1
0

test-tokenizer-random.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. # Test libllama tokenizer == AutoTokenizer.
  2. # Brute force random tokens/text generation.
  3. #
  4. # Sample usage:
  5. #
  6. # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
  7. #
  8. import time
  9. import logging
  10. import argparse
  11. import subprocess
  12. import random
  13. from typing import Iterator
  14. import cffi
  15. from transformers import AutoTokenizer, PreTrainedTokenizerBase
  16. logger = logging.getLogger("test-tokenizer-random-bpe")
  17. class LibLlama:
  18. DEFAULT_PATH_LLAMA_H = "./llama.h"
  19. DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
  20. def __init__(self, path_llama_h: str = None, path_libllama: str = None):
  21. path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
  22. path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
  23. (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
  24. self.lib.llama_backend_init()
  25. def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
  26. cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
  27. res = subprocess.run(cmd, stdout=subprocess.PIPE)
  28. assert (res.returncode == 0)
  29. source = res.stdout.decode()
  30. ffi = cffi.FFI()
  31. if True: # workarounds for pycparser
  32. source = "typedef struct { } __builtin_va_list;" + "\n" + source
  33. source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
  34. source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
  35. source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
  36. source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
  37. ffi.cdef(source, override=True)
  38. lib = ffi.dlopen(path_libllama)
  39. return (ffi, lib)
  40. def model_default_params(self, **kwargs):
  41. mparams = self.lib.llama_model_default_params()
  42. for k, v in kwargs.items():
  43. setattr(mparams, k, v)
  44. return mparams
  45. def context_default_params(self, **kwargs):
  46. cparams = self.lib.llama_context_default_params()
  47. for k, v in kwargs.items():
  48. setattr(cparams, k, v)
  49. return cparams
  50. class LibLlamaModel:
  51. def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
  52. self.lib = libllama.lib
  53. self.ffi = libllama.ffi
  54. if isinstance(mparams, dict):
  55. mparams = libllama.model_default_params(**mparams)
  56. self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
  57. if not self.model:
  58. raise RuntimeError("error: failed to load model '%s'" % path_model)
  59. if isinstance(cparams, dict):
  60. cparams = libllama.context_default_params(**cparams)
  61. self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
  62. if not self.ctx:
  63. raise RuntimeError("error: failed to create context for model '%s'" % path_model)
  64. n_tokens_max = self.lib.llama_n_ctx(self.ctx)
  65. self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
  66. def free(self):
  67. if self.ctx:
  68. self.lib.llama_free(self.ctx)
  69. if self.model:
  70. self.lib.llama_free_model(self.model)
  71. self.ctx = None
  72. self.model = None
  73. self.lib = None
  74. def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
  75. n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
  76. text = text.encode("utf-8")
  77. num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
  78. if num < 0:
  79. return []
  80. return list(self.token_ids[0:num])
  81. def generator_custom_text() -> Iterator[str]:
  82. """General tests"""
  83. yield from [
  84. "",
  85. " ",
  86. " ",
  87. " ",
  88. "\t",
  89. "\n",
  90. "\n\n",
  91. "\n\n\n",
  92. "\t\n",
  93. "Hello world",
  94. " Hello world",
  95. "Hello World",
  96. " Hello World",
  97. " Hello World!",
  98. "Hello, world!",
  99. " Hello, world!",
  100. " this is 🦙.cpp",
  101. "w048 7tuijk dsdfhu",
  102. "нещо на Български",
  103. "កាន់តែពិសេសអាចខលចេញ",
  104. "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
  105. "Hello",
  106. " Hello",
  107. " Hello",
  108. " Hello",
  109. " Hello",
  110. " Hello\n Hello",
  111. " (",
  112. "\n =",
  113. "' era",
  114. "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
  115. "3",
  116. "33",
  117. "333",
  118. "3333",
  119. "33333",
  120. "333333",
  121. "3333333",
  122. "33333333",
  123. "333333333",
  124. ]
  125. def generator_custom_text_edge_cases() -> Iterator[str]:
  126. """Edge cases found while debugging"""
  127. yield from [
  128. '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
  129. '¼-a', # unicode_ranges_digit, 0x00BC
  130. '½-a', # unicode_ranges_digit, 0x00BD
  131. '¾-a', # unicode_ranges_digit, 0x00BE
  132. 'a 〇b', # unicode_ranges_digit, 0x3007
  133. 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
  134. '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
  135. '<s>a' # TODO: Phi-3 fail
  136. ]
  137. def generator_random_chars(iterations = 100) -> Iterator[str]:
  138. """Brute force random text with simple characters"""
  139. WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
  140. CHARS = list(set("""
  141. ABCDEFGHIJKLMNOPQRSTUVWXYZ
  142. abcdefghijklmnopqrstuvwxyz
  143. ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
  144. áéíóúàèìòùâêîôûäëïöü
  145. .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
  146. """))
  147. rand = random.Random()
  148. for m in range(iterations):
  149. rand.seed(m)
  150. text = []
  151. num_words = rand.randint(300, 400)
  152. for i in range(num_words):
  153. k = rand.randint(1, 7)
  154. word = rand.choices(CHARS, k=k)
  155. space = rand.choice(WHITESPACES)
  156. text.append("".join(word) + space)
  157. yield "".join(text)
  158. def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
  159. """Brute force random text with vocab characters"""
  160. vocab_ids = list(tokenizer.vocab.values())
  161. vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True)
  162. vocab_chars = list(set(vocab_text))
  163. del vocab_ids, vocab_text
  164. rand = random.Random()
  165. for m in range(iterations):
  166. rand.seed(m)
  167. text = rand.choices(vocab_chars, k=1024)
  168. yield "".join(text)
  169. def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
  170. """Brute force random text from vocab tokens"""
  171. space_id = tokenizer.encode(" ", add_special_tokens=False)[0]
  172. vocab_ids = list(tokenizer.vocab.values())
  173. vocab_ids = list(sorted(vocab_ids + vocab_ids))
  174. for i in range(1, len(vocab_ids), 2):
  175. vocab_ids[i] = space_id
  176. vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True)
  177. vocab_tokens = vocab_tokens.split(" ")
  178. del vocab_ids
  179. yield from vocab_tokens
  180. rand = random.Random()
  181. for m in range(iterations):
  182. rand.seed(m)
  183. text = []
  184. num_words = rand.randint(300, 400)
  185. for i in range(num_words):
  186. k = rand.randint(1, 3)
  187. tokens = rand.choices(vocab_tokens, k=k)
  188. tokens = [t.strip(" \n\r\t") for t in tokens]
  189. sep = rand.choice(" \n\r\t")
  190. text.append("".join(tokens) + sep)
  191. yield "".join(text)
  192. def generator_random_bytes(iterations = 100) -> Iterator[str]:
  193. """Brute force random bytes"""
  194. WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
  195. rand = random.Random()
  196. for m in range(iterations):
  197. rand.seed(m)
  198. text = []
  199. num_words = rand.randint(300, 400)
  200. for i in range(num_words):
  201. k = rand.randint(1, 8)
  202. word = [chr(r) for r in rand.randbytes(k) if r]
  203. word.append(rand.choice(WHITESPACES))
  204. text.append("".join(word))
  205. yield "".join(text)
  206. def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]):
  207. def find_first_mismatch(ids1: list[int], ids2: list[int]):
  208. for i, (a,b) in enumerate(zip(ids1, ids2)):
  209. if a != b:
  210. return i
  211. if len(ids1) == len(ids2):
  212. return -1
  213. return min(len(ids1), len(ids2))
  214. t0 = time.perf_counter()
  215. logger.info("%s: %s" % (generator.__name__, "ini"))
  216. for text in generator:
  217. ids1 = model.tokenize(text, add_special=False, parse_special=False)
  218. ids2 = tokenizer.encode(text, add_special_tokens=False)
  219. if ids1 != ids2:
  220. i = find_first_mismatch(ids1, ids2)
  221. ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
  222. ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
  223. text2 = tokenizer.decode(ids2, skip_special_tokens=True)
  224. assert (text2 in text)
  225. logger.info(" Text: " + repr(text2))
  226. logger.info(" TokenIDs: " + str(ids1))
  227. logger.info(" Expected: " + str(ids2))
  228. raise Exception()
  229. t1 = time.perf_counter()
  230. logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
  231. if __name__ == "__main__":
  232. parser = argparse.ArgumentParser()
  233. parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
  234. parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
  235. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  236. args = parser.parse_args()
  237. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  238. model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
  239. tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
  240. test_compare_tokenizer(model, tokenizer, generator_custom_text())
  241. test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases())
  242. test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000))
  243. test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000))
  244. test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000))
  245. # test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL
  246. model.free()