct ggml_tensor * ggml_soft_max(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a) {
  4709. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4710. }
  4711. struct ggml_tensor * ggml_soft_max_inplace(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a) {
  4714. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4715. }
  4716. struct ggml_tensor * ggml_soft_max_ext(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. struct ggml_tensor * mask,
  4720. float scale,
  4721. float max_bias) {
  4722. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  4723. }
  4724. // ggml_soft_max_back
  4725. static struct ggml_tensor * ggml_soft_max_back_impl(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. struct ggml_tensor * b,
  4729. bool inplace) {
  4730. bool is_node = false;
  4731. if (a->grad || b->grad) {
  4732. is_node = true; // TODO : implement backward pass
  4733. }
  4734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4735. result->op = GGML_OP_SOFT_MAX_BACK;
  4736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4737. result->src[0] = a;
  4738. result->src[1] = b;
  4739. return result;
  4740. }
  4741. struct ggml_tensor * ggml_soft_max_back(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b) {
  4745. return ggml_soft_max_back_impl(ctx, a, b, false);
  4746. }
  4747. struct ggml_tensor * ggml_soft_max_back_inplace(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. struct ggml_tensor * b) {
  4751. return ggml_soft_max_back_impl(ctx, a, b, true);
  4752. }
  4753. // ggml_rope
  4754. static struct ggml_tensor * ggml_rope_impl(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. struct ggml_tensor * b,
  4758. int n_dims,
  4759. int mode,
  4760. int n_ctx,
  4761. int n_orig_ctx,
  4762. float freq_base,
  4763. float freq_scale,
  4764. float ext_factor,
  4765. float attn_factor,
  4766. float beta_fast,
  4767. float beta_slow,
  4768. float xpos_base,
  4769. bool xpos_down,
  4770. bool inplace) {
  4771. GGML_ASSERT(ggml_is_vector(b));
  4772. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4773. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4774. bool is_node = false;
  4775. if (a->grad) {
  4776. is_node = true;
  4777. }
  4778. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4779. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4780. memcpy(params + 5, &freq_base, sizeof(float));
  4781. memcpy(params + 6, &freq_scale, sizeof(float));
  4782. memcpy(params + 7, &ext_factor, sizeof(float));
  4783. memcpy(params + 8, &attn_factor, sizeof(float));
  4784. memcpy(params + 9, &beta_fast, sizeof(float));
  4785. memcpy(params + 10, &beta_slow, sizeof(float));
  4786. memcpy(params + 11, &xpos_base, sizeof(float));
  4787. memcpy(params + 12, &xpos_down, sizeof(bool));
  4788. ggml_set_op_params(result, params, sizeof(params));
  4789. result->op = GGML_OP_ROPE;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = a;
  4792. result->src[1] = b;
  4793. return result;
  4794. }
  4795. struct ggml_tensor * ggml_rope(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. struct ggml_tensor * b,
  4799. int n_dims,
  4800. int mode,
  4801. int n_ctx) {
  4802. return ggml_rope_impl(
  4803. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4804. );
  4805. }
  4806. struct ggml_tensor * ggml_rope_inplace(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. struct ggml_tensor * b,
  4810. int n_dims,
  4811. int mode,
  4812. int n_ctx) {
  4813. return ggml_rope_impl(
  4814. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4815. );
  4816. }
  4817. struct ggml_tensor * ggml_rope_custom(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * b,
  4821. int n_dims,
  4822. int mode,
  4823. int n_ctx,
  4824. int n_orig_ctx,
  4825. float freq_base,
  4826. float freq_scale,
  4827. float ext_factor,
  4828. float attn_factor,
  4829. float beta_fast,
  4830. float beta_slow) {
  4831. return ggml_rope_impl(
  4832. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4833. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4834. );
  4835. }
  4836. struct ggml_tensor * ggml_rope_custom_inplace(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. int n_dims,
  4841. int mode,
  4842. int n_ctx,
  4843. int n_orig_ctx,
  4844. float freq_base,
  4845. float freq_scale,
  4846. float ext_factor,
  4847. float attn_factor,
  4848. float beta_fast,
  4849. float beta_slow) {
  4850. return ggml_rope_impl(
  4851. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4852. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4853. );
  4854. }
  4855. struct ggml_tensor * ggml_rope_xpos_inplace(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b,
  4859. int n_dims,
  4860. float base,
  4861. bool down) {
  4862. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4863. }
  4864. // ggml_rope_back
  4865. struct ggml_tensor * ggml_rope_back(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b,
  4869. int n_dims,
  4870. int mode,
  4871. int n_ctx,
  4872. int n_orig_ctx,
  4873. float freq_base,
  4874. float freq_scale,
  4875. float ext_factor,
  4876. float attn_factor,
  4877. float beta_fast,
  4878. float beta_slow,
  4879. float xpos_base,
  4880. bool xpos_down) {
  4881. GGML_ASSERT(ggml_is_vector(b));
  4882. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4883. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4884. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. is_node = false; // TODO: implement backward
  4888. }
  4889. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4890. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4891. memcpy(params + 5, &freq_base, sizeof(float));
  4892. memcpy(params + 6, &freq_scale, sizeof(float));
  4893. memcpy(params + 7, &ext_factor, sizeof(float));
  4894. memcpy(params + 8, &attn_factor, sizeof(float));
  4895. memcpy(params + 9, &beta_fast, sizeof(float));
  4896. memcpy(params + 10, &beta_slow, sizeof(float));
  4897. memcpy(params + 11, &xpos_base, sizeof(float));
  4898. memcpy(params + 12, &xpos_down, sizeof(bool));
  4899. ggml_set_op_params(result, params, sizeof(params));
  4900. result->op = GGML_OP_ROPE_BACK;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. result->src[1] = b;
  4904. return result;
  4905. }
  4906. // ggml_clamp
  4907. struct ggml_tensor * ggml_clamp(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a,
  4910. float min,
  4911. float max) {
  4912. bool is_node = false;
  4913. if (a->grad) {
  4914. GGML_ASSERT(false); // TODO: implement backward
  4915. is_node = true;
  4916. }
  4917. // TODO: when implement backward, fix this:
  4918. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4919. float params[] = { min, max };
  4920. ggml_set_op_params(result, params, sizeof(params));
  4921. result->op = GGML_OP_CLAMP;
  4922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4923. result->src[0] = a;
  4924. return result;
  4925. }
  4926. // ggml_conv_1d
  4927. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4928. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4929. }
  4930. GGML_API struct ggml_tensor * ggml_conv_1d(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. int s0,
  4935. int p0,
  4936. int d0) {
  4937. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4938. struct ggml_tensor * result =
  4939. ggml_mul_mat(ctx,
  4940. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4941. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4942. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4943. return result;
  4944. }
  4945. // ggml_conv_1d_ph
  4946. struct ggml_tensor* ggml_conv_1d_ph(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. struct ggml_tensor * b,
  4950. int s,
  4951. int d) {
  4952. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4953. }
  4954. // ggml_conv_transpose_1d
  4955. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4956. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4957. }
  4958. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. struct ggml_tensor * b,
  4962. int s0,
  4963. int p0,
  4964. int d0) {
  4965. GGML_ASSERT(ggml_is_matrix(b));
  4966. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4967. GGML_ASSERT(a->ne[3] == 1);
  4968. GGML_ASSERT(p0 == 0);
  4969. GGML_ASSERT(d0 == 1);
  4970. bool is_node = false;
  4971. if (a->grad || b->grad) {
  4972. GGML_ASSERT(false); // TODO: implement backward
  4973. is_node = true;
  4974. }
  4975. const int64_t ne[4] = {
  4976. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4977. a->ne[1], b->ne[2], 1,
  4978. };
  4979. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4980. int32_t params[] = { s0, p0, d0 };
  4981. ggml_set_op_params(result, params, sizeof(params));
  4982. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. result->src[1] = b;
  4986. return result;
  4987. }
  4988. // ggml_conv_depthwise
  4989. struct ggml_tensor * ggml_conv_depthwise_2d(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a,
  4992. struct ggml_tensor * b,
  4993. int s0,
  4994. int s1,
  4995. int p0,
  4996. int p1,
  4997. int d0,
  4998. int d1) {
  4999. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5000. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5001. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5002. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5003. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5004. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5005. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5006. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5007. return result;
  5008. }
  5009. // ggml_conv_2d
  5010. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5011. // a: [OC,IC, KH, KW]
  5012. // b: [N, IC, IH, IW]
  5013. // result: [N, OH, OW, IC*KH*KW]
  5014. struct ggml_tensor * ggml_im2col(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b,
  5018. int s0,
  5019. int s1,
  5020. int p0,
  5021. int p1,
  5022. int d0,
  5023. int d1,
  5024. bool is_2D,
  5025. enum ggml_type dst_type) {
  5026. if(is_2D) {
  5027. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5028. } else {
  5029. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5030. }
  5031. bool is_node = false;
  5032. if (a->grad || b->grad) {
  5033. GGML_ASSERT(false); // TODO: implement backward
  5034. is_node = true;
  5035. }
  5036. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5037. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5038. const int64_t ne[4] = {
  5039. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5040. OW,
  5041. is_2D ? OH : b->ne[2],
  5042. is_2D ? b->ne[3] : 1,
  5043. };
  5044. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5045. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5046. ggml_set_op_params(result, params, sizeof(params));
  5047. result->op = GGML_OP_IM2COL;
  5048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5049. result->src[0] = a;
  5050. result->src[1] = b;
  5051. return result;
  5052. }
  5053. // a: [OC,IC, KH, KW]
  5054. // b: [N, IC, IH, IW]
  5055. // result: [N, OC, OH, OW]
  5056. struct ggml_tensor * ggml_conv_2d(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a,
  5059. struct ggml_tensor * b,
  5060. int s0,
  5061. int s1,
  5062. int p0,
  5063. int p1,
  5064. int d0,
  5065. int d1) {
  5066. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5067. struct ggml_tensor * result =
  5068. ggml_mul_mat(ctx,
  5069. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5070. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5071. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5072. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5073. return result;
  5074. }
  5075. // ggml_conv_2d_sk_p0
  5076. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. struct ggml_tensor * b) {
  5080. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5081. }
  5082. // ggml_conv_2d_s1_ph
  5083. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. struct ggml_tensor * b) {
  5087. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5088. }
  5089. // ggml_conv_transpose_2d_p0
  5090. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5091. return (ins - 1) * s - 2 * p + ks;
  5092. }
  5093. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b,
  5097. int stride) {
  5098. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5099. bool is_node = false;
  5100. if (a->grad || b->grad) {
  5101. GGML_ASSERT(false); // TODO: implement backward
  5102. is_node = true;
  5103. }
  5104. const int64_t ne[4] = {
  5105. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5106. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5107. a->ne[2], b->ne[3],
  5108. };
  5109. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5110. ggml_set_op_params_i32(result, 0, stride);
  5111. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5113. result->src[0] = a;
  5114. result->src[1] = b;
  5115. return result;
  5116. }
  5117. // ggml_pool_*
  5118. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5119. return (ins + 2 * p - ks) / s + 1;
  5120. }
  5121. // ggml_pool_1d
  5122. struct ggml_tensor * ggml_pool_1d(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. enum ggml_op_pool op,
  5126. int k0,
  5127. int s0,
  5128. int p0) {
  5129. bool is_node = false;
  5130. if (a->grad) {
  5131. GGML_ASSERT(false); // TODO: implement backward
  5132. is_node = true;
  5133. }
  5134. const int64_t ne[4] = {
  5135. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5136. a->ne[1],
  5137. a->ne[2],
  5138. a->ne[3],
  5139. };
  5140. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5141. int32_t params[] = { op, k0, s0, p0 };
  5142. ggml_set_op_params(result, params, sizeof(params));
  5143. result->op = GGML_OP_POOL_1D;
  5144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5145. result->src[0] = a;
  5146. return result;
  5147. }
  5148. // ggml_pool_2d
  5149. struct ggml_tensor * ggml_pool_2d(
  5150. struct ggml_context * ctx,
  5151. struct ggml_tensor * a,
  5152. enum ggml_op_pool op,
  5153. int k0,
  5154. int k1,
  5155. int s0,
  5156. int s1,
  5157. float p0,
  5158. float p1) {
  5159. bool is_node = false;
  5160. if (a->grad) {
  5161. GGML_ASSERT(false); // TODO: implement backward
  5162. is_node = true;
  5163. }
  5164. struct ggml_tensor * result;
  5165. const int64_t ne[3] = {
  5166. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5167. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5168. a->ne[2],
  5169. };
  5170. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5171. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5172. ggml_set_op_params(result, params, sizeof(params));
  5173. result->op = GGML_OP_POOL_2D;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src[0] = a;
  5176. return result;
  5177. }
  5178. // ggml_upscale
  5179. static struct ggml_tensor * ggml_upscale_impl(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. int scale_factor) {
  5183. bool is_node = false;
  5184. if (a->grad) {
  5185. GGML_ASSERT(false); // TODO: implement backward
  5186. is_node = true;
  5187. }
  5188. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5189. a->ne[0] * scale_factor,
  5190. a->ne[1] * scale_factor,
  5191. a->ne[2], a->ne[3]);
  5192. result->op = GGML_OP_UPSCALE;
  5193. result->op_params[0] = scale_factor;
  5194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5195. result->src[0] = a;
  5196. return result;
  5197. }
  5198. struct ggml_tensor * ggml_pad(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. int p0, int p1, int p2, int p3) {
  5202. bool is_node = false;
  5203. if (a->grad) {
  5204. GGML_ASSERT(false); // TODO: implement backward
  5205. is_node = true;
  5206. }
  5207. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5208. a->ne[0] + p0,
  5209. a->ne[1] + p1,
  5210. a->ne[2] + p2,
  5211. a->ne[3] + p3);
  5212. result->op = GGML_OP_PAD;
  5213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5214. result->src[0] = a;
  5215. return result;
  5216. }
  5217. struct ggml_tensor * ggml_upscale(
  5218. struct ggml_context * ctx,
  5219. struct ggml_tensor * a,
  5220. int scale_factor) {
  5221. return ggml_upscale_impl(ctx, a, scale_factor);
  5222. }
  5223. struct ggml_tensor * ggml_arange(
  5224. struct ggml_context * ctx,
  5225. float start,
  5226. float stop,
  5227. float step) {
  5228. GGML_ASSERT(stop > start);
  5229. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5230. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5231. result->op = GGML_OP_ARANGE;
  5232. ggml_set_op_params_f32(result, 0, start);
  5233. ggml_set_op_params_f32(result, 1, stop);
  5234. ggml_set_op_params_f32(result, 2, step);
  5235. return result;
  5236. }
  5237. struct ggml_tensor * ggml_timestep_embedding(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * timesteps,
  5240. int dim,
  5241. int max_period) {
  5242. bool is_node = false;
  5243. if (timesteps->grad) {
  5244. GGML_ASSERT(false); // TODO: implement backward
  5245. is_node = true;
  5246. }
  5247. int actual_dim = dim;
  5248. if (dim % 2 != 0) {
  5249. actual_dim = dim + 1;
  5250. }
  5251. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5252. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5253. ggml_set_op_params_i32(result, 0, dim);
  5254. ggml_set_op_params_i32(result, 1, max_period);
  5255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5256. result->src[0] = timesteps;
  5257. return result;
  5258. }
  5259. // ggml_argsort
  5260. struct ggml_tensor * ggml_argsort(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. enum ggml_sort_order order) {
  5264. bool is_node = false;
  5265. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5266. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5267. result->op = GGML_OP_ARGSORT;
  5268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5269. result->src[0] = a;
  5270. return result;
  5271. }
  5272. // ggml_top_k
  5273. struct ggml_tensor * ggml_top_k(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. int k) {
  5277. GGML_ASSERT(a->ne[0] >= k);
  5278. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5279. result = ggml_view_4d(ctx, result,
  5280. k, result->ne[1], result->ne[2], result->ne[3],
  5281. result->nb[1], result->nb[2], result->nb[3],
  5282. 0);
  5283. return result;
  5284. }
  5285. // ggml_flash_attn
  5286. struct ggml_tensor * ggml_flash_attn(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * q,
  5289. struct ggml_tensor * k,
  5290. struct ggml_tensor * v,
  5291. bool masked) {
  5292. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5293. // TODO: check if vT can be multiplied by (k*qT)
  5294. bool is_node = false;
  5295. if (q->grad || k->grad || v->grad) {
  5296. is_node = true;
  5297. }
  5298. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5299. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5300. int32_t t = masked ? 1 : 0;
  5301. ggml_set_op_params(result, &t, sizeof(t));
  5302. result->op = GGML_OP_FLASH_ATTN;
  5303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5304. result->src[0] = q;
  5305. result->src[1] = k;
  5306. result->src[2] = v;
  5307. return result;
  5308. }
  5309. // ggml_flash_attn_ext
  5310. struct ggml_tensor * ggml_flash_attn_ext(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * q,
  5313. struct ggml_tensor * k,
  5314. struct ggml_tensor * v,
  5315. struct ggml_tensor * mask,
  5316. float scale,
  5317. float max_bias) {
  5318. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5319. // TODO: check if vT can be multiplied by (k*qT)
  5320. if (mask) {
  5321. GGML_ASSERT(ggml_is_contiguous(mask));
  5322. GGML_ASSERT(mask->ne[2] == 1);
  5323. GGML_ASSERT(mask->ne[3] == 1);
  5324. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5325. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5326. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5327. }
  5328. if (max_bias > 0.0f) {
  5329. GGML_ASSERT(mask);
  5330. }
  5331. bool is_node = false;
  5332. if (q->grad || k->grad || v->grad) {
  5333. is_node = true;
  5334. }
  5335. // permute(0, 2, 1, 3)
  5336. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5338. float params[] = { scale, max_bias };
  5339. ggml_set_op_params(result, params, sizeof(params));
  5340. result->op = GGML_OP_FLASH_ATTN_EXT;
  5341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5342. result->src[0] = q;
  5343. result->src[1] = k;
  5344. result->src[2] = v;
  5345. result->src[3] = mask;
  5346. return result;
  5347. }
  5348. void ggml_flash_attn_ext_set_prec(
  5349. struct ggml_tensor * a,
  5350. enum ggml_prec prec) {
  5351. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5352. const int32_t prec_i32 = (int32_t) prec;
  5353. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5354. }
  5355. // ggml_flash_ff
  5356. struct ggml_tensor * ggml_flash_ff(
  5357. struct ggml_context * ctx,
  5358. struct ggml_tensor * a,
  5359. struct ggml_tensor * b0,
  5360. struct ggml_tensor * b1,
  5361. struct ggml_tensor * c0,
  5362. struct ggml_tensor * c1) {
  5363. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5364. // TODO: more checks
  5365. bool is_node = false;
  5366. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5367. is_node = true;
  5368. }
  5369. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5370. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5371. result->op = GGML_OP_FLASH_FF;
  5372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5373. result->src[0] = a;
  5374. result->src[1] = b0;
  5375. result->src[2] = b1;
  5376. result->src[3] = c0;
  5377. result->src[4] = c1;
  5378. return result;
  5379. }
  5380. // ggml_flash_attn_back
  5381. struct ggml_tensor * ggml_flash_attn_back(
  5382. struct ggml_context * ctx,
  5383. struct ggml_tensor * q,
  5384. struct ggml_tensor * k,
  5385. struct ggml_tensor * v,
  5386. struct ggml_tensor * d,
  5387. bool masked) {
  5388. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5389. // TODO: check if vT can be multiplied by (k*qT)
  5390. // d shape [D,N,ne2,ne3]
  5391. // q shape [D,N,ne2,ne3]
  5392. // k shape [D,M,kvne2,ne3]
  5393. // v shape [M,D,kvne2,ne3]
  5394. const int64_t D = q->ne[0];
  5395. const int64_t N = q->ne[1];
  5396. const int64_t M = k->ne[1];
  5397. const int64_t ne2 = q->ne[2];
  5398. const int64_t ne3 = q->ne[3];
  5399. const int64_t kvne2 = k->ne[2];
  5400. GGML_ASSERT(k->ne[0] == D);
  5401. GGML_ASSERT(v->ne[0] == M);
  5402. GGML_ASSERT(v->ne[1] == D);
  5403. GGML_ASSERT(d->ne[0] == D);
  5404. GGML_ASSERT(d->ne[1] == N);
  5405. GGML_ASSERT(k->ne[2] == kvne2);
  5406. GGML_ASSERT(k->ne[3] == ne3);
  5407. GGML_ASSERT(v->ne[2] == kvne2);
  5408. GGML_ASSERT(v->ne[3] == ne3);
  5409. GGML_ASSERT(d->ne[2] == ne2);
  5410. GGML_ASSERT(d->ne[3] == ne3);
  5411. GGML_ASSERT(ne2 % kvne2 == 0);
  5412. bool is_node = false;
  5413. if (q->grad || k->grad || v->grad) {
  5414. // when using this operation (in backwards pass) these grads are set.
  5415. // we don't want to create (big) grad of our result, so is_node is false.
  5416. is_node = false;
  5417. }
  5418. // store gradients of q, k and v as continuous tensors concatenated in result.
  5419. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5420. const int64_t elem_q = ggml_nelements(q);
  5421. const int64_t elem_k = ggml_nelements(k);
  5422. const int64_t elem_v = ggml_nelements(v);
  5423. enum ggml_type result_type = GGML_TYPE_F32;
  5424. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5425. const size_t tsize = ggml_type_size(result_type);
  5426. const size_t offs_q = 0;
  5427. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5428. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5429. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5430. const size_t nelements = (end + tsize - 1)/tsize;
  5431. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5432. int32_t masked_i = masked ? 1 : 0;
  5433. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5434. result->op = GGML_OP_FLASH_ATTN_BACK;
  5435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5436. result->src[0] = q;
  5437. result->src[1] = k;
  5438. result->src[2] = v;
  5439. result->src[3] = d;
  5440. return result;
  5441. }
  5442. // ggml_ssm_conv
  5443. struct ggml_tensor * ggml_ssm_conv(
  5444. struct ggml_context * ctx,
  5445. struct ggml_tensor * s,
  5446. struct ggml_tensor * x,
  5447. struct ggml_tensor * c,
  5448. struct ggml_tensor * sq) {
  5449. GGML_ASSERT(ggml_is_3d(s));
  5450. GGML_ASSERT(ggml_is_matrix(x));
  5451. GGML_ASSERT(ggml_is_matrix(c));
  5452. GGML_ASSERT(ggml_is_matrix(sq));
  5453. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5454. const int64_t d_conv = c->ne[0];
  5455. const int64_t d_inner = c->ne[1];
  5456. const int64_t n_tokens = x->ne[1];
  5457. const int64_t n_kv = s->ne[2];
  5458. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5459. GGML_ASSERT( s->ne[1] == d_inner);
  5460. GGML_ASSERT( x->ne[0] == d_inner);
  5461. GGML_ASSERT(sq->ne[0] == n_kv);
  5462. GGML_ASSERT(sq->ne[1] == n_tokens);
  5463. bool is_node = false;
  5464. if (s->grad || x->grad || c->grad || sq->grad) {
  5465. GGML_ASSERT(false); // TODO: implement
  5466. is_node = true;
  5467. }
  5468. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5469. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5470. result->op = GGML_OP_SSM_CONV;
  5471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5472. result->src[0] = s;
  5473. result->src[1] = x;
  5474. result->src[2] = c;
  5475. result->src[3] = sq;
  5476. return result;
  5477. }
  5478. // ggml_ssm_scan
  5479. struct ggml_tensor * ggml_ssm_scan(
  5480. struct ggml_context * ctx,
  5481. struct ggml_tensor * s,
  5482. struct ggml_tensor * x,
  5483. struct ggml_tensor * dt,
  5484. struct ggml_tensor * A,
  5485. struct ggml_tensor * B,
  5486. struct ggml_tensor * C,
  5487. struct ggml_tensor * sq) {
  5488. GGML_ASSERT(ggml_is_contiguous(s));
  5489. GGML_ASSERT(ggml_is_contiguous(x));
  5490. GGML_ASSERT(ggml_is_contiguous(dt));
  5491. GGML_ASSERT(ggml_is_contiguous(A));
  5492. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5493. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5494. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5495. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5496. {
  5497. const int64_t d_state = s->ne[0];
  5498. const int64_t d_inner = s->ne[1];
  5499. const int64_t n_tokens = x->ne[1];
  5500. GGML_ASSERT(x->ne[0] == d_inner);
  5501. GGML_ASSERT(A->ne[0] == d_state);
  5502. GGML_ASSERT(A->ne[1] == d_inner);
  5503. GGML_ASSERT(B->ne[0] == d_state);
  5504. GGML_ASSERT(B->ne[1] == n_tokens);
  5505. GGML_ASSERT(C->ne[0] == d_state);
  5506. GGML_ASSERT(C->ne[1] == n_tokens);
  5507. }
  5508. bool is_node = false;
  5509. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5510. GGML_ASSERT(false); // TODO: implement
  5511. is_node = true;
  5512. }
  5513. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5514. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5515. result->op = GGML_OP_SSM_SCAN;
  5516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5517. result->src[0] = s;
  5518. result->src[1] = x;
  5519. result->src[2] = dt;
  5520. result->src[3] = A;
  5521. result->src[4] = B;
  5522. result->src[5] = C;
  5523. result->src[6] = sq;
  5524. return result;
  5525. }
  5526. // ggml_win_part
  5527. struct ggml_tensor * ggml_win_part(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. int w) {
  5531. GGML_ASSERT(a->ne[3] == 1);
  5532. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5533. bool is_node = false;
  5534. if (a->grad) {
  5535. GGML_ASSERT(false); // TODO: implement backward
  5536. is_node = true;
  5537. }
  5538. // padding
  5539. const int px = (w - a->ne[1]%w)%w;
  5540. const int py = (w - a->ne[2]%w)%w;
  5541. const int npx = (px + a->ne[1])/w;
  5542. const int npy = (py + a->ne[2])/w;
  5543. const int np = npx*npy;
  5544. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5545. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5546. int32_t params[] = { npx, npy, w };
  5547. ggml_set_op_params(result, params, sizeof(params));
  5548. result->op = GGML_OP_WIN_PART;
  5549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5550. result->src[0] = a;
  5551. return result;
  5552. }
  5553. // ggml_win_unpart
  5554. struct ggml_tensor * ggml_win_unpart(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. int w0,
  5558. int h0,
  5559. int w) {
  5560. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5561. bool is_node = false;
  5562. if (a->grad) {
  5563. GGML_ASSERT(false); // TODO: implement backward
  5564. is_node = true;
  5565. }
  5566. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5567. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5568. int32_t params[] = { w };
  5569. ggml_set_op_params(result, params, sizeof(params));
  5570. result->op = GGML_OP_WIN_UNPART;
  5571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5572. result->src[0] = a;
  5573. return result;
  5574. }
  5575. // ggml_get_rel_pos
  5576. struct ggml_tensor * ggml_get_rel_pos(
  5577. struct ggml_context * ctx,
  5578. struct ggml_tensor * a,
  5579. int qh,
  5580. int kh) {
  5581. GGML_ASSERT(qh == kh);
  5582. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5583. bool is_node = false;
  5584. if (a->grad) {
  5585. GGML_ASSERT(false); // TODO: implement backward
  5586. is_node = true;
  5587. }
  5588. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5589. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5590. result->op = GGML_OP_GET_REL_POS;
  5591. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5592. result->src[0] = a;
  5593. return result;
  5594. }
  5595. // ggml_add_rel_pos
  5596. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5597. struct ggml_context * ctx,
  5598. struct ggml_tensor * a,
  5599. struct ggml_tensor * pw,
  5600. struct ggml_tensor * ph,
  5601. bool inplace) {
  5602. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5603. GGML_ASSERT(ggml_is_contiguous(a));
  5604. GGML_ASSERT(ggml_is_contiguous(pw));
  5605. GGML_ASSERT(ggml_is_contiguous(ph));
  5606. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5607. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5608. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5609. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5610. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5611. bool is_node = false;
  5612. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5613. is_node = true;
  5614. }
  5615. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5616. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5617. result->op = GGML_OP_ADD_REL_POS;
  5618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5619. result->src[0] = a;
  5620. result->src[1] = pw;
  5621. result->src[2] = ph;
  5622. return result;
  5623. }
  5624. struct ggml_tensor * ggml_add_rel_pos(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. struct ggml_tensor * pw,
  5628. struct ggml_tensor * ph) {
  5629. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5630. }
  5631. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5632. struct ggml_context * ctx,
  5633. struct ggml_tensor * a,
  5634. struct ggml_tensor * pw,
  5635. struct ggml_tensor * ph) {
  5636. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5637. }
  5638. // gmml_unary
  5639. static struct ggml_tensor * ggml_unary_impl(
  5640. struct ggml_context * ctx,
  5641. struct ggml_tensor * a,
  5642. enum ggml_unary_op op,
  5643. bool inplace) {
  5644. bool is_node = false;
  5645. if (!inplace && (a->grad)) {
  5646. is_node = true;
  5647. }
  5648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5649. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5650. result->op = GGML_OP_UNARY;
  5651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5652. result->src[0] = a;
  5653. return result;
  5654. }
  5655. struct ggml_tensor * ggml_unary(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * a,
  5658. enum ggml_unary_op op) {
  5659. return ggml_unary_impl(ctx, a, op, false);
  5660. }
  5661. struct ggml_tensor * ggml_unary_inplace(
  5662. struct ggml_context * ctx,
  5663. struct ggml_tensor * a,
  5664. enum ggml_unary_op op) {
  5665. return ggml_unary_impl(ctx, a, op, true);
  5666. }
  5667. // ggml_map_unary
  5668. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5669. struct ggml_context * ctx,
  5670. struct ggml_tensor * a,
  5671. const ggml_unary_op_f32_t fun,
  5672. bool inplace) {
  5673. bool is_node = false;
  5674. if (!inplace && a->grad) {
  5675. is_node = true;
  5676. }
  5677. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5678. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5679. result->op = GGML_OP_MAP_UNARY;
  5680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5681. result->src[0] = a;
  5682. return result;
  5683. }
  5684. struct ggml_tensor * ggml_map_unary_f32(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. const ggml_unary_op_f32_t fun) {
  5688. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5689. }
  5690. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5691. struct ggml_context * ctx,
  5692. struct ggml_tensor * a,
  5693. const ggml_unary_op_f32_t fun) {
  5694. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5695. }
  5696. // ggml_map_binary
  5697. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5698. struct ggml_context * ctx,
  5699. struct ggml_tensor * a,
  5700. struct ggml_tensor * b,
  5701. const ggml_binary_op_f32_t fun,
  5702. bool inplace) {
  5703. GGML_ASSERT(ggml_are_same_shape(a, b));
  5704. bool is_node = false;
  5705. if (!inplace && (a->grad || b->grad)) {
  5706. is_node = true;
  5707. }
  5708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5709. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5710. result->op = GGML_OP_MAP_BINARY;
  5711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5712. result->src[0] = a;
  5713. result->src[1] = b;
  5714. return result;
  5715. }
  5716. struct ggml_tensor * ggml_map_binary_f32(
  5717. struct ggml_context * ctx,
  5718. struct ggml_tensor * a,
  5719. struct ggml_tensor * b,
  5720. const ggml_binary_op_f32_t fun) {
  5721. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5722. }
  5723. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. struct ggml_tensor * b,
  5727. const ggml_binary_op_f32_t fun) {
  5728. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5729. }
  5730. // ggml_map_custom1_f32
  5731. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. const ggml_custom1_op_f32_t fun,
  5735. bool inplace) {
  5736. bool is_node = false;
  5737. if (!inplace && a->grad) {
  5738. is_node = true;
  5739. }
  5740. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5741. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5742. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5744. result->src[0] = a;
  5745. return result;
  5746. }
  5747. struct ggml_tensor * ggml_map_custom1_f32(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * a,
  5750. const ggml_custom1_op_f32_t fun) {
  5751. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5752. }
  5753. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5754. struct ggml_context * ctx,
  5755. struct ggml_tensor * a,
  5756. const ggml_custom1_op_f32_t fun) {
  5757. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5758. }
  5759. // ggml_map_custom2_f32
  5760. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5761. struct ggml_context * ctx,
  5762. struct ggml_tensor * a,
  5763. struct ggml_tensor * b,
  5764. const ggml_custom2_op_f32_t fun,
  5765. bool inplace) {
  5766. bool is_node = false;
  5767. if (!inplace && (a->grad || b->grad)) {
  5768. is_node = true;
  5769. }
  5770. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5771. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5772. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5774. result->src[0] = a;
  5775. result->src[1] = b;
  5776. return result;
  5777. }
  5778. struct ggml_tensor * ggml_map_custom2_f32(
  5779. struct ggml_context * ctx,
  5780. struct ggml_tensor * a,
  5781. struct ggml_tensor * b,
  5782. const ggml_custom2_op_f32_t fun) {
  5783. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5784. }
  5785. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5786. struct ggml_context * ctx,
  5787. struct ggml_tensor * a,
  5788. struct ggml_tensor * b,
  5789. const ggml_custom2_op_f32_t fun) {
  5790. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5791. }
  5792. // ggml_map_custom3_f32
  5793. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. struct ggml_tensor * b,
  5797. struct ggml_tensor * c,
  5798. const ggml_custom3_op_f32_t fun,
  5799. bool inplace) {
  5800. bool is_node = false;
  5801. if (!inplace && (a->grad || b->grad || c->grad)) {
  5802. is_node = true;
  5803. }
  5804. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5805. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5806. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5808. result->src[0] = a;
  5809. result->src[1] = b;
  5810. result->src[2] = c;
  5811. return result;
  5812. }
  5813. struct ggml_tensor * ggml_map_custom3_f32(
  5814. struct ggml_context * ctx,
  5815. struct ggml_tensor * a,
  5816. struct ggml_tensor * b,
  5817. struct ggml_tensor * c,
  5818. const ggml_custom3_op_f32_t fun) {
  5819. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5820. }
  5821. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5822. struct ggml_context * ctx,
  5823. struct ggml_tensor * a,
  5824. struct ggml_tensor * b,
  5825. struct ggml_tensor * c,
  5826. const ggml_custom3_op_f32_t fun) {
  5827. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5828. }
  5829. // ggml_map_custom1
  5830. struct ggml_map_custom1_op_params {
  5831. ggml_custom1_op_t fun;
  5832. int n_tasks;
  5833. void * userdata;
  5834. };
  5835. static struct ggml_tensor * ggml_map_custom1_impl(
  5836. struct ggml_context * ctx,
  5837. struct ggml_tensor * a,
  5838. const ggml_custom1_op_t fun,
  5839. int n_tasks,
  5840. void * userdata,
  5841. bool inplace) {
  5842. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5843. bool is_node = false;
  5844. if (!inplace && a->grad) {
  5845. is_node = true;
  5846. }
  5847. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5848. struct ggml_map_custom1_op_params params = {
  5849. /*.fun =*/ fun,
  5850. /*.n_tasks =*/ n_tasks,
  5851. /*.userdata =*/ userdata
  5852. };
  5853. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5854. result->op = GGML_OP_MAP_CUSTOM1;
  5855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5856. result->src[0] = a;
  5857. return result;
  5858. }
  5859. struct ggml_tensor * ggml_map_custom1(
  5860. struct ggml_context * ctx,
  5861. struct ggml_tensor * a,
  5862. const ggml_custom1_op_t fun,
  5863. int n_tasks,
  5864. void * userdata) {
  5865. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5866. }
  5867. struct ggml_tensor * ggml_map_custom1_inplace(
  5868. struct ggml_context * ctx,
  5869. struct ggml_tensor * a,
  5870. const ggml_custom1_op_t fun,
  5871. int n_tasks,
  5872. void * userdata) {
  5873. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5874. }
  5875. // ggml_map_custom2
  5876. struct ggml_map_custom2_op_params {
  5877. ggml_custom2_op_t fun;
  5878. int n_tasks;
  5879. void * userdata;
  5880. };
  5881. static struct ggml_tensor * ggml_map_custom2_impl(
  5882. struct ggml_context * ctx,
  5883. struct ggml_tensor * a,
  5884. struct ggml_tensor * b,
  5885. const ggml_custom2_op_t fun,
  5886. int n_tasks,
  5887. void * userdata,
  5888. bool inplace) {
  5889. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5890. bool is_node = false;
  5891. if (!inplace && (a->grad || b->grad)) {
  5892. is_node = true;
  5893. }
  5894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5895. struct ggml_map_custom2_op_params params = {
  5896. /*.fun =*/ fun,
  5897. /*.n_tasks =*/ n_tasks,
  5898. /*.userdata =*/ userdata
  5899. };
  5900. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5901. result->op = GGML_OP_MAP_CUSTOM2;
  5902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5903. result->src[0] = a;
  5904. result->src[1] = b;
  5905. return result;
  5906. }
  5907. struct ggml_tensor * ggml_map_custom2(
  5908. struct ggml_context * ctx,
  5909. struct ggml_tensor * a,
  5910. struct ggml_tensor * b,
  5911. const ggml_custom2_op_t fun,
  5912. int n_tasks,
  5913. void * userdata) {
  5914. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5915. }
  5916. struct ggml_tensor * ggml_map_custom2_inplace(
  5917. struct ggml_context * ctx,
  5918. struct ggml_tensor * a,
  5919. struct ggml_tensor * b,
  5920. const ggml_custom2_op_t fun,
  5921. int n_tasks,
  5922. void * userdata) {
  5923. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5924. }
  5925. // ggml_map_custom3
  5926. struct ggml_map_custom3_op_params {
  5927. ggml_custom3_op_t fun;
  5928. int n_tasks;
  5929. void * userdata;
  5930. };
  5931. static struct ggml_tensor * ggml_map_custom3_impl(
  5932. struct ggml_context * ctx,
  5933. struct ggml_tensor * a,
  5934. struct ggml_tensor * b,
  5935. struct ggml_tensor * c,
  5936. const ggml_custom3_op_t fun,
  5937. int n_tasks,
  5938. void * userdata,
  5939. bool inplace) {
  5940. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5941. bool is_node = false;
  5942. if (!inplace && (a->grad || b->grad || c->grad)) {
  5943. is_node = true;
  5944. }
  5945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5946. struct ggml_map_custom3_op_params params = {
  5947. /*.fun =*/ fun,
  5948. /*.n_tasks =*/ n_tasks,
  5949. /*.userdata =*/ userdata
  5950. };
  5951. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5952. result->op = GGML_OP_MAP_CUSTOM3;
  5953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5954. result->src[0] = a;
  5955. result->src[1] = b;
  5956. result->src[2] = c;
  5957. return result;
  5958. }
  5959. struct ggml_tensor * ggml_map_custom3(
  5960. struct ggml_context * ctx,
  5961. struct ggml_tensor * a,
  5962. struct ggml_tensor * b,
  5963. struct ggml_tensor * c,
  5964. const ggml_custom3_op_t fun,
  5965. int n_tasks,
  5966. void * userdata) {
  5967. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5968. }
  5969. struct ggml_tensor * ggml_map_custom3_inplace(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * a,
  5972. struct ggml_tensor * b,
  5973. struct ggml_tensor * c,
  5974. const ggml_custom3_op_t fun,
  5975. int n_tasks,
  5976. void * userdata) {
  5977. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5978. }
  5979. // ggml_cross_entropy_loss
  5980. struct ggml_tensor * ggml_cross_entropy_loss(
  5981. struct ggml_context * ctx,
  5982. struct ggml_tensor * a,
  5983. struct ggml_tensor * b) {
  5984. GGML_ASSERT(ggml_are_same_shape(a, b));
  5985. bool is_node = false;
  5986. if (a->grad || b->grad) {
  5987. is_node = true;
  5988. }
  5989. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5990. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5992. result->src[0] = a;
  5993. result->src[1] = b;
  5994. return result;
  5995. }
  5996. // ggml_cross_entropy_loss_back
  5997. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5998. struct ggml_context * ctx,
  5999. struct ggml_tensor * a,
  6000. struct ggml_tensor * b,
  6001. struct ggml_tensor * c) {
  6002. GGML_ASSERT(ggml_are_same_shape(a, b));
  6003. GGML_ASSERT(ggml_is_scalar(c));
  6004. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6005. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6006. result->grad = NULL;
  6007. result->src[0] = a;
  6008. result->src[1] = b;
  6009. result->src[2] = c;
  6010. return result;
  6011. }
  6012. ////////////////////////////////////////////////////////////////////////////////
  6013. void ggml_set_param(
  6014. struct ggml_context * ctx,
  6015. struct ggml_tensor * tensor) {
  6016. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6017. GGML_ASSERT(tensor->grad == NULL);
  6018. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6019. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6020. }
  6021. // ggml_compute_forward_dup
  6022. static void ggml_compute_forward_dup_same_cont(
  6023. const struct ggml_compute_params * params,
  6024. struct ggml_tensor * dst) {
  6025. const struct ggml_tensor * src0 = dst->src[0];
  6026. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6027. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6028. GGML_ASSERT(src0->type == dst->type);
  6029. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6030. return;
  6031. }
  6032. const size_t nb00 = src0->nb[0];
  6033. const size_t nb0 = dst->nb[0];
  6034. const int ith = params->ith; // thread index
  6035. const int nth = params->nth; // number of threads
  6036. // parallelize by elements
  6037. const int ne = ggml_nelements(dst);
  6038. const int dr = (ne + nth - 1) / nth;
  6039. const int ie0 = dr * ith;
  6040. const int ie1 = MIN(ie0 + dr, ne);
  6041. if (ie0 < ie1) {
  6042. memcpy(
  6043. ((char *) dst->data + ie0*nb0),
  6044. ((char *) src0->data + ie0*nb00),
  6045. (ie1 - ie0) * ggml_type_size(src0->type));
  6046. }
  6047. }
  6048. static void ggml_compute_forward_dup_f16(
  6049. const struct ggml_compute_params * params,
  6050. struct ggml_tensor * dst) {
  6051. const struct ggml_tensor * src0 = dst->src[0];
  6052. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6053. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6054. return;
  6055. }
  6056. GGML_TENSOR_UNARY_OP_LOCALS
  6057. const int ith = params->ith; // thread index
  6058. const int nth = params->nth; // number of threads
  6059. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6060. ggml_compute_forward_dup_same_cont(params, dst);
  6061. return;
  6062. }
  6063. // parallelize by rows
  6064. const int nr = ne01;
  6065. // number of rows per thread
  6066. const int dr = (nr + nth - 1) / nth;
  6067. // row range for this thread
  6068. const int ir0 = dr * ith;
  6069. const int ir1 = MIN(ir0 + dr, nr);
  6070. if (src0->type == dst->type &&
  6071. ne00 == ne0 &&
  6072. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6073. // copy by rows
  6074. const size_t rs = ne00*nb00;
  6075. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6076. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6077. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6078. memcpy(
  6079. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6080. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6081. rs);
  6082. }
  6083. }
  6084. }
  6085. return;
  6086. }
  6087. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6088. if (ggml_is_contiguous(dst)) {
  6089. if (nb00 == sizeof(ggml_fp16_t)) {
  6090. if (dst->type == GGML_TYPE_F16) {
  6091. size_t id = 0;
  6092. const size_t rs = ne00 * nb00;
  6093. char * dst_ptr = (char *) dst->data;
  6094. for (int i03 = 0; i03 < ne03; i03++) {
  6095. for (int i02 = 0; i02 < ne02; i02++) {
  6096. id += rs * ir0;
  6097. for (int i01 = ir0; i01 < ir1; i01++) {
  6098. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6099. memcpy(dst_ptr + id, src0_ptr, rs);
  6100. id += rs;
  6101. }
  6102. id += rs * (ne01 - ir1);
  6103. }
  6104. }
  6105. } else if (dst->type == GGML_TYPE_F32) {
  6106. size_t id = 0;
  6107. float * dst_ptr = (float *) dst->data;
  6108. for (int i03 = 0; i03 < ne03; i03++) {
  6109. for (int i02 = 0; i02 < ne02; i02++) {
  6110. id += ne00 * ir0;
  6111. for (int i01 = ir0; i01 < ir1; i01++) {
  6112. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6113. for (int i00 = 0; i00 < ne00; i00++) {
  6114. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6115. id++;
  6116. }
  6117. }
  6118. id += ne00 * (ne01 - ir1);
  6119. }
  6120. }
  6121. } else if (type_traits[dst->type].from_float) {
  6122. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6123. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6124. size_t id = 0;
  6125. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6126. char * dst_ptr = (char *) dst->data;
  6127. for (int i03 = 0; i03 < ne03; i03++) {
  6128. for (int i02 = 0; i02 < ne02; i02++) {
  6129. id += rs * ir0;
  6130. for (int i01 = ir0; i01 < ir1; i01++) {
  6131. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6132. for (int i00 = 0; i00 < ne00; i00++) {
  6133. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6134. }
  6135. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6136. id += rs;
  6137. }
  6138. id += rs * (ne01 - ir1);
  6139. }
  6140. }
  6141. } else {
  6142. GGML_ASSERT(false); // TODO: implement
  6143. }
  6144. } else {
  6145. //printf("%s: this is not optimal - fix me\n", __func__);
  6146. if (dst->type == GGML_TYPE_F32) {
  6147. size_t id = 0;
  6148. float * dst_ptr = (float *) dst->data;
  6149. for (int i03 = 0; i03 < ne03; i03++) {
  6150. for (int i02 = 0; i02 < ne02; i02++) {
  6151. id += ne00 * ir0;
  6152. for (int i01 = ir0; i01 < ir1; i01++) {
  6153. for (int i00 = 0; i00 < ne00; i00++) {
  6154. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6155. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6156. id++;
  6157. }
  6158. }
  6159. id += ne00 * (ne01 - ir1);
  6160. }
  6161. }
  6162. } else if (dst->type == GGML_TYPE_F16) {
  6163. size_t id = 0;
  6164. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6165. for (int i03 = 0; i03 < ne03; i03++) {
  6166. for (int i02 = 0; i02 < ne02; i02++) {
  6167. id += ne00 * ir0;
  6168. for (int i01 = ir0; i01 < ir1; i01++) {
  6169. for (int i00 = 0; i00 < ne00; i00++) {
  6170. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6171. dst_ptr[id] = *src0_ptr;
  6172. id++;
  6173. }
  6174. }
  6175. id += ne00 * (ne01 - ir1);
  6176. }
  6177. }
  6178. } else {
  6179. GGML_ASSERT(false); // TODO: implement
  6180. }
  6181. }
  6182. return;
  6183. }
  6184. // dst counters
  6185. int64_t i10 = 0;
  6186. int64_t i11 = 0;
  6187. int64_t i12 = 0;
  6188. int64_t i13 = 0;
  6189. if (dst->type == GGML_TYPE_F16) {
  6190. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6191. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6192. i10 += ne00 * ir0;
  6193. while (i10 >= ne0) {
  6194. i10 -= ne0;
  6195. if (++i11 == ne1) {
  6196. i11 = 0;
  6197. if (++i12 == ne2) {
  6198. i12 = 0;
  6199. if (++i13 == ne3) {
  6200. i13 = 0;
  6201. }
  6202. }
  6203. }
  6204. }
  6205. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6206. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6207. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6208. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6209. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6210. if (++i10 == ne00) {
  6211. i10 = 0;
  6212. if (++i11 == ne01) {
  6213. i11 = 0;
  6214. if (++i12 == ne02) {
  6215. i12 = 0;
  6216. if (++i13 == ne03) {
  6217. i13 = 0;
  6218. }
  6219. }
  6220. }
  6221. }
  6222. }
  6223. }
  6224. i10 += ne00 * (ne01 - ir1);
  6225. while (i10 >= ne0) {
  6226. i10 -= ne0;
  6227. if (++i11 == ne1) {
  6228. i11 = 0;
  6229. if (++i12 == ne2) {
  6230. i12 = 0;
  6231. if (++i13 == ne3) {
  6232. i13 = 0;
  6233. }
  6234. }
  6235. }
  6236. }
  6237. }
  6238. }
  6239. } else if (dst->type == GGML_TYPE_F32) {
  6240. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6241. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6242. i10 += ne00 * ir0;
  6243. while (i10 >= ne0) {
  6244. i10 -= ne0;
  6245. if (++i11 == ne1) {
  6246. i11 = 0;
  6247. if (++i12 == ne2) {
  6248. i12 = 0;
  6249. if (++i13 == ne3) {
  6250. i13 = 0;
  6251. }
  6252. }
  6253. }
  6254. }
  6255. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6256. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6257. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6258. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6259. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6260. if (++i10 == ne0) {
  6261. i10 = 0;
  6262. if (++i11 == ne1) {
  6263. i11 = 0;
  6264. if (++i12 == ne2) {
  6265. i12 = 0;
  6266. if (++i13 == ne3) {
  6267. i13 = 0;
  6268. }
  6269. }
  6270. }
  6271. }
  6272. }
  6273. }
  6274. i10 += ne00 * (ne01 - ir1);
  6275. while (i10 >= ne0) {
  6276. i10 -= ne0;
  6277. if (++i11 == ne1) {
  6278. i11 = 0;
  6279. if (++i12 == ne2) {
  6280. i12 = 0;
  6281. if (++i13 == ne3) {
  6282. i13 = 0;
  6283. }
  6284. }
  6285. }
  6286. }
  6287. }
  6288. }
  6289. } else {
  6290. GGML_ASSERT(false); // TODO: implement
  6291. }
  6292. }
  6293. static void ggml_compute_forward_dup_bf16(
  6294. const struct ggml_compute_params * params,
  6295. struct ggml_tensor * dst) {
  6296. const struct ggml_tensor * src0 = dst->src[0];
  6297. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6298. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6299. return;
  6300. }
  6301. GGML_TENSOR_UNARY_OP_LOCALS
  6302. const int ith = params->ith; // thread index
  6303. const int nth = params->nth; // number of threads
  6304. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6305. ggml_compute_forward_dup_same_cont(params, dst);
  6306. return;
  6307. }
  6308. // parallelize by rows
  6309. const int nr = ne01;
  6310. // number of rows per thread
  6311. const int dr = (nr + nth - 1) / nth;
  6312. // row range for this thread
  6313. const int ir0 = dr * ith;
  6314. const int ir1 = MIN(ir0 + dr, nr);
  6315. if (src0->type == dst->type &&
  6316. ne00 == ne0 &&
  6317. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6318. // copy by rows
  6319. const size_t rs = ne00*nb00;
  6320. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6322. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6323. memcpy(
  6324. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6325. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6326. rs);
  6327. }
  6328. }
  6329. }
  6330. return;
  6331. }
  6332. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6333. if (ggml_is_contiguous(dst)) {
  6334. if (nb00 == sizeof(ggml_bf16_t)) {
  6335. if (dst->type == GGML_TYPE_BF16) {
  6336. size_t id = 0;
  6337. const size_t rs = ne00 * nb00;
  6338. char * dst_ptr = (char *) dst->data;
  6339. for (int i03 = 0; i03 < ne03; i03++) {
  6340. for (int i02 = 0; i02 < ne02; i02++) {
  6341. id += rs * ir0;
  6342. for (int i01 = ir0; i01 < ir1; i01++) {
  6343. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6344. memcpy(dst_ptr + id, src0_ptr, rs);
  6345. id += rs;
  6346. }
  6347. id += rs * (ne01 - ir1);
  6348. }
  6349. }
  6350. } else if (dst->type == GGML_TYPE_F16) {
  6351. size_t id = 0;
  6352. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6353. for (int i03 = 0; i03 < ne03; i03++) {
  6354. for (int i02 = 0; i02 < ne02; i02++) {
  6355. id += ne00 * ir0;
  6356. for (int i01 = ir0; i01 < ir1; i01++) {
  6357. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6358. for (int i00 = 0; i00 < ne00; i00++) {
  6359. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6360. id++;
  6361. }
  6362. }
  6363. id += ne00 * (ne01 - ir1);
  6364. }
  6365. }
  6366. } else if (dst->type == GGML_TYPE_F32) {
  6367. size_t id = 0;
  6368. float * dst_ptr = (float *) dst->data;
  6369. for (int i03 = 0; i03 < ne03; i03++) {
  6370. for (int i02 = 0; i02 < ne02; i02++) {
  6371. id += ne00 * ir0;
  6372. for (int i01 = ir0; i01 < ir1; i01++) {
  6373. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6374. for (int i00 = 0; i00 < ne00; i00++) {
  6375. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6376. id++;
  6377. }
  6378. }
  6379. id += ne00 * (ne01 - ir1);
  6380. }
  6381. }
  6382. } else if (type_traits[dst->type].from_float) {
  6383. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6384. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6385. size_t id = 0;
  6386. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6387. char * dst_ptr = (char *) dst->data;
  6388. for (int i03 = 0; i03 < ne03; i03++) {
  6389. for (int i02 = 0; i02 < ne02; i02++) {
  6390. id += rs * ir0;
  6391. for (int i01 = ir0; i01 < ir1; i01++) {
  6392. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6393. for (int i00 = 0; i00 < ne00; i00++) {
  6394. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6395. }
  6396. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6397. id += rs;
  6398. }
  6399. id += rs * (ne01 - ir1);
  6400. }
  6401. }
  6402. } else {
  6403. GGML_ASSERT(false); // TODO: implement
  6404. }
  6405. } else {
  6406. //printf("%s: this is not optimal - fix me\n", __func__);
  6407. if (dst->type == GGML_TYPE_F32) {
  6408. size_t id = 0;
  6409. float * dst_ptr = (float *) dst->data;
  6410. for (int i03 = 0; i03 < ne03; i03++) {
  6411. for (int i02 = 0; i02 < ne02; i02++) {
  6412. id += ne00 * ir0;
  6413. for (int i01 = ir0; i01 < ir1; i01++) {
  6414. for (int i00 = 0; i00 < ne00; i00++) {
  6415. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6416. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6417. id++;
  6418. }
  6419. }
  6420. id += ne00 * (ne01 - ir1);
  6421. }
  6422. }
  6423. } else if (dst->type == GGML_TYPE_BF16) {
  6424. size_t id = 0;
  6425. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6426. for (int i03 = 0; i03 < ne03; i03++) {
  6427. for (int i02 = 0; i02 < ne02; i02++) {
  6428. id += ne00 * ir0;
  6429. for (int i01 = ir0; i01 < ir1; i01++) {
  6430. for (int i00 = 0; i00 < ne00; i00++) {
  6431. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6432. dst_ptr[id] = *src0_ptr;
  6433. id++;
  6434. }
  6435. }
  6436. id += ne00 * (ne01 - ir1);
  6437. }
  6438. }
  6439. } else if (dst->type == GGML_TYPE_F16) {
  6440. size_t id = 0;
  6441. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6442. for (int i03 = 0; i03 < ne03; i03++) {
  6443. for (int i02 = 0; i02 < ne02; i02++) {
  6444. id += ne00 * ir0;
  6445. for (int i01 = ir0; i01 < ir1; i01++) {
  6446. for (int i00 = 0; i00 < ne00; i00++) {
  6447. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6448. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6449. id++;
  6450. }
  6451. }
  6452. id += ne00 * (ne01 - ir1);
  6453. }
  6454. }
  6455. } else {
  6456. GGML_ASSERT(false); // TODO: implement
  6457. }
  6458. }
  6459. return;
  6460. }
  6461. // dst counters
  6462. int64_t i10 = 0;
  6463. int64_t i11 = 0;
  6464. int64_t i12 = 0;
  6465. int64_t i13 = 0;
  6466. if (dst->type == GGML_TYPE_BF16) {
  6467. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6468. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6469. i10 += ne00 * ir0;
  6470. while (i10 >= ne0) {
  6471. i10 -= ne0;
  6472. if (++i11 == ne1) {
  6473. i11 = 0;
  6474. if (++i12 == ne2) {
  6475. i12 = 0;
  6476. if (++i13 == ne3) {
  6477. i13 = 0;
  6478. }
  6479. }
  6480. }
  6481. }
  6482. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6483. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6484. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6485. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6486. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6487. if (++i10 == ne00) {
  6488. i10 = 0;
  6489. if (++i11 == ne01) {
  6490. i11 = 0;
  6491. if (++i12 == ne02) {
  6492. i12 = 0;
  6493. if (++i13 == ne03) {
  6494. i13 = 0;
  6495. }
  6496. }
  6497. }
  6498. }
  6499. }
  6500. }
  6501. i10 += ne00 * (ne01 - ir1);
  6502. while (i10 >= ne0) {
  6503. i10 -= ne0;
  6504. if (++i11 == ne1) {
  6505. i11 = 0;
  6506. if (++i12 == ne2) {
  6507. i12 = 0;
  6508. if (++i13 == ne3) {
  6509. i13 = 0;
  6510. }
  6511. }
  6512. }
  6513. }
  6514. }
  6515. }
  6516. } else if (dst->type == GGML_TYPE_F16) {
  6517. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6518. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6519. i10 += ne00 * ir0;
  6520. while (i10 >= ne0) {
  6521. i10 -= ne0;
  6522. if (++i11 == ne1) {
  6523. i11 = 0;
  6524. if (++i12 == ne2) {
  6525. i12 = 0;
  6526. if (++i13 == ne3) {
  6527. i13 = 0;
  6528. }
  6529. }
  6530. }
  6531. }
  6532. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6533. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6534. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6535. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6536. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6537. if (++i10 == ne0) {
  6538. i10 = 0;
  6539. if (++i11 == ne1) {
  6540. i11 = 0;
  6541. if (++i12 == ne2) {
  6542. i12 = 0;
  6543. if (++i13 == ne3) {
  6544. i13 = 0;
  6545. }
  6546. }
  6547. }
  6548. }
  6549. }
  6550. }
  6551. i10 += ne00 * (ne01 - ir1);
  6552. while (i10 >= ne0) {
  6553. i10 -= ne0;
  6554. if (++i11 == ne1) {
  6555. i11 = 0;
  6556. if (++i12 == ne2) {
  6557. i12 = 0;
  6558. if (++i13 == ne3) {
  6559. i13 = 0;
  6560. }
  6561. }
  6562. }
  6563. }
  6564. }
  6565. }
  6566. } else if (dst->type == GGML_TYPE_F32) {
  6567. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6568. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6569. i10 += ne00 * ir0;
  6570. while (i10 >= ne0) {
  6571. i10 -= ne0;
  6572. if (++i11 == ne1) {
  6573. i11 = 0;
  6574. if (++i12 == ne2) {
  6575. i12 = 0;
  6576. if (++i13 == ne3) {
  6577. i13 = 0;
  6578. }
  6579. }
  6580. }
  6581. }
  6582. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6583. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6584. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6585. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6586. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6587. if (++i10 == ne0) {
  6588. i10 = 0;
  6589. if (++i11 == ne1) {
  6590. i11 = 0;
  6591. if (++i12 == ne2) {
  6592. i12 = 0;
  6593. if (++i13 == ne3) {
  6594. i13 = 0;
  6595. }
  6596. }
  6597. }
  6598. }
  6599. }
  6600. }
  6601. i10 += ne00 * (ne01 - ir1);
  6602. while (i10 >= ne0) {
  6603. i10 -= ne0;
  6604. if (++i11 == ne1) {
  6605. i11 = 0;
  6606. if (++i12 == ne2) {
  6607. i12 = 0;
  6608. if (++i13 == ne3) {
  6609. i13 = 0;
  6610. }
  6611. }
  6612. }
  6613. }
  6614. }
  6615. }
  6616. } else {
  6617. GGML_ASSERT(false); // TODO: implement
  6618. }
  6619. }
  6620. static void ggml_compute_forward_dup_f32(
  6621. const struct ggml_compute_params * params,
  6622. struct ggml_tensor * dst) {
  6623. const struct ggml_tensor * src0 = dst->src[0];
  6624. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6625. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6626. return;
  6627. }
  6628. GGML_TENSOR_UNARY_OP_LOCALS
  6629. const int ith = params->ith; // thread index
  6630. const int nth = params->nth; // number of threads
  6631. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6632. ggml_compute_forward_dup_same_cont(params, dst);
  6633. return;
  6634. }
  6635. // parallelize by rows
  6636. const int nr = ne01;
  6637. // number of rows per thread
  6638. const int dr = (nr + nth - 1) / nth;
  6639. // row range for this thread
  6640. const int ir0 = dr * ith;
  6641. const int ir1 = MIN(ir0 + dr, nr);
  6642. if (src0->type == dst->type &&
  6643. ne00 == ne0 &&
  6644. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6645. // copy by rows
  6646. const size_t rs = ne00*nb00;
  6647. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6648. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6649. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6650. memcpy(
  6651. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6652. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6653. rs);
  6654. }
  6655. }
  6656. }
  6657. return;
  6658. }
  6659. if (ggml_is_contiguous(dst)) {
  6660. // TODO: simplify
  6661. if (nb00 == sizeof(float)) {
  6662. if (dst->type == GGML_TYPE_F32) {
  6663. size_t id = 0;
  6664. const size_t rs = ne00 * nb00;
  6665. char * dst_ptr = (char *) dst->data;
  6666. for (int i03 = 0; i03 < ne03; i03++) {
  6667. for (int i02 = 0; i02 < ne02; i02++) {
  6668. id += rs * ir0;
  6669. for (int i01 = ir0; i01 < ir1; i01++) {
  6670. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6671. memcpy(dst_ptr + id, src0_ptr, rs);
  6672. id += rs;
  6673. }
  6674. id += rs * (ne01 - ir1);
  6675. }
  6676. }
  6677. } else if (type_traits[dst->type].from_float) {
  6678. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6679. size_t id = 0;
  6680. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6681. char * dst_ptr = (char *) dst->data;
  6682. for (int i03 = 0; i03 < ne03; i03++) {
  6683. for (int i02 = 0; i02 < ne02; i02++) {
  6684. id += rs * ir0;
  6685. for (int i01 = ir0; i01 < ir1; i01++) {
  6686. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6687. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6688. id += rs;
  6689. }
  6690. id += rs * (ne01 - ir1);
  6691. }
  6692. }
  6693. } else {
  6694. GGML_ASSERT(false); // TODO: implement
  6695. }
  6696. } else {
  6697. //printf("%s: this is not optimal - fix me\n", __func__);
  6698. if (dst->type == GGML_TYPE_F32) {
  6699. size_t id = 0;
  6700. float * dst_ptr = (float *) dst->data;
  6701. for (int i03 = 0; i03 < ne03; i03++) {
  6702. for (int i02 = 0; i02 < ne02; i02++) {
  6703. id += ne00 * ir0;
  6704. for (int i01 = ir0; i01 < ir1; i01++) {
  6705. for (int i00 = 0; i00 < ne00; i00++) {
  6706. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6707. dst_ptr[id] = *src0_ptr;
  6708. id++;
  6709. }
  6710. }
  6711. id += ne00 * (ne01 - ir1);
  6712. }
  6713. }
  6714. } else if (dst->type == GGML_TYPE_F16) {
  6715. size_t id = 0;
  6716. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6717. for (int i03 = 0; i03 < ne03; i03++) {
  6718. for (int i02 = 0; i02 < ne02; i02++) {
  6719. id += ne00 * ir0;
  6720. for (int i01 = ir0; i01 < ir1; i01++) {
  6721. for (int i00 = 0; i00 < ne00; i00++) {
  6722. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6723. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6724. id++;
  6725. }
  6726. }
  6727. id += ne00 * (ne01 - ir1);
  6728. }
  6729. }
  6730. } else if (dst->type == GGML_TYPE_BF16) {
  6731. size_t id = 0;
  6732. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6733. for (int i03 = 0; i03 < ne03; i03++) {
  6734. for (int i02 = 0; i02 < ne02; i02++) {
  6735. id += ne00 * ir0;
  6736. for (int i01 = ir0; i01 < ir1; i01++) {
  6737. for (int i00 = 0; i00 < ne00; i00++) {
  6738. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6739. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  6740. id++;
  6741. }
  6742. }
  6743. id += ne00 * (ne01 - ir1);
  6744. }
  6745. }
  6746. } else {
  6747. GGML_ASSERT(false); // TODO: implement
  6748. }
  6749. }
  6750. return;
  6751. }
  6752. // dst counters
  6753. int64_t i10 = 0;
  6754. int64_t i11 = 0;
  6755. int64_t i12 = 0;
  6756. int64_t i13 = 0;
  6757. if (dst->type == GGML_TYPE_F32) {
  6758. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6759. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6760. i10 += ne00 * ir0;
  6761. while (i10 >= ne0) {
  6762. i10 -= ne0;
  6763. if (++i11 == ne1) {
  6764. i11 = 0;
  6765. if (++i12 == ne2) {
  6766. i12 = 0;
  6767. if (++i13 == ne3) {
  6768. i13 = 0;
  6769. }
  6770. }
  6771. }
  6772. }
  6773. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6774. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6775. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6776. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6777. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6778. if (++i10 == ne0) {
  6779. i10 = 0;
  6780. if (++i11 == ne1) {
  6781. i11 = 0;
  6782. if (++i12 == ne2) {
  6783. i12 = 0;
  6784. if (++i13 == ne3) {
  6785. i13 = 0;
  6786. }
  6787. }
  6788. }
  6789. }
  6790. }
  6791. }
  6792. i10 += ne00 * (ne01 - ir1);
  6793. while (i10 >= ne0) {
  6794. i10 -= ne0;
  6795. if (++i11 == ne1) {
  6796. i11 = 0;
  6797. if (++i12 == ne2) {
  6798. i12 = 0;
  6799. if (++i13 == ne3) {
  6800. i13 = 0;
  6801. }
  6802. }
  6803. }
  6804. }
  6805. }
  6806. }
  6807. } else if (dst->type == GGML_TYPE_F16) {
  6808. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6809. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6810. i10 += ne00 * ir0;
  6811. while (i10 >= ne0) {
  6812. i10 -= ne0;
  6813. if (++i11 == ne1) {
  6814. i11 = 0;
  6815. if (++i12 == ne2) {
  6816. i12 = 0;
  6817. if (++i13 == ne3) {
  6818. i13 = 0;
  6819. }
  6820. }
  6821. }
  6822. }
  6823. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6824. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6825. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6826. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6827. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6828. if (++i10 == ne0) {
  6829. i10 = 0;
  6830. if (++i11 == ne1) {
  6831. i11 = 0;
  6832. if (++i12 == ne2) {
  6833. i12 = 0;
  6834. if (++i13 == ne3) {
  6835. i13 = 0;
  6836. }
  6837. }
  6838. }
  6839. }
  6840. }
  6841. }
  6842. i10 += ne00 * (ne01 - ir1);
  6843. while (i10 >= ne0) {
  6844. i10 -= ne0;
  6845. if (++i11 == ne1) {
  6846. i11 = 0;
  6847. if (++i12 == ne2) {
  6848. i12 = 0;
  6849. if (++i13 == ne3) {
  6850. i13 = 0;
  6851. }
  6852. }
  6853. }
  6854. }
  6855. }
  6856. }
  6857. } else if (dst->type == GGML_TYPE_BF16) {
  6858. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6859. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6860. i10 += ne00 * ir0;
  6861. while (i10 >= ne0) {
  6862. i10 -= ne0;
  6863. if (++i11 == ne1) {
  6864. i11 = 0;
  6865. if (++i12 == ne2) {
  6866. i12 = 0;
  6867. if (++i13 == ne3) {
  6868. i13 = 0;
  6869. }
  6870. }
  6871. }
  6872. }
  6873. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6874. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6875. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6876. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6877. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  6878. if (++i10 == ne0) {
  6879. i10 = 0;
  6880. if (++i11 == ne1) {
  6881. i11 = 0;
  6882. if (++i12 == ne2) {
  6883. i12 = 0;
  6884. if (++i13 == ne3) {
  6885. i13 = 0;
  6886. }
  6887. }
  6888. }
  6889. }
  6890. }
  6891. }
  6892. i10 += ne00 * (ne01 - ir1);
  6893. while (i10 >= ne0) {
  6894. i10 -= ne0;
  6895. if (++i11 == ne1) {
  6896. i11 = 0;
  6897. if (++i12 == ne2) {
  6898. i12 = 0;
  6899. if (++i13 == ne3) {
  6900. i13 = 0;
  6901. }
  6902. }
  6903. }
  6904. }
  6905. }
  6906. }
  6907. } else {
  6908. GGML_ASSERT(false); // TODO: implement
  6909. }
  6910. }
  6911. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6912. static void ggml_compute_forward_dup_bytes(
  6913. const struct ggml_compute_params * params,
  6914. struct ggml_tensor * dst) {
  6915. const struct ggml_tensor * src0 = dst->src[0];
  6916. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6917. GGML_ASSERT(src0->type == dst->type);
  6918. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6919. return;
  6920. }
  6921. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6922. ggml_compute_forward_dup_same_cont(params, dst);
  6923. return;
  6924. }
  6925. GGML_TENSOR_UNARY_OP_LOCALS;
  6926. const size_t type_size = ggml_type_size(src0->type);
  6927. const int ith = params->ith; // thread index
  6928. const int nth = params->nth; // number of threads
  6929. // parallelize by rows
  6930. const int nr = ne01;
  6931. // number of rows per thread
  6932. const int dr = (nr + nth - 1) / nth;
  6933. // row range for this thread
  6934. const int ir0 = dr * ith;
  6935. const int ir1 = MIN(ir0 + dr, nr);
  6936. if (src0->type == dst->type &&
  6937. ne00 == ne0 &&
  6938. nb00 == type_size && nb0 == type_size) {
  6939. // copy by rows
  6940. const size_t rs = ne00 * type_size;
  6941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6942. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6943. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6944. memcpy(
  6945. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6946. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6947. rs);
  6948. }
  6949. }
  6950. }
  6951. return;
  6952. }
  6953. if (ggml_is_contiguous(dst)) {
  6954. size_t id = 0;
  6955. char * dst_ptr = (char *) dst->data;
  6956. const size_t rs = ne00 * type_size;
  6957. if (nb00 == type_size) {
  6958. // src0 is contigous on first dimension, copy by rows
  6959. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6960. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6961. id += rs * ir0;
  6962. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6963. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6964. memcpy(dst_ptr + id, src0_ptr, rs);
  6965. id += rs;
  6966. }
  6967. id += rs * (ne01 - ir1);
  6968. }
  6969. }
  6970. } else {
  6971. //printf("%s: this is not optimal - fix me\n", __func__);
  6972. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6974. id += rs * ir0;
  6975. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6976. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6977. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6978. memcpy(dst_ptr + id, src0_ptr, type_size);
  6979. id += type_size;
  6980. }
  6981. }
  6982. id += rs * (ne01 - ir1);
  6983. }
  6984. }
  6985. }
  6986. return;
  6987. }
  6988. // dst counters
  6989. int64_t i10 = 0;
  6990. int64_t i11 = 0;
  6991. int64_t i12 = 0;
  6992. int64_t i13 = 0;
  6993. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6994. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6995. i10 += ne00 * ir0;
  6996. while (i10 >= ne0) {
  6997. i10 -= ne0;
  6998. if (++i11 == ne1) {
  6999. i11 = 0;
  7000. if (++i12 == ne2) {
  7001. i12 = 0;
  7002. if (++i13 == ne3) {
  7003. i13 = 0;
  7004. }
  7005. }
  7006. }
  7007. }
  7008. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7009. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7010. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7011. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7012. memcpy(dst_ptr, src0_ptr, type_size);
  7013. if (++i10 == ne0) {
  7014. i10 = 0;
  7015. if (++i11 == ne1) {
  7016. i11 = 0;
  7017. if (++i12 == ne2) {
  7018. i12 = 0;
  7019. if (++i13 == ne3) {
  7020. i13 = 0;
  7021. }
  7022. }
  7023. }
  7024. }
  7025. }
  7026. }
  7027. i10 += ne00 * (ne01 - ir1);
  7028. while (i10 >= ne0) {
  7029. i10 -= ne0;
  7030. if (++i11 == ne1) {
  7031. i11 = 0;
  7032. if (++i12 == ne2) {
  7033. i12 = 0;
  7034. if (++i13 == ne3) {
  7035. i13 = 0;
  7036. }
  7037. }
  7038. }
  7039. }
  7040. }
  7041. }
  7042. }
  7043. static void ggml_compute_forward_dup(
  7044. const struct ggml_compute_params * params,
  7045. struct ggml_tensor * dst) {
  7046. const struct ggml_tensor * src0 = dst->src[0];
  7047. if (src0->type == dst->type) {
  7048. ggml_compute_forward_dup_bytes(params, dst);
  7049. return;
  7050. }
  7051. switch (src0->type) {
  7052. case GGML_TYPE_F16:
  7053. {
  7054. ggml_compute_forward_dup_f16(params, dst);
  7055. } break;
  7056. case GGML_TYPE_BF16:
  7057. {
  7058. ggml_compute_forward_dup_bf16(params, dst);
  7059. } break;
  7060. case GGML_TYPE_F32:
  7061. {
  7062. ggml_compute_forward_dup_f32(params, dst);
  7063. } break;
  7064. default:
  7065. {
  7066. GGML_ASSERT(false);
  7067. } break;
  7068. }
  7069. }
  7070. // ggml_compute_forward_add
  7071. static void ggml_compute_forward_add_f32(
  7072. const struct ggml_compute_params * params,
  7073. struct ggml_tensor * dst) {
  7074. const struct ggml_tensor * src0 = dst->src[0];
  7075. const struct ggml_tensor * src1 = dst->src[1];
  7076. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7077. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7078. return;
  7079. }
  7080. const int ith = params->ith;
  7081. const int nth = params->nth;
  7082. #ifdef GGML_USE_CLBLAST
  7083. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7084. // TODO: OpenCL kernel support full broadcast
  7085. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7086. if (ith == 0) {
  7087. ggml_cl_add(src0, src1, dst);
  7088. }
  7089. return;
  7090. }
  7091. #endif
  7092. const int nr = ggml_nrows(src0);
  7093. GGML_TENSOR_BINARY_OP_LOCALS
  7094. GGML_ASSERT( nb0 == sizeof(float));
  7095. GGML_ASSERT(nb00 == sizeof(float));
  7096. // rows per thread
  7097. const int dr = (nr + nth - 1)/nth;
  7098. // row range for this thread
  7099. const int ir0 = dr*ith;
  7100. const int ir1 = MIN(ir0 + dr, nr);
  7101. if (nb10 == sizeof(float)) {
  7102. for (int ir = ir0; ir < ir1; ++ir) {
  7103. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7104. const int64_t i03 = ir/(ne02*ne01);
  7105. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7106. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7107. const int64_t i13 = i03 % ne13;
  7108. const int64_t i12 = i02 % ne12;
  7109. const int64_t i11 = i01 % ne11;
  7110. const int64_t nr0 = ne00 / ne10;
  7111. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7112. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7113. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7114. for (int64_t r = 0; r < nr0; ++r) {
  7115. #ifdef GGML_USE_ACCELERATE
  7116. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7117. #else
  7118. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7119. #endif
  7120. }
  7121. }
  7122. } else {
  7123. // src1 is not contiguous
  7124. for (int ir = ir0; ir < ir1; ++ir) {
  7125. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7126. const int64_t i03 = ir/(ne02*ne01);
  7127. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7128. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7129. const int64_t i13 = i03 % ne13;
  7130. const int64_t i12 = i02 % ne12;
  7131. const int64_t i11 = i01 % ne11;
  7132. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7133. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7134. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7135. const int64_t i10 = i0 % ne10;
  7136. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7137. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7138. }
  7139. }
  7140. }
  7141. }
  7142. static void ggml_compute_forward_add_f16_f32(
  7143. const struct ggml_compute_params * params,
  7144. struct ggml_tensor * dst) {
  7145. const struct ggml_tensor * src0 = dst->src[0];
  7146. const struct ggml_tensor * src1 = dst->src[1];
  7147. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7148. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7149. return;
  7150. }
  7151. const int ith = params->ith;
  7152. const int nth = params->nth;
  7153. const int nr = ggml_nrows(src0);
  7154. GGML_TENSOR_BINARY_OP_LOCALS
  7155. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7156. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7157. if (dst->type == GGML_TYPE_F32) {
  7158. GGML_ASSERT( nb0 == sizeof(float));
  7159. }
  7160. else {
  7161. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7162. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7163. }
  7164. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7165. // rows per thread
  7166. const int dr = (nr + nth - 1)/nth;
  7167. // row range for this thread
  7168. const int ir0 = dr*ith;
  7169. const int ir1 = MIN(ir0 + dr, nr);
  7170. if (nb10 == sizeof(float)) {
  7171. if (dst->type == GGML_TYPE_F16) {
  7172. for (int ir = ir0; ir < ir1; ++ir) {
  7173. // src0, src1 and dst are same shape => same indices
  7174. const int i3 = ir/(ne2*ne1);
  7175. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7176. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7177. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7178. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7179. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7180. for (int i = 0; i < ne0; i++) {
  7181. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7182. }
  7183. }
  7184. } else {
  7185. for (int ir = ir0; ir < ir1; ++ir) {
  7186. // src0, src1 and dst are same shape => same indices
  7187. const int i3 = ir/(ne2*ne1);
  7188. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7189. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7190. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7191. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7192. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7193. for (int i = 0; i < ne0; i++) {
  7194. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7195. }
  7196. }
  7197. }
  7198. }
  7199. else {
  7200. // src1 is not contiguous
  7201. GGML_ASSERT(false);
  7202. }
  7203. }
  7204. static void ggml_compute_forward_add_bf16_f32(
  7205. const struct ggml_compute_params * params,
  7206. struct ggml_tensor * dst) {
  7207. const struct ggml_tensor * src0 = dst->src[0];
  7208. const struct ggml_tensor * src1 = dst->src[1];
  7209. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7211. return;
  7212. }
  7213. const int ith = params->ith;
  7214. const int nth = params->nth;
  7215. const int nr = ggml_nrows(src0);
  7216. GGML_TENSOR_BINARY_OP_LOCALS
  7217. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7218. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7219. if (dst->type == GGML_TYPE_F32) {
  7220. GGML_ASSERT( nb0 == sizeof(float));
  7221. }
  7222. else {
  7223. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7224. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7225. }
  7226. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7227. // rows per thread
  7228. const int dr = (nr + nth - 1)/nth;
  7229. // row range for this thread
  7230. const int ir0 = dr*ith;
  7231. const int ir1 = MIN(ir0 + dr, nr);
  7232. if (nb10 == sizeof(float)) {
  7233. if (dst->type == GGML_TYPE_BF16) {
  7234. for (int ir = ir0; ir < ir1; ++ir) {
  7235. // src0, src1 and dst are same shape => same indices
  7236. const int i3 = ir/(ne2*ne1);
  7237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7239. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7240. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7241. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7242. for (int i = 0; i < ne0; i++) {
  7243. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7244. }
  7245. }
  7246. } else {
  7247. for (int ir = ir0; ir < ir1; ++ir) {
  7248. // src0, src1 and dst are same shape => same indices
  7249. const int i3 = ir/(ne2*ne1);
  7250. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7251. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7252. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7253. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7254. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7255. for (int i = 0; i < ne0; i++) {
  7256. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7257. }
  7258. }
  7259. }
  7260. }
  7261. else {
  7262. // src1 is not contiguous
  7263. GGML_ASSERT(false);
  7264. }
  7265. }
  7266. static void ggml_compute_forward_add_f16_f16(
  7267. const struct ggml_compute_params * params,
  7268. struct ggml_tensor * dst) {
  7269. const struct ggml_tensor * src0 = dst->src[0];
  7270. const struct ggml_tensor * src1 = dst->src[1];
  7271. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7273. return;
  7274. }
  7275. const int ith = params->ith;
  7276. const int nth = params->nth;
  7277. const int nr = ggml_nrows(src0);
  7278. GGML_TENSOR_BINARY_OP_LOCALS
  7279. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7280. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7281. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7282. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7283. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7284. // rows per thread
  7285. const int dr = (nr + nth - 1)/nth;
  7286. // row range for this thread
  7287. const int ir0 = dr*ith;
  7288. const int ir1 = MIN(ir0 + dr, nr);
  7289. if (nb10 == sizeof(ggml_fp16_t)) {
  7290. for (int ir = ir0; ir < ir1; ++ir) {
  7291. // src0, src1 and dst are same shape => same indices
  7292. const int i3 = ir/(ne2*ne1);
  7293. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7294. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7295. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7296. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7297. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7298. for (int i = 0; i < ne0; i++) {
  7299. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7300. }
  7301. }
  7302. }
  7303. else {
  7304. // src1 is not contiguous
  7305. GGML_ASSERT(false);
  7306. }
  7307. }
  7308. static void ggml_compute_forward_add_bf16_bf16(
  7309. const struct ggml_compute_params * params,
  7310. struct ggml_tensor * dst) {
  7311. const struct ggml_tensor * src0 = dst->src[0];
  7312. const struct ggml_tensor * src1 = dst->src[1];
  7313. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7314. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7315. return;
  7316. }
  7317. const int ith = params->ith;
  7318. const int nth = params->nth;
  7319. const int nr = ggml_nrows(src0);
  7320. GGML_TENSOR_BINARY_OP_LOCALS
  7321. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7322. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7323. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7324. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7325. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7326. // rows per thread
  7327. const int dr = (nr + nth - 1)/nth;
  7328. // row range for this thread
  7329. const int ir0 = dr*ith;
  7330. const int ir1 = MIN(ir0 + dr, nr);
  7331. if (nb10 == sizeof(ggml_bf16_t)) {
  7332. for (int ir = ir0; ir < ir1; ++ir) {
  7333. // src0, src1 and dst are same shape => same indices
  7334. const int i3 = ir/(ne2*ne1);
  7335. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7336. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7337. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7338. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7339. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7340. for (int i = 0; i < ne0; i++) {
  7341. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7342. }
  7343. }
  7344. }
  7345. else {
  7346. // src1 is not contiguous
  7347. GGML_ASSERT(false);
  7348. }
  7349. }
  7350. static void ggml_compute_forward_add_q_f32(
  7351. const struct ggml_compute_params * params,
  7352. struct ggml_tensor * dst) {
  7353. const struct ggml_tensor * src0 = dst->src[0];
  7354. const struct ggml_tensor * src1 = dst->src[1];
  7355. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7356. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7357. return;
  7358. }
  7359. const int nr = ggml_nrows(src0);
  7360. GGML_TENSOR_BINARY_OP_LOCALS
  7361. const int ith = params->ith;
  7362. const int nth = params->nth;
  7363. const enum ggml_type type = src0->type;
  7364. const enum ggml_type dtype = dst->type;
  7365. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7366. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7367. // we don't support permuted src0 or src1
  7368. GGML_ASSERT(nb00 == ggml_type_size(type));
  7369. GGML_ASSERT(nb10 == sizeof(float));
  7370. // dst cannot be transposed or permuted
  7371. GGML_ASSERT(nb0 <= nb1);
  7372. GGML_ASSERT(nb1 <= nb2);
  7373. GGML_ASSERT(nb2 <= nb3);
  7374. GGML_ASSERT(ggml_is_quantized(src0->type));
  7375. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7376. // rows per thread
  7377. const int dr = (nr + nth - 1)/nth;
  7378. // row range for this thread
  7379. const int ir0 = dr*ith;
  7380. const int ir1 = MIN(ir0 + dr, nr);
  7381. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7382. for (int ir = ir0; ir < ir1; ++ir) {
  7383. // src0 indices
  7384. const int i03 = ir/(ne02*ne01);
  7385. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7386. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7387. // src1 and dst are same shape as src0 => same indices
  7388. const int i13 = i03;
  7389. const int i12 = i02;
  7390. const int i11 = i01;
  7391. const int i3 = i03;
  7392. const int i2 = i02;
  7393. const int i1 = i01;
  7394. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7395. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7396. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7397. assert(ne00 % 32 == 0);
  7398. // unquantize row from src0 to temp buffer
  7399. dequantize_row_q(src0_row, wdata, ne00);
  7400. // add src1
  7401. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7402. // quantize row to dst
  7403. if (quantize_row_q != NULL) {
  7404. quantize_row_q(wdata, dst_row, ne00);
  7405. } else {
  7406. memcpy(dst_row, wdata, ne0*nb0);
  7407. }
  7408. }
  7409. }
  7410. static void ggml_compute_forward_add(
  7411. const struct ggml_compute_params * params,
  7412. struct ggml_tensor * dst) {
  7413. const struct ggml_tensor * src0 = dst->src[0];
  7414. const struct ggml_tensor * src1 = dst->src[1];
  7415. switch (src0->type) {
  7416. case GGML_TYPE_F32:
  7417. {
  7418. if (src1->type == GGML_TYPE_F32) {
  7419. ggml_compute_forward_add_f32(params, dst);
  7420. }
  7421. else {
  7422. GGML_ASSERT(false);
  7423. }
  7424. } break;
  7425. case GGML_TYPE_F16:
  7426. {
  7427. if (src1->type == GGML_TYPE_F16) {
  7428. ggml_compute_forward_add_f16_f16(params, dst);
  7429. }
  7430. else if (src1->type == GGML_TYPE_F32) {
  7431. ggml_compute_forward_add_f16_f32(params, dst);
  7432. }
  7433. else {
  7434. GGML_ASSERT(false);
  7435. }
  7436. } break;
  7437. case GGML_TYPE_BF16:
  7438. {
  7439. if (src1->type == GGML_TYPE_BF16) {
  7440. ggml_compute_forward_add_bf16_bf16(params, dst);
  7441. }
  7442. else if (src1->type == GGML_TYPE_F32) {
  7443. ggml_compute_forward_add_bf16_f32(params, dst);
  7444. }
  7445. else {
  7446. GGML_ASSERT(false);
  7447. }
  7448. } break;
  7449. case GGML_TYPE_Q4_0:
  7450. case GGML_TYPE_Q4_1:
  7451. case GGML_TYPE_Q5_0:
  7452. case GGML_TYPE_Q5_1:
  7453. case GGML_TYPE_Q8_0:
  7454. case GGML_TYPE_Q2_K:
  7455. case GGML_TYPE_Q3_K:
  7456. case GGML_TYPE_Q4_K:
  7457. case GGML_TYPE_Q5_K:
  7458. case GGML_TYPE_Q6_K:
  7459. case GGML_TYPE_IQ2_XXS:
  7460. case GGML_TYPE_IQ2_XS:
  7461. case GGML_TYPE_IQ3_XXS:
  7462. case GGML_TYPE_IQ1_S:
  7463. case GGML_TYPE_IQ1_M:
  7464. case GGML_TYPE_IQ4_NL:
  7465. case GGML_TYPE_IQ4_XS:
  7466. case GGML_TYPE_IQ3_S:
  7467. case GGML_TYPE_IQ2_S:
  7468. {
  7469. ggml_compute_forward_add_q_f32(params, dst);
  7470. } break;
  7471. default:
  7472. {
  7473. GGML_ASSERT(false);
  7474. } break;
  7475. }
  7476. }
  7477. // ggml_compute_forward_add1
  7478. static void ggml_compute_forward_add1_f32(
  7479. const struct ggml_compute_params * params,
  7480. struct ggml_tensor * dst) {
  7481. const struct ggml_tensor * src0 = dst->src[0];
  7482. const struct ggml_tensor * src1 = dst->src[1];
  7483. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7484. GGML_ASSERT(ggml_is_scalar(src1));
  7485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7486. return;
  7487. }
  7488. const int ith = params->ith;
  7489. const int nth = params->nth;
  7490. const int nr = ggml_nrows(src0);
  7491. GGML_TENSOR_UNARY_OP_LOCALS
  7492. GGML_ASSERT( nb0 == sizeof(float));
  7493. GGML_ASSERT(nb00 == sizeof(float));
  7494. // rows per thread
  7495. const int dr = (nr + nth - 1)/nth;
  7496. // row range for this thread
  7497. const int ir0 = dr*ith;
  7498. const int ir1 = MIN(ir0 + dr, nr);
  7499. for (int ir = ir0; ir < ir1; ++ir) {
  7500. // src0 and dst are same shape => same indices
  7501. const int i3 = ir/(ne2*ne1);
  7502. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7503. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7504. #ifdef GGML_USE_ACCELERATE
  7505. UNUSED(ggml_vec_add1_f32);
  7506. vDSP_vadd(
  7507. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7508. (float *) ((char *) src1->data), 0,
  7509. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7510. ne0);
  7511. #else
  7512. ggml_vec_add1_f32(ne0,
  7513. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7514. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7515. *(float *) src1->data);
  7516. #endif
  7517. }
  7518. }
  7519. static void ggml_compute_forward_add1_f16_f32(
  7520. const struct ggml_compute_params * params,
  7521. struct ggml_tensor * dst) {
  7522. const struct ggml_tensor * src0 = dst->src[0];
  7523. const struct ggml_tensor * src1 = dst->src[1];
  7524. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7525. GGML_ASSERT(ggml_is_scalar(src1));
  7526. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7527. return;
  7528. }
  7529. // scalar to add
  7530. const float v = *(float *) src1->data;
  7531. const int ith = params->ith;
  7532. const int nth = params->nth;
  7533. const int nr = ggml_nrows(src0);
  7534. GGML_TENSOR_UNARY_OP_LOCALS
  7535. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7536. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7537. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7538. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7539. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7540. // rows per thread
  7541. const int dr = (nr + nth - 1)/nth;
  7542. // row range for this thread
  7543. const int ir0 = dr*ith;
  7544. const int ir1 = MIN(ir0 + dr, nr);
  7545. for (int ir = ir0; ir < ir1; ++ir) {
  7546. // src0 and dst are same shape => same indices
  7547. const int i3 = ir/(ne2*ne1);
  7548. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7549. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7550. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7551. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7552. for (int i = 0; i < ne0; i++) {
  7553. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7554. }
  7555. }
  7556. }
  7557. static void ggml_compute_forward_add1_f16_f16(
  7558. const struct ggml_compute_params * params,
  7559. struct ggml_tensor * dst) {
  7560. const struct ggml_tensor * src0 = dst->src[0];
  7561. const struct ggml_tensor * src1 = dst->src[1];
  7562. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7563. GGML_ASSERT(ggml_is_scalar(src1));
  7564. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7565. return;
  7566. }
  7567. // scalar to add
  7568. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7569. const int ith = params->ith;
  7570. const int nth = params->nth;
  7571. const int nr = ggml_nrows(src0);
  7572. GGML_TENSOR_UNARY_OP_LOCALS
  7573. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7574. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7575. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7576. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7577. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7578. // rows per thread
  7579. const int dr = (nr + nth - 1)/nth;
  7580. // row range for this thread
  7581. const int ir0 = dr*ith;
  7582. const int ir1 = MIN(ir0 + dr, nr);
  7583. for (int ir = ir0; ir < ir1; ++ir) {
  7584. // src0 and dst are same shape => same indices
  7585. const int i3 = ir/(ne2*ne1);
  7586. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7587. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7588. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7589. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7590. for (int i = 0; i < ne0; i++) {
  7591. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7592. }
  7593. }
  7594. }
  7595. static void ggml_compute_forward_add1_q_f32(
  7596. const struct ggml_compute_params * params,
  7597. struct ggml_tensor * dst) {
  7598. const struct ggml_tensor * src0 = dst->src[0];
  7599. const struct ggml_tensor * src1 = dst->src[1];
  7600. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7601. GGML_ASSERT(ggml_is_scalar(src1));
  7602. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7603. return;
  7604. }
  7605. // scalar to add
  7606. const float v = *(float *) src1->data;
  7607. const int ith = params->ith;
  7608. const int nth = params->nth;
  7609. const int nr = ggml_nrows(src0);
  7610. GGML_TENSOR_UNARY_OP_LOCALS
  7611. const enum ggml_type type = src0->type;
  7612. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7613. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7614. // we don't support permuted src0
  7615. GGML_ASSERT(nb00 == ggml_type_size(type));
  7616. // dst cannot be transposed or permuted
  7617. GGML_ASSERT(nb0 <= nb1);
  7618. GGML_ASSERT(nb1 <= nb2);
  7619. GGML_ASSERT(nb2 <= nb3);
  7620. GGML_ASSERT(ggml_is_quantized(src0->type));
  7621. GGML_ASSERT(dst->type == src0->type);
  7622. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7623. // rows per thread
  7624. const int dr = (nr + nth - 1)/nth;
  7625. // row range for this thread
  7626. const int ir0 = dr*ith;
  7627. const int ir1 = MIN(ir0 + dr, nr);
  7628. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7629. for (int ir = ir0; ir < ir1; ++ir) {
  7630. // src0 and dst are same shape => same indices
  7631. const int i3 = ir/(ne2*ne1);
  7632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7634. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7635. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7636. assert(ne0 % 32 == 0);
  7637. // unquantize row from src0 to temp buffer
  7638. dequantize_row_q(src0_row, wdata, ne0);
  7639. // add src1
  7640. ggml_vec_acc1_f32(ne0, wdata, v);
  7641. // quantize row to dst
  7642. quantize_row_q(wdata, dst_row, ne0);
  7643. }
  7644. }
  7645. static void ggml_compute_forward_add1_bf16_f32(
  7646. const struct ggml_compute_params * params,
  7647. struct ggml_tensor * dst) {
  7648. const struct ggml_tensor * src0 = dst->src[0];
  7649. const struct ggml_tensor * src1 = dst->src[1];
  7650. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7651. GGML_ASSERT(ggml_is_scalar(src1));
  7652. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7653. return;
  7654. }
  7655. // scalar to add
  7656. const float v = *(float *) src1->data;
  7657. const int ith = params->ith;
  7658. const int nth = params->nth;
  7659. const int nr = ggml_nrows(src0);
  7660. GGML_TENSOR_UNARY_OP_LOCALS
  7661. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7662. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7663. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7664. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7665. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7666. // rows per thread
  7667. const int dr = (nr + nth - 1)/nth;
  7668. // row range for this thread
  7669. const int ir0 = dr*ith;
  7670. const int ir1 = MIN(ir0 + dr, nr);
  7671. for (int ir = ir0; ir < ir1; ++ir) {
  7672. // src0 and dst are same shape => same indices
  7673. const int i3 = ir/(ne2*ne1);
  7674. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7675. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7676. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7677. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7678. for (int i = 0; i < ne0; i++) {
  7679. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7680. }
  7681. }
  7682. }
  7683. static void ggml_compute_forward_add1_bf16_bf16(
  7684. const struct ggml_compute_params * params,
  7685. struct ggml_tensor * dst) {
  7686. const struct ggml_tensor * src0 = dst->src[0];
  7687. const struct ggml_tensor * src1 = dst->src[1];
  7688. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7689. GGML_ASSERT(ggml_is_scalar(src1));
  7690. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7691. return;
  7692. }
  7693. // scalar to add
  7694. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7695. const int ith = params->ith;
  7696. const int nth = params->nth;
  7697. const int nr = ggml_nrows(src0);
  7698. GGML_TENSOR_UNARY_OP_LOCALS
  7699. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7700. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7701. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7702. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7703. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7704. // rows per thread
  7705. const int dr = (nr + nth - 1)/nth;
  7706. // row range for this thread
  7707. const int ir0 = dr*ith;
  7708. const int ir1 = MIN(ir0 + dr, nr);
  7709. for (int ir = ir0; ir < ir1; ++ir) {
  7710. // src0 and dst are same shape => same indices
  7711. const int i3 = ir/(ne2*ne1);
  7712. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7713. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7714. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7715. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7716. for (int i = 0; i < ne0; i++) {
  7717. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7718. }
  7719. }
  7720. }
  7721. static void ggml_compute_forward_add1(
  7722. const struct ggml_compute_params * params,
  7723. struct ggml_tensor * dst) {
  7724. const struct ggml_tensor * src0 = dst->src[0];
  7725. const struct ggml_tensor * src1 = dst->src[1];
  7726. switch (src0->type) {
  7727. case GGML_TYPE_F32:
  7728. {
  7729. ggml_compute_forward_add1_f32(params, dst);
  7730. } break;
  7731. case GGML_TYPE_F16:
  7732. {
  7733. if (src1->type == GGML_TYPE_F16) {
  7734. ggml_compute_forward_add1_f16_f16(params, dst);
  7735. }
  7736. else if (src1->type == GGML_TYPE_F32) {
  7737. ggml_compute_forward_add1_f16_f32(params, dst);
  7738. }
  7739. else {
  7740. GGML_ASSERT(false);
  7741. }
  7742. } break;
  7743. case GGML_TYPE_BF16:
  7744. {
  7745. if (src1->type == GGML_TYPE_BF16) {
  7746. ggml_compute_forward_add1_bf16_bf16(params, dst);
  7747. }
  7748. else if (src1->type == GGML_TYPE_F32) {
  7749. ggml_compute_forward_add1_bf16_f32(params, dst);
  7750. }
  7751. else {
  7752. GGML_ASSERT(false);
  7753. }
  7754. } break;
  7755. case GGML_TYPE_Q4_0:
  7756. case GGML_TYPE_Q4_1:
  7757. case GGML_TYPE_Q5_0:
  7758. case GGML_TYPE_Q5_1:
  7759. case GGML_TYPE_Q8_0:
  7760. case GGML_TYPE_Q8_1:
  7761. case GGML_TYPE_Q2_K:
  7762. case GGML_TYPE_Q3_K:
  7763. case GGML_TYPE_Q4_K:
  7764. case GGML_TYPE_Q5_K:
  7765. case GGML_TYPE_Q6_K:
  7766. case GGML_TYPE_IQ2_XXS:
  7767. case GGML_TYPE_IQ2_XS:
  7768. case GGML_TYPE_IQ3_XXS:
  7769. case GGML_TYPE_IQ1_S:
  7770. case GGML_TYPE_IQ1_M:
  7771. case GGML_TYPE_IQ4_NL:
  7772. case GGML_TYPE_IQ4_XS:
  7773. case GGML_TYPE_IQ3_S:
  7774. case GGML_TYPE_IQ2_S:
  7775. {
  7776. ggml_compute_forward_add1_q_f32(params, dst);
  7777. } break;
  7778. default:
  7779. {
  7780. GGML_ASSERT(false);
  7781. } break;
  7782. }
  7783. }
  7784. // ggml_compute_forward_acc
  7785. static void ggml_compute_forward_acc_f32(
  7786. const struct ggml_compute_params * params,
  7787. struct ggml_tensor * dst) {
  7788. const struct ggml_tensor * src0 = dst->src[0];
  7789. const struct ggml_tensor * src1 = dst->src[1];
  7790. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7791. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7792. // view src0 and dst with these strides and data offset inbytes during acc
  7793. // nb0 is implicitly element_size because src0 and dst are contiguous
  7794. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7795. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7796. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7797. size_t offset = ((int32_t *) dst->op_params)[3];
  7798. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7799. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7800. if (params->ith != 0) {
  7801. return;
  7802. }
  7803. // memcpy needs to be synchronized across threads to avoid race conditions.
  7804. // => do it in INIT phase
  7805. memcpy(
  7806. ((char *) dst->data),
  7807. ((char *) src0->data),
  7808. ggml_nbytes(dst));
  7809. }
  7810. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7811. return;
  7812. }
  7813. const int ith = params->ith;
  7814. const int nth = params->nth;
  7815. const int nr = ggml_nrows(src1);
  7816. const int nc = src1->ne[0];
  7817. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7818. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7819. // src0 and dst as viewed during acc
  7820. const size_t nb0 = ggml_element_size(src0);
  7821. const size_t nb00 = nb0;
  7822. const size_t nb01 = nb1;
  7823. const size_t nb02 = nb2;
  7824. const size_t nb03 = nb3;
  7825. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7826. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7827. GGML_ASSERT(nb10 == sizeof(float));
  7828. // rows per thread
  7829. const int dr = (nr + nth - 1)/nth;
  7830. // row range for this thread
  7831. const int ir0 = dr*ith;
  7832. const int ir1 = MIN(ir0 + dr, nr);
  7833. for (int ir = ir0; ir < ir1; ++ir) {
  7834. // src0 and dst are viewed with shape of src1 and offset
  7835. // => same indices
  7836. const int i3 = ir/(ne12*ne11);
  7837. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7838. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7839. #ifdef GGML_USE_ACCELERATE
  7840. vDSP_vadd(
  7841. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7842. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7843. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7844. #else
  7845. ggml_vec_add_f32(nc,
  7846. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7847. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7848. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7849. #endif
  7850. }
  7851. }
  7852. static void ggml_compute_forward_acc(
  7853. const struct ggml_compute_params * params,
  7854. struct ggml_tensor * dst) {
  7855. const struct ggml_tensor * src0 = dst->src[0];
  7856. switch (src0->type) {
  7857. case GGML_TYPE_F32:
  7858. {
  7859. ggml_compute_forward_acc_f32(params, dst);
  7860. } break;
  7861. case GGML_TYPE_F16:
  7862. case GGML_TYPE_BF16:
  7863. case GGML_TYPE_Q4_0:
  7864. case GGML_TYPE_Q4_1:
  7865. case GGML_TYPE_Q5_0:
  7866. case GGML_TYPE_Q5_1:
  7867. case GGML_TYPE_Q8_0:
  7868. case GGML_TYPE_Q8_1:
  7869. case GGML_TYPE_Q2_K:
  7870. case GGML_TYPE_Q3_K:
  7871. case GGML_TYPE_Q4_K:
  7872. case GGML_TYPE_Q5_K:
  7873. case GGML_TYPE_Q6_K:
  7874. case GGML_TYPE_IQ2_XXS:
  7875. case GGML_TYPE_IQ2_XS:
  7876. case GGML_TYPE_IQ3_XXS:
  7877. case GGML_TYPE_IQ1_S:
  7878. case GGML_TYPE_IQ1_M:
  7879. case GGML_TYPE_IQ4_NL:
  7880. case GGML_TYPE_IQ4_XS:
  7881. case GGML_TYPE_IQ3_S:
  7882. case GGML_TYPE_IQ2_S:
  7883. default:
  7884. {
  7885. GGML_ASSERT(false);
  7886. } break;
  7887. }
  7888. }
  7889. // ggml_compute_forward_sub
  7890. static void ggml_compute_forward_sub_f32(
  7891. const struct ggml_compute_params * params,
  7892. struct ggml_tensor * dst) {
  7893. const struct ggml_tensor * src0 = dst->src[0];
  7894. const struct ggml_tensor * src1 = dst->src[1];
  7895. assert(params->ith == 0);
  7896. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7897. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7898. return;
  7899. }
  7900. const int nr = ggml_nrows(src0);
  7901. GGML_TENSOR_BINARY_OP_LOCALS
  7902. GGML_ASSERT( nb0 == sizeof(float));
  7903. GGML_ASSERT(nb00 == sizeof(float));
  7904. if (nb10 == sizeof(float)) {
  7905. for (int ir = 0; ir < nr; ++ir) {
  7906. // src0, src1 and dst are same shape => same indices
  7907. const int i3 = ir/(ne2*ne1);
  7908. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7909. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7910. #ifdef GGML_USE_ACCELERATE
  7911. vDSP_vsub(
  7912. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7913. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7914. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7915. ne0);
  7916. #else
  7917. ggml_vec_sub_f32(ne0,
  7918. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7919. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7920. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7921. #endif
  7922. // }
  7923. // }
  7924. }
  7925. } else {
  7926. // src1 is not contiguous
  7927. for (int ir = 0; ir < nr; ++ir) {
  7928. // src0, src1 and dst are same shape => same indices
  7929. const int i3 = ir/(ne2*ne1);
  7930. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7931. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7932. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7933. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7934. for (int i0 = 0; i0 < ne0; i0++) {
  7935. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7936. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7937. }
  7938. }
  7939. }
  7940. }
  7941. static void ggml_compute_forward_sub(
  7942. const struct ggml_compute_params * params,
  7943. struct ggml_tensor * dst) {
  7944. const struct ggml_tensor * src0 = dst->src[0];
  7945. switch (src0->type) {
  7946. case GGML_TYPE_F32:
  7947. {
  7948. ggml_compute_forward_sub_f32(params, dst);
  7949. } break;
  7950. default:
  7951. {
  7952. GGML_ASSERT(false);
  7953. } break;
  7954. }
  7955. }
  7956. // ggml_compute_forward_mul
  7957. static void ggml_compute_forward_mul_f32(
  7958. const struct ggml_compute_params * params,
  7959. struct ggml_tensor * dst) {
  7960. const struct ggml_tensor * src0 = dst->src[0];
  7961. const struct ggml_tensor * src1 = dst->src[1];
  7962. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7963. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7964. return;
  7965. }
  7966. const int ith = params->ith;
  7967. const int nth = params->nth;
  7968. #if defined(GGML_USE_CLBLAST)
  7969. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7970. // TODO: OpenCL kernel support full broadcast
  7971. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7972. if (ith == 0) {
  7973. ggml_cl_mul(src0, src1, dst);
  7974. }
  7975. return;
  7976. }
  7977. #endif
  7978. const int64_t nr = ggml_nrows(src0);
  7979. GGML_TENSOR_BINARY_OP_LOCALS
  7980. GGML_ASSERT( nb0 == sizeof(float));
  7981. GGML_ASSERT(nb00 == sizeof(float));
  7982. if (nb10 == sizeof(float)) {
  7983. for (int64_t ir = ith; ir < nr; ir += nth) {
  7984. // src0 and dst are same shape => same indices
  7985. const int64_t i03 = ir/(ne02*ne01);
  7986. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7987. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7988. const int64_t i13 = i03 % ne13;
  7989. const int64_t i12 = i02 % ne12;
  7990. const int64_t i11 = i01 % ne11;
  7991. const int64_t nr0 = ne00 / ne10;
  7992. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7993. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7994. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7995. for (int64_t r = 0 ; r < nr0; ++r) {
  7996. #ifdef GGML_USE_ACCELERATE
  7997. UNUSED(ggml_vec_mul_f32);
  7998. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7999. #else
  8000. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8001. #endif
  8002. }
  8003. }
  8004. } else {
  8005. // src1 is not contiguous
  8006. for (int64_t ir = ith; ir < nr; ir += nth) {
  8007. // src0 and dst are same shape => same indices
  8008. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8009. const int64_t i03 = ir/(ne02*ne01);
  8010. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8011. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8012. const int64_t i13 = i03 % ne13;
  8013. const int64_t i12 = i02 % ne12;
  8014. const int64_t i11 = i01 % ne11;
  8015. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8016. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8017. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8018. const int64_t i10 = i0 % ne10;
  8019. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8020. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8021. }
  8022. }
  8023. }
  8024. }
  8025. static void ggml_compute_forward_mul(
  8026. const struct ggml_compute_params * params,
  8027. struct ggml_tensor * dst) {
  8028. const struct ggml_tensor * src0 = dst->src[0];
  8029. const struct ggml_tensor * src1 = dst->src[1];
  8030. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8031. switch (src0->type) {
  8032. case GGML_TYPE_F32:
  8033. {
  8034. ggml_compute_forward_mul_f32(params, dst);
  8035. } break;
  8036. default:
  8037. {
  8038. GGML_ASSERT(false);
  8039. } break;
  8040. }
  8041. }
  8042. // ggml_compute_forward_div
  8043. static void ggml_compute_forward_div_f32(
  8044. const struct ggml_compute_params * params,
  8045. struct ggml_tensor * dst) {
  8046. const struct ggml_tensor * src0 = dst->src[0];
  8047. const struct ggml_tensor * src1 = dst->src[1];
  8048. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8050. return;
  8051. }
  8052. const int ith = params->ith;
  8053. const int nth = params->nth;
  8054. const int64_t nr = ggml_nrows(src0);
  8055. GGML_TENSOR_BINARY_OP_LOCALS
  8056. GGML_ASSERT( nb0 == sizeof(float));
  8057. GGML_ASSERT(nb00 == sizeof(float));
  8058. if (nb10 == sizeof(float)) {
  8059. for (int64_t ir = ith; ir < nr; ir += nth) {
  8060. // src0 and dst are same shape => same indices
  8061. const int64_t i03 = ir/(ne02*ne01);
  8062. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8063. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8064. const int64_t i13 = i03 % ne13;
  8065. const int64_t i12 = i02 % ne12;
  8066. const int64_t i11 = i01 % ne11;
  8067. const int64_t nr0 = ne00 / ne10;
  8068. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8069. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8070. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8071. for (int64_t r = 0; r < nr0; ++r) {
  8072. #ifdef GGML_USE_ACCELERATE
  8073. UNUSED(ggml_vec_div_f32);
  8074. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8075. #else
  8076. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8077. #endif
  8078. }
  8079. }
  8080. } else {
  8081. // src1 is not contiguous
  8082. for (int64_t ir = ith; ir < nr; ir += nth) {
  8083. // src0 and dst are same shape => same indices
  8084. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8085. const int64_t i03 = ir/(ne02*ne01);
  8086. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8087. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8088. const int64_t i13 = i03 % ne13;
  8089. const int64_t i12 = i02 % ne12;
  8090. const int64_t i11 = i01 % ne11;
  8091. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8092. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8093. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8094. const int64_t i10 = i0 % ne10;
  8095. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8096. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8097. }
  8098. }
  8099. }
  8100. }
  8101. static void ggml_compute_forward_div(
  8102. const struct ggml_compute_params * params,
  8103. struct ggml_tensor * dst) {
  8104. const struct ggml_tensor * src0 = dst->src[0];
  8105. switch (src0->type) {
  8106. case GGML_TYPE_F32:
  8107. {
  8108. ggml_compute_forward_div_f32(params, dst);
  8109. } break;
  8110. default:
  8111. {
  8112. GGML_ASSERT(false);
  8113. } break;
  8114. }
  8115. }
  8116. // ggml_compute_forward_sqr
  8117. static void ggml_compute_forward_sqr_f32(
  8118. const struct ggml_compute_params * params,
  8119. struct ggml_tensor * dst) {
  8120. const struct ggml_tensor * src0 = dst->src[0];
  8121. assert(params->ith == 0);
  8122. assert(ggml_are_same_shape(src0, dst));
  8123. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8124. return;
  8125. }
  8126. const int n = ggml_nrows(src0);
  8127. const int nc = src0->ne[0];
  8128. assert( dst->nb[0] == sizeof(float));
  8129. assert(src0->nb[0] == sizeof(float));
  8130. for (int i = 0; i < n; i++) {
  8131. ggml_vec_sqr_f32(nc,
  8132. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8133. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8134. }
  8135. }
  8136. static void ggml_compute_forward_sqr(
  8137. const struct ggml_compute_params * params,
  8138. struct ggml_tensor * dst) {
  8139. const struct ggml_tensor * src0 = dst->src[0];
  8140. switch (src0->type) {
  8141. case GGML_TYPE_F32:
  8142. {
  8143. ggml_compute_forward_sqr_f32(params, dst);
  8144. } break;
  8145. default:
  8146. {
  8147. GGML_ASSERT(false);
  8148. } break;
  8149. }
  8150. }
  8151. // ggml_compute_forward_sqrt
  8152. static void ggml_compute_forward_sqrt_f32(
  8153. const struct ggml_compute_params * params,
  8154. struct ggml_tensor * dst) {
  8155. const struct ggml_tensor * src0 = dst->src[0];
  8156. assert(params->ith == 0);
  8157. assert(ggml_are_same_shape(src0, dst));
  8158. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8159. return;
  8160. }
  8161. const int n = ggml_nrows(src0);
  8162. const int nc = src0->ne[0];
  8163. assert( dst->nb[0] == sizeof(float));
  8164. assert(src0->nb[0] == sizeof(float));
  8165. for (int i = 0; i < n; i++) {
  8166. ggml_vec_sqrt_f32(nc,
  8167. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8168. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8169. }
  8170. }
  8171. static void ggml_compute_forward_sqrt(
  8172. const struct ggml_compute_params * params,
  8173. struct ggml_tensor * dst) {
  8174. const struct ggml_tensor * src0 = dst->src[0];
  8175. switch (src0->type) {
  8176. case GGML_TYPE_F32:
  8177. {
  8178. ggml_compute_forward_sqrt_f32(params, dst);
  8179. } break;
  8180. default:
  8181. {
  8182. GGML_ASSERT(false);
  8183. } break;
  8184. }
  8185. }
  8186. // ggml_compute_forward_log
  8187. static void ggml_compute_forward_log_f32(
  8188. const struct ggml_compute_params * params,
  8189. struct ggml_tensor * dst) {
  8190. const struct ggml_tensor * src0 = dst->src[0];
  8191. GGML_ASSERT(params->ith == 0);
  8192. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8193. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8194. return;
  8195. }
  8196. const int n = ggml_nrows(src0);
  8197. const int nc = src0->ne[0];
  8198. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8199. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8200. for (int i = 0; i < n; i++) {
  8201. ggml_vec_log_f32(nc,
  8202. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8203. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8204. }
  8205. }
  8206. static void ggml_compute_forward_log(
  8207. const struct ggml_compute_params * params,
  8208. struct ggml_tensor * dst) {
  8209. const struct ggml_tensor * src0 = dst->src[0];
  8210. switch (src0->type) {
  8211. case GGML_TYPE_F32:
  8212. {
  8213. ggml_compute_forward_log_f32(params, dst);
  8214. } break;
  8215. default:
  8216. {
  8217. GGML_ASSERT(false);
  8218. } break;
  8219. }
  8220. }
  8221. // ggml_compute_forward_sum
  8222. static void ggml_compute_forward_sum_f32(
  8223. const struct ggml_compute_params * params,
  8224. struct ggml_tensor * dst) {
  8225. const struct ggml_tensor * src0 = dst->src[0];
  8226. assert(params->ith == 0);
  8227. assert(ggml_is_scalar(dst));
  8228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8229. return;
  8230. }
  8231. assert(ggml_is_scalar(dst));
  8232. assert(src0->nb[0] == sizeof(float));
  8233. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8234. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8235. ggml_float sum = 0;
  8236. ggml_float row_sum = 0;
  8237. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8238. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8239. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8240. ggml_vec_sum_f32_ggf(ne00,
  8241. &row_sum,
  8242. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8243. sum += row_sum;
  8244. }
  8245. }
  8246. }
  8247. ((float *) dst->data)[0] = sum;
  8248. }
  8249. static void ggml_compute_forward_sum_f16(
  8250. const struct ggml_compute_params * params,
  8251. struct ggml_tensor * dst) {
  8252. const struct ggml_tensor * src0 = dst->src[0];
  8253. assert(params->ith == 0);
  8254. assert(ggml_is_scalar(dst));
  8255. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8256. return;
  8257. }
  8258. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8259. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8260. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8261. float sum = 0;
  8262. float row_sum = 0;
  8263. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8264. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8265. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8266. ggml_vec_sum_f16_ggf(ne00,
  8267. &row_sum,
  8268. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8269. sum += row_sum;
  8270. }
  8271. }
  8272. }
  8273. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8274. }
  8275. static void ggml_compute_forward_sum_bf16(
  8276. const struct ggml_compute_params * params,
  8277. struct ggml_tensor * dst) {
  8278. const struct ggml_tensor * src0 = dst->src[0];
  8279. assert(params->ith == 0);
  8280. assert(ggml_is_scalar(dst));
  8281. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8282. return;
  8283. }
  8284. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8285. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8286. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8287. float sum = 0;
  8288. float row_sum = 0;
  8289. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8290. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8291. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8292. ggml_vec_sum_bf16_ggf(ne00,
  8293. &row_sum,
  8294. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8295. sum += row_sum;
  8296. }
  8297. }
  8298. }
  8299. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8300. }
  8301. static void ggml_compute_forward_sum(
  8302. const struct ggml_compute_params * params,
  8303. struct ggml_tensor * dst) {
  8304. const struct ggml_tensor * src0 = dst->src[0];
  8305. switch (src0->type) {
  8306. case GGML_TYPE_F32:
  8307. {
  8308. ggml_compute_forward_sum_f32(params, dst);
  8309. } break;
  8310. case GGML_TYPE_F16:
  8311. {
  8312. ggml_compute_forward_sum_f16(params, dst);
  8313. } break;
  8314. case GGML_TYPE_BF16:
  8315. {
  8316. ggml_compute_forward_sum_bf16(params, dst);
  8317. } break;
  8318. default:
  8319. {
  8320. GGML_ASSERT(false);
  8321. } break;
  8322. }
  8323. }
  8324. // ggml_compute_forward_sum_rows
  8325. static void ggml_compute_forward_sum_rows_f32(
  8326. const struct ggml_compute_params * params,
  8327. struct ggml_tensor * dst) {
  8328. const struct ggml_tensor * src0 = dst->src[0];
  8329. GGML_ASSERT(params->ith == 0);
  8330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8331. return;
  8332. }
  8333. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8334. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8335. GGML_TENSOR_UNARY_OP_LOCALS
  8336. GGML_ASSERT(ne0 == 1);
  8337. GGML_ASSERT(ne1 == ne01);
  8338. GGML_ASSERT(ne2 == ne02);
  8339. GGML_ASSERT(ne3 == ne03);
  8340. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8341. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8342. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8343. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8344. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8345. float row_sum = 0;
  8346. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8347. dst_row[0] = row_sum;
  8348. }
  8349. }
  8350. }
  8351. }
  8352. static void ggml_compute_forward_sum_rows(
  8353. const struct ggml_compute_params * params,
  8354. struct ggml_tensor * dst) {
  8355. const struct ggml_tensor * src0 = dst->src[0];
  8356. switch (src0->type) {
  8357. case GGML_TYPE_F32:
  8358. {
  8359. ggml_compute_forward_sum_rows_f32(params, dst);
  8360. } break;
  8361. default:
  8362. {
  8363. GGML_ASSERT(false);
  8364. } break;
  8365. }
  8366. }
  8367. // ggml_compute_forward_mean
  8368. static void ggml_compute_forward_mean_f32(
  8369. const struct ggml_compute_params * params,
  8370. struct ggml_tensor * dst) {
  8371. const struct ggml_tensor * src0 = dst->src[0];
  8372. assert(params->ith == 0);
  8373. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8374. return;
  8375. }
  8376. assert(src0->nb[0] == sizeof(float));
  8377. GGML_TENSOR_UNARY_OP_LOCALS
  8378. assert(ne0 == 1);
  8379. assert(ne1 == ne01);
  8380. assert(ne2 == ne02);
  8381. assert(ne3 == ne03);
  8382. UNUSED(ne0);
  8383. UNUSED(ne1);
  8384. UNUSED(ne2);
  8385. UNUSED(ne3);
  8386. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8387. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8388. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8389. ggml_vec_sum_f32(ne00,
  8390. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8391. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8392. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8393. }
  8394. }
  8395. }
  8396. }
  8397. static void ggml_compute_forward_mean(
  8398. const struct ggml_compute_params * params,
  8399. struct ggml_tensor * dst) {
  8400. const struct ggml_tensor * src0 = dst->src[0];
  8401. switch (src0->type) {
  8402. case GGML_TYPE_F32:
  8403. {
  8404. ggml_compute_forward_mean_f32(params, dst);
  8405. } break;
  8406. default:
  8407. {
  8408. GGML_ASSERT(false);
  8409. } break;
  8410. }
  8411. }
  8412. // ggml_compute_forward_argmax
  8413. static void ggml_compute_forward_argmax_f32(
  8414. const struct ggml_compute_params * params,
  8415. struct ggml_tensor * dst) {
  8416. const struct ggml_tensor * src0 = dst->src[0];
  8417. assert(params->ith == 0);
  8418. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8419. return;
  8420. }
  8421. assert(src0->nb[0] == sizeof(float));
  8422. assert(dst->nb[0] == sizeof(float));
  8423. const int64_t ne00 = src0->ne[0];
  8424. const int64_t ne01 = src0->ne[1];
  8425. const size_t nb01 = src0->nb[1];
  8426. const size_t nb0 = dst->nb[0];
  8427. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8428. float * src = (float *) ((char *) src0->data + i1*nb01);
  8429. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8430. int v = 0;
  8431. ggml_vec_argmax_f32(ne00, &v, src);
  8432. dst_[0] = v;
  8433. }
  8434. }
  8435. static void ggml_compute_forward_argmax(
  8436. const struct ggml_compute_params * params,
  8437. struct ggml_tensor * dst) {
  8438. const struct ggml_tensor * src0 = dst->src[0];
  8439. switch (src0->type) {
  8440. case GGML_TYPE_F32:
  8441. {
  8442. ggml_compute_forward_argmax_f32(params, dst);
  8443. } break;
  8444. default:
  8445. {
  8446. GGML_ASSERT(false);
  8447. } break;
  8448. }
  8449. }
  8450. // ggml_compute_forward_repeat
  8451. static void ggml_compute_forward_repeat_f32(
  8452. const struct ggml_compute_params * params,
  8453. struct ggml_tensor * dst) {
  8454. const struct ggml_tensor * src0 = dst->src[0];
  8455. GGML_ASSERT(params->ith == 0);
  8456. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8457. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8458. return;
  8459. }
  8460. GGML_TENSOR_UNARY_OP_LOCALS
  8461. // guaranteed to be an integer due to the check in ggml_can_repeat
  8462. const int nr0 = (int)(ne0/ne00);
  8463. const int nr1 = (int)(ne1/ne01);
  8464. const int nr2 = (int)(ne2/ne02);
  8465. const int nr3 = (int)(ne3/ne03);
  8466. // TODO: support for transposed / permuted tensors
  8467. GGML_ASSERT(nb0 == sizeof(float));
  8468. GGML_ASSERT(nb00 == sizeof(float));
  8469. // TODO: maybe this is not optimal?
  8470. for (int i3 = 0; i3 < nr3; i3++) {
  8471. for (int k3 = 0; k3 < ne03; k3++) {
  8472. for (int i2 = 0; i2 < nr2; i2++) {
  8473. for (int k2 = 0; k2 < ne02; k2++) {
  8474. for (int i1 = 0; i1 < nr1; i1++) {
  8475. for (int k1 = 0; k1 < ne01; k1++) {
  8476. for (int i0 = 0; i0 < nr0; i0++) {
  8477. ggml_vec_cpy_f32(ne00,
  8478. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8479. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8480. }
  8481. }
  8482. }
  8483. }
  8484. }
  8485. }
  8486. }
  8487. }
  8488. static void ggml_compute_forward_repeat_f16(
  8489. const struct ggml_compute_params * params,
  8490. struct ggml_tensor * dst) {
  8491. const struct ggml_tensor * src0 = dst->src[0];
  8492. GGML_ASSERT(params->ith == 0);
  8493. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8494. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8495. return;
  8496. }
  8497. GGML_TENSOR_UNARY_OP_LOCALS
  8498. // guaranteed to be an integer due to the check in ggml_can_repeat
  8499. const int nr0 = (int)(ne0/ne00);
  8500. const int nr1 = (int)(ne1/ne01);
  8501. const int nr2 = (int)(ne2/ne02);
  8502. const int nr3 = (int)(ne3/ne03);
  8503. // TODO: support for transposed / permuted tensors
  8504. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8505. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8506. // TODO: maybe this is not optimal?
  8507. for (int i3 = 0; i3 < nr3; i3++) {
  8508. for (int k3 = 0; k3 < ne03; k3++) {
  8509. for (int i2 = 0; i2 < nr2; i2++) {
  8510. for (int k2 = 0; k2 < ne02; k2++) {
  8511. for (int i1 = 0; i1 < nr1; i1++) {
  8512. for (int k1 = 0; k1 < ne01; k1++) {
  8513. for (int i0 = 0; i0 < nr0; i0++) {
  8514. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8515. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8516. // ggml_vec_cpy_f16(ne00, y, x)
  8517. for (int i = 0; i < ne00; ++i) {
  8518. y[i] = x[i];
  8519. }
  8520. }
  8521. }
  8522. }
  8523. }
  8524. }
  8525. }
  8526. }
  8527. }
  8528. static void ggml_compute_forward_repeat(
  8529. const struct ggml_compute_params * params,
  8530. struct ggml_tensor * dst) {
  8531. const struct ggml_tensor * src0 = dst->src[0];
  8532. switch (src0->type) {
  8533. case GGML_TYPE_F16:
  8534. case GGML_TYPE_BF16:
  8535. case GGML_TYPE_I16:
  8536. {
  8537. ggml_compute_forward_repeat_f16(params, dst);
  8538. } break;
  8539. case GGML_TYPE_F32:
  8540. case GGML_TYPE_I32:
  8541. {
  8542. ggml_compute_forward_repeat_f32(params, dst);
  8543. } break;
  8544. default:
  8545. {
  8546. GGML_ASSERT(false);
  8547. } break;
  8548. }
  8549. }
  8550. // ggml_compute_forward_repeat_back
  8551. static void ggml_compute_forward_repeat_back_f32(
  8552. const struct ggml_compute_params * params,
  8553. struct ggml_tensor * dst) {
  8554. const struct ggml_tensor * src0 = dst->src[0];
  8555. GGML_ASSERT(params->ith == 0);
  8556. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8558. return;
  8559. }
  8560. GGML_TENSOR_UNARY_OP_LOCALS
  8561. // guaranteed to be an integer due to the check in ggml_can_repeat
  8562. const int nr0 = (int)(ne00/ne0);
  8563. const int nr1 = (int)(ne01/ne1);
  8564. const int nr2 = (int)(ne02/ne2);
  8565. const int nr3 = (int)(ne03/ne3);
  8566. // TODO: support for transposed / permuted tensors
  8567. GGML_ASSERT(nb0 == sizeof(float));
  8568. GGML_ASSERT(nb00 == sizeof(float));
  8569. if (ggml_is_contiguous(dst)) {
  8570. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8571. } else {
  8572. for (int k3 = 0; k3 < ne3; k3++) {
  8573. for (int k2 = 0; k2 < ne2; k2++) {
  8574. for (int k1 = 0; k1 < ne1; k1++) {
  8575. ggml_vec_set_f32(ne0,
  8576. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8577. 0);
  8578. }
  8579. }
  8580. }
  8581. }
  8582. // TODO: maybe this is not optimal?
  8583. for (int i3 = 0; i3 < nr3; i3++) {
  8584. for (int k3 = 0; k3 < ne3; k3++) {
  8585. for (int i2 = 0; i2 < nr2; i2++) {
  8586. for (int k2 = 0; k2 < ne2; k2++) {
  8587. for (int i1 = 0; i1 < nr1; i1++) {
  8588. for (int k1 = 0; k1 < ne1; k1++) {
  8589. for (int i0 = 0; i0 < nr0; i0++) {
  8590. ggml_vec_acc_f32(ne0,
  8591. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8592. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8593. }
  8594. }
  8595. }
  8596. }
  8597. }
  8598. }
  8599. }
  8600. }
  8601. static void ggml_compute_forward_repeat_back(
  8602. const struct ggml_compute_params * params,
  8603. struct ggml_tensor * dst) {
  8604. const struct ggml_tensor * src0 = dst->src[0];
  8605. switch (src0->type) {
  8606. case GGML_TYPE_F32:
  8607. {
  8608. ggml_compute_forward_repeat_back_f32(params, dst);
  8609. } break;
  8610. default:
  8611. {
  8612. GGML_ASSERT(false);
  8613. } break;
  8614. }
  8615. }
  8616. // ggml_compute_forward_concat
  8617. static void ggml_compute_forward_concat_f32(
  8618. const struct ggml_compute_params * params,
  8619. struct ggml_tensor * dst) {
  8620. const struct ggml_tensor * src0 = dst->src[0];
  8621. const struct ggml_tensor * src1 = dst->src[1];
  8622. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8623. return;
  8624. }
  8625. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8626. const int ith = params->ith;
  8627. const int nth = params->nth;
  8628. GGML_TENSOR_BINARY_OP_LOCALS
  8629. // TODO: support for transposed / permuted tensors
  8630. GGML_ASSERT(nb0 == sizeof(float));
  8631. GGML_ASSERT(nb00 == sizeof(float));
  8632. GGML_ASSERT(nb10 == sizeof(float));
  8633. for (int i3 = 0; i3 < ne3; i3++) {
  8634. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8635. if (i2 < ne02) { // src0
  8636. for (int i1 = 0; i1 < ne1; i1++) {
  8637. for (int i0 = 0; i0 < ne0; i0++) {
  8638. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8639. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8640. *y = *x;
  8641. }
  8642. }
  8643. } // src1
  8644. else {
  8645. for (int i1 = 0; i1 < ne1; i1++) {
  8646. for (int i0 = 0; i0 < ne0; i0++) {
  8647. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8648. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8649. *y = *x;
  8650. }
  8651. }
  8652. }
  8653. }
  8654. }
  8655. }
  8656. static void ggml_compute_forward_concat(
  8657. const struct ggml_compute_params* params,
  8658. struct ggml_tensor* dst) {
  8659. const struct ggml_tensor * src0 = dst->src[0];
  8660. switch (src0->type) {
  8661. case GGML_TYPE_F32:
  8662. case GGML_TYPE_I32:
  8663. {
  8664. ggml_compute_forward_concat_f32(params, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_abs
  8673. static void ggml_compute_forward_abs_f32(
  8674. const struct ggml_compute_params * params,
  8675. struct ggml_tensor * dst) {
  8676. const struct ggml_tensor * src0 = dst->src[0];
  8677. assert(params->ith == 0);
  8678. assert(ggml_are_same_shape(src0, dst));
  8679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8680. return;
  8681. }
  8682. const int n = ggml_nrows(src0);
  8683. const int nc = src0->ne[0];
  8684. assert(dst->nb[0] == sizeof(float));
  8685. assert(src0->nb[0] == sizeof(float));
  8686. for (int i = 0; i < n; i++) {
  8687. ggml_vec_abs_f32(nc,
  8688. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8689. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8690. }
  8691. }
  8692. static void ggml_compute_forward_abs(
  8693. const struct ggml_compute_params * params,
  8694. struct ggml_tensor * dst) {
  8695. const struct ggml_tensor * src0 = dst->src[0];
  8696. switch (src0->type) {
  8697. case GGML_TYPE_F32:
  8698. {
  8699. ggml_compute_forward_abs_f32(params, dst);
  8700. } break;
  8701. default:
  8702. {
  8703. GGML_ASSERT(false);
  8704. } break;
  8705. }
  8706. }
  8707. // ggml_compute_forward_sgn
  8708. static void ggml_compute_forward_sgn_f32(
  8709. const struct ggml_compute_params * params,
  8710. struct ggml_tensor * dst) {
  8711. const struct ggml_tensor * src0 = dst->src[0];
  8712. assert(params->ith == 0);
  8713. assert(ggml_are_same_shape(src0, dst));
  8714. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8715. return;
  8716. }
  8717. const int n = ggml_nrows(src0);
  8718. const int nc = src0->ne[0];
  8719. assert(dst->nb[0] == sizeof(float));
  8720. assert(src0->nb[0] == sizeof(float));
  8721. for (int i = 0; i < n; i++) {
  8722. ggml_vec_sgn_f32(nc,
  8723. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8724. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8725. }
  8726. }
  8727. static void ggml_compute_forward_sgn(
  8728. const struct ggml_compute_params * params,
  8729. struct ggml_tensor * dst) {
  8730. const struct ggml_tensor * src0 = dst->src[0];
  8731. switch (src0->type) {
  8732. case GGML_TYPE_F32:
  8733. {
  8734. ggml_compute_forward_sgn_f32(params, dst);
  8735. } break;
  8736. default:
  8737. {
  8738. GGML_ASSERT(false);
  8739. } break;
  8740. }
  8741. }
  8742. // ggml_compute_forward_neg
  8743. static void ggml_compute_forward_neg_f32(
  8744. const struct ggml_compute_params * params,
  8745. struct ggml_tensor * dst) {
  8746. const struct ggml_tensor * src0 = dst->src[0];
  8747. assert(params->ith == 0);
  8748. assert(ggml_are_same_shape(src0, dst));
  8749. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8750. return;
  8751. }
  8752. const int n = ggml_nrows(src0);
  8753. const int nc = src0->ne[0];
  8754. assert(dst->nb[0] == sizeof(float));
  8755. assert(src0->nb[0] == sizeof(float));
  8756. for (int i = 0; i < n; i++) {
  8757. ggml_vec_neg_f32(nc,
  8758. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8759. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8760. }
  8761. }
  8762. static void ggml_compute_forward_neg(
  8763. const struct ggml_compute_params * params,
  8764. struct ggml_tensor * dst) {
  8765. const struct ggml_tensor * src0 = dst->src[0];
  8766. switch (src0->type) {
  8767. case GGML_TYPE_F32:
  8768. {
  8769. ggml_compute_forward_neg_f32(params, dst);
  8770. } break;
  8771. default:
  8772. {
  8773. GGML_ASSERT(false);
  8774. } break;
  8775. }
  8776. }
  8777. // ggml_compute_forward_step
  8778. static void ggml_compute_forward_step_f32(
  8779. const struct ggml_compute_params * params,
  8780. struct ggml_tensor * dst) {
  8781. const struct ggml_tensor * src0 = dst->src[0];
  8782. assert(params->ith == 0);
  8783. assert(ggml_are_same_shape(src0, dst));
  8784. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8785. return;
  8786. }
  8787. const int n = ggml_nrows(src0);
  8788. const int nc = src0->ne[0];
  8789. assert(dst->nb[0] == sizeof(float));
  8790. assert(src0->nb[0] == sizeof(float));
  8791. for (int i = 0; i < n; i++) {
  8792. ggml_vec_step_f32(nc,
  8793. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8794. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8795. }
  8796. }
  8797. static void ggml_compute_forward_step(
  8798. const struct ggml_compute_params * params,
  8799. struct ggml_tensor * dst) {
  8800. const struct ggml_tensor * src0 = dst->src[0];
  8801. switch (src0->type) {
  8802. case GGML_TYPE_F32:
  8803. {
  8804. ggml_compute_forward_step_f32(params, dst);
  8805. } break;
  8806. default:
  8807. {
  8808. GGML_ASSERT(false);
  8809. } break;
  8810. }
  8811. }
  8812. // ggml_compute_forward_tanh
  8813. static void ggml_compute_forward_tanh_f32(
  8814. const struct ggml_compute_params * params,
  8815. struct ggml_tensor * dst) {
  8816. const struct ggml_tensor * src0 = dst->src[0];
  8817. assert(params->ith == 0);
  8818. assert(ggml_are_same_shape(src0, dst));
  8819. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8820. return;
  8821. }
  8822. const int n = ggml_nrows(src0);
  8823. const int nc = src0->ne[0];
  8824. assert(dst->nb[0] == sizeof(float));
  8825. assert(src0->nb[0] == sizeof(float));
  8826. for (int i = 0; i < n; i++) {
  8827. ggml_vec_tanh_f32(nc,
  8828. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8829. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8830. }
  8831. }
  8832. static void ggml_compute_forward_tanh(
  8833. const struct ggml_compute_params * params,
  8834. struct ggml_tensor * dst) {
  8835. const struct ggml_tensor * src0 = dst->src[0];
  8836. switch (src0->type) {
  8837. case GGML_TYPE_F32:
  8838. {
  8839. ggml_compute_forward_tanh_f32(params, dst);
  8840. } break;
  8841. default:
  8842. {
  8843. GGML_ASSERT(false);
  8844. } break;
  8845. }
  8846. }
  8847. // ggml_compute_forward_elu
  8848. static void ggml_compute_forward_elu_f32(
  8849. const struct ggml_compute_params * params,
  8850. struct ggml_tensor * dst) {
  8851. const struct ggml_tensor * src0 = dst->src[0];
  8852. assert(params->ith == 0);
  8853. assert(ggml_are_same_shape(src0, dst));
  8854. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8855. return;
  8856. }
  8857. const int n = ggml_nrows(src0);
  8858. const int nc = src0->ne[0];
  8859. assert(dst->nb[0] == sizeof(float));
  8860. assert(src0->nb[0] == sizeof(float));
  8861. for (int i = 0; i < n; i++) {
  8862. ggml_vec_elu_f32(nc,
  8863. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8864. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8865. }
  8866. }
  8867. static void ggml_compute_forward_elu(
  8868. const struct ggml_compute_params * params,
  8869. struct ggml_tensor * dst) {
  8870. const struct ggml_tensor * src0 = dst->src[0];
  8871. switch (src0->type) {
  8872. case GGML_TYPE_F32:
  8873. {
  8874. ggml_compute_forward_elu_f32(params, dst);
  8875. } break;
  8876. default:
  8877. {
  8878. GGML_ASSERT(false);
  8879. } break;
  8880. }
  8881. }
  8882. // ggml_compute_forward_relu
  8883. static void ggml_compute_forward_relu_f32(
  8884. const struct ggml_compute_params * params,
  8885. struct ggml_tensor * dst) {
  8886. const struct ggml_tensor * src0 = dst->src[0];
  8887. assert(params->ith == 0);
  8888. assert(ggml_are_same_shape(src0, dst));
  8889. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8890. return;
  8891. }
  8892. const int n = ggml_nrows(src0);
  8893. const int nc = src0->ne[0];
  8894. assert(dst->nb[0] == sizeof(float));
  8895. assert(src0->nb[0] == sizeof(float));
  8896. for (int i = 0; i < n; i++) {
  8897. ggml_vec_relu_f32(nc,
  8898. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8899. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8900. }
  8901. }
  8902. static void ggml_compute_forward_relu(
  8903. const struct ggml_compute_params * params,
  8904. struct ggml_tensor * dst) {
  8905. const struct ggml_tensor * src0 = dst->src[0];
  8906. switch (src0->type) {
  8907. case GGML_TYPE_F32:
  8908. {
  8909. ggml_compute_forward_relu_f32(params, dst);
  8910. } break;
  8911. default:
  8912. {
  8913. GGML_ASSERT(false);
  8914. } break;
  8915. }
  8916. }
  8917. // ggml_compute_forward_sigmoid
  8918. static void ggml_compute_forward_sigmoid_f32(
  8919. const struct ggml_compute_params * params,
  8920. struct ggml_tensor * dst) {
  8921. const struct ggml_tensor * src0 = dst->src[0];
  8922. assert(params->ith == 0);
  8923. assert(ggml_are_same_shape(src0, dst));
  8924. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8925. return;
  8926. }
  8927. const int n = ggml_nrows(src0);
  8928. const int nc = src0->ne[0];
  8929. assert(dst->nb[0] == sizeof(float));
  8930. assert(src0->nb[0] == sizeof(float));
  8931. for (int i = 0; i < n; i++) {
  8932. ggml_vec_sigmoid_f32(nc,
  8933. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8934. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8935. }
  8936. }
  8937. static void ggml_compute_forward_sigmoid(
  8938. const struct ggml_compute_params * params,
  8939. struct ggml_tensor * dst) {
  8940. const struct ggml_tensor * src0 = dst->src[0];
  8941. switch (src0->type) {
  8942. case GGML_TYPE_F32:
  8943. {
  8944. ggml_compute_forward_sigmoid_f32(params, dst);
  8945. } break;
  8946. default:
  8947. {
  8948. GGML_ASSERT(false);
  8949. } break;
  8950. }
  8951. }
  8952. // ggml_compute_forward_gelu
  8953. static void ggml_compute_forward_gelu_f32(
  8954. const struct ggml_compute_params * params,
  8955. struct ggml_tensor * dst) {
  8956. const struct ggml_tensor * src0 = dst->src[0];
  8957. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8958. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8959. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8961. return;
  8962. }
  8963. const int ith = params->ith;
  8964. const int nth = params->nth;
  8965. const int nc = src0->ne[0];
  8966. const int nr = ggml_nrows(src0);
  8967. // rows per thread
  8968. const int dr = (nr + nth - 1)/nth;
  8969. // row range for this thread
  8970. const int ir0 = dr*ith;
  8971. const int ir1 = MIN(ir0 + dr, nr);
  8972. for (int i1 = ir0; i1 < ir1; i1++) {
  8973. ggml_vec_gelu_f32(nc,
  8974. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8975. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8976. #ifndef NDEBUG
  8977. for (int k = 0; k < nc; k++) {
  8978. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8979. UNUSED(x);
  8980. assert(!isnan(x));
  8981. assert(!isinf(x));
  8982. }
  8983. #endif
  8984. }
  8985. }
  8986. static void ggml_compute_forward_gelu(
  8987. const struct ggml_compute_params * params,
  8988. struct ggml_tensor * dst) {
  8989. const struct ggml_tensor * src0 = dst->src[0];
  8990. switch (src0->type) {
  8991. case GGML_TYPE_F32:
  8992. {
  8993. ggml_compute_forward_gelu_f32(params, dst);
  8994. } break;
  8995. default:
  8996. {
  8997. GGML_ASSERT(false);
  8998. } break;
  8999. }
  9000. }
  9001. // ggml_compute_forward_gelu_quick
  9002. static void ggml_compute_forward_gelu_quick_f32(
  9003. const struct ggml_compute_params * params,
  9004. struct ggml_tensor * dst) {
  9005. const struct ggml_tensor * src0 = dst->src[0];
  9006. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9007. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9008. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9009. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9010. return;
  9011. }
  9012. const int ith = params->ith;
  9013. const int nth = params->nth;
  9014. const int nc = src0->ne[0];
  9015. const int nr = ggml_nrows(src0);
  9016. // rows per thread
  9017. const int dr = (nr + nth - 1)/nth;
  9018. // row range for this thread
  9019. const int ir0 = dr*ith;
  9020. const int ir1 = MIN(ir0 + dr, nr);
  9021. for (int i1 = ir0; i1 < ir1; i1++) {
  9022. ggml_vec_gelu_quick_f32(nc,
  9023. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9024. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9025. #ifndef NDEBUG
  9026. for (int k = 0; k < nc; k++) {
  9027. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9028. UNUSED(x);
  9029. assert(!isnan(x));
  9030. assert(!isinf(x));
  9031. }
  9032. #endif
  9033. }
  9034. }
  9035. static void ggml_compute_forward_gelu_quick(
  9036. const struct ggml_compute_params * params,
  9037. struct ggml_tensor * dst) {
  9038. const struct ggml_tensor * src0 = dst->src[0];
  9039. switch (src0->type) {
  9040. case GGML_TYPE_F32:
  9041. {
  9042. ggml_compute_forward_gelu_quick_f32(params, dst);
  9043. } break;
  9044. default:
  9045. {
  9046. GGML_ASSERT(false);
  9047. } break;
  9048. }
  9049. }
  9050. // ggml_compute_forward_silu
  9051. static void ggml_compute_forward_silu_f32(
  9052. const struct ggml_compute_params * params,
  9053. struct ggml_tensor * dst) {
  9054. const struct ggml_tensor * src0 = dst->src[0];
  9055. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9056. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9057. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9058. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9059. return;
  9060. }
  9061. const int ith = params->ith;
  9062. const int nth = params->nth;
  9063. const int nc = src0->ne[0];
  9064. const int nr = ggml_nrows(src0);
  9065. // rows per thread
  9066. const int dr = (nr + nth - 1)/nth;
  9067. // row range for this thread
  9068. const int ir0 = dr*ith;
  9069. const int ir1 = MIN(ir0 + dr, nr);
  9070. for (int i1 = ir0; i1 < ir1; i1++) {
  9071. ggml_vec_silu_f32(nc,
  9072. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9073. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9074. #ifndef NDEBUG
  9075. for (int k = 0; k < nc; k++) {
  9076. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9077. UNUSED(x);
  9078. assert(!isnan(x));
  9079. assert(!isinf(x));
  9080. }
  9081. #endif
  9082. }
  9083. }
  9084. static void ggml_compute_forward_silu(
  9085. const struct ggml_compute_params * params,
  9086. struct ggml_tensor * dst) {
  9087. const struct ggml_tensor * src0 = dst->src[0];
  9088. switch (src0->type) {
  9089. case GGML_TYPE_F32:
  9090. {
  9091. ggml_compute_forward_silu_f32(params, dst);
  9092. } break;
  9093. default:
  9094. {
  9095. GGML_ASSERT(false);
  9096. } break;
  9097. }
  9098. }
  9099. // ggml_compute_forward_leaky_relu
  9100. static void ggml_compute_forward_leaky_relu_f32(
  9101. const struct ggml_compute_params * params,
  9102. struct ggml_tensor * dst) {
  9103. const struct ggml_tensor * src0 = dst->src[0];
  9104. assert(params->ith == 0);
  9105. assert(ggml_are_same_shape(src0, dst));
  9106. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9107. return;
  9108. }
  9109. const int n = ggml_nrows(src0);
  9110. const int nc = src0->ne[0];
  9111. float negative_slope;
  9112. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9113. assert(dst->nb[0] == sizeof(float));
  9114. assert(src0->nb[0] == sizeof(float));
  9115. for (int i = 0; i < n; i++) {
  9116. ggml_vec_leaky_relu_f32(nc,
  9117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9118. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9119. }
  9120. }
  9121. static void ggml_compute_forward_leaky_relu(
  9122. const struct ggml_compute_params * params,
  9123. struct ggml_tensor * dst) {
  9124. const struct ggml_tensor * src0 = dst->src[0];
  9125. switch (src0->type) {
  9126. case GGML_TYPE_F32:
  9127. {
  9128. ggml_compute_forward_leaky_relu_f32(params, dst);
  9129. } break;
  9130. default:
  9131. {
  9132. GGML_ASSERT(false);
  9133. } break;
  9134. }
  9135. }
  9136. // ggml_compute_forward_silu_back
  9137. static void ggml_compute_forward_silu_back_f32(
  9138. const struct ggml_compute_params * params,
  9139. struct ggml_tensor * dst) {
  9140. const struct ggml_tensor * src0 = dst->src[0];
  9141. const struct ggml_tensor * grad = dst->src[1];
  9142. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9143. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9144. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9145. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9146. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9147. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9148. return;
  9149. }
  9150. const int ith = params->ith;
  9151. const int nth = params->nth;
  9152. const int nc = src0->ne[0];
  9153. const int nr = ggml_nrows(src0);
  9154. // rows per thread
  9155. const int dr = (nr + nth - 1)/nth;
  9156. // row range for this thread
  9157. const int ir0 = dr*ith;
  9158. const int ir1 = MIN(ir0 + dr, nr);
  9159. for (int i1 = ir0; i1 < ir1; i1++) {
  9160. ggml_vec_silu_backward_f32(nc,
  9161. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9162. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9163. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9164. #ifndef NDEBUG
  9165. for (int k = 0; k < nc; k++) {
  9166. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9167. UNUSED(x);
  9168. assert(!isnan(x));
  9169. assert(!isinf(x));
  9170. }
  9171. #endif
  9172. }
  9173. }
  9174. static void ggml_compute_forward_silu_back(
  9175. const struct ggml_compute_params * params,
  9176. struct ggml_tensor * dst) {
  9177. const struct ggml_tensor * src0 = dst->src[0];
  9178. switch (src0->type) {
  9179. case GGML_TYPE_F32:
  9180. {
  9181. ggml_compute_forward_silu_back_f32(params, dst);
  9182. } break;
  9183. default:
  9184. {
  9185. GGML_ASSERT(false);
  9186. } break;
  9187. }
  9188. }
  9189. static void ggml_compute_forward_hardswish_f32(
  9190. const struct ggml_compute_params * params,
  9191. struct ggml_tensor * dst) {
  9192. const struct ggml_tensor * src0 = dst->src[0];
  9193. assert(params->ith == 0);
  9194. assert(ggml_are_same_shape(src0, dst));
  9195. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9196. return;
  9197. }
  9198. const int n = ggml_nrows(src0);
  9199. const int nc = src0->ne[0];
  9200. assert(dst->nb[0] == sizeof(float));
  9201. assert(src0->nb[0] == sizeof(float));
  9202. for (int i = 0; i < n; i++) {
  9203. ggml_vec_hardswish_f32(nc,
  9204. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9205. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9206. }
  9207. }
  9208. static void ggml_compute_forward_hardswish(
  9209. const struct ggml_compute_params * params,
  9210. struct ggml_tensor * dst) {
  9211. const struct ggml_tensor * src0 = dst->src[0];
  9212. switch (src0->type) {
  9213. case GGML_TYPE_F32:
  9214. {
  9215. ggml_compute_forward_hardswish_f32(params, dst);
  9216. } break;
  9217. default:
  9218. {
  9219. GGML_ASSERT(false);
  9220. } break;
  9221. }
  9222. }
  9223. static void ggml_compute_forward_hardsigmoid_f32(
  9224. const struct ggml_compute_params * params,
  9225. struct ggml_tensor * dst) {
  9226. const struct ggml_tensor * src0 = dst->src[0];
  9227. assert(params->ith == 0);
  9228. assert(ggml_are_same_shape(src0, dst));
  9229. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9230. return;
  9231. }
  9232. const int n = ggml_nrows(src0);
  9233. const int nc = src0->ne[0];
  9234. assert(dst->nb[0] == sizeof(float));
  9235. assert(src0->nb[0] == sizeof(float));
  9236. for (int i = 0; i < n; i++) {
  9237. ggml_vec_hardsigmoid_f32(nc,
  9238. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9239. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9240. }
  9241. }
  9242. static void ggml_compute_forward_hardsigmoid(
  9243. const struct ggml_compute_params * params,
  9244. struct ggml_tensor * dst) {
  9245. const struct ggml_tensor * src0 = dst->src[0];
  9246. switch (src0->type) {
  9247. case GGML_TYPE_F32:
  9248. {
  9249. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9250. } break;
  9251. default:
  9252. {
  9253. GGML_ASSERT(false);
  9254. } break;
  9255. }
  9256. }
  9257. // ggml_compute_forward_norm
  9258. static void ggml_compute_forward_norm_f32(
  9259. const struct ggml_compute_params * params,
  9260. struct ggml_tensor * dst) {
  9261. const struct ggml_tensor * src0 = dst->src[0];
  9262. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9263. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9264. return;
  9265. }
  9266. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9267. const int ith = params->ith;
  9268. const int nth = params->nth;
  9269. GGML_TENSOR_UNARY_OP_LOCALS
  9270. float eps;
  9271. memcpy(&eps, dst->op_params, sizeof(float));
  9272. GGML_ASSERT(eps > 0.0f);
  9273. // TODO: optimize
  9274. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9275. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9276. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9277. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9278. ggml_float sum = 0.0;
  9279. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9280. sum += (ggml_float)x[i00];
  9281. }
  9282. float mean = sum/ne00;
  9283. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9284. ggml_float sum2 = 0.0;
  9285. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9286. float v = x[i00] - mean;
  9287. y[i00] = v;
  9288. sum2 += (ggml_float)(v*v);
  9289. }
  9290. float variance = sum2/ne00;
  9291. const float scale = 1.0f/sqrtf(variance + eps);
  9292. ggml_vec_scale_f32(ne00, y, scale);
  9293. }
  9294. }
  9295. }
  9296. }
  9297. static void ggml_compute_forward_norm(
  9298. const struct ggml_compute_params * params,
  9299. struct ggml_tensor * dst) {
  9300. const struct ggml_tensor * src0 = dst->src[0];
  9301. switch (src0->type) {
  9302. case GGML_TYPE_F32:
  9303. {
  9304. ggml_compute_forward_norm_f32(params, dst);
  9305. } break;
  9306. default:
  9307. {
  9308. GGML_ASSERT(false);
  9309. } break;
  9310. }
  9311. }
  9312. // ggml_compute_forward_group_rms_norm
  9313. static void ggml_compute_forward_rms_norm_f32(
  9314. const struct ggml_compute_params * params,
  9315. struct ggml_tensor * dst) {
  9316. const struct ggml_tensor * src0 = dst->src[0];
  9317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9318. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9319. return;
  9320. }
  9321. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9322. const int ith = params->ith;
  9323. const int nth = params->nth;
  9324. GGML_TENSOR_UNARY_OP_LOCALS
  9325. float eps;
  9326. memcpy(&eps, dst->op_params, sizeof(float));
  9327. GGML_ASSERT(eps > 0.0f);
  9328. // TODO: optimize
  9329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9331. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9332. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9333. ggml_float sum = 0.0;
  9334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9335. sum += (ggml_float)(x[i00] * x[i00]);
  9336. }
  9337. const float mean = sum/ne00;
  9338. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9339. memcpy(y, x, ne00 * sizeof(float));
  9340. // for (int i00 = 0; i00 < ne00; i00++) {
  9341. // y[i00] = x[i00];
  9342. // }
  9343. const float scale = 1.0f/sqrtf(mean + eps);
  9344. ggml_vec_scale_f32(ne00, y, scale);
  9345. }
  9346. }
  9347. }
  9348. }
  9349. static void ggml_compute_forward_rms_norm(
  9350. const struct ggml_compute_params * params,
  9351. struct ggml_tensor * dst) {
  9352. const struct ggml_tensor * src0 = dst->src[0];
  9353. switch (src0->type) {
  9354. case GGML_TYPE_F32:
  9355. {
  9356. ggml_compute_forward_rms_norm_f32(params, dst);
  9357. } break;
  9358. default:
  9359. {
  9360. GGML_ASSERT(false);
  9361. } break;
  9362. }
  9363. }
  9364. static void ggml_compute_forward_rms_norm_back_f32(
  9365. const struct ggml_compute_params * params,
  9366. struct ggml_tensor * dst) {
  9367. const struct ggml_tensor * src0 = dst->src[0];
  9368. const struct ggml_tensor * src1 = dst->src[1];
  9369. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9371. return;
  9372. }
  9373. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9374. const int ith = params->ith;
  9375. const int nth = params->nth;
  9376. GGML_TENSOR_BINARY_OP_LOCALS
  9377. float eps;
  9378. memcpy(&eps, dst->op_params, sizeof(float));
  9379. // TODO: optimize
  9380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9383. // src1 is same shape as src0 => same indices
  9384. const int64_t i11 = i01;
  9385. const int64_t i12 = i02;
  9386. const int64_t i13 = i03;
  9387. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9388. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9389. ggml_float sum_xx = 0.0;
  9390. ggml_float sum_xdz = 0.0;
  9391. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9392. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9393. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9394. }
  9395. //const float mean = (float)(sum_xx)/ne00;
  9396. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9397. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9398. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9399. // we could cache rms from forward pass to improve performance.
  9400. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9401. //const float rms = sqrtf(mean_eps);
  9402. const float rrms = 1.0f / sqrtf(mean_eps);
  9403. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9404. {
  9405. // z = rms_norm(x)
  9406. //
  9407. // rms_norm(src0) =
  9408. // scale(
  9409. // src0,
  9410. // div(
  9411. // 1,
  9412. // sqrt(
  9413. // add(
  9414. // scale(
  9415. // sum(
  9416. // sqr(
  9417. // src0)),
  9418. // (1.0/N)),
  9419. // eps))));
  9420. // postorder:
  9421. // ## op args grad
  9422. // 00 param src0 grad[#00]
  9423. // 01 const 1
  9424. // 02 sqr (#00) grad[#02]
  9425. // 03 sum (#02) grad[#03]
  9426. // 04 const 1/N
  9427. // 05 scale (#03, #04) grad[#05]
  9428. // 06 const eps
  9429. // 07 add (#05, #06) grad[#07]
  9430. // 08 sqrt (#07) grad[#08]
  9431. // 09 div (#01,#08) grad[#09]
  9432. // 10 scale (#00,#09) grad[#10]
  9433. //
  9434. // backward pass, given grad[#10]
  9435. // #10: scale
  9436. // grad[#00] += scale(grad[#10],#09)
  9437. // grad[#09] += sum(mul(grad[#10],#00))
  9438. // #09: div
  9439. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9440. // #08: sqrt
  9441. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9442. // #07: add
  9443. // grad[#05] += grad[#07]
  9444. // #05: scale
  9445. // grad[#03] += scale(grad[#05],#04)
  9446. // #03: sum
  9447. // grad[#02] += repeat(grad[#03], #02)
  9448. // #02:
  9449. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9450. //
  9451. // substitute and simplify:
  9452. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9453. // grad[#02] = repeat(grad[#03], #02)
  9454. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9455. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9456. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9457. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9458. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9459. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9460. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9461. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9462. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9463. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9464. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9465. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9466. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9467. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9468. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9469. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9470. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9471. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9472. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9473. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9474. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9475. // a = b*c + d*e
  9476. // a = b*c*f/f + d*e*f/f
  9477. // a = (b*c*f + d*e*f)*(1/f)
  9478. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9479. // a = (b + d*e/c)*c
  9480. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9481. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9482. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9483. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9484. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9485. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9486. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9487. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9488. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9489. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9490. }
  9491. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9492. // post-order:
  9493. // dx := x
  9494. // dx := scale(dx,-mean_xdz/mean_eps)
  9495. // dx := add(dx, dz)
  9496. // dx := scale(dx, rrms)
  9497. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9498. ggml_vec_cpy_f32 (ne00, dx, x);
  9499. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9500. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9501. ggml_vec_acc_f32 (ne00, dx, dz);
  9502. ggml_vec_scale_f32(ne00, dx, rrms);
  9503. }
  9504. }
  9505. }
  9506. }
  9507. static void ggml_compute_forward_rms_norm_back(
  9508. const struct ggml_compute_params * params,
  9509. struct ggml_tensor * dst) {
  9510. const struct ggml_tensor * src0 = dst->src[0];
  9511. switch (src0->type) {
  9512. case GGML_TYPE_F32:
  9513. {
  9514. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9515. } break;
  9516. default:
  9517. {
  9518. GGML_ASSERT(false);
  9519. } break;
  9520. }
  9521. }
  9522. // ggml_compute_forward_group_norm
  9523. static void ggml_compute_forward_group_norm_f32(
  9524. const struct ggml_compute_params * params,
  9525. struct ggml_tensor * dst) {
  9526. const struct ggml_tensor * src0 = dst->src[0];
  9527. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9528. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9529. return;
  9530. }
  9531. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9532. const int ith = params->ith;
  9533. const int nth = params->nth;
  9534. GGML_TENSOR_UNARY_OP_LOCALS
  9535. const float eps = 1e-6f; // TODO: make this a parameter
  9536. // TODO: optimize
  9537. int n_channels = src0->ne[2];
  9538. int n_groups = dst->op_params[0];
  9539. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9540. for (int i = ith; i < n_groups; i += nth) {
  9541. int start = i * n_channels_per_group;
  9542. int end = start + n_channels_per_group;
  9543. if (end > n_channels) {
  9544. end = n_channels;
  9545. }
  9546. int step = end - start;
  9547. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9548. ggml_float sum = 0.0;
  9549. for (int64_t i02 = start; i02 < end; i02++) {
  9550. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9551. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9552. ggml_float sumr = 0.0;
  9553. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9554. sumr += (ggml_float)x[i00];
  9555. }
  9556. sum += sumr;
  9557. }
  9558. }
  9559. const float mean = sum / (ne00 * ne01 * step);
  9560. ggml_float sum2 = 0.0;
  9561. for (int64_t i02 = start; i02 < end; i02++) {
  9562. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9563. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9564. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9565. ggml_float sumr = 0.0;
  9566. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9567. float v = x[i00] - mean;
  9568. y[i00] = v;
  9569. sumr += (ggml_float)(v * v);
  9570. }
  9571. sum2 += sumr;
  9572. }
  9573. }
  9574. const float variance = sum2 / (ne00 * ne01 * step);
  9575. const float scale = 1.0f / sqrtf(variance + eps);
  9576. for (int64_t i02 = start; i02 < end; i02++) {
  9577. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9578. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9579. ggml_vec_scale_f32(ne00, y, scale);
  9580. }
  9581. }
  9582. }
  9583. }
  9584. }
  9585. static void ggml_compute_forward_group_norm(
  9586. const struct ggml_compute_params * params,
  9587. struct ggml_tensor * dst) {
  9588. const struct ggml_tensor * src0 = dst->src[0];
  9589. switch (src0->type) {
  9590. case GGML_TYPE_F32:
  9591. {
  9592. ggml_compute_forward_group_norm_f32(params, dst);
  9593. } break;
  9594. default:
  9595. {
  9596. GGML_ASSERT(false);
  9597. } break;
  9598. }
  9599. }
  9600. // ggml_compute_forward_mul_mat
  9601. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9602. // helper function to determine if it is better to use BLAS or not
  9603. // for large matrices, BLAS is faster
  9604. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9605. const struct ggml_tensor * src0 = dst->src[0];
  9606. const struct ggml_tensor * src1 = dst->src[1];
  9607. //const int64_t ne00 = src0->ne[0];
  9608. //const int64_t ne01 = src0->ne[1];
  9609. const int64_t ne10 = src1->ne[0];
  9610. const int64_t ne0 = dst->ne[0];
  9611. const int64_t ne1 = dst->ne[1];
  9612. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9613. // all the experts for each batch element and the processing would become incredibly slow
  9614. // TODO: find the optimal values for these
  9615. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9616. ggml_is_contiguous(src0) &&
  9617. ggml_is_contiguous(src1) &&
  9618. //src0->type == GGML_TYPE_F32 &&
  9619. src1->type == GGML_TYPE_F32 &&
  9620. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9621. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9622. return true;
  9623. }
  9624. return false;
  9625. }
  9626. #endif
  9627. static void ggml_compute_forward_mul_mat(
  9628. const struct ggml_compute_params * params,
  9629. struct ggml_tensor * dst) {
  9630. const struct ggml_tensor * src0 = dst->src[0];
  9631. const struct ggml_tensor * src1 = dst->src[1];
  9632. int64_t t0 = ggml_perf_time_us();
  9633. UNUSED(t0);
  9634. GGML_TENSOR_BINARY_OP_LOCALS
  9635. const int ith = params->ith;
  9636. const int nth = params->nth;
  9637. const enum ggml_type type = src0->type;
  9638. const bool src1_cont = ggml_is_contiguous(src1);
  9639. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9640. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9641. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9642. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9643. GGML_ASSERT(ne0 == ne01);
  9644. GGML_ASSERT(ne1 == ne11);
  9645. GGML_ASSERT(ne2 == ne12);
  9646. GGML_ASSERT(ne3 == ne13);
  9647. // we don't support permuted src0 or src1
  9648. GGML_ASSERT(nb00 == ggml_type_size(type));
  9649. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9650. // dst cannot be transposed or permuted
  9651. GGML_ASSERT(nb0 == sizeof(float));
  9652. GGML_ASSERT(nb0 <= nb1);
  9653. GGML_ASSERT(nb1 <= nb2);
  9654. GGML_ASSERT(nb2 <= nb3);
  9655. // broadcast factors
  9656. const int64_t r2 = ne12/ne02;
  9657. const int64_t r3 = ne13/ne03;
  9658. // nb01 >= nb00 - src0 is not transposed
  9659. // compute by src0 rows
  9660. #if defined(GGML_USE_CLBLAST)
  9661. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9662. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  9663. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9664. }
  9665. return;
  9666. }
  9667. #endif
  9668. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9669. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  9670. const int64_t ne_plane = ne01*ne00;
  9671. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  9672. UNUSED(desired_wsize);
  9673. if (params->type == GGML_TASK_TYPE_INIT) {
  9674. if (type != GGML_TYPE_F32) {
  9675. assert(params->wsize >= desired_wsize);
  9676. // parallelize by src0 rows
  9677. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9678. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9679. // broadcast src0 into src1 across 2nd,3rd dimension
  9680. const int64_t i03 = i13/r3;
  9681. const int64_t i02 = i12/r2;
  9682. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9683. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9684. ggml_to_float_t const to_float = type_traits[type].to_float;
  9685. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9686. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  9687. }
  9688. }
  9689. }
  9690. }
  9691. return;
  9692. }
  9693. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9694. return;
  9695. }
  9696. // perform sgemm, parallelization controlled by blas lib
  9697. if (ith != 0) {
  9698. return;
  9699. }
  9700. //const int64_t tgemm0 = ggml_perf_time_us();
  9701. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9702. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9703. const int64_t i03 = i13/r3;
  9704. const int64_t i02 = i12/r2;
  9705. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9706. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9707. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9708. if (type != GGML_TYPE_F32) {
  9709. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9710. }
  9711. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9712. ne1, ne01, ne10,
  9713. 1.0f, y, ne10,
  9714. x, ne00,
  9715. 0.0f, d, ne01);
  9716. }
  9717. }
  9718. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  9719. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9720. return;
  9721. }
  9722. #endif
  9723. #if GGML_USE_LLAMAFILE
  9724. if (src1_cont) {
  9725. for (int64_t i13 = 0; i13 < ne13; i13++)
  9726. for (int64_t i12 = 0; i12 < ne12; i12++)
  9727. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9728. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9729. nb01/ggml_type_size(src0->type),
  9730. (const char *)src1->data + i12*nb12 + i13*nb13,
  9731. nb11/ggml_type_size(src1->type),
  9732. (char *)dst->data + i12*nb2 + i13*nb3,
  9733. nb1/ggml_type_size(dst->type),
  9734. ith, nth,
  9735. params->type,
  9736. src0->type,
  9737. src1->type,
  9738. dst->type))
  9739. goto UseGgmlGemm1;
  9740. return;
  9741. }
  9742. UseGgmlGemm1:;
  9743. #endif
  9744. if (params->type == GGML_TASK_TYPE_INIT) {
  9745. if (ith != 0) {
  9746. return;
  9747. }
  9748. if (src1->type != vec_dot_type) {
  9749. char * wdata = params->wdata;
  9750. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9751. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9752. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9753. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9754. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9755. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9756. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9757. wdata += row_size;
  9758. }
  9759. }
  9760. }
  9761. }
  9762. return;
  9763. }
  9764. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9765. return;
  9766. }
  9767. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9768. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9769. #if GGML_USE_LLAMAFILE
  9770. if (src1->type != vec_dot_type) {
  9771. for (int64_t i13 = 0; i13 < ne13; i13++)
  9772. for (int64_t i12 = 0; i12 < ne12; i12++)
  9773. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9774. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9775. nb01/ggml_type_size(src0->type),
  9776. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  9777. row_size/ggml_type_size(vec_dot_type),
  9778. (char *)dst->data + i12*nb2 + i13*nb3,
  9779. nb1/ggml_type_size(dst->type),
  9780. ith, nth,
  9781. params->type,
  9782. src0->type,
  9783. vec_dot_type,
  9784. dst->type))
  9785. goto UseGgmlGemm2;
  9786. return;
  9787. }
  9788. UseGgmlGemm2:;
  9789. #endif
  9790. const int64_t nr0 = ne01; // src0 rows
  9791. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  9792. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9793. // distribute the thread work across the inner or outer loop based on which one is larger
  9794. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9795. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9796. const int64_t ith0 = ith % nth0;
  9797. const int64_t ith1 = ith / nth0;
  9798. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9799. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9800. const int64_t ir010 = dr0*ith0;
  9801. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9802. const int64_t ir110 = dr1*ith1;
  9803. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9804. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9805. // threads with no work simply yield (not sure if it helps)
  9806. if (ir010 >= ir011 || ir110 >= ir111) {
  9807. sched_yield();
  9808. return;
  9809. }
  9810. assert(ne12 % ne02 == 0);
  9811. assert(ne13 % ne03 == 0);
  9812. // block-tiling attempt
  9813. const int64_t blck_0 = 16;
  9814. const int64_t blck_1 = 16;
  9815. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  9816. int64_t nrc = vec_dot_num_rows;
  9817. // TODO: currently the mmla kernels support only even numbered rows/cols.
  9818. // this check can be removed once they are extended to support odd numbered rows/cols too
  9819. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  9820. nrc = 1;
  9821. }
  9822. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9823. // attempt to reduce false-sharing (does not seem to make a difference)
  9824. // 16 * 2, accounting for mmla kernels
  9825. float tmp[32];
  9826. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9827. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9828. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  9829. const int64_t i13 = (ir1/(ne12*ne1));
  9830. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  9831. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  9832. // broadcast src0 into src1
  9833. const int64_t i03 = i13/r3;
  9834. const int64_t i02 = i12/r2;
  9835. const int64_t i1 = i11;
  9836. const int64_t i2 = i12;
  9837. const int64_t i3 = i13;
  9838. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9839. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9840. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9841. // the original src1 data pointer, so we should index using the indices directly
  9842. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9843. const char * src1_col = (const char *) wdata +
  9844. (src1_cont || src1->type != vec_dot_type
  9845. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9846. : (i11*nb11 + i12*nb12 + i13*nb13));
  9847. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9848. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9849. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9850. //}
  9851. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  9852. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  9853. }
  9854. for (int cn = 0; cn < nrc; ++cn) {
  9855. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9856. }
  9857. }
  9858. }
  9859. }
  9860. }
  9861. // ggml_compute_forward_mul_mat_id
  9862. static void ggml_compute_forward_mul_mat_id(
  9863. const struct ggml_compute_params * params,
  9864. struct ggml_tensor * dst) {
  9865. const struct ggml_tensor * src0 = dst->src[0];
  9866. const struct ggml_tensor * src1 = dst->src[1];
  9867. const struct ggml_tensor * ids = dst->src[2];
  9868. GGML_TENSOR_BINARY_OP_LOCALS
  9869. const int ith = params->ith;
  9870. const int nth = params->nth;
  9871. const enum ggml_type type = src0->type;
  9872. const bool src1_cont = ggml_is_contiguous(src1);
  9873. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9874. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9875. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9876. // we don't support permuted src0 or src1
  9877. GGML_ASSERT(nb00 == ggml_type_size(type));
  9878. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9879. // dst cannot be transposed or permuted
  9880. GGML_ASSERT(nb0 == sizeof(float));
  9881. GGML_ASSERT(nb0 <= nb1);
  9882. GGML_ASSERT(nb1 <= nb2);
  9883. GGML_ASSERT(nb2 <= nb3);
  9884. // row groups
  9885. const int n_ids = ids->ne[0]; // n_expert_used
  9886. const int n_as = ne02; // n_expert
  9887. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  9888. (char *) params->wdata :
  9889. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  9890. struct mmid_row_mapping {
  9891. int32_t i1;
  9892. int32_t i2;
  9893. };
  9894. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  9895. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  9896. if (params->type == GGML_TASK_TYPE_INIT) {
  9897. if (ith != 0) {
  9898. return;
  9899. }
  9900. char * wdata = params->wdata;
  9901. if (src1->type != vec_dot_type) {
  9902. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9903. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9904. assert(src1->type == GGML_TYPE_F32);
  9905. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9906. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9907. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9908. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9909. wdata += row_size;
  9910. }
  9911. }
  9912. }
  9913. }
  9914. // initialize matrix_row_counts
  9915. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9916. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9917. // group rows by src0 matrix
  9918. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9919. for (int id = 0; id < n_ids; ++id) {
  9920. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9921. assert(i02 >= 0 && i02 < n_as);
  9922. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9923. matrix_row_counts[i02] += 1;
  9924. }
  9925. }
  9926. return;
  9927. }
  9928. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9929. return;
  9930. }
  9931. // compute each matrix multiplication in sequence
  9932. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9933. const int64_t cne1 = matrix_row_counts[cur_a];
  9934. if (cne1 == 0) {
  9935. continue;
  9936. }
  9937. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9938. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9939. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9940. const int64_t nr0 = ne01; // src0 rows
  9941. const int64_t nr1 = cne1; // src1 rows
  9942. // distribute the thread work across the inner or outer loop based on which one is larger
  9943. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9944. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9945. const int64_t ith0 = ith % nth0;
  9946. const int64_t ith1 = ith / nth0;
  9947. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9948. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9949. const int64_t ir010 = dr0*ith0;
  9950. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9951. const int64_t ir110 = dr1*ith1;
  9952. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9953. // threads with no work simply yield (not sure if it helps)
  9954. //if (ir010 >= ir011 || ir110 >= ir111) {
  9955. // sched_yield();
  9956. // continue;
  9957. //}
  9958. // block-tiling attempt
  9959. const int64_t blck_0 = 16;
  9960. const int64_t blck_1 = 16;
  9961. // attempt to reduce false-sharing (does not seem to make a difference)
  9962. float tmp[16];
  9963. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9964. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9965. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9966. const int64_t _i12 = ir1; // logical row index for this expert
  9967. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9968. const int id = row_mapping.i1; // selected expert index
  9969. const int64_t i11 = id % ne11;
  9970. const int64_t i12 = row_mapping.i2; // row index in src1
  9971. const int64_t i1 = id; // selected expert index
  9972. const int64_t i2 = i12; // row
  9973. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9974. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9975. // the original src1 data pointer, so we should index using the indices directly
  9976. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9977. const char * src1_col = (const char *) wdata +
  9978. (src1_cont || src1->type != vec_dot_type
  9979. ? (i11 + i12*ne11)*row_size
  9980. : (i11*nb11 + i12*nb12));
  9981. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9982. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9983. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9984. //}
  9985. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9986. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9987. }
  9988. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9989. }
  9990. }
  9991. }
  9992. }
  9993. #undef MMID_MATRIX_ROW
  9994. }
  9995. // ggml_compute_forward_out_prod
  9996. static void ggml_compute_forward_out_prod_f32(
  9997. const struct ggml_compute_params * params,
  9998. struct ggml_tensor * dst) {
  9999. const struct ggml_tensor * src0 = dst->src[0];
  10000. const struct ggml_tensor * src1 = dst->src[1];
  10001. // int64_t t0 = ggml_perf_time_us();
  10002. // UNUSED(t0);
  10003. GGML_TENSOR_BINARY_OP_LOCALS
  10004. const int ith = params->ith;
  10005. const int nth = params->nth;
  10006. GGML_ASSERT(ne0 == ne00);
  10007. GGML_ASSERT(ne1 == ne10);
  10008. GGML_ASSERT(ne2 == ne02);
  10009. GGML_ASSERT(ne02 == ne12);
  10010. GGML_ASSERT(ne3 == ne13);
  10011. GGML_ASSERT(ne03 == ne13);
  10012. // we don't support permuted src0 or src1
  10013. GGML_ASSERT(nb00 == sizeof(float));
  10014. // dst cannot be transposed or permuted
  10015. GGML_ASSERT(nb0 == sizeof(float));
  10016. // GGML_ASSERT(nb0 <= nb1);
  10017. // GGML_ASSERT(nb1 <= nb2);
  10018. // GGML_ASSERT(nb2 <= nb3);
  10019. // nb01 >= nb00 - src0 is not transposed
  10020. // compute by src0 rows
  10021. // TODO: #if defined(GGML_USE_CLBLAST)
  10022. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10023. bool use_blas = ggml_is_matrix(src0) &&
  10024. ggml_is_matrix(src1) &&
  10025. ggml_is_contiguous(src0) &&
  10026. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10027. #endif
  10028. if (params->type == GGML_TASK_TYPE_INIT) {
  10029. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10030. if (use_blas) {
  10031. return;
  10032. }
  10033. #endif
  10034. if (ith != 0) {
  10035. return;
  10036. }
  10037. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10038. return;
  10039. }
  10040. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10041. return;
  10042. }
  10043. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10044. if (use_blas) {
  10045. if (params->ith != 0) { // All threads other than the first do no work.
  10046. return;
  10047. }
  10048. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10049. // src0: (k,n)
  10050. // src1: (k,m)
  10051. // dst: (m,n)
  10052. //
  10053. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10054. // Also expressed as (major,minor)
  10055. // a: (m,k): so src1 transposed
  10056. // b: (k,n): so src0
  10057. // c: (m,n)
  10058. //
  10059. // However, if ggml_is_transposed(src1) is true, then
  10060. // src1->data already contains a transposed version, so sgemm mustn't
  10061. // transpose it further.
  10062. int n = src0->ne[0];
  10063. int k = src0->ne[1];
  10064. int m = src1->ne[0];
  10065. int transposeA, lda;
  10066. if (!ggml_is_transposed(src1)) {
  10067. transposeA = CblasTrans;
  10068. lda = m;
  10069. } else {
  10070. transposeA = CblasNoTrans;
  10071. lda = k;
  10072. }
  10073. float * a = (float *) ((char *) src1->data);
  10074. float * b = (float *) ((char *) src0->data);
  10075. float * c = (float *) ((char *) dst->data);
  10076. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10077. return;
  10078. }
  10079. #endif
  10080. // dst[:,:,:,:] = 0
  10081. // for i2,i3:
  10082. // for i1:
  10083. // for i01:
  10084. // for i0:
  10085. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10086. // parallelize by last three dimensions
  10087. // total rows in dst
  10088. const int64_t nr = ne1*ne2*ne3;
  10089. // rows per thread
  10090. const int64_t dr = (nr + nth - 1)/nth;
  10091. // row range for this thread
  10092. const int64_t ir0 = dr*ith;
  10093. const int64_t ir1 = MIN(ir0 + dr, nr);
  10094. // block-tiling attempt
  10095. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10096. const int64_t blck_1 = 16;
  10097. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10098. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10099. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10100. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10101. for (int64_t ir = bir; ir < bir1; ++ir) {
  10102. // dst indices
  10103. const int64_t i3 = ir/(ne2*ne1);
  10104. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10105. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10106. const int64_t i02 = i2;
  10107. const int64_t i03 = i3;
  10108. //const int64_t i10 = i1;
  10109. const int64_t i12 = i2;
  10110. const int64_t i13 = i3;
  10111. #if GGML_VEC_MAD_UNROLL > 2
  10112. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10113. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10114. const int64_t i11 = i01;
  10115. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10116. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10117. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10118. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10119. }
  10120. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10121. const int64_t i11 = i01;
  10122. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10123. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10124. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10125. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10126. }
  10127. #else
  10128. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10129. const int64_t i11 = i01;
  10130. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10131. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10132. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10133. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10134. }
  10135. #endif
  10136. }
  10137. }
  10138. }
  10139. //int64_t t1 = ggml_perf_time_us();
  10140. //static int64_t acc = 0;
  10141. //acc += t1 - t0;
  10142. //if (t1 - t0 > 10) {
  10143. // printf("\n");
  10144. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10145. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10146. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10147. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10148. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10149. //}
  10150. }
  10151. static void ggml_compute_forward_out_prod_q_f32(
  10152. const struct ggml_compute_params * params,
  10153. struct ggml_tensor * dst) {
  10154. const struct ggml_tensor * src0 = dst->src[0];
  10155. const struct ggml_tensor * src1 = dst->src[1];
  10156. // int64_t t0 = ggml_perf_time_us();
  10157. // UNUSED(t0);
  10158. GGML_TENSOR_BINARY_OP_LOCALS;
  10159. const int ith = params->ith;
  10160. const int nth = params->nth;
  10161. const enum ggml_type type = src0->type;
  10162. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10163. GGML_ASSERT(ne02 == ne12);
  10164. GGML_ASSERT(ne03 == ne13);
  10165. GGML_ASSERT(ne2 == ne12);
  10166. GGML_ASSERT(ne3 == ne13);
  10167. // we don't support permuted src0 dim0
  10168. GGML_ASSERT(nb00 == ggml_type_size(type));
  10169. // dst dim0 cannot be transposed or permuted
  10170. GGML_ASSERT(nb0 == sizeof(float));
  10171. // GGML_ASSERT(nb0 <= nb1);
  10172. // GGML_ASSERT(nb1 <= nb2);
  10173. // GGML_ASSERT(nb2 <= nb3);
  10174. GGML_ASSERT(ne0 == ne00);
  10175. GGML_ASSERT(ne1 == ne10);
  10176. GGML_ASSERT(ne2 == ne02);
  10177. GGML_ASSERT(ne3 == ne03);
  10178. // nb01 >= nb00 - src0 is not transposed
  10179. // compute by src0 rows
  10180. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10181. if (params->type == GGML_TASK_TYPE_INIT) {
  10182. if (ith != 0) {
  10183. return;
  10184. }
  10185. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10186. return;
  10187. }
  10188. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10189. return;
  10190. }
  10191. // parallelize by last three dimensions
  10192. // total rows in dst
  10193. const int64_t nr = ne1*ne2*ne3;
  10194. // rows per thread
  10195. const int64_t dr = (nr + nth - 1)/nth;
  10196. // row range for this thread
  10197. const int64_t ir0 = dr*ith;
  10198. const int64_t ir1 = MIN(ir0 + dr, nr);
  10199. // dst[:,:,:,:] = 0
  10200. // for i2,i3:
  10201. // for i1:
  10202. // for i01:
  10203. // for i0:
  10204. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10205. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10206. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10207. // dst indices
  10208. const int64_t i3 = ir/(ne2*ne1);
  10209. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10210. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10211. const int64_t i02 = i2;
  10212. const int64_t i03 = i3;
  10213. //const int64_t i10 = i1;
  10214. const int64_t i12 = i2;
  10215. const int64_t i13 = i3;
  10216. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10217. const int64_t i11 = i01;
  10218. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10219. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10220. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10221. dequantize_row_q(s0, wdata, ne0);
  10222. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10223. }
  10224. }
  10225. //int64_t t1 = ggml_perf_time_us();
  10226. //static int64_t acc = 0;
  10227. //acc += t1 - t0;
  10228. //if (t1 - t0 > 10) {
  10229. // printf("\n");
  10230. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10231. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10232. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10233. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10234. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10235. //}
  10236. }
  10237. static void ggml_compute_forward_out_prod(
  10238. const struct ggml_compute_params * params,
  10239. struct ggml_tensor * dst) {
  10240. const struct ggml_tensor * src0 = dst->src[0];
  10241. switch (src0->type) {
  10242. case GGML_TYPE_Q4_0:
  10243. case GGML_TYPE_Q4_1:
  10244. case GGML_TYPE_Q5_0:
  10245. case GGML_TYPE_Q5_1:
  10246. case GGML_TYPE_Q8_0:
  10247. case GGML_TYPE_Q2_K:
  10248. case GGML_TYPE_Q3_K:
  10249. case GGML_TYPE_Q4_K:
  10250. case GGML_TYPE_Q5_K:
  10251. case GGML_TYPE_Q6_K:
  10252. case GGML_TYPE_IQ2_XXS:
  10253. case GGML_TYPE_IQ2_XS:
  10254. case GGML_TYPE_IQ3_XXS:
  10255. case GGML_TYPE_IQ1_S:
  10256. case GGML_TYPE_IQ1_M:
  10257. case GGML_TYPE_IQ4_NL:
  10258. case GGML_TYPE_IQ4_XS:
  10259. case GGML_TYPE_IQ3_S:
  10260. case GGML_TYPE_IQ2_S:
  10261. {
  10262. ggml_compute_forward_out_prod_q_f32(params, dst);
  10263. } break;
  10264. case GGML_TYPE_F16:
  10265. {
  10266. GGML_ASSERT(false); // todo
  10267. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10268. } break;
  10269. case GGML_TYPE_F32:
  10270. {
  10271. ggml_compute_forward_out_prod_f32(params, dst);
  10272. } break;
  10273. default:
  10274. {
  10275. GGML_ASSERT(false);
  10276. } break;
  10277. }
  10278. }
  10279. // ggml_compute_forward_scale
  10280. static void ggml_compute_forward_scale_f32(
  10281. const struct ggml_compute_params * params,
  10282. struct ggml_tensor * dst) {
  10283. const struct ggml_tensor * src0 = dst->src[0];
  10284. GGML_ASSERT(ggml_is_contiguous(src0));
  10285. GGML_ASSERT(ggml_is_contiguous(dst));
  10286. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10287. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10288. return;
  10289. }
  10290. // scale factor
  10291. float v;
  10292. memcpy(&v, dst->op_params, sizeof(float));
  10293. const int ith = params->ith;
  10294. const int nth = params->nth;
  10295. const int nc = src0->ne[0];
  10296. const int nr = ggml_nrows(src0);
  10297. // rows per thread
  10298. const int dr = (nr + nth - 1)/nth;
  10299. // row range for this thread
  10300. const int ir0 = dr*ith;
  10301. const int ir1 = MIN(ir0 + dr, nr);
  10302. const size_t nb01 = src0->nb[1];
  10303. const size_t nb1 = dst->nb[1];
  10304. for (int i1 = ir0; i1 < ir1; i1++) {
  10305. if (dst->data != src0->data) {
  10306. // src0 is same shape as dst => same indices
  10307. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10308. }
  10309. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10310. }
  10311. }
  10312. static void ggml_compute_forward_scale(
  10313. const struct ggml_compute_params * params,
  10314. struct ggml_tensor * dst) {
  10315. const struct ggml_tensor * src0 = dst->src[0];
  10316. switch (src0->type) {
  10317. case GGML_TYPE_F32:
  10318. {
  10319. ggml_compute_forward_scale_f32(params, dst);
  10320. } break;
  10321. default:
  10322. {
  10323. GGML_ASSERT(false);
  10324. } break;
  10325. }
  10326. }
  10327. // ggml_compute_forward_set
  10328. static void ggml_compute_forward_set_f32(
  10329. const struct ggml_compute_params * params,
  10330. struct ggml_tensor * dst) {
  10331. const struct ggml_tensor * src0 = dst->src[0];
  10332. const struct ggml_tensor * src1 = dst->src[1];
  10333. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10334. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10335. // view src0 and dst with these strides and data offset inbytes during set
  10336. // nb0 is implicitly element_size because src0 and dst are contiguous
  10337. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10338. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10339. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10340. size_t offset = ((int32_t *) dst->op_params)[3];
  10341. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10342. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10343. if (params->ith != 0) {
  10344. return;
  10345. }
  10346. // memcpy needs to be synchronized across threads to avoid race conditions.
  10347. // => do it in INIT phase
  10348. memcpy(
  10349. ((char *) dst->data),
  10350. ((char *) src0->data),
  10351. ggml_nbytes(dst));
  10352. }
  10353. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10354. return;
  10355. }
  10356. const int ith = params->ith;
  10357. const int nth = params->nth;
  10358. const int nr = ggml_nrows(src1);
  10359. const int nc = src1->ne[0];
  10360. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10361. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10362. // src0 and dst as viewed during set
  10363. const size_t nb0 = ggml_element_size(src0);
  10364. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10365. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10366. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10367. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10368. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10369. GGML_ASSERT(nb10 == sizeof(float));
  10370. // rows per thread
  10371. const int dr = (nr + nth - 1)/nth;
  10372. // row range for this thread
  10373. const int ir0 = dr*ith;
  10374. const int ir1 = MIN(ir0 + dr, nr);
  10375. for (int ir = ir0; ir < ir1; ++ir) {
  10376. // src0 and dst are viewed with shape of src1 and offset
  10377. // => same indices
  10378. const int i3 = ir/(ne12*ne11);
  10379. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10380. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10381. ggml_vec_cpy_f32(nc,
  10382. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10383. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10384. }
  10385. }
  10386. static void ggml_compute_forward_set(
  10387. const struct ggml_compute_params * params,
  10388. struct ggml_tensor * dst) {
  10389. const struct ggml_tensor * src0 = dst->src[0];
  10390. switch (src0->type) {
  10391. case GGML_TYPE_F32:
  10392. {
  10393. ggml_compute_forward_set_f32(params, dst);
  10394. } break;
  10395. case GGML_TYPE_F16:
  10396. case GGML_TYPE_BF16:
  10397. case GGML_TYPE_Q4_0:
  10398. case GGML_TYPE_Q4_1:
  10399. case GGML_TYPE_Q5_0:
  10400. case GGML_TYPE_Q5_1:
  10401. case GGML_TYPE_Q8_0:
  10402. case GGML_TYPE_Q8_1:
  10403. case GGML_TYPE_Q2_K:
  10404. case GGML_TYPE_Q3_K:
  10405. case GGML_TYPE_Q4_K:
  10406. case GGML_TYPE_Q5_K:
  10407. case GGML_TYPE_Q6_K:
  10408. case GGML_TYPE_IQ2_XXS:
  10409. case GGML_TYPE_IQ2_XS:
  10410. case GGML_TYPE_IQ3_XXS:
  10411. case GGML_TYPE_IQ1_S:
  10412. case GGML_TYPE_IQ1_M:
  10413. case GGML_TYPE_IQ4_NL:
  10414. case GGML_TYPE_IQ4_XS:
  10415. case GGML_TYPE_IQ3_S:
  10416. case GGML_TYPE_IQ2_S:
  10417. default:
  10418. {
  10419. GGML_ASSERT(false);
  10420. } break;
  10421. }
  10422. }
  10423. // ggml_compute_forward_cpy
  10424. static void ggml_compute_forward_cpy(
  10425. const struct ggml_compute_params * params,
  10426. struct ggml_tensor * dst) {
  10427. ggml_compute_forward_dup(params, dst);
  10428. }
  10429. // ggml_compute_forward_cont
  10430. static void ggml_compute_forward_cont(
  10431. const struct ggml_compute_params * params,
  10432. struct ggml_tensor * dst) {
  10433. ggml_compute_forward_dup(params, dst);
  10434. }
  10435. // ggml_compute_forward_reshape
  10436. static void ggml_compute_forward_reshape(
  10437. const struct ggml_compute_params * params,
  10438. struct ggml_tensor * dst) {
  10439. // NOP
  10440. UNUSED(params);
  10441. UNUSED(dst);
  10442. }
  10443. // ggml_compute_forward_view
  10444. static void ggml_compute_forward_view(
  10445. const struct ggml_compute_params * params,
  10446. const struct ggml_tensor * dst) {
  10447. // NOP
  10448. UNUSED(params);
  10449. UNUSED(dst);
  10450. }
  10451. // ggml_compute_forward_permute
  10452. static void ggml_compute_forward_permute(
  10453. const struct ggml_compute_params * params,
  10454. const struct ggml_tensor * dst) {
  10455. // NOP
  10456. UNUSED(params);
  10457. UNUSED(dst);
  10458. }
  10459. // ggml_compute_forward_transpose
  10460. static void ggml_compute_forward_transpose(
  10461. const struct ggml_compute_params * params,
  10462. const struct ggml_tensor * dst) {
  10463. // NOP
  10464. UNUSED(params);
  10465. UNUSED(dst);
  10466. }
  10467. // ggml_compute_forward_get_rows
  10468. static void ggml_compute_forward_get_rows_q(
  10469. const struct ggml_compute_params * params,
  10470. struct ggml_tensor * dst) {
  10471. const struct ggml_tensor * src0 = dst->src[0];
  10472. const struct ggml_tensor * src1 = dst->src[1];
  10473. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10474. return;
  10475. }
  10476. GGML_TENSOR_BINARY_OP_LOCALS
  10477. const int64_t nc = ne00;
  10478. const int64_t nr = ggml_nelements(src1);
  10479. const enum ggml_type type = src0->type;
  10480. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10481. assert(ne0 == nc);
  10482. assert(ne02 == ne11);
  10483. assert(nb00 == ggml_type_size(type));
  10484. assert(ggml_nrows(dst) == nr);
  10485. const int ith = params->ith;
  10486. const int nth = params->nth;
  10487. // rows per thread
  10488. const int dr = (nr + nth - 1)/nth;
  10489. // row range for this thread
  10490. const int ir0 = dr*ith;
  10491. const int ir1 = MIN(ir0 + dr, nr);
  10492. for (int64_t i = ir0; i < ir1; ++i) {
  10493. const int64_t i12 = i/(ne11*ne10);
  10494. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10495. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10496. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10497. dequantize_row_q(
  10498. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10499. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10500. }
  10501. }
  10502. static void ggml_compute_forward_get_rows_f16(
  10503. const struct ggml_compute_params * params,
  10504. struct ggml_tensor * dst) {
  10505. const struct ggml_tensor * src0 = dst->src[0];
  10506. const struct ggml_tensor * src1 = dst->src[1];
  10507. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10508. return;
  10509. }
  10510. GGML_TENSOR_BINARY_OP_LOCALS
  10511. const int64_t nc = ne00;
  10512. const int64_t nr = ggml_nelements(src1);
  10513. assert(ne0 == nc);
  10514. assert(ne02 == ne11);
  10515. assert(nb00 == sizeof(ggml_fp16_t));
  10516. assert(ggml_nrows(dst) == nr);
  10517. const int ith = params->ith;
  10518. const int nth = params->nth;
  10519. // rows per thread
  10520. const int dr = (nr + nth - 1)/nth;
  10521. // row range for this thread
  10522. const int ir0 = dr*ith;
  10523. const int ir1 = MIN(ir0 + dr, nr);
  10524. for (int64_t i = ir0; i < ir1; ++i) {
  10525. const int64_t i12 = i/(ne11*ne10);
  10526. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10527. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10528. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10529. ggml_fp16_to_fp32_row(
  10530. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10531. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10532. }
  10533. }
  10534. static void ggml_compute_forward_get_rows_bf16(
  10535. const struct ggml_compute_params * params,
  10536. struct ggml_tensor * dst) {
  10537. const struct ggml_tensor * src0 = dst->src[0];
  10538. const struct ggml_tensor * src1 = dst->src[1];
  10539. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10540. return;
  10541. }
  10542. GGML_TENSOR_BINARY_OP_LOCALS
  10543. const int64_t nc = ne00;
  10544. const int64_t nr = ggml_nelements(src1);
  10545. assert(ne0 == nc);
  10546. assert(ne02 == ne11);
  10547. assert(nb00 == sizeof(ggml_bf16_t));
  10548. assert(ggml_nrows(dst) == nr);
  10549. const int ith = params->ith;
  10550. const int nth = params->nth;
  10551. // rows per thread
  10552. const int dr = (nr + nth - 1)/nth;
  10553. // row range for this thread
  10554. const int ir0 = dr*ith;
  10555. const int ir1 = MIN(ir0 + dr, nr);
  10556. for (int64_t i = ir0; i < ir1; ++i) {
  10557. const int64_t i12 = i/(ne11*ne10);
  10558. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10559. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10560. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10561. ggml_bf16_to_fp32_row(
  10562. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10563. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10564. }
  10565. }
  10566. static void ggml_compute_forward_get_rows_f32(
  10567. const struct ggml_compute_params * params,
  10568. struct ggml_tensor * dst) {
  10569. const struct ggml_tensor * src0 = dst->src[0];
  10570. const struct ggml_tensor * src1 = dst->src[1];
  10571. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10572. return;
  10573. }
  10574. GGML_TENSOR_BINARY_OP_LOCALS
  10575. const int64_t nc = ne00;
  10576. const int64_t nr = ggml_nelements(src1);
  10577. assert(ne0 == nc);
  10578. assert(ne02 == ne11);
  10579. assert(nb00 == sizeof(float));
  10580. assert(ggml_nrows(dst) == nr);
  10581. const int ith = params->ith;
  10582. const int nth = params->nth;
  10583. // rows per thread
  10584. const int dr = (nr + nth - 1)/nth;
  10585. // row range for this thread
  10586. const int ir0 = dr*ith;
  10587. const int ir1 = MIN(ir0 + dr, nr);
  10588. for (int64_t i = ir0; i < ir1; ++i) {
  10589. const int64_t i12 = i/(ne11*ne10);
  10590. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10591. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10592. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10593. ggml_vec_cpy_f32(nc,
  10594. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10595. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10596. }
  10597. }
  10598. static void ggml_compute_forward_get_rows(
  10599. const struct ggml_compute_params * params,
  10600. struct ggml_tensor * dst) {
  10601. const struct ggml_tensor * src0 = dst->src[0];
  10602. switch (src0->type) {
  10603. case GGML_TYPE_Q4_0:
  10604. case GGML_TYPE_Q4_1:
  10605. case GGML_TYPE_Q5_0:
  10606. case GGML_TYPE_Q5_1:
  10607. case GGML_TYPE_Q8_0:
  10608. case GGML_TYPE_Q8_1:
  10609. case GGML_TYPE_Q2_K:
  10610. case GGML_TYPE_Q3_K:
  10611. case GGML_TYPE_Q4_K:
  10612. case GGML_TYPE_Q5_K:
  10613. case GGML_TYPE_Q6_K:
  10614. case GGML_TYPE_IQ2_XXS:
  10615. case GGML_TYPE_IQ2_XS:
  10616. case GGML_TYPE_IQ3_XXS:
  10617. case GGML_TYPE_IQ1_S:
  10618. case GGML_TYPE_IQ1_M:
  10619. case GGML_TYPE_IQ4_NL:
  10620. case GGML_TYPE_IQ4_XS:
  10621. case GGML_TYPE_IQ3_S:
  10622. case GGML_TYPE_IQ2_S:
  10623. {
  10624. ggml_compute_forward_get_rows_q(params, dst);
  10625. } break;
  10626. case GGML_TYPE_F16:
  10627. {
  10628. ggml_compute_forward_get_rows_f16(params, dst);
  10629. } break;
  10630. case GGML_TYPE_BF16:
  10631. {
  10632. ggml_compute_forward_get_rows_bf16(params, dst);
  10633. } break;
  10634. case GGML_TYPE_F32:
  10635. case GGML_TYPE_I32:
  10636. {
  10637. ggml_compute_forward_get_rows_f32(params, dst);
  10638. } break;
  10639. default:
  10640. {
  10641. GGML_ASSERT(false);
  10642. } break;
  10643. }
  10644. //static bool first = true;
  10645. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10646. //if (first) {
  10647. // first = false;
  10648. //} else {
  10649. // for (int k = 0; k < dst->ne[1]; ++k) {
  10650. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10651. // for (int i = 0; i < 16; ++i) {
  10652. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10653. // }
  10654. // printf("\n");
  10655. // }
  10656. // printf("\n");
  10657. // }
  10658. // printf("\n");
  10659. // exit(0);
  10660. //}
  10661. }
  10662. // ggml_compute_forward_get_rows_back
  10663. static void ggml_compute_forward_get_rows_back_f32_f16(
  10664. const struct ggml_compute_params * params,
  10665. struct ggml_tensor * dst) {
  10666. const struct ggml_tensor * src0 = dst->src[0];
  10667. const struct ggml_tensor * src1 = dst->src[1];
  10668. GGML_ASSERT(params->ith == 0);
  10669. GGML_ASSERT(ggml_is_contiguous(dst));
  10670. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10671. if (params->type == GGML_TASK_TYPE_INIT) {
  10672. if (params->ith != 0) {
  10673. return;
  10674. }
  10675. memset(dst->data, 0, ggml_nbytes(dst));
  10676. }
  10677. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10678. return;
  10679. }
  10680. const int nc = src0->ne[0];
  10681. const int nr = ggml_nelements(src1);
  10682. GGML_ASSERT( dst->ne[0] == nc);
  10683. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10684. for (int i = 0; i < nr; ++i) {
  10685. const int r = ((int32_t *) src1->data)[i];
  10686. for (int j = 0; j < nc; ++j) {
  10687. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10688. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10689. }
  10690. }
  10691. }
  10692. static void ggml_compute_forward_get_rows_back_f32(
  10693. const struct ggml_compute_params * params,
  10694. struct ggml_tensor * dst) {
  10695. const struct ggml_tensor * src0 = dst->src[0];
  10696. const struct ggml_tensor * src1 = dst->src[1];
  10697. GGML_ASSERT(params->ith == 0);
  10698. GGML_ASSERT(ggml_is_contiguous(dst));
  10699. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10700. if (params->type == GGML_TASK_TYPE_INIT) {
  10701. if (params->ith != 0) {
  10702. return;
  10703. }
  10704. memset(dst->data, 0, ggml_nbytes(dst));
  10705. }
  10706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10707. return;
  10708. }
  10709. const int nc = src0->ne[0];
  10710. const int nr = ggml_nelements(src1);
  10711. GGML_ASSERT( dst->ne[0] == nc);
  10712. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10713. for (int i = 0; i < nr; ++i) {
  10714. const int r = ((int32_t *) src1->data)[i];
  10715. ggml_vec_add_f32(nc,
  10716. (float *) ((char *) dst->data + r*dst->nb[1]),
  10717. (float *) ((char *) dst->data + r*dst->nb[1]),
  10718. (float *) ((char *) src0->data + i*src0->nb[1]));
  10719. }
  10720. }
  10721. static void ggml_compute_forward_get_rows_back(
  10722. const struct ggml_compute_params * params,
  10723. struct ggml_tensor * dst) {
  10724. const struct ggml_tensor * src0 = dst->src[0];
  10725. switch (src0->type) {
  10726. case GGML_TYPE_F16:
  10727. {
  10728. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10729. } break;
  10730. case GGML_TYPE_F32:
  10731. {
  10732. ggml_compute_forward_get_rows_back_f32(params, dst);
  10733. } break;
  10734. default:
  10735. {
  10736. GGML_ASSERT(false);
  10737. } break;
  10738. }
  10739. //static bool first = true;
  10740. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10741. //if (first) {
  10742. // first = false;
  10743. //} else {
  10744. // for (int k = 0; k < dst->ne[1]; ++k) {
  10745. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10746. // for (int i = 0; i < 16; ++i) {
  10747. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10748. // }
  10749. // printf("\n");
  10750. // }
  10751. // printf("\n");
  10752. // }
  10753. // printf("\n");
  10754. // exit(0);
  10755. //}
  10756. }
  10757. // ggml_compute_forward_diag
  10758. static void ggml_compute_forward_diag_f32(
  10759. const struct ggml_compute_params * params,
  10760. struct ggml_tensor * dst) {
  10761. const struct ggml_tensor * src0 = dst->src[0];
  10762. GGML_ASSERT(params->ith == 0);
  10763. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10764. return;
  10765. }
  10766. // TODO: handle transposed/permuted matrices
  10767. GGML_TENSOR_UNARY_OP_LOCALS
  10768. GGML_ASSERT(ne00 == ne0);
  10769. GGML_ASSERT(ne00 == ne1);
  10770. GGML_ASSERT(ne01 == 1);
  10771. GGML_ASSERT(ne02 == ne2);
  10772. GGML_ASSERT(ne03 == ne3);
  10773. GGML_ASSERT(nb00 == sizeof(float));
  10774. GGML_ASSERT(nb0 == sizeof(float));
  10775. for (int i3 = 0; i3 < ne3; i3++) {
  10776. for (int i2 = 0; i2 < ne2; i2++) {
  10777. for (int i1 = 0; i1 < ne1; i1++) {
  10778. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10779. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10780. for (int i0 = 0; i0 < i1; i0++) {
  10781. d[i0] = 0;
  10782. }
  10783. d[i1] = s[i1];
  10784. for (int i0 = i1+1; i0 < ne0; i0++) {
  10785. d[i0] = 0;
  10786. }
  10787. }
  10788. }
  10789. }
  10790. }
  10791. static void ggml_compute_forward_diag(
  10792. const struct ggml_compute_params * params,
  10793. struct ggml_tensor * dst) {
  10794. const struct ggml_tensor * src0 = dst->src[0];
  10795. switch (src0->type) {
  10796. case GGML_TYPE_F32:
  10797. {
  10798. ggml_compute_forward_diag_f32(params, dst);
  10799. } break;
  10800. default:
  10801. {
  10802. GGML_ASSERT(false);
  10803. } break;
  10804. }
  10805. }
  10806. // ggml_compute_forward_diag_mask_inf
  10807. static void ggml_compute_forward_diag_mask_f32(
  10808. const struct ggml_compute_params * params,
  10809. struct ggml_tensor * dst,
  10810. const float value) {
  10811. const struct ggml_tensor * src0 = dst->src[0];
  10812. const int ith = params->ith;
  10813. const int nth = params->nth;
  10814. const int n_past = ((int32_t *) dst->op_params)[0];
  10815. const bool inplace = src0->data == dst->data;
  10816. GGML_ASSERT(n_past >= 0);
  10817. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10818. if (ith != 0) {
  10819. return;
  10820. }
  10821. // memcpy needs to be synchronized across threads to avoid race conditions.
  10822. // => do it in INIT phase
  10823. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10824. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10825. memcpy(
  10826. ((char *) dst->data),
  10827. ((char *) src0->data),
  10828. ggml_nbytes(dst));
  10829. }
  10830. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10831. return;
  10832. }
  10833. // TODO: handle transposed/permuted matrices
  10834. const int n = ggml_nrows(src0);
  10835. const int nc = src0->ne[0];
  10836. const int nr = src0->ne[1];
  10837. const int nz = n/nr;
  10838. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10839. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10840. for (int k = 0; k < nz; k++) {
  10841. for (int j = ith; j < nr; j += nth) {
  10842. for (int i = n_past; i < nc; i++) {
  10843. if (i > n_past + j) {
  10844. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10845. }
  10846. }
  10847. }
  10848. }
  10849. }
  10850. static void ggml_compute_forward_diag_mask_inf(
  10851. const struct ggml_compute_params * params,
  10852. struct ggml_tensor * dst) {
  10853. const struct ggml_tensor * src0 = dst->src[0];
  10854. switch (src0->type) {
  10855. case GGML_TYPE_F32:
  10856. {
  10857. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10858. } break;
  10859. default:
  10860. {
  10861. GGML_ASSERT(false);
  10862. } break;
  10863. }
  10864. }
  10865. static void ggml_compute_forward_diag_mask_zero(
  10866. const struct ggml_compute_params * params,
  10867. struct ggml_tensor * dst) {
  10868. const struct ggml_tensor * src0 = dst->src[0];
  10869. switch (src0->type) {
  10870. case GGML_TYPE_F32:
  10871. {
  10872. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10873. } break;
  10874. default:
  10875. {
  10876. GGML_ASSERT(false);
  10877. } break;
  10878. }
  10879. }
  10880. // ggml_compute_forward_soft_max
  10881. static void ggml_compute_forward_soft_max_f32(
  10882. const struct ggml_compute_params * params,
  10883. struct ggml_tensor * dst) {
  10884. const struct ggml_tensor * src0 = dst->src[0];
  10885. const struct ggml_tensor * src1 = dst->src[1];
  10886. assert(ggml_is_contiguous(dst));
  10887. assert(ggml_are_same_shape(src0, dst));
  10888. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10889. return;
  10890. }
  10891. float scale = 1.0f;
  10892. float max_bias = 0.0f;
  10893. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10894. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10895. // TODO: handle transposed/permuted matrices
  10896. const int ith = params->ith;
  10897. const int nth = params->nth;
  10898. GGML_TENSOR_UNARY_OP_LOCALS
  10899. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  10900. // TODO: is this supposed to be ceil instead of floor?
  10901. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  10902. const uint32_t n_head = ne02;
  10903. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  10904. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  10905. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  10906. const int nc = src0->ne[0];
  10907. const int nr = ggml_nrows(src0);
  10908. // rows per thread
  10909. const int dr = (nr + nth - 1)/nth;
  10910. // row range for this thread
  10911. const int ir0 = dr*ith;
  10912. const int ir1 = MIN(ir0 + dr, nr);
  10913. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  10914. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  10915. for (int i1 = ir0; i1 < ir1; i1++) {
  10916. // ALiBi
  10917. const uint32_t h = (i1/ne01)%ne02; // head
  10918. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  10919. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10920. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10921. // broadcast the mask across rows
  10922. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10923. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10924. ggml_vec_cpy_f32 (nc, wp, sp);
  10925. ggml_vec_scale_f32(nc, wp, scale);
  10926. if (mp_f32) {
  10927. if (use_f16) {
  10928. for (int i = 0; i < nc; ++i) {
  10929. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  10930. }
  10931. } else {
  10932. for (int i = 0; i < nc; ++i) {
  10933. wp[i] += slope*mp_f32[i];
  10934. }
  10935. }
  10936. }
  10937. #ifndef NDEBUG
  10938. for (int i = 0; i < nc; ++i) {
  10939. //printf("p[%d] = %f\n", i, p[i]);
  10940. assert(!isnan(wp[i]));
  10941. }
  10942. #endif
  10943. float max = -INFINITY;
  10944. ggml_vec_max_f32(nc, &max, wp);
  10945. ggml_float sum = 0.0;
  10946. uint16_t scvt;
  10947. for (int i = 0; i < nc; i++) {
  10948. if (wp[i] == -INFINITY) {
  10949. dp[i] = 0.0f;
  10950. } else {
  10951. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10952. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10953. memcpy(&scvt, &s, sizeof(scvt));
  10954. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10955. sum += (ggml_float)val;
  10956. dp[i] = val;
  10957. }
  10958. }
  10959. assert(sum > 0.0);
  10960. sum = 1.0/sum;
  10961. ggml_vec_scale_f32(nc, dp, sum);
  10962. #ifndef NDEBUG
  10963. for (int i = 0; i < nc; ++i) {
  10964. assert(!isnan(dp[i]));
  10965. assert(!isinf(dp[i]));
  10966. }
  10967. #endif
  10968. }
  10969. }
  10970. static void ggml_compute_forward_soft_max(
  10971. const struct ggml_compute_params * params,
  10972. struct ggml_tensor * dst) {
  10973. const struct ggml_tensor * src0 = dst->src[0];
  10974. switch (src0->type) {
  10975. case GGML_TYPE_F32:
  10976. {
  10977. ggml_compute_forward_soft_max_f32(params, dst);
  10978. } break;
  10979. default:
  10980. {
  10981. GGML_ASSERT(false);
  10982. } break;
  10983. }
  10984. }
  10985. // ggml_compute_forward_soft_max_back
  10986. static void ggml_compute_forward_soft_max_back_f32(
  10987. const struct ggml_compute_params * params,
  10988. struct ggml_tensor * dst) {
  10989. const struct ggml_tensor * src0 = dst->src[0];
  10990. const struct ggml_tensor * src1 = dst->src[1];
  10991. GGML_ASSERT(ggml_is_contiguous(src0));
  10992. GGML_ASSERT(ggml_is_contiguous(src1));
  10993. GGML_ASSERT(ggml_is_contiguous(dst));
  10994. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10995. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10996. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10997. return;
  10998. }
  10999. // TODO: handle transposed/permuted matrices
  11000. const int ith = params->ith;
  11001. const int nth = params->nth;
  11002. const int nc = src0->ne[0];
  11003. const int nr = ggml_nrows(src0);
  11004. // rows per thread
  11005. const int dr = (nr + nth - 1)/nth;
  11006. // row range for this thread
  11007. const int ir0 = dr*ith;
  11008. const int ir1 = MIN(ir0 + dr, nr);
  11009. for (int i1 = ir0; i1 < ir1; i1++) {
  11010. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11011. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11012. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11013. #ifndef NDEBUG
  11014. for (int i = 0; i < nc; ++i) {
  11015. //printf("p[%d] = %f\n", i, p[i]);
  11016. assert(!isnan(dy[i]));
  11017. assert(!isnan(y[i]));
  11018. }
  11019. #endif
  11020. // Jii = yi - yi*yi
  11021. // Jij = -yi*yj
  11022. // J = diag(y)-y.T*y
  11023. // dx = J * dy
  11024. // dxk = sum_i(Jki * dyi)
  11025. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11026. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11027. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11028. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11029. // dxk = -yk * dot(y, dy) + yk*dyk
  11030. // dxk = yk * (- dot(y, dy) + dyk)
  11031. // dxk = yk * (dyk - dot(y, dy))
  11032. //
  11033. // post-order:
  11034. // dot_y_dy := dot(y, dy)
  11035. // dx := dy
  11036. // dx := dx - dot_y_dy
  11037. // dx := dx * y
  11038. // linear runtime, no additional memory
  11039. float dot_y_dy = 0;
  11040. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11041. ggml_vec_cpy_f32 (nc, dx, dy);
  11042. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11043. ggml_vec_mul_f32 (nc, dx, dx, y);
  11044. #ifndef NDEBUG
  11045. for (int i = 0; i < nc; ++i) {
  11046. assert(!isnan(dx[i]));
  11047. assert(!isinf(dx[i]));
  11048. }
  11049. #endif
  11050. }
  11051. }
  11052. static void ggml_compute_forward_soft_max_back(
  11053. const struct ggml_compute_params * params,
  11054. struct ggml_tensor * dst) {
  11055. const struct ggml_tensor * src0 = dst->src[0];
  11056. switch (src0->type) {
  11057. case GGML_TYPE_F32:
  11058. {
  11059. ggml_compute_forward_soft_max_back_f32(params, dst);
  11060. } break;
  11061. default:
  11062. {
  11063. GGML_ASSERT(false);
  11064. } break;
  11065. }
  11066. }
  11067. // ggml_compute_forward_clamp
  11068. static void ggml_compute_forward_clamp_f32(
  11069. const struct ggml_compute_params * params,
  11070. struct ggml_tensor * dst) {
  11071. const struct ggml_tensor * src0 = dst->src[0];
  11072. assert(params->ith == 0);
  11073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11074. return;
  11075. }
  11076. float min;
  11077. float max;
  11078. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11079. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11080. const int ith = params->ith;
  11081. const int nth = params->nth;
  11082. const int n = ggml_nrows(src0);
  11083. const int nc = src0->ne[0];
  11084. const size_t nb00 = src0->nb[0];
  11085. const size_t nb01 = src0->nb[1];
  11086. const size_t nb0 = dst->nb[0];
  11087. const size_t nb1 = dst->nb[1];
  11088. GGML_ASSERT( nb0 == sizeof(float));
  11089. GGML_ASSERT(nb00 == sizeof(float));
  11090. for (int j = ith; j < n; j += nth) {
  11091. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11092. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11093. for (int i = 0; i < nc; i++) {
  11094. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11095. }
  11096. }
  11097. }
  11098. static void ggml_compute_forward_clamp(
  11099. const struct ggml_compute_params * params,
  11100. struct ggml_tensor * dst) {
  11101. const struct ggml_tensor * src0 = dst->src[0];
  11102. switch (src0->type) {
  11103. case GGML_TYPE_F32:
  11104. {
  11105. ggml_compute_forward_clamp_f32(params, dst);
  11106. } break;
  11107. case GGML_TYPE_F16:
  11108. case GGML_TYPE_BF16:
  11109. case GGML_TYPE_Q4_0:
  11110. case GGML_TYPE_Q4_1:
  11111. case GGML_TYPE_Q5_0:
  11112. case GGML_TYPE_Q5_1:
  11113. case GGML_TYPE_Q8_0:
  11114. case GGML_TYPE_Q8_1:
  11115. case GGML_TYPE_Q2_K:
  11116. case GGML_TYPE_Q3_K:
  11117. case GGML_TYPE_Q4_K:
  11118. case GGML_TYPE_Q5_K:
  11119. case GGML_TYPE_Q6_K:
  11120. case GGML_TYPE_IQ2_XXS:
  11121. case GGML_TYPE_IQ2_XS:
  11122. case GGML_TYPE_IQ3_XXS:
  11123. case GGML_TYPE_IQ1_S:
  11124. case GGML_TYPE_IQ1_M:
  11125. case GGML_TYPE_IQ4_NL:
  11126. case GGML_TYPE_IQ4_XS:
  11127. case GGML_TYPE_IQ3_S:
  11128. case GGML_TYPE_IQ2_S:
  11129. case GGML_TYPE_Q8_K:
  11130. case GGML_TYPE_I8:
  11131. case GGML_TYPE_I16:
  11132. case GGML_TYPE_I32:
  11133. case GGML_TYPE_I64:
  11134. case GGML_TYPE_F64:
  11135. case GGML_TYPE_COUNT:
  11136. {
  11137. GGML_ASSERT(false);
  11138. } break;
  11139. }
  11140. }
  11141. // ggml_compute_forward_rope
  11142. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11143. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11144. return 1 - MIN(1, MAX(0, y));
  11145. }
  11146. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11147. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11148. static void rope_yarn(
  11149. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11150. float * cos_theta, float * sin_theta
  11151. ) {
  11152. // Get n-d rotational scaling corrected for extrapolation
  11153. float theta_interp = freq_scale * theta_extrap;
  11154. float theta = theta_interp;
  11155. if (ext_factor != 0.0f) {
  11156. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11157. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11158. // Get n-d magnitude scaling corrected for interpolation
  11159. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11160. }
  11161. *cos_theta = cosf(theta) * mscale;
  11162. *sin_theta = sinf(theta) * mscale;
  11163. }
  11164. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11165. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11166. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11167. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11168. }
  11169. static void ggml_rope_cache_init(
  11170. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11171. float * cache, float sin_sign, float theta_scale
  11172. ) {
  11173. float theta = theta_base;
  11174. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11175. rope_yarn(
  11176. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11177. );
  11178. cache[i0 + 1] *= sin_sign;
  11179. theta *= theta_scale;
  11180. }
  11181. }
  11182. GGML_CALL void ggml_rope_yarn_corr_dims(
  11183. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11184. ) {
  11185. // start and end correction dims
  11186. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11187. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11188. dims[0] = MAX(0, start);
  11189. dims[1] = MIN(n_dims - 1, end);
  11190. }
  11191. static void ggml_compute_forward_rope_f32(
  11192. const struct ggml_compute_params * params,
  11193. struct ggml_tensor * dst,
  11194. const bool forward) {
  11195. const struct ggml_tensor * src0 = dst->src[0];
  11196. const struct ggml_tensor * src1 = dst->src[1];
  11197. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11198. return;
  11199. }
  11200. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11201. // these two only relevant for xPos RoPE:
  11202. float xpos_base;
  11203. bool xpos_down;
  11204. //const int n_past = ((int32_t *) dst->op_params)[0];
  11205. const int n_dims = ((int32_t *) dst->op_params)[1];
  11206. const int mode = ((int32_t *) dst->op_params)[2];
  11207. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11208. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11209. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11210. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11211. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11212. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11213. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11214. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11215. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11216. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11217. GGML_TENSOR_UNARY_OP_LOCALS
  11218. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11219. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11220. GGML_ASSERT(nb00 == sizeof(float));
  11221. const int ith = params->ith;
  11222. const int nth = params->nth;
  11223. const int nr = ggml_nrows(dst);
  11224. GGML_ASSERT(n_dims <= ne0);
  11225. GGML_ASSERT(n_dims % 2 == 0);
  11226. // rows per thread
  11227. const int dr = (nr + nth - 1)/nth;
  11228. // row range for this thread
  11229. const int ir0 = dr*ith;
  11230. const int ir1 = MIN(ir0 + dr, nr);
  11231. // row index used to determine which thread to use
  11232. int ir = 0;
  11233. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11234. const float inv_ndims = -1.f/n_dims;
  11235. float corr_dims[2];
  11236. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11237. const bool is_neox = mode & 2;
  11238. const bool is_glm = mode & 4;
  11239. // backward process uses inverse rotation by cos and sin.
  11240. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11241. // this essentially just switches the sign of sin.
  11242. const float sin_sign = forward ? 1.0f : -1.0f;
  11243. const int32_t * pos = (const int32_t *) src1->data;
  11244. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11245. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11246. const int64_t p = pos[i2];
  11247. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11248. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11249. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11250. }
  11251. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11252. if (ir++ < ir0) continue;
  11253. if (ir > ir1) break;
  11254. float theta_base = (float)p;
  11255. if (is_glm) {
  11256. theta_base = MIN(p, n_ctx - 2);
  11257. float block_theta = MAX(p - (n_ctx - 2), 0);
  11258. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11259. const float cos_theta = cosf(theta_base);
  11260. const float sin_theta = sinf(theta_base) * sin_sign;
  11261. const float cos_block_theta = cosf(block_theta);
  11262. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11263. theta_base *= theta_scale;
  11264. block_theta *= theta_scale;
  11265. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11266. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11267. const float x0 = src[0];
  11268. const float x1 = src[n_dims/2];
  11269. const float x2 = src[n_dims];
  11270. const float x3 = src[n_dims/2*3];
  11271. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11272. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11273. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11274. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11275. }
  11276. } else if (!is_neox) {
  11277. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11278. const float cos_theta = cache[i0 + 0];
  11279. const float sin_theta = cache[i0 + 1];
  11280. // zeta scaling for xPos only:
  11281. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11282. if (xpos_down) zeta = 1.0f / zeta;
  11283. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11284. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11285. const float x0 = src[0];
  11286. const float x1 = src[1];
  11287. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11288. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11289. }
  11290. } else {
  11291. // TODO: this might be wrong for ne0 != n_dims - need double check
  11292. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11293. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11294. theta_base *= freq_scale;
  11295. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11296. if (ic < n_dims) {
  11297. const int64_t ib = 0;
  11298. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11299. float cur_rot = inv_ndims * ic - ib;
  11300. float cos_theta, sin_theta;
  11301. rope_yarn(
  11302. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11303. &cos_theta, &sin_theta
  11304. );
  11305. sin_theta *= sin_sign;
  11306. theta_base *= theta_scale;
  11307. const int64_t i0 = ib*n_dims + ic/2;
  11308. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11309. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11310. const float x0 = src[0];
  11311. const float x1 = src[n_dims/2];
  11312. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11313. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11314. } else {
  11315. const int64_t i0 = ic;
  11316. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11317. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11318. dst_data[0] = src[0];
  11319. dst_data[1] = src[1];
  11320. }
  11321. }
  11322. }
  11323. }
  11324. }
  11325. }
  11326. }
  11327. static void ggml_compute_forward_rope_f16(
  11328. const struct ggml_compute_params * params,
  11329. struct ggml_tensor * dst,
  11330. const bool forward) {
  11331. const struct ggml_tensor * src0 = dst->src[0];
  11332. const struct ggml_tensor * src1 = dst->src[1];
  11333. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11334. return;
  11335. }
  11336. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11337. //const int n_past = ((int32_t *) dst->op_params)[0];
  11338. const int n_dims = ((int32_t *) dst->op_params)[1];
  11339. const int mode = ((int32_t *) dst->op_params)[2];
  11340. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11341. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11342. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11343. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11344. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11345. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11346. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11347. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11348. GGML_TENSOR_UNARY_OP_LOCALS
  11349. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11350. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11351. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11352. const int ith = params->ith;
  11353. const int nth = params->nth;
  11354. const int nr = ggml_nrows(dst);
  11355. GGML_ASSERT(n_dims <= ne0);
  11356. GGML_ASSERT(n_dims % 2 == 0);
  11357. // rows per thread
  11358. const int dr = (nr + nth - 1)/nth;
  11359. // row range for this thread
  11360. const int ir0 = dr*ith;
  11361. const int ir1 = MIN(ir0 + dr, nr);
  11362. // row index used to determine which thread to use
  11363. int ir = 0;
  11364. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11365. const float inv_ndims = -1.f/n_dims;
  11366. float corr_dims[2];
  11367. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11368. const bool is_neox = mode & 2;
  11369. const bool is_glm = mode & 4;
  11370. // backward process uses inverse rotation by cos and sin.
  11371. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11372. // this essentially just switches the sign of sin.
  11373. const float sin_sign = forward ? 1.0f : -1.0f;
  11374. const int32_t * pos = (const int32_t *) src1->data;
  11375. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11376. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11377. const int64_t p = pos[i2];
  11378. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11379. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11380. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11381. }
  11382. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11383. if (ir++ < ir0) continue;
  11384. if (ir > ir1) break;
  11385. float theta_base = (float)p;
  11386. if (is_glm) {
  11387. theta_base = MIN(p, n_ctx - 2);
  11388. float block_theta = MAX(p - (n_ctx - 2), 0);
  11389. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11390. const float cos_theta = cosf(theta_base);
  11391. const float sin_theta = sinf(theta_base) * sin_sign;
  11392. const float cos_block_theta = cosf(block_theta);
  11393. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11394. theta_base *= theta_scale;
  11395. block_theta *= theta_scale;
  11396. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11397. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11398. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11399. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11400. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11401. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11402. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11403. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11404. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11405. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11406. }
  11407. } else if (!is_neox) {
  11408. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11409. const float cos_theta = cache[i0 + 0];
  11410. const float sin_theta = cache[i0 + 1];
  11411. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11412. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11413. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11414. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11415. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11416. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11417. }
  11418. } else {
  11419. // TODO: this might be wrong for ne0 != n_dims - need double check
  11420. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11421. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11422. theta_base *= freq_scale;
  11423. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11424. if (ic < n_dims) {
  11425. const int64_t ib = 0;
  11426. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11427. float cur_rot = inv_ndims * ic - ib;
  11428. float cos_theta, sin_theta;
  11429. rope_yarn(
  11430. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11431. &cos_theta, &sin_theta
  11432. );
  11433. sin_theta *= sin_sign;
  11434. theta_base *= theta_scale;
  11435. const int64_t i0 = ib*n_dims + ic/2;
  11436. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11437. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11438. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11439. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11440. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11441. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11442. } else {
  11443. const int64_t i0 = ic;
  11444. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11445. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11446. dst_data[0] = src[0];
  11447. dst_data[1] = src[1];
  11448. }
  11449. }
  11450. }
  11451. }
  11452. }
  11453. }
  11454. }
  11455. static void ggml_compute_forward_rope(
  11456. const struct ggml_compute_params * params,
  11457. struct ggml_tensor * dst) {
  11458. const struct ggml_tensor * src0 = dst->src[0];
  11459. switch (src0->type) {
  11460. case GGML_TYPE_F16:
  11461. {
  11462. ggml_compute_forward_rope_f16(params, dst, true);
  11463. } break;
  11464. case GGML_TYPE_F32:
  11465. {
  11466. ggml_compute_forward_rope_f32(params, dst, true);
  11467. } break;
  11468. default:
  11469. {
  11470. GGML_ASSERT(false);
  11471. } break;
  11472. }
  11473. }
  11474. // ggml_compute_forward_rope_back
  11475. static void ggml_compute_forward_rope_back(
  11476. const struct ggml_compute_params * params,
  11477. struct ggml_tensor * dst) {
  11478. const struct ggml_tensor * src0 = dst->src[0];
  11479. switch (src0->type) {
  11480. case GGML_TYPE_F16:
  11481. {
  11482. ggml_compute_forward_rope_f16(params, dst, false);
  11483. } break;
  11484. case GGML_TYPE_F32:
  11485. {
  11486. ggml_compute_forward_rope_f32(params, dst, false);
  11487. } break;
  11488. default:
  11489. {
  11490. GGML_ASSERT(false);
  11491. } break;
  11492. }
  11493. }
  11494. // ggml_compute_forward_conv_transpose_1d
  11495. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11496. const struct ggml_compute_params * params,
  11497. struct ggml_tensor * dst) {
  11498. const struct ggml_tensor * src0 = dst->src[0];
  11499. const struct ggml_tensor * src1 = dst->src[1];
  11500. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11501. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11502. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11503. int64_t t0 = ggml_perf_time_us();
  11504. UNUSED(t0);
  11505. GGML_TENSOR_BINARY_OP_LOCALS
  11506. const int ith = params->ith;
  11507. const int nth = params->nth;
  11508. const int nk = ne00*ne01*ne02;
  11509. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11510. GGML_ASSERT(nb10 == sizeof(float));
  11511. if (params->type == GGML_TASK_TYPE_INIT) {
  11512. if (ith != 0) {
  11513. return;
  11514. }
  11515. memset(params->wdata, 0, params->wsize);
  11516. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11517. {
  11518. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11520. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11521. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11522. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11523. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11524. dst_data[i00*ne02 + i02] = src[i00];
  11525. }
  11526. }
  11527. }
  11528. }
  11529. // permute source data (src1) from (L x Cin) to (Cin x L)
  11530. {
  11531. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11532. ggml_fp16_t * dst_data = wdata;
  11533. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11534. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11535. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11536. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11537. }
  11538. }
  11539. }
  11540. // need to zero dst since we are accumulating into it
  11541. memset(dst->data, 0, ggml_nbytes(dst));
  11542. return;
  11543. }
  11544. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11545. return;
  11546. }
  11547. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11548. // total rows in dst
  11549. const int nr = ne1;
  11550. // rows per thread
  11551. const int dr = (nr + nth - 1)/nth;
  11552. // row range for this thread
  11553. const int ir0 = dr*ith;
  11554. const int ir1 = MIN(ir0 + dr, nr);
  11555. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11556. ggml_fp16_t * const wdata_src = wdata + nk;
  11557. for (int i1 = ir0; i1 < ir1; i1++) {
  11558. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11559. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11560. for (int i10 = 0; i10 < ne10; i10++) {
  11561. const int i1n = i10*ne11;
  11562. for (int i00 = 0; i00 < ne00; i00++) {
  11563. float v = 0;
  11564. ggml_vec_dot_f16(ne02, &v, 0,
  11565. (ggml_fp16_t *) wdata_src + i1n, 0,
  11566. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11567. dst_data[i10*s0 + i00] += v;
  11568. }
  11569. }
  11570. }
  11571. }
  11572. static void ggml_compute_forward_conv_transpose_1d_f32(
  11573. const struct ggml_compute_params * params,
  11574. struct ggml_tensor * dst) {
  11575. const struct ggml_tensor * src0 = dst->src[0];
  11576. const struct ggml_tensor * src1 = dst->src[1];
  11577. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11578. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11579. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11580. int64_t t0 = ggml_perf_time_us();
  11581. UNUSED(t0);
  11582. GGML_TENSOR_BINARY_OP_LOCALS
  11583. const int ith = params->ith;
  11584. const int nth = params->nth;
  11585. const int nk = ne00*ne01*ne02;
  11586. GGML_ASSERT(nb00 == sizeof(float));
  11587. GGML_ASSERT(nb10 == sizeof(float));
  11588. if (params->type == GGML_TASK_TYPE_INIT) {
  11589. if (ith != 0) {
  11590. return;
  11591. }
  11592. memset(params->wdata, 0, params->wsize);
  11593. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11594. {
  11595. float * const wdata = (float *) params->wdata + 0;
  11596. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11597. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11598. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11599. float * dst_data = wdata + i01*ne00*ne02;
  11600. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11601. dst_data[i00*ne02 + i02] = src[i00];
  11602. }
  11603. }
  11604. }
  11605. }
  11606. // prepare source data (src1)
  11607. {
  11608. float * const wdata = (float *) params->wdata + nk;
  11609. float * dst_data = wdata;
  11610. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11611. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11612. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11613. dst_data[i10*ne11 + i11] = src[i10];
  11614. }
  11615. }
  11616. }
  11617. // need to zero dst since we are accumulating into it
  11618. memset(dst->data, 0, ggml_nbytes(dst));
  11619. return;
  11620. }
  11621. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11622. return;
  11623. }
  11624. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11625. // total rows in dst
  11626. const int nr = ne1;
  11627. // rows per thread
  11628. const int dr = (nr + nth - 1)/nth;
  11629. // row range for this thread
  11630. const int ir0 = dr*ith;
  11631. const int ir1 = MIN(ir0 + dr, nr);
  11632. float * const wdata = (float *) params->wdata + 0;
  11633. float * const wdata_src = wdata + nk;
  11634. for (int i1 = ir0; i1 < ir1; i1++) {
  11635. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11636. float * wdata_kernel = wdata + i1*ne02*ne00;
  11637. for (int i10 = 0; i10 < ne10; i10++) {
  11638. const int i1n = i10*ne11;
  11639. for (int i00 = 0; i00 < ne00; i00++) {
  11640. float v = 0;
  11641. ggml_vec_dot_f32(ne02, &v, 0,
  11642. wdata_src + i1n, 0,
  11643. wdata_kernel + i00*ne02, 0, 1);
  11644. dst_data[i10*s0 + i00] += v;
  11645. }
  11646. }
  11647. }
  11648. }
  11649. static void ggml_compute_forward_conv_transpose_1d(
  11650. const struct ggml_compute_params * params,
  11651. struct ggml_tensor * dst) {
  11652. const struct ggml_tensor * src0 = dst->src[0];
  11653. switch (src0->type) {
  11654. case GGML_TYPE_F16:
  11655. {
  11656. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11657. } break;
  11658. case GGML_TYPE_F32:
  11659. {
  11660. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11661. } break;
  11662. default:
  11663. {
  11664. GGML_ASSERT(false);
  11665. } break;
  11666. }
  11667. }
  11668. // src0: kernel [OC, IC, KH, KW]
  11669. // src1: image [N, IC, IH, IW]
  11670. // dst: result [N, OH, OW, IC*KH*KW]
  11671. static void ggml_compute_forward_im2col_f32(
  11672. const struct ggml_compute_params * params,
  11673. struct ggml_tensor * dst) {
  11674. const struct ggml_tensor * src0 = dst->src[0];
  11675. const struct ggml_tensor * src1 = dst->src[1];
  11676. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11677. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11678. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11679. int64_t t0 = ggml_perf_time_us();
  11680. UNUSED(t0);
  11681. GGML_TENSOR_BINARY_OP_LOCALS;
  11682. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11683. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11684. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11685. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11686. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11687. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11688. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11689. const int ith = params->ith;
  11690. const int nth = params->nth;
  11691. const int64_t N = is_2D ? ne13 : ne12;
  11692. const int64_t IC = is_2D ? ne12 : ne11;
  11693. const int64_t IH = is_2D ? ne11 : 1;
  11694. const int64_t IW = ne10;
  11695. const int64_t KH = is_2D ? ne01 : 1;
  11696. const int64_t KW = ne00;
  11697. const int64_t OH = is_2D ? ne2 : 1;
  11698. const int64_t OW = ne1;
  11699. int ofs0 = is_2D ? nb13 : nb12;
  11700. int ofs1 = is_2D ? nb12 : nb11;
  11701. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11702. GGML_ASSERT(nb10 == sizeof(float));
  11703. if (params->type == GGML_TASK_TYPE_INIT) {
  11704. return;
  11705. }
  11706. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11707. return;
  11708. }
  11709. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11710. {
  11711. float * const wdata = (float *) dst->data;
  11712. for (int64_t in = 0; in < N; in++) {
  11713. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11714. for (int64_t iow = 0; iow < OW; iow++) {
  11715. for (int64_t iic = ith; iic < IC; iic += nth) {
  11716. // micro kernel
  11717. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11718. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11719. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11720. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11721. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11722. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11723. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11724. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11725. } else {
  11726. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11727. }
  11728. }
  11729. }
  11730. }
  11731. }
  11732. }
  11733. }
  11734. }
  11735. }
  11736. // src0: kernel [OC, IC, KH, KW]
  11737. // src1: image [N, IC, IH, IW]
  11738. // dst: result [N, OH, OW, IC*KH*KW]
  11739. static void ggml_compute_forward_im2col_f16(
  11740. const struct ggml_compute_params * params,
  11741. struct ggml_tensor * dst) {
  11742. const struct ggml_tensor * src0 = dst->src[0];
  11743. const struct ggml_tensor * src1 = dst->src[1];
  11744. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11745. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11746. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11747. int64_t t0 = ggml_perf_time_us();
  11748. UNUSED(t0);
  11749. GGML_TENSOR_BINARY_OP_LOCALS;
  11750. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11751. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11752. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11753. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11754. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11755. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11756. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11757. const int ith = params->ith;
  11758. const int nth = params->nth;
  11759. const int64_t N = is_2D ? ne13 : ne12;
  11760. const int64_t IC = is_2D ? ne12 : ne11;
  11761. const int64_t IH = is_2D ? ne11 : 1;
  11762. const int64_t IW = ne10;
  11763. const int64_t KH = is_2D ? ne01 : 1;
  11764. const int64_t KW = ne00;
  11765. const int64_t OH = is_2D ? ne2 : 1;
  11766. const int64_t OW = ne1;
  11767. int ofs0 = is_2D ? nb13 : nb12;
  11768. int ofs1 = is_2D ? nb12 : nb11;
  11769. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11770. GGML_ASSERT(nb10 == sizeof(float));
  11771. if (params->type == GGML_TASK_TYPE_INIT) {
  11772. return;
  11773. }
  11774. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11775. return;
  11776. }
  11777. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11778. {
  11779. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11780. for (int64_t in = 0; in < N; in++) {
  11781. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11782. for (int64_t iow = 0; iow < OW; iow++) {
  11783. for (int64_t iic = ith; iic < IC; iic += nth) {
  11784. // micro kernel
  11785. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11786. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11787. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11788. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11789. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11790. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11791. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11792. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11793. } else {
  11794. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11795. }
  11796. }
  11797. }
  11798. }
  11799. }
  11800. }
  11801. }
  11802. }
  11803. }
  11804. static void ggml_compute_forward_im2col(
  11805. const struct ggml_compute_params * params,
  11806. struct ggml_tensor * dst) {
  11807. switch (dst->type) {
  11808. case GGML_TYPE_F16:
  11809. {
  11810. ggml_compute_forward_im2col_f16(params, dst);
  11811. } break;
  11812. case GGML_TYPE_F32:
  11813. {
  11814. ggml_compute_forward_im2col_f32(params, dst);
  11815. } break;
  11816. default:
  11817. {
  11818. GGML_ASSERT(false);
  11819. } break;
  11820. }
  11821. }
  11822. // ggml_compute_forward_conv_transpose_2d
  11823. static void ggml_compute_forward_conv_transpose_2d(
  11824. const struct ggml_compute_params * params,
  11825. struct ggml_tensor * dst) {
  11826. const struct ggml_tensor * src0 = dst->src[0];
  11827. const struct ggml_tensor * src1 = dst->src[1];
  11828. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11829. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11830. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11831. int64_t t0 = ggml_perf_time_us();
  11832. UNUSED(t0);
  11833. GGML_TENSOR_BINARY_OP_LOCALS
  11834. const int ith = params->ith;
  11835. const int nth = params->nth;
  11836. const int nk = ne00*ne01*ne02*ne03;
  11837. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11838. GGML_ASSERT(nb10 == sizeof(float));
  11839. if (params->type == GGML_TASK_TYPE_INIT) {
  11840. if (ith != 0) {
  11841. return;
  11842. }
  11843. memset(params->wdata, 0, params->wsize);
  11844. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11845. {
  11846. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11847. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11848. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11849. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11850. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11851. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11852. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11853. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11854. }
  11855. }
  11856. }
  11857. }
  11858. }
  11859. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11860. {
  11861. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11862. for (int i12 = 0; i12 < ne12; i12++) {
  11863. for (int i11 = 0; i11 < ne11; i11++) {
  11864. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11865. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11866. for (int i10 = 0; i10 < ne10; i10++) {
  11867. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11868. }
  11869. }
  11870. }
  11871. }
  11872. memset(dst->data, 0, ggml_nbytes(dst));
  11873. return;
  11874. }
  11875. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11876. return;
  11877. }
  11878. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11879. // total patches in dst
  11880. const int np = ne2;
  11881. // patches per thread
  11882. const int dp = (np + nth - 1)/nth;
  11883. // patch range for this thread
  11884. const int ip0 = dp*ith;
  11885. const int ip1 = MIN(ip0 + dp, np);
  11886. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11887. ggml_fp16_t * const wdata_src = wdata + nk;
  11888. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11889. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11890. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11891. for (int i11 = 0; i11 < ne11; i11++) {
  11892. for (int i10 = 0; i10 < ne10; i10++) {
  11893. const int i1n = i11*ne10*ne12 + i10*ne12;
  11894. for (int i01 = 0; i01 < ne01; i01++) {
  11895. for (int i00 = 0; i00 < ne00; i00++) {
  11896. float v = 0;
  11897. ggml_vec_dot_f16(ne03, &v, 0,
  11898. wdata_src + i1n, 0,
  11899. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11900. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11901. }
  11902. }
  11903. }
  11904. }
  11905. }
  11906. }
  11907. // ggml_compute_forward_pool_1d_sk_p0
  11908. static void ggml_compute_forward_pool_1d_sk_p0(
  11909. const struct ggml_compute_params * params,
  11910. const enum ggml_op_pool op,
  11911. const int k,
  11912. struct ggml_tensor * dst) {
  11913. const struct ggml_tensor * src = dst->src[0];
  11914. assert(src->type == GGML_TYPE_F32);
  11915. assert(params->ith == 0);
  11916. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11917. return;
  11918. }
  11919. const char * cdata = (const char *)src->data;
  11920. const char * const data_end = cdata + ggml_nbytes(src);
  11921. float * drow = (float *)dst->data;
  11922. const int64_t rs = dst->ne[0];
  11923. while (cdata < data_end) {
  11924. const float * const srow = (const float *)cdata;
  11925. int j = 0;
  11926. for (int64_t i = 0; i < rs; ++i) {
  11927. switch (op) {
  11928. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11929. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11930. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11931. }
  11932. for (int ki = 0; ki < k; ++ki) {
  11933. switch (op) {
  11934. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11935. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11936. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11937. }
  11938. ++j;
  11939. }
  11940. switch (op) {
  11941. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11942. case GGML_OP_POOL_MAX: break;
  11943. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11944. }
  11945. }
  11946. cdata += src->nb[1];
  11947. drow += rs;
  11948. }
  11949. }
  11950. // ggml_compute_forward_pool_1d
  11951. static void ggml_compute_forward_pool_1d(
  11952. const struct ggml_compute_params * params,
  11953. struct ggml_tensor * dst) {
  11954. const int32_t * opts = (const int32_t *)dst->op_params;
  11955. enum ggml_op_pool op = opts[0];
  11956. const int k0 = opts[1];
  11957. const int s0 = opts[2];
  11958. const int p0 = opts[3];
  11959. GGML_ASSERT(p0 == 0); // padding not supported
  11960. GGML_ASSERT(k0 == s0); // only s = k supported
  11961. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11962. }
  11963. // ggml_compute_forward_pool_2d
  11964. static void ggml_compute_forward_pool_2d(
  11965. const struct ggml_compute_params * params,
  11966. struct ggml_tensor * dst) {
  11967. const struct ggml_tensor * src = dst->src[0];
  11968. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11969. GGML_ASSERT(params->ith == 0);
  11970. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11971. return;
  11972. }
  11973. const int32_t * opts = (const int32_t *)dst->op_params;
  11974. enum ggml_op_pool op = opts[0];
  11975. const int k0 = opts[1];
  11976. const int k1 = opts[2];
  11977. const int s0 = opts[3];
  11978. const int s1 = opts[4];
  11979. const int p0 = opts[5];
  11980. const int p1 = opts[6];
  11981. const char * cdata = (const char*)src->data;
  11982. const char * const data_end = cdata + ggml_nbytes(src);
  11983. const int64_t px = dst->ne[0];
  11984. const int64_t py = dst->ne[1];
  11985. const int64_t pa = px * py;
  11986. float * dplane = (float *)dst->data;
  11987. const int ka = k0 * k1;
  11988. const int offset0 = -p0;
  11989. const int offset1 = -p1;
  11990. while (cdata < data_end) {
  11991. for (int oy = 0; oy < py; ++oy) {
  11992. float * const drow = dplane + oy * px;
  11993. for (int ox = 0; ox < px; ++ox) {
  11994. float * const out = drow + ox;
  11995. switch (op) {
  11996. case GGML_OP_POOL_AVG: *out = 0; break;
  11997. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11998. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11999. }
  12000. const int ix = offset0 + ox * s0;
  12001. const int iy = offset1 + oy * s1;
  12002. for (int ky = 0; ky < k1; ++ky) {
  12003. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12004. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12005. for (int kx = 0; kx < k0; ++kx) {
  12006. int j = ix + kx;
  12007. if (j < 0 || j >= src->ne[0]) continue;
  12008. switch (op) {
  12009. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12010. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12011. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12012. }
  12013. }
  12014. }
  12015. switch (op) {
  12016. case GGML_OP_POOL_AVG: *out /= ka; break;
  12017. case GGML_OP_POOL_MAX: break;
  12018. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12019. }
  12020. }
  12021. }
  12022. cdata += src->nb[2];
  12023. dplane += pa;
  12024. }
  12025. }
  12026. // ggml_compute_forward_upscale
  12027. static void ggml_compute_forward_upscale_f32(
  12028. const struct ggml_compute_params * params,
  12029. struct ggml_tensor * dst) {
  12030. const struct ggml_tensor * src0 = dst->src[0];
  12031. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12032. return;
  12033. }
  12034. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12035. const int ith = params->ith;
  12036. const int nth = params->nth;
  12037. GGML_TENSOR_UNARY_OP_LOCALS
  12038. const int scale_factor = dst->op_params[0];
  12039. // TODO: optimize
  12040. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12041. const int64_t i03 = i3;
  12042. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12043. const int64_t i02 = i2;
  12044. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12045. const int64_t i01 = i1 / scale_factor;
  12046. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12047. const int64_t i00 = i0 / scale_factor;
  12048. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12049. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12050. *y = *x;
  12051. }
  12052. }
  12053. }
  12054. }
  12055. }
  12056. static void ggml_compute_forward_upscale(
  12057. const struct ggml_compute_params * params,
  12058. struct ggml_tensor * dst) {
  12059. const struct ggml_tensor * src0 = dst->src[0];
  12060. switch (src0->type) {
  12061. case GGML_TYPE_F32:
  12062. {
  12063. ggml_compute_forward_upscale_f32(params, dst);
  12064. } break;
  12065. default:
  12066. {
  12067. GGML_ASSERT(false);
  12068. } break;
  12069. }
  12070. }
  12071. // ggml_compute_forward_pad
  12072. static void ggml_compute_forward_pad_f32(
  12073. const struct ggml_compute_params * params,
  12074. struct ggml_tensor * dst) {
  12075. const struct ggml_tensor * src0 = dst->src[0];
  12076. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12077. return;
  12078. }
  12079. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12080. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12081. const int ith = params->ith;
  12082. const int nth = params->nth;
  12083. GGML_TENSOR_UNARY_OP_LOCALS
  12084. float * dst_ptr = (float *) dst->data;
  12085. // TODO: optimize
  12086. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12087. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12088. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12089. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12090. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12091. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12092. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12093. dst_ptr[dst_idx] = *src_ptr;
  12094. } else {
  12095. dst_ptr[dst_idx] = 0;
  12096. }
  12097. }
  12098. }
  12099. }
  12100. }
  12101. }
  12102. static void ggml_compute_forward_pad(
  12103. const struct ggml_compute_params * params,
  12104. struct ggml_tensor * dst) {
  12105. const struct ggml_tensor * src0 = dst->src[0];
  12106. switch (src0->type) {
  12107. case GGML_TYPE_F32:
  12108. {
  12109. ggml_compute_forward_pad_f32(params, dst);
  12110. } break;
  12111. default:
  12112. {
  12113. GGML_ASSERT(false);
  12114. } break;
  12115. }
  12116. }
  12117. // ggml_compute_forward_arange
  12118. static void ggml_compute_forward_arange_f32(
  12119. const struct ggml_compute_params * params,
  12120. struct ggml_tensor * dst) {
  12121. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12122. return;
  12123. }
  12124. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12125. const int ith = params->ith;
  12126. const int nth = params->nth;
  12127. const float start = ggml_get_op_params_f32(dst, 0);
  12128. const float stop = ggml_get_op_params_f32(dst, 1);
  12129. const float step = ggml_get_op_params_f32(dst, 2);
  12130. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12131. GGML_ASSERT(ggml_nelements(dst) == steps);
  12132. for (int64_t i = ith; i < steps; i+= nth) {
  12133. float value = start + step * i;
  12134. ((float *)dst->data)[i] = value;
  12135. }
  12136. }
  12137. static void ggml_compute_forward_arange(
  12138. const struct ggml_compute_params * params,
  12139. struct ggml_tensor * dst) {
  12140. switch (dst->type) {
  12141. case GGML_TYPE_F32:
  12142. {
  12143. ggml_compute_forward_arange_f32(params, dst);
  12144. } break;
  12145. default:
  12146. {
  12147. GGML_ASSERT(false);
  12148. } break;
  12149. }
  12150. }
  12151. static void ggml_compute_forward_timestep_embedding_f32(
  12152. const struct ggml_compute_params * params,
  12153. struct ggml_tensor * dst) {
  12154. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12155. return;
  12156. }
  12157. const struct ggml_tensor * src0 = dst->src[0];
  12158. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12159. const int ith = params->ith;
  12160. const int nth = params->nth;
  12161. GGML_TENSOR_UNARY_OP_LOCALS
  12162. const int dim = ggml_get_op_params_i32(dst, 0);
  12163. const int max_period = ggml_get_op_params_i32(dst, 1);
  12164. int half = dim / 2;
  12165. for (int64_t i = 0; i < ne00; i++) {
  12166. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12167. for (int64_t j = ith; j < half; j += nth) {
  12168. float timestep = ((float *)src0->data)[i];
  12169. float freq = (float)expf(-logf(max_period) * j / half);
  12170. float arg = timestep * freq;
  12171. embed_data[j] = cosf(arg);
  12172. embed_data[j + half] = sinf(arg);
  12173. }
  12174. if (dim % 2 != 0 && ith == 0) {
  12175. embed_data[dim] = 0.f;
  12176. }
  12177. }
  12178. }
  12179. static void ggml_compute_forward_timestep_embedding(
  12180. const struct ggml_compute_params * params,
  12181. struct ggml_tensor * dst) {
  12182. const struct ggml_tensor * src0 = dst->src[0];
  12183. switch (src0->type) {
  12184. case GGML_TYPE_F32:
  12185. {
  12186. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12187. } break;
  12188. default:
  12189. {
  12190. GGML_ASSERT(false);
  12191. } break;
  12192. }
  12193. }
  12194. // ggml_compute_forward_argsort
  12195. static void ggml_compute_forward_argsort_f32(
  12196. const struct ggml_compute_params * params,
  12197. struct ggml_tensor * dst) {
  12198. const struct ggml_tensor * src0 = dst->src[0];
  12199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12200. return;
  12201. }
  12202. GGML_TENSOR_UNARY_OP_LOCALS
  12203. GGML_ASSERT(nb0 == sizeof(float));
  12204. const int ith = params->ith;
  12205. const int nth = params->nth;
  12206. const int64_t nr = ggml_nrows(src0);
  12207. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12208. for (int64_t i = ith; i < nr; i += nth) {
  12209. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12210. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12211. for (int64_t j = 0; j < ne0; j++) {
  12212. dst_data[j] = j;
  12213. }
  12214. // C doesn't have a functional sort, so we do a bubble sort instead
  12215. for (int64_t j = 0; j < ne0; j++) {
  12216. for (int64_t k = j + 1; k < ne0; k++) {
  12217. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12218. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12219. int32_t tmp = dst_data[j];
  12220. dst_data[j] = dst_data[k];
  12221. dst_data[k] = tmp;
  12222. }
  12223. }
  12224. }
  12225. }
  12226. }
  12227. static void ggml_compute_forward_argsort(
  12228. const struct ggml_compute_params * params,
  12229. struct ggml_tensor * dst) {
  12230. const struct ggml_tensor * src0 = dst->src[0];
  12231. switch (src0->type) {
  12232. case GGML_TYPE_F32:
  12233. {
  12234. ggml_compute_forward_argsort_f32(params, dst);
  12235. } break;
  12236. default:
  12237. {
  12238. GGML_ASSERT(false);
  12239. } break;
  12240. }
  12241. }
  12242. // ggml_compute_forward_flash_attn
  12243. static void ggml_compute_forward_flash_attn_f32(
  12244. const struct ggml_compute_params * params,
  12245. const bool masked,
  12246. struct ggml_tensor * dst) {
  12247. const struct ggml_tensor * q = dst->src[0];
  12248. const struct ggml_tensor * k = dst->src[1];
  12249. const struct ggml_tensor * v = dst->src[2];
  12250. int64_t t0 = ggml_perf_time_us();
  12251. UNUSED(t0);
  12252. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12253. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12254. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12255. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12256. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12257. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12258. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12259. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12260. const int ith = params->ith;
  12261. const int nth = params->nth;
  12262. const int64_t D = neq0;
  12263. const int64_t N = neq1;
  12264. const int64_t P = nek1 - N;
  12265. const int64_t M = P + N;
  12266. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12267. GGML_ASSERT(ne0 == D);
  12268. GGML_ASSERT(ne1 == N);
  12269. GGML_ASSERT(P >= 0);
  12270. GGML_ASSERT(nbq0 == sizeof(float));
  12271. GGML_ASSERT(nbk0 == sizeof(float));
  12272. GGML_ASSERT(nbv0 == sizeof(float));
  12273. GGML_ASSERT(neq0 == D);
  12274. GGML_ASSERT(nek0 == D);
  12275. GGML_ASSERT(nev1 == D);
  12276. GGML_ASSERT(neq1 == N);
  12277. GGML_ASSERT(nek1 == N + P);
  12278. GGML_ASSERT(nev1 == D);
  12279. // dst cannot be transposed or permuted
  12280. GGML_ASSERT(nb0 == sizeof(float));
  12281. GGML_ASSERT(nb0 <= nb1);
  12282. GGML_ASSERT(nb1 <= nb2);
  12283. GGML_ASSERT(nb2 <= nb3);
  12284. if (params->type == GGML_TASK_TYPE_INIT) {
  12285. return;
  12286. }
  12287. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12288. return;
  12289. }
  12290. // parallelize by q rows using ggml_vec_dot_f32
  12291. // total rows in q
  12292. const int nr = neq1*neq2*neq3;
  12293. // rows per thread
  12294. const int dr = (nr + nth - 1)/nth;
  12295. // row range for this thread
  12296. const int ir0 = dr*ith;
  12297. const int ir1 = MIN(ir0 + dr, nr);
  12298. const float scale = 1.0f/sqrtf(D);
  12299. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12300. for (int ir = ir0; ir < ir1; ++ir) {
  12301. // q indices
  12302. const int iq3 = ir/(neq2*neq1);
  12303. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12304. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12305. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12306. for (int i = M; i < Mup; ++i) {
  12307. S[i] = -INFINITY;
  12308. }
  12309. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12310. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12311. // k indices
  12312. const int ik3 = iq3;
  12313. const int ik2 = iq2 % nek2;
  12314. const int ik1 = ic;
  12315. // S indices
  12316. const int i1 = ik1;
  12317. ggml_vec_dot_f32(neq0,
  12318. S + i1, 0,
  12319. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12320. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12321. }
  12322. // scale
  12323. ggml_vec_scale_f32(masked_begin, S, scale);
  12324. for (int64_t i = masked_begin; i < M; i++) {
  12325. S[i] = -INFINITY;
  12326. }
  12327. // softmax
  12328. // exclude known -INF S[..] values from max and loop
  12329. // dont forget to set their SW values to zero
  12330. {
  12331. float max = -INFINITY;
  12332. ggml_vec_max_f32(masked_begin, &max, S);
  12333. ggml_float sum = 0.0;
  12334. {
  12335. #ifdef GGML_SOFT_MAX_ACCELERATE
  12336. max = -max;
  12337. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12338. vvexpf(S, S, &Mup);
  12339. ggml_vec_sum_f32(Mup, &sum, S);
  12340. #else
  12341. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12342. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12343. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12344. if (i >= masked_begin) {
  12345. break;
  12346. }
  12347. float * SS = S + i;
  12348. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12349. if (i + j >= masked_begin) {
  12350. break;
  12351. } else if (SS[j] == -INFINITY) {
  12352. SS[j] = 0.0f;
  12353. } else {
  12354. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12355. const float val = expf(SS[j] - max);
  12356. #else
  12357. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12358. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12359. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12360. #endif
  12361. sump[j] += (ggml_float)val;
  12362. SS[j] = val;
  12363. }
  12364. }
  12365. }
  12366. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12367. sum += sump[i];
  12368. }
  12369. #endif
  12370. }
  12371. assert(sum > 0.0);
  12372. sum = 1.0/sum;
  12373. ggml_vec_scale_f32(masked_begin, S, sum);
  12374. #ifndef NDEBUG
  12375. for (int i = 0; i < masked_begin; ++i) {
  12376. assert(!isnan(S[i]));
  12377. assert(!isinf(S[i]));
  12378. }
  12379. #endif
  12380. }
  12381. for (int64_t ic = 0; ic < nev1; ++ic) {
  12382. // dst indices
  12383. const int i1 = iq1;
  12384. const int i2 = iq2;
  12385. const int i3 = iq3;
  12386. // v indices
  12387. const int iv2 = iq2 % nev2;
  12388. const int iv3 = iq3;
  12389. ggml_vec_dot_f32(masked_begin,
  12390. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12391. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12392. S, 0, 1);
  12393. }
  12394. }
  12395. }
  12396. static void ggml_compute_forward_flash_attn_f16(
  12397. const struct ggml_compute_params * params,
  12398. const bool masked,
  12399. struct ggml_tensor * dst) {
  12400. const struct ggml_tensor * q = dst->src[0];
  12401. const struct ggml_tensor * k = dst->src[1];
  12402. const struct ggml_tensor * v = dst->src[2];
  12403. int64_t t0 = ggml_perf_time_us();
  12404. UNUSED(t0);
  12405. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12406. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12407. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12408. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12409. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12410. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12411. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12412. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12413. const int ith = params->ith;
  12414. const int nth = params->nth;
  12415. const int64_t D = neq0;
  12416. const int64_t N = neq1;
  12417. const int64_t P = nek1 - N;
  12418. const int64_t M = P + N;
  12419. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12420. GGML_ASSERT(ne0 == D);
  12421. GGML_ASSERT(ne1 == N);
  12422. GGML_ASSERT(P >= 0);
  12423. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12424. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12425. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12426. GGML_ASSERT(neq0 == D);
  12427. GGML_ASSERT(nek0 == D);
  12428. GGML_ASSERT(nev1 == D);
  12429. GGML_ASSERT(neq1 == N);
  12430. GGML_ASSERT(nek1 == N + P);
  12431. GGML_ASSERT(nev1 == D);
  12432. // dst cannot be transposed or permuted
  12433. GGML_ASSERT(nb0 == sizeof(float));
  12434. GGML_ASSERT(nb0 <= nb1);
  12435. GGML_ASSERT(nb1 <= nb2);
  12436. GGML_ASSERT(nb2 <= nb3);
  12437. if (params->type == GGML_TASK_TYPE_INIT) {
  12438. return;
  12439. }
  12440. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12441. return;
  12442. }
  12443. // parallelize by q rows using ggml_vec_dot_f32
  12444. // total rows in q
  12445. const int nr = neq1*neq2*neq3;
  12446. // rows per thread
  12447. const int dr = (nr + nth - 1)/nth;
  12448. // row range for this thread
  12449. const int ir0 = dr*ith;
  12450. const int ir1 = MIN(ir0 + dr, nr);
  12451. const float scale = 1.0f/sqrtf(D);
  12452. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12453. for (int ir = ir0; ir < ir1; ++ir) {
  12454. // q indices
  12455. const int iq3 = ir/(neq2*neq1);
  12456. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12457. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12458. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12459. for (int i = M; i < Mup; ++i) {
  12460. S[i] = -INFINITY;
  12461. }
  12462. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12463. for (int64_t ic = 0; ic < nek1; ++ic) {
  12464. // k indices
  12465. const int ik3 = iq3;
  12466. const int ik2 = iq2 % nek2;
  12467. const int ik1 = ic;
  12468. // S indices
  12469. const int i1 = ik1;
  12470. ggml_vec_dot_f16(neq0,
  12471. S + i1, 0,
  12472. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12473. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12474. }
  12475. } else {
  12476. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12477. // k indices
  12478. const int ik3 = iq3;
  12479. const int ik2 = iq2 % nek2;
  12480. const int ik1 = ic;
  12481. // S indices
  12482. const int i1 = ik1;
  12483. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12484. S + i1,
  12485. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12486. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12487. }
  12488. }
  12489. // scale
  12490. ggml_vec_scale_f32(nek1, S, scale);
  12491. if (masked) {
  12492. for (int64_t i = P; i < M; i++) {
  12493. if (i > P + iq1) {
  12494. S[i] = -INFINITY;
  12495. }
  12496. }
  12497. }
  12498. // softmax
  12499. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12500. // dont forget to set their S values to zero
  12501. {
  12502. float max = -INFINITY;
  12503. ggml_vec_max_f32(M, &max, S);
  12504. ggml_float sum = 0.0;
  12505. {
  12506. #ifdef GGML_SOFT_MAX_ACCELERATE
  12507. max = -max;
  12508. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12509. vvexpf(S, S, &Mup);
  12510. ggml_vec_sum_f32(Mup, &sum, S);
  12511. #else
  12512. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12513. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12514. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12515. float * SS = S + i;
  12516. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12517. if (SS[j] == -INFINITY) {
  12518. SS[j] = 0.0f;
  12519. } else {
  12520. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12521. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12522. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12523. sump[j] += (ggml_float)val;
  12524. SS[j] = val;
  12525. }
  12526. }
  12527. }
  12528. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12529. sum += sump[i];
  12530. }
  12531. #endif
  12532. }
  12533. assert(sum > 0.0);
  12534. sum = 1.0/sum;
  12535. ggml_vec_scale_f32(M, S, sum);
  12536. #ifndef NDEBUG
  12537. for (int i = 0; i < M; ++i) {
  12538. assert(!isnan(S[i]));
  12539. assert(!isinf(S[i]));
  12540. }
  12541. #endif
  12542. }
  12543. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12544. for (int64_t i = 0; i < M; i++) {
  12545. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12546. }
  12547. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12548. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12549. for (int64_t ic = 0; ic < nev1; ++ic) {
  12550. // dst indices
  12551. const int i1 = iq1;
  12552. const int i2 = iq2;
  12553. const int i3 = iq3;
  12554. // v indices
  12555. const int iv2 = iq2 % nev2;
  12556. const int iv3 = iq3;
  12557. ggml_vec_dot_f16(nev0,
  12558. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12559. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12560. S16, 0, 1);
  12561. }
  12562. } else {
  12563. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12564. // dst indices
  12565. const int i1 = iq1;
  12566. const int i2 = iq2;
  12567. const int i3 = iq3;
  12568. // v indices
  12569. const int iv2 = iq2 % nev2;
  12570. const int iv3 = iq3;
  12571. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12572. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12573. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12574. S16);
  12575. }
  12576. }
  12577. }
  12578. }
  12579. static void ggml_compute_forward_flash_attn(
  12580. const struct ggml_compute_params * params,
  12581. const bool masked,
  12582. struct ggml_tensor * dst) {
  12583. const struct ggml_tensor * q = dst->src[0];
  12584. switch (q->type) {
  12585. case GGML_TYPE_F16:
  12586. {
  12587. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12588. } break;
  12589. case GGML_TYPE_F32:
  12590. {
  12591. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12592. } break;
  12593. default:
  12594. {
  12595. GGML_ASSERT(false);
  12596. } break;
  12597. }
  12598. }
  12599. // ggml_compute_forward_flash_attn_ext
  12600. static void ggml_compute_forward_flash_attn_ext_f16(
  12601. const struct ggml_compute_params * params,
  12602. const struct ggml_tensor * q,
  12603. const struct ggml_tensor * k,
  12604. const struct ggml_tensor * v,
  12605. const struct ggml_tensor * mask,
  12606. struct ggml_tensor * dst) {
  12607. int64_t t0 = ggml_perf_time_us();
  12608. UNUSED(t0);
  12609. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12610. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12611. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12612. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12613. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12614. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12615. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12616. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12617. const int ith = params->ith;
  12618. const int nth = params->nth;
  12619. const int64_t D = neq0;
  12620. const int64_t N = neq1;
  12621. GGML_ASSERT(ne0 == D);
  12622. GGML_ASSERT(ne2 == N);
  12623. GGML_ASSERT(nbq0 == sizeof(float));
  12624. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12625. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12626. GGML_ASSERT(neq0 == D);
  12627. GGML_ASSERT(nek0 == D);
  12628. GGML_ASSERT(nev0 == D);
  12629. GGML_ASSERT(neq1 == N);
  12630. GGML_ASSERT(nev0 == D);
  12631. // dst cannot be transposed or permuted
  12632. GGML_ASSERT(nb0 == sizeof(float));
  12633. GGML_ASSERT(nb0 <= nb1);
  12634. GGML_ASSERT(nb1 <= nb2);
  12635. GGML_ASSERT(nb2 <= nb3);
  12636. // broadcast factors
  12637. const int64_t rk2 = neq2/nek2;
  12638. const int64_t rk3 = neq3/nek3;
  12639. const int64_t rv2 = neq2/nev2;
  12640. const int64_t rv3 = neq3/nev3;
  12641. if (params->type == GGML_TASK_TYPE_INIT) {
  12642. return;
  12643. }
  12644. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12645. return;
  12646. }
  12647. // parallelize by q rows using ggml_vec_dot_f32
  12648. // total rows in q
  12649. const int nr = neq1*neq2*neq3;
  12650. // rows per thread
  12651. const int dr = (nr + nth - 1)/nth;
  12652. // row range for this thread
  12653. const int ir0 = dr*ith;
  12654. const int ir1 = MIN(ir0 + dr, nr);
  12655. float scale = 1.0f;
  12656. float max_bias = 0.0f;
  12657. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12658. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12659. const uint32_t n_head = neq2;
  12660. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12661. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12662. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12663. // loop over n_batch and n_head
  12664. for (int ir = ir0; ir < ir1; ++ir) {
  12665. // q indices
  12666. const int iq3 = ir/(neq2*neq1);
  12667. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12668. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12669. const uint32_t h = iq2; // head
  12670. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12671. float S = 0.0f;
  12672. float M = -INFINITY;
  12673. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12674. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12675. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12676. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12677. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12678. // k indices
  12679. const int ik3 = iq3 / rk3;
  12680. const int ik2 = iq2 / rk2;
  12681. // v indices
  12682. const int iv3 = iq3 / rv3;
  12683. const int iv2 = iq2 / rv2;
  12684. // online softmax / attention
  12685. // loop over n_kv and n_head_kv
  12686. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12687. for (int64_t ic = 0; ic < nek1; ++ic) {
  12688. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12689. if (mv == -INFINITY) {
  12690. continue;
  12691. }
  12692. float s;
  12693. // convert Q to F16 in V32
  12694. {
  12695. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12696. for (int64_t d = 0; d < D; ++d) {
  12697. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  12698. }
  12699. }
  12700. ggml_vec_dot_f16(D,
  12701. &s, 0,
  12702. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12703. Q16, 0, 1);
  12704. s = s*scale + mv;
  12705. const float Mold = M;
  12706. float ms = 1.0f;
  12707. float vs = 1.0f;
  12708. if (s > M) {
  12709. M = s;
  12710. ms = expf(Mold - M);
  12711. // V = V*expf(Mold - M)
  12712. ggml_vec_scale_f16(D, V16, ms);
  12713. } else {
  12714. vs = expf(s - M);
  12715. }
  12716. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12717. // V += v*expf(s - M)
  12718. ggml_vec_mad_f16(D, V16, v16, vs);
  12719. S = S*ms + vs;
  12720. }
  12721. // V /= S
  12722. for (int64_t d = 0; d < D; ++d) {
  12723. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12724. }
  12725. // dst indices
  12726. const int i1 = iq1;
  12727. const int i2 = iq2;
  12728. const int i3 = iq3;
  12729. // original
  12730. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12731. // permute(0, 2, 1, 3)
  12732. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12733. }
  12734. }
  12735. static void ggml_compute_forward_flash_attn_ext(
  12736. const struct ggml_compute_params * params,
  12737. const struct ggml_tensor * q,
  12738. const struct ggml_tensor * k,
  12739. const struct ggml_tensor * v,
  12740. const struct ggml_tensor * mask,
  12741. struct ggml_tensor * dst) {
  12742. switch (dst->op_params[2]) {
  12743. case GGML_PREC_DEFAULT:
  12744. case GGML_PREC_F32:
  12745. {
  12746. // uses F32 accumulators
  12747. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12748. } break;
  12749. default:
  12750. {
  12751. GGML_ASSERT(false);
  12752. } break;
  12753. }
  12754. }
  12755. // ggml_compute_forward_flash_ff
  12756. static void ggml_compute_forward_flash_ff_f16(
  12757. const struct ggml_compute_params * params,
  12758. struct ggml_tensor * dst) {
  12759. const struct ggml_tensor * a = dst->src[0]; // F16
  12760. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12761. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12762. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12763. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12764. int64_t t0 = ggml_perf_time_us();
  12765. UNUSED(t0);
  12766. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12767. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12768. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12769. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12770. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12771. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12772. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12773. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12774. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12775. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12776. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12777. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12778. const int ith = params->ith;
  12779. const int nth = params->nth;
  12780. const int64_t D = nea0;
  12781. //const int64_t N = nea1;
  12782. const int64_t M = neb01;
  12783. GGML_ASSERT(ne0 == nea0);
  12784. GGML_ASSERT(ne1 == nea1);
  12785. GGML_ASSERT(ne2 == nea2);
  12786. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12787. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12788. GGML_ASSERT(nbb10 == sizeof(float));
  12789. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12790. GGML_ASSERT(nbc10 == sizeof(float));
  12791. GGML_ASSERT(neb00 == D);
  12792. GGML_ASSERT(neb01 == M);
  12793. GGML_ASSERT(neb10 == M);
  12794. GGML_ASSERT(neb11 == 1);
  12795. GGML_ASSERT(nec00 == M);
  12796. GGML_ASSERT(nec01 == D);
  12797. GGML_ASSERT(nec10 == D);
  12798. GGML_ASSERT(nec11 == 1);
  12799. // dst cannot be transposed or permuted
  12800. GGML_ASSERT(nb0 == sizeof(float));
  12801. GGML_ASSERT(nb0 <= nb1);
  12802. GGML_ASSERT(nb1 <= nb2);
  12803. GGML_ASSERT(nb2 <= nb3);
  12804. if (params->type == GGML_TASK_TYPE_INIT) {
  12805. return;
  12806. }
  12807. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12808. return;
  12809. }
  12810. // parallelize by a rows using ggml_vec_dot_f32
  12811. // total rows in a
  12812. const int nr = nea1*nea2*nea3;
  12813. // rows per thread
  12814. const int dr = (nr + nth - 1)/nth;
  12815. // row range for this thread
  12816. const int ir0 = dr*ith;
  12817. const int ir1 = MIN(ir0 + dr, nr);
  12818. for (int ir = ir0; ir < ir1; ++ir) {
  12819. // a indices
  12820. const int ia3 = ir/(nea2*nea1);
  12821. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12822. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12823. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12824. for (int64_t ic = 0; ic < neb01; ++ic) {
  12825. // b0 indices
  12826. const int ib03 = ia3;
  12827. const int ib02 = ia2;
  12828. const int ib01 = ic;
  12829. // S indices
  12830. const int i1 = ib01;
  12831. ggml_vec_dot_f16(nea0,
  12832. S + i1, 0,
  12833. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12834. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12835. }
  12836. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12837. //ggml_vec_gelu_f32(neb01, S, S);
  12838. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12839. for (int64_t i = 0; i < M; i++) {
  12840. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12841. }
  12842. ggml_vec_gelu_f16(neb01, S16, S16);
  12843. {
  12844. // dst indices
  12845. const int i1 = ia1;
  12846. const int i2 = ia2;
  12847. const int i3 = ia3;
  12848. for (int64_t ic = 0; ic < nec01; ++ic) {
  12849. ggml_vec_dot_f16(neb01,
  12850. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12851. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12852. S16, 0, 1);
  12853. }
  12854. ggml_vec_add_f32(nec01,
  12855. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12856. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12857. (float *) c1->data);
  12858. }
  12859. }
  12860. }
  12861. static void ggml_compute_forward_flash_ff(
  12862. const struct ggml_compute_params * params,
  12863. struct ggml_tensor * dst) {
  12864. const struct ggml_tensor * b0 = dst->src[1];
  12865. switch (b0->type) {
  12866. case GGML_TYPE_F16:
  12867. {
  12868. ggml_compute_forward_flash_ff_f16(params, dst);
  12869. } break;
  12870. case GGML_TYPE_F32:
  12871. {
  12872. GGML_ASSERT(false); // TODO
  12873. } break;
  12874. default:
  12875. {
  12876. GGML_ASSERT(false);
  12877. } break;
  12878. }
  12879. }
  12880. // ggml_compute_forward_flash_attn_back
  12881. static void ggml_compute_forward_flash_attn_back_f32(
  12882. const struct ggml_compute_params * params,
  12883. const bool masked,
  12884. struct ggml_tensor * dst) {
  12885. const struct ggml_tensor * q = dst->src[0];
  12886. const struct ggml_tensor * k = dst->src[1];
  12887. const struct ggml_tensor * v = dst->src[2];
  12888. const struct ggml_tensor * d = dst->src[3];
  12889. int64_t t0 = ggml_perf_time_us();
  12890. UNUSED(t0);
  12891. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12892. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12893. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12894. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12895. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12896. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12897. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12898. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12899. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12900. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12901. const int ith = params->ith;
  12902. const int nth = params->nth;
  12903. const int64_t D = neq0;
  12904. const int64_t N = neq1;
  12905. const int64_t P = nek1 - N;
  12906. const int64_t M = P + N;
  12907. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12908. const int mxDM = MAX(D, Mup);
  12909. // GGML_ASSERT(ne0 == D);
  12910. // GGML_ASSERT(ne1 == N);
  12911. GGML_ASSERT(P >= 0);
  12912. GGML_ASSERT(nbq0 == sizeof(float));
  12913. GGML_ASSERT(nbk0 == sizeof(float));
  12914. GGML_ASSERT(nbv0 == sizeof(float));
  12915. GGML_ASSERT(neq0 == D);
  12916. GGML_ASSERT(nek0 == D);
  12917. GGML_ASSERT(nev1 == D);
  12918. GGML_ASSERT(ned0 == D);
  12919. GGML_ASSERT(neq1 == N);
  12920. GGML_ASSERT(nek1 == N + P);
  12921. GGML_ASSERT(nev1 == D);
  12922. GGML_ASSERT(ned1 == N);
  12923. // dst cannot be transposed or permuted
  12924. GGML_ASSERT(nb0 == sizeof(float));
  12925. GGML_ASSERT(nb0 <= nb1);
  12926. GGML_ASSERT(nb1 <= nb2);
  12927. GGML_ASSERT(nb2 <= nb3);
  12928. if (params->type == GGML_TASK_TYPE_INIT) {
  12929. if (ith == 0) {
  12930. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12931. }
  12932. return;
  12933. }
  12934. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12935. return;
  12936. }
  12937. const int64_t elem_q = ggml_nelements(q);
  12938. const int64_t elem_k = ggml_nelements(k);
  12939. enum ggml_type result_type = dst->type;
  12940. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12941. const size_t tsize = ggml_type_size(result_type);
  12942. const size_t offs_q = 0;
  12943. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12944. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12945. void * grad_q = (char *) dst->data;
  12946. void * grad_k = (char *) dst->data + offs_k;
  12947. void * grad_v = (char *) dst->data + offs_v;
  12948. const size_t nbgq1 = nb0*neq0;
  12949. const size_t nbgq2 = nb0*neq0*neq1;
  12950. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12951. const size_t nbgk1 = nb0*nek0;
  12952. const size_t nbgk2 = nb0*nek0*nek1;
  12953. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12954. const size_t nbgv1 = nb0*nev0;
  12955. const size_t nbgv2 = nb0*nev0*nev1;
  12956. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12957. // parallelize by k rows using ggml_vec_dot_f32
  12958. // total rows in k
  12959. const int nr = nek2*nek3;
  12960. // rows per thread
  12961. const int dr = (nr + nth - 1)/nth;
  12962. // row range for this thread
  12963. const int ir0 = dr*ith;
  12964. const int ir1 = MIN(ir0 + dr, nr);
  12965. const float scale = 1.0f/sqrtf(D);
  12966. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12967. // how often k2 (and v2) is repeated in q2
  12968. int nrep = neq2/nek2;
  12969. for (int ir = ir0; ir < ir1; ++ir) {
  12970. // q indices
  12971. const int ik3 = ir/(nek2);
  12972. const int ik2 = ir - ik3*nek2;
  12973. const int iq3 = ik3;
  12974. const int id3 = ik3;
  12975. const int iv3 = ik3;
  12976. const int iv2 = ik2;
  12977. for (int irep = 0; irep < nrep; ++irep) {
  12978. const int iq2 = ik2 + irep*nek2;
  12979. const int id2 = iq2;
  12980. // (ik2 + irep*nek2) % nek2 == ik2
  12981. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12982. const int id1 = iq1;
  12983. // not sure about CACHE_LINE_SIZE_F32..
  12984. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12985. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12986. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12987. for (int i = M; i < Mup; ++i) {
  12988. S[i] = -INFINITY;
  12989. }
  12990. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12991. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12992. // k indices
  12993. const int ik1 = ic;
  12994. // S indices
  12995. const int i1 = ik1;
  12996. ggml_vec_dot_f32(neq0,
  12997. S + i1, 0,
  12998. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12999. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13000. }
  13001. // scale
  13002. ggml_vec_scale_f32(masked_begin, S, scale);
  13003. for (int64_t i = masked_begin; i < M; i++) {
  13004. S[i] = -INFINITY;
  13005. }
  13006. // softmax
  13007. // exclude known -INF S[..] values from max and loop
  13008. // dont forget to set their SM values to zero
  13009. {
  13010. float max = -INFINITY;
  13011. ggml_vec_max_f32(masked_begin, &max, S);
  13012. ggml_float sum = 0.0;
  13013. {
  13014. #ifdef GGML_SOFT_MAX_ACCELERATE
  13015. max = -max;
  13016. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13017. vvexpf(SM, SM, &Mup);
  13018. ggml_vec_sum_f32(Mup, &sum, SM);
  13019. #else
  13020. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  13021. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  13022. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  13023. if (i >= masked_begin) {
  13024. break;
  13025. }
  13026. float * SR = S + i;
  13027. float * SW = SM + i;
  13028. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  13029. if (i + j >= masked_begin) {
  13030. break;
  13031. } else if (SR[j] == -INFINITY) {
  13032. SW[j] = 0.0f;
  13033. } else {
  13034. #ifndef GGML_FLASH_ATTN_EXP_FP16
  13035. const float val = expf(SR[j] - max);
  13036. #else
  13037. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  13038. memcpy(&scvt[j], &s, sizeof(uint16_t));
  13039. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  13040. #endif
  13041. sump[j] += (ggml_float)val;
  13042. SW[j] = val;
  13043. }
  13044. }
  13045. }
  13046. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  13047. sum += sump[i];
  13048. }
  13049. #endif
  13050. }
  13051. assert(sum > 0.0);
  13052. sum = 1.0/sum;
  13053. ggml_vec_scale_f32(masked_begin, SM, sum);
  13054. }
  13055. // step-by-step explanation
  13056. {
  13057. // forward-process shape grads from backward process
  13058. // parallel_for ik2,ik3:
  13059. // for irep:
  13060. // iq2 = ik2 + irep*nek2
  13061. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13062. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13063. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13064. // for iq1:
  13065. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13066. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13067. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13068. // S0 = -Inf [D,1,1,1]
  13069. // ~S1[i] = dot(kcur[:D,i], qcur)
  13070. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13071. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13072. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13073. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13074. // ~S5[i] = dot(vcur[:,i], S4)
  13075. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13076. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13077. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13078. // dst backward-/ grad[dst] = d
  13079. //
  13080. // output gradients with their dependencies:
  13081. //
  13082. // grad[kcur] = grad[S1].T @ qcur
  13083. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13084. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13085. // grad[S4] = grad[S5] @ vcur
  13086. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13087. // grad[qcur] = grad[S1] @ kcur
  13088. // grad[vcur] = grad[S5].T @ S4
  13089. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13090. //
  13091. // in post-order:
  13092. //
  13093. // S1 = qcur @ kcur.T
  13094. // S2 = S1 * scale
  13095. // S3 = diag_mask_inf(S2, P)
  13096. // S4 = softmax(S3)
  13097. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13098. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13099. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13100. // grad[qcur] = grad[S1] @ kcur
  13101. // grad[kcur] = grad[S1].T @ qcur
  13102. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13103. //
  13104. // using less variables (SM=S4):
  13105. //
  13106. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13107. // SM = softmax(S)
  13108. // S = d[:D,iq1,iq2,iq3] @ vcur
  13109. // dot_SM_gradSM = dot(SM, S)
  13110. // S = SM * (S - dot(SM, S))
  13111. // S = diag_mask_zero(S, P) * scale
  13112. //
  13113. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13114. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13115. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13116. }
  13117. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13118. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13119. // for ic:
  13120. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13121. // exclude known future zero S[..] values from operation
  13122. ggml_vec_set_f32(masked_begin, S, 0);
  13123. for (int64_t ic = 0; ic < D; ++ic) {
  13124. ggml_vec_mad_f32(masked_begin,
  13125. S,
  13126. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13127. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13128. }
  13129. // S = SM * (S - dot(SM, S))
  13130. float dot_SM_gradSM = 0;
  13131. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13132. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13133. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13134. // S = diag_mask_zero(S, P) * scale
  13135. // already done by above ggml_vec_set_f32
  13136. // exclude known zero S[..] values from operation
  13137. ggml_vec_scale_f32(masked_begin, S, scale);
  13138. // S shape [M,1]
  13139. // SM shape [M,1]
  13140. // kcur shape [D,M]
  13141. // qcur shape [D,1]
  13142. // vcur shape [M,D]
  13143. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13144. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13145. // for ic:
  13146. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13147. // exclude known zero S[..] values from loop
  13148. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13149. ggml_vec_mad_f32(D,
  13150. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13151. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13152. S[ic]);
  13153. }
  13154. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13155. // for ic:
  13156. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13157. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13158. // exclude known zero S[..] values from loop
  13159. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13160. ggml_vec_mad_f32(D,
  13161. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13162. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13163. S[ic]);
  13164. }
  13165. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13166. // for ic:
  13167. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13168. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13169. // exclude known zero SM[..] values from mad
  13170. for (int64_t ic = 0; ic < D; ++ic) {
  13171. ggml_vec_mad_f32(masked_begin,
  13172. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13173. SM,
  13174. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13175. }
  13176. }
  13177. }
  13178. }
  13179. }
  13180. static void ggml_compute_forward_flash_attn_back(
  13181. const struct ggml_compute_params * params,
  13182. const bool masked,
  13183. struct ggml_tensor * dst) {
  13184. const struct ggml_tensor * q = dst->src[0];
  13185. switch (q->type) {
  13186. case GGML_TYPE_F32:
  13187. {
  13188. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13189. } break;
  13190. default:
  13191. {
  13192. GGML_ASSERT(false);
  13193. } break;
  13194. }
  13195. }
  13196. // ggml_compute_forward_ssm_conv
  13197. static void ggml_compute_forward_ssm_conv_f32(
  13198. const struct ggml_compute_params * params,
  13199. struct ggml_tensor * dst) {
  13200. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13201. return;
  13202. }
  13203. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13204. const struct ggml_tensor * src1 = dst->src[1]; // x
  13205. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13206. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13207. const int ith = params->ith;
  13208. const int nth = params->nth;
  13209. const int nc = src2->ne[0]; // d_conv
  13210. const int nr = src0->ne[1]; // d_inner
  13211. const int n_t = src1->ne[1]; // n_tokens
  13212. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13213. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13214. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13215. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13216. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13217. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13218. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13219. // for use with the destination state offset between sequences
  13220. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13221. // rows per thread
  13222. const int dr = (nr + nth - 1)/nth;
  13223. // row range for this thread
  13224. const int ir0 = dr*ith;
  13225. const int ir1 = MIN(ir0 + dr, nr);
  13226. const int ir = ir1 - ir0;
  13227. if (n_kv > 1) {
  13228. // multiple sequences means it's hard to know when it's the first time a state is read,
  13229. // so copy them all over to the destination, just to be sure.
  13230. for (int i3 = 0; i3 < n_kv; ++i3) {
  13231. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13232. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13233. // can't use memcpy because of d_conv vs d_conv - 1
  13234. for (int i1 = 0; i1 < ir; ++i1) {
  13235. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13236. // copy s0 to last (d_conv - 1) columns of s
  13237. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13238. }
  13239. }
  13240. }
  13241. }
  13242. for (int i2 = 0; i2 < n_t; ++i2) {
  13243. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13244. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13245. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13246. float * s0; // {d_conv - 1, d_inner, n_kv}
  13247. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13248. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13249. int ne0s0;
  13250. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13251. // avoid needing to copy the state for the first token
  13252. if (i2 == 0) {
  13253. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13254. ne0s0 = src0->ne[0];
  13255. } else {
  13256. // the source is the last (d_conv - 1) columns of the destination
  13257. s0 = s + 1;
  13258. ne0s0 = nc;
  13259. }
  13260. // d_inner
  13261. for (int i1 = 0; i1 < ir; ++i1) {
  13262. // shift state left
  13263. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13264. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13265. }
  13266. // insert x on the last column
  13267. s[(nc - 1) + i1*nc] = x0[i1];
  13268. }
  13269. // handle copies when there are multiple output states
  13270. for (int i3 = 1; i3 < n_kv; ++i3) {
  13271. int32_t seq = sq[i3];
  13272. if (0 <= seq && seq < n_kv) {
  13273. float * s1 = s + (seq - sq[0])*nc*nr;
  13274. memcpy(s1, s, nc*ir*sizeof(float));
  13275. } else {
  13276. // stop at negative or too big seq_ids
  13277. break;
  13278. }
  13279. }
  13280. // it seems a little faster when this is separate from the state shift
  13281. for (int i1 = 0; i1 < ir; ++i1) {
  13282. // rowwise dot product
  13283. float sumf = 0.0f;
  13284. for (int i0 = 0; i0 < nc; ++i0) {
  13285. int i = i0 + i1*nc;
  13286. sumf += s[i] * c[i];
  13287. }
  13288. x[i1] = sumf;
  13289. }
  13290. }
  13291. }
  13292. static void ggml_compute_forward_ssm_conv(
  13293. const struct ggml_compute_params * params,
  13294. struct ggml_tensor * dst) {
  13295. switch (dst->src[0]->type) {
  13296. case GGML_TYPE_F32:
  13297. {
  13298. ggml_compute_forward_ssm_conv_f32(params, dst);
  13299. } break;
  13300. default:
  13301. {
  13302. GGML_ASSERT(false);
  13303. } break;
  13304. }
  13305. }
  13306. // ggml_compute_forward_ssm_scan
  13307. static void ggml_compute_forward_ssm_scan_f32(
  13308. const struct ggml_compute_params * params,
  13309. struct ggml_tensor * dst) {
  13310. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13311. return;
  13312. }
  13313. const struct ggml_tensor * src0 = dst->src[0]; // s
  13314. const struct ggml_tensor * src1 = dst->src[1]; // x
  13315. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13316. const struct ggml_tensor * src3 = dst->src[3]; // A
  13317. const struct ggml_tensor * src4 = dst->src[4]; // B
  13318. const struct ggml_tensor * src5 = dst->src[5]; // C
  13319. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13320. const int ith = params->ith;
  13321. const int nth = params->nth;
  13322. const int64_t nc = src0->ne[0]; // d_state
  13323. const int64_t nr = src0->ne[1]; // d_inner
  13324. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13325. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13326. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13327. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13328. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13329. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13330. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13331. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13332. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13333. // required for the dot product between s and C, and when copying the states
  13334. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13335. // required for per-sequence offsets for states
  13336. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13337. // required to get correct offset for state destination (i.e. src1->nb[2])
  13338. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13339. // rows per thread
  13340. const int dr = (nr + nth - 1)/nth;
  13341. // row range for this thread
  13342. const int ir0 = dr*ith;
  13343. const int ir1 = MIN(ir0 + dr, nr);
  13344. const int ir = ir1 - ir0;
  13345. if (n_kv > 1) {
  13346. // it's hard to know if the source states have already been copied
  13347. // when there are multiple, so copy them already.
  13348. for (int i3 = 0; i3 < n_kv; ++i3) {
  13349. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13350. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13351. memcpy(s, s0, nc*ir*sizeof(float));
  13352. }
  13353. }
  13354. for (int i2 = 0; i2 < n_t; ++i2) {
  13355. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13356. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13357. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13358. float * s0;
  13359. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13360. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13361. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13362. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13363. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13364. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13365. // avoid needing to copy the state for the first token
  13366. if (i2 == 0) {
  13367. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13368. } else {
  13369. // otherwise the source is the same as the destination
  13370. s0 = s;
  13371. }
  13372. // d_inner
  13373. for (int i1 = 0; i1 < ir; ++i1) {
  13374. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13375. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13376. float x_dt = x[i1] * dt_soft_plus;
  13377. float sumf = 0.0f;
  13378. // d_state
  13379. for (int i0 = 0; i0 < nc; ++i0) {
  13380. int i = i0 + i1*nc;
  13381. // state = prev_state * dA + dB * x
  13382. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13383. // y = rowwise_dotprod(state, C)
  13384. sumf += state * C[i0];
  13385. s[i] = state;
  13386. }
  13387. y[i1] = sumf;
  13388. }
  13389. // handle copies when there are multiple output states
  13390. for (int i3 = 1; i3 < n_kv; ++i3) {
  13391. int32_t seq = sq[i3];
  13392. if (0 <= seq && seq < n_kv) {
  13393. float * s1 = s + (seq - sq[0])*nc*nr;
  13394. memcpy(s1, s, nc*ir*sizeof(float));
  13395. } else {
  13396. // stop at negative or too big seq_ids
  13397. break;
  13398. }
  13399. }
  13400. }
  13401. }
  13402. static void ggml_compute_forward_ssm_scan(
  13403. const struct ggml_compute_params * params,
  13404. struct ggml_tensor * dst) {
  13405. switch (dst->src[0]->type) {
  13406. case GGML_TYPE_F32:
  13407. {
  13408. ggml_compute_forward_ssm_scan_f32(params, dst);
  13409. } break;
  13410. default:
  13411. {
  13412. GGML_ASSERT(false);
  13413. } break;
  13414. }
  13415. }
  13416. // ggml_compute_forward_win_part
  13417. static void ggml_compute_forward_win_part_f32(
  13418. const struct ggml_compute_params * params,
  13419. struct ggml_tensor * dst) {
  13420. const struct ggml_tensor * src0 = dst->src[0];
  13421. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13422. return;
  13423. }
  13424. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13425. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13426. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13427. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13428. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13429. assert(ne00 == ne0);
  13430. assert(ne3 == nep0*nep1);
  13431. // TODO: optimize / multi-thread
  13432. for (int py = 0; py < nep1; ++py) {
  13433. for (int px = 0; px < nep0; ++px) {
  13434. const int64_t i3 = py*nep0 + px;
  13435. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13436. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13437. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13438. const int64_t i02 = py*w + i2;
  13439. const int64_t i01 = px*w + i1;
  13440. const int64_t i00 = i0;
  13441. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13442. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13443. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13444. ((float *) dst->data)[i] = 0.0f;
  13445. } else {
  13446. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13447. }
  13448. }
  13449. }
  13450. }
  13451. }
  13452. }
  13453. }
  13454. static void ggml_compute_forward_win_part(
  13455. const struct ggml_compute_params * params,
  13456. struct ggml_tensor * dst) {
  13457. const struct ggml_tensor * src0 = dst->src[0];
  13458. switch (src0->type) {
  13459. case GGML_TYPE_F32:
  13460. {
  13461. ggml_compute_forward_win_part_f32(params, dst);
  13462. } break;
  13463. default:
  13464. {
  13465. GGML_ASSERT(false);
  13466. } break;
  13467. }
  13468. }
  13469. // ggml_compute_forward_win_unpart
  13470. static void ggml_compute_forward_win_unpart_f32(
  13471. const struct ggml_compute_params * params,
  13472. struct ggml_tensor * dst) {
  13473. const struct ggml_tensor * src0 = dst->src[0];
  13474. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13475. return;
  13476. }
  13477. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13478. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13479. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13480. // padding
  13481. const int px = (w - ne1%w)%w;
  13482. //const int py = (w - ne2%w)%w;
  13483. const int npx = (px + ne1)/w;
  13484. //const int npy = (py + ne2)/w;
  13485. assert(ne0 == ne00);
  13486. // TODO: optimize / multi-thread
  13487. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13488. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13489. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13490. const int ip2 = i2/w;
  13491. const int ip1 = i1/w;
  13492. const int64_t i02 = i2%w;
  13493. const int64_t i01 = i1%w;
  13494. const int64_t i00 = i0;
  13495. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13496. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13497. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13498. }
  13499. }
  13500. }
  13501. }
  13502. static void ggml_compute_forward_win_unpart(
  13503. const struct ggml_compute_params * params,
  13504. struct ggml_tensor * dst) {
  13505. const struct ggml_tensor * src0 = dst->src[0];
  13506. switch (src0->type) {
  13507. case GGML_TYPE_F32:
  13508. {
  13509. ggml_compute_forward_win_unpart_f32(params, dst);
  13510. } break;
  13511. default:
  13512. {
  13513. GGML_ASSERT(false);
  13514. } break;
  13515. }
  13516. }
  13517. //gmml_compute_forward_unary
  13518. static void ggml_compute_forward_unary(
  13519. const struct ggml_compute_params * params,
  13520. struct ggml_tensor * dst) {
  13521. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13522. switch (op) {
  13523. case GGML_UNARY_OP_ABS:
  13524. {
  13525. ggml_compute_forward_abs(params, dst);
  13526. } break;
  13527. case GGML_UNARY_OP_SGN:
  13528. {
  13529. ggml_compute_forward_sgn(params, dst);
  13530. } break;
  13531. case GGML_UNARY_OP_NEG:
  13532. {
  13533. ggml_compute_forward_neg(params, dst);
  13534. } break;
  13535. case GGML_UNARY_OP_STEP:
  13536. {
  13537. ggml_compute_forward_step(params, dst);
  13538. } break;
  13539. case GGML_UNARY_OP_TANH:
  13540. {
  13541. ggml_compute_forward_tanh(params, dst);
  13542. } break;
  13543. case GGML_UNARY_OP_ELU:
  13544. {
  13545. ggml_compute_forward_elu(params, dst);
  13546. } break;
  13547. case GGML_UNARY_OP_RELU:
  13548. {
  13549. ggml_compute_forward_relu(params, dst);
  13550. } break;
  13551. case GGML_UNARY_OP_SIGMOID:
  13552. {
  13553. ggml_compute_forward_sigmoid(params, dst);
  13554. } break;
  13555. case GGML_UNARY_OP_GELU:
  13556. {
  13557. ggml_compute_forward_gelu(params, dst);
  13558. } break;
  13559. case GGML_UNARY_OP_GELU_QUICK:
  13560. {
  13561. ggml_compute_forward_gelu_quick(params, dst);
  13562. } break;
  13563. case GGML_UNARY_OP_SILU:
  13564. {
  13565. ggml_compute_forward_silu(params, dst);
  13566. } break;
  13567. case GGML_UNARY_OP_HARDSWISH:
  13568. {
  13569. ggml_compute_forward_hardswish(params, dst);
  13570. } break;
  13571. case GGML_UNARY_OP_HARDSIGMOID:
  13572. {
  13573. ggml_compute_forward_hardsigmoid(params, dst);
  13574. } break;
  13575. default:
  13576. {
  13577. GGML_ASSERT(false);
  13578. } break;
  13579. }
  13580. }
  13581. // ggml_compute_forward_get_rel_pos
  13582. static void ggml_compute_forward_get_rel_pos_f16(
  13583. const struct ggml_compute_params * params,
  13584. struct ggml_tensor * dst) {
  13585. const struct ggml_tensor * src0 = dst->src[0];
  13586. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13587. return;
  13588. }
  13589. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13590. GGML_TENSOR_UNARY_OP_LOCALS
  13591. const int64_t w = ne1;
  13592. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13593. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13594. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13595. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13596. const int64_t pos = (w - i1 - 1) + i2;
  13597. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13598. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13599. }
  13600. }
  13601. }
  13602. }
  13603. static void ggml_compute_forward_get_rel_pos(
  13604. const struct ggml_compute_params * params,
  13605. struct ggml_tensor * dst) {
  13606. const struct ggml_tensor * src0 = dst->src[0];
  13607. switch (src0->type) {
  13608. case GGML_TYPE_F16:
  13609. case GGML_TYPE_BF16:
  13610. {
  13611. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13612. } break;
  13613. default:
  13614. {
  13615. GGML_ASSERT(false);
  13616. } break;
  13617. }
  13618. }
  13619. // ggml_compute_forward_add_rel_pos
  13620. static void ggml_compute_forward_add_rel_pos_f32(
  13621. const struct ggml_compute_params * params,
  13622. struct ggml_tensor * dst) {
  13623. const struct ggml_tensor * src0 = dst->src[0];
  13624. const struct ggml_tensor * src1 = dst->src[1];
  13625. const struct ggml_tensor * src2 = dst->src[2];
  13626. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13627. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13628. if (params->ith != 0) {
  13629. return;
  13630. }
  13631. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13632. return;
  13633. }
  13634. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13635. return;
  13636. }
  13637. int64_t t0 = ggml_perf_time_us();
  13638. UNUSED(t0);
  13639. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13640. float * src1_data = (float *) src1->data;
  13641. float * src2_data = (float *) src2->data;
  13642. float * dst_data = (float *) dst->data;
  13643. const int64_t ne10 = src1->ne[0];
  13644. const int64_t ne11 = src1->ne[1];
  13645. const int64_t ne12 = src1->ne[2];
  13646. const int64_t ne13 = src1->ne[3];
  13647. const int ith = params->ith;
  13648. const int nth = params->nth;
  13649. // total patches in dst
  13650. const int np = ne13;
  13651. // patches per thread
  13652. const int dp = (np + nth - 1)/nth;
  13653. // patch range for this thread
  13654. const int ip0 = dp*ith;
  13655. const int ip1 = MIN(ip0 + dp, np);
  13656. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13657. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13658. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13659. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13660. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13661. const int64_t jp0 = jp1 + i10;
  13662. const float src1_e = src1_data[jp0];
  13663. const float src2_e = src2_data[jp0];
  13664. const int64_t jdh = jp0 * ne10;
  13665. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13666. for (int64_t j = 0; j < ne10; ++j) {
  13667. dst_data[jdh + j ] += src2_e;
  13668. dst_data[jdw + j*ne10] += src1_e;
  13669. }
  13670. }
  13671. }
  13672. }
  13673. }
  13674. }
  13675. static void ggml_compute_forward_add_rel_pos(
  13676. const struct ggml_compute_params * params,
  13677. struct ggml_tensor * dst) {
  13678. const struct ggml_tensor * src0 = dst->src[0];
  13679. switch (src0->type) {
  13680. case GGML_TYPE_F32:
  13681. {
  13682. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13683. } break;
  13684. default:
  13685. {
  13686. GGML_ASSERT(false);
  13687. } break;
  13688. }
  13689. }
  13690. // ggml_compute_forward_map_unary
  13691. static void ggml_compute_forward_map_unary_f32(
  13692. const struct ggml_compute_params * params,
  13693. struct ggml_tensor * dst,
  13694. const ggml_unary_op_f32_t fun) {
  13695. const struct ggml_tensor * src0 = dst->src[0];
  13696. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13697. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13698. return;
  13699. }
  13700. const int n = ggml_nrows(src0);
  13701. const int nc = src0->ne[0];
  13702. assert( dst->nb[0] == sizeof(float));
  13703. assert(src0->nb[0] == sizeof(float));
  13704. for (int i = 0; i < n; i++) {
  13705. fun(nc,
  13706. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13707. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13708. }
  13709. }
  13710. static void ggml_compute_forward_map_unary(
  13711. const struct ggml_compute_params * params,
  13712. struct ggml_tensor * dst,
  13713. const ggml_unary_op_f32_t fun) {
  13714. const struct ggml_tensor * src0 = dst->src[0];
  13715. switch (src0->type) {
  13716. case GGML_TYPE_F32:
  13717. {
  13718. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13719. } break;
  13720. default:
  13721. {
  13722. GGML_ASSERT(false);
  13723. } break;
  13724. }
  13725. }
  13726. // ggml_compute_forward_map_binary
  13727. static void ggml_compute_forward_map_binary_f32(
  13728. const struct ggml_compute_params * params,
  13729. struct ggml_tensor * dst,
  13730. const ggml_binary_op_f32_t fun) {
  13731. const struct ggml_tensor * src0 = dst->src[0];
  13732. const struct ggml_tensor * src1 = dst->src[1];
  13733. assert(params->ith == 0);
  13734. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13735. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13736. return;
  13737. }
  13738. const int n = ggml_nrows(src0);
  13739. const int nc = src0->ne[0];
  13740. assert( dst->nb[0] == sizeof(float));
  13741. assert(src0->nb[0] == sizeof(float));
  13742. assert(src1->nb[0] == sizeof(float));
  13743. for (int i = 0; i < n; i++) {
  13744. fun(nc,
  13745. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13746. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13747. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13748. }
  13749. }
  13750. static void ggml_compute_forward_map_binary(
  13751. const struct ggml_compute_params * params,
  13752. struct ggml_tensor * dst,
  13753. const ggml_binary_op_f32_t fun) {
  13754. const struct ggml_tensor * src0 = dst->src[0];
  13755. switch (src0->type) {
  13756. case GGML_TYPE_F32:
  13757. {
  13758. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13759. } break;
  13760. default:
  13761. {
  13762. GGML_ASSERT(false);
  13763. } break;
  13764. }
  13765. }
  13766. // ggml_compute_forward_map_custom1
  13767. static void ggml_compute_forward_map_custom1_f32(
  13768. const struct ggml_compute_params * params,
  13769. struct ggml_tensor * dst,
  13770. const ggml_custom1_op_f32_t fun) {
  13771. const struct ggml_tensor * a = dst->src[0];
  13772. assert(params->ith == 0);
  13773. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13774. return;
  13775. }
  13776. fun(dst, a);
  13777. }
  13778. // ggml_compute_forward_map_custom2
  13779. static void ggml_compute_forward_map_custom2_f32(
  13780. const struct ggml_compute_params * params,
  13781. struct ggml_tensor * dst,
  13782. const ggml_custom2_op_f32_t fun) {
  13783. const struct ggml_tensor * a = dst->src[0];
  13784. const struct ggml_tensor * b = dst->src[1];
  13785. assert(params->ith == 0);
  13786. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13787. return;
  13788. }
  13789. fun(dst, a, b);
  13790. }
  13791. // ggml_compute_forward_map_custom3
  13792. static void ggml_compute_forward_map_custom3_f32(
  13793. const struct ggml_compute_params * params,
  13794. struct ggml_tensor * dst,
  13795. const ggml_custom3_op_f32_t fun) {
  13796. const struct ggml_tensor * a = dst->src[0];
  13797. const struct ggml_tensor * b = dst->src[1];
  13798. const struct ggml_tensor * c = dst->src[1];
  13799. assert(params->ith == 0);
  13800. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13801. return;
  13802. }
  13803. fun(dst, a, b, c);
  13804. }
  13805. // ggml_compute_forward_map_custom1
  13806. static void ggml_compute_forward_map_custom1(
  13807. const struct ggml_compute_params * params,
  13808. struct ggml_tensor * dst) {
  13809. const struct ggml_tensor * a = dst->src[0];
  13810. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13811. return;
  13812. }
  13813. struct ggml_map_custom1_op_params p;
  13814. memcpy(&p, dst->op_params, sizeof(p));
  13815. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13816. }
  13817. // ggml_compute_forward_map_custom2
  13818. static void ggml_compute_forward_map_custom2(
  13819. const struct ggml_compute_params * params,
  13820. struct ggml_tensor * dst) {
  13821. const struct ggml_tensor * a = dst->src[0];
  13822. const struct ggml_tensor * b = dst->src[1];
  13823. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13824. return;
  13825. }
  13826. struct ggml_map_custom2_op_params p;
  13827. memcpy(&p, dst->op_params, sizeof(p));
  13828. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13829. }
  13830. // ggml_compute_forward_map_custom3
  13831. static void ggml_compute_forward_map_custom3(
  13832. const struct ggml_compute_params * params,
  13833. struct ggml_tensor * dst) {
  13834. const struct ggml_tensor * a = dst->src[0];
  13835. const struct ggml_tensor * b = dst->src[1];
  13836. const struct ggml_tensor * c = dst->src[2];
  13837. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13838. return;
  13839. }
  13840. struct ggml_map_custom3_op_params p;
  13841. memcpy(&p, dst->op_params, sizeof(p));
  13842. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13843. }
  13844. // ggml_compute_forward_cross_entropy_loss
  13845. static void ggml_compute_forward_cross_entropy_loss_f32(
  13846. const struct ggml_compute_params * params,
  13847. struct ggml_tensor * dst) {
  13848. const struct ggml_tensor * src0 = dst->src[0];
  13849. const struct ggml_tensor * src1 = dst->src[1];
  13850. GGML_ASSERT(ggml_is_contiguous(src0));
  13851. GGML_ASSERT(ggml_is_contiguous(src1));
  13852. GGML_ASSERT(ggml_is_scalar(dst));
  13853. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13854. const int ith = params->ith;
  13855. const int nth = params->nth;
  13856. float * sums = (float *) params->wdata;
  13857. // TODO: handle transposed/permuted matrices
  13858. const int nc = src0->ne[0];
  13859. const int nr = ggml_nrows(src0);
  13860. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13861. if (params->type == GGML_TASK_TYPE_INIT) {
  13862. if (ith == 0) {
  13863. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13864. }
  13865. return;
  13866. }
  13867. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13868. if (ith == 0) {
  13869. float * dp = (float *) dst->data;
  13870. ggml_vec_sum_f32(nth, dp, sums);
  13871. dp[0] *= -1.0f / (float) nr;
  13872. }
  13873. return;
  13874. }
  13875. const double eps = 1e-9;
  13876. // rows per thread
  13877. const int dr = (nr + nth - 1)/nth;
  13878. // row range for this thread
  13879. const int ir0 = dr*ith;
  13880. const int ir1 = MIN(ir0 + dr, nr);
  13881. for (int i1 = ir0; i1 < ir1; i1++) {
  13882. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13883. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13884. float * st = ((float *) params->wdata) + nth + ith*nc;
  13885. #ifndef NDEBUG
  13886. for (int i = 0; i < nc; ++i) {
  13887. //printf("p[%d] = %f\n", i, p[i]);
  13888. assert(!isnan(s0[i]));
  13889. assert(!isnan(s1[i]));
  13890. }
  13891. #endif
  13892. // soft_max
  13893. ggml_float sum = 0.0;
  13894. {
  13895. float max = -INFINITY;
  13896. ggml_vec_max_f32(nc, &max, s0);
  13897. uint16_t scvt; UNUSED(scvt);
  13898. for (int i = 0; i < nc; i++) {
  13899. if (s0[i] == -INFINITY) {
  13900. st[i] = 0.0f;
  13901. } else {
  13902. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13903. const float s = s0[i] - max;
  13904. const float val = expf(s);
  13905. #else
  13906. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13907. memcpy(&scvt, &s, sizeof(scvt));
  13908. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13909. #endif
  13910. sum += (ggml_float)val;
  13911. st[i] = val;
  13912. }
  13913. }
  13914. assert(sum > 0.0);
  13915. // sum = 1.0/sum;
  13916. }
  13917. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13918. sum = (1.0 - eps) / sum;
  13919. ggml_vec_scale_f32(nc, st, sum);
  13920. ggml_vec_add1_f32(nc, st, st, eps);
  13921. ggml_vec_log_f32(nc, st, st);
  13922. ggml_vec_mul_f32(nc, st, st, s1);
  13923. float st_sum = 0;
  13924. ggml_vec_sum_f32(nc, &st_sum, st);
  13925. sums[ith] += st_sum;
  13926. #ifndef NDEBUG
  13927. for (int i = 0; i < nc; ++i) {
  13928. assert(!isnan(st[i]));
  13929. assert(!isinf(st[i]));
  13930. }
  13931. #endif
  13932. }
  13933. }
  13934. static void ggml_compute_forward_cross_entropy_loss(
  13935. const struct ggml_compute_params * params,
  13936. struct ggml_tensor * dst) {
  13937. const struct ggml_tensor * src0 = dst->src[0];
  13938. switch (src0->type) {
  13939. case GGML_TYPE_F32:
  13940. {
  13941. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13942. } break;
  13943. default:
  13944. {
  13945. GGML_ASSERT(false);
  13946. } break;
  13947. }
  13948. }
  13949. // ggml_compute_forward_cross_entropy_loss_back
  13950. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13951. const struct ggml_compute_params * params,
  13952. struct ggml_tensor * dst) {
  13953. const struct ggml_tensor * src0 = dst->src[0];
  13954. const struct ggml_tensor * src1 = dst->src[1];
  13955. const struct ggml_tensor * opt0 = dst->src[2];
  13956. GGML_ASSERT(ggml_is_contiguous(dst));
  13957. GGML_ASSERT(ggml_is_contiguous(src0));
  13958. GGML_ASSERT(ggml_is_contiguous(src1));
  13959. GGML_ASSERT(ggml_is_contiguous(opt0));
  13960. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13961. const int64_t ith = params->ith;
  13962. const int64_t nth = params->nth;
  13963. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13964. return;
  13965. }
  13966. const double eps = 1e-9;
  13967. // TODO: handle transposed/permuted matrices
  13968. const int64_t nc = src0->ne[0];
  13969. const int64_t nr = ggml_nrows(src0);
  13970. // rows per thread
  13971. const int64_t dr = (nr + nth - 1)/nth;
  13972. // row range for this thread
  13973. const int64_t ir0 = dr*ith;
  13974. const int64_t ir1 = MIN(ir0 + dr, nr);
  13975. float * d = (float *) opt0->data;
  13976. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13977. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13978. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13979. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13980. #ifndef NDEBUG
  13981. for (int i = 0; i < nc; ++i) {
  13982. //printf("p[%d] = %f\n", i, p[i]);
  13983. assert(!isnan(s0[i]));
  13984. assert(!isnan(s1[i]));
  13985. }
  13986. #endif
  13987. // soft_max
  13988. ggml_float sum = 0.0;
  13989. {
  13990. float max = -INFINITY;
  13991. ggml_vec_max_f32(nc, &max, s0);
  13992. uint16_t scvt; UNUSED(scvt);
  13993. for (int i = 0; i < nc; i++) {
  13994. if (s0[i] == -INFINITY) {
  13995. ds0[i] = 0.0f;
  13996. } else {
  13997. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13998. const float s = s0[i] - max;
  13999. const float val = expf(s);
  14000. #else
  14001. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14002. memcpy(&scvt, &s, sizeof(scvt));
  14003. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14004. #endif
  14005. sum += (ggml_float)val;
  14006. ds0[i] = val;
  14007. }
  14008. }
  14009. assert(sum > 0.0);
  14010. sum = (1.0 - eps)/sum;
  14011. }
  14012. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14013. ggml_vec_scale_f32(nc, ds0, sum);
  14014. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14015. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14016. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14017. #ifndef NDEBUG
  14018. for (int i = 0; i < nc; ++i) {
  14019. assert(!isnan(ds0[i]));
  14020. assert(!isinf(ds0[i]));
  14021. }
  14022. #endif
  14023. }
  14024. }
  14025. static void ggml_compute_forward_cross_entropy_loss_back(
  14026. const struct ggml_compute_params * params,
  14027. struct ggml_tensor * dst) {
  14028. const struct ggml_tensor * src0 = dst->src[0];
  14029. switch (src0->type) {
  14030. case GGML_TYPE_F32:
  14031. {
  14032. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14033. } break;
  14034. default:
  14035. {
  14036. GGML_ASSERT(false);
  14037. } break;
  14038. }
  14039. }
  14040. /////////////////////////////////
  14041. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14042. GGML_ASSERT(params);
  14043. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14044. return;
  14045. }
  14046. switch (tensor->op) {
  14047. case GGML_OP_DUP:
  14048. {
  14049. ggml_compute_forward_dup(params, tensor);
  14050. } break;
  14051. case GGML_OP_ADD:
  14052. {
  14053. ggml_compute_forward_add(params, tensor);
  14054. } break;
  14055. case GGML_OP_ADD1:
  14056. {
  14057. ggml_compute_forward_add1(params, tensor);
  14058. } break;
  14059. case GGML_OP_ACC:
  14060. {
  14061. ggml_compute_forward_acc(params, tensor);
  14062. } break;
  14063. case GGML_OP_SUB:
  14064. {
  14065. ggml_compute_forward_sub(params, tensor);
  14066. } break;
  14067. case GGML_OP_MUL:
  14068. {
  14069. ggml_compute_forward_mul(params, tensor);
  14070. } break;
  14071. case GGML_OP_DIV:
  14072. {
  14073. ggml_compute_forward_div(params, tensor);
  14074. } break;
  14075. case GGML_OP_SQR:
  14076. {
  14077. ggml_compute_forward_sqr(params, tensor);
  14078. } break;
  14079. case GGML_OP_SQRT:
  14080. {
  14081. ggml_compute_forward_sqrt(params, tensor);
  14082. } break;
  14083. case GGML_OP_LOG:
  14084. {
  14085. ggml_compute_forward_log(params, tensor);
  14086. } break;
  14087. case GGML_OP_SUM:
  14088. {
  14089. ggml_compute_forward_sum(params, tensor);
  14090. } break;
  14091. case GGML_OP_SUM_ROWS:
  14092. {
  14093. ggml_compute_forward_sum_rows(params, tensor);
  14094. } break;
  14095. case GGML_OP_MEAN:
  14096. {
  14097. ggml_compute_forward_mean(params, tensor);
  14098. } break;
  14099. case GGML_OP_ARGMAX:
  14100. {
  14101. ggml_compute_forward_argmax(params, tensor);
  14102. } break;
  14103. case GGML_OP_REPEAT:
  14104. {
  14105. ggml_compute_forward_repeat(params, tensor);
  14106. } break;
  14107. case GGML_OP_REPEAT_BACK:
  14108. {
  14109. ggml_compute_forward_repeat_back(params, tensor);
  14110. } break;
  14111. case GGML_OP_CONCAT:
  14112. {
  14113. ggml_compute_forward_concat(params, tensor);
  14114. } break;
  14115. case GGML_OP_SILU_BACK:
  14116. {
  14117. ggml_compute_forward_silu_back(params, tensor);
  14118. } break;
  14119. case GGML_OP_NORM:
  14120. {
  14121. ggml_compute_forward_norm(params, tensor);
  14122. } break;
  14123. case GGML_OP_RMS_NORM:
  14124. {
  14125. ggml_compute_forward_rms_norm(params, tensor);
  14126. } break;
  14127. case GGML_OP_RMS_NORM_BACK:
  14128. {
  14129. ggml_compute_forward_rms_norm_back(params, tensor);
  14130. } break;
  14131. case GGML_OP_GROUP_NORM:
  14132. {
  14133. ggml_compute_forward_group_norm(params, tensor);
  14134. } break;
  14135. case GGML_OP_MUL_MAT:
  14136. {
  14137. ggml_compute_forward_mul_mat(params, tensor);
  14138. } break;
  14139. case GGML_OP_MUL_MAT_ID:
  14140. {
  14141. ggml_compute_forward_mul_mat_id(params, tensor);
  14142. } break;
  14143. case GGML_OP_OUT_PROD:
  14144. {
  14145. ggml_compute_forward_out_prod(params, tensor);
  14146. } break;
  14147. case GGML_OP_SCALE:
  14148. {
  14149. ggml_compute_forward_scale(params, tensor);
  14150. } break;
  14151. case GGML_OP_SET:
  14152. {
  14153. ggml_compute_forward_set(params, tensor);
  14154. } break;
  14155. case GGML_OP_CPY:
  14156. {
  14157. ggml_compute_forward_cpy(params, tensor);
  14158. } break;
  14159. case GGML_OP_CONT:
  14160. {
  14161. ggml_compute_forward_cont(params, tensor);
  14162. } break;
  14163. case GGML_OP_RESHAPE:
  14164. {
  14165. ggml_compute_forward_reshape(params, tensor);
  14166. } break;
  14167. case GGML_OP_VIEW:
  14168. {
  14169. ggml_compute_forward_view(params, tensor);
  14170. } break;
  14171. case GGML_OP_PERMUTE:
  14172. {
  14173. ggml_compute_forward_permute(params, tensor);
  14174. } break;
  14175. case GGML_OP_TRANSPOSE:
  14176. {
  14177. ggml_compute_forward_transpose(params, tensor);
  14178. } break;
  14179. case GGML_OP_GET_ROWS:
  14180. {
  14181. ggml_compute_forward_get_rows(params, tensor);
  14182. } break;
  14183. case GGML_OP_GET_ROWS_BACK:
  14184. {
  14185. ggml_compute_forward_get_rows_back(params, tensor);
  14186. } break;
  14187. case GGML_OP_DIAG:
  14188. {
  14189. ggml_compute_forward_diag(params, tensor);
  14190. } break;
  14191. case GGML_OP_DIAG_MASK_INF:
  14192. {
  14193. ggml_compute_forward_diag_mask_inf(params, tensor);
  14194. } break;
  14195. case GGML_OP_DIAG_MASK_ZERO:
  14196. {
  14197. ggml_compute_forward_diag_mask_zero(params, tensor);
  14198. } break;
  14199. case GGML_OP_SOFT_MAX:
  14200. {
  14201. ggml_compute_forward_soft_max(params, tensor);
  14202. } break;
  14203. case GGML_OP_SOFT_MAX_BACK:
  14204. {
  14205. ggml_compute_forward_soft_max_back(params, tensor);
  14206. } break;
  14207. case GGML_OP_ROPE:
  14208. {
  14209. ggml_compute_forward_rope(params, tensor);
  14210. } break;
  14211. case GGML_OP_ROPE_BACK:
  14212. {
  14213. ggml_compute_forward_rope_back(params, tensor);
  14214. } break;
  14215. case GGML_OP_CLAMP:
  14216. {
  14217. ggml_compute_forward_clamp(params, tensor);
  14218. } break;
  14219. case GGML_OP_CONV_TRANSPOSE_1D:
  14220. {
  14221. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14222. } break;
  14223. case GGML_OP_IM2COL:
  14224. {
  14225. ggml_compute_forward_im2col(params, tensor);
  14226. } break;
  14227. case GGML_OP_CONV_TRANSPOSE_2D:
  14228. {
  14229. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14230. } break;
  14231. case GGML_OP_POOL_1D:
  14232. {
  14233. ggml_compute_forward_pool_1d(params, tensor);
  14234. } break;
  14235. case GGML_OP_POOL_2D:
  14236. {
  14237. ggml_compute_forward_pool_2d(params, tensor);
  14238. } break;
  14239. case GGML_OP_UPSCALE:
  14240. {
  14241. ggml_compute_forward_upscale(params, tensor);
  14242. } break;
  14243. case GGML_OP_PAD:
  14244. {
  14245. ggml_compute_forward_pad(params, tensor);
  14246. } break;
  14247. case GGML_OP_ARANGE:
  14248. {
  14249. ggml_compute_forward_arange(params, tensor);
  14250. } break;
  14251. case GGML_OP_TIMESTEP_EMBEDDING:
  14252. {
  14253. ggml_compute_forward_timestep_embedding(params, tensor);
  14254. } break;
  14255. case GGML_OP_ARGSORT:
  14256. {
  14257. ggml_compute_forward_argsort(params, tensor);
  14258. } break;
  14259. case GGML_OP_LEAKY_RELU:
  14260. {
  14261. ggml_compute_forward_leaky_relu(params, tensor);
  14262. } break;
  14263. case GGML_OP_FLASH_ATTN:
  14264. {
  14265. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14266. GGML_ASSERT(t == 0 || t == 1);
  14267. const bool masked = t != 0;
  14268. ggml_compute_forward_flash_attn(params, masked, tensor);
  14269. } break;
  14270. case GGML_OP_FLASH_ATTN_EXT:
  14271. {
  14272. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14273. } break;
  14274. case GGML_OP_FLASH_FF:
  14275. {
  14276. ggml_compute_forward_flash_ff(params, tensor);
  14277. } break;
  14278. case GGML_OP_FLASH_ATTN_BACK:
  14279. {
  14280. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14281. GGML_ASSERT(t == 0 || t == 1);
  14282. bool masked = t != 0;
  14283. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14284. } break;
  14285. case GGML_OP_SSM_CONV:
  14286. {
  14287. ggml_compute_forward_ssm_conv(params, tensor);
  14288. } break;
  14289. case GGML_OP_SSM_SCAN:
  14290. {
  14291. ggml_compute_forward_ssm_scan(params, tensor);
  14292. } break;
  14293. case GGML_OP_WIN_PART:
  14294. {
  14295. ggml_compute_forward_win_part(params, tensor);
  14296. } break;
  14297. case GGML_OP_WIN_UNPART:
  14298. {
  14299. ggml_compute_forward_win_unpart(params, tensor);
  14300. } break;
  14301. case GGML_OP_UNARY:
  14302. {
  14303. ggml_compute_forward_unary(params, tensor);
  14304. } break;
  14305. case GGML_OP_GET_REL_POS:
  14306. {
  14307. ggml_compute_forward_get_rel_pos(params, tensor);
  14308. } break;
  14309. case GGML_OP_ADD_REL_POS:
  14310. {
  14311. ggml_compute_forward_add_rel_pos(params, tensor);
  14312. } break;
  14313. case GGML_OP_MAP_UNARY:
  14314. {
  14315. ggml_unary_op_f32_t fun;
  14316. memcpy(&fun, tensor->op_params, sizeof(fun));
  14317. ggml_compute_forward_map_unary(params, tensor, fun);
  14318. }
  14319. break;
  14320. case GGML_OP_MAP_BINARY:
  14321. {
  14322. ggml_binary_op_f32_t fun;
  14323. memcpy(&fun, tensor->op_params, sizeof(fun));
  14324. ggml_compute_forward_map_binary(params, tensor, fun);
  14325. }
  14326. break;
  14327. case GGML_OP_MAP_CUSTOM1_F32:
  14328. {
  14329. ggml_custom1_op_f32_t fun;
  14330. memcpy(&fun, tensor->op_params, sizeof(fun));
  14331. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14332. }
  14333. break;
  14334. case GGML_OP_MAP_CUSTOM2_F32:
  14335. {
  14336. ggml_custom2_op_f32_t fun;
  14337. memcpy(&fun, tensor->op_params, sizeof(fun));
  14338. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14339. }
  14340. break;
  14341. case GGML_OP_MAP_CUSTOM3_F32:
  14342. {
  14343. ggml_custom3_op_f32_t fun;
  14344. memcpy(&fun, tensor->op_params, sizeof(fun));
  14345. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14346. }
  14347. break;
  14348. case GGML_OP_MAP_CUSTOM1:
  14349. {
  14350. ggml_compute_forward_map_custom1(params, tensor);
  14351. }
  14352. break;
  14353. case GGML_OP_MAP_CUSTOM2:
  14354. {
  14355. ggml_compute_forward_map_custom2(params, tensor);
  14356. }
  14357. break;
  14358. case GGML_OP_MAP_CUSTOM3:
  14359. {
  14360. ggml_compute_forward_map_custom3(params, tensor);
  14361. }
  14362. break;
  14363. case GGML_OP_CROSS_ENTROPY_LOSS:
  14364. {
  14365. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14366. }
  14367. break;
  14368. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14369. {
  14370. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14371. }
  14372. break;
  14373. case GGML_OP_NONE:
  14374. {
  14375. // nop
  14376. } break;
  14377. case GGML_OP_COUNT:
  14378. {
  14379. GGML_ASSERT(false);
  14380. } break;
  14381. }
  14382. }
  14383. ////////////////////////////////////////////////////////////////////////////////
  14384. static size_t ggml_hash_size(size_t min_sz) {
  14385. // next primes after powers of two
  14386. static const size_t primes[] = {
  14387. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14388. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14389. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14390. 16777259, 33554467, 67108879, 134217757, 268435459,
  14391. 536870923, 1073741827, 2147483659
  14392. };
  14393. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14394. // find the smallest prime that is larger or equal to min_sz
  14395. size_t l = 0;
  14396. size_t r = n_primes;
  14397. while (l < r) {
  14398. size_t m = (l + r)/2;
  14399. if (primes[m] < min_sz) {
  14400. l = m + 1;
  14401. } else {
  14402. r = m;
  14403. }
  14404. }
  14405. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14406. return sz;
  14407. }
  14408. static size_t ggml_hash(const void * p) {
  14409. return (size_t)p;
  14410. }
  14411. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14412. size_t h = ggml_hash(key) % hash_set.size;
  14413. // linear probing
  14414. size_t i = h;
  14415. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14416. i = (i + 1) % hash_set.size;
  14417. if (i == h) {
  14418. // visited all hash table entries -> not found
  14419. return GGML_HASHTABLE_FULL;
  14420. }
  14421. }
  14422. return i;
  14423. }
  14424. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14425. size_t i = ggml_hash_find(hash_set, key);
  14426. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14427. }
  14428. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14429. size_t i = ggml_hash_find(hash_set, key);
  14430. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14431. if (hash_set.keys[i] == key) {
  14432. return GGML_HASHTABLE_ALREADY_EXISTS;
  14433. }
  14434. // insert
  14435. GGML_ASSERT(hash_set.keys[i] == NULL);
  14436. hash_set.keys[i] = key;
  14437. return i;
  14438. }
  14439. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14440. size_t i = ggml_hash_find(hash_set, key);
  14441. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14442. hash_set.keys[i] = key;
  14443. return i;
  14444. }
  14445. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14446. size = ggml_hash_size(size);
  14447. struct ggml_hash_set result;
  14448. result.size = size;
  14449. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14450. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14451. return result;
  14452. }
  14453. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14454. GGML_FREE(hash_set.keys);
  14455. }
  14456. struct hash_map {
  14457. struct ggml_hash_set set;
  14458. struct ggml_tensor ** vals;
  14459. };
  14460. static struct hash_map * ggml_new_hash_map(size_t size) {
  14461. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14462. result->set = ggml_hash_set_new(size);
  14463. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14464. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14465. return result;
  14466. }
  14467. static void ggml_hash_map_free(struct hash_map * map) {
  14468. ggml_hash_set_free(map->set);
  14469. GGML_FREE(map->vals);
  14470. GGML_FREE(map);
  14471. }
  14472. // gradient checkpointing
  14473. static struct ggml_tensor * ggml_recompute_graph_node(
  14474. struct ggml_context * ctx,
  14475. struct ggml_cgraph * graph,
  14476. struct hash_map * replacements,
  14477. struct ggml_tensor * node) {
  14478. if (node == NULL) {
  14479. return NULL;
  14480. }
  14481. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14482. return node;
  14483. }
  14484. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14485. return node;
  14486. }
  14487. int count_children = 0;
  14488. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14489. if (node->src[k]) {
  14490. ++count_children;
  14491. }
  14492. }
  14493. if (count_children == 0) {
  14494. return node;
  14495. }
  14496. size_t i = ggml_hash_find(replacements->set, node);
  14497. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14498. if (replacements->set.keys[i] == node) {
  14499. return replacements->vals[i];
  14500. }
  14501. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14502. // insert clone into replacements
  14503. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14504. replacements->set.keys[i] = node;
  14505. replacements->vals[i] = clone;
  14506. clone->op = node->op;
  14507. clone->grad = node->grad;
  14508. clone->flags = node->flags;
  14509. clone->extra = node->extra;
  14510. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14511. clone->nb[k] = node->nb[k];
  14512. }
  14513. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14514. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14515. }
  14516. if (node->view_src != NULL) {
  14517. clone->data = (node->view_src->data == NULL)
  14518. ? NULL // view_src not yet allocated
  14519. : (char *) node->view_src->data // view_src already allocated
  14520. + node->view_offs;
  14521. clone->view_src = node->view_src;
  14522. clone->view_offs = node->view_offs;
  14523. }
  14524. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14525. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14526. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14527. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14528. return clone;
  14529. }
  14530. void ggml_build_backward_gradient_checkpointing(
  14531. struct ggml_context * ctx,
  14532. struct ggml_cgraph * gf,
  14533. struct ggml_cgraph * gb,
  14534. struct ggml_cgraph * gb_tmp,
  14535. struct ggml_tensor * * checkpoints,
  14536. int n_checkpoints) {
  14537. ggml_graph_cpy(gf, gb_tmp);
  14538. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14539. if (n_checkpoints <= 0) {
  14540. ggml_graph_cpy(gb_tmp, gb);
  14541. return;
  14542. }
  14543. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14544. // insert checkpoints in replacements
  14545. for (int i = 0; i < n_checkpoints; ++i) {
  14546. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14547. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14548. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14549. replacements->set.keys[k] = checkpoints[i];
  14550. replacements->vals[k] = checkpoints[i];
  14551. }
  14552. ggml_graph_cpy(gf, gb);
  14553. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14554. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14555. // by recomputing them from checkpoints
  14556. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14557. struct ggml_tensor * node = gb_tmp->nodes[i];
  14558. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14559. // insert new tensors recomputing src, reusing already made replacements,
  14560. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14561. // recurse for input tensors,
  14562. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14563. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14564. }
  14565. // insert rewritten backward node with replacements made into resulting backward graph gb
  14566. ggml_build_forward_expand(gb, node);
  14567. }
  14568. ggml_hash_map_free(replacements);
  14569. }
  14570. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14571. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14572. if (ggml_hash_contains(zero_table, a)) {
  14573. return b;
  14574. } else {
  14575. return ggml_add_impl(ctx, a, b, false);
  14576. }
  14577. }
  14578. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14579. if (ggml_hash_contains(zero_table, a)) {
  14580. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14581. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14582. } else {
  14583. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14584. }
  14585. }
  14586. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14587. if (ggml_hash_contains(zero_table, a)) {
  14588. return ggml_repeat(ctx, b, a);
  14589. } else {
  14590. return ggml_add1_impl(ctx, a, b, false);
  14591. }
  14592. }
  14593. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14594. if (ggml_hash_contains(zero_table, a)) {
  14595. return ggml_neg(ctx, b);
  14596. } else {
  14597. return ggml_sub_impl(ctx, a, b, false);
  14598. }
  14599. }
  14600. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14601. struct ggml_tensor * src0 = tensor->src[0];
  14602. struct ggml_tensor * src1 = tensor->src[1];
  14603. switch (tensor->op) {
  14604. case GGML_OP_DUP:
  14605. {
  14606. if (src0->grad) {
  14607. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14608. }
  14609. } break;
  14610. case GGML_OP_ADD:
  14611. {
  14612. if (src0->grad) {
  14613. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14614. }
  14615. if (src1->grad) {
  14616. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14617. }
  14618. } break;
  14619. case GGML_OP_ADD1:
  14620. {
  14621. if (src0->grad) {
  14622. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14623. }
  14624. if (src1->grad) {
  14625. src1->grad = ggml_add_or_set(ctx,
  14626. src1->grad,
  14627. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14628. zero_table);
  14629. }
  14630. } break;
  14631. case GGML_OP_ACC:
  14632. {
  14633. if (src0->grad) {
  14634. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14635. }
  14636. if (src1->grad) {
  14637. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14638. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14639. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14640. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14641. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14642. tensor->grad,
  14643. src1->grad->ne[0],
  14644. src1->grad->ne[1],
  14645. src1->grad->ne[2],
  14646. src1->grad->ne[3],
  14647. nb1, nb2, nb3, offset);
  14648. src1->grad =
  14649. ggml_add_or_set(ctx,
  14650. src1->grad,
  14651. ggml_reshape(ctx,
  14652. ggml_cont(ctx, tensor_grad_view),
  14653. src1->grad),
  14654. zero_table);
  14655. }
  14656. } break;
  14657. case GGML_OP_SUB:
  14658. {
  14659. if (src0->grad) {
  14660. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14661. }
  14662. if (src1->grad) {
  14663. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14664. }
  14665. } break;
  14666. case GGML_OP_MUL:
  14667. {
  14668. if (src0->grad) {
  14669. src0->grad =
  14670. ggml_add_or_set(ctx,
  14671. src0->grad,
  14672. ggml_mul(ctx, src1, tensor->grad),
  14673. zero_table);
  14674. }
  14675. if (src1->grad) {
  14676. src1->grad =
  14677. ggml_add_or_set(ctx,
  14678. src1->grad,
  14679. ggml_mul(ctx, src0, tensor->grad),
  14680. zero_table);
  14681. }
  14682. } break;
  14683. case GGML_OP_DIV:
  14684. {
  14685. if (src0->grad) {
  14686. src0->grad =
  14687. ggml_add_or_set(ctx,
  14688. src0->grad,
  14689. ggml_div(ctx, tensor->grad, src1),
  14690. zero_table);
  14691. }
  14692. if (src1->grad) {
  14693. src1->grad =
  14694. ggml_sub_or_set(ctx,
  14695. src1->grad,
  14696. ggml_mul(ctx,
  14697. tensor->grad,
  14698. ggml_div(ctx, tensor, src1)),
  14699. zero_table);
  14700. }
  14701. } break;
  14702. case GGML_OP_SQR:
  14703. {
  14704. if (src0->grad) {
  14705. src0->grad =
  14706. ggml_add_or_set(ctx,
  14707. src0->grad,
  14708. ggml_scale(ctx,
  14709. ggml_mul(ctx, src0, tensor->grad),
  14710. 2.0f),
  14711. zero_table);
  14712. }
  14713. } break;
  14714. case GGML_OP_SQRT:
  14715. {
  14716. if (src0->grad) {
  14717. src0->grad =
  14718. ggml_add_or_set(ctx,
  14719. src0->grad,
  14720. ggml_scale(ctx,
  14721. ggml_div(ctx,
  14722. tensor->grad,
  14723. tensor),
  14724. 0.5f),
  14725. zero_table);
  14726. }
  14727. } break;
  14728. case GGML_OP_LOG:
  14729. {
  14730. if (src0->grad) {
  14731. src0->grad =
  14732. ggml_add_or_set(ctx,
  14733. src0->grad,
  14734. ggml_div(ctx,
  14735. tensor->grad,
  14736. src0),
  14737. zero_table);
  14738. }
  14739. } break;
  14740. case GGML_OP_SUM:
  14741. {
  14742. if (src0->grad) {
  14743. src0->grad =
  14744. ggml_add1_or_set(ctx,
  14745. src0->grad,
  14746. tensor->grad,
  14747. zero_table);
  14748. }
  14749. } break;
  14750. case GGML_OP_SUM_ROWS:
  14751. {
  14752. if (src0->grad) {
  14753. src0->grad =
  14754. ggml_add_or_set(ctx,
  14755. src0->grad,
  14756. ggml_repeat(ctx,
  14757. tensor->grad,
  14758. src0->grad),
  14759. zero_table);
  14760. }
  14761. } break;
  14762. case GGML_OP_MEAN:
  14763. case GGML_OP_ARGMAX:
  14764. {
  14765. GGML_ASSERT(false); // TODO: implement
  14766. } break;
  14767. case GGML_OP_REPEAT:
  14768. {
  14769. // necessary for llama
  14770. if (src0->grad) {
  14771. src0->grad = ggml_add_or_set(ctx,
  14772. src0->grad,
  14773. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14774. zero_table);
  14775. }
  14776. } break;
  14777. case GGML_OP_REPEAT_BACK:
  14778. {
  14779. if (src0->grad) {
  14780. // TODO: test this
  14781. src0->grad = ggml_add_or_set(ctx,
  14782. src0->grad,
  14783. ggml_repeat(ctx, tensor->grad, src0->grad),
  14784. zero_table);
  14785. }
  14786. } break;
  14787. case GGML_OP_CONCAT:
  14788. {
  14789. GGML_ASSERT(false); // TODO: implement
  14790. } break;
  14791. case GGML_OP_SILU_BACK:
  14792. {
  14793. GGML_ASSERT(false); // TODO: not implemented
  14794. } break;
  14795. case GGML_OP_NORM:
  14796. {
  14797. GGML_ASSERT(false); // TODO: not implemented
  14798. } break;
  14799. case GGML_OP_RMS_NORM:
  14800. {
  14801. // necessary for llama
  14802. if (src0->grad) {
  14803. float eps;
  14804. memcpy(&eps, tensor->op_params, sizeof(float));
  14805. src0->grad = ggml_add_or_set(ctx,
  14806. src0->grad,
  14807. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14808. zero_table);
  14809. }
  14810. } break;
  14811. case GGML_OP_RMS_NORM_BACK:
  14812. {
  14813. GGML_ASSERT(false); // TODO: not implemented
  14814. } break;
  14815. case GGML_OP_GROUP_NORM:
  14816. {
  14817. GGML_ASSERT(false); // TODO: not implemented
  14818. } break;
  14819. case GGML_OP_MUL_MAT:
  14820. {
  14821. // https://cs231n.github.io/optimization-2/#staged
  14822. // # forward pass
  14823. // s0 = np.random.randn(5, 10)
  14824. // s1 = np.random.randn(10, 3)
  14825. // t = s0.dot(s1)
  14826. // # now suppose we had the gradient on t from above in the circuit
  14827. // dt = np.random.randn(*t.shape) # same shape as t
  14828. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14829. // ds1 = t.T.dot(dt)
  14830. // tensor.shape [m,p,qq,rr]
  14831. // src0.shape [n,m,q1,r1]
  14832. // src1.shape [n,p,qq,rr]
  14833. // necessary for llama
  14834. if (src0->grad) {
  14835. struct ggml_tensor * s1_tg =
  14836. ggml_out_prod(ctx, // [n,m,qq,rr]
  14837. src1, // [n,p,qq,rr]
  14838. tensor->grad); // [m,p,qq,rr]
  14839. const int64_t qq = s1_tg->ne[2];
  14840. const int64_t rr = s1_tg->ne[3];
  14841. const int64_t q1 = src0->ne[2];
  14842. const int64_t r1 = src0->ne[3];
  14843. const bool ne2_broadcasted = qq > q1;
  14844. const bool ne3_broadcasted = rr > r1;
  14845. if (ne2_broadcasted || ne3_broadcasted) {
  14846. // sum broadcast repetitions of s1_tg into shape of src0
  14847. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14848. }
  14849. src0->grad =
  14850. ggml_add_or_set(ctx,
  14851. src0->grad, // [n,m,q1,r1]
  14852. s1_tg, // [n,m,q1,r1]
  14853. zero_table);
  14854. }
  14855. if (src1->grad) {
  14856. src1->grad =
  14857. ggml_add_or_set(ctx,
  14858. src1->grad, // [n,p,qq,rr]
  14859. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14860. // ggml_cont(ctx, // [m,n,q1,r1]
  14861. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14862. // tensor->grad), // [m,p,qq,rr]
  14863. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14864. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14865. // // and then use ggml_out_prod
  14866. ggml_out_prod(ctx, // [n,p,qq,rr]
  14867. src0, // [n,m,q1,r1]
  14868. ggml_transpose(ctx, // [p,m,qq,rr]
  14869. tensor->grad)), // [m,p,qq,rr]
  14870. zero_table);
  14871. }
  14872. } break;
  14873. case GGML_OP_MUL_MAT_ID:
  14874. {
  14875. GGML_ASSERT(false); // TODO: not implemented
  14876. } break;
  14877. case GGML_OP_OUT_PROD:
  14878. {
  14879. GGML_ASSERT(false); // TODO: not implemented
  14880. } break;
  14881. case GGML_OP_SCALE:
  14882. {
  14883. // necessary for llama
  14884. if (src0->grad) {
  14885. float s;
  14886. memcpy(&s, tensor->op_params, sizeof(float));
  14887. src0->grad =
  14888. ggml_add_or_set(ctx,
  14889. src0->grad,
  14890. ggml_scale_impl(ctx, tensor->grad, s, false),
  14891. zero_table);
  14892. }
  14893. } break;
  14894. case GGML_OP_SET:
  14895. {
  14896. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14897. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14898. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14899. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14900. struct ggml_tensor * tensor_grad_view = NULL;
  14901. if (src0->grad || src1->grad) {
  14902. GGML_ASSERT(src0->type == tensor->type);
  14903. GGML_ASSERT(tensor->grad->type == tensor->type);
  14904. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14905. tensor_grad_view = ggml_view_4d(ctx,
  14906. tensor->grad,
  14907. src1->grad->ne[0],
  14908. src1->grad->ne[1],
  14909. src1->grad->ne[2],
  14910. src1->grad->ne[3],
  14911. nb1, nb2, nb3, offset);
  14912. }
  14913. if (src0->grad) {
  14914. src0->grad = ggml_add_or_set(ctx,
  14915. src0->grad,
  14916. ggml_acc_impl(ctx,
  14917. tensor->grad,
  14918. ggml_neg(ctx, tensor_grad_view),
  14919. nb1, nb2, nb3, offset, false),
  14920. zero_table);
  14921. }
  14922. if (src1->grad) {
  14923. src1->grad =
  14924. ggml_add_or_set(ctx,
  14925. src1->grad,
  14926. ggml_reshape(ctx,
  14927. ggml_cont(ctx, tensor_grad_view),
  14928. src1->grad),
  14929. zero_table);
  14930. }
  14931. } break;
  14932. case GGML_OP_CPY:
  14933. {
  14934. // necessary for llama
  14935. // cpy overwrites value of src1 by src0 and returns view(src1)
  14936. // the overwriting is mathematically equivalent to:
  14937. // tensor = src0 * 1 + src1 * 0
  14938. if (src0->grad) {
  14939. // dsrc0 = dtensor * 1
  14940. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14941. }
  14942. if (src1->grad) {
  14943. // dsrc1 = dtensor * 0 -> noop
  14944. }
  14945. } break;
  14946. case GGML_OP_CONT:
  14947. {
  14948. // same as cpy
  14949. if (src0->grad) {
  14950. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14951. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14952. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14953. }
  14954. } break;
  14955. case GGML_OP_RESHAPE:
  14956. {
  14957. // necessary for llama
  14958. if (src0->grad) {
  14959. src0->grad =
  14960. ggml_add_or_set(ctx, src0->grad,
  14961. ggml_reshape(ctx,
  14962. ggml_is_contiguous(tensor->grad)
  14963. ? tensor->grad
  14964. : ggml_cont(ctx, tensor->grad),
  14965. src0->grad),
  14966. zero_table);
  14967. }
  14968. } break;
  14969. case GGML_OP_VIEW:
  14970. {
  14971. // necessary for llama
  14972. if (src0->grad) {
  14973. size_t offset;
  14974. memcpy(&offset, tensor->op_params, sizeof(offset));
  14975. size_t nb1 = tensor->nb[1];
  14976. size_t nb2 = tensor->nb[2];
  14977. size_t nb3 = tensor->nb[3];
  14978. if (src0->type != src0->grad->type) {
  14979. // gradient is typically F32, but src0 could be other type
  14980. size_t ng = ggml_element_size(src0->grad);
  14981. size_t n0 = ggml_element_size(src0);
  14982. GGML_ASSERT(offset % n0 == 0);
  14983. GGML_ASSERT(nb1 % n0 == 0);
  14984. GGML_ASSERT(nb2 % n0 == 0);
  14985. GGML_ASSERT(nb3 % n0 == 0);
  14986. offset = (offset / n0) * ng;
  14987. nb1 = (nb1 / n0) * ng;
  14988. nb2 = (nb2 / n0) * ng;
  14989. nb3 = (nb3 / n0) * ng;
  14990. }
  14991. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14992. }
  14993. } break;
  14994. case GGML_OP_PERMUTE:
  14995. {
  14996. // necessary for llama
  14997. if (src0->grad) {
  14998. int32_t * axes = (int32_t *) tensor->op_params;
  14999. int axis0 = axes[0] & 0x3;
  15000. int axis1 = axes[1] & 0x3;
  15001. int axis2 = axes[2] & 0x3;
  15002. int axis3 = axes[3] & 0x3;
  15003. int axes_backward[4] = {0,0,0,0};
  15004. axes_backward[axis0] = 0;
  15005. axes_backward[axis1] = 1;
  15006. axes_backward[axis2] = 2;
  15007. axes_backward[axis3] = 3;
  15008. src0->grad =
  15009. ggml_add_or_set(ctx, src0->grad,
  15010. ggml_permute(ctx,
  15011. tensor->grad,
  15012. axes_backward[0],
  15013. axes_backward[1],
  15014. axes_backward[2],
  15015. axes_backward[3]),
  15016. zero_table);
  15017. }
  15018. } break;
  15019. case GGML_OP_TRANSPOSE:
  15020. {
  15021. // necessary for llama
  15022. if (src0->grad) {
  15023. src0->grad =
  15024. ggml_add_or_set(ctx, src0->grad,
  15025. ggml_transpose(ctx, tensor->grad),
  15026. zero_table);
  15027. }
  15028. } break;
  15029. case GGML_OP_GET_ROWS:
  15030. {
  15031. // necessary for llama (only for tokenizer)
  15032. if (src0->grad) {
  15033. src0->grad =
  15034. ggml_add_or_set(ctx, src0->grad,
  15035. // last ggml_get_rows_back argument src0->grad is only
  15036. // necessary to setup correct output shape
  15037. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15038. zero_table);
  15039. }
  15040. if (src1->grad) {
  15041. // noop
  15042. }
  15043. } break;
  15044. case GGML_OP_GET_ROWS_BACK:
  15045. {
  15046. GGML_ASSERT(false); // TODO: not implemented
  15047. } break;
  15048. case GGML_OP_DIAG:
  15049. {
  15050. GGML_ASSERT(false); // TODO: not implemented
  15051. } break;
  15052. case GGML_OP_DIAG_MASK_INF:
  15053. {
  15054. // necessary for llama
  15055. if (src0->grad) {
  15056. const int n_past = ((int32_t *) tensor->op_params)[0];
  15057. src0->grad =
  15058. ggml_add_or_set(ctx, src0->grad,
  15059. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15060. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15061. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15062. zero_table);
  15063. }
  15064. } break;
  15065. case GGML_OP_DIAG_MASK_ZERO:
  15066. {
  15067. // necessary for llama
  15068. if (src0->grad) {
  15069. const int n_past = ((int32_t *) tensor->op_params)[0];
  15070. src0->grad =
  15071. ggml_add_or_set(ctx, src0->grad,
  15072. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15073. zero_table);
  15074. }
  15075. } break;
  15076. case GGML_OP_SOFT_MAX:
  15077. {
  15078. // necessary for llama
  15079. if (src0->grad) {
  15080. src0->grad =
  15081. ggml_add_or_set(ctx, src0->grad,
  15082. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15083. zero_table);
  15084. }
  15085. } break;
  15086. case GGML_OP_SOFT_MAX_BACK:
  15087. {
  15088. GGML_ASSERT(false); // TODO: not implemented
  15089. } break;
  15090. case GGML_OP_ROPE:
  15091. {
  15092. // necessary for llama
  15093. if (src0->grad) {
  15094. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15095. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15096. const int mode = ((int32_t *) tensor->op_params)[2];
  15097. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15098. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15099. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15100. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15101. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15102. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15103. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15104. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15105. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15106. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15107. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15108. src0->grad = ggml_add_or_set(ctx,
  15109. src0->grad,
  15110. ggml_rope_back(ctx,
  15111. tensor->grad,
  15112. src1,
  15113. n_dims,
  15114. mode,
  15115. n_ctx,
  15116. n_orig_ctx,
  15117. freq_base,
  15118. freq_scale,
  15119. ext_factor,
  15120. attn_factor,
  15121. beta_fast,
  15122. beta_slow,
  15123. xpos_base,
  15124. xpos_down),
  15125. zero_table);
  15126. }
  15127. } break;
  15128. case GGML_OP_ROPE_BACK:
  15129. {
  15130. if (src0->grad) {
  15131. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15132. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15133. const int mode = ((int32_t *) tensor->op_params)[2];
  15134. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15135. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15136. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15137. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15138. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15139. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15140. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15141. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15142. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15143. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15144. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15145. src0->grad = ggml_add_or_set(ctx,
  15146. src0->grad,
  15147. ggml_rope_impl(ctx,
  15148. tensor->grad,
  15149. src1,
  15150. n_dims,
  15151. mode,
  15152. n_ctx,
  15153. n_orig_ctx,
  15154. freq_base,
  15155. freq_scale,
  15156. ext_factor,
  15157. attn_factor,
  15158. beta_fast,
  15159. beta_slow,
  15160. xpos_base,
  15161. xpos_down,
  15162. false),
  15163. zero_table);
  15164. }
  15165. } break;
  15166. case GGML_OP_CLAMP:
  15167. {
  15168. GGML_ASSERT(false); // TODO: not implemented
  15169. } break;
  15170. case GGML_OP_CONV_TRANSPOSE_1D:
  15171. {
  15172. GGML_ASSERT(false); // TODO: not implemented
  15173. } break;
  15174. case GGML_OP_IM2COL:
  15175. {
  15176. GGML_ASSERT(false); // TODO: not implemented
  15177. } break;
  15178. case GGML_OP_CONV_TRANSPOSE_2D:
  15179. {
  15180. GGML_ASSERT(false); // TODO: not implemented
  15181. } break;
  15182. case GGML_OP_POOL_1D:
  15183. {
  15184. GGML_ASSERT(false); // TODO: not implemented
  15185. } break;
  15186. case GGML_OP_POOL_2D:
  15187. {
  15188. GGML_ASSERT(false); // TODO: not implemented
  15189. } break;
  15190. case GGML_OP_UPSCALE:
  15191. {
  15192. GGML_ASSERT(false); // TODO: not implemented
  15193. } break;
  15194. case GGML_OP_PAD:
  15195. {
  15196. GGML_ASSERT(false); // TODO: not implemented
  15197. } break;
  15198. case GGML_OP_ARANGE:
  15199. {
  15200. GGML_ASSERT(false); // TODO: not implemented
  15201. } break;
  15202. case GGML_OP_TIMESTEP_EMBEDDING:
  15203. {
  15204. GGML_ASSERT(false); // TODO: not implemented
  15205. } break;
  15206. case GGML_OP_ARGSORT:
  15207. {
  15208. GGML_ASSERT(false); // TODO: not implemented
  15209. } break;
  15210. case GGML_OP_LEAKY_RELU:
  15211. {
  15212. GGML_ASSERT(false); // TODO: not implemented
  15213. } break;
  15214. case GGML_OP_FLASH_ATTN:
  15215. case GGML_OP_FLASH_ATTN_EXT:
  15216. {
  15217. struct ggml_tensor * flash_grad = NULL;
  15218. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15219. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15220. GGML_ASSERT(t == 0 || t == 1);
  15221. bool masked = t != 0;
  15222. flash_grad =
  15223. ggml_flash_attn_back(ctx,
  15224. src0,
  15225. src1,
  15226. tensor->src[2],
  15227. tensor->grad,
  15228. masked);
  15229. }
  15230. struct ggml_tensor * src2 = tensor->src[2];
  15231. const int64_t elem_q = ggml_nelements(src0);
  15232. const int64_t elem_k = ggml_nelements(src1);
  15233. const int64_t elem_v = ggml_nelements(src2);
  15234. enum ggml_type result_type = flash_grad->type;
  15235. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15236. const size_t tsize = ggml_type_size(result_type);
  15237. const size_t offs_q = 0;
  15238. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15239. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15240. if (src0->grad) {
  15241. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15242. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15243. src0->grad = ggml_add_or_set(ctx,
  15244. src0->grad,
  15245. grad_q,
  15246. zero_table);
  15247. }
  15248. if (src1->grad) {
  15249. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15250. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15251. src1->grad = ggml_add_or_set(ctx,
  15252. src1->grad,
  15253. grad_k,
  15254. zero_table);
  15255. }
  15256. if (src2->grad) {
  15257. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15258. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15259. src2->grad = ggml_add_or_set(ctx,
  15260. src2->grad,
  15261. grad_v,
  15262. zero_table);
  15263. }
  15264. } break;
  15265. case GGML_OP_FLASH_FF:
  15266. {
  15267. GGML_ASSERT(false); // not supported
  15268. } break;
  15269. case GGML_OP_FLASH_ATTN_BACK:
  15270. {
  15271. GGML_ASSERT(false); // not supported
  15272. } break;
  15273. case GGML_OP_SSM_CONV:
  15274. case GGML_OP_SSM_SCAN:
  15275. {
  15276. GGML_ASSERT(false); // TODO: not implemented
  15277. } break;
  15278. case GGML_OP_WIN_PART:
  15279. case GGML_OP_WIN_UNPART:
  15280. case GGML_OP_UNARY:
  15281. {
  15282. switch (ggml_get_unary_op(tensor)) {
  15283. case GGML_UNARY_OP_ABS:
  15284. {
  15285. if (src0->grad) {
  15286. src0->grad =
  15287. ggml_add_or_set(ctx,
  15288. src0->grad,
  15289. ggml_mul(ctx,
  15290. ggml_sgn(ctx, src0),
  15291. tensor->grad),
  15292. zero_table);
  15293. }
  15294. } break;
  15295. case GGML_UNARY_OP_SGN:
  15296. {
  15297. if (src0->grad) {
  15298. // noop
  15299. }
  15300. } break;
  15301. case GGML_UNARY_OP_NEG:
  15302. {
  15303. if (src0->grad) {
  15304. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15305. }
  15306. } break;
  15307. case GGML_UNARY_OP_STEP:
  15308. {
  15309. if (src0->grad) {
  15310. // noop
  15311. }
  15312. } break;
  15313. case GGML_UNARY_OP_TANH:
  15314. {
  15315. GGML_ASSERT(false); // TODO: not implemented
  15316. } break;
  15317. case GGML_UNARY_OP_ELU:
  15318. {
  15319. GGML_ASSERT(false); // TODO: not implemented
  15320. } break;
  15321. case GGML_UNARY_OP_RELU:
  15322. {
  15323. if (src0->grad) {
  15324. src0->grad = ggml_add_or_set(ctx,
  15325. src0->grad,
  15326. ggml_mul(ctx,
  15327. ggml_step(ctx, src0),
  15328. tensor->grad),
  15329. zero_table);
  15330. }
  15331. } break;
  15332. case GGML_UNARY_OP_SIGMOID:
  15333. {
  15334. GGML_ASSERT(false); // TODO: not implemented
  15335. } break;
  15336. case GGML_UNARY_OP_GELU:
  15337. {
  15338. GGML_ASSERT(false); // TODO: not implemented
  15339. } break;
  15340. case GGML_UNARY_OP_GELU_QUICK:
  15341. {
  15342. GGML_ASSERT(false); // TODO: not implemented
  15343. } break;
  15344. case GGML_UNARY_OP_SILU:
  15345. {
  15346. // necessary for llama
  15347. if (src0->grad) {
  15348. src0->grad = ggml_add_or_set(ctx,
  15349. src0->grad,
  15350. ggml_silu_back(ctx, src0, tensor->grad),
  15351. zero_table);
  15352. }
  15353. } break;
  15354. default:
  15355. GGML_ASSERT(false);
  15356. }
  15357. } break;
  15358. case GGML_OP_GET_REL_POS:
  15359. case GGML_OP_ADD_REL_POS:
  15360. case GGML_OP_MAP_UNARY:
  15361. case GGML_OP_MAP_BINARY:
  15362. case GGML_OP_MAP_CUSTOM1_F32:
  15363. case GGML_OP_MAP_CUSTOM2_F32:
  15364. case GGML_OP_MAP_CUSTOM3_F32:
  15365. case GGML_OP_MAP_CUSTOM1:
  15366. case GGML_OP_MAP_CUSTOM2:
  15367. case GGML_OP_MAP_CUSTOM3:
  15368. {
  15369. GGML_ASSERT(false); // not supported
  15370. } break;
  15371. case GGML_OP_CROSS_ENTROPY_LOSS:
  15372. {
  15373. if (src0->grad) {
  15374. src0->grad = ggml_add_or_set(ctx,
  15375. src0->grad,
  15376. ggml_cross_entropy_loss_back(ctx,
  15377. src0,
  15378. src1,
  15379. tensor->grad),
  15380. zero_table);
  15381. }
  15382. } break;
  15383. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15384. {
  15385. GGML_ASSERT(false); // not supported
  15386. } break;
  15387. case GGML_OP_NONE:
  15388. {
  15389. // nop
  15390. } break;
  15391. case GGML_OP_COUNT:
  15392. {
  15393. GGML_ASSERT(false);
  15394. } break;
  15395. }
  15396. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15397. if (tensor->src[i] && tensor->src[i]->grad) {
  15398. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15399. }
  15400. }
  15401. }
  15402. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15403. if (node->grad == NULL) {
  15404. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15405. // it can also happen during forward pass, if the user performs computations with constants
  15406. if (node->op != GGML_OP_NONE) {
  15407. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15408. }
  15409. }
  15410. // check if already visited
  15411. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15412. return;
  15413. }
  15414. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15415. const int k =
  15416. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15417. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15418. /* unknown order, just fall back to using i*/ i;
  15419. if (node->src[k]) {
  15420. ggml_visit_parents(cgraph, node->src[k]);
  15421. }
  15422. }
  15423. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15424. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15425. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15426. if (strlen(node->name) == 0) {
  15427. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15428. }
  15429. cgraph->leafs[cgraph->n_leafs] = node;
  15430. cgraph->n_leafs++;
  15431. } else {
  15432. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15433. if (strlen(node->name) == 0) {
  15434. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15435. }
  15436. cgraph->nodes[cgraph->n_nodes] = node;
  15437. if (cgraph->grads) {
  15438. cgraph->grads[cgraph->n_nodes] = node->grad;
  15439. }
  15440. cgraph->n_nodes++;
  15441. }
  15442. }
  15443. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15444. if (!expand) {
  15445. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15446. ggml_graph_clear(cgraph);
  15447. }
  15448. const int n0 = cgraph->n_nodes;
  15449. UNUSED(n0);
  15450. ggml_visit_parents(cgraph, tensor);
  15451. const int n_new = cgraph->n_nodes - n0;
  15452. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15453. if (n_new > 0) {
  15454. // the last added node should always be starting point
  15455. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15456. }
  15457. }
  15458. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15459. ggml_build_forward_impl(cgraph, tensor, true);
  15460. }
  15461. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15462. GGML_ASSERT(gf->n_nodes > 0);
  15463. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15464. if (keep) {
  15465. for (int i = 0; i < gf->n_nodes; i++) {
  15466. struct ggml_tensor * node = gf->nodes[i];
  15467. if (node->grad) {
  15468. node->grad = ggml_dup_tensor(ctx, node);
  15469. gf->grads[i] = node->grad;
  15470. }
  15471. }
  15472. }
  15473. // remember original gradients which start with zero values
  15474. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15475. for (int i = 0; i < gf->n_nodes; i++) {
  15476. if (gf->grads[i]) {
  15477. ggml_hash_insert(zero_table, gf->grads[i]);
  15478. }
  15479. }
  15480. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15481. struct ggml_tensor * node = gf->nodes[i];
  15482. // inplace operations to add gradients are not created by ggml_compute_backward
  15483. // use allocator to automatically make inplace operations
  15484. if (node->grad) {
  15485. ggml_compute_backward(ctx, node, zero_table);
  15486. }
  15487. }
  15488. for (int i = 0; i < gf->n_nodes; i++) {
  15489. struct ggml_tensor * node = gf->nodes[i];
  15490. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15491. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15492. ggml_build_forward_expand(gb, node->grad);
  15493. }
  15494. }
  15495. ggml_hash_set_free(zero_table);
  15496. }
  15497. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15498. size_t nbytes = sizeof(struct ggml_cgraph);
  15499. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15500. if (grads) {
  15501. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15502. }
  15503. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15504. return nbytes;
  15505. }
  15506. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15507. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15508. }
  15509. size_t ggml_graph_overhead(void) {
  15510. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15511. }
  15512. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15513. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15514. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15515. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15516. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15517. size_t hash_size = ggml_hash_size(size * 2);
  15518. struct ggml_tensor ** nodes_ptr = data_start;
  15519. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15520. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15521. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15522. // check that we allocated the correct amount of memory
  15523. assert(obj_size == (size_t) (
  15524. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15525. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15526. *cgraph = (struct ggml_cgraph) {
  15527. /*.size =*/ size,
  15528. /*.n_nodes =*/ 0,
  15529. /*.n_leafs =*/ 0,
  15530. /*.nodes =*/ nodes_ptr,
  15531. /*.grads =*/ grads_ptr,
  15532. /*.leafs =*/ leafs_ptr,
  15533. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15534. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15535. /*.perf_runs =*/ 0,
  15536. /*.perf_cycles =*/ 0,
  15537. /*.perf_time_us =*/ 0,
  15538. };
  15539. return cgraph;
  15540. }
  15541. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15542. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15543. }
  15544. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15545. struct ggml_cgraph cgraph = {
  15546. /*.size =*/ 0,
  15547. /*.n_nodes =*/ i1 - i0,
  15548. /*.n_leafs =*/ 0,
  15549. /*.nodes =*/ cgraph0->nodes + i0,
  15550. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15551. /*.leafs =*/ NULL,
  15552. /*.hash_table =*/ { 0, NULL },
  15553. /*.order =*/ cgraph0->order,
  15554. /*.perf_runs =*/ 0,
  15555. /*.perf_cycles =*/ 0,
  15556. /*.perf_time_us =*/ 0,
  15557. };
  15558. return cgraph;
  15559. }
  15560. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15561. GGML_ASSERT(dst->size >= src->n_leafs);
  15562. GGML_ASSERT(dst->size >= src->n_nodes);
  15563. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15564. dst->n_leafs = src->n_leafs;
  15565. dst->n_nodes = src->n_nodes;
  15566. dst->order = src->order;
  15567. for (int i = 0; i < src->n_leafs; ++i) {
  15568. dst->leafs[i] = src->leafs[i];
  15569. }
  15570. for (int i = 0; i < src->n_nodes; ++i) {
  15571. dst->nodes[i] = src->nodes[i];
  15572. }
  15573. if (src->grads) {
  15574. GGML_ASSERT(dst->grads != NULL);
  15575. for (int i = 0; i < src->n_nodes; ++i) {
  15576. dst->grads[i] = src->grads[i];
  15577. }
  15578. }
  15579. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15580. if (src->visited_hash_table.keys[i]) {
  15581. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15582. }
  15583. }
  15584. }
  15585. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15586. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15587. ggml_graph_cpy(cgraph, result);
  15588. return result;
  15589. }
  15590. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15591. GGML_ASSERT(cgraph->grads != NULL);
  15592. for (int i = 0; i < cgraph->n_nodes; i++) {
  15593. struct ggml_tensor * grad = cgraph->grads[i];
  15594. if (grad) {
  15595. ggml_set_zero(grad);
  15596. }
  15597. }
  15598. }
  15599. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15600. cgraph->n_leafs = 0;
  15601. cgraph->n_nodes = 0;
  15602. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15603. }
  15604. //
  15605. // thread data
  15606. //
  15607. // synchronization is done via busy loops
  15608. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15609. //
  15610. #ifdef __APPLE__
  15611. //#include <os/lock.h>
  15612. //
  15613. //typedef os_unfair_lock ggml_lock_t;
  15614. //
  15615. //#define ggml_lock_init(x) UNUSED(x)
  15616. //#define ggml_lock_destroy(x) UNUSED(x)
  15617. //#define ggml_lock_lock os_unfair_lock_lock
  15618. //#define ggml_lock_unlock os_unfair_lock_unlock
  15619. //
  15620. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15621. typedef int ggml_lock_t;
  15622. #define ggml_lock_init(x) UNUSED(x)
  15623. #define ggml_lock_destroy(x) UNUSED(x)
  15624. #define ggml_lock_lock(x) UNUSED(x)
  15625. #define ggml_lock_unlock(x) UNUSED(x)
  15626. #define GGML_LOCK_INITIALIZER 0
  15627. typedef pthread_t ggml_thread_t;
  15628. #define ggml_thread_create pthread_create
  15629. #define ggml_thread_join pthread_join
  15630. #else
  15631. //typedef pthread_spinlock_t ggml_lock_t;
  15632. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15633. //#define ggml_lock_destroy pthread_spin_destroy
  15634. //#define ggml_lock_lock pthread_spin_lock
  15635. //#define ggml_lock_unlock pthread_spin_unlock
  15636. typedef int ggml_lock_t;
  15637. #define ggml_lock_init(x) UNUSED(x)
  15638. #define ggml_lock_destroy(x) UNUSED(x)
  15639. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15640. #define ggml_lock_lock(x) _mm_pause()
  15641. #else
  15642. #define ggml_lock_lock(x) UNUSED(x)
  15643. #endif
  15644. #define ggml_lock_unlock(x) UNUSED(x)
  15645. #define GGML_LOCK_INITIALIZER 0
  15646. typedef pthread_t ggml_thread_t;
  15647. #define ggml_thread_create pthread_create
  15648. #define ggml_thread_join pthread_join
  15649. #endif
  15650. // Android's libc implementation "bionic" does not support setting affinity
  15651. #if defined(__gnu_linux__)
  15652. static void set_numa_thread_affinity(int thread_n) {
  15653. if (!ggml_is_numa()) {
  15654. return;
  15655. }
  15656. int node_num;
  15657. int rv;
  15658. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15659. switch(g_state.numa.numa_strategy) {
  15660. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15661. // run thread on node_num thread_n / (threads per node)
  15662. node_num = thread_n % g_state.numa.n_nodes;
  15663. break;
  15664. case GGML_NUMA_STRATEGY_ISOLATE:
  15665. // run thread on current_node
  15666. node_num = g_state.numa.current_node;
  15667. break;
  15668. case GGML_NUMA_STRATEGY_NUMACTL:
  15669. // use the cpuset that numactl gave us
  15670. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15671. if (rv) {
  15672. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15673. }
  15674. return;
  15675. default:
  15676. return;
  15677. }
  15678. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15679. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15680. CPU_ZERO_S(setsize, cpus);
  15681. for (size_t i = 0; i < node->n_cpus; ++i) {
  15682. CPU_SET_S(node->cpus[i], setsize, cpus);
  15683. }
  15684. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15685. if (rv) {
  15686. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15687. }
  15688. CPU_FREE(cpus);
  15689. }
  15690. static void clear_numa_thread_affinity(void) {
  15691. if (!ggml_is_numa()) {
  15692. return;
  15693. }
  15694. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15695. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15696. CPU_ZERO_S(setsize, cpus);
  15697. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15698. CPU_SET_S(i, setsize, cpus);
  15699. }
  15700. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15701. if (rv) {
  15702. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15703. }
  15704. CPU_FREE(cpus);
  15705. }
  15706. #else
  15707. // TODO: Windows etc.
  15708. // (the linux implementation may also work on BSD, someone should test)
  15709. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15710. static void clear_numa_thread_affinity(void) {}
  15711. #endif
  15712. struct ggml_compute_state_shared {
  15713. const struct ggml_cgraph * cgraph;
  15714. const struct ggml_cplan * cplan;
  15715. int64_t perf_node_start_cycles;
  15716. int64_t perf_node_start_time_us;
  15717. const int n_threads;
  15718. // synchronization primitives
  15719. atomic_int n_active; // num active threads
  15720. atomic_int node_n; // active graph node
  15721. atomic_int node_task; // active graph node task phase
  15722. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  15723. void * abort_callback_data;
  15724. };
  15725. struct ggml_compute_state {
  15726. ggml_thread_t thrd;
  15727. int ith;
  15728. struct ggml_compute_state_shared * shared;
  15729. enum ggml_status ec;
  15730. };
  15731. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15732. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15733. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15734. node->perf_runs++;
  15735. node->perf_cycles += cycles_cur;
  15736. node->perf_time_us += time_us_cur;
  15737. }
  15738. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15739. int n_tasks = 0;
  15740. if (ggml_is_empty(node)) {
  15741. // no need to multi-thread a no-op
  15742. n_tasks = 1;
  15743. return n_tasks;
  15744. }
  15745. switch (node->op) {
  15746. case GGML_OP_CPY:
  15747. case GGML_OP_DUP:
  15748. case GGML_OP_ADD:
  15749. case GGML_OP_ADD1:
  15750. case GGML_OP_ACC:
  15751. {
  15752. n_tasks = n_threads;
  15753. } break;
  15754. case GGML_OP_SUB:
  15755. case GGML_OP_SQR:
  15756. case GGML_OP_SQRT:
  15757. case GGML_OP_LOG:
  15758. case GGML_OP_SUM:
  15759. case GGML_OP_SUM_ROWS:
  15760. case GGML_OP_MEAN:
  15761. case GGML_OP_ARGMAX:
  15762. case GGML_OP_REPEAT:
  15763. case GGML_OP_REPEAT_BACK:
  15764. case GGML_OP_LEAKY_RELU:
  15765. {
  15766. n_tasks = 1;
  15767. } break;
  15768. case GGML_OP_UNARY:
  15769. switch (ggml_get_unary_op(node)) {
  15770. case GGML_UNARY_OP_ABS:
  15771. case GGML_UNARY_OP_SGN:
  15772. case GGML_UNARY_OP_NEG:
  15773. case GGML_UNARY_OP_STEP:
  15774. case GGML_UNARY_OP_TANH:
  15775. case GGML_UNARY_OP_ELU:
  15776. case GGML_UNARY_OP_RELU:
  15777. case GGML_UNARY_OP_SIGMOID:
  15778. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15779. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15780. {
  15781. n_tasks = 1;
  15782. } break;
  15783. case GGML_UNARY_OP_GELU:
  15784. case GGML_UNARY_OP_GELU_QUICK:
  15785. case GGML_UNARY_OP_SILU:
  15786. {
  15787. n_tasks = n_threads;
  15788. } break;
  15789. default:
  15790. GGML_ASSERT(false);
  15791. }
  15792. break;
  15793. case GGML_OP_SILU_BACK:
  15794. case GGML_OP_MUL:
  15795. case GGML_OP_DIV:
  15796. case GGML_OP_NORM:
  15797. case GGML_OP_RMS_NORM:
  15798. case GGML_OP_RMS_NORM_BACK:
  15799. case GGML_OP_GROUP_NORM:
  15800. case GGML_OP_CONCAT:
  15801. {
  15802. n_tasks = n_threads;
  15803. } break;
  15804. case GGML_OP_MUL_MAT:
  15805. {
  15806. n_tasks = n_threads;
  15807. // TODO: use different scheduling for different matrix sizes
  15808. //const int nr0 = ggml_nrows(node->src[0]);
  15809. //const int nr1 = ggml_nrows(node->src[1]);
  15810. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15811. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15812. } break;
  15813. case GGML_OP_MUL_MAT_ID:
  15814. {
  15815. n_tasks = n_threads;
  15816. } break;
  15817. case GGML_OP_OUT_PROD:
  15818. {
  15819. n_tasks = n_threads;
  15820. } break;
  15821. case GGML_OP_GET_ROWS:
  15822. {
  15823. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15824. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15825. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15826. } break;
  15827. case GGML_OP_SCALE:
  15828. case GGML_OP_SET:
  15829. case GGML_OP_CONT:
  15830. case GGML_OP_RESHAPE:
  15831. case GGML_OP_VIEW:
  15832. case GGML_OP_PERMUTE:
  15833. case GGML_OP_TRANSPOSE:
  15834. case GGML_OP_GET_ROWS_BACK:
  15835. case GGML_OP_DIAG:
  15836. {
  15837. n_tasks = 1;
  15838. } break;
  15839. case GGML_OP_DIAG_MASK_ZERO:
  15840. case GGML_OP_DIAG_MASK_INF:
  15841. case GGML_OP_SOFT_MAX_BACK:
  15842. case GGML_OP_ROPE:
  15843. case GGML_OP_ROPE_BACK:
  15844. case GGML_OP_ADD_REL_POS:
  15845. {
  15846. n_tasks = n_threads;
  15847. } break;
  15848. case GGML_OP_CLAMP:
  15849. {
  15850. n_tasks = 1; //TODO
  15851. } break;
  15852. case GGML_OP_SOFT_MAX:
  15853. {
  15854. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15855. } break;
  15856. case GGML_OP_CONV_TRANSPOSE_1D:
  15857. {
  15858. n_tasks = n_threads;
  15859. } break;
  15860. case GGML_OP_IM2COL:
  15861. {
  15862. n_tasks = n_threads;
  15863. } break;
  15864. case GGML_OP_CONV_TRANSPOSE_2D:
  15865. {
  15866. n_tasks = n_threads;
  15867. } break;
  15868. case GGML_OP_POOL_1D:
  15869. case GGML_OP_POOL_2D:
  15870. {
  15871. n_tasks = 1;
  15872. } break;
  15873. case GGML_OP_UPSCALE:
  15874. {
  15875. n_tasks = n_threads;
  15876. } break;
  15877. case GGML_OP_PAD:
  15878. {
  15879. n_tasks = n_threads;
  15880. } break;
  15881. case GGML_OP_ARANGE:
  15882. {
  15883. n_tasks = n_threads;
  15884. } break;
  15885. case GGML_OP_TIMESTEP_EMBEDDING:
  15886. {
  15887. n_tasks = n_threads;
  15888. } break;
  15889. case GGML_OP_ARGSORT:
  15890. {
  15891. n_tasks = n_threads;
  15892. } break;
  15893. case GGML_OP_FLASH_ATTN:
  15894. case GGML_OP_FLASH_ATTN_EXT:
  15895. {
  15896. n_tasks = n_threads;
  15897. } break;
  15898. case GGML_OP_FLASH_FF:
  15899. {
  15900. n_tasks = n_threads;
  15901. } break;
  15902. case GGML_OP_FLASH_ATTN_BACK:
  15903. {
  15904. n_tasks = n_threads;
  15905. } break;
  15906. case GGML_OP_SSM_CONV:
  15907. case GGML_OP_SSM_SCAN:
  15908. {
  15909. n_tasks = n_threads;
  15910. } break;
  15911. case GGML_OP_WIN_PART:
  15912. case GGML_OP_WIN_UNPART:
  15913. case GGML_OP_GET_REL_POS:
  15914. case GGML_OP_MAP_UNARY:
  15915. case GGML_OP_MAP_BINARY:
  15916. case GGML_OP_MAP_CUSTOM1_F32:
  15917. case GGML_OP_MAP_CUSTOM2_F32:
  15918. case GGML_OP_MAP_CUSTOM3_F32:
  15919. {
  15920. n_tasks = 1;
  15921. } break;
  15922. case GGML_OP_MAP_CUSTOM1:
  15923. {
  15924. struct ggml_map_custom1_op_params p;
  15925. memcpy(&p, node->op_params, sizeof(p));
  15926. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15927. n_tasks = n_threads;
  15928. } else {
  15929. n_tasks = MIN(p.n_tasks, n_threads);
  15930. }
  15931. } break;
  15932. case GGML_OP_MAP_CUSTOM2:
  15933. {
  15934. struct ggml_map_custom2_op_params p;
  15935. memcpy(&p, node->op_params, sizeof(p));
  15936. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15937. n_tasks = n_threads;
  15938. } else {
  15939. n_tasks = MIN(p.n_tasks, n_threads);
  15940. }
  15941. } break;
  15942. case GGML_OP_MAP_CUSTOM3:
  15943. {
  15944. struct ggml_map_custom3_op_params p;
  15945. memcpy(&p, node->op_params, sizeof(p));
  15946. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15947. n_tasks = n_threads;
  15948. } else {
  15949. n_tasks = MIN(p.n_tasks, n_threads);
  15950. }
  15951. } break;
  15952. case GGML_OP_CROSS_ENTROPY_LOSS:
  15953. {
  15954. n_tasks = n_threads;
  15955. } break;
  15956. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15957. {
  15958. n_tasks = n_threads;
  15959. } break;
  15960. case GGML_OP_NONE:
  15961. {
  15962. n_tasks = 1;
  15963. } break;
  15964. case GGML_OP_COUNT:
  15965. {
  15966. GGML_ASSERT(false);
  15967. } break;
  15968. default:
  15969. {
  15970. fprintf(stderr, "%s: op not implemented: ", __func__);
  15971. if (node->op < GGML_OP_COUNT) {
  15972. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15973. } else {
  15974. fprintf(stderr, "%d\n", node->op);
  15975. }
  15976. GGML_ASSERT(false);
  15977. } break;
  15978. }
  15979. assert(n_tasks > 0);
  15980. return n_tasks;
  15981. }
  15982. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15983. // wait for other threads to finish
  15984. const int last_node_n = * node_n;
  15985. while (true) {
  15986. if (do_yield) {
  15987. sched_yield();
  15988. }
  15989. * node_n = atomic_load(&state->shared->node_n);
  15990. if (* node_n != last_node_n) break;
  15991. }
  15992. }
  15993. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15994. // wait for other threads to finish
  15995. const int last_task_phase = * task_phase;
  15996. while (true) {
  15997. if (do_yield) {
  15998. sched_yield();
  15999. }
  16000. * task_phase = atomic_load(&state->shared->node_task);
  16001. if (* task_phase != last_task_phase) break;
  16002. }
  16003. }
  16004. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16005. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16006. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16007. const struct ggml_cplan * cplan = state->shared->cplan;
  16008. const int n_threads = state->shared->n_threads;
  16009. set_numa_thread_affinity(state->ith);
  16010. int node_n = -1;
  16011. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16012. while (true) {
  16013. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16014. state->shared->node_n += 1;
  16015. state->ec = GGML_STATUS_ABORTED;
  16016. return 0;
  16017. }
  16018. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16019. // all other threads are finished and spinning
  16020. // do finalize and init here so we don't have synchronize again
  16021. struct ggml_compute_params params = {
  16022. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16023. /*.ith =*/ 0,
  16024. /*.nth =*/ 0,
  16025. /*.wsize =*/ cplan->work_size,
  16026. /*.wdata =*/ cplan->work_data,
  16027. };
  16028. if (node_n != -1) {
  16029. /* FINALIZE */
  16030. struct ggml_tensor * node = cgraph->nodes[node_n];
  16031. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16032. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16033. ggml_compute_forward(&params, node);
  16034. }
  16035. ggml_graph_compute_perf_stats_node(node, state->shared);
  16036. }
  16037. // distribute new work or execute it direct if 1T
  16038. while (++node_n < cgraph->n_nodes) {
  16039. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16040. struct ggml_tensor * node = cgraph->nodes[node_n];
  16041. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16042. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16043. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16044. params.nth = n_tasks;
  16045. if (n_tasks == 1) {
  16046. /* INIT */
  16047. if (GGML_OP_HAS_INIT[node->op]) {
  16048. params.type = GGML_TASK_TYPE_INIT;
  16049. ggml_compute_forward(&params, node);
  16050. }
  16051. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16052. // they do something more efficient than spinning (?)
  16053. params.type = GGML_TASK_TYPE_COMPUTE;
  16054. ggml_compute_forward(&params, node);
  16055. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16056. params.type = GGML_TASK_TYPE_FINALIZE;
  16057. ggml_compute_forward(&params, node);
  16058. }
  16059. ggml_graph_compute_perf_stats_node(node, state->shared);
  16060. } else {
  16061. break;
  16062. }
  16063. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16064. break;
  16065. }
  16066. }
  16067. task_phase = GGML_TASK_TYPE_INIT;
  16068. atomic_store(&state->shared->n_active, n_threads);
  16069. atomic_store(&state->shared->node_n, node_n);
  16070. atomic_store(&state->shared->node_task, task_phase);
  16071. } else {
  16072. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16073. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16074. }
  16075. // check if we should stop
  16076. if (node_n >= cgraph->n_nodes) break;
  16077. /* INIT & COMPUTE */
  16078. struct ggml_tensor * node = cgraph->nodes[node_n];
  16079. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16080. struct ggml_compute_params params = {
  16081. /*.type =*/ GGML_TASK_TYPE_INIT,
  16082. /*.ith =*/ state->ith,
  16083. /*.nth =*/ n_tasks,
  16084. /*.wsize =*/ cplan->work_size,
  16085. /*.wdata =*/ cplan->work_data,
  16086. };
  16087. if (state->ith < n_tasks) {
  16088. if (GGML_OP_HAS_INIT[node->op]) {
  16089. ggml_compute_forward(&params, node);
  16090. }
  16091. }
  16092. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16093. task_phase = GGML_TASK_TYPE_COMPUTE;
  16094. atomic_store(&state->shared->n_active, n_threads);
  16095. atomic_store(&state->shared->node_task, task_phase);
  16096. }
  16097. else {
  16098. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16099. // depending on the workload and the operating system.
  16100. // since it is not clear what is the best approach, it should potentially become user-configurable
  16101. // ref: https://github.com/ggerganov/ggml/issues/291
  16102. // UPD: adding the do_yield flag seems to resolve the issue universally
  16103. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16104. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16105. }
  16106. if (state->ith < n_tasks) {
  16107. params.type = GGML_TASK_TYPE_COMPUTE;
  16108. ggml_compute_forward(&params, node);
  16109. }
  16110. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16111. task_phase = GGML_TASK_TYPE_FINALIZE;
  16112. atomic_store(&state->shared->n_active, n_threads);
  16113. atomic_store(&state->shared->node_task, task_phase);
  16114. }
  16115. else {
  16116. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16117. }
  16118. }
  16119. return 0;
  16120. }
  16121. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16122. if (n_threads <= 0) {
  16123. n_threads = GGML_DEFAULT_N_THREADS;
  16124. }
  16125. size_t work_size = 0;
  16126. struct ggml_cplan cplan;
  16127. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16128. int max_tasks = 1;
  16129. // thread scheduling for the different operations + work buffer size estimation
  16130. for (int i = 0; i < cgraph->n_nodes; i++) {
  16131. struct ggml_tensor * node = cgraph->nodes[i];
  16132. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16133. max_tasks = MAX(max_tasks, n_tasks);
  16134. size_t cur = 0;
  16135. switch (node->op) {
  16136. case GGML_OP_CPY:
  16137. case GGML_OP_DUP:
  16138. {
  16139. if (ggml_is_quantized(node->type) ||
  16140. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16141. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16142. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16143. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16144. }
  16145. } break;
  16146. case GGML_OP_ADD:
  16147. case GGML_OP_ADD1:
  16148. {
  16149. if (ggml_is_quantized(node->src[0]->type)) {
  16150. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16151. }
  16152. } break;
  16153. case GGML_OP_ACC:
  16154. {
  16155. if (ggml_is_quantized(node->src[0]->type)) {
  16156. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16157. }
  16158. } break;
  16159. case GGML_OP_MUL_MAT:
  16160. {
  16161. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16162. #if defined(GGML_USE_CLBLAST)
  16163. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16164. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16165. } else
  16166. #endif
  16167. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16168. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16169. if (node->src[0]->type != GGML_TYPE_F32) {
  16170. // here we need memory for fully dequantized matrix from src0
  16171. // take into account that src0 can be broadcasted into src1[2,3]
  16172. cur = ggml_type_size(GGML_TYPE_F32)
  16173. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16174. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16175. }
  16176. } else
  16177. #endif
  16178. if (node->src[1]->type != vec_dot_type) {
  16179. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16180. }
  16181. } break;
  16182. case GGML_OP_MUL_MAT_ID:
  16183. {
  16184. cur = 0;
  16185. const struct ggml_tensor * src0 = node->src[0];
  16186. const struct ggml_tensor * src1 = node->src[1];
  16187. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16188. if (src1->type != vec_dot_type) {
  16189. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16190. }
  16191. const int n_as = src0->ne[2];
  16192. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16193. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16194. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16195. } break;
  16196. case GGML_OP_OUT_PROD:
  16197. {
  16198. if (ggml_is_quantized(node->src[0]->type)) {
  16199. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16200. }
  16201. } break;
  16202. case GGML_OP_SOFT_MAX:
  16203. case GGML_OP_ROPE:
  16204. {
  16205. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16206. } break;
  16207. case GGML_OP_CONV_TRANSPOSE_1D:
  16208. {
  16209. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16210. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16211. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16212. const int64_t ne00 = node->src[0]->ne[0]; // K
  16213. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16214. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16215. const int64_t ne10 = node->src[1]->ne[0]; // L
  16216. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16217. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16218. node->src[0]->type == GGML_TYPE_BF16) &&
  16219. node->src[1]->type == GGML_TYPE_F32) {
  16220. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16221. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16222. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16223. node->src[1]->type == GGML_TYPE_F32) {
  16224. cur += sizeof(float)*ne00*ne01*ne02;
  16225. cur += sizeof(float)*ne10*ne11;
  16226. } else {
  16227. GGML_ASSERT(false);
  16228. }
  16229. } break;
  16230. case GGML_OP_CONV_TRANSPOSE_2D:
  16231. {
  16232. const int64_t ne00 = node->src[0]->ne[0]; // W
  16233. const int64_t ne01 = node->src[0]->ne[1]; // H
  16234. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16235. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16236. const int64_t ne10 = node->src[1]->ne[0]; // W
  16237. const int64_t ne11 = node->src[1]->ne[1]; // H
  16238. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16239. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16240. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16241. } break;
  16242. case GGML_OP_FLASH_ATTN:
  16243. {
  16244. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16245. if (node->src[1]->type == GGML_TYPE_F32) {
  16246. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16247. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16248. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16249. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16250. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16251. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16252. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16253. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16254. }
  16255. } break;
  16256. case GGML_OP_FLASH_ATTN_EXT:
  16257. {
  16258. const int64_t ne00 = node->src[0]->ne[0]; // D
  16259. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16260. } break;
  16261. case GGML_OP_FLASH_FF:
  16262. {
  16263. if (node->src[1]->type == GGML_TYPE_F32) {
  16264. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16265. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16266. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16267. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16268. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16269. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16270. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16271. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16272. }
  16273. } break;
  16274. case GGML_OP_FLASH_ATTN_BACK:
  16275. {
  16276. const int64_t D = node->src[0]->ne[0];
  16277. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16278. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16279. if (node->src[1]->type == GGML_TYPE_F32) {
  16280. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16281. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16282. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16283. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16284. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16285. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16286. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16287. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16288. }
  16289. } break;
  16290. case GGML_OP_CROSS_ENTROPY_LOSS:
  16291. {
  16292. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16293. } break;
  16294. case GGML_OP_COUNT:
  16295. {
  16296. GGML_ASSERT(false);
  16297. } break;
  16298. default:
  16299. break;
  16300. }
  16301. work_size = MAX(work_size, cur);
  16302. }
  16303. if (work_size > 0) {
  16304. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16305. }
  16306. cplan.n_threads = MIN(max_tasks, n_threads);
  16307. cplan.work_size = work_size;
  16308. cplan.work_data = NULL;
  16309. return cplan;
  16310. }
  16311. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16312. {
  16313. GGML_ASSERT(cplan);
  16314. GGML_ASSERT(cplan->n_threads > 0);
  16315. if (cplan->work_size > 0) {
  16316. GGML_ASSERT(cplan->work_data);
  16317. }
  16318. }
  16319. const int n_threads = cplan->n_threads;
  16320. struct ggml_compute_state_shared state_shared = {
  16321. /*.cgraph =*/ cgraph,
  16322. /*.cgraph_plan =*/ cplan,
  16323. /*.perf_node_start_cycles =*/ 0,
  16324. /*.perf_node_start_time_us =*/ 0,
  16325. /*.n_threads =*/ n_threads,
  16326. /*.n_active =*/ n_threads,
  16327. /*.node_n =*/ -1,
  16328. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16329. /*.abort_callback =*/ NULL,
  16330. /*.abort_callback_data =*/ NULL,
  16331. };
  16332. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16333. // create thread pool
  16334. if (n_threads > 1) {
  16335. for (int j = 1; j < n_threads; ++j) {
  16336. workers[j] = (struct ggml_compute_state) {
  16337. .thrd = 0,
  16338. .ith = j,
  16339. .shared = &state_shared,
  16340. .ec = GGML_STATUS_SUCCESS,
  16341. };
  16342. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16343. GGML_ASSERT(rc == 0);
  16344. UNUSED(rc);
  16345. }
  16346. }
  16347. workers[0].ith = 0;
  16348. workers[0].shared = &state_shared;
  16349. workers[0].ec = GGML_STATUS_SUCCESS;
  16350. const int64_t perf_start_cycles = ggml_perf_cycles();
  16351. const int64_t perf_start_time_us = ggml_perf_time_us();
  16352. // this is a work thread too
  16353. ggml_graph_compute_thread(&workers[0]);
  16354. enum ggml_status compute_status = workers[0].ec;
  16355. // don't leave affinity set on the main thread
  16356. clear_numa_thread_affinity();
  16357. // join or kill thread pool
  16358. if (n_threads > 1) {
  16359. for (int j = 1; j < n_threads; j++) {
  16360. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16361. GGML_ASSERT(rc == 0);
  16362. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16363. compute_status = workers[j].ec;
  16364. }
  16365. }
  16366. // performance stats (graph)
  16367. {
  16368. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16369. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16370. cgraph->perf_runs++;
  16371. cgraph->perf_cycles += perf_cycles_cur;
  16372. cgraph->perf_time_us += perf_time_us_cur;
  16373. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16374. __func__, cgraph->perf_runs,
  16375. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16376. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16377. (double) perf_time_us_cur / 1000.0,
  16378. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16379. }
  16380. return compute_status;
  16381. }
  16382. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16383. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16384. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16385. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16386. return ggml_graph_compute(cgraph, &cplan);
  16387. }
  16388. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16389. for (int i = 0; i < cgraph->n_leafs; i++) {
  16390. struct ggml_tensor * leaf = cgraph->leafs[i];
  16391. if (strcmp(leaf->name, name) == 0) {
  16392. return leaf;
  16393. }
  16394. }
  16395. for (int i = 0; i < cgraph->n_nodes; i++) {
  16396. struct ggml_tensor * node = cgraph->nodes[i];
  16397. if (strcmp(node->name, name) == 0) {
  16398. return node;
  16399. }
  16400. }
  16401. return NULL;
  16402. }
  16403. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16404. const int64_t * ne = tensor->ne;
  16405. const size_t * nb = tensor->nb;
  16406. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16407. ggml_type_name(tensor->type),
  16408. ggml_op_name (tensor->op),
  16409. ggml_n_dims(tensor),
  16410. ne[0], ne[1], ne[2], ne[3],
  16411. nb[0], nb[1], nb[2], nb[3],
  16412. tensor->data,
  16413. tensor->name);
  16414. }
  16415. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16416. const int64_t * ne = tensor->ne;
  16417. const size_t * nb = tensor->nb;
  16418. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16419. arg,
  16420. ggml_type_name(tensor->type),
  16421. ggml_op_name (tensor->op),
  16422. ggml_n_dims(tensor),
  16423. ne[0], ne[1], ne[2], ne[3],
  16424. nb[0], nb[1], nb[2], nb[3],
  16425. tensor->data,
  16426. tensor->name);
  16427. }
  16428. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16429. uint64_t size_eval = 0;
  16430. // compute size of intermediate results
  16431. // TODO: does not take into account scratch buffers !!!!
  16432. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16433. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16434. }
  16435. // print
  16436. {
  16437. FILE * fout = stdout;
  16438. fprintf(fout, "\n");
  16439. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16440. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16441. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16442. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16443. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16444. // header
  16445. fprintf(fout, "\n");
  16446. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16447. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16448. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16449. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16450. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16451. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16452. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16453. }
  16454. // header
  16455. fprintf(fout, "\n");
  16456. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16457. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16458. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16459. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16460. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16461. if (cgraph->nodes[i]->src[j]) {
  16462. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16463. }
  16464. }
  16465. fprintf(fout, "\n");
  16466. }
  16467. fprintf(fout, "\n");
  16468. }
  16469. // write binary data
  16470. {
  16471. FILE * fout = ggml_fopen(fname, "wb");
  16472. if (!fout) {
  16473. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16474. return;
  16475. }
  16476. // header
  16477. {
  16478. const uint32_t magic = GGML_FILE_MAGIC;
  16479. const uint32_t version = GGML_FILE_VERSION;
  16480. const uint32_t n_leafs = cgraph->n_leafs;
  16481. const uint32_t n_nodes = cgraph->n_nodes;
  16482. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16483. fwrite(&version, sizeof(uint32_t), 1, fout);
  16484. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16485. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16486. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16487. }
  16488. // leafs
  16489. {
  16490. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16491. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16492. const uint32_t type = tensor->type;
  16493. const uint32_t op = tensor->op;
  16494. fwrite(&type, sizeof(uint32_t), 1, fout);
  16495. fwrite(&op, sizeof(uint32_t), 1, fout);
  16496. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16497. const uint64_t ne = tensor->ne[j];
  16498. const uint64_t nb = tensor->nb[j];
  16499. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16500. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16501. }
  16502. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16503. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16504. // dump the data
  16505. // TODO: pad this to 32 byte boundary
  16506. {
  16507. const size_t size = ggml_nbytes(tensor);
  16508. fwrite(tensor->data, sizeof(char), size, fout);
  16509. }
  16510. }
  16511. }
  16512. // nodes
  16513. {
  16514. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16515. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16516. const uint32_t type = tensor->type;
  16517. const uint32_t op = tensor->op;
  16518. fwrite(&type, sizeof(uint32_t), 1, fout);
  16519. fwrite(&op, sizeof(uint32_t), 1, fout);
  16520. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16521. const uint64_t ne = tensor->ne[j];
  16522. const uint64_t nb = tensor->nb[j];
  16523. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16524. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16525. }
  16526. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16527. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16528. // output the op arguments
  16529. {
  16530. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16531. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16532. args[j] = tensor->src[j];
  16533. }
  16534. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16535. if (args[j]) {
  16536. int32_t idx = -1;
  16537. // check if leaf
  16538. {
  16539. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16540. if (args[j] == cgraph->leafs[k]) {
  16541. idx = k;
  16542. break;
  16543. }
  16544. }
  16545. }
  16546. // check if node
  16547. if (idx == -1) {
  16548. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16549. if (args[j] == cgraph->nodes[k]) {
  16550. idx = cgraph->n_leafs + k;
  16551. break;
  16552. }
  16553. }
  16554. }
  16555. if (idx == -1) {
  16556. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16557. fclose(fout);
  16558. return;
  16559. }
  16560. fwrite(&idx, sizeof(int32_t), 1, fout);
  16561. } else {
  16562. const int32_t nul = -1;
  16563. fwrite(&nul, sizeof(int32_t), 1, fout);
  16564. }
  16565. }
  16566. }
  16567. }
  16568. }
  16569. fclose(fout);
  16570. }
  16571. }
  16572. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16573. assert(*ctx_data == NULL);
  16574. assert(*ctx_eval == NULL);
  16575. struct ggml_cgraph * result = NULL;
  16576. struct ggml_tensor * data = NULL;
  16577. // read file into data
  16578. {
  16579. FILE * fin = ggml_fopen(fname, "rb");
  16580. if (!fin) {
  16581. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16582. return result;
  16583. }
  16584. size_t fsize = 0;
  16585. fseek(fin, 0, SEEK_END);
  16586. fsize = ftell(fin);
  16587. fseek(fin, 0, SEEK_SET);
  16588. // create the data context
  16589. {
  16590. const size_t overhead = 1*ggml_tensor_overhead();
  16591. struct ggml_init_params params = {
  16592. .mem_size = fsize + overhead,
  16593. .mem_buffer = NULL,
  16594. .no_alloc = false,
  16595. };
  16596. *ctx_data = ggml_init(params);
  16597. if (!*ctx_data) {
  16598. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16599. fclose(fin);
  16600. return result;
  16601. }
  16602. }
  16603. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16604. {
  16605. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16606. if (ret != fsize) {
  16607. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16608. fclose(fin);
  16609. return result;
  16610. }
  16611. }
  16612. fclose(fin);
  16613. }
  16614. // populate result
  16615. {
  16616. char * ptr = (char *) data->data;
  16617. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16618. if (magic != GGML_FILE_MAGIC) {
  16619. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16620. return result;
  16621. }
  16622. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16623. if (version != GGML_FILE_VERSION) {
  16624. fprintf(stderr, "%s: invalid version number\n", __func__);
  16625. return result;
  16626. }
  16627. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16628. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16629. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16630. const int graph_size = MAX(n_leafs, n_nodes);
  16631. // create the data context
  16632. {
  16633. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16634. struct ggml_init_params params = {
  16635. .mem_size = size_eval + overhead,
  16636. .mem_buffer = NULL,
  16637. .no_alloc = true,
  16638. };
  16639. *ctx_eval = ggml_init(params);
  16640. if (!*ctx_eval) {
  16641. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16642. return result;
  16643. }
  16644. }
  16645. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16646. result->n_leafs = n_leafs;
  16647. result->n_nodes = n_nodes;
  16648. // leafs
  16649. {
  16650. uint32_t type;
  16651. uint32_t op;
  16652. for (uint32_t i = 0; i < n_leafs; ++i) {
  16653. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16654. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16655. int64_t ne[GGML_MAX_DIMS];
  16656. size_t nb[GGML_MAX_DIMS];
  16657. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16658. uint64_t ne_cur;
  16659. uint64_t nb_cur;
  16660. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16661. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16662. ne[j] = ne_cur;
  16663. nb[j] = nb_cur;
  16664. }
  16665. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16666. tensor->op = (enum ggml_op) op;
  16667. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16668. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16669. tensor->data = (void *) ptr;
  16670. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16671. tensor->nb[j] = nb[j];
  16672. }
  16673. result->leafs[i] = tensor;
  16674. ptr += ggml_nbytes(tensor);
  16675. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16676. }
  16677. }
  16678. ggml_set_no_alloc(*ctx_eval, false);
  16679. // nodes
  16680. {
  16681. uint32_t type;
  16682. uint32_t op;
  16683. for (uint32_t i = 0; i < n_nodes; ++i) {
  16684. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16685. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16686. enum ggml_op eop = (enum ggml_op) op;
  16687. int64_t ne[GGML_MAX_DIMS];
  16688. size_t nb[GGML_MAX_DIMS];
  16689. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16690. uint64_t ne_cur;
  16691. uint64_t nb_cur;
  16692. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16693. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16694. ne[j] = ne_cur;
  16695. nb[j] = nb_cur;
  16696. }
  16697. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16698. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16699. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16700. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16701. // parse args
  16702. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16703. const int32_t arg_idx = ptr_arg_idx[j];
  16704. if (arg_idx == -1) {
  16705. continue;
  16706. }
  16707. if (arg_idx < result->n_leafs) {
  16708. args[j] = result->leafs[arg_idx];
  16709. } else {
  16710. args[j] = result->nodes[arg_idx - result->n_leafs];
  16711. }
  16712. }
  16713. // create the tensor
  16714. // "view" operations are handled differently
  16715. // TODO: handle inplace ops - currently a copy is always made
  16716. struct ggml_tensor * tensor = NULL;
  16717. switch (eop) {
  16718. // TODO: implement other view ops
  16719. case GGML_OP_RESHAPE:
  16720. {
  16721. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16722. } break;
  16723. case GGML_OP_VIEW:
  16724. {
  16725. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16726. size_t offs;
  16727. memcpy(&offs, ptr_op_params, sizeof(offs));
  16728. tensor->data = ((char *) tensor->data) + offs;
  16729. } break;
  16730. case GGML_OP_TRANSPOSE:
  16731. {
  16732. tensor = ggml_transpose(*ctx_eval, args[0]);
  16733. } break;
  16734. case GGML_OP_PERMUTE:
  16735. {
  16736. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16737. } break;
  16738. default:
  16739. {
  16740. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16741. tensor->op = eop;
  16742. } break;
  16743. }
  16744. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16745. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16746. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16747. tensor->nb[j] = nb[j];
  16748. }
  16749. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16750. tensor->src[j] = args[j];
  16751. }
  16752. result->nodes[i] = tensor;
  16753. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16754. }
  16755. }
  16756. }
  16757. return result;
  16758. }
  16759. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16760. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16761. GGML_PRINT("=== GRAPH ===\n");
  16762. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16763. for (int i = 0; i < cgraph->n_nodes; i++) {
  16764. struct ggml_tensor * node = cgraph->nodes[i];
  16765. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16766. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16767. i,
  16768. node->ne[0], node->ne[1], node->ne[2],
  16769. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16770. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16771. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16772. (double) node->perf_time_us / 1000.0,
  16773. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16774. }
  16775. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16776. for (int i = 0; i < cgraph->n_leafs; i++) {
  16777. struct ggml_tensor * node = cgraph->leafs[i];
  16778. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16779. i,
  16780. node->ne[0], node->ne[1],
  16781. ggml_op_name(node->op),
  16782. ggml_get_name(node));
  16783. }
  16784. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16785. if (perf_total_per_op_us[i] == 0) {
  16786. continue;
  16787. }
  16788. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16789. }
  16790. GGML_PRINT("========================================\n");
  16791. }
  16792. // check if node is part of the graph
  16793. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16794. if (cgraph == NULL) {
  16795. return true;
  16796. }
  16797. for (int i = 0; i < cgraph->n_nodes; i++) {
  16798. if (cgraph->nodes[i] == node) {
  16799. return true;
  16800. }
  16801. }
  16802. return false;
  16803. }
  16804. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16805. for (int i = 0; i < cgraph->n_nodes; i++) {
  16806. struct ggml_tensor * parent = cgraph->nodes[i];
  16807. if (parent->grad == node) {
  16808. return parent;
  16809. }
  16810. }
  16811. return NULL;
  16812. }
  16813. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16814. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16815. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16816. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16817. gparent0 ? (void *) gparent0 : (void *) parent,
  16818. gparent0 ? "g" : "x",
  16819. gparent ? (void *) gparent : (void *) node,
  16820. gparent ? "g" : "x",
  16821. gparent ? "empty" : "vee",
  16822. gparent ? "dashed" : "solid",
  16823. label);
  16824. }
  16825. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16826. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16827. (void *) parent, "x",
  16828. (void *) node, "x",
  16829. label);
  16830. }
  16831. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16832. char color[16];
  16833. FILE * fp = ggml_fopen(filename, "w");
  16834. GGML_ASSERT(fp);
  16835. fprintf(fp, "digraph G {\n");
  16836. fprintf(fp, " newrank = true;\n");
  16837. fprintf(fp, " rankdir = LR;\n");
  16838. for (int i = 0; i < gb->n_nodes; i++) {
  16839. struct ggml_tensor * node = gb->nodes[i];
  16840. if (ggml_graph_get_parent(gb, node) != NULL) {
  16841. continue;
  16842. }
  16843. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16844. snprintf(color, sizeof(color), "yellow");
  16845. } else if (node->grad) {
  16846. if (ggml_graph_find(gf, node)) {
  16847. snprintf(color, sizeof(color), "green");
  16848. } else {
  16849. snprintf(color, sizeof(color), "lightblue");
  16850. }
  16851. } else {
  16852. snprintf(color, sizeof(color), "white");
  16853. }
  16854. fprintf(fp, " \"%p\" [ "
  16855. "style = filled; fillcolor = %s; shape = record; "
  16856. "label=\"",
  16857. (void *) node, color);
  16858. if (strlen(node->name) > 0) {
  16859. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16860. } else {
  16861. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16862. }
  16863. if (ggml_is_matrix(node)) {
  16864. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16865. } else {
  16866. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16867. }
  16868. if (node->grad) {
  16869. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16870. } else {
  16871. fprintf(fp, "\"; ]\n");
  16872. }
  16873. }
  16874. for (int i = 0; i < gb->n_leafs; i++) {
  16875. struct ggml_tensor * node = gb->leafs[i];
  16876. snprintf(color, sizeof(color), "pink");
  16877. fprintf(fp, " \"%p\" [ "
  16878. "style = filled; fillcolor = %s; shape = record; "
  16879. "label=\"<x>",
  16880. (void *) node, color);
  16881. if (strlen(node->name) > 0) {
  16882. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16883. } else {
  16884. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16885. }
  16886. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16887. if (ggml_nelements(node) < 5) {
  16888. fprintf(fp, " | (");
  16889. for (int j = 0; j < ggml_nelements(node); j++) {
  16890. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16891. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16892. }
  16893. else if (node->type == GGML_TYPE_F32 ||
  16894. node->type == GGML_TYPE_F16 ||
  16895. node->type == GGML_TYPE_BF16) {
  16896. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16897. }
  16898. else {
  16899. fprintf(fp, "#");
  16900. }
  16901. if (j < ggml_nelements(node) - 1) {
  16902. fprintf(fp, ", ");
  16903. }
  16904. }
  16905. fprintf(fp, ")");
  16906. }
  16907. fprintf(fp, "\"; ]\n");
  16908. }
  16909. for (int i = 0; i < gb->n_nodes; i++) {
  16910. struct ggml_tensor * node = gb->nodes[i];
  16911. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16912. if (node->src[j]) {
  16913. char label[16];
  16914. snprintf(label, sizeof(label), "src %d", j);
  16915. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16916. }
  16917. }
  16918. }
  16919. for (int i = 0; i < gb->n_leafs; i++) {
  16920. struct ggml_tensor * node = gb->leafs[i];
  16921. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16922. if (node->src[j]) {
  16923. char label[16];
  16924. snprintf(label, sizeof(label), "src %d", j);
  16925. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16926. }
  16927. }
  16928. }
  16929. fprintf(fp, "}\n");
  16930. fclose(fp);
  16931. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16932. }
  16933. ////////////////////////////////////////////////////////////////////////////////
  16934. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16935. int i = 0;
  16936. for (int p = 0; p < np; ++p) {
  16937. const int64_t ne = ggml_nelements(ps[p]) ;
  16938. // TODO: add function to set tensor from array
  16939. for (int64_t j = 0; j < ne; ++j) {
  16940. ggml_set_f32_1d(ps[p], j, x[i++]);
  16941. }
  16942. }
  16943. }
  16944. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16945. int i = 0;
  16946. for (int p = 0; p < np; ++p) {
  16947. const int64_t ne = ggml_nelements(ps[p]) ;
  16948. // TODO: add function to get all elements at once
  16949. for (int64_t j = 0; j < ne; ++j) {
  16950. x[i++] = ggml_get_f32_1d(ps[p], j);
  16951. }
  16952. }
  16953. }
  16954. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16955. int64_t i = 0;
  16956. for (int p = 0; p < np; ++p) {
  16957. const int64_t ne = ggml_nelements(ps[p]) ;
  16958. // TODO: add function to get all elements at once
  16959. for (int64_t j = 0; j < ne; ++j) {
  16960. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16961. }
  16962. }
  16963. }
  16964. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16965. int64_t i = 0;
  16966. for (int p = 0; p < np; ++p) {
  16967. const int64_t ne = ggml_nelements(ps[p]) ;
  16968. // TODO: add function to get all elements at once
  16969. for (int64_t j = 0; j < ne; ++j) {
  16970. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16971. }
  16972. }
  16973. }
  16974. //
  16975. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16976. //
  16977. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16978. //
  16979. static enum ggml_opt_result ggml_opt_adam(
  16980. struct ggml_context * ctx,
  16981. struct ggml_opt_context * opt,
  16982. struct ggml_opt_params params,
  16983. struct ggml_tensor * f,
  16984. struct ggml_cgraph * gf,
  16985. struct ggml_cgraph * gb,
  16986. ggml_opt_callback callback,
  16987. void * callback_data) {
  16988. GGML_ASSERT(ggml_is_scalar(f));
  16989. // these will store the parameters we want to optimize
  16990. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16991. int np = 0;
  16992. int64_t nx = 0;
  16993. for (int i = 0; i < gf->n_nodes; ++i) {
  16994. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16995. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16996. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16997. ps[np++] = gf->nodes[i];
  16998. nx += ggml_nelements(gf->nodes[i]);
  16999. }
  17000. }
  17001. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17002. int iter = opt->iter;
  17003. ggml_opt_init(opt->ctx, opt, params, nx);
  17004. opt->iter = iter;
  17005. }
  17006. // constants
  17007. float sched = params.adam.sched;
  17008. const float alpha = params.adam.alpha;
  17009. const float decay = params.adam.decay * alpha;
  17010. const float beta1 = params.adam.beta1;
  17011. const float beta2 = params.adam.beta2;
  17012. const float eps = params.adam.eps;
  17013. const float gclip = params.adam.gclip;
  17014. const int decay_min_ndim = params.adam.decay_min_ndim;
  17015. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17016. const float accum_norm = 1.0f / (float) n_accum;
  17017. float * g = opt->adam.g->data; // gradients
  17018. float * m = opt->adam.m->data; // first moment
  17019. float * v = opt->adam.v->data; // second moment
  17020. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17021. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17022. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17023. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17024. bool cancel = false;
  17025. // compute the function value
  17026. float fx = 0;
  17027. ggml_set_zero(opt->adam.g);
  17028. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17029. if (callback) {
  17030. callback(callback_data, accum_step, &sched, &cancel);
  17031. if (cancel) {
  17032. return GGML_OPT_RESULT_CANCEL;
  17033. }
  17034. }
  17035. // ggml_graph_reset (gf);
  17036. ggml_set_f32 (f->grad, 1.0f);
  17037. ggml_graph_compute(gb, &cplan);
  17038. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17039. fx += ggml_get_f32_1d(f, 0);
  17040. }
  17041. fx *= accum_norm;
  17042. opt->adam.fx_prev = fx;
  17043. opt->adam.fx_best = opt->adam.fx_prev;
  17044. if (pf) {
  17045. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17046. }
  17047. opt->loss_before = opt->adam.fx_prev;
  17048. opt->loss_after = opt->adam.fx_prev;
  17049. // initialize
  17050. if (opt->just_initialized) {
  17051. opt->adam.n_no_improvement = 0;
  17052. opt->just_initialized = false;
  17053. }
  17054. float * fx_best = &opt->adam.fx_best;
  17055. float * fx_prev = &opt->adam.fx_prev;
  17056. int * n_no_improvement = &opt->adam.n_no_improvement;
  17057. int iter0 = opt->iter;
  17058. // run the optimizer
  17059. for (int t = 0; t < params.adam.n_iter; ++t) {
  17060. opt->iter = iter0 + t + 1;
  17061. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17062. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17063. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17064. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17065. for (int i = 0; i < np; ++i) {
  17066. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17067. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17068. }
  17069. const int64_t t_start_wall = ggml_time_us();
  17070. const int64_t t_start_cpu = ggml_cycles();
  17071. UNUSED(t_start_wall);
  17072. UNUSED(t_start_cpu);
  17073. {
  17074. float gnorm = 1.0f;
  17075. if (gclip > 0.0f) {
  17076. // gradient clipping
  17077. ggml_float sum = 0.0;
  17078. for (int64_t i = 0; i < nx; ++i) {
  17079. sum += (ggml_float)(g[i]*g[i]);
  17080. }
  17081. ggml_float norm = sqrt(sum);
  17082. if (norm > (ggml_float) gclip) {
  17083. gnorm = (float) ((ggml_float) gclip / norm);
  17084. }
  17085. }
  17086. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17087. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17088. int64_t i = 0;
  17089. for (int p = 0; p < np; ++p) {
  17090. const int64_t ne = ggml_nelements(ps[p]);
  17091. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17092. for (int64_t j = 0; j < ne; ++j) {
  17093. float x = ggml_get_f32_1d(ps[p], j);
  17094. float g_ = g[i]*gnorm;
  17095. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17096. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17097. float mh = m[i]*beta1h;
  17098. float vh = v[i]*beta2h;
  17099. vh = sqrtf(vh) + eps;
  17100. x = x*(1.0f - p_decay) - mh/vh;
  17101. ggml_set_f32_1d(ps[p], j, x);
  17102. ++i;
  17103. }
  17104. }
  17105. }
  17106. fx = 0;
  17107. ggml_set_zero(opt->adam.g);
  17108. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17109. if (callback) {
  17110. callback(callback_data, accum_step, &sched, &cancel);
  17111. if (cancel) {
  17112. return GGML_OPT_RESULT_CANCEL;;
  17113. }
  17114. }
  17115. // ggml_graph_reset (gf);
  17116. ggml_set_f32 (f->grad, 1.0f);
  17117. ggml_graph_compute(gb, &cplan);
  17118. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17119. fx += ggml_get_f32_1d(f, 0);
  17120. }
  17121. fx *= accum_norm;
  17122. opt->loss_after = fx;
  17123. // check convergence
  17124. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17125. GGML_PRINT_DEBUG("converged\n");
  17126. return GGML_OPT_RESULT_OK;
  17127. }
  17128. // delta-based convergence test
  17129. if (pf != NULL) {
  17130. // need at least params.past iterations to start checking for convergence
  17131. if (params.past <= iter0 + t) {
  17132. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17133. if (fabsf(rate) < params.delta) {
  17134. return GGML_OPT_RESULT_OK;
  17135. }
  17136. }
  17137. pf[(iter0 + t)%params.past] = fx;
  17138. }
  17139. // check for improvement
  17140. if (params.max_no_improvement > 0) {
  17141. if (fx_best[0] > fx) {
  17142. fx_best[0] = fx;
  17143. n_no_improvement[0] = 0;
  17144. } else {
  17145. ++n_no_improvement[0];
  17146. if (n_no_improvement[0] >= params.max_no_improvement) {
  17147. return GGML_OPT_RESULT_OK;
  17148. }
  17149. }
  17150. }
  17151. fx_prev[0] = fx;
  17152. {
  17153. const int64_t t_end_cpu = ggml_cycles();
  17154. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17155. UNUSED(t_end_cpu);
  17156. const int64_t t_end_wall = ggml_time_us();
  17157. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17158. UNUSED(t_end_wall);
  17159. }
  17160. }
  17161. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17162. }
  17163. //
  17164. // L-BFGS
  17165. //
  17166. // the L-BFGS implementation below is based on the following implementation:
  17167. //
  17168. // https://github.com/chokkan/liblbfgs
  17169. //
  17170. struct ggml_lbfgs_iteration_data {
  17171. float alpha;
  17172. float ys;
  17173. float * s;
  17174. float * y;
  17175. };
  17176. static enum ggml_opt_result linesearch_backtracking(
  17177. const struct ggml_opt_params * params,
  17178. int nx,
  17179. float * x,
  17180. float * fx,
  17181. float * g,
  17182. float * d,
  17183. float * step,
  17184. const float * xp,
  17185. struct ggml_tensor * f,
  17186. struct ggml_cgraph * gb,
  17187. struct ggml_cplan * cplan,
  17188. const int np,
  17189. struct ggml_tensor * ps[],
  17190. bool * cancel,
  17191. ggml_opt_callback callback,
  17192. void * callback_data) {
  17193. int count = 0;
  17194. float width = 0.0f;
  17195. float dg = 0.0f;
  17196. float finit = 0.0f;
  17197. float dginit = 0.0f;
  17198. float dgtest = 0.0f;
  17199. const float dec = 0.5f;
  17200. const float inc = 2.1f;
  17201. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17202. const float accum_norm = 1.0f / (float) n_accum;
  17203. if (*step <= 0.f) {
  17204. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17205. }
  17206. // compute the initial gradient in the search direction
  17207. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17208. // make sure that d points to a descent direction
  17209. if (0 < dginit) {
  17210. return GGML_LINESEARCH_FAIL;
  17211. }
  17212. // initialize local variables
  17213. finit = *fx;
  17214. dgtest = params->lbfgs.ftol*dginit;
  17215. while (true) {
  17216. ggml_vec_cpy_f32(nx, x, xp);
  17217. ggml_vec_mad_f32(nx, x, d, *step);
  17218. // evaluate the function and gradient values
  17219. {
  17220. ggml_opt_set_params(np, ps, x);
  17221. *fx = 0;
  17222. memset(g, 0, sizeof(float)*nx);
  17223. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17224. if (callback) {
  17225. // LBFG-S does not support learning rate -> ignore learning schedule
  17226. float sched = 0;
  17227. callback(callback_data, accum_step, &sched, cancel);
  17228. if (*cancel) {
  17229. return GGML_OPT_RESULT_CANCEL;
  17230. }
  17231. }
  17232. // ggml_graph_reset (gf);
  17233. ggml_set_f32 (f->grad, 1.0f);
  17234. ggml_graph_compute(gb, cplan);
  17235. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17236. *fx += ggml_get_f32_1d(f, 0);
  17237. }
  17238. *fx *= accum_norm;
  17239. }
  17240. ++count;
  17241. if (*fx > finit + (*step)*dgtest) {
  17242. width = dec;
  17243. } else {
  17244. // Armijo condition is satisfied
  17245. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17246. return count;
  17247. }
  17248. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17249. // check the Wolfe condition
  17250. if (dg < params->lbfgs.wolfe * dginit) {
  17251. width = inc;
  17252. } else {
  17253. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17254. // regular Wolfe conditions
  17255. return count;
  17256. }
  17257. if(dg > -params->lbfgs.wolfe*dginit) {
  17258. width = dec;
  17259. } else {
  17260. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17261. return count;
  17262. }
  17263. }
  17264. }
  17265. if (*step < params->lbfgs.min_step) {
  17266. return GGML_LINESEARCH_MINIMUM_STEP;
  17267. }
  17268. if (*step > params->lbfgs.max_step) {
  17269. return GGML_LINESEARCH_MAXIMUM_STEP;
  17270. }
  17271. if (params->lbfgs.max_linesearch <= count) {
  17272. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17273. }
  17274. (*step) *= width;
  17275. }
  17276. GGML_ASSERT(false && "line search failed");
  17277. return GGML_LINESEARCH_FAIL;
  17278. }
  17279. static enum ggml_opt_result ggml_opt_lbfgs(
  17280. struct ggml_context * ctx,
  17281. struct ggml_opt_context * opt,
  17282. struct ggml_opt_params params,
  17283. struct ggml_tensor * f,
  17284. struct ggml_cgraph * gf,
  17285. struct ggml_cgraph * gb,
  17286. ggml_opt_callback callback,
  17287. void * callback_data) {
  17288. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17289. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17290. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17291. return GGML_OPT_RESULT_INVALID_WOLFE;
  17292. }
  17293. }
  17294. const int m = params.lbfgs.m;
  17295. // these will store the parameters we want to optimize
  17296. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17297. int np = 0;
  17298. int nx = 0;
  17299. for (int i = 0; i < gf->n_nodes; ++i) {
  17300. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17301. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17302. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17303. ps[np++] = gf->nodes[i];
  17304. nx += ggml_nelements(gf->nodes[i]);
  17305. }
  17306. }
  17307. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17308. int iter = opt->iter;
  17309. ggml_opt_init(ctx, opt, params, nx);
  17310. opt->iter = iter;
  17311. }
  17312. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17313. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17314. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17315. float * x = opt->lbfgs.x->data; // current parameters
  17316. float * xp = opt->lbfgs.xp->data; // previous parameters
  17317. float * g = opt->lbfgs.g->data; // current gradient
  17318. float * gp = opt->lbfgs.gp->data; // previous gradient
  17319. float * d = opt->lbfgs.d->data; // search direction
  17320. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17321. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17322. const float accum_norm = 1.0f / (float) n_accum;
  17323. float fx = 0.0f; // cost function value
  17324. float xnorm = 0.0f; // ||x||
  17325. float gnorm = 0.0f; // ||g||
  17326. // initialize x from the graph nodes
  17327. ggml_opt_get_params(np, ps, x);
  17328. // the L-BFGS memory
  17329. float * lm_alpha = opt->lbfgs.lmal->data;
  17330. float * lm_ys = opt->lbfgs.lmys->data;
  17331. float * lm_s = opt->lbfgs.lms->data;
  17332. float * lm_y = opt->lbfgs.lmy->data;
  17333. bool cancel = false;
  17334. // evaluate the function value and its gradient
  17335. {
  17336. ggml_opt_set_params(np, ps, x);
  17337. fx = 0;
  17338. memset(g, 0, sizeof(float)*nx);
  17339. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17340. if (callback) {
  17341. // LBFG-S does not support learning rate -> ignore learning schedule
  17342. float sched = 0;
  17343. callback(callback_data, accum_step, &sched, &cancel);
  17344. if (cancel) {
  17345. return GGML_OPT_RESULT_CANCEL;
  17346. }
  17347. }
  17348. // ggml_graph_reset (gf);
  17349. ggml_set_f32 (f->grad, 1.0f);
  17350. ggml_graph_compute(gb, &cplan);
  17351. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17352. fx += ggml_get_f32_1d(f, 0);
  17353. }
  17354. fx *= accum_norm;
  17355. opt->loss_before = fx;
  17356. opt->loss_after = fx;
  17357. }
  17358. // search direction = -gradient
  17359. ggml_vec_neg_f32(nx, d, g);
  17360. // ||x||, ||g||
  17361. ggml_vec_norm_f32(nx, &xnorm, x);
  17362. ggml_vec_norm_f32(nx, &gnorm, g);
  17363. if (xnorm < 1.0f) {
  17364. xnorm = 1.0f;
  17365. }
  17366. // already optimized
  17367. if (gnorm/xnorm <= params.lbfgs.eps) {
  17368. return GGML_OPT_RESULT_OK;
  17369. }
  17370. if (opt->just_initialized) {
  17371. if (pf) {
  17372. pf[0] = fx;
  17373. }
  17374. opt->lbfgs.fx_best = fx;
  17375. // initial step
  17376. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17377. opt->lbfgs.j = 0;
  17378. opt->lbfgs.k = 1;
  17379. opt->lbfgs.end = 0;
  17380. opt->lbfgs.n_no_improvement = 0;
  17381. opt->just_initialized = false;
  17382. }
  17383. float * fx_best = &opt->lbfgs.fx_best;
  17384. float * step = &opt->lbfgs.step;
  17385. int * j = &opt->lbfgs.j;
  17386. int * k = &opt->lbfgs.k;
  17387. int * end = &opt->lbfgs.end;
  17388. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17389. int ls = 0;
  17390. int bound = 0;
  17391. float ys = 0.0f;
  17392. float yy = 0.0f;
  17393. float beta = 0.0f;
  17394. int it = 0;
  17395. while (true) {
  17396. // store the current position and gradient vectors
  17397. ggml_vec_cpy_f32(nx, xp, x);
  17398. ggml_vec_cpy_f32(nx, gp, g);
  17399. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17400. // to determine if the optimization should be cancelled
  17401. // this is a simple change, but not doing this atm, since I don't have a nice
  17402. // way to test and don't want to break something with so many changes lined up
  17403. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17404. if (cancel) {
  17405. return GGML_OPT_RESULT_CANCEL;
  17406. }
  17407. if (ls < 0) {
  17408. // linesearch failed - go back to the previous point and return
  17409. ggml_vec_cpy_f32(nx, x, xp);
  17410. ggml_vec_cpy_f32(nx, g, gp);
  17411. return ls;
  17412. }
  17413. opt->loss_after = fx;
  17414. ggml_vec_norm_f32(nx, &xnorm, x);
  17415. ggml_vec_norm_f32(nx, &gnorm, g);
  17416. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17417. if (xnorm < 1.0f) {
  17418. xnorm = 1.0f;
  17419. }
  17420. if (gnorm/xnorm <= params.lbfgs.eps) {
  17421. // converged
  17422. return GGML_OPT_RESULT_OK;
  17423. }
  17424. // delta-based convergence test
  17425. if (pf != NULL) {
  17426. // need at least params.past iterations to start checking for convergence
  17427. if (params.past <= k[0]) {
  17428. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17429. if (fabsf(rate) < params.delta) {
  17430. return GGML_OPT_RESULT_OK;
  17431. }
  17432. }
  17433. pf[k[0]%params.past] = fx;
  17434. }
  17435. // check for improvement
  17436. if (params.max_no_improvement > 0) {
  17437. if (fx < fx_best[0]) {
  17438. fx_best[0] = fx;
  17439. n_no_improvement[0] = 0;
  17440. } else {
  17441. n_no_improvement[0]++;
  17442. if (n_no_improvement[0] >= params.max_no_improvement) {
  17443. return GGML_OPT_RESULT_OK;
  17444. }
  17445. }
  17446. }
  17447. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17448. // reached the maximum number of iterations
  17449. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17450. }
  17451. // update vectors s and y:
  17452. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17453. // y_{k+1} = g_{k+1} - g_{k}.
  17454. //
  17455. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17456. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17457. // compute scalars ys and yy:
  17458. // ys = y^t \cdot s -> 1 / \rho.
  17459. // yy = y^t \cdot y.
  17460. //
  17461. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17462. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17463. lm_ys[end[0]] = ys;
  17464. // find new search direction
  17465. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17466. bound = (m <= k[0]) ? m : k[0];
  17467. k[0]++;
  17468. it++;
  17469. end[0] = (end[0] + 1)%m;
  17470. // initialize search direction with -g
  17471. ggml_vec_neg_f32(nx, d, g);
  17472. j[0] = end[0];
  17473. for (int i = 0; i < bound; ++i) {
  17474. j[0] = (j[0] + m - 1) % m;
  17475. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17476. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17477. lm_alpha[j[0]] /= lm_ys[j[0]];
  17478. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17479. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17480. }
  17481. ggml_vec_scale_f32(nx, d, ys/yy);
  17482. for (int i = 0; i < bound; ++i) {
  17483. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17484. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17485. beta /= lm_ys[j[0]];
  17486. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17487. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17488. j[0] = (j[0] + 1)%m;
  17489. }
  17490. step[0] = 1.0;
  17491. }
  17492. GGML_ASSERT(false && "lbfgs failed");
  17493. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17494. }
  17495. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17496. struct ggml_opt_params result;
  17497. switch (type) {
  17498. case GGML_OPT_TYPE_ADAM:
  17499. {
  17500. result = (struct ggml_opt_params) {
  17501. .type = GGML_OPT_TYPE_ADAM,
  17502. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17503. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17504. .past = 0,
  17505. .delta = 1e-5f,
  17506. .max_no_improvement = 100,
  17507. .print_forward_graph = true,
  17508. .print_backward_graph = true,
  17509. .n_gradient_accumulation = 1,
  17510. .adam = {
  17511. .n_iter = 10000,
  17512. .sched = 1.000f,
  17513. .decay = 0.0f,
  17514. .decay_min_ndim = 2,
  17515. .alpha = 0.001f,
  17516. .beta1 = 0.9f,
  17517. .beta2 = 0.999f,
  17518. .eps = 1e-8f,
  17519. .eps_f = 1e-5f,
  17520. .eps_g = 1e-3f,
  17521. .gclip = 0.0f,
  17522. },
  17523. };
  17524. } break;
  17525. case GGML_OPT_TYPE_LBFGS:
  17526. {
  17527. result = (struct ggml_opt_params) {
  17528. .type = GGML_OPT_TYPE_LBFGS,
  17529. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17530. .n_threads = 1,
  17531. .past = 0,
  17532. .delta = 1e-5f,
  17533. .max_no_improvement = 0,
  17534. .print_forward_graph = true,
  17535. .print_backward_graph = true,
  17536. .n_gradient_accumulation = 1,
  17537. .lbfgs = {
  17538. .m = 6,
  17539. .n_iter = 100,
  17540. .max_linesearch = 20,
  17541. .eps = 1e-5f,
  17542. .ftol = 1e-4f,
  17543. .wolfe = 0.9f,
  17544. .min_step = 1e-20f,
  17545. .max_step = 1e+20f,
  17546. .linesearch = GGML_LINESEARCH_DEFAULT,
  17547. },
  17548. };
  17549. } break;
  17550. }
  17551. return result;
  17552. }
  17553. GGML_API void ggml_opt_init(
  17554. struct ggml_context * ctx,
  17555. struct ggml_opt_context * opt,
  17556. struct ggml_opt_params params,
  17557. int64_t nx) {
  17558. opt->ctx = ctx;
  17559. opt->params = params;
  17560. opt->iter = 0;
  17561. opt->nx = nx;
  17562. opt->just_initialized = true;
  17563. if (opt->ctx == NULL) {
  17564. struct ggml_init_params ctx_opt_params;
  17565. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17566. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17567. if (opt->params.past > 0) {
  17568. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17569. }
  17570. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17571. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17572. if (opt->params.past > 0) {
  17573. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17574. }
  17575. }
  17576. ctx_opt_params.mem_buffer = NULL;
  17577. ctx_opt_params.no_alloc = false;
  17578. opt->ctx = ggml_init(ctx_opt_params);
  17579. }
  17580. switch (opt->params.type) {
  17581. case GGML_OPT_TYPE_ADAM:
  17582. {
  17583. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17584. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17585. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17586. opt->adam.pf = params.past > 0
  17587. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17588. : NULL;
  17589. ggml_set_zero(opt->adam.m);
  17590. ggml_set_zero(opt->adam.v);
  17591. if (opt->adam.pf) {
  17592. ggml_set_zero(opt->adam.pf);
  17593. }
  17594. } break;
  17595. case GGML_OPT_TYPE_LBFGS:
  17596. {
  17597. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17598. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17599. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17600. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17601. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17602. opt->lbfgs.pf = params.past > 0
  17603. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17604. : NULL;
  17605. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17606. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17607. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17608. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17609. ggml_set_zero(opt->lbfgs.x);
  17610. ggml_set_zero(opt->lbfgs.xp);
  17611. ggml_set_zero(opt->lbfgs.g);
  17612. ggml_set_zero(opt->lbfgs.gp);
  17613. ggml_set_zero(opt->lbfgs.d);
  17614. if (opt->lbfgs.pf) {
  17615. ggml_set_zero(opt->lbfgs.pf);
  17616. }
  17617. ggml_set_zero(opt->lbfgs.lmal);
  17618. ggml_set_zero(opt->lbfgs.lmys);
  17619. ggml_set_zero(opt->lbfgs.lms);
  17620. ggml_set_zero(opt->lbfgs.lmy);
  17621. } break;
  17622. }
  17623. }
  17624. enum ggml_opt_result ggml_opt(
  17625. struct ggml_context * ctx,
  17626. struct ggml_opt_params params,
  17627. struct ggml_tensor * f) {
  17628. bool free_ctx = false;
  17629. if (ctx == NULL) {
  17630. struct ggml_init_params params_ctx = {
  17631. .mem_size = 16*1024*1024,
  17632. .mem_buffer = NULL,
  17633. .no_alloc = false,
  17634. };
  17635. ctx = ggml_init(params_ctx);
  17636. if (ctx == NULL) {
  17637. return GGML_OPT_RESULT_NO_CONTEXT;
  17638. }
  17639. free_ctx = true;
  17640. }
  17641. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17642. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17643. ggml_opt_init(ctx, opt, params, 0);
  17644. result = ggml_opt_resume(ctx, opt, f);
  17645. if (free_ctx) {
  17646. ggml_free(ctx);
  17647. }
  17648. return result;
  17649. }
  17650. enum ggml_opt_result ggml_opt_resume(
  17651. struct ggml_context * ctx,
  17652. struct ggml_opt_context * opt,
  17653. struct ggml_tensor * f) {
  17654. // build forward + backward compute graphs
  17655. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17656. ggml_build_forward_expand(gf, f);
  17657. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17658. ggml_build_backward_expand(ctx, gf, gb, true);
  17659. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17660. }
  17661. enum ggml_opt_result ggml_opt_resume_g(
  17662. struct ggml_context * ctx,
  17663. struct ggml_opt_context * opt,
  17664. struct ggml_tensor * f,
  17665. struct ggml_cgraph * gf,
  17666. struct ggml_cgraph * gb,
  17667. ggml_opt_callback callback,
  17668. void * callback_data) {
  17669. // build forward + backward compute graphs
  17670. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17671. switch (opt->params.type) {
  17672. case GGML_OPT_TYPE_ADAM:
  17673. {
  17674. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17675. } break;
  17676. case GGML_OPT_TYPE_LBFGS:
  17677. {
  17678. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17679. } break;
  17680. }
  17681. if (opt->params.print_forward_graph) {
  17682. ggml_graph_print (gf);
  17683. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17684. }
  17685. if (opt->params.print_backward_graph) {
  17686. ggml_graph_print (gb);
  17687. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17688. }
  17689. return result;
  17690. }
  17691. ////////////////////////////////////////////////////////////////////////////////
  17692. void ggml_set_input(struct ggml_tensor * tensor) {
  17693. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17694. }
  17695. void ggml_set_output(struct ggml_tensor * tensor) {
  17696. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17697. }
  17698. ////////////////////////////////////////////////////////////////////////////////
  17699. void ggml_quantize_init(enum ggml_type type) {
  17700. ggml_critical_section_start();
  17701. switch (type) {
  17702. case GGML_TYPE_IQ2_XXS:
  17703. case GGML_TYPE_IQ2_XS:
  17704. case GGML_TYPE_IQ2_S:
  17705. case GGML_TYPE_IQ1_S:
  17706. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17707. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17708. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17709. default: // nothing
  17710. break;
  17711. }
  17712. ggml_critical_section_end();
  17713. }
  17714. void ggml_quantize_free(void) {
  17715. ggml_critical_section_start();
  17716. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17717. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17718. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17719. iq3xs_free_impl(256);
  17720. ggml_critical_section_end();
  17721. }
  17722. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17723. return
  17724. type == GGML_TYPE_IQ2_XXS ||
  17725. type == GGML_TYPE_IQ2_XS ||
  17726. type == GGML_TYPE_IQ1_S;// ||
  17727. //type == GGML_TYPE_IQ1_M;
  17728. }
  17729. size_t ggml_quantize_chunk(
  17730. enum ggml_type type,
  17731. const float * src,
  17732. void * dst,
  17733. int64_t start,
  17734. int64_t nrows,
  17735. int64_t n_per_row,
  17736. const float * imatrix) {
  17737. const int64_t n = (int64_t) nrows * n_per_row;
  17738. if (ggml_quantize_requires_imatrix(type)) {
  17739. GGML_ASSERT(imatrix != NULL);
  17740. }
  17741. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17742. GGML_ASSERT(start % n_per_row == 0);
  17743. ggml_quantize_init(type); // this is noop if already initialized
  17744. const size_t start_row = start / n_per_row;
  17745. const size_t row_size = ggml_row_size(type, n_per_row);
  17746. size_t result = 0;
  17747. switch (type) {
  17748. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17749. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17750. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17751. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17752. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17753. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17754. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17755. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17756. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17757. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17758. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17759. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17760. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17761. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17762. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17763. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17764. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17765. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17766. #if QK_K == 64
  17767. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17768. #else
  17769. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17770. #endif
  17771. case GGML_TYPE_F16:
  17772. {
  17773. size_t elemsize = sizeof(ggml_fp16_t);
  17774. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17775. result = n * elemsize;
  17776. } break;
  17777. case GGML_TYPE_BF16:
  17778. {
  17779. size_t elemsize = sizeof(ggml_bf16_t);
  17780. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17781. result = n * elemsize;
  17782. } break;
  17783. case GGML_TYPE_F32:
  17784. {
  17785. size_t elemsize = sizeof(float);
  17786. result = n * elemsize;
  17787. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17788. } break;
  17789. default:
  17790. assert(false);
  17791. }
  17792. GGML_ASSERT(result == nrows * row_size);
  17793. return result;
  17794. }
  17795. ////////////////////////////////////////////////////////////////////////////////
  17796. struct gguf_str {
  17797. uint64_t n; // GGUFv2
  17798. char * data;
  17799. };
  17800. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17801. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17802. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17803. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17804. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17805. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17806. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17807. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17808. [GGUF_TYPE_BOOL] = sizeof(bool),
  17809. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17810. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17811. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17812. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17813. [GGUF_TYPE_ARRAY] = 0, // undefined
  17814. };
  17815. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17816. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17817. [GGUF_TYPE_UINT8] = "u8",
  17818. [GGUF_TYPE_INT8] = "i8",
  17819. [GGUF_TYPE_UINT16] = "u16",
  17820. [GGUF_TYPE_INT16] = "i16",
  17821. [GGUF_TYPE_UINT32] = "u32",
  17822. [GGUF_TYPE_INT32] = "i32",
  17823. [GGUF_TYPE_FLOAT32] = "f32",
  17824. [GGUF_TYPE_BOOL] = "bool",
  17825. [GGUF_TYPE_STRING] = "str",
  17826. [GGUF_TYPE_ARRAY] = "arr",
  17827. [GGUF_TYPE_UINT64] = "u64",
  17828. [GGUF_TYPE_INT64] = "i64",
  17829. [GGUF_TYPE_FLOAT64] = "f64",
  17830. };
  17831. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17832. union gguf_value {
  17833. uint8_t uint8;
  17834. int8_t int8;
  17835. uint16_t uint16;
  17836. int16_t int16;
  17837. uint32_t uint32;
  17838. int32_t int32;
  17839. float float32;
  17840. uint64_t uint64;
  17841. int64_t int64;
  17842. double float64;
  17843. bool bool_;
  17844. struct gguf_str str;
  17845. struct {
  17846. enum gguf_type type;
  17847. uint64_t n; // GGUFv2
  17848. void * data;
  17849. } arr;
  17850. };
  17851. struct gguf_kv {
  17852. struct gguf_str key;
  17853. enum gguf_type type;
  17854. union gguf_value value;
  17855. };
  17856. struct gguf_header {
  17857. char magic[4];
  17858. uint32_t version;
  17859. uint64_t n_tensors; // GGUFv2
  17860. uint64_t n_kv; // GGUFv2
  17861. };
  17862. struct gguf_tensor_info {
  17863. struct gguf_str name;
  17864. uint32_t n_dims;
  17865. uint64_t ne[GGML_MAX_DIMS];
  17866. enum ggml_type type;
  17867. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17868. // for writing API
  17869. const void * data;
  17870. size_t size;
  17871. };
  17872. struct gguf_context {
  17873. struct gguf_header header;
  17874. struct gguf_kv * kv;
  17875. struct gguf_tensor_info * infos;
  17876. size_t alignment;
  17877. size_t offset; // offset of `data` from beginning of file
  17878. size_t size; // size of `data` in bytes
  17879. //uint8_t * padding;
  17880. void * data;
  17881. };
  17882. static size_t gguf_type_size(enum gguf_type type) {
  17883. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17884. return GGUF_TYPE_SIZE[type];
  17885. }
  17886. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17887. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17888. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17889. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17890. GGML_ASSERT(info->ne[i] > 0);
  17891. }
  17892. // prevent overflow for total number of elements
  17893. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17894. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17895. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17896. }
  17897. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17898. const size_t n = fread(dst, 1, size, file);
  17899. *offset += n;
  17900. return n == size;
  17901. }
  17902. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17903. p->n = 0;
  17904. p->data = NULL;
  17905. bool ok = true;
  17906. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17907. // early exit if string length is invalid, prevents from integer overflow
  17908. if (p->n == SIZE_MAX) {
  17909. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17910. return false;
  17911. }
  17912. p->data = GGML_CALLOC(p->n + 1, 1);
  17913. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17914. return ok;
  17915. }
  17916. static void gguf_free_kv(struct gguf_kv * kv) {
  17917. if (kv->key.data) {
  17918. GGML_FREE(kv->key.data);
  17919. }
  17920. if (kv->type == GGUF_TYPE_STRING) {
  17921. if (kv->value.str.data) {
  17922. GGML_FREE(kv->value.str.data);
  17923. }
  17924. }
  17925. if (kv->type == GGUF_TYPE_ARRAY) {
  17926. if (kv->value.arr.data) {
  17927. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17928. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17929. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17930. if (str->data) {
  17931. GGML_FREE(str->data);
  17932. }
  17933. }
  17934. }
  17935. GGML_FREE(kv->value.arr.data);
  17936. }
  17937. }
  17938. }
  17939. struct gguf_context * gguf_init_empty(void) {
  17940. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17941. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17942. ctx->header.version = GGUF_VERSION;
  17943. ctx->header.n_tensors = 0;
  17944. ctx->header.n_kv = 0;
  17945. ctx->kv = NULL;
  17946. ctx->infos = NULL;
  17947. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17948. ctx->offset = 0;
  17949. ctx->size = 0;
  17950. ctx->data = NULL;
  17951. return ctx;
  17952. }
  17953. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17954. FILE * file = ggml_fopen(fname, "rb");
  17955. if (!file) {
  17956. return NULL;
  17957. }
  17958. // offset from start of file
  17959. size_t offset = 0;
  17960. char magic[4];
  17961. // check the magic before making allocations
  17962. {
  17963. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17964. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17965. if (magic[i] != GGUF_MAGIC[i]) {
  17966. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17967. fclose(file);
  17968. return NULL;
  17969. }
  17970. }
  17971. }
  17972. bool ok = true;
  17973. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17974. // read the header
  17975. {
  17976. strncpy(ctx->header.magic, magic, 4);
  17977. ctx->kv = NULL;
  17978. ctx->infos = NULL;
  17979. ctx->data = NULL;
  17980. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17981. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17982. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17983. if (ctx->header.version == 1) {
  17984. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17985. fclose(file);
  17986. gguf_free(ctx);
  17987. return NULL;
  17988. }
  17989. // sanity-checks to prevent from integer/buffer overflows
  17990. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17991. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17992. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17993. if (!ok) {
  17994. fprintf(stderr, "%s: failed to read header\n", __func__);
  17995. fclose(file);
  17996. gguf_free(ctx);
  17997. return NULL;
  17998. }
  17999. }
  18000. // read the kv pairs
  18001. {
  18002. const uint64_t n_kv = ctx->header.n_kv;
  18003. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18004. ctx->header.n_kv = 0;
  18005. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18006. for (uint64_t i = 0; i < n_kv; ++i) {
  18007. struct gguf_kv * kv = &ctx->kv[i];
  18008. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18009. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18010. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18011. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18012. switch (kv->type) {
  18013. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18014. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18015. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18016. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18017. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18018. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18019. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18020. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18021. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18022. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18023. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18024. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18025. case GGUF_TYPE_ARRAY:
  18026. {
  18027. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18028. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18029. switch (kv->value.arr.type) {
  18030. case GGUF_TYPE_UINT8:
  18031. case GGUF_TYPE_INT8:
  18032. case GGUF_TYPE_UINT16:
  18033. case GGUF_TYPE_INT16:
  18034. case GGUF_TYPE_UINT32:
  18035. case GGUF_TYPE_INT32:
  18036. case GGUF_TYPE_FLOAT32:
  18037. case GGUF_TYPE_UINT64:
  18038. case GGUF_TYPE_INT64:
  18039. case GGUF_TYPE_FLOAT64:
  18040. case GGUF_TYPE_BOOL:
  18041. {
  18042. // prevent from integer overflow in the malloc below
  18043. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18044. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18045. fclose(file);
  18046. gguf_free(ctx);
  18047. return NULL;
  18048. }
  18049. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18050. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18051. } break;
  18052. case GGUF_TYPE_STRING:
  18053. {
  18054. // prevent from integer overflow in the malloc below
  18055. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18056. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18057. fclose(file);
  18058. gguf_free(ctx);
  18059. return NULL;
  18060. }
  18061. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18062. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18063. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18064. }
  18065. } break;
  18066. case GGUF_TYPE_ARRAY:
  18067. default: GGML_ASSERT(false && "invalid type"); break;
  18068. }
  18069. } break;
  18070. default: GGML_ASSERT(false && "invalid type");
  18071. }
  18072. if (!ok) {
  18073. break;
  18074. }
  18075. ctx->header.n_kv++;
  18076. }
  18077. if (!ok) {
  18078. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18079. fclose(file);
  18080. gguf_free(ctx);
  18081. return NULL;
  18082. }
  18083. }
  18084. // read the tensor infos
  18085. if (ctx->header.n_tensors > 0) {
  18086. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18087. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18088. struct gguf_tensor_info * info = &ctx->infos[i];
  18089. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18090. info->ne[j] = 1;
  18091. }
  18092. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18093. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18094. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18095. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18096. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18097. }
  18098. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18099. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18100. // TODO: return an error instead of crashing with GGML_ASSERT
  18101. gguf_tensor_info_sanitize(info);
  18102. // make sure there is no duplicated tensor names
  18103. for (uint64_t j = 0; j < i; ++j) {
  18104. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18105. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18106. ok = false;
  18107. }
  18108. }
  18109. if (!ok) {
  18110. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18111. fclose(file);
  18112. gguf_free(ctx);
  18113. return NULL;
  18114. }
  18115. }
  18116. }
  18117. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18118. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18119. if (alignment_idx != -1) {
  18120. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18121. }
  18122. // we require the data section to be aligned, so take into account any padding
  18123. {
  18124. const size_t offset_pad = offset % ctx->alignment;
  18125. if (offset_pad != 0) {
  18126. offset += ctx->alignment - offset_pad;
  18127. fseek(file, offset, SEEK_SET);
  18128. }
  18129. }
  18130. // store the current file offset - this is where the data section starts
  18131. ctx->offset = offset;
  18132. // compute the total size of the data section, taking into account the alignment
  18133. {
  18134. ctx->size = 0;
  18135. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18136. struct gguf_tensor_info * info = &ctx->infos[i];
  18137. const int64_t ne =
  18138. (int64_t) info->ne[0] *
  18139. (int64_t) info->ne[1] *
  18140. (int64_t) info->ne[2] *
  18141. (int64_t) info->ne[3];
  18142. if (ne % ggml_blck_size(info->type) != 0) {
  18143. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18144. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18145. fclose(file);
  18146. gguf_free(ctx);
  18147. return NULL;
  18148. }
  18149. const size_t size_cur = ggml_row_size(info->type, ne);
  18150. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18151. }
  18152. }
  18153. // load the tensor data only if requested
  18154. if (params.ctx != NULL) {
  18155. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18156. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18157. // the ggml_tensor structs to the appropriate locations in the binary blob
  18158. // compute the exact size needed for the new ggml_context
  18159. const size_t mem_size =
  18160. params.no_alloc ?
  18161. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18162. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18163. struct ggml_init_params pdata = {
  18164. .mem_size = mem_size,
  18165. .mem_buffer = NULL,
  18166. .no_alloc = params.no_alloc,
  18167. };
  18168. *params.ctx = ggml_init(pdata);
  18169. struct ggml_context * ctx_data = *params.ctx;
  18170. struct ggml_tensor * data = NULL;
  18171. if (!params.no_alloc) {
  18172. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18173. ok = ok && data != NULL;
  18174. // read the binary blob with the tensor data
  18175. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18176. if (!ok) {
  18177. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18178. fclose(file);
  18179. ggml_free(ctx_data);
  18180. gguf_free(ctx);
  18181. return NULL;
  18182. }
  18183. ctx->data = data->data;
  18184. }
  18185. ggml_set_no_alloc(ctx_data, true);
  18186. // create the tensors
  18187. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18188. const int64_t ne[GGML_MAX_DIMS] = {
  18189. ctx->infos[i].ne[0],
  18190. ctx->infos[i].ne[1],
  18191. ctx->infos[i].ne[2],
  18192. ctx->infos[i].ne[3],
  18193. };
  18194. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18195. ok = ok && cur != NULL;
  18196. if (!ok) {
  18197. break;
  18198. }
  18199. ggml_set_name(cur, ctx->infos[i].name.data);
  18200. // point the data member to the appropriate location in the binary blob using the tensor infos
  18201. if (!params.no_alloc) {
  18202. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18203. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18204. }
  18205. }
  18206. if (!ok) {
  18207. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18208. fclose(file);
  18209. ggml_free(ctx_data);
  18210. gguf_free(ctx);
  18211. return NULL;
  18212. }
  18213. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18214. }
  18215. fclose(file);
  18216. return ctx;
  18217. }
  18218. void gguf_free(struct gguf_context * ctx) {
  18219. if (ctx == NULL) {
  18220. return;
  18221. }
  18222. if (ctx->kv) {
  18223. // free string memory - not great..
  18224. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18225. gguf_free_kv(&ctx->kv[i]);
  18226. }
  18227. GGML_FREE(ctx->kv);
  18228. }
  18229. if (ctx->infos) {
  18230. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18231. struct gguf_tensor_info * info = &ctx->infos[i];
  18232. if (info->name.data) {
  18233. GGML_FREE(info->name.data);
  18234. }
  18235. }
  18236. GGML_FREE(ctx->infos);
  18237. }
  18238. GGML_FREE(ctx);
  18239. }
  18240. const char * gguf_type_name(enum gguf_type type) {
  18241. return GGUF_TYPE_NAME[type];
  18242. }
  18243. int gguf_get_version(const struct gguf_context * ctx) {
  18244. return ctx->header.version;
  18245. }
  18246. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18247. return ctx->alignment;
  18248. }
  18249. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18250. return ctx->offset;
  18251. }
  18252. void * gguf_get_data(const struct gguf_context * ctx) {
  18253. return ctx->data;
  18254. }
  18255. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18256. return ctx->header.n_kv;
  18257. }
  18258. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18259. // return -1 if key not found
  18260. int keyfound = -1;
  18261. const int n_kv = gguf_get_n_kv(ctx);
  18262. for (int i = 0; i < n_kv; ++i) {
  18263. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18264. keyfound = i;
  18265. break;
  18266. }
  18267. }
  18268. return keyfound;
  18269. }
  18270. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18271. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18272. return ctx->kv[key_id].key.data;
  18273. }
  18274. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18275. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18276. return ctx->kv[key_id].type;
  18277. }
  18278. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18281. return ctx->kv[key_id].value.arr.type;
  18282. }
  18283. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18286. return ctx->kv[key_id].value.arr.data;
  18287. }
  18288. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18290. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18291. struct gguf_kv * kv = &ctx->kv[key_id];
  18292. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18293. return str->data;
  18294. }
  18295. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18298. return ctx->kv[key_id].value.arr.n;
  18299. }
  18300. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18303. return ctx->kv[key_id].value.uint8;
  18304. }
  18305. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18308. return ctx->kv[key_id].value.int8;
  18309. }
  18310. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18313. return ctx->kv[key_id].value.uint16;
  18314. }
  18315. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18316. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18317. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18318. return ctx->kv[key_id].value.int16;
  18319. }
  18320. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18322. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18323. return ctx->kv[key_id].value.uint32;
  18324. }
  18325. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18326. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18327. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18328. return ctx->kv[key_id].value.int32;
  18329. }
  18330. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18331. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18332. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18333. return ctx->kv[key_id].value.float32;
  18334. }
  18335. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18336. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18337. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18338. return ctx->kv[key_id].value.uint64;
  18339. }
  18340. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18341. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18342. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18343. return ctx->kv[key_id].value.int64;
  18344. }
  18345. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18346. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18347. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18348. return ctx->kv[key_id].value.float64;
  18349. }
  18350. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18351. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18352. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18353. return ctx->kv[key_id].value.bool_;
  18354. }
  18355. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18356. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18357. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18358. return ctx->kv[key_id].value.str.data;
  18359. }
  18360. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18361. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18362. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18363. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18364. return &ctx->kv[key_id].value;
  18365. }
  18366. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18367. return ctx->header.n_tensors;
  18368. }
  18369. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18370. // return -1 if tensor not found
  18371. int tensorfound = -1;
  18372. const int n_tensors = gguf_get_n_tensors(ctx);
  18373. for (int i = 0; i < n_tensors; ++i) {
  18374. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18375. tensorfound = i;
  18376. break;
  18377. }
  18378. }
  18379. return tensorfound;
  18380. }
  18381. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18382. return ctx->infos[i].offset;
  18383. }
  18384. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18385. return ctx->infos[i].name.data;
  18386. }
  18387. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18388. return ctx->infos[i].type;
  18389. }
  18390. // returns the index
  18391. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18392. const int idx = gguf_find_key(ctx, key);
  18393. if (idx >= 0) {
  18394. return idx;
  18395. }
  18396. const int n_kv = gguf_get_n_kv(ctx);
  18397. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18398. ctx->kv[n_kv].key.n = strlen(key);
  18399. ctx->kv[n_kv].key.data = strdup(key);
  18400. ctx->header.n_kv++;
  18401. return n_kv;
  18402. }
  18403. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18404. const int idx = gguf_find_key(ctx, key);
  18405. if (idx >= 0) {
  18406. const int n_kv = gguf_get_n_kv(ctx);
  18407. gguf_free_kv(&ctx->kv[idx]);
  18408. for (int i = idx; i < n_kv-1; ++i) {
  18409. ctx->kv[i] = ctx->kv[i+1];
  18410. }
  18411. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18412. ctx->header.n_kv--;
  18413. }
  18414. }
  18415. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18416. const int idx = gguf_get_or_add_key(ctx, key);
  18417. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18418. ctx->kv[idx].value.uint8 = val;
  18419. }
  18420. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18421. const int idx = gguf_get_or_add_key(ctx, key);
  18422. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18423. ctx->kv[idx].value.int8 = val;
  18424. }
  18425. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18426. const int idx = gguf_get_or_add_key(ctx, key);
  18427. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18428. ctx->kv[idx].value.uint16 = val;
  18429. }
  18430. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18431. const int idx = gguf_get_or_add_key(ctx, key);
  18432. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18433. ctx->kv[idx].value.int16 = val;
  18434. }
  18435. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18436. const int idx = gguf_get_or_add_key(ctx, key);
  18437. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18438. ctx->kv[idx].value.uint32 = val;
  18439. }
  18440. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18441. const int idx = gguf_get_or_add_key(ctx, key);
  18442. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18443. ctx->kv[idx].value.int32 = val;
  18444. }
  18445. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18446. const int idx = gguf_get_or_add_key(ctx, key);
  18447. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18448. ctx->kv[idx].value.float32 = val;
  18449. }
  18450. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18451. const int idx = gguf_get_or_add_key(ctx, key);
  18452. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18453. ctx->kv[idx].value.uint64 = val;
  18454. }
  18455. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18456. const int idx = gguf_get_or_add_key(ctx, key);
  18457. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18458. ctx->kv[idx].value.int64 = val;
  18459. }
  18460. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18461. const int idx = gguf_get_or_add_key(ctx, key);
  18462. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18463. ctx->kv[idx].value.float64 = val;
  18464. }
  18465. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18466. const int idx = gguf_get_or_add_key(ctx, key);
  18467. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18468. ctx->kv[idx].value.bool_ = val;
  18469. }
  18470. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18471. const int idx = gguf_get_or_add_key(ctx, key);
  18472. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18473. ctx->kv[idx].value.str.n = strlen(val);
  18474. ctx->kv[idx].value.str.data = strdup(val);
  18475. }
  18476. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18477. const int idx = gguf_get_or_add_key(ctx, key);
  18478. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18479. ctx->kv[idx].value.arr.type = type;
  18480. ctx->kv[idx].value.arr.n = n;
  18481. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18482. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18483. }
  18484. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18485. const int idx = gguf_get_or_add_key(ctx, key);
  18486. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18487. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18488. ctx->kv[idx].value.arr.n = n;
  18489. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18490. for (int i = 0; i < n; i++) {
  18491. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18492. str->n = strlen(data[i]);
  18493. str->data = strdup(data[i]);
  18494. }
  18495. }
  18496. // set or add KV pairs from another context
  18497. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18498. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18499. switch (src->kv[i].type) {
  18500. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18501. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18502. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18503. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18504. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18505. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18506. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18507. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18508. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18509. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18510. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18511. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18512. case GGUF_TYPE_ARRAY:
  18513. {
  18514. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18515. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18516. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18517. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18518. }
  18519. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18520. GGML_FREE((void *)data);
  18521. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18522. GGML_ASSERT(false && "nested arrays not supported");
  18523. } else {
  18524. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18525. }
  18526. } break;
  18527. default: GGML_ASSERT(false && "invalid type"); break;
  18528. }
  18529. }
  18530. }
  18531. void gguf_add_tensor(
  18532. struct gguf_context * ctx,
  18533. const struct ggml_tensor * tensor) {
  18534. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18535. GGML_ASSERT(false && "duplicated tensor name");
  18536. }
  18537. const int idx = ctx->header.n_tensors;
  18538. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18539. ctx->infos[idx].name.n = strlen(tensor->name);
  18540. ctx->infos[idx].name.data = strdup(tensor->name);
  18541. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18542. ctx->infos[idx].ne[i] = 1;
  18543. }
  18544. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18545. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18546. ctx->infos[idx].ne[i] = tensor->ne[i];
  18547. }
  18548. ctx->infos[idx].type = tensor->type;
  18549. ctx->infos[idx].offset = 0;
  18550. ctx->infos[idx].data = tensor->data;
  18551. ctx->infos[idx].size = ggml_nbytes(tensor);
  18552. if (ctx->header.n_tensors > 0) {
  18553. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18554. }
  18555. ctx->header.n_tensors++;
  18556. }
  18557. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18558. const int idx = gguf_find_tensor(ctx, name);
  18559. if (idx < 0) {
  18560. GGML_ASSERT(false && "tensor not found");
  18561. }
  18562. ctx->infos[idx].type = type;
  18563. }
  18564. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18565. const int idx = gguf_find_tensor(ctx, name);
  18566. if (idx < 0) {
  18567. GGML_ASSERT(false && "tensor not found");
  18568. }
  18569. ctx->infos[idx].data = data;
  18570. ctx->infos[idx].size = size;
  18571. // update offsets
  18572. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18573. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18574. }
  18575. }
  18576. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18577. // fwrite(&val->n, sizeof(val->n), 1, file);
  18578. // fwrite(val->data, sizeof(char), val->n, file);
  18579. //}
  18580. //
  18581. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18582. // fwrite(val, sizeof(char), size, file);
  18583. //}
  18584. struct gguf_buf {
  18585. void * data;
  18586. size_t size;
  18587. size_t offset;
  18588. };
  18589. static struct gguf_buf gguf_buf_init(size_t size) {
  18590. struct gguf_buf buf = {
  18591. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18592. /*buf.size =*/ size,
  18593. /*buf.offset =*/ 0,
  18594. };
  18595. return buf;
  18596. }
  18597. static void gguf_buf_free(struct gguf_buf buf) {
  18598. if (buf.data) {
  18599. GGML_FREE(buf.data);
  18600. }
  18601. }
  18602. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18603. if (buf->offset + size > buf->size) {
  18604. buf->size = 1.5*(buf->offset + size);
  18605. if (buf->data) {
  18606. buf->data = realloc(buf->data, buf->size);
  18607. }
  18608. }
  18609. }
  18610. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18611. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18612. if (buf->data) {
  18613. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18614. }
  18615. buf->offset += sizeof(val->n);
  18616. if (buf->data) {
  18617. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18618. }
  18619. buf->offset += val->n;
  18620. }
  18621. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18622. gguf_buf_grow(buf, el_size);
  18623. if (buf->data) {
  18624. memcpy((char *) buf->data + buf->offset, val, el_size);
  18625. }
  18626. buf->offset += el_size;
  18627. }
  18628. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18629. // write header
  18630. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18631. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18632. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18633. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18634. // write key-value pairs
  18635. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18636. struct gguf_kv * kv = &ctx->kv[i];
  18637. gguf_bwrite_str(buf, &kv->key);
  18638. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18639. switch (kv->type) {
  18640. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18641. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18642. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18643. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18644. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18645. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18646. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18647. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18648. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18649. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18650. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18651. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18652. case GGUF_TYPE_ARRAY:
  18653. {
  18654. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18655. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18656. switch (kv->value.arr.type) {
  18657. case GGUF_TYPE_UINT8:
  18658. case GGUF_TYPE_INT8:
  18659. case GGUF_TYPE_UINT16:
  18660. case GGUF_TYPE_INT16:
  18661. case GGUF_TYPE_UINT32:
  18662. case GGUF_TYPE_INT32:
  18663. case GGUF_TYPE_FLOAT32:
  18664. case GGUF_TYPE_UINT64:
  18665. case GGUF_TYPE_INT64:
  18666. case GGUF_TYPE_FLOAT64:
  18667. case GGUF_TYPE_BOOL:
  18668. {
  18669. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18670. } break;
  18671. case GGUF_TYPE_STRING:
  18672. {
  18673. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18674. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18675. }
  18676. } break;
  18677. case GGUF_TYPE_ARRAY:
  18678. default: GGML_ASSERT(false && "invalid type"); break;
  18679. }
  18680. } break;
  18681. default: GGML_ASSERT(false && "invalid type");
  18682. }
  18683. }
  18684. // write tensor infos
  18685. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18686. struct gguf_tensor_info * info = &ctx->infos[i];
  18687. gguf_bwrite_str(buf, &info->name);
  18688. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18689. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18690. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18691. }
  18692. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18693. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18694. }
  18695. // we require the data section to be aligned, so take into account any padding
  18696. {
  18697. const size_t offset = buf->offset;
  18698. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18699. if (offset_pad != offset) {
  18700. uint8_t pad = 0;
  18701. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18702. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18703. }
  18704. }
  18705. }
  18706. if (only_meta) {
  18707. return;
  18708. }
  18709. size_t offset = 0;
  18710. // write tensor data
  18711. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18712. struct gguf_tensor_info * info = &ctx->infos[i];
  18713. const size_t size = info->size;
  18714. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18715. gguf_bwrite_el(buf, info->data, size);
  18716. if (size_pad != size) {
  18717. uint8_t pad = 0;
  18718. for (size_t j = 0; j < size_pad - size; ++j) {
  18719. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18720. }
  18721. }
  18722. GGML_ASSERT(offset == info->offset);
  18723. offset += size_pad;
  18724. }
  18725. }
  18726. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18727. FILE * file = ggml_fopen(fname, "wb");
  18728. if (!file) {
  18729. GGML_ASSERT(false && "failed to open file for writing");
  18730. }
  18731. struct gguf_buf buf = gguf_buf_init(16*1024);
  18732. gguf_write_to_buf(ctx, &buf, only_meta);
  18733. fwrite(buf.data, 1, buf.offset, file);
  18734. gguf_buf_free(buf);
  18735. fclose(file);
  18736. }
  18737. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18738. // no allocs - only compute size
  18739. struct gguf_buf buf = gguf_buf_init(0);
  18740. gguf_write_to_buf(ctx, &buf, true);
  18741. return buf.offset;
  18742. }
  18743. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18744. struct gguf_buf buf = gguf_buf_init(16*1024);
  18745. gguf_write_to_buf(ctx, &buf, true);
  18746. memcpy(data, buf.data, buf.offset);
  18747. gguf_buf_free(buf);
  18748. }
  18749. ////////////////////////////////////////////////////////////////////////////////
  18750. int ggml_cpu_has_avx(void) {
  18751. #if defined(__AVX__)
  18752. return 1;
  18753. #else
  18754. return 0;
  18755. #endif
  18756. }
  18757. int ggml_cpu_has_avx_vnni(void) {
  18758. #if defined(__AVXVNNI__)
  18759. return 1;
  18760. #else
  18761. return 0;
  18762. #endif
  18763. }
  18764. int ggml_cpu_has_avx2(void) {
  18765. #if defined(__AVX2__)
  18766. return 1;
  18767. #else
  18768. return 0;
  18769. #endif
  18770. }
  18771. int ggml_cpu_has_avx512(void) {
  18772. #if defined(__AVX512F__)
  18773. return 1;
  18774. #else
  18775. return 0;
  18776. #endif
  18777. }
  18778. int ggml_cpu_has_avx512_vbmi(void) {
  18779. #if defined(__AVX512VBMI__)
  18780. return 1;
  18781. #else
  18782. return 0;
  18783. #endif
  18784. }
  18785. int ggml_cpu_has_avx512_vnni(void) {
  18786. #if defined(__AVX512VNNI__)
  18787. return 1;
  18788. #else
  18789. return 0;
  18790. #endif
  18791. }
  18792. int ggml_cpu_has_fma(void) {
  18793. #if defined(__FMA__)
  18794. return 1;
  18795. #else
  18796. return 0;
  18797. #endif
  18798. }
  18799. int ggml_cpu_has_neon(void) {
  18800. #if defined(__ARM_NEON)
  18801. return 1;
  18802. #else
  18803. return 0;
  18804. #endif
  18805. }
  18806. int ggml_cpu_has_arm_fma(void) {
  18807. #if defined(__ARM_FEATURE_FMA)
  18808. return 1;
  18809. #else
  18810. return 0;
  18811. #endif
  18812. }
  18813. int ggml_cpu_has_metal(void) {
  18814. #if defined(GGML_USE_METAL)
  18815. return 1;
  18816. #else
  18817. return 0;
  18818. #endif
  18819. }
  18820. int ggml_cpu_has_f16c(void) {
  18821. #if defined(__F16C__)
  18822. return 1;
  18823. #else
  18824. return 0;
  18825. #endif
  18826. }
  18827. int ggml_cpu_has_fp16_va(void) {
  18828. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18829. return 1;
  18830. #else
  18831. return 0;
  18832. #endif
  18833. }
  18834. int ggml_cpu_has_wasm_simd(void) {
  18835. #if defined(__wasm_simd128__)
  18836. return 1;
  18837. #else
  18838. return 0;
  18839. #endif
  18840. }
  18841. int ggml_cpu_has_blas(void) {
  18842. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18843. return 1;
  18844. #else
  18845. return 0;
  18846. #endif
  18847. }
  18848. int ggml_cpu_has_cuda(void) {
  18849. #if defined(GGML_USE_CUDA)
  18850. return 1;
  18851. #else
  18852. return 0;
  18853. #endif
  18854. }
  18855. int ggml_cpu_has_clblast(void) {
  18856. #if defined(GGML_USE_CLBLAST)
  18857. return 1;
  18858. #else
  18859. return 0;
  18860. #endif
  18861. }
  18862. int ggml_cpu_has_vulkan(void) {
  18863. #if defined(GGML_USE_VULKAN)
  18864. return 1;
  18865. #else
  18866. return 0;
  18867. #endif
  18868. }
  18869. int ggml_cpu_has_kompute(void) {
  18870. #if defined(GGML_USE_KOMPUTE)
  18871. return 1;
  18872. #else
  18873. return 0;
  18874. #endif
  18875. }
  18876. int ggml_cpu_has_sycl(void) {
  18877. #if defined(GGML_USE_SYCL)
  18878. return 1;
  18879. #else
  18880. return 0;
  18881. #endif
  18882. }
  18883. int ggml_cpu_has_gpublas(void) {
  18884. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18885. ggml_cpu_has_sycl();
  18886. }
  18887. int ggml_cpu_has_sse3(void) {
  18888. #if defined(__SSE3__)
  18889. return 1;
  18890. #else
  18891. return 0;
  18892. #endif
  18893. }
  18894. int ggml_cpu_has_ssse3(void) {
  18895. #if defined(__SSSE3__)
  18896. return 1;
  18897. #else
  18898. return 0;
  18899. #endif
  18900. }
  18901. int ggml_cpu_has_vsx(void) {
  18902. #if defined(__POWER9_VECTOR__)
  18903. return 1;
  18904. #else
  18905. return 0;
  18906. #endif
  18907. }
  18908. int ggml_cpu_has_matmul_int8(void) {
  18909. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18910. return 1;
  18911. #else
  18912. return 0;
  18913. #endif
  18914. }
  18915. ////////////////////////////////////////////////////////////////////////////////