| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- # Test libllama tokenizer == AutoTokenizer.
- # Brute force random tokens/text generation.
- #
- # Sample usage:
- #
- # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
- #
- import time
- import logging
- import argparse
- import subprocess
- import random
- from typing import Iterator
- import cffi
- from transformers import AutoTokenizer, PreTrainedTokenizerBase
- logger = logging.getLogger("test-tokenizer-random-bpe")
- class LibLlama:
- DEFAULT_PATH_LLAMA_H = "./llama.h"
- DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
- def __init__(self, path_llama_h: str = None, path_libllama: str = None):
- path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
- path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
- (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
- self.lib.llama_backend_init()
- def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
- cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
- res = subprocess.run(cmd, stdout=subprocess.PIPE)
- assert (res.returncode == 0)
- source = res.stdout.decode()
- ffi = cffi.FFI()
- if True: # workarounds for pycparser
- source = "typedef struct { } __builtin_va_list;" + "\n" + source
- source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
- source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
- source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
- source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
- ffi.cdef(source, override=True)
- lib = ffi.dlopen(path_libllama)
- return (ffi, lib)
- def model_default_params(self, **kwargs):
- mparams = self.lib.llama_model_default_params()
- for k, v in kwargs.items():
- setattr(mparams, k, v)
- return mparams
- def context_default_params(self, **kwargs):
- cparams = self.lib.llama_context_default_params()
- for k, v in kwargs.items():
- setattr(cparams, k, v)
- return cparams
- class LibLlamaModel:
- def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
- self.lib = libllama.lib
- self.ffi = libllama.ffi
- if isinstance(mparams, dict):
- mparams = libllama.model_default_params(**mparams)
- self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
- if not self.model:
- raise RuntimeError("error: failed to load model '%s'" % path_model)
- if isinstance(cparams, dict):
- cparams = libllama.context_default_params(**cparams)
- self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
- if not self.ctx:
- raise RuntimeError("error: failed to create context for model '%s'" % path_model)
- n_tokens_max = self.lib.llama_n_ctx(self.ctx)
- self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
- def free(self):
- if self.ctx:
- self.lib.llama_free(self.ctx)
- if self.model:
- self.lib.llama_free_model(self.model)
- self.ctx = None
- self.model = None
- self.lib = None
- def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
- n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
- text = text.encode("utf-8")
- num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
- if num < 0:
- return []
- return list(self.token_ids[0:num])
- def generator_custom_text() -> Iterator[str]:
- """General tests"""
- yield from [
- "",
- " ",
- " ",
- " ",
- "\t",
- "\n",
- "\n\n",
- "\n\n\n",
- "\t\n",
- "Hello world",
- " Hello world",
- "Hello World",
- " Hello World",
- " Hello World!",
- "Hello, world!",
- " Hello, world!",
- " this is 🦙.cpp",
- "w048 7tuijk dsdfhu",
- "нещо на Български",
- "កាន់តែពិសេសអាចខលចេញ",
- "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
- "Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello\n Hello",
- " (",
- "\n =",
- "' era",
- "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
- "3",
- "33",
- "333",
- "3333",
- "33333",
- "333333",
- "3333333",
- "33333333",
- "333333333",
- ]
- def generator_custom_text_edge_cases() -> Iterator[str]:
- """Edge cases found while debugging"""
- yield from [
- '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
- '¼-a', # unicode_ranges_digit, 0x00BC
- '½-a', # unicode_ranges_digit, 0x00BD
- '¾-a', # unicode_ranges_digit, 0x00BE
- 'a 〇b', # unicode_ranges_digit, 0x3007
- 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
- '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
- '<s>a' # TODO: Phi-3 fail
- ]
- def generator_random_chars(iterations = 100) -> Iterator[str]:
- """Brute force random text with simple characters"""
- WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
- CHARS = list(set("""
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz
- ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
- áéíóúàèìòùâêîôûäëïöü
- .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
- """))
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = []
- num_words = rand.randint(300, 400)
- for i in range(num_words):
- k = rand.randint(1, 7)
- word = rand.choices(CHARS, k=k)
- space = rand.choice(WHITESPACES)
- text.append("".join(word) + space)
- yield "".join(text)
- def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
- """Brute force random text with vocab characters"""
- vocab_ids = list(tokenizer.vocab.values())
- vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True)
- vocab_chars = list(set(vocab_text))
- del vocab_ids, vocab_text
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = rand.choices(vocab_chars, k=1024)
- yield "".join(text)
- def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
- """Brute force random text from vocab tokens"""
- space_id = tokenizer.encode(" ", add_special_tokens=False)[0]
- vocab_ids = list(tokenizer.vocab.values())
- vocab_ids = list(sorted(vocab_ids + vocab_ids))
- for i in range(1, len(vocab_ids), 2):
- vocab_ids[i] = space_id
- vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True)
- vocab_tokens = vocab_tokens.split(" ")
- del vocab_ids
- yield from vocab_tokens
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = []
- num_words = rand.randint(300, 400)
- for i in range(num_words):
- k = rand.randint(1, 3)
- tokens = rand.choices(vocab_tokens, k=k)
- tokens = [t.strip(" \n\r\t") for t in tokens]
- sep = rand.choice(" \n\r\t")
- text.append("".join(tokens) + sep)
- yield "".join(text)
- def generator_random_bytes(iterations = 100) -> Iterator[str]:
- """Brute force random bytes"""
- WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = []
- num_words = rand.randint(300, 400)
- for i in range(num_words):
- k = rand.randint(1, 8)
- word = [chr(r) for r in rand.randbytes(k) if r]
- word.append(rand.choice(WHITESPACES))
- text.append("".join(word))
- yield "".join(text)
- def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]):
- def find_first_mismatch(ids1: list[int], ids2: list[int]):
- for i, (a,b) in enumerate(zip(ids1, ids2)):
- if a != b:
- return i
- if len(ids1) == len(ids2):
- return -1
- return min(len(ids1), len(ids2))
- t0 = time.perf_counter()
- logger.info("%s: %s" % (generator.__name__, "ini"))
- for text in generator:
- ids1 = model.tokenize(text, add_special=False, parse_special=False)
- ids2 = tokenizer.encode(text, add_special_tokens=False)
- if ids1 != ids2:
- i = find_first_mismatch(ids1, ids2)
- ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
- ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
- text2 = tokenizer.decode(ids2, skip_special_tokens=True)
- assert (text2 in text)
- logger.info(" Text: " + repr(text2))
- logger.info(" TokenIDs: " + str(ids1))
- logger.info(" Expected: " + str(ids2))
- raise Exception()
- t1 = time.perf_counter()
- logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
- parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- args = parser.parse_args()
- logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
- model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
- tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
- test_compare_tokenizer(model, tokenizer, generator_custom_text())
- test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases())
- test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000))
- test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000))
- test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000))
- # test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL
- model.free()
|