1
0

common.h 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama-cpp.h"
  4. #include <set>
  5. #include <string>
  6. #include <vector>
  7. #include <sstream>
  8. #ifdef _WIN32
  9. #define DIRECTORY_SEPARATOR '\\'
  10. #else
  11. #define DIRECTORY_SEPARATOR '/'
  12. #endif // _WIN32
  13. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  14. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  15. #define print_build_info() do { \
  16. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  17. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  18. } while(0)
  19. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  20. struct common_adapter_lora_info {
  21. std::string path;
  22. float scale;
  23. struct llama_adapter_lora * ptr;
  24. };
  25. using llama_tokens = std::vector<llama_token>;
  26. // build info
  27. extern int LLAMA_BUILD_NUMBER;
  28. extern const char * LLAMA_COMMIT;
  29. extern const char * LLAMA_COMPILER;
  30. extern const char * LLAMA_BUILD_TARGET;
  31. struct common_control_vector_load_info;
  32. //
  33. // CPU utils
  34. //
  35. struct cpu_params {
  36. int n_threads = -1;
  37. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  38. bool mask_valid = false; // Default: any CPU
  39. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  40. bool strict_cpu = false; // Use strict CPU placement
  41. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  42. };
  43. int32_t cpu_get_num_physical_cores();
  44. int32_t cpu_get_num_math();
  45. //
  46. // Common params
  47. //
  48. enum llama_example {
  49. LLAMA_EXAMPLE_COMMON,
  50. LLAMA_EXAMPLE_SPECULATIVE,
  51. LLAMA_EXAMPLE_MAIN,
  52. LLAMA_EXAMPLE_INFILL,
  53. LLAMA_EXAMPLE_EMBEDDING,
  54. LLAMA_EXAMPLE_PERPLEXITY,
  55. LLAMA_EXAMPLE_RETRIEVAL,
  56. LLAMA_EXAMPLE_PASSKEY,
  57. LLAMA_EXAMPLE_IMATRIX,
  58. LLAMA_EXAMPLE_BENCH,
  59. LLAMA_EXAMPLE_SERVER,
  60. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  61. LLAMA_EXAMPLE_EXPORT_LORA,
  62. LLAMA_EXAMPLE_LLAVA,
  63. LLAMA_EXAMPLE_LOOKUP,
  64. LLAMA_EXAMPLE_PARALLEL,
  65. LLAMA_EXAMPLE_TTS,
  66. LLAMA_EXAMPLE_COUNT,
  67. };
  68. enum common_sampler_type {
  69. COMMON_SAMPLER_TYPE_NONE = 0,
  70. COMMON_SAMPLER_TYPE_DRY = 1,
  71. COMMON_SAMPLER_TYPE_TOP_K = 2,
  72. COMMON_SAMPLER_TYPE_TOP_P = 3,
  73. COMMON_SAMPLER_TYPE_MIN_P = 4,
  74. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  75. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  76. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  77. COMMON_SAMPLER_TYPE_XTC = 8,
  78. COMMON_SAMPLER_TYPE_INFILL = 9,
  79. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  80. };
  81. // dimensionality reduction methods, used by cvector-generator
  82. enum dimre_method {
  83. DIMRE_METHOD_PCA,
  84. DIMRE_METHOD_MEAN,
  85. };
  86. enum common_conversation_mode {
  87. COMMON_CONVERSATION_MODE_DISABLED = 0,
  88. COMMON_CONVERSATION_MODE_ENABLED = 1,
  89. COMMON_CONVERSATION_MODE_AUTO = 2,
  90. };
  91. struct common_grammar_trigger {
  92. std::string word;
  93. bool at_start;
  94. };
  95. // sampling parameters
  96. struct common_params_sampling {
  97. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  98. int32_t n_prev = 64; // number of previous tokens to remember
  99. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  100. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  101. int32_t top_k = 40; // <= 0 to use vocab size
  102. float top_p = 0.95f; // 1.0 = disabled
  103. float min_p = 0.05f; // 0.0 = disabled
  104. float xtc_probability = 0.00f; // 0.0 = disabled
  105. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  106. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  107. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  108. float dynatemp_range = 0.00f; // 0.0 = disabled
  109. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  110. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  111. float penalty_repeat = 1.00f; // 1.0 = disabled
  112. float penalty_freq = 0.00f; // 0.0 = disabled
  113. float penalty_present = 0.00f; // 0.0 = disabled
  114. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  115. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  116. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  117. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  118. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  119. float mirostat_tau = 5.00f; // target entropy
  120. float mirostat_eta = 0.10f; // learning rate
  121. bool ignore_eos = false;
  122. bool no_perf = false; // disable performance metrics
  123. bool timing_per_token = false;
  124. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  125. std::vector<enum common_sampler_type> samplers = {
  126. COMMON_SAMPLER_TYPE_PENALTIES,
  127. COMMON_SAMPLER_TYPE_DRY,
  128. COMMON_SAMPLER_TYPE_TOP_K,
  129. COMMON_SAMPLER_TYPE_TYPICAL_P,
  130. COMMON_SAMPLER_TYPE_TOP_P,
  131. COMMON_SAMPLER_TYPE_MIN_P,
  132. COMMON_SAMPLER_TYPE_XTC,
  133. COMMON_SAMPLER_TYPE_TEMPERATURE,
  134. };
  135. std::string grammar; // optional BNF-like grammar to constrain sampling
  136. bool grammar_lazy = false;
  137. std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
  138. std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
  139. std::set<llama_token> preserved_tokens;
  140. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  141. // print the parameters into a string
  142. std::string print() const;
  143. };
  144. struct common_params_speculative {
  145. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  146. int32_t n_ctx = 0; // draft context size
  147. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  148. int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
  149. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  150. float p_split = 0.1f; // speculative decoding split probability
  151. float p_min = 0.9f; // minimum speculative decoding probability (greedy)
  152. struct cpu_params cpuparams;
  153. struct cpu_params cpuparams_batch;
  154. std::string hf_repo = ""; // HF repo // NOLINT
  155. std::string hf_file = ""; // HF file // NOLINT
  156. std::string model = ""; // draft model for speculative decoding // NOLINT
  157. std::string model_url = ""; // model url to download // NOLINT
  158. };
  159. struct common_params_vocoder {
  160. std::string hf_repo = ""; // HF repo // NOLINT
  161. std::string hf_file = ""; // HF file // NOLINT
  162. std::string model = ""; // model path // NOLINT
  163. std::string model_url = ""; // model url to download // NOLINT
  164. bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
  165. };
  166. struct common_params {
  167. int32_t n_predict = -1; // new tokens to predict
  168. int32_t n_ctx = 4096; // context size
  169. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  170. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  171. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  172. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  173. int32_t n_parallel = 1; // number of parallel sequences to decode
  174. int32_t n_sequences = 1; // number of sequences to decode
  175. int32_t grp_attn_n = 1; // group-attention factor
  176. int32_t grp_attn_w = 512; // group-attention width
  177. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  178. float rope_freq_base = 0.0f; // RoPE base frequency
  179. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  180. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  181. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  182. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  183. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  184. int32_t yarn_orig_ctx = 0; // YaRN original context length
  185. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  186. // offload params
  187. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  188. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  189. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  190. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  191. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  192. struct cpu_params cpuparams;
  193. struct cpu_params cpuparams_batch;
  194. ggml_backend_sched_eval_callback cb_eval = nullptr;
  195. void * cb_eval_user_data = nullptr;
  196. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  197. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  198. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  199. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  200. struct common_params_sampling sampling;
  201. struct common_params_speculative speculative;
  202. struct common_params_vocoder vocoder;
  203. std::string model = ""; // model path // NOLINT
  204. std::string model_alias = ""; // model alias // NOLINT
  205. std::string model_url = ""; // model url to download // NOLINT
  206. std::string hf_token = ""; // HF token // NOLINT
  207. std::string hf_repo = ""; // HF repo // NOLINT
  208. std::string hf_file = ""; // HF file // NOLINT
  209. std::string prompt = ""; // NOLINT
  210. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  211. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  212. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  213. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  214. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  215. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  216. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  217. std::vector<std::string> in_files; // all input files
  218. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  219. std::vector<llama_model_kv_override> kv_overrides;
  220. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
  221. std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
  222. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  223. int32_t verbosity = 0;
  224. int32_t control_vector_layer_start = -1; // layer range for control vector
  225. int32_t control_vector_layer_end = -1; // layer range for control vector
  226. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  227. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  228. // (which is more convenient to use for plotting)
  229. //
  230. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  231. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  232. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  233. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  234. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  235. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  236. bool kl_divergence = false; // compute KL divergence
  237. bool usage = false; // print usage
  238. bool use_color = false; // use color to distinguish generations and inputs
  239. bool special = false; // enable special token output
  240. bool interactive = false; // interactive mode
  241. bool interactive_first = false; // wait for user input immediately
  242. bool prompt_cache_all = false; // save user input and generations to prompt cache
  243. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  244. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  245. bool multiline_input = false; // reverse the usage of `\`
  246. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  247. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  248. bool flash_attn = false; // flash attention
  249. bool no_perf = false; // disable performance metrics
  250. bool ctx_shift = true; // context shift on inifinite text generation
  251. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  252. bool logits_all = false; // return logits for all tokens in the batch
  253. bool use_mmap = true; // use mmap for faster loads
  254. bool use_mlock = false; // use mlock to keep model in memory
  255. bool verbose_prompt = false; // print prompt tokens before generation
  256. bool display_prompt = true; // print prompt before generation
  257. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  258. bool no_kv_offload = false; // disable KV offloading
  259. bool warmup = true; // warmup run
  260. bool check_tensors = false; // validate tensor data
  261. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  262. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  263. common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
  264. // multimodal models (see examples/llava)
  265. std::string mmproj = ""; // path to multimodal projector // NOLINT
  266. std::vector<std::string> image; // path to image file(s)
  267. // embedding
  268. bool embedding = false; // get only sentence embedding
  269. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  270. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  271. std::string embd_sep = "\n"; // separator of embeddings
  272. bool reranking = false; // enable reranking support on server
  273. // server params
  274. int32_t port = 8080; // server listens on this network port
  275. int32_t timeout_read = 600; // http read timeout in seconds
  276. int32_t timeout_write = timeout_read; // http write timeout in seconds
  277. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  278. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  279. std::string hostname = "127.0.0.1";
  280. std::string public_path = ""; // NOLINT
  281. std::string chat_template = ""; // NOLINT
  282. bool use_jinja = false; // NOLINT
  283. bool enable_chat_template = true;
  284. std::vector<std::string> api_keys;
  285. std::string ssl_file_key = ""; // NOLINT
  286. std::string ssl_file_cert = ""; // NOLINT
  287. // "advanced" endpoints are disabled by default for better security
  288. bool webui = true;
  289. bool endpoint_slots = false;
  290. bool endpoint_props = false; // only control POST requests, not GET
  291. bool endpoint_metrics = false;
  292. bool log_json = false;
  293. std::string slot_save_path;
  294. float slot_prompt_similarity = 0.5f;
  295. // batched-bench params
  296. bool is_pp_shared = false;
  297. std::vector<int32_t> n_pp;
  298. std::vector<int32_t> n_tg;
  299. std::vector<int32_t> n_pl;
  300. // retrieval params
  301. std::vector<std::string> context_files; // context files to embed
  302. int32_t chunk_size = 64; // chunk size for context embedding
  303. std::string chunk_separator = "\n"; // chunk separator for context embedding
  304. // passkey params
  305. int32_t n_junk = 250; // number of times to repeat the junk text
  306. int32_t i_pos = -1; // position of the passkey in the junk text
  307. // imatrix params
  308. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  309. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  310. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  311. int32_t i_chunk = 0; // start processing from this chunk
  312. bool process_output = false; // collect data for the output tensor
  313. bool compute_ppl = true; // whether to compute perplexity
  314. // cvector-generator params
  315. int n_pca_batch = 100;
  316. int n_pca_iterations = 1000;
  317. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  318. std::string cvector_outfile = "control_vector.gguf";
  319. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  320. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  321. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  322. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  323. // batched-bench params
  324. bool batched_bench_output_jsonl = false;
  325. };
  326. // call once at the start of a program if it uses libcommon
  327. // initializes the logging system and prints info about the build
  328. void common_init();
  329. std::string common_params_get_system_info(const common_params & params);
  330. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  331. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  332. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  333. bool set_process_priority(enum ggml_sched_priority prio);
  334. //
  335. // String utils
  336. //
  337. #ifdef __GNUC__
  338. # if defined(__MINGW32__) && !defined(__clang__)
  339. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  340. # else
  341. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  342. # endif
  343. #else
  344. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  345. #endif
  346. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  347. std::string string_format(const char * fmt, ...);
  348. std::string string_strip(const std::string & str);
  349. std::string string_get_sortable_timestamp();
  350. std::string string_join(const std::vector<std::string> & values, const std::string & separator);
  351. std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
  352. std::string string_repeat(const std::string & str, size_t n);
  353. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  354. template<class T>
  355. static std::vector<T> string_split(const std::string & str, char delim) {
  356. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  357. std::vector<T> values;
  358. std::istringstream str_stream(str);
  359. std::string token;
  360. while (std::getline(str_stream, token, delim)) {
  361. T value;
  362. std::istringstream token_stream(token);
  363. token_stream >> value;
  364. values.push_back(value);
  365. }
  366. return values;
  367. }
  368. template<>
  369. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  370. {
  371. std::vector<std::string> parts;
  372. size_t begin_pos = 0;
  373. size_t separator_pos = input.find(separator);
  374. while (separator_pos != std::string::npos) {
  375. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  376. parts.emplace_back(part);
  377. begin_pos = separator_pos + 1;
  378. separator_pos = input.find(separator, begin_pos);
  379. }
  380. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  381. return parts;
  382. }
  383. static bool string_starts_with(const std::string & str,
  384. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  385. return str.rfind(prefix, 0) == 0;
  386. }
  387. static bool string_ends_with(const std::string & str,
  388. const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
  389. return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
  390. }
  391. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  392. void string_process_escapes(std::string & input);
  393. std::string string_from(bool value);
  394. std::string string_from(const std::vector<int> & values);
  395. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  396. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  397. //
  398. // Filesystem utils
  399. //
  400. bool fs_validate_filename(const std::string & filename);
  401. bool fs_create_directory_with_parents(const std::string & path);
  402. std::string fs_get_cache_directory();
  403. std::string fs_get_cache_file(const std::string & filename);
  404. //
  405. // Model utils
  406. //
  407. // note: defines object's lifetime
  408. struct common_init_result {
  409. llama_model_ptr model;
  410. llama_context_ptr context;
  411. std::vector<llama_adapter_lora_ptr> lora;
  412. };
  413. struct common_init_result common_init_from_params(common_params & params);
  414. struct llama_model_params common_model_params_to_llama ( common_params & params);
  415. struct llama_context_params common_context_params_to_llama(const common_params & params);
  416. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  417. struct llama_model * common_load_model_from_url(
  418. const std::string & model_url,
  419. const std::string & local_path,
  420. const std::string & hf_token,
  421. const struct llama_model_params & params);
  422. struct llama_model * common_load_model_from_hf(
  423. const std::string & repo,
  424. const std::string & remote_path,
  425. const std::string & local_path,
  426. const std::string & hf_token,
  427. const struct llama_model_params & params);
  428. std::pair<std::string, std::string> common_get_hf_file(
  429. const std::string & hf_repo_with_tag,
  430. const std::string & hf_token);
  431. // clear LoRA adapters from context, then apply new list of adapters
  432. void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
  433. //
  434. // Batch utils
  435. //
  436. void common_batch_clear(struct llama_batch & batch);
  437. void common_batch_add(
  438. struct llama_batch & batch,
  439. llama_token id,
  440. llama_pos pos,
  441. const std::vector<llama_seq_id> & seq_ids,
  442. bool logits);
  443. //
  444. // Token utils
  445. //
  446. // longest common prefix
  447. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  448. // longet common subsequence
  449. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  450. //
  451. // Vocab utils
  452. //
  453. // tokenizes a string into a vector of tokens
  454. // should work similar to Python's `tokenizer.encode`
  455. std::vector<llama_token> common_tokenize(
  456. const struct llama_context * ctx,
  457. const std::string & text,
  458. bool add_special,
  459. bool parse_special = false);
  460. std::vector<llama_token> common_tokenize(
  461. const struct llama_vocab * vocab,
  462. const std::string & text,
  463. bool add_special,
  464. bool parse_special = false);
  465. // tokenizes a token into a piece, optionally renders special/control tokens
  466. // should work similar to Python's `tokenizer.id_to_piece`
  467. std::string common_token_to_piece(
  468. const struct llama_context * ctx,
  469. llama_token token,
  470. bool special = true);
  471. std::string common_token_to_piece(
  472. const struct llama_vocab * vocab,
  473. llama_token token,
  474. bool special = true);
  475. // detokenizes a vector of tokens into a string
  476. // should work similar to Python's `tokenizer.decode`
  477. // optionally renders special/control tokens
  478. std::string common_detokenize(
  479. const struct llama_context * ctx,
  480. const std::vector<llama_token> & tokens,
  481. bool special = true);
  482. std::string common_detokenize(
  483. const struct llama_vocab * vocab,
  484. const std::vector<llama_token> & tokens,
  485. bool special = true);
  486. //
  487. // Chat template utils
  488. //
  489. struct common_tool_call {
  490. std::string name;
  491. std::string arguments;
  492. std::string id;
  493. };
  494. // same with llama_chat_message, but uses std::string
  495. struct common_chat_msg {
  496. std::string role;
  497. std::string content;
  498. std::vector<common_tool_call> tool_calls;
  499. std::string tool_plan = "";
  500. };
  501. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  502. bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
  503. namespace minja {
  504. class chat_template;
  505. }
  506. typedef minja::chat_template common_chat_template;
  507. struct common_chat_templates {
  508. bool has_explicit_template; // Model had builtin template or template overridde was specified.
  509. std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
  510. std::unique_ptr<common_chat_template> template_tool_use;
  511. };
  512. // CPP wrapper for llama_chat_apply_template
  513. // If the built-in template is not supported, we default to chatml
  514. // If the custom "tmpl" is not supported, we throw an error
  515. std::string common_chat_apply_template(
  516. const common_chat_template & tmpl,
  517. const std::vector<common_chat_msg> & chat,
  518. bool add_ass,
  519. bool use_jinja);
  520. // Format single message, while taking into account the position of that message in chat history
  521. std::string common_chat_format_single(
  522. const common_chat_template & tmpl,
  523. const std::vector<common_chat_msg> & past_msg,
  524. const common_chat_msg & new_msg,
  525. bool add_ass,
  526. bool use_jinja);
  527. // Returns an example of formatted chat
  528. std::string common_chat_format_example(
  529. const common_chat_template & tmpl, bool use_jinja);
  530. common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
  531. //
  532. // KV cache utils
  533. //
  534. // Dump the KV cache view with the number of sequences per cell.
  535. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  536. // Dump the KV cache view showing individual sequences in each cell (long output).
  537. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  538. //
  539. // Embedding utils
  540. //
  541. // TODO: repace embd_norm with an enum
  542. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  543. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  544. //
  545. // Control vector utils
  546. //
  547. struct common_control_vector_data {
  548. int n_embd;
  549. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  550. std::vector<float> data;
  551. };
  552. struct common_control_vector_load_info {
  553. float strength;
  554. std::string fname;
  555. };
  556. // Load control vectors, scale each by strength, and add them together.
  557. // On error, returns {-1, empty}
  558. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  559. //
  560. // Split utils
  561. //
  562. namespace {
  563. const char * const LLM_KV_SPLIT_NO = "split.no";
  564. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  565. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  566. }