convert_hf_to_gguf.py 230 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  274. gguf.MODEL_TENSOR.POSNET_NORM1,
  275. gguf.MODEL_TENSOR.POSNET_NORM2,
  276. )
  277. )
  278. or not new_name.endswith(".weight")
  279. ):
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. if data_qtype is False and any(
  282. self.match_model_tensor_name(new_name, key, bid)
  283. for key in (
  284. gguf.MODEL_TENSOR.TOKEN_EMBD,
  285. gguf.MODEL_TENSOR.OUTPUT,
  286. )
  287. ):
  288. if self.ftype in (
  289. gguf.LlamaFileType.MOSTLY_TQ1_0,
  290. gguf.LlamaFileType.MOSTLY_TQ2_0,
  291. ):
  292. # TODO: use Q4_K and Q6_K
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  295. if isinstance(data_qtype, bool):
  296. if self.ftype == gguf.LlamaFileType.ALL_F32:
  297. data_qtype = gguf.GGMLQuantizationType.F32
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  301. data_qtype = gguf.GGMLQuantizationType.BF16
  302. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  303. data_qtype = gguf.GGMLQuantizationType.Q8_0
  304. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  305. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  306. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  307. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  308. else:
  309. raise ValueError(f"Unknown file type: {self.ftype.name}")
  310. try:
  311. data = gguf.quants.quantize(data, data_qtype)
  312. except gguf.QuantError as e:
  313. logger.warning("%s, %s", e, "falling back to F16")
  314. data_qtype = gguf.GGMLQuantizationType.F16
  315. data = gguf.quants.quantize(data, data_qtype)
  316. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  317. # reverse shape to make it similar to the internal ggml dimension order
  318. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  319. # n_dims is implicit in the shape
  320. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  321. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  322. def set_type(self):
  323. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  324. def prepare_metadata(self, vocab_only: bool):
  325. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  326. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  327. # Fallback to model directory name if metadata name is still missing
  328. if self.metadata.name is None:
  329. self.metadata.name = self.dir_model.name
  330. # Generate parameter weight class (useful for leader boards) if not yet determined
  331. if self.metadata.size_label is None and total_params > 0:
  332. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  333. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  334. output_type: str = self.ftype.name.partition("_")[2]
  335. # Filename Output
  336. if self.fname_out.is_dir():
  337. # Generate default filename based on model specification and available metadata
  338. if not vocab_only:
  339. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  340. else:
  341. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  342. # Use the default filename
  343. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  344. else:
  345. # Output path is a custom defined templated filename
  346. # Note: `not is_dir()` is used because `.is_file()` will not detect
  347. # file template strings as it doesn't actually exist as a file
  348. # Process templated file name with the output ftype, useful with the "auto" ftype
  349. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  350. self.set_type()
  351. logger.info("Set meta model")
  352. self.metadata.set_gguf_meta_model(self.gguf_writer)
  353. logger.info("Set model parameters")
  354. self.set_gguf_parameters()
  355. logger.info("Set model tokenizer")
  356. self.set_vocab()
  357. logger.info("Set model quantization version")
  358. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  359. def write(self):
  360. self.prepare_tensors()
  361. self.prepare_metadata(vocab_only=False)
  362. self.gguf_writer.write_header_to_file(path=self.fname_out)
  363. self.gguf_writer.write_kv_data_to_file()
  364. self.gguf_writer.write_tensors_to_file(progress=True)
  365. self.gguf_writer.close()
  366. def write_vocab(self):
  367. if len(self.gguf_writer.tensors) != 1:
  368. raise ValueError('Splitting the vocabulary is not supported')
  369. self.prepare_metadata(vocab_only=True)
  370. self.gguf_writer.write_header_to_file(path=self.fname_out)
  371. self.gguf_writer.write_kv_data_to_file()
  372. self.gguf_writer.close()
  373. @staticmethod
  374. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  375. part_names: list[str] = []
  376. for filename in os.listdir(dir_model):
  377. if filename.startswith(prefix) and filename.endswith(suffix):
  378. part_names.append(filename)
  379. part_names.sort()
  380. return part_names
  381. @staticmethod
  382. def load_hparams(dir_model: Path):
  383. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  384. return json.load(f)
  385. @classmethod
  386. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  387. assert names
  388. def func(modelcls: AnyModel) -> AnyModel:
  389. for name in names:
  390. cls._model_classes[name] = modelcls
  391. return modelcls
  392. return func
  393. @classmethod
  394. def print_registered_models(cls):
  395. for name in sorted(cls._model_classes.keys()):
  396. logger.error(f"- {name}")
  397. @classmethod
  398. def from_model_architecture(cls, arch: str) -> type[Model]:
  399. try:
  400. return cls._model_classes[arch]
  401. except KeyError:
  402. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  403. def does_token_look_special(self, token: str | bytes) -> bool:
  404. if isinstance(token, (bytes, bytearray)):
  405. token_text = token.decode(encoding="utf-8")
  406. elif isinstance(token, memoryview):
  407. token_text = token.tobytes().decode(encoding="utf-8")
  408. else:
  409. token_text = token
  410. # Some models mark some added tokens which ought to be control tokens as not special.
  411. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  412. seems_special = token_text in (
  413. "<pad>", # deepseek-coder
  414. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  415. )
  416. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  418. # TODO: should these be marked as UNUSED instead? (maybe not)
  419. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  420. return seems_special
  421. # used for GPT-2 BPE and WordPiece vocabs
  422. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  423. tokens: list[str] = []
  424. toktypes: list[int] = []
  425. from transformers import AutoTokenizer
  426. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  427. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  428. assert max(tokenizer.vocab.values()) < vocab_size
  429. tokpre = self.get_vocab_base_pre(tokenizer)
  430. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  431. added_vocab = tokenizer.get_added_vocab()
  432. for i in range(vocab_size):
  433. if i not in reverse_vocab:
  434. tokens.append(f"[PAD{i}]")
  435. toktypes.append(gguf.TokenType.UNUSED)
  436. else:
  437. token: str = reverse_vocab[i]
  438. if token in added_vocab:
  439. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  440. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  441. if not tokenizer.added_tokens_decoder[i].normalized:
  442. previous_token = token
  443. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  444. if previous_token != token:
  445. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  446. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  447. toktypes.append(gguf.TokenType.CONTROL)
  448. else:
  449. # NOTE: this was added for Gemma.
  450. # Encoding and decoding the tokens above isn't sufficient for this case.
  451. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  452. toktypes.append(gguf.TokenType.USER_DEFINED)
  453. else:
  454. toktypes.append(gguf.TokenType.NORMAL)
  455. tokens.append(token)
  456. return tokens, toktypes, tokpre
  457. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  458. # do not modify it manually!
  459. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  460. # Marker: Start get_vocab_base_pre
  461. def get_vocab_base_pre(self, tokenizer) -> str:
  462. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  463. # is specific for the BPE pre-tokenizer used by the model
  464. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  465. # use in llama.cpp to implement the same pre-tokenizer
  466. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  467. chktok = tokenizer.encode(chktxt)
  468. chkhsh = sha256(str(chktok).encode()).hexdigest()
  469. logger.debug(f"chktok: {chktok}")
  470. logger.debug(f"chkhsh: {chkhsh}")
  471. res = None
  472. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  473. # or pull the latest version of the model from Huggingface
  474. # don't edit the hashes manually!
  475. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  476. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  477. res = "llama-bpe"
  478. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  479. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  480. res = "deepseek-llm"
  481. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  482. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  483. res = "deepseek-coder"
  484. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  485. # ref: https://huggingface.co/tiiuae/falcon-7b
  486. res = "falcon"
  487. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  488. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  489. res = "falcon3"
  490. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  491. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  492. res = "bert-bge"
  493. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  494. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  495. res = "bert-bge-large"
  496. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  497. # ref: https://huggingface.co/mosaicml/mpt-7b
  498. res = "mpt"
  499. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  500. # ref: https://huggingface.co/bigcode/starcoder2-3b
  501. res = "starcoder"
  502. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  503. # ref: https://huggingface.co/openai-community/gpt2
  504. res = "gpt-2"
  505. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  506. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  507. res = "stablelm2"
  508. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  509. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  510. res = "refact"
  511. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  512. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  513. res = "command-r"
  514. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  515. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  516. res = "qwen2"
  517. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  518. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  519. res = "olmo"
  520. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  521. # ref: https://huggingface.co/databricks/dbrx-base
  522. res = "dbrx"
  523. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  524. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  525. res = "jina-v1-en"
  526. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  527. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  528. res = "jina-v2-en"
  529. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  530. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  531. res = "jina-v2-es"
  532. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  533. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  534. res = "jina-v2-de"
  535. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  536. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  537. res = "smaug-bpe"
  538. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  539. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  540. res = "poro-chat"
  541. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  542. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  543. res = "jina-v2-code"
  544. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  545. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  546. res = "chatglm-bpe"
  547. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  548. # ref: https://huggingface.co/LumiOpen/Viking-7B
  549. res = "viking"
  550. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  551. # ref: https://huggingface.co/core42/jais-13b
  552. res = "jais"
  553. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  554. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  555. res = "codeshell"
  556. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  557. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  558. res = "tekken"
  559. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  560. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  561. res = "smollm"
  562. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  563. # ref: https://huggingface.co/bigscience/bloom
  564. res = "bloom"
  565. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  566. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  567. res = "gpt3-finnish"
  568. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  569. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  570. res = "exaone"
  571. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  572. # ref: https://huggingface.co/microsoft/phi-2
  573. res = "phi-2"
  574. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  575. # ref: https://huggingface.co/facebook/chameleon-7b
  576. res = "chameleon"
  577. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  578. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  579. res = "minerva-7b"
  580. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  581. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  582. res = "roberta-bpe"
  583. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  584. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  585. res = "gigachat"
  586. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  587. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  588. res = "megrez"
  589. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  590. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  591. res = "deepseek-v3"
  592. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  593. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  594. res = "deepseek-r1-qwen"
  595. if res is None:
  596. logger.warning("\n")
  597. logger.warning("**************************************************************************************")
  598. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  599. logger.warning("** There are 2 possible reasons for this:")
  600. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  601. logger.warning("** - the pre-tokenization config has changed upstream")
  602. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  603. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  604. logger.warning("**")
  605. logger.warning(f"** chkhsh: {chkhsh}")
  606. logger.warning("**************************************************************************************")
  607. logger.warning("\n")
  608. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  609. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  610. logger.debug(f"chkhsh: {chkhsh}")
  611. return res
  612. # Marker: End get_vocab_base_pre
  613. def _set_vocab_none(self) -> None:
  614. self.gguf_writer.add_tokenizer_model("none")
  615. def _set_vocab_gpt2(self) -> None:
  616. tokens, toktypes, tokpre = self.get_vocab_base()
  617. self.gguf_writer.add_tokenizer_model("gpt2")
  618. self.gguf_writer.add_tokenizer_pre(tokpre)
  619. self.gguf_writer.add_token_list(tokens)
  620. self.gguf_writer.add_token_types(toktypes)
  621. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  622. special_vocab.add_to_gguf(self.gguf_writer)
  623. def _set_vocab_qwen(self):
  624. dir_model = self.dir_model
  625. hparams = self.hparams
  626. tokens: list[str] = []
  627. toktypes: list[int] = []
  628. from transformers import AutoTokenizer
  629. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  630. vocab_size = hparams["vocab_size"]
  631. assert max(tokenizer.get_vocab().values()) < vocab_size
  632. tokpre = self.get_vocab_base_pre(tokenizer)
  633. merges = []
  634. vocab = {}
  635. mergeable_ranks = tokenizer.mergeable_ranks
  636. for token, rank in mergeable_ranks.items():
  637. vocab[QwenModel.token_bytes_to_string(token)] = rank
  638. if len(token) == 1:
  639. continue
  640. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  641. assert len(merged) == 2
  642. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  643. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  644. added_vocab = tokenizer.special_tokens
  645. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  646. for i in range(vocab_size):
  647. if i not in reverse_vocab:
  648. tokens.append(f"[PAD{i}]")
  649. toktypes.append(gguf.TokenType.UNUSED)
  650. elif reverse_vocab[i] in added_vocab:
  651. tokens.append(reverse_vocab[i])
  652. toktypes.append(gguf.TokenType.CONTROL)
  653. else:
  654. tokens.append(reverse_vocab[i])
  655. toktypes.append(gguf.TokenType.NORMAL)
  656. self.gguf_writer.add_tokenizer_model("gpt2")
  657. self.gguf_writer.add_tokenizer_pre(tokpre)
  658. self.gguf_writer.add_token_list(tokens)
  659. self.gguf_writer.add_token_types(toktypes)
  660. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  661. special_vocab.merges = merges
  662. # only add special tokens when they were not already loaded from config.json
  663. if len(special_vocab.special_token_ids) == 0:
  664. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  665. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  666. # this one is usually not in config.json anyway
  667. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  668. special_vocab.add_to_gguf(self.gguf_writer)
  669. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  670. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  671. self.gguf_writer.add_tokenizer_model("llama")
  672. self.gguf_writer.add_tokenizer_pre("default")
  673. self.gguf_writer.add_token_list(tokens)
  674. self.gguf_writer.add_token_scores(scores)
  675. self.gguf_writer.add_token_types(toktypes)
  676. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  677. special_vocab.add_to_gguf(self.gguf_writer)
  678. def _create_vocab_sentencepiece(self):
  679. from sentencepiece import SentencePieceProcessor
  680. tokenizer_path = self.dir_model / 'tokenizer.model'
  681. if not tokenizer_path.is_file():
  682. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  683. tokenizer = SentencePieceProcessor()
  684. tokenizer.LoadFromFile(str(tokenizer_path))
  685. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  686. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  687. scores: list[float] = [-10000.0] * vocab_size
  688. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  689. for token_id in range(tokenizer.vocab_size()):
  690. piece = tokenizer.IdToPiece(token_id)
  691. text = piece.encode("utf-8")
  692. score = tokenizer.GetScore(token_id)
  693. toktype = SentencePieceTokenTypes.NORMAL
  694. if tokenizer.IsUnknown(token_id):
  695. toktype = SentencePieceTokenTypes.UNKNOWN
  696. elif tokenizer.IsControl(token_id):
  697. toktype = SentencePieceTokenTypes.CONTROL
  698. elif tokenizer.IsUnused(token_id):
  699. toktype = SentencePieceTokenTypes.UNUSED
  700. elif tokenizer.IsByte(token_id):
  701. toktype = SentencePieceTokenTypes.BYTE
  702. tokens[token_id] = text
  703. scores[token_id] = score
  704. toktypes[token_id] = toktype
  705. added_tokens_file = self.dir_model / 'added_tokens.json'
  706. if added_tokens_file.is_file():
  707. with open(added_tokens_file, "r", encoding="utf-8") as f:
  708. added_tokens_json = json.load(f)
  709. for key in added_tokens_json:
  710. token_id = added_tokens_json[key]
  711. if token_id >= vocab_size:
  712. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  713. continue
  714. tokens[token_id] = key.encode("utf-8")
  715. scores[token_id] = -1000.0
  716. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  717. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  718. if tokenizer_config_file.is_file():
  719. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  720. tokenizer_config_json = json.load(f)
  721. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  722. for token_id, token_data in added_tokens_decoder.items():
  723. token_id = int(token_id)
  724. token: str = token_data["content"]
  725. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  726. if tokens[token_id] != token.encode("utf-8"):
  727. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  728. if token_data.get("special") or self.does_token_look_special(token):
  729. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  730. else:
  731. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  732. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  733. scores[token_id] = -1000.0
  734. tokens[token_id] = token.encode("utf-8")
  735. if vocab_size > len(tokens):
  736. pad_count = vocab_size - len(tokens)
  737. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  738. for i in range(1, pad_count + 1):
  739. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  740. scores.append(-1000.0)
  741. toktypes.append(SentencePieceTokenTypes.UNUSED)
  742. return tokens, scores, toktypes
  743. def _set_vocab_llama_hf(self):
  744. vocab = gguf.LlamaHfVocab(self.dir_model)
  745. tokens = []
  746. scores = []
  747. toktypes = []
  748. for text, score, toktype in vocab.all_tokens():
  749. tokens.append(text)
  750. scores.append(score)
  751. toktypes.append(toktype)
  752. assert len(tokens) == vocab.vocab_size
  753. self.gguf_writer.add_tokenizer_model("llama")
  754. self.gguf_writer.add_tokenizer_pre("default")
  755. self.gguf_writer.add_token_list(tokens)
  756. self.gguf_writer.add_token_scores(scores)
  757. self.gguf_writer.add_token_types(toktypes)
  758. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  759. special_vocab.add_to_gguf(self.gguf_writer)
  760. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  761. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  762. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  763. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  764. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  765. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  766. assert field # tokenizer model
  767. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  768. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  769. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  770. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  771. assert field # token list
  772. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  773. if model_name == "llama-spm":
  774. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  775. assert field # token scores
  776. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  777. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  778. assert field # token types
  779. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  780. if model_name != "llama-spm":
  781. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  782. assert field # token merges
  783. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  784. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  785. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  786. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  787. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  788. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  789. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  790. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  791. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  792. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  793. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  794. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  795. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  796. @Model.register("GPTNeoXForCausalLM")
  797. class GPTNeoXModel(Model):
  798. model_arch = gguf.MODEL_ARCH.GPTNEOX
  799. def set_gguf_parameters(self):
  800. block_count = self.hparams["num_hidden_layers"]
  801. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  802. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  803. self.gguf_writer.add_block_count(block_count)
  804. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  805. self.gguf_writer.add_rope_dimension_count(
  806. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  807. )
  808. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  809. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  810. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  811. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  812. del bid # unused
  813. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  814. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  815. tensors: list[tuple[str, Tensor]] = []
  816. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  817. # Map bloom-style qkv_linear to gpt-style qkv_linear
  818. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  819. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  820. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  821. data_torch = torch.cat(
  822. (
  823. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  824. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  825. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  826. ),
  827. dim=0,
  828. )
  829. logger.info("re-format attention.linear_qkv.weight")
  830. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  831. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  832. data_torch = torch.cat(
  833. (
  834. qkv_bias[:, 0, :].reshape((n_embed,)),
  835. qkv_bias[:, 1, :].reshape((n_embed,)),
  836. qkv_bias[:, 2, :].reshape((n_embed,)),
  837. ),
  838. dim=0,
  839. )
  840. logger.info("re-format attention.linear_qkv.bias")
  841. tensors.append((self.map_tensor_name(name), data_torch))
  842. return tensors
  843. @Model.register("BloomForCausalLM", "BloomModel")
  844. class BloomModel(Model):
  845. model_arch = gguf.MODEL_ARCH.BLOOM
  846. def set_gguf_parameters(self):
  847. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  848. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  849. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  850. self.gguf_writer.add_embedding_length(n_embed)
  851. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  852. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  853. self.gguf_writer.add_head_count(n_head)
  854. self.gguf_writer.add_head_count_kv(n_head)
  855. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  856. self.gguf_writer.add_file_type(self.ftype)
  857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  858. del bid # unused
  859. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  860. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  861. name = re.sub(r'transformer\.', '', name)
  862. tensors: list[tuple[str, Tensor]] = []
  863. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  864. # Map bloom-style qkv_linear to gpt-style qkv_linear
  865. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  866. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  867. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  868. data_torch = torch.cat(
  869. (
  870. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  871. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  872. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  873. ),
  874. dim=0,
  875. )
  876. logger.info("re-format attention.linear_qkv.weight")
  877. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  878. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  879. data_torch = torch.cat(
  880. (
  881. qkv_bias[:, 0, :].reshape((n_embed,)),
  882. qkv_bias[:, 1, :].reshape((n_embed,)),
  883. qkv_bias[:, 2, :].reshape((n_embed,)),
  884. ),
  885. dim=0,
  886. )
  887. logger.info("re-format attention.linear_qkv.bias")
  888. tensors.append((self.map_tensor_name(name), data_torch))
  889. if name == "word_embeddings.weight":
  890. assert self.tensor_names is not None
  891. # TODO: tie them at runtime, don't duplicate in the model file
  892. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  893. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  894. return tensors
  895. @Model.register("MPTForCausalLM")
  896. class MPTModel(Model):
  897. model_arch = gguf.MODEL_ARCH.MPT
  898. def set_vocab(self):
  899. try:
  900. self._set_vocab_gpt2()
  901. except Exception:
  902. # Fallback for SEA-LION model
  903. self._set_vocab_sentencepiece()
  904. self.gguf_writer.add_add_bos_token(False)
  905. self.gguf_writer.add_pad_token_id(3)
  906. self.gguf_writer.add_eos_token_id(1)
  907. self.gguf_writer.add_unk_token_id(0)
  908. def set_gguf_parameters(self):
  909. block_count = self.hparams["n_layers"]
  910. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  911. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  912. self.gguf_writer.add_block_count(block_count)
  913. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  914. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  915. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  916. self.gguf_writer.add_head_count_kv(kv_n_heads)
  917. self.gguf_writer.add_layer_norm_eps(1e-5)
  918. if self.hparams["attn_config"]["clip_qkv"] is not None:
  919. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  920. if self.hparams["attn_config"]["alibi"]:
  921. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  922. else:
  923. self.gguf_writer.add_max_alibi_bias(0.0)
  924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  925. del bid # unused
  926. if "scales" in name:
  927. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  928. new_name = new_name.replace("scales", "act.scales")
  929. else:
  930. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  931. return [(new_name, data_torch)]
  932. @Model.register("OrionForCausalLM")
  933. class OrionModel(Model):
  934. model_arch = gguf.MODEL_ARCH.ORION
  935. def set_vocab(self):
  936. self._set_vocab_sentencepiece()
  937. def set_gguf_parameters(self):
  938. block_count = self.hparams["num_hidden_layers"]
  939. head_count = self.hparams["num_attention_heads"]
  940. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  941. ctx_length = 0
  942. if "max_sequence_length" in self.hparams:
  943. ctx_length = self.hparams["max_sequence_length"]
  944. elif "max_position_embeddings" in self.hparams:
  945. ctx_length = self.hparams["max_position_embeddings"]
  946. elif "model_max_length" in self.hparams:
  947. ctx_length = self.hparams["model_max_length"]
  948. else:
  949. raise ValueError("gguf: can not find ctx length parameter.")
  950. self.gguf_writer.add_file_type(self.ftype)
  951. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  952. self.gguf_writer.add_context_length(ctx_length)
  953. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  954. self.gguf_writer.add_block_count(block_count)
  955. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  956. self.gguf_writer.add_head_count(head_count)
  957. self.gguf_writer.add_head_count_kv(head_count_kv)
  958. # note: config provides rms norm but it is actually layer norm
  959. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  960. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  961. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  962. class BaichuanModel(Model):
  963. model_arch = gguf.MODEL_ARCH.BAICHUAN
  964. def set_vocab(self):
  965. self._set_vocab_sentencepiece()
  966. def set_gguf_parameters(self):
  967. block_count = self.hparams["num_hidden_layers"]
  968. head_count = self.hparams["num_attention_heads"]
  969. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  970. ctx_length = 0
  971. if "max_sequence_length" in self.hparams:
  972. ctx_length = self.hparams["max_sequence_length"]
  973. elif "max_position_embeddings" in self.hparams:
  974. ctx_length = self.hparams["max_position_embeddings"]
  975. elif "model_max_length" in self.hparams:
  976. ctx_length = self.hparams["model_max_length"]
  977. else:
  978. raise ValueError("gguf: can not find ctx length parameter.")
  979. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  980. self.gguf_writer.add_context_length(ctx_length)
  981. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  982. self.gguf_writer.add_block_count(block_count)
  983. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  984. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  985. self.gguf_writer.add_head_count(head_count)
  986. self.gguf_writer.add_head_count_kv(head_count_kv)
  987. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  988. self.gguf_writer.add_file_type(self.ftype)
  989. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  990. if self.hparams["rope_scaling"].get("type") == "linear":
  991. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  992. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  994. head_count = self.hparams["num_attention_heads"]
  995. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  996. tensors: list[tuple[str, Tensor]] = []
  997. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  998. logger.info(f"Unpacking and permuting layer {bid}")
  999. tensors = [
  1000. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1001. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1002. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1003. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1004. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1005. self._reverse_hf_part(data_torch, 2)),
  1006. ]
  1007. else:
  1008. tensors = [(self.map_tensor_name(name), data_torch)]
  1009. return tensors
  1010. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1011. if n_kv_head is not None and n_head != n_kv_head:
  1012. n_head //= n_kv_head
  1013. return (
  1014. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1015. .swapaxes(1, 2)
  1016. .reshape(weights.shape)
  1017. )
  1018. def _reverse_hf_permute_part(
  1019. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1020. ) -> Tensor:
  1021. r = weights.shape[0] // 3
  1022. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1023. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1024. r = weights.shape[0] // 3
  1025. return weights[r * n_part:r * n_part + r, ...]
  1026. @Model.register("XverseForCausalLM")
  1027. class XverseModel(Model):
  1028. model_arch = gguf.MODEL_ARCH.XVERSE
  1029. def set_vocab(self):
  1030. assert (self.dir_model / "tokenizer.json").is_file()
  1031. dir_model = self.dir_model
  1032. hparams = self.hparams
  1033. tokens: list[bytes] = []
  1034. toktypes: list[int] = []
  1035. from transformers import AutoTokenizer
  1036. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1037. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1038. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1039. # because vocab_size is the count of items, and indexes start at 0.
  1040. max_vocab_index = max(tokenizer.get_vocab().values())
  1041. if max_vocab_index >= vocab_size:
  1042. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1043. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1044. added_vocab = tokenizer.get_added_vocab()
  1045. for token_id in range(vocab_size):
  1046. token_text = reverse_vocab[token_id].encode('utf-8')
  1047. # replace "\x00" to string with length > 0
  1048. if token_text == b"\x00":
  1049. toktype = gguf.TokenType.BYTE # special
  1050. token_text = f"<{token_text}>".encode('utf-8')
  1051. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1052. toktype = gguf.TokenType.BYTE # special
  1053. elif reverse_vocab[token_id] in added_vocab:
  1054. if tokenizer.added_tokens_decoder[token_id].special:
  1055. toktype = gguf.TokenType.CONTROL
  1056. else:
  1057. toktype = gguf.TokenType.USER_DEFINED
  1058. else:
  1059. toktype = gguf.TokenType.NORMAL
  1060. tokens.append(token_text)
  1061. toktypes.append(toktype)
  1062. self.gguf_writer.add_tokenizer_model("llama")
  1063. self.gguf_writer.add_tokenizer_pre("default")
  1064. self.gguf_writer.add_token_list(tokens)
  1065. self.gguf_writer.add_token_types(toktypes)
  1066. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1067. special_vocab.add_to_gguf(self.gguf_writer)
  1068. def set_gguf_parameters(self):
  1069. block_count = self.hparams["num_hidden_layers"]
  1070. head_count = self.hparams["num_attention_heads"]
  1071. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1072. ctx_length = 0
  1073. if "max_sequence_length" in self.hparams:
  1074. ctx_length = self.hparams["max_sequence_length"]
  1075. elif "max_position_embeddings" in self.hparams:
  1076. ctx_length = self.hparams["max_position_embeddings"]
  1077. elif "model_max_length" in self.hparams:
  1078. ctx_length = self.hparams["model_max_length"]
  1079. else:
  1080. raise ValueError("gguf: can not find ctx length parameter.")
  1081. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1082. self.gguf_writer.add_context_length(ctx_length)
  1083. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1084. self.gguf_writer.add_block_count(block_count)
  1085. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1086. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1087. self.gguf_writer.add_head_count(head_count)
  1088. self.gguf_writer.add_head_count_kv(head_count_kv)
  1089. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1090. self.gguf_writer.add_file_type(self.ftype)
  1091. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1092. if self.hparams["rope_scaling"].get("type") == "linear":
  1093. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1094. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1095. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1096. del bid # unused
  1097. head_count = self.hparams["num_attention_heads"]
  1098. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1099. # HF models permute some of the tensors, so we need to undo that
  1100. if name.endswith("q_proj.weight"):
  1101. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1102. if name.endswith("k_proj.weight"):
  1103. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1104. return [(self.map_tensor_name(name), data_torch)]
  1105. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1106. if n_kv_head is not None and n_head != n_kv_head:
  1107. n_head //= n_kv_head
  1108. return (
  1109. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1110. .swapaxes(1, 2)
  1111. .reshape(weights.shape)
  1112. )
  1113. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1114. class FalconModel(Model):
  1115. model_arch = gguf.MODEL_ARCH.FALCON
  1116. def set_gguf_parameters(self):
  1117. block_count = self.hparams.get("num_hidden_layers")
  1118. if block_count is None:
  1119. block_count = self.hparams["n_layer"] # old name
  1120. n_head = self.hparams.get("num_attention_heads")
  1121. if n_head is None:
  1122. n_head = self.hparams["n_head"] # old name
  1123. n_head_kv = self.hparams.get("num_kv_heads")
  1124. if n_head_kv is None:
  1125. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1126. self.gguf_writer.add_context_length(2048) # not in config.json
  1127. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1128. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1129. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1130. self.gguf_writer.add_block_count(block_count)
  1131. self.gguf_writer.add_head_count(n_head)
  1132. self.gguf_writer.add_head_count_kv(n_head_kv)
  1133. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1134. self.gguf_writer.add_file_type(self.ftype)
  1135. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1136. del bid # unused
  1137. # QKV tensor transform
  1138. # The original query_key_value tensor contains n_head_kv "kv groups",
  1139. # each consisting of n_head/n_head_kv query weights followed by one key
  1140. # and one value weight (shared by all query heads in the kv group).
  1141. # This layout makes it a big pain to work with in GGML.
  1142. # So we rearrange them here,, so that we have n_head query weights
  1143. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1144. # in contiguous fashion.
  1145. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1146. if "query_key_value" in name:
  1147. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1148. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1149. head_dim = self.hparams["hidden_size"] // n_head
  1150. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1151. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1152. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1153. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1154. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1155. return [(self.map_tensor_name(name), data_torch)]
  1156. @Model.register("GPTBigCodeForCausalLM")
  1157. class StarCoderModel(Model):
  1158. model_arch = gguf.MODEL_ARCH.STARCODER
  1159. def set_gguf_parameters(self):
  1160. block_count = self.hparams["n_layer"]
  1161. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1162. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1163. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1164. self.gguf_writer.add_block_count(block_count)
  1165. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1166. self.gguf_writer.add_head_count_kv(1)
  1167. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1168. self.gguf_writer.add_file_type(self.ftype)
  1169. @Model.register("GPTRefactForCausalLM")
  1170. class RefactModel(Model):
  1171. model_arch = gguf.MODEL_ARCH.REFACT
  1172. def set_vocab(self):
  1173. super().set_vocab()
  1174. # TODO: how to determine special FIM tokens automatically?
  1175. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1176. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1177. special_vocab._set_special_token("prefix", 1)
  1178. special_vocab._set_special_token("suffix", 3)
  1179. special_vocab._set_special_token("middle", 2)
  1180. special_vocab.chat_template = None # do not add it twice
  1181. special_vocab.add_to_gguf(self.gguf_writer)
  1182. def set_gguf_parameters(self):
  1183. hidden_dim = self.hparams["n_embd"]
  1184. inner_dim = 4 * hidden_dim
  1185. hidden_dim = int(2 * inner_dim / 3)
  1186. multiple_of = 256
  1187. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1188. block_count = self.hparams["n_layer"]
  1189. # refact uses Alibi. So this is from config.json which might be used by training.
  1190. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1191. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1192. self.gguf_writer.add_feed_forward_length(ff_dim)
  1193. self.gguf_writer.add_block_count(block_count)
  1194. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1195. self.gguf_writer.add_head_count_kv(1)
  1196. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1197. self.gguf_writer.add_file_type(self.ftype)
  1198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1199. hidden_dim = self.hparams["n_embd"]
  1200. inner_dim = 4 * hidden_dim
  1201. hidden_dim = int(2 * inner_dim / 3)
  1202. multiple_of = 256
  1203. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1204. n_head = self.hparams["n_head"]
  1205. n_head_kv = 1
  1206. head_dim = self.hparams["n_embd"] // n_head
  1207. tensors: list[tuple[str, Tensor]] = []
  1208. if bid is not None:
  1209. if name == f"transformer.h.{bid}.attn.kv.weight":
  1210. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1211. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1212. elif name == f"transformer.h.{bid}.attn.q.weight":
  1213. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1214. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1215. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1216. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1217. if len(tensors) == 0:
  1218. tensors.append((self.map_tensor_name(name), data_torch))
  1219. return tensors
  1220. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1221. class StableLMModel(Model):
  1222. model_arch = gguf.MODEL_ARCH.STABLELM
  1223. def set_vocab(self):
  1224. if (self.dir_model / "tokenizer.json").is_file():
  1225. self._set_vocab_gpt2()
  1226. else:
  1227. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1228. self._set_vocab_qwen()
  1229. def set_gguf_parameters(self):
  1230. hparams = self.hparams
  1231. block_count = hparams["num_hidden_layers"]
  1232. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1233. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1234. self.gguf_writer.add_block_count(block_count)
  1235. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1236. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1237. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1238. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1239. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1240. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1241. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1242. self.gguf_writer.add_file_type(self.ftype)
  1243. _q_norms: list[dict[str, Tensor]] | None = None
  1244. _k_norms: list[dict[str, Tensor]] | None = None
  1245. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1246. n_head = self.hparams["num_attention_heads"]
  1247. n_kv_head = self.hparams["num_key_value_heads"]
  1248. if name.find("q_layernorm.norms") != -1:
  1249. assert bid is not None
  1250. if self._q_norms is None:
  1251. self._q_norms = [{} for _ in range(self.block_count)]
  1252. self._q_norms[bid][name] = data_torch
  1253. if len(self._q_norms[bid]) >= n_head:
  1254. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1255. else:
  1256. return []
  1257. if name.find("k_layernorm.norms") != -1:
  1258. assert bid is not None
  1259. if self._k_norms is None:
  1260. self._k_norms = [{} for _ in range(self.block_count)]
  1261. self._k_norms[bid][name] = data_torch
  1262. if len(self._k_norms[bid]) >= n_kv_head:
  1263. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1264. else:
  1265. return []
  1266. return [(self.map_tensor_name(name), data_torch)]
  1267. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1268. datas: list[Tensor] = []
  1269. # extract the norms in order
  1270. for xid in range(n_head):
  1271. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1272. datas.append(norms[ename])
  1273. del norms[ename]
  1274. data_torch = torch.stack(datas, dim=0)
  1275. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1276. new_name = self.map_tensor_name(merged_name)
  1277. return [(new_name, data_torch)]
  1278. def prepare_tensors(self):
  1279. super().prepare_tensors()
  1280. if self._q_norms is not None or self._k_norms is not None:
  1281. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1282. norms = (
  1283. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1284. ) + (
  1285. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1286. )
  1287. if len(norms) > 0:
  1288. raise ValueError(f"Unprocessed norms: {norms}")
  1289. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1290. class LlamaModel(Model):
  1291. model_arch = gguf.MODEL_ARCH.LLAMA
  1292. def set_vocab(self):
  1293. try:
  1294. self._set_vocab_sentencepiece()
  1295. except FileNotFoundError:
  1296. try:
  1297. self._set_vocab_llama_hf()
  1298. except (FileNotFoundError, TypeError):
  1299. # Llama 3
  1300. self._set_vocab_gpt2()
  1301. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1302. if self.hparams.get("vocab_size", 32000) == 32016:
  1303. special_vocab = gguf.SpecialVocab(
  1304. self.dir_model, load_merges=False,
  1305. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1306. )
  1307. special_vocab._set_special_token("prefix", 32007)
  1308. special_vocab._set_special_token("suffix", 32008)
  1309. special_vocab._set_special_token("middle", 32009)
  1310. special_vocab._set_special_token("eot", 32010)
  1311. special_vocab.add_to_gguf(self.gguf_writer)
  1312. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1313. if tokenizer_config_file.is_file():
  1314. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1315. tokenizer_config_json = json.load(f)
  1316. if "add_prefix_space" in tokenizer_config_json:
  1317. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1318. # Apply to granite small models only
  1319. if self.hparams.get("vocab_size", 32000) == 49152:
  1320. self.gguf_writer.add_add_bos_token(False)
  1321. def set_gguf_parameters(self):
  1322. super().set_gguf_parameters()
  1323. hparams = self.hparams
  1324. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1325. if "head_dim" in hparams:
  1326. rope_dim = hparams["head_dim"]
  1327. else:
  1328. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1329. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1330. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1331. if self.hparams["rope_scaling"].get("type") == "linear":
  1332. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1333. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1334. @staticmethod
  1335. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1336. if n_head_kv is not None and n_head != n_head_kv:
  1337. n_head = n_head_kv
  1338. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1339. .swapaxes(1, 2)
  1340. .reshape(weights.shape))
  1341. _experts: list[dict[str, Tensor]] | None = None
  1342. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1343. n_head = self.hparams["num_attention_heads"]
  1344. n_kv_head = self.hparams.get("num_key_value_heads")
  1345. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1346. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1347. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1348. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1349. # process the experts separately
  1350. if name.find("block_sparse_moe.experts") != -1:
  1351. n_experts = self.hparams["num_local_experts"]
  1352. assert bid is not None
  1353. if self._experts is None:
  1354. self._experts = [{} for _ in range(self.block_count)]
  1355. self._experts[bid][name] = data_torch
  1356. if len(self._experts[bid]) >= n_experts * 3:
  1357. tensors: list[tuple[str, Tensor]] = []
  1358. # merge the experts into a single 3d tensor
  1359. for wid in ["w1", "w2", "w3"]:
  1360. datas: list[Tensor] = []
  1361. for xid in range(n_experts):
  1362. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1363. datas.append(self._experts[bid][ename])
  1364. del self._experts[bid][ename]
  1365. data_torch = torch.stack(datas, dim=0)
  1366. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1367. new_name = self.map_tensor_name(merged_name)
  1368. tensors.append((new_name, data_torch))
  1369. return tensors
  1370. else:
  1371. return []
  1372. return [(self.map_tensor_name(name), data_torch)]
  1373. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1374. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1375. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1376. base = self.hparams.get("rope_theta", 10000.0)
  1377. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1378. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1379. factor = rope_scaling.get("factor", 8.0)
  1380. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1381. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1382. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1383. low_freq_wavelen = old_context_len / low_freq_factor
  1384. high_freq_wavelen = old_context_len / high_freq_factor
  1385. assert low_freq_wavelen != high_freq_wavelen
  1386. rope_factors = []
  1387. for freq in freqs:
  1388. wavelen = 2 * math.pi / freq
  1389. if wavelen < high_freq_wavelen:
  1390. rope_factors.append(1)
  1391. elif wavelen > low_freq_wavelen:
  1392. rope_factors.append(factor)
  1393. else:
  1394. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1395. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1396. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1397. def prepare_tensors(self):
  1398. super().prepare_tensors()
  1399. if self._experts is not None:
  1400. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1401. experts = [k for d in self._experts for k in d.keys()]
  1402. if len(experts) > 0:
  1403. raise ValueError(f"Unprocessed experts: {experts}")
  1404. @Model.register("DeciLMForCausalLM")
  1405. class DeciModel(Model):
  1406. model_arch = gguf.MODEL_ARCH.DECI
  1407. @staticmethod
  1408. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1409. # DeciLM-specific code
  1410. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1411. return DeciModel._find_multiple(intermediate_size, 256)
  1412. @staticmethod
  1413. def _find_multiple(n: int, k: int) -> int:
  1414. # DeciLM-specific code
  1415. if n % k == 0:
  1416. return n
  1417. return n + k - (n % k)
  1418. def __init__(self, *args, **kwargs):
  1419. super().__init__(*args, **kwargs)
  1420. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1421. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1422. assert self.block_count == len(_block_configs)
  1423. self._num_kv_heads = list()
  1424. self._num_heads = list()
  1425. _ffn_multipliers = list()
  1426. # ***linear attention layer***
  1427. # if n_heads_in_group is None and replace_with_linear is True
  1428. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1429. # ***attention-free layer***
  1430. # if n_heads_in_group is None and replace_with_linear is False
  1431. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1432. # ***normal attention-layer***
  1433. # if n_heads_in_group is not None, then
  1434. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1435. # _num_heads[il] is num_attention_head
  1436. for il in range(len(_block_configs)):
  1437. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1438. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1439. self._num_kv_heads.append(0)
  1440. self._num_heads.append(self.hparams["num_attention_heads"])
  1441. else:
  1442. self._num_kv_heads.append(0)
  1443. self._num_heads.append(0)
  1444. else:
  1445. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1446. self._num_heads.append(self.hparams["num_attention_heads"])
  1447. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1448. assert self.block_count == len(self._num_kv_heads)
  1449. assert self.block_count == len(self._num_heads)
  1450. assert self.block_count == len(_ffn_multipliers)
  1451. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1452. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1453. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1454. self._ffn_dims: list[int] = [
  1455. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1456. for multiplier in _ffn_multipliers
  1457. ]
  1458. def set_vocab(self):
  1459. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1460. # eos_token from '|eot_id|' to '|end_of_text|'
  1461. if self.hparams.get("vocab_size", 128256) == 128256:
  1462. tokens, toktypes, tokpre = self.get_vocab_base()
  1463. self.gguf_writer.add_tokenizer_model("gpt2")
  1464. self.gguf_writer.add_tokenizer_pre(tokpre)
  1465. self.gguf_writer.add_token_list(tokens)
  1466. self.gguf_writer.add_token_types(toktypes)
  1467. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1468. special_vocab.add_to_gguf(self.gguf_writer)
  1469. else:
  1470. # DeciLM-7B
  1471. self._set_vocab_llama_hf()
  1472. def set_gguf_parameters(self):
  1473. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1474. assert self.block_count == len(self._num_kv_heads)
  1475. assert self.block_count == len(self._num_heads)
  1476. assert self.block_count == len(self._ffn_dims)
  1477. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1478. self.gguf_writer.add_rope_freq_base(rope_theta)
  1479. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1480. self.gguf_writer.add_head_count(self._num_heads)
  1481. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1482. self.gguf_writer.add_block_count(self.block_count)
  1483. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1484. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1485. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1486. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1487. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1488. self.gguf_writer.add_file_type(self.ftype)
  1489. else: # DeciLM-7B
  1490. super().set_gguf_parameters()
  1491. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1492. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1493. assert self.block_count == len(self._num_kv_heads)
  1494. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1495. hparams = self.hparams
  1496. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1497. if "head_dim" in hparams:
  1498. rope_dim = hparams["head_dim"]
  1499. else:
  1500. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1501. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1502. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1503. if self.hparams["rope_scaling"].get("type") == "linear":
  1504. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1505. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1506. @staticmethod
  1507. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1508. if n_head_kv is not None and n_head != n_head_kv:
  1509. n_head = n_head_kv
  1510. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1511. .swapaxes(1, 2)
  1512. .reshape(weights.shape))
  1513. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1514. n_head = self.hparams["num_attention_heads"]
  1515. if bid is not None:
  1516. if "num_key_value_heads_per_layer" in self.hparams:
  1517. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1518. elif "block_configs" in self.hparams:
  1519. n_kv_head = self._num_kv_heads[bid]
  1520. n_head = self._num_heads[bid]
  1521. else:
  1522. n_kv_head = self.hparams.get("num_key_value_heads")
  1523. else:
  1524. n_kv_head = self.hparams.get("num_key_value_heads")
  1525. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1526. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1527. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1528. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1529. return [(self.map_tensor_name(name), data_torch)]
  1530. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1531. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1532. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1533. base = self.hparams.get("rope_theta", 10000.0)
  1534. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1535. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1536. factor = rope_scaling.get("factor", 8.0)
  1537. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1538. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1539. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1540. low_freq_wavelen = old_context_len / low_freq_factor
  1541. high_freq_wavelen = old_context_len / high_freq_factor
  1542. assert low_freq_wavelen != high_freq_wavelen
  1543. rope_factors = []
  1544. for freq in freqs:
  1545. wavelen = 2 * math.pi / freq
  1546. if wavelen < high_freq_wavelen:
  1547. rope_factors.append(1)
  1548. elif wavelen > low_freq_wavelen:
  1549. rope_factors.append(factor)
  1550. else:
  1551. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1552. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1553. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1554. def prepare_tensors(self):
  1555. super().prepare_tensors()
  1556. @Model.register("BitnetForCausalLM")
  1557. class BitnetModel(Model):
  1558. model_arch = gguf.MODEL_ARCH.BITNET
  1559. def set_vocab(self):
  1560. self._set_vocab_sentencepiece()
  1561. def set_gguf_parameters(self):
  1562. super().set_gguf_parameters()
  1563. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1564. self.gguf_writer.add_rope_scaling_factor(1.0)
  1565. def weight_quant(self, weight: Tensor) -> Tensor:
  1566. dtype = weight.dtype
  1567. weight = weight.float()
  1568. scale = weight.abs().mean().clamp(min=1e-5)
  1569. iscale = 1 / scale
  1570. # TODO: multiply by the scale directly instead of inverting it twice
  1571. # (this is also unnecessarily doubly inverted upstream)
  1572. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1573. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1574. return result.type(dtype)
  1575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1576. new_name = self.map_tensor_name(name)
  1577. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1578. gguf.MODEL_TENSOR.ATTN_Q,
  1579. gguf.MODEL_TENSOR.ATTN_K,
  1580. gguf.MODEL_TENSOR.ATTN_V,
  1581. gguf.MODEL_TENSOR.ATTN_OUT,
  1582. gguf.MODEL_TENSOR.FFN_UP,
  1583. gguf.MODEL_TENSOR.FFN_DOWN,
  1584. gguf.MODEL_TENSOR.FFN_GATE,
  1585. ]):
  1586. # transform weight into 1/0/-1 (in fp32)
  1587. data_torch = self.weight_quant(data_torch)
  1588. yield (new_name, data_torch)
  1589. @Model.register("GrokForCausalLM")
  1590. class GrokModel(Model):
  1591. model_arch = gguf.MODEL_ARCH.GROK
  1592. def set_vocab(self):
  1593. self._set_vocab_sentencepiece()
  1594. def __init__(self, *args, **kwargs):
  1595. super().__init__(*args, **kwargs)
  1596. def set_gguf_parameters(self):
  1597. super().set_gguf_parameters()
  1598. _experts: list[dict[str, Tensor]] | None = None
  1599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1600. # process the experts separately
  1601. if name.find(".moe.") != -1:
  1602. n_experts = self.hparams["num_local_experts"]
  1603. assert bid is not None
  1604. if self._experts is None:
  1605. self._experts = [{} for _ in range(self.block_count)]
  1606. self._experts[bid][name] = data_torch
  1607. if len(self._experts[bid]) >= n_experts * 3:
  1608. tensors: list[tuple[str, Tensor]] = []
  1609. # merge the experts into a single 3d tensor
  1610. for wid in ["linear", "linear_1", "linear_v"]:
  1611. datas: list[Tensor] = []
  1612. for xid in range(n_experts):
  1613. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1614. datas.append(self._experts[bid][ename])
  1615. del self._experts[bid][ename]
  1616. data_torch = torch.stack(datas, dim=0)
  1617. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1618. new_name = self.map_tensor_name(merged_name)
  1619. tensors.append((new_name, data_torch))
  1620. return tensors
  1621. else:
  1622. return []
  1623. return [(self.map_tensor_name(name), data_torch)]
  1624. @Model.register("DbrxForCausalLM")
  1625. class DbrxModel(Model):
  1626. model_arch = gguf.MODEL_ARCH.DBRX
  1627. def set_gguf_parameters(self):
  1628. ffn_config = self.hparams["ffn_config"]
  1629. attn_config = self.hparams["attn_config"]
  1630. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1631. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1632. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1633. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1634. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1635. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1636. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1637. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1638. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1639. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1640. self.gguf_writer.add_layer_norm_eps(1e-5)
  1641. self.gguf_writer.add_file_type(self.ftype)
  1642. logger.info(f"gguf: file type = {self.ftype}")
  1643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1644. del bid # unused
  1645. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1646. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1647. n_embd = self.hparams["d_model"]
  1648. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1649. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1650. # But llama.cpp moe graph works differently
  1651. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1652. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1653. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1654. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1655. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1656. experts = False
  1657. for exp_tensor_name in exp_tensor_names.keys():
  1658. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1659. experts = True
  1660. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1661. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1662. data_torch = data_torch.permute(*permute_tensor)
  1663. break
  1664. # map tensor names
  1665. # In MoE models the ffn tensors are typically most of the model weights,
  1666. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1667. # Every other model has the weight names ending in .weight,
  1668. # let's assume that is the convention which is not the case for dbrx:
  1669. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1670. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1671. return [(new_name, data_torch)]
  1672. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1673. del name, new_name, bid # unused
  1674. return n_dims > 1
  1675. @Model.register("MiniCPMForCausalLM")
  1676. class MiniCPMModel(Model):
  1677. model_arch = gguf.MODEL_ARCH.MINICPM
  1678. def set_gguf_parameters(self):
  1679. super().set_gguf_parameters()
  1680. embedding_scale = float(self.hparams["scale_emb"])
  1681. self.gguf_writer.add_embedding_scale(embedding_scale)
  1682. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1683. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1684. self.gguf_writer.add_residual_scale(residual_scale)
  1685. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1686. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1687. self.gguf_writer.add_logit_scale(logit_scale)
  1688. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1689. if self.hparams.get("rope_scaling") is not None:
  1690. if self.hparams["rope_scaling"].get("type") == "longrope":
  1691. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1692. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1693. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1694. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1695. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1696. if rope_scaling is not None:
  1697. long_factors = rope_scaling.get('long_factor', None)
  1698. short_factors = rope_scaling.get('short_factor', None)
  1699. if long_factors is None or short_factors is None:
  1700. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1701. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1702. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1703. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1704. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1705. def set_vocab(self):
  1706. self._set_vocab_sentencepiece()
  1707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1708. del bid # unused
  1709. n_head = self.hparams["num_attention_heads"]
  1710. n_kv_head = self.hparams.get("num_key_value_heads")
  1711. # HF models permute some of the tensors, so we need to undo that
  1712. if name.endswith(("q_proj.weight")):
  1713. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1714. if name.endswith(("k_proj.weight")):
  1715. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1716. return [(self.map_tensor_name(name), data_torch)]
  1717. @Model.register("MiniCPM3ForCausalLM")
  1718. class MiniCPM3Model(Model):
  1719. model_arch = gguf.MODEL_ARCH.MINICPM3
  1720. def set_gguf_parameters(self):
  1721. hparams = self.hparams
  1722. self.gguf_writer.add_file_type(self.ftype)
  1723. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1724. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1725. self.gguf_writer.add_block_count(self.block_count)
  1726. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1727. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1728. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1729. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1730. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1731. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1732. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1733. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1734. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1735. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1736. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1737. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1738. if rope_scaling is not None:
  1739. rope_dims = self.hparams["qk_rope_head_dim"]
  1740. long_factors = rope_scaling.get('long_factor', None)
  1741. short_factors = rope_scaling.get('short_factor', None)
  1742. if long_factors is None or short_factors is None:
  1743. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1744. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1745. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1746. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1747. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1748. def set_vocab(self):
  1749. self._set_vocab_sentencepiece()
  1750. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1751. if n_kv_head is not None and n_head != n_kv_head:
  1752. n_head //= n_kv_head
  1753. return (
  1754. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1755. .swapaxes(1, 2)
  1756. .reshape(weights.shape)
  1757. )
  1758. @Model.register("QWenLMHeadModel")
  1759. class QwenModel(Model):
  1760. model_arch = gguf.MODEL_ARCH.QWEN
  1761. @staticmethod
  1762. def token_bytes_to_string(b):
  1763. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1764. byte_encoder = bytes_to_unicode()
  1765. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1766. @staticmethod
  1767. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1768. parts = [bytes([b]) for b in token]
  1769. while True:
  1770. min_idx = None
  1771. min_rank = None
  1772. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1773. rank = mergeable_ranks.get(pair[0] + pair[1])
  1774. if rank is not None and (min_rank is None or rank < min_rank):
  1775. min_idx = i
  1776. min_rank = rank
  1777. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1778. break
  1779. assert min_idx is not None
  1780. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1781. return parts
  1782. def set_vocab(self):
  1783. self._set_vocab_qwen()
  1784. def set_gguf_parameters(self):
  1785. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1786. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1787. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1788. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1789. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1790. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1791. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1792. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1793. self.gguf_writer.add_file_type(self.ftype)
  1794. @Model.register("Qwen2ForCausalLM")
  1795. class Qwen2Model(Model):
  1796. model_arch = gguf.MODEL_ARCH.QWEN2
  1797. def set_vocab(self):
  1798. try:
  1799. self._set_vocab_sentencepiece()
  1800. except FileNotFoundError:
  1801. self._set_vocab_gpt2()
  1802. def set_gguf_parameters(self):
  1803. super().set_gguf_parameters()
  1804. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1805. if self.hparams["rope_scaling"].get("type") == "yarn":
  1806. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1807. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1808. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1809. @Model.register("Qwen2VLForConditionalGeneration")
  1810. class Qwen2VLModel(Model):
  1811. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1812. def set_gguf_parameters(self):
  1813. super().set_gguf_parameters()
  1814. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1815. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1816. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1817. def set_vocab(self):
  1818. try:
  1819. self._set_vocab_sentencepiece()
  1820. except FileNotFoundError:
  1821. self._set_vocab_gpt2()
  1822. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1823. for name, data in super().get_tensors():
  1824. if name.startswith("visual."):
  1825. continue
  1826. yield name, data
  1827. @Model.register("WavTokenizerDec")
  1828. class WavTokenizerDecModel(Model):
  1829. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1830. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1831. del bid # unused
  1832. if \
  1833. name.endswith("codebook.cluster_size") or \
  1834. name.endswith("codebook.embed_avg") or \
  1835. name.endswith("codebook.inited"):
  1836. logger.debug(f"Skipping {name!r}")
  1837. return []
  1838. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1839. return [(self.map_tensor_name(name), data_torch)]
  1840. def set_vocab(self):
  1841. self._set_vocab_none()
  1842. def set_gguf_parameters(self):
  1843. super().set_gguf_parameters()
  1844. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1845. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1846. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1847. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1848. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1849. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1850. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1851. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1852. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1853. self.gguf_writer.add_causal_attention(False)
  1854. @Model.register("Qwen2MoeForCausalLM")
  1855. class Qwen2MoeModel(Model):
  1856. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1857. def set_gguf_parameters(self):
  1858. super().set_gguf_parameters()
  1859. if (n_experts := self.hparams.get("num_experts")) is not None:
  1860. self.gguf_writer.add_expert_count(n_experts)
  1861. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1862. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1863. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1864. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1865. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1866. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1867. _experts: list[dict[str, Tensor]] | None = None
  1868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1869. # process the experts separately
  1870. if name.find("experts") != -1:
  1871. n_experts = self.hparams["num_experts"]
  1872. assert bid is not None
  1873. if self._experts is None:
  1874. self._experts = [{} for _ in range(self.block_count)]
  1875. self._experts[bid][name] = data_torch
  1876. if len(self._experts[bid]) >= n_experts * 3:
  1877. tensors: list[tuple[str, Tensor]] = []
  1878. # merge the experts into a single 3d tensor
  1879. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1880. datas: list[Tensor] = []
  1881. for xid in range(n_experts):
  1882. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1883. datas.append(self._experts[bid][ename])
  1884. del self._experts[bid][ename]
  1885. data_torch = torch.stack(datas, dim=0)
  1886. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1887. new_name = self.map_tensor_name(merged_name)
  1888. tensors.append((new_name, data_torch))
  1889. return tensors
  1890. else:
  1891. return []
  1892. return [(self.map_tensor_name(name), data_torch)]
  1893. def prepare_tensors(self):
  1894. super().prepare_tensors()
  1895. if self._experts is not None:
  1896. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1897. experts = [k for d in self._experts for k in d.keys()]
  1898. if len(experts) > 0:
  1899. raise ValueError(f"Unprocessed experts: {experts}")
  1900. @Model.register("GPT2LMHeadModel")
  1901. class GPT2Model(Model):
  1902. model_arch = gguf.MODEL_ARCH.GPT2
  1903. def set_gguf_parameters(self):
  1904. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1905. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1906. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1907. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1908. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1909. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1910. self.gguf_writer.add_file_type(self.ftype)
  1911. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1912. del bid # unused
  1913. tensors: list[tuple[str, Tensor]] = []
  1914. # we don't need these
  1915. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1916. return tensors
  1917. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1918. data_torch = data_torch.transpose(1, 0)
  1919. new_name = self.map_tensor_name(name)
  1920. tensors.append((new_name, data_torch))
  1921. # note: GPT2 output is tied to (same as) wte in original model
  1922. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1923. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1924. return tensors
  1925. @Model.register("PhiForCausalLM")
  1926. class Phi2Model(Model):
  1927. model_arch = gguf.MODEL_ARCH.PHI2
  1928. def set_gguf_parameters(self):
  1929. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1930. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1931. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1932. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1933. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1934. self.gguf_writer.add_embedding_length(n_embd)
  1935. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1936. self.gguf_writer.add_block_count(block_count)
  1937. self.gguf_writer.add_head_count(n_head)
  1938. self.gguf_writer.add_head_count_kv(n_head)
  1939. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1940. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1941. self.gguf_writer.add_file_type(self.ftype)
  1942. self.gguf_writer.add_add_bos_token(False)
  1943. @Model.register("Phi3ForCausalLM")
  1944. class Phi3MiniModel(Model):
  1945. model_arch = gguf.MODEL_ARCH.PHI3
  1946. def set_vocab(self):
  1947. # Phi-4 model uses GPT2Tokenizer
  1948. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1949. if tokenizer_config_file.is_file():
  1950. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1951. tokenizer_config_json = json.load(f)
  1952. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1953. if tokenizer_class == 'GPT2Tokenizer':
  1954. return self._set_vocab_gpt2()
  1955. from sentencepiece import SentencePieceProcessor
  1956. tokenizer_path = self.dir_model / 'tokenizer.model'
  1957. if not tokenizer_path.is_file():
  1958. raise ValueError(f'Error: Missing {tokenizer_path}')
  1959. tokenizer = SentencePieceProcessor()
  1960. tokenizer.LoadFromFile(str(tokenizer_path))
  1961. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1962. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1963. scores: list[float] = [-10000.0] * vocab_size
  1964. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1965. for token_id in range(tokenizer.vocab_size()):
  1966. piece = tokenizer.IdToPiece(token_id)
  1967. text = piece.encode("utf-8")
  1968. score = tokenizer.GetScore(token_id)
  1969. toktype = SentencePieceTokenTypes.NORMAL
  1970. if tokenizer.IsUnknown(token_id):
  1971. toktype = SentencePieceTokenTypes.UNKNOWN
  1972. elif tokenizer.IsControl(token_id):
  1973. toktype = SentencePieceTokenTypes.CONTROL
  1974. elif tokenizer.IsUnused(token_id):
  1975. toktype = SentencePieceTokenTypes.UNUSED
  1976. elif tokenizer.IsByte(token_id):
  1977. toktype = SentencePieceTokenTypes.BYTE
  1978. tokens[token_id] = text
  1979. scores[token_id] = score
  1980. toktypes[token_id] = toktype
  1981. added_tokens_file = self.dir_model / 'added_tokens.json'
  1982. if added_tokens_file.is_file():
  1983. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1984. added_tokens_json = json.load(f)
  1985. for key in added_tokens_json:
  1986. token_id = added_tokens_json[key]
  1987. if token_id >= vocab_size:
  1988. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1989. continue
  1990. tokens[token_id] = key.encode("utf-8")
  1991. scores[token_id] = -1000.0
  1992. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1993. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1994. if tokenizer_config_file.is_file():
  1995. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1996. tokenizer_config_json = json.load(f)
  1997. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1998. for token_id, foken_data in added_tokens_decoder.items():
  1999. token_id = int(token_id)
  2000. token = foken_data["content"].encode("utf-8")
  2001. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2002. if tokens[token_id] != token:
  2003. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2004. tokens[token_id] = token
  2005. scores[token_id] = -1000.0
  2006. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2007. if foken_data.get("special"):
  2008. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2009. tokenizer_file = self.dir_model / 'tokenizer.json'
  2010. if tokenizer_file.is_file():
  2011. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2012. tokenizer_json = json.load(f)
  2013. added_tokens = tokenizer_json.get("added_tokens", [])
  2014. for foken_data in added_tokens:
  2015. token_id = int(foken_data["id"])
  2016. token = foken_data["content"].encode("utf-8")
  2017. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2018. if tokens[token_id] != token:
  2019. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2020. tokens[token_id] = token
  2021. scores[token_id] = -1000.0
  2022. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2023. if foken_data.get("special"):
  2024. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2025. self.gguf_writer.add_tokenizer_model("llama")
  2026. self.gguf_writer.add_tokenizer_pre("default")
  2027. self.gguf_writer.add_token_list(tokens)
  2028. self.gguf_writer.add_token_scores(scores)
  2029. self.gguf_writer.add_token_types(toktypes)
  2030. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2031. special_vocab.add_to_gguf(self.gguf_writer)
  2032. def set_gguf_parameters(self):
  2033. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2034. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2035. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2036. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2037. rms_eps = self.find_hparam(["rms_norm_eps"])
  2038. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2039. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2040. rope_dims = n_embd // n_head
  2041. self.gguf_writer.add_context_length(max_pos_embds)
  2042. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2043. self.gguf_writer.add_embedding_length(n_embd)
  2044. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2045. self.gguf_writer.add_block_count(block_count)
  2046. self.gguf_writer.add_head_count(n_head)
  2047. self.gguf_writer.add_head_count_kv(n_head_kv)
  2048. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2049. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2050. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2051. self.gguf_writer.add_file_type(self.ftype)
  2052. sliding_window = self.hparams.get("sliding_window")
  2053. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2054. if sliding_window is None:
  2055. sliding_window = 0
  2056. self.gguf_writer.add_sliding_window(sliding_window)
  2057. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2058. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2059. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2060. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2061. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2062. rope_dims = n_embd // n_head
  2063. # write rope scaling for long context (128k) model
  2064. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2065. if rope_scaling is None:
  2066. return
  2067. scale = max_pos_embds / orig_max_pos_embds
  2068. rope_scaling_type = rope_scaling.get('type', '').lower()
  2069. if len(rope_scaling_type) == 0:
  2070. raise KeyError('Missing the required key rope_scaling.type')
  2071. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2072. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2073. elif rope_scaling_type == 'yarn':
  2074. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2075. else:
  2076. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2077. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2078. long_factors = rope_scaling.get('long_factor', None)
  2079. short_factors = rope_scaling.get('short_factor', None)
  2080. if long_factors is None or short_factors is None:
  2081. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2082. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2083. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2084. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2085. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2086. @Model.register("PhiMoEForCausalLM")
  2087. class PhiMoeModel(Phi3MiniModel):
  2088. model_arch = gguf.MODEL_ARCH.PHIMOE
  2089. _experts: list[dict[str, Tensor]] | None = None
  2090. def set_gguf_parameters(self):
  2091. super().set_gguf_parameters()
  2092. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2093. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2095. # process the experts separately
  2096. if name.find("block_sparse_moe.experts") != -1:
  2097. n_experts = self.hparams["num_local_experts"]
  2098. assert bid is not None
  2099. if self._experts is None:
  2100. self._experts = [{} for _ in range(self.block_count)]
  2101. self._experts[bid][name] = data_torch
  2102. if len(self._experts[bid]) >= n_experts * 3:
  2103. tensors: list[tuple[str, Tensor]] = []
  2104. # merge the experts into a single 3d tensor
  2105. for w_name in ["w1", "w2", "w3"]:
  2106. datas: list[Tensor] = []
  2107. for xid in range(n_experts):
  2108. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2109. datas.append(self._experts[bid][ename])
  2110. del self._experts[bid][ename]
  2111. data_torch = torch.stack(datas, dim=0)
  2112. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2113. new_name = self.map_tensor_name(merged_name)
  2114. tensors.append((new_name, data_torch))
  2115. return tensors
  2116. else:
  2117. return []
  2118. return [(self.map_tensor_name(name), data_torch)]
  2119. def prepare_tensors(self):
  2120. super().prepare_tensors()
  2121. if self._experts is not None:
  2122. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2123. experts = [k for d in self._experts for k in d.keys()]
  2124. if len(experts) > 0:
  2125. raise ValueError(f"Unprocessed experts: {experts}")
  2126. @Model.register("PlamoForCausalLM")
  2127. class PlamoModel(Model):
  2128. model_arch = gguf.MODEL_ARCH.PLAMO
  2129. def set_vocab(self):
  2130. self._set_vocab_sentencepiece()
  2131. def set_gguf_parameters(self):
  2132. hparams = self.hparams
  2133. block_count = hparams["num_hidden_layers"]
  2134. self.gguf_writer.add_context_length(4096) # not in config.json
  2135. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2136. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2137. self.gguf_writer.add_block_count(block_count)
  2138. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2139. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2140. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2141. self.gguf_writer.add_file_type(self.ftype)
  2142. def shuffle_attn_q_weight(self, data_torch):
  2143. assert data_torch.size() == (5120, 5120)
  2144. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2145. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2146. data_torch = torch.reshape(data_torch, (5120, 5120))
  2147. return data_torch
  2148. def shuffle_attn_output_weight(self, data_torch):
  2149. assert data_torch.size() == (5120, 5120)
  2150. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2151. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2152. data_torch = torch.reshape(data_torch, (5120, 5120))
  2153. return data_torch
  2154. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2155. del bid # unused
  2156. new_name = self.map_tensor_name(name)
  2157. # shuffle for broadcasting of gqa in ggml_mul_mat
  2158. if new_name.endswith("attn_q.weight"):
  2159. data_torch = self.shuffle_attn_q_weight(data_torch)
  2160. elif new_name.endswith("attn_output.weight"):
  2161. data_torch = self.shuffle_attn_output_weight(data_torch)
  2162. return [(new_name, data_torch)]
  2163. @Model.register("CodeShellForCausalLM")
  2164. class CodeShellModel(Model):
  2165. model_arch = gguf.MODEL_ARCH.CODESHELL
  2166. def set_gguf_parameters(self):
  2167. block_count = self.hparams["n_layer"]
  2168. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2169. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2170. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2171. self.gguf_writer.add_block_count(block_count)
  2172. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2173. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2174. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2175. self.gguf_writer.add_file_type(self.ftype)
  2176. self.gguf_writer.add_rope_freq_base(10000.0)
  2177. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2178. self.gguf_writer.add_rope_scaling_factor(1.0)
  2179. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2180. del bid # unused
  2181. new_name = self.map_tensor_name(name)
  2182. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  2183. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2184. assert self.tensor_names is not None
  2185. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  2186. # copy tok_embd.weight to output.weight
  2187. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  2188. return tensors
  2189. @Model.register("InternLM2ForCausalLM")
  2190. class InternLM2Model(Model):
  2191. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2192. def set_vocab(self):
  2193. # (TODO): Is there a better way?
  2194. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2195. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2196. # recognized as an empty string in C++.
  2197. from sentencepiece import SentencePieceProcessor
  2198. from sentencepiece import sentencepiece_model_pb2 as model
  2199. tokenizer_path = self.dir_model / 'tokenizer.model'
  2200. tokens: list[bytes] = []
  2201. scores: list[float] = []
  2202. toktypes: list[int] = []
  2203. if not tokenizer_path.is_file():
  2204. logger.error(f'Error: Missing {tokenizer_path}')
  2205. sys.exit(1)
  2206. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2207. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2208. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2209. tokenizer = SentencePieceProcessor()
  2210. tokenizer.LoadFromFile(str(tokenizer_path))
  2211. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2212. for token_id in range(vocab_size):
  2213. piece = tokenizer.IdToPiece(token_id)
  2214. text = piece.encode("utf-8")
  2215. score = tokenizer.GetScore(token_id)
  2216. if text == b"\x00":
  2217. # (TODO): fixme
  2218. # Hack here and replace the \x00 characters.
  2219. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2220. text = "🐉".encode("utf-8")
  2221. toktype = SentencePieceTokenTypes.NORMAL
  2222. if tokenizer.IsUnknown(token_id):
  2223. toktype = SentencePieceTokenTypes.UNKNOWN
  2224. elif tokenizer.IsControl(token_id):
  2225. toktype = SentencePieceTokenTypes.CONTROL
  2226. elif tokenizer.IsUnused(token_id):
  2227. toktype = SentencePieceTokenTypes.UNUSED
  2228. elif tokenizer.IsByte(token_id):
  2229. toktype = SentencePieceTokenTypes.BYTE
  2230. # take care of ununsed raw token
  2231. if piece.startswith('[UNUSED'):
  2232. toktype = SentencePieceTokenTypes.UNUSED
  2233. tokens.append(text)
  2234. scores.append(score)
  2235. toktypes.append(toktype)
  2236. added_tokens_file = self.dir_model / 'added_tokens.json'
  2237. if added_tokens_file.is_file():
  2238. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2239. added_tokens_json = json.load(f)
  2240. for key in added_tokens_json:
  2241. tokens.append(key.encode("utf-8"))
  2242. scores.append(-1000.0)
  2243. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2244. chat_eos_token = '<|im_end|>'
  2245. chat_eos_token_id = None
  2246. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2247. if tokenizer_config_file.is_file():
  2248. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2249. tokenizer_config_json = json.load(f)
  2250. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2251. for token_id, foken_data in added_tokens_decoder.items():
  2252. token_id = int(token_id)
  2253. token = foken_data["content"]
  2254. if token == chat_eos_token:
  2255. chat_eos_token_id = token_id
  2256. token = token.encode("utf-8")
  2257. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2258. if tokens[token_id] != token:
  2259. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2260. tokens[token_id] = token
  2261. scores[token_id] = -1000.0
  2262. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2263. if foken_data.get("special"):
  2264. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2265. tokenizer_file = self.dir_model / 'tokenizer.json'
  2266. if tokenizer_file.is_file():
  2267. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2268. tokenizer_json = json.load(f)
  2269. added_tokens = tokenizer_json.get("added_tokens", [])
  2270. for foken_data in added_tokens:
  2271. token_id = int(foken_data["id"])
  2272. token = foken_data["content"]
  2273. if token == chat_eos_token:
  2274. chat_eos_token_id = token_id
  2275. token = token.encode("utf-8")
  2276. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2277. if tokens[token_id] != token:
  2278. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2279. tokens[token_id] = token
  2280. scores[token_id] = -1000.0
  2281. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2282. if foken_data.get("special"):
  2283. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2284. self.gguf_writer.add_tokenizer_model("llama")
  2285. self.gguf_writer.add_tokenizer_pre("default")
  2286. self.gguf_writer.add_token_list(tokens)
  2287. self.gguf_writer.add_token_scores(scores)
  2288. self.gguf_writer.add_token_types(toktypes)
  2289. self.gguf_writer.add_add_space_prefix(add_prefix)
  2290. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2291. old_eos = special_vocab.special_token_ids["eos"]
  2292. if chat_eos_token_id is not None:
  2293. # For the chat model, we replace the eos with '<|im_end|>'.
  2294. # TODO: this is a hack, should be fixed
  2295. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2296. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2297. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2298. " in chat mode so that the conversation can end normally.")
  2299. special_vocab.add_to_gguf(self.gguf_writer)
  2300. def set_gguf_parameters(self):
  2301. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2302. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2303. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2304. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2305. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2306. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2307. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2308. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2309. self.gguf_writer.add_file_type(self.ftype)
  2310. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2311. if self.hparams["rope_scaling"].get("type") == "linear":
  2312. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2313. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2315. num_heads = self.hparams["num_attention_heads"]
  2316. num_kv_heads = self.hparams["num_key_value_heads"]
  2317. n_embd = self.hparams["hidden_size"]
  2318. q_per_kv = num_heads // num_kv_heads
  2319. head_dim = n_embd // num_heads
  2320. num_groups = num_heads // q_per_kv
  2321. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2322. qkv = data_torch
  2323. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2324. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2325. # The model weights of q and k equire additional reshape.
  2326. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2327. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2328. v = v.reshape((-1, v.shape[-1]))
  2329. return [
  2330. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2331. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2332. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2333. ]
  2334. else:
  2335. return [(self.map_tensor_name(name), data_torch)]
  2336. @Model.register("InternLM3ForCausalLM")
  2337. class InternLM3Model(Model):
  2338. model_arch = gguf.MODEL_ARCH.LLAMA
  2339. def set_vocab(self):
  2340. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2341. self.gguf_writer.add_tokenizer_model("llama")
  2342. self.gguf_writer.add_tokenizer_pre("default")
  2343. self.gguf_writer.add_token_list(tokens)
  2344. self.gguf_writer.add_token_scores(scores)
  2345. self.gguf_writer.add_token_types(toktypes)
  2346. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2347. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2348. if tokenizer_config_file.is_file():
  2349. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2350. tokenizer_config_json = json.load(f)
  2351. if "add_prefix_space" in tokenizer_config_json:
  2352. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2353. if "added_tokens_decoder" in tokenizer_config_json:
  2354. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2355. if token_data.get("special"):
  2356. token_id = int(token_id)
  2357. token = token_data["content"]
  2358. special_vocab._set_special_token(token, token_id)
  2359. # update eos token
  2360. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2361. special_vocab.special_token_ids["eos"] = token_id
  2362. special_vocab.add_to_gguf(self.gguf_writer)
  2363. def set_gguf_parameters(self):
  2364. super().set_gguf_parameters()
  2365. hparams = self.hparams
  2366. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2367. if "head_dim" in hparams:
  2368. rope_dim = hparams["head_dim"]
  2369. else:
  2370. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2371. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2372. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2373. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2374. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2375. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2377. n_head = self.hparams["num_attention_heads"]
  2378. n_kv_head = self.hparams.get("num_key_value_heads")
  2379. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2380. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2381. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2382. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2383. return [(self.map_tensor_name(name), data_torch)]
  2384. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2385. class BertModel(Model):
  2386. model_arch = gguf.MODEL_ARCH.BERT
  2387. def __init__(self, *args, **kwargs):
  2388. super().__init__(*args, **kwargs)
  2389. self.vocab_size = None
  2390. def set_gguf_parameters(self):
  2391. super().set_gguf_parameters()
  2392. self.gguf_writer.add_causal_attention(False)
  2393. # get pooling path
  2394. pooling_path = None
  2395. module_path = self.dir_model / "modules.json"
  2396. if module_path.is_file():
  2397. with open(module_path, encoding="utf-8") as f:
  2398. modules = json.load(f)
  2399. for mod in modules:
  2400. if mod["type"] == "sentence_transformers.models.Pooling":
  2401. pooling_path = mod["path"]
  2402. break
  2403. # get pooling type
  2404. if pooling_path is not None:
  2405. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2406. pooling = json.load(f)
  2407. if pooling["pooling_mode_mean_tokens"]:
  2408. pooling_type = gguf.PoolingType.MEAN
  2409. elif pooling["pooling_mode_cls_token"]:
  2410. pooling_type = gguf.PoolingType.CLS
  2411. else:
  2412. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2413. self.gguf_writer.add_pooling_type(pooling_type)
  2414. def set_vocab(self):
  2415. tokens, toktypes, tokpre = self.get_vocab_base()
  2416. self.vocab_size = len(tokens)
  2417. # we need this to validate the size of the token_type embeddings
  2418. # though currently we are passing all zeros to the token_type embeddings
  2419. # "Sequence A" or "Sequence B"
  2420. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2421. # convert to phantom space vocab
  2422. def phantom(tok):
  2423. if tok.startswith("[") and tok.endswith("]"):
  2424. return tok
  2425. if tok.startswith("##"):
  2426. return tok[2:]
  2427. return "\u2581" + tok
  2428. tokens = list(map(phantom, tokens))
  2429. # add vocab to gguf
  2430. self.gguf_writer.add_tokenizer_model("bert")
  2431. self.gguf_writer.add_tokenizer_pre(tokpre)
  2432. self.gguf_writer.add_token_list(tokens)
  2433. self.gguf_writer.add_token_types(toktypes)
  2434. # handle special tokens
  2435. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2436. special_vocab.add_to_gguf(self.gguf_writer)
  2437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2438. del bid # unused
  2439. if name.startswith("bert."):
  2440. name = name[5:]
  2441. if name.endswith(".gamma"):
  2442. name = name[:-6] + ".weight"
  2443. if name.endswith(".beta"):
  2444. name = name[:-5] + ".bias"
  2445. # we are only using BERT for embeddings so we don't need the pooling layer
  2446. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2447. return [] # we don't need these
  2448. if name.startswith("cls.predictions"):
  2449. return []
  2450. if name.startswith("cls.seq_relationship"):
  2451. return []
  2452. return [(self.map_tensor_name(name), data_torch)]
  2453. @Model.register("RobertaModel")
  2454. class RobertaModel(BertModel):
  2455. model_arch = gguf.MODEL_ARCH.BERT
  2456. def __init__(self, *args, **kwargs):
  2457. super().__init__(*args, **kwargs)
  2458. # we need the pad_token_id to know how to chop down position_embd matrix
  2459. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2460. self._position_offset = 1 + pad_token_id
  2461. if "max_position_embeddings" in self.hparams:
  2462. self.hparams["max_position_embeddings"] -= self._position_offset
  2463. else:
  2464. self._position_offset = None
  2465. def set_vocab(self):
  2466. """Support BPE tokenizers for roberta models"""
  2467. bpe_tok_path = self.dir_model / "tokenizer.json"
  2468. if bpe_tok_path.exists():
  2469. self._set_vocab_gpt2()
  2470. self.gguf_writer.add_add_bos_token(True)
  2471. self.gguf_writer.add_add_eos_token(True)
  2472. # we need this to validate the size of the token_type embeddings
  2473. # though currently we are passing all zeros to the token_type embeddings
  2474. # "Sequence A" or "Sequence B"
  2475. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2476. else:
  2477. return super().set_vocab()
  2478. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2479. # if name starts with "roberta.", remove the prefix
  2480. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2481. if name.startswith("roberta."):
  2482. name = name[8:]
  2483. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2484. if name == "embeddings.position_embeddings.weight":
  2485. if self._position_offset is not None:
  2486. data_torch = data_torch[self._position_offset:,:]
  2487. return super().modify_tensors(data_torch, name, bid)
  2488. @Model.register("NomicBertModel")
  2489. class NomicBertModel(BertModel):
  2490. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2491. def __init__(self, *args, **kwargs):
  2492. super().__init__(*args, **kwargs)
  2493. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2494. self.hparams["n_ctx"] = 2048
  2495. # SwigLU activation
  2496. assert self.hparams["activation_function"] == "swiglu"
  2497. # this doesn't do anything in the HF version
  2498. assert self.hparams["causal"] is False
  2499. # no bias tensors
  2500. assert self.hparams["qkv_proj_bias"] is False
  2501. assert self.hparams["mlp_fc1_bias"] is False
  2502. assert self.hparams["mlp_fc2_bias"] is False
  2503. # norm at end of layer
  2504. assert self.hparams["prenorm"] is False
  2505. # standard RoPE
  2506. assert self.hparams["rotary_emb_fraction"] == 1.0
  2507. assert self.hparams["rotary_emb_interleaved"] is False
  2508. assert self.hparams["rotary_emb_scale_base"] is None
  2509. def set_gguf_parameters(self):
  2510. super().set_gguf_parameters()
  2511. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2512. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2513. class XLMRobertaModel(BertModel):
  2514. model_arch = gguf.MODEL_ARCH.BERT
  2515. def __init__(self, *args, **kwargs):
  2516. super().__init__(*args, **kwargs)
  2517. # we need the pad_token_id to know how to chop down position_embd matrix
  2518. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2519. self._position_offset = 1 + pad_token_id
  2520. if "max_position_embeddings" in self.hparams:
  2521. self.hparams["max_position_embeddings"] -= self._position_offset
  2522. else:
  2523. self._position_offset = None
  2524. def set_vocab(self):
  2525. # to avoid TypeError: Descriptors cannot be created directly
  2526. # exception when importing sentencepiece_model_pb2
  2527. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2528. from sentencepiece import SentencePieceProcessor
  2529. from sentencepiece import sentencepiece_model_pb2 as model
  2530. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2531. if not tokenizer_path.is_file():
  2532. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2533. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2534. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2535. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2536. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2537. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2538. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2539. tokenizer = SentencePieceProcessor()
  2540. tokenizer.LoadFromFile(str(tokenizer_path))
  2541. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2542. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2543. scores: list[float] = [-10000.0] * vocab_size
  2544. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2545. for token_id in range(tokenizer.vocab_size()):
  2546. piece = tokenizer.IdToPiece(token_id)
  2547. text = piece.encode("utf-8")
  2548. score = tokenizer.GetScore(token_id)
  2549. toktype = SentencePieceTokenTypes.NORMAL
  2550. if tokenizer.IsUnknown(token_id):
  2551. toktype = SentencePieceTokenTypes.UNKNOWN
  2552. elif tokenizer.IsControl(token_id):
  2553. toktype = SentencePieceTokenTypes.CONTROL
  2554. elif tokenizer.IsUnused(token_id):
  2555. toktype = SentencePieceTokenTypes.UNUSED
  2556. elif tokenizer.IsByte(token_id):
  2557. toktype = SentencePieceTokenTypes.BYTE
  2558. tokens[token_id] = text
  2559. scores[token_id] = score
  2560. toktypes[token_id] = toktype
  2561. if vocab_size > len(tokens):
  2562. pad_count = vocab_size - len(tokens)
  2563. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2564. for i in range(1, pad_count + 1):
  2565. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2566. scores.append(-1000.0)
  2567. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2568. # realign tokens (see HF tokenizer code)
  2569. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2570. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2571. toktypes = [
  2572. SentencePieceTokenTypes.CONTROL,
  2573. SentencePieceTokenTypes.CONTROL,
  2574. SentencePieceTokenTypes.CONTROL,
  2575. SentencePieceTokenTypes.UNKNOWN,
  2576. ] + toktypes[3:-1]
  2577. self.gguf_writer.add_tokenizer_model("t5")
  2578. self.gguf_writer.add_tokenizer_pre("default")
  2579. self.gguf_writer.add_token_list(tokens)
  2580. self.gguf_writer.add_token_scores(scores)
  2581. self.gguf_writer.add_token_types(toktypes)
  2582. self.gguf_writer.add_add_space_prefix(add_prefix)
  2583. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2584. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2585. if precompiled_charsmap:
  2586. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2587. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2588. special_vocab.add_to_gguf(self.gguf_writer)
  2589. self.gguf_writer.add_add_bos_token(True)
  2590. self.gguf_writer.add_add_eos_token(True)
  2591. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2592. # if name starts with "roberta.", remove the prefix
  2593. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2594. if name.startswith("roberta."):
  2595. name = name[8:]
  2596. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2597. if name == "embeddings.position_embeddings.weight":
  2598. if self._position_offset is not None:
  2599. data_torch = data_torch[self._position_offset:,:]
  2600. return super().modify_tensors(data_torch, name, bid)
  2601. @Model.register("GemmaForCausalLM")
  2602. class GemmaModel(Model):
  2603. model_arch = gguf.MODEL_ARCH.GEMMA
  2604. def set_vocab(self):
  2605. self._set_vocab_sentencepiece()
  2606. # TODO: these special tokens should be exported only for the CodeGemma family
  2607. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2608. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2609. special_vocab._set_special_token("prefix", 67)
  2610. special_vocab._set_special_token("suffix", 69)
  2611. special_vocab._set_special_token("middle", 68)
  2612. special_vocab._set_special_token("fsep", 70)
  2613. special_vocab._set_special_token("eot", 107)
  2614. special_vocab.chat_template = None # do not add it twice
  2615. special_vocab.add_to_gguf(self.gguf_writer)
  2616. self.gguf_writer.add_add_space_prefix(False)
  2617. def set_gguf_parameters(self):
  2618. hparams = self.hparams
  2619. block_count = hparams["num_hidden_layers"]
  2620. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2621. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2622. self.gguf_writer.add_block_count(block_count)
  2623. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2624. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2625. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2626. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2627. self.gguf_writer.add_key_length(hparams["head_dim"])
  2628. self.gguf_writer.add_value_length(hparams["head_dim"])
  2629. self.gguf_writer.add_file_type(self.ftype)
  2630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2631. del bid # unused
  2632. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2633. # To prevent errors, skip loading lm_head.weight.
  2634. if name == "lm_head.weight":
  2635. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2636. return []
  2637. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2638. if name.endswith("norm.weight"):
  2639. data_torch = data_torch + 1
  2640. return [(self.map_tensor_name(name), data_torch)]
  2641. @Model.register("Gemma2ForCausalLM")
  2642. class Gemma2Model(Model):
  2643. model_arch = gguf.MODEL_ARCH.GEMMA2
  2644. def set_vocab(self):
  2645. self._set_vocab_sentencepiece()
  2646. self.gguf_writer.add_add_space_prefix(False)
  2647. def set_gguf_parameters(self):
  2648. hparams = self.hparams
  2649. block_count = hparams["num_hidden_layers"]
  2650. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2651. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2652. self.gguf_writer.add_block_count(block_count)
  2653. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2654. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2655. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2656. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2657. self.gguf_writer.add_key_length(hparams["head_dim"])
  2658. self.gguf_writer.add_value_length(hparams["head_dim"])
  2659. self.gguf_writer.add_file_type(self.ftype)
  2660. self.gguf_writer.add_attn_logit_softcapping(
  2661. self.hparams["attn_logit_softcapping"]
  2662. )
  2663. self.gguf_writer.add_final_logit_softcapping(
  2664. self.hparams["final_logit_softcapping"]
  2665. )
  2666. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2668. del bid # unused
  2669. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2670. # To prevent errors, skip loading lm_head.weight.
  2671. if name == "lm_head.weight":
  2672. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2673. return []
  2674. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2675. if name.endswith("norm.weight"):
  2676. data_torch = data_torch + 1
  2677. return [(self.map_tensor_name(name), data_torch)]
  2678. @Model.register("Starcoder2ForCausalLM")
  2679. class StarCoder2Model(Model):
  2680. model_arch = gguf.MODEL_ARCH.STARCODER2
  2681. @Model.register("Rwkv6ForCausalLM")
  2682. class Rwkv6Model(Model):
  2683. model_arch = gguf.MODEL_ARCH.RWKV6
  2684. def set_vocab(self):
  2685. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2686. vocab_size = self.hparams.get("vocab_size", 65536)
  2687. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2688. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2689. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2690. lines = f.readlines()
  2691. for line in lines:
  2692. parts = line.split(' ')
  2693. assert len(parts) >= 3
  2694. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2695. token = token.encode("utf-8") if isinstance(token, str) else token
  2696. assert isinstance(token, bytes)
  2697. assert len(token) == token_len
  2698. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2699. tokens.append(token_text.encode("utf-8"))
  2700. toktypes.append(gguf.TokenType.NORMAL)
  2701. remainder = vocab_size - len(tokens)
  2702. assert remainder >= 0
  2703. for i in range(len(tokens), vocab_size):
  2704. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2705. toktypes.append(gguf.TokenType.UNUSED)
  2706. self.gguf_writer.add_tokenizer_model("rwkv")
  2707. self.gguf_writer.add_token_list(tokens)
  2708. self.gguf_writer.add_token_types(toktypes)
  2709. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2710. special_vocab.chat_template = "rwkv-world"
  2711. # hack: Add '\n\n' as the EOT token to make it chat normally
  2712. special_vocab._set_special_token("eot", 261)
  2713. special_vocab.add_to_gguf(self.gguf_writer)
  2714. def set_gguf_parameters(self):
  2715. block_count = self.hparams["num_hidden_layers"]
  2716. head_size = self.hparams["head_size"]
  2717. hidden_size = self.hparams["hidden_size"]
  2718. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2719. rescale_every_n_layers = self.hparams["rescale_every"]
  2720. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2721. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2722. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2723. # RWKV isn't context limited
  2724. self.gguf_writer.add_context_length(1048576)
  2725. self.gguf_writer.add_embedding_length(hidden_size)
  2726. self.gguf_writer.add_block_count(block_count)
  2727. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2728. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2729. self.gguf_writer.add_wkv_head_size(head_size)
  2730. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2731. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2732. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2733. self.gguf_writer.add_file_type(self.ftype)
  2734. # required by llama.cpp, unused
  2735. self.gguf_writer.add_head_count(0)
  2736. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2737. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2738. new_name = self.map_tensor_name(name)
  2739. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2740. new_name += ".weight"
  2741. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2742. data_torch = data_torch.transpose(0, 1)
  2743. if new_name.endswith("time_mix_w2.weight"):
  2744. data_torch = data_torch.permute(0, 2, 1)
  2745. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2746. data_torch = data_torch.squeeze()
  2747. try:
  2748. rescale_every_n_layers = self.hparams["rescale_every"]
  2749. if rescale_every_n_layers > 0:
  2750. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2751. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2752. except KeyError:
  2753. pass
  2754. # concat time_mix_lerp weights to reduce some cpu overhead
  2755. # also reduces the number of tensors in the model
  2756. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2757. try:
  2758. self.lerp_weights[bid][new_name] = data_torch
  2759. except KeyError:
  2760. self.lerp_weights[bid] = {new_name: data_torch}
  2761. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2762. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2763. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2764. yield (new_name, data)
  2765. return
  2766. yield (new_name, data_torch)
  2767. @Model.register("RWKV6Qwen2ForCausalLM")
  2768. class RWKV6Qwen2Model(Rwkv6Model):
  2769. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2770. def set_vocab(self):
  2771. try:
  2772. self._set_vocab_sentencepiece()
  2773. except FileNotFoundError:
  2774. self._set_vocab_gpt2()
  2775. def set_gguf_parameters(self):
  2776. block_count = self.hparams["num_hidden_layers"]
  2777. num_attention_heads = self.hparams["num_attention_heads"]
  2778. num_key_value_heads = self.hparams["num_key_value_heads"]
  2779. hidden_size = self.hparams["hidden_size"]
  2780. head_size = hidden_size // num_attention_heads
  2781. rms_norm_eps = self.hparams["rms_norm_eps"]
  2782. intermediate_size = self.hparams["intermediate_size"]
  2783. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2784. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2785. # RWKV isn't context limited
  2786. self.gguf_writer.add_context_length(1048576)
  2787. self.gguf_writer.add_embedding_length(hidden_size)
  2788. self.gguf_writer.add_block_count(block_count)
  2789. self.gguf_writer.add_wkv_head_size(head_size)
  2790. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2791. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2792. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2793. self.gguf_writer.add_file_type(self.ftype)
  2794. # special parameters for time_mixing in RWKV6QWEN2
  2795. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2796. self.gguf_writer.add_token_shift_count(1)
  2797. # RWKV6QWEN2 use grouped key/value like GQA
  2798. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2799. # required by llama.cpp, unused
  2800. self.gguf_writer.add_head_count(0)
  2801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2802. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2803. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2804. data = data.view(5, -1, data.shape[-1])
  2805. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2806. # permute them here to avoid code changes
  2807. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2808. if "w2" in new_name:
  2809. data = data.view(5, -1, data.shape[-1])
  2810. yield (new_name, data)
  2811. continue
  2812. yield (new_name, data)
  2813. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2814. class MambaModel(Model):
  2815. model_arch = gguf.MODEL_ARCH.MAMBA
  2816. def set_vocab(self):
  2817. vocab_size = self.hparams["vocab_size"]
  2818. # Round vocab size to next multiple of 8
  2819. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2820. # pad using ceiling division
  2821. # ref: https://stackoverflow.com/a/17511341/22827863
  2822. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2823. self.hparams["vocab_size"] = vocab_size
  2824. if (self.dir_model / "tokenizer.json").is_file():
  2825. self._set_vocab_gpt2()
  2826. elif (self.dir_model / "tokenizer.model").is_file():
  2827. self._set_vocab_sentencepiece()
  2828. else:
  2829. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2830. self._set_vocab_builtin("gpt-neox", vocab_size)
  2831. def set_gguf_parameters(self):
  2832. d_model = self.find_hparam(["hidden_size", "d_model"])
  2833. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2834. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2835. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2836. # ceiling division
  2837. # ref: https://stackoverflow.com/a/17511341/22827863
  2838. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2839. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2840. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2841. use_dt_b_c_norm = False
  2842. # For falconmamba we do apply RMS norm on B / DT and C layers
  2843. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2844. use_dt_b_c_norm = True
  2845. # Fail early for models which don't have a block expansion factor of 2
  2846. assert d_inner == 2 * d_model
  2847. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2848. self.gguf_writer.add_embedding_length(d_model)
  2849. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2850. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2851. self.gguf_writer.add_block_count(self.block_count)
  2852. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2853. self.gguf_writer.add_ssm_inner_size(d_inner)
  2854. self.gguf_writer.add_ssm_state_size(d_state)
  2855. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2856. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2857. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2858. self.gguf_writer.add_file_type(self.ftype)
  2859. _tok_embd = None
  2860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2861. del bid # unused
  2862. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2863. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2864. new_name = self.map_tensor_name(name)
  2865. if name.endswith(".A_log"):
  2866. logger.debug("A_log --> A ==> " + new_name)
  2867. data_torch = -torch.exp(data_torch)
  2868. # assuming token_embd.weight is seen before output.weight
  2869. if self._tok_embd is not None and new_name == output_name:
  2870. if torch.equal(self._tok_embd, data_torch):
  2871. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2872. return []
  2873. elif new_name == tok_embd_name:
  2874. self._tok_embd = data_torch
  2875. return [(new_name, data_torch)]
  2876. @Model.register("CohereForCausalLM")
  2877. class CommandR2Model(Model):
  2878. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2879. def __init__(self, *args, **kwargs):
  2880. super().__init__(*args, **kwargs)
  2881. # max_position_embeddings = 8192 in config.json but model was actually
  2882. # trained on 128k context length
  2883. # aya-23 models don't have model_max_length specified
  2884. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2885. def set_gguf_parameters(self):
  2886. super().set_gguf_parameters()
  2887. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2888. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2889. @Model.register("Cohere2ForCausalLM")
  2890. class Cohere2Model(Model):
  2891. model_arch = gguf.MODEL_ARCH.COHERE2
  2892. def set_gguf_parameters(self):
  2893. super().set_gguf_parameters()
  2894. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2895. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2896. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  2897. rotary_pct = self.hparams["rotary_pct"]
  2898. hidden_size = self.hparams["hidden_size"]
  2899. num_attention_heads = self.hparams["num_attention_heads"]
  2900. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  2901. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2902. @Model.register("OlmoForCausalLM")
  2903. @Model.register("OLMoForCausalLM")
  2904. class OlmoModel(Model):
  2905. model_arch = gguf.MODEL_ARCH.OLMO
  2906. def set_gguf_parameters(self):
  2907. super().set_gguf_parameters()
  2908. self.gguf_writer.add_layer_norm_eps(1e-5)
  2909. clip_qkv = self.hparams.get("clip_qkv")
  2910. if clip_qkv is not None:
  2911. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2912. # Same as super class, but permuting q_proj, k_proj
  2913. # Copied from: LlamaModel
  2914. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2915. del bid # unused
  2916. n_head = self.hparams["num_attention_heads"]
  2917. n_kv_head = self.hparams.get("num_key_value_heads")
  2918. if name.endswith("q_proj.weight"):
  2919. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2920. if name.endswith("k_proj.weight"):
  2921. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2922. return [(self.map_tensor_name(name), data_torch)]
  2923. @Model.register("Olmo2ForCausalLM")
  2924. class Olmo2Model(Model):
  2925. model_arch = gguf.MODEL_ARCH.OLMO2
  2926. @Model.register("OlmoeForCausalLM")
  2927. class OlmoeModel(Model):
  2928. model_arch = gguf.MODEL_ARCH.OLMOE
  2929. def set_gguf_parameters(self):
  2930. super().set_gguf_parameters()
  2931. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2932. if (n_experts := self.hparams.get("num_experts")) is not None:
  2933. self.gguf_writer.add_expert_count(n_experts)
  2934. _experts: list[dict[str, Tensor]] | None = None
  2935. # Copied from: Qwen2MoeModel
  2936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2937. # process the experts separately
  2938. if name.find("experts") != -1:
  2939. n_experts = self.hparams["num_experts"]
  2940. assert bid is not None
  2941. if self._experts is None:
  2942. self._experts = [{} for _ in range(self.block_count)]
  2943. self._experts[bid][name] = data_torch
  2944. if len(self._experts[bid]) >= n_experts * 3:
  2945. tensors: list[tuple[str, Tensor]] = []
  2946. # merge the experts into a single 3d tensor
  2947. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2948. datas: list[Tensor] = []
  2949. for xid in range(n_experts):
  2950. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2951. datas.append(self._experts[bid][ename])
  2952. del self._experts[bid][ename]
  2953. data_torch = torch.stack(datas, dim=0)
  2954. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2955. new_name = self.map_tensor_name(merged_name)
  2956. tensors.append((new_name, data_torch))
  2957. return tensors
  2958. else:
  2959. return []
  2960. return [(self.map_tensor_name(name), data_torch)]
  2961. # Copied from: Qwen2MoeModel
  2962. def prepare_tensors(self):
  2963. super().prepare_tensors()
  2964. if self._experts is not None:
  2965. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2966. experts = [k for d in self._experts for k in d.keys()]
  2967. if len(experts) > 0:
  2968. raise ValueError(f"Unprocessed experts: {experts}")
  2969. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2970. class JinaBertV2Model(BertModel):
  2971. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2972. def __init__(self, *args, **kwargs):
  2973. super().__init__(*args, **kwargs)
  2974. self.intermediate_size = self.hparams["intermediate_size"]
  2975. def get_tensors(self):
  2976. for name, data in super().get_tensors():
  2977. if 'gated_layer' in name:
  2978. d1 = data[:self.intermediate_size, :]
  2979. name1 = name.replace('gated_layers', 'gated_layers_w')
  2980. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2981. d2 = data[self.intermediate_size:, :]
  2982. name2 = name.replace('gated_layers', 'gated_layers_v')
  2983. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2984. yield name1, d1
  2985. yield name2, d2
  2986. continue
  2987. yield name, data
  2988. def set_vocab(self):
  2989. tokenizer_class = 'BertTokenizer'
  2990. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2991. tokenizer_class = json.load(f)['tokenizer_class']
  2992. if tokenizer_class == 'BertTokenizer':
  2993. super().set_vocab()
  2994. elif tokenizer_class == 'RobertaTokenizer':
  2995. self._set_vocab_gpt2()
  2996. self.gguf_writer.add_token_type_count(2)
  2997. else:
  2998. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2999. self.gguf_writer.add_add_bos_token(True)
  3000. self.gguf_writer.add_add_eos_token(True)
  3001. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3002. # if name starts with "bert.", remove the prefix
  3003. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3004. if name.startswith("bert."):
  3005. name = name[5:]
  3006. return super().modify_tensors(data_torch, name, bid)
  3007. @Model.register("OpenELMForCausalLM")
  3008. class OpenELMModel(Model):
  3009. model_arch = gguf.MODEL_ARCH.OPENELM
  3010. @staticmethod
  3011. def _make_divisible(v: float | int, divisor: int) -> int:
  3012. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3013. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3014. # Make sure that round down does not go down by more than 10%.
  3015. if new_v < 0.9 * v:
  3016. new_v += divisor
  3017. return new_v
  3018. def __init__(self, *args, **kwargs):
  3019. super().__init__(*args, **kwargs)
  3020. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3021. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3022. self._n_embd: int = self.hparams["model_dim"]
  3023. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3024. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3025. self._ffn_dims: list[int] = [
  3026. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3027. for multiplier in ffn_multipliers
  3028. ]
  3029. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3030. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3031. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3032. def set_vocab(self):
  3033. try:
  3034. self._set_vocab_sentencepiece()
  3035. except FileNotFoundError:
  3036. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3037. def set_gguf_parameters(self):
  3038. n_embd = self._n_embd
  3039. head_dim = self.hparams["head_dim"]
  3040. rot_pct = 1.0
  3041. assert self.block_count == len(self._num_kv_heads)
  3042. assert self.block_count == len(self._num_query_heads)
  3043. assert self.block_count == len(self._ffn_dims)
  3044. self.gguf_writer.add_block_count(self.block_count)
  3045. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3046. self.gguf_writer.add_embedding_length(n_embd)
  3047. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3048. self.gguf_writer.add_head_count(self._num_query_heads)
  3049. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3050. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3051. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3052. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3053. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3054. self.gguf_writer.add_key_length(head_dim)
  3055. self.gguf_writer.add_value_length(head_dim)
  3056. self.gguf_writer.add_file_type(self.ftype)
  3057. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3058. if "n_layers" in keys:
  3059. return self.hparams["num_transformer_layers"]
  3060. return super().find_hparam(keys, optional)
  3061. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3062. # split ff
  3063. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3064. ff_dim = self._ffn_dims[bid]
  3065. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3066. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3067. return
  3068. yield (self.map_tensor_name(name), data_torch)
  3069. @Model.register("ArcticForCausalLM")
  3070. class ArcticModel(Model):
  3071. model_arch = gguf.MODEL_ARCH.ARCTIC
  3072. def set_vocab(self):
  3073. # The reason for using a custom implementation here is that the
  3074. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3075. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3076. from sentencepiece import SentencePieceProcessor
  3077. tokenizer_path = self.dir_model / 'tokenizer.model'
  3078. if not tokenizer_path.is_file():
  3079. logger.error(f'Error: Missing {tokenizer_path}')
  3080. sys.exit(1)
  3081. # Read the whole vocabulary from the tokenizer.model file
  3082. tokenizer = SentencePieceProcessor()
  3083. tokenizer.LoadFromFile(str(tokenizer_path))
  3084. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3085. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3086. scores: list[float] = [-10000.0] * vocab_size
  3087. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3088. for token_id in range(tokenizer.vocab_size()):
  3089. piece = tokenizer.IdToPiece(token_id)
  3090. text = piece.encode("utf-8")
  3091. score = tokenizer.GetScore(token_id)
  3092. toktype = SentencePieceTokenTypes.NORMAL
  3093. if tokenizer.IsUnknown(token_id):
  3094. toktype = SentencePieceTokenTypes.UNKNOWN
  3095. elif tokenizer.IsControl(token_id):
  3096. toktype = SentencePieceTokenTypes.CONTROL
  3097. elif tokenizer.IsUnused(token_id):
  3098. toktype = SentencePieceTokenTypes.UNUSED
  3099. elif tokenizer.IsByte(token_id):
  3100. toktype = SentencePieceTokenTypes.BYTE
  3101. tokens[token_id] = text
  3102. scores[token_id] = score
  3103. toktypes[token_id] = toktype
  3104. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3105. # of information about added/redefined tokens and modify them accordingly.
  3106. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3107. if tokenizer_config_file.is_file():
  3108. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3109. tokenizer_config_json = json.load(f)
  3110. if "added_tokens_decoder" in tokenizer_config_json:
  3111. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3112. for token_id, token_json in added_tokens_decoder.items():
  3113. token_id = int(token_id)
  3114. if token_id >= vocab_size:
  3115. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3116. continue
  3117. token_content = token_json["content"]
  3118. token_type = SentencePieceTokenTypes.USER_DEFINED
  3119. token_score = -10000.0
  3120. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3121. # Set the score to 0.0 as in the original tokenizer.model
  3122. if ("special" in token_json) and token_json["special"]:
  3123. if token_content == tokenizer_config_json["unk_token"]:
  3124. token_type = SentencePieceTokenTypes.UNKNOWN
  3125. else:
  3126. token_type = SentencePieceTokenTypes.CONTROL
  3127. token_score = 0.0
  3128. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3129. tokens[token_id] = token_content.encode("utf-8")
  3130. toktypes[token_id] = token_type
  3131. scores[token_id] = token_score
  3132. self.gguf_writer.add_tokenizer_model("llama")
  3133. self.gguf_writer.add_tokenizer_pre("default")
  3134. self.gguf_writer.add_token_list(tokens)
  3135. self.gguf_writer.add_token_scores(scores)
  3136. self.gguf_writer.add_token_types(toktypes)
  3137. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3138. special_vocab.add_to_gguf(self.gguf_writer)
  3139. def set_gguf_parameters(self):
  3140. super().set_gguf_parameters()
  3141. hparams = self.hparams
  3142. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3143. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3144. _experts: list[dict[str, Tensor]] | None = None
  3145. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3146. n_head = self.hparams["num_attention_heads"]
  3147. n_kv_head = self.hparams.get("num_key_value_heads")
  3148. if name.endswith("q_proj.weight"):
  3149. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3150. if name.endswith("k_proj.weight"):
  3151. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3152. # process the experts separately
  3153. if name.find("block_sparse_moe.experts") != -1:
  3154. n_experts = self.hparams["num_local_experts"]
  3155. assert bid is not None
  3156. if self._experts is None:
  3157. self._experts = [{} for _ in range(self.block_count)]
  3158. self._experts[bid][name] = data_torch
  3159. if len(self._experts[bid]) >= n_experts * 3:
  3160. tensors: list[tuple[str, Tensor]] = []
  3161. # merge the experts into a single 3d tensor
  3162. for wid in ["w1", "w2", "w3"]:
  3163. datas: list[Tensor] = []
  3164. for xid in range(n_experts):
  3165. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3166. datas.append(self._experts[bid][ename])
  3167. del self._experts[bid][ename]
  3168. data_torch = torch.stack(datas, dim=0)
  3169. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3170. new_name = self.map_tensor_name(merged_name)
  3171. tensors.append((new_name, data_torch))
  3172. return tensors
  3173. else:
  3174. return []
  3175. return [(self.map_tensor_name(name), data_torch)]
  3176. def prepare_tensors(self):
  3177. super().prepare_tensors()
  3178. if self._experts is not None:
  3179. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3180. experts = [k for d in self._experts for k in d.keys()]
  3181. if len(experts) > 0:
  3182. raise ValueError(f"Unprocessed experts: {experts}")
  3183. @Model.register("DeepseekForCausalLM")
  3184. class DeepseekModel(Model):
  3185. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3186. def set_vocab(self):
  3187. try:
  3188. self._set_vocab_sentencepiece()
  3189. except FileNotFoundError:
  3190. self._set_vocab_gpt2()
  3191. def set_gguf_parameters(self):
  3192. super().set_gguf_parameters()
  3193. hparams = self.hparams
  3194. if "head_dim" in hparams:
  3195. rope_dim = hparams["head_dim"]
  3196. else:
  3197. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3198. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3199. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3200. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3201. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3202. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3203. self.gguf_writer.add_expert_weights_scale(1.0)
  3204. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3205. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3206. _experts: list[dict[str, Tensor]] | None = None
  3207. @staticmethod
  3208. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3209. if n_head_kv is not None and n_head != n_head_kv:
  3210. n_head = n_head_kv
  3211. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3212. .swapaxes(1, 2)
  3213. .reshape(weights.shape))
  3214. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3215. n_head = self.hparams["num_attention_heads"]
  3216. n_kv_head = self.hparams.get("num_key_value_heads")
  3217. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3218. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3219. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3220. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3221. # process the experts separately
  3222. if name.find("mlp.experts") != -1:
  3223. n_experts = self.hparams["n_routed_experts"]
  3224. assert bid is not None
  3225. if self._experts is None:
  3226. self._experts = [{} for _ in range(self.block_count)]
  3227. self._experts[bid][name] = data_torch
  3228. if len(self._experts[bid]) >= n_experts * 3:
  3229. tensors: list[tuple[str, Tensor]] = []
  3230. # merge the experts into a single 3d tensor
  3231. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3232. datas: list[Tensor] = []
  3233. for xid in range(n_experts):
  3234. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3235. datas.append(self._experts[bid][ename])
  3236. del self._experts[bid][ename]
  3237. data_torch = torch.stack(datas, dim=0)
  3238. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3239. new_name = self.map_tensor_name(merged_name)
  3240. tensors.append((new_name, data_torch))
  3241. return tensors
  3242. else:
  3243. return []
  3244. return [(self.map_tensor_name(name), data_torch)]
  3245. def prepare_tensors(self):
  3246. super().prepare_tensors()
  3247. if self._experts is not None:
  3248. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3249. experts = [k for d in self._experts for k in d.keys()]
  3250. if len(experts) > 0:
  3251. raise ValueError(f"Unprocessed experts: {experts}")
  3252. @Model.register("DeepseekV2ForCausalLM")
  3253. @Model.register("DeepseekV3ForCausalLM")
  3254. class DeepseekV2Model(Model):
  3255. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3256. def set_vocab(self):
  3257. self._set_vocab_gpt2()
  3258. def set_gguf_parameters(self):
  3259. super().set_gguf_parameters()
  3260. hparams = self.hparams
  3261. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3262. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3263. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3264. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3265. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3266. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3267. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3268. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3269. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3270. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3271. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3272. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3273. if hparams["scoring_func"] == "sigmoid":
  3274. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3275. elif hparams["scoring_func"] == "softmax":
  3276. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3277. else:
  3278. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3279. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3280. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3281. if self.hparams["rope_scaling"].get("type") == "yarn":
  3282. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3283. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3284. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3285. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3286. _experts: list[dict[str, Tensor]] | None = None
  3287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3288. # rename e_score_correction_bias tensors
  3289. if name.endswith("e_score_correction_bias"):
  3290. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3291. # skip Multi-Token Prediction (MTP) layers
  3292. block_count = self.hparams["num_hidden_layers"]
  3293. match = re.match(r"model.layers.(\d+)", name)
  3294. if match and int(match.group(1)) >= block_count:
  3295. return []
  3296. # process the experts separately
  3297. if name.find("mlp.experts") != -1:
  3298. n_experts = self.hparams["n_routed_experts"]
  3299. assert bid is not None
  3300. if self._experts is None:
  3301. self._experts = [{} for _ in range(self.block_count)]
  3302. self._experts[bid][name] = data_torch
  3303. if len(self._experts[bid]) >= n_experts * 3:
  3304. tensors: list[tuple[str, Tensor]] = []
  3305. # merge the experts into a single 3d tensor
  3306. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3307. datas: list[Tensor] = []
  3308. for xid in range(n_experts):
  3309. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3310. datas.append(self._experts[bid][ename])
  3311. del self._experts[bid][ename]
  3312. data_torch = torch.stack(datas, dim=0)
  3313. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3314. new_name = self.map_tensor_name(merged_name)
  3315. tensors.append((new_name, data_torch))
  3316. return tensors
  3317. else:
  3318. return []
  3319. return [(self.map_tensor_name(name), data_torch)]
  3320. def prepare_tensors(self):
  3321. super().prepare_tensors()
  3322. if self._experts is not None:
  3323. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3324. experts = [k for d in self._experts for k in d.keys()]
  3325. if len(experts) > 0:
  3326. raise ValueError(f"Unprocessed experts: {experts}")
  3327. @Model.register("T5WithLMHeadModel")
  3328. @Model.register("T5ForConditionalGeneration")
  3329. @Model.register("MT5ForConditionalGeneration")
  3330. @Model.register("UMT5ForConditionalGeneration")
  3331. class T5Model(Model):
  3332. model_arch = gguf.MODEL_ARCH.T5
  3333. def __init__(self, *args, **kwargs):
  3334. super().__init__(*args, **kwargs)
  3335. self.shared_token_embeddings_found = False
  3336. def set_vocab(self):
  3337. # to avoid TypeError: Descriptors cannot be created directly
  3338. # exception when importing sentencepiece_model_pb2
  3339. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3340. from sentencepiece import SentencePieceProcessor
  3341. from sentencepiece import sentencepiece_model_pb2 as model
  3342. tokenizer_path = self.dir_model / 'tokenizer.model'
  3343. # many older models use spiece.model tokenizer model filename
  3344. if not tokenizer_path.is_file():
  3345. tokenizer_path = self.dir_model / 'spiece.model'
  3346. if not tokenizer_path.is_file():
  3347. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3348. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3349. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3350. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3351. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3352. # assure the tokenizer model file name is correct
  3353. assert tokenizer_path.name == 'tokenizer.model'
  3354. return self._set_vocab_sentencepiece()
  3355. else:
  3356. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3357. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3358. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3359. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3360. tokenizer = SentencePieceProcessor()
  3361. tokenizer.LoadFromFile(str(tokenizer_path))
  3362. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3363. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3364. scores: list[float] = [-10000.0] * vocab_size
  3365. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3366. for token_id in range(tokenizer.vocab_size()):
  3367. piece = tokenizer.IdToPiece(token_id)
  3368. text = piece.encode("utf-8")
  3369. score = tokenizer.GetScore(token_id)
  3370. toktype = SentencePieceTokenTypes.NORMAL
  3371. if tokenizer.IsUnknown(token_id):
  3372. toktype = SentencePieceTokenTypes.UNKNOWN
  3373. elif tokenizer.IsControl(token_id):
  3374. toktype = SentencePieceTokenTypes.CONTROL
  3375. elif tokenizer.IsUnused(token_id):
  3376. toktype = SentencePieceTokenTypes.UNUSED
  3377. elif tokenizer.IsByte(token_id):
  3378. toktype = SentencePieceTokenTypes.BYTE
  3379. tokens[token_id] = text
  3380. scores[token_id] = score
  3381. toktypes[token_id] = toktype
  3382. added_tokens_file = self.dir_model / 'added_tokens.json'
  3383. if added_tokens_file.is_file():
  3384. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3385. added_tokens_json = json.load(f)
  3386. for key in added_tokens_json:
  3387. token_id = added_tokens_json[key]
  3388. if token_id >= vocab_size:
  3389. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3390. continue
  3391. tokens[token_id] = key.encode("utf-8")
  3392. scores[token_id] = -1000.0
  3393. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3394. if vocab_size > len(tokens):
  3395. pad_count = vocab_size - len(tokens)
  3396. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3397. for i in range(1, pad_count + 1):
  3398. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3399. scores.append(-1000.0)
  3400. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3401. self.gguf_writer.add_tokenizer_model("t5")
  3402. self.gguf_writer.add_tokenizer_pre("default")
  3403. self.gguf_writer.add_token_list(tokens)
  3404. self.gguf_writer.add_token_scores(scores)
  3405. self.gguf_writer.add_token_types(toktypes)
  3406. self.gguf_writer.add_add_space_prefix(add_prefix)
  3407. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3408. if precompiled_charsmap:
  3409. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3410. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3411. special_vocab.add_to_gguf(self.gguf_writer)
  3412. self.gguf_writer.add_add_bos_token(False)
  3413. self.gguf_writer.add_add_eos_token(True)
  3414. def set_gguf_parameters(self):
  3415. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3416. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3417. n_ctx = 512
  3418. self.gguf_writer.add_context_length(n_ctx)
  3419. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3420. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3421. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3422. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3423. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3424. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3425. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3426. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3427. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3428. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3429. self.gguf_writer.add_file_type(self.ftype)
  3430. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3431. del bid # unused
  3432. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3433. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3434. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3435. # and decoder and ignore the remaining ones.
  3436. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3437. if not self.shared_token_embeddings_found:
  3438. name = "shared.weight"
  3439. self.shared_token_embeddings_found = True
  3440. else:
  3441. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3442. return []
  3443. return [(self.map_tensor_name(name), data_torch)]
  3444. @Model.register("T5EncoderModel")
  3445. class T5EncoderModel(Model):
  3446. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3447. def __init__(self, *args, **kwargs):
  3448. super().__init__(*args, **kwargs)
  3449. self.shared_token_embeddings_found = False
  3450. def set_vocab(self):
  3451. # to avoid TypeError: Descriptors cannot be created directly
  3452. # exception when importing sentencepiece_model_pb2
  3453. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3454. from sentencepiece import SentencePieceProcessor
  3455. from sentencepiece import sentencepiece_model_pb2 as model
  3456. tokenizer_path = self.dir_model / 'tokenizer.model'
  3457. # many older models use spiece.model tokenizer model filename
  3458. if not tokenizer_path.is_file():
  3459. tokenizer_path = self.dir_model / 'spiece.model'
  3460. if not tokenizer_path.is_file():
  3461. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3462. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3463. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3464. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3465. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3466. # assure the tokenizer model file name is correct
  3467. assert tokenizer_path.name == 'tokenizer.model'
  3468. return self._set_vocab_sentencepiece()
  3469. else:
  3470. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3471. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3472. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3473. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3474. tokenizer = SentencePieceProcessor()
  3475. tokenizer.LoadFromFile(str(tokenizer_path))
  3476. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3477. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3478. scores: list[float] = [-10000.0] * vocab_size
  3479. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3480. for token_id in range(tokenizer.vocab_size()):
  3481. piece = tokenizer.IdToPiece(token_id)
  3482. text = piece.encode("utf-8")
  3483. score = tokenizer.GetScore(token_id)
  3484. toktype = SentencePieceTokenTypes.NORMAL
  3485. if tokenizer.IsUnknown(token_id):
  3486. toktype = SentencePieceTokenTypes.UNKNOWN
  3487. elif tokenizer.IsControl(token_id):
  3488. toktype = SentencePieceTokenTypes.CONTROL
  3489. elif tokenizer.IsUnused(token_id):
  3490. toktype = SentencePieceTokenTypes.UNUSED
  3491. elif tokenizer.IsByte(token_id):
  3492. toktype = SentencePieceTokenTypes.BYTE
  3493. tokens[token_id] = text
  3494. scores[token_id] = score
  3495. toktypes[token_id] = toktype
  3496. added_tokens_file = self.dir_model / 'added_tokens.json'
  3497. if added_tokens_file.is_file():
  3498. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3499. added_tokens_json = json.load(f)
  3500. for key in added_tokens_json:
  3501. token_id = added_tokens_json[key]
  3502. if token_id >= vocab_size:
  3503. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3504. continue
  3505. tokens[token_id] = key.encode("utf-8")
  3506. scores[token_id] = -1000.0
  3507. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3508. if vocab_size > len(tokens):
  3509. pad_count = vocab_size - len(tokens)
  3510. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3511. for i in range(1, pad_count + 1):
  3512. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3513. scores.append(-1000.0)
  3514. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3515. self.gguf_writer.add_tokenizer_model("t5")
  3516. self.gguf_writer.add_tokenizer_pre("default")
  3517. self.gguf_writer.add_token_list(tokens)
  3518. self.gguf_writer.add_token_scores(scores)
  3519. self.gguf_writer.add_token_types(toktypes)
  3520. self.gguf_writer.add_add_space_prefix(add_prefix)
  3521. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3522. if precompiled_charsmap:
  3523. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3524. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3525. special_vocab.add_to_gguf(self.gguf_writer)
  3526. self.gguf_writer.add_add_bos_token(False)
  3527. self.gguf_writer.add_add_eos_token(True)
  3528. def set_gguf_parameters(self):
  3529. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3530. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3531. n_ctx = 512
  3532. self.gguf_writer.add_context_length(n_ctx)
  3533. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3534. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3535. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3536. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3537. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3538. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3539. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3540. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3541. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3542. self.gguf_writer.add_file_type(self.ftype)
  3543. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3544. del bid # unused
  3545. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3546. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3547. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3548. # and decoder and ignore the remaining ones.
  3549. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3550. if not self.shared_token_embeddings_found:
  3551. name = "shared.weight"
  3552. self.shared_token_embeddings_found = True
  3553. else:
  3554. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3555. return []
  3556. return [(self.map_tensor_name(name), data_torch)]
  3557. @Model.register("JAISLMHeadModel")
  3558. class JaisModel(Model):
  3559. model_arch = gguf.MODEL_ARCH.JAIS
  3560. def __init__(self, *args, **kwargs):
  3561. super().__init__(*args, **kwargs)
  3562. # SwigLU activation
  3563. assert self.hparams["activation_function"] == "swiglu"
  3564. # ALiBi position embedding
  3565. assert self.hparams["position_embedding_type"] == "alibi"
  3566. # Embeddings scale
  3567. self.embeddings_scale = 1.0
  3568. if 'mup_embeddings_scale' in self.hparams:
  3569. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3570. elif 'embeddings_scale' in self.hparams:
  3571. self.embeddings_scale = self.hparams['embeddings_scale']
  3572. else:
  3573. assert False
  3574. self.width_scale = 1.0
  3575. if 'mup_output_alpha' in self.hparams:
  3576. assert 'mup_width_scale' in self.hparams
  3577. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3578. elif 'width_scale' in self.hparams:
  3579. self.width_scale = self.hparams['width_scale']
  3580. else:
  3581. assert False
  3582. self.max_alibi_bias = 8.0
  3583. def set_vocab(self):
  3584. self._set_vocab_gpt2()
  3585. def set_gguf_parameters(self):
  3586. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3587. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3588. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3589. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3590. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3591. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3592. self.gguf_writer.add_file_type(self.ftype)
  3593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3594. del bid # unused
  3595. tensors: list[tuple[str, Tensor]] = []
  3596. # we don't need these
  3597. if name.endswith((".attn.bias")):
  3598. return tensors
  3599. if name.endswith(("relative_pe.slopes")):
  3600. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3601. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3602. # but Jais's PyTorch model simply precalculates the slope values and places them
  3603. # in relative_pes.slopes
  3604. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3605. first_val = float(data_torch[0].item())
  3606. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3607. return tensors
  3608. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3609. data_torch = data_torch.transpose(1, 0)
  3610. new_name = self.map_tensor_name(name)
  3611. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3612. tensors.append((new_name, data_torch * self.embeddings_scale))
  3613. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3614. tensors.append((new_name, data_torch * self.width_scale))
  3615. else:
  3616. tensors.append((new_name, data_torch))
  3617. return tensors
  3618. def prepare_tensors(self):
  3619. super().prepare_tensors()
  3620. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3621. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3622. class ChatGLMModel(Model):
  3623. model_arch = gguf.MODEL_ARCH.CHATGLM
  3624. def set_vocab_chatglm3(self):
  3625. dir_model = self.dir_model
  3626. hparams = self.hparams
  3627. tokens: list[bytes] = []
  3628. toktypes: list[int] = []
  3629. scores: list[float] = []
  3630. from transformers import AutoTokenizer
  3631. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3632. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3633. assert max(tokenizer.get_vocab().values()) < vocab_size
  3634. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3635. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3636. for token_id in range(vocab_size):
  3637. piece = tokenizer._convert_id_to_token(token_id)
  3638. if token_id == 0:
  3639. piece = "<unk>"
  3640. elif token_id == 1:
  3641. piece = "<bos>"
  3642. elif token_id == 2:
  3643. piece = "<eos>"
  3644. text = piece.encode("utf-8")
  3645. score = 0.0
  3646. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3647. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3648. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3649. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3650. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3651. if piece in special_tokens:
  3652. toktype = SentencePieceTokenTypes.CONTROL
  3653. elif len(piece) == 0:
  3654. text = f"[PAD{token_id}]".encode("utf-8")
  3655. toktype = SentencePieceTokenTypes.UNUSED
  3656. else:
  3657. toktype = SentencePieceTokenTypes.USER_DEFINED
  3658. tokens.append(text)
  3659. scores.append(score)
  3660. toktypes.append(toktype)
  3661. continue
  3662. toktype = SentencePieceTokenTypes.NORMAL
  3663. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3664. toktype = SentencePieceTokenTypes.UNKNOWN
  3665. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3666. toktype = SentencePieceTokenTypes.CONTROL
  3667. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3668. toktype = SentencePieceTokenTypes.UNUSED
  3669. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3670. toktype = SentencePieceTokenTypes.BYTE
  3671. tokens.append(text)
  3672. scores.append(score)
  3673. toktypes.append(toktype)
  3674. self.gguf_writer.add_tokenizer_model("llama")
  3675. # glm3 needs prefix and suffix formatted as:
  3676. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3677. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3678. self.gguf_writer.add_token_list(tokens)
  3679. self.gguf_writer.add_token_scores(scores)
  3680. self.gguf_writer.add_token_types(toktypes)
  3681. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3682. special_vocab.add_to_gguf(self.gguf_writer)
  3683. @staticmethod
  3684. def token_bytes_to_string(b):
  3685. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3686. byte_encoder = bytes_to_unicode()
  3687. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3688. @staticmethod
  3689. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3690. parts = [bytes([b]) for b in token]
  3691. while True:
  3692. min_idx = None
  3693. min_rank = None
  3694. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3695. rank = mergeable_ranks.get(pair[0] + pair[1])
  3696. if rank is not None and (min_rank is None or rank < min_rank):
  3697. min_idx = i
  3698. min_rank = rank
  3699. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3700. break
  3701. assert min_idx is not None
  3702. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3703. return parts
  3704. def set_vocab(self):
  3705. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3706. self.set_vocab_chatglm3()
  3707. return
  3708. dir_model = self.dir_model
  3709. hparams = self.hparams
  3710. tokens: list[str] = []
  3711. toktypes: list[int] = []
  3712. from transformers import AutoTokenizer
  3713. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3714. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3715. assert max(tokenizer.get_vocab().values()) < vocab_size
  3716. tokens, toktypes, tokpre = self.get_vocab_base()
  3717. self.gguf_writer.add_tokenizer_model("gpt2")
  3718. self.gguf_writer.add_tokenizer_pre(tokpre)
  3719. self.gguf_writer.add_token_list(tokens)
  3720. self.gguf_writer.add_token_types(toktypes)
  3721. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3722. # only add special tokens when they were not already loaded from config.json
  3723. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3724. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3725. # this one is usually not in config.json anyway
  3726. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3727. special_vocab.add_to_gguf(self.gguf_writer)
  3728. def set_gguf_parameters(self):
  3729. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3730. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3731. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3732. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3733. self.gguf_writer.add_embedding_length(n_embed)
  3734. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3735. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3736. self.gguf_writer.add_head_count(n_head)
  3737. self.gguf_writer.add_head_count_kv(n_head_kv)
  3738. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3739. self.gguf_writer.add_file_type(self.ftype)
  3740. if "attention_dim" in self.hparams:
  3741. rope_dim = self.hparams["attention_dim"]
  3742. else:
  3743. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3744. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3745. self.gguf_writer.add_add_bos_token(False)
  3746. rope_freq = 10000
  3747. if "rope_ratio" in self.hparams:
  3748. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3749. self.gguf_writer.add_rope_freq_base(rope_freq)
  3750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3751. del bid # unused
  3752. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  3753. return []
  3754. name = name.removeprefix("transformer.")
  3755. return [(self.map_tensor_name(name), data_torch)]
  3756. @Model.register("NemotronForCausalLM")
  3757. class NemotronModel(Model):
  3758. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3759. def set_vocab(self):
  3760. self._set_vocab_sentencepiece()
  3761. self.gguf_writer.add_pad_token_id(0)
  3762. self.gguf_writer.add_unk_token_id(1)
  3763. def set_gguf_parameters(self):
  3764. super().set_gguf_parameters()
  3765. hparams = self.hparams
  3766. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3767. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3768. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3769. # * Partial RoPE
  3770. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3771. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3772. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3773. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3774. # * RopeScaling for Nemotron
  3775. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3776. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3777. else:
  3778. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3779. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3780. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3781. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3782. # model.layers.{l}.input_layernorm.weight
  3783. # model.layers.{l}.post_attention_layernorm.weight
  3784. # model.norm.weight
  3785. if name.endswith("norm.weight"):
  3786. data_torch = data_torch + 1
  3787. return [(self.map_tensor_name(name), data_torch)]
  3788. @Model.register("ExaoneForCausalLM")
  3789. class ExaoneModel(Model):
  3790. model_arch = gguf.MODEL_ARCH.EXAONE
  3791. def set_gguf_parameters(self):
  3792. hparams = self.hparams
  3793. assert (hparams["activation_function"] == "silu")
  3794. max_position_embeddings = hparams["max_position_embeddings"]
  3795. embed_dim = hparams["hidden_size"]
  3796. num_heads = hparams["num_attention_heads"]
  3797. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3798. layer_norm_eps = hparams["layer_norm_epsilon"]
  3799. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3800. num_layers = hparams["num_layers"]
  3801. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3802. # attention_dropout_rate = hparams["attention_dropout"]
  3803. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3804. # embed_dropout_rate = hparams["embed_dropout"]
  3805. self.gguf_writer.add_embedding_length(embed_dim)
  3806. self.gguf_writer.add_head_count(num_heads)
  3807. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3808. self.gguf_writer.add_context_length(max_position_embeddings)
  3809. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3810. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3811. self.gguf_writer.add_block_count(num_layers)
  3812. self.gguf_writer.add_file_type(self.ftype)
  3813. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3814. self.gguf_writer.add_rope_freq_base(rope_theta)
  3815. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3816. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3817. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3818. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3819. if hparams["rope_scaling"].get("type") == "linear":
  3820. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3821. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3822. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3823. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3824. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3825. base = self.hparams.get("rope_theta", 10000.0)
  3826. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3827. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3828. factor = rope_scaling.get("factor", 8.0)
  3829. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3830. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3831. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3832. low_freq_wavelen = old_context_len / low_freq_factor
  3833. high_freq_wavelen = old_context_len / high_freq_factor
  3834. assert low_freq_wavelen != high_freq_wavelen
  3835. rope_factors = []
  3836. for freq in freqs:
  3837. wavelen = 2 * math.pi / freq
  3838. if wavelen < high_freq_wavelen:
  3839. rope_factors.append(1)
  3840. elif wavelen > low_freq_wavelen:
  3841. rope_factors.append(factor)
  3842. else:
  3843. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3844. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3845. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3846. @Model.register("GraniteForCausalLM")
  3847. class GraniteModel(LlamaModel):
  3848. """Conversion for IBM's GraniteForCausalLM"""
  3849. model_arch = gguf.MODEL_ARCH.GRANITE
  3850. def set_gguf_parameters(self):
  3851. """Granite uses standard llama parameters with the following differences:
  3852. - No head_dim support
  3853. - New multiplier params:
  3854. - attention_scale
  3855. - embedding_scale
  3856. - residual_scale
  3857. - logits_scaling
  3858. """
  3859. if head_dim := self.hparams.pop("head_dim", None):
  3860. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3861. super().set_gguf_parameters()
  3862. # NOTE: Convert _multiplier params to _scale params for naming
  3863. # consistency
  3864. if attention_scale := self.hparams.get("attention_multiplier"):
  3865. self.gguf_writer.add_attention_scale(attention_scale)
  3866. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3867. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3868. self.gguf_writer.add_embedding_scale(embedding_scale)
  3869. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3870. if residual_scale := self.hparams.get("residual_multiplier"):
  3871. self.gguf_writer.add_residual_scale(residual_scale)
  3872. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3873. if logits_scale := self.hparams.get("logits_scaling"):
  3874. self.gguf_writer.add_logit_scale(logits_scale)
  3875. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3876. @Model.register("GraniteMoeForCausalLM")
  3877. class GraniteMoeModel(GraniteModel):
  3878. """Conversion for IBM's GraniteMoeForCausalLM"""
  3879. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3880. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3881. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3882. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3883. the hidden size that is then split during forward. To keep compatibility
  3884. with existing mixtral support, we pull them apart here.
  3885. """
  3886. if name.endswith("block_sparse_moe.input_linear.weight"):
  3887. ffn_dim = self.hparams["intermediate_size"]
  3888. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3889. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3890. return [
  3891. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3892. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3893. ]
  3894. return super().modify_tensors(data_torch, name, bid)
  3895. @Model.register("ChameleonForConditionalGeneration")
  3896. @Model.register("ChameleonForCausalLM") # obsolete
  3897. class ChameleonModel(Model):
  3898. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3899. def set_gguf_parameters(self):
  3900. super().set_gguf_parameters()
  3901. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3902. def set_vocab(self):
  3903. self._set_vocab_gpt2()
  3904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3905. # ignore image tokenizer for now
  3906. # TODO: remove this once image support is implemented for Chameleon
  3907. if name.startswith("model.vqmodel"):
  3908. return []
  3909. n_head = self.hparams["num_attention_heads"]
  3910. n_kv_head = self.hparams.get("num_key_value_heads")
  3911. hidden_dim = self.hparams.get("hidden_size")
  3912. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3913. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3914. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3915. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3916. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3917. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3918. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3919. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3920. return [(self.map_tensor_name(name), data_torch)]
  3921. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3922. @staticmethod
  3923. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3924. head_dim = hidden_dim // n_heads
  3925. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3926. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3927. return data_torch
  3928. ###### CONVERSION LOGIC ######
  3929. # tree of lazy tensors
  3930. class LazyTorchTensor(gguf.LazyBase):
  3931. _tensor_type = torch.Tensor
  3932. # to keep the type-checker happy
  3933. dtype: torch.dtype
  3934. shape: torch.Size
  3935. # only used when converting a torch.Tensor to a np.ndarray
  3936. _dtype_map: dict[torch.dtype, type] = {
  3937. torch.float16: np.float16,
  3938. torch.float32: np.float32,
  3939. }
  3940. # used for safetensors slices
  3941. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3942. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3943. _dtype_str_map: dict[str, torch.dtype] = {
  3944. "F64": torch.float64,
  3945. "F32": torch.float32,
  3946. "BF16": torch.bfloat16,
  3947. "F16": torch.float16,
  3948. # "U64": torch.uint64,
  3949. "I64": torch.int64,
  3950. # "U32": torch.uint32,
  3951. "I32": torch.int32,
  3952. # "U16": torch.uint16,
  3953. "I16": torch.int16,
  3954. "U8": torch.uint8,
  3955. "I8": torch.int8,
  3956. "BOOL": torch.bool,
  3957. "F8_E4M3": torch.float8_e4m3fn,
  3958. "F8_E5M2": torch.float8_e5m2,
  3959. }
  3960. def numpy(self) -> gguf.LazyNumpyTensor:
  3961. dtype = self._dtype_map[self.dtype]
  3962. return gguf.LazyNumpyTensor(
  3963. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3964. args=(self,),
  3965. func=(lambda s: s.numpy())
  3966. )
  3967. @classmethod
  3968. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3969. return torch.empty(size=shape, dtype=dtype, device="meta")
  3970. @classmethod
  3971. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3972. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3973. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3974. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3975. return cast(torch.Tensor, lazy)
  3976. @classmethod
  3977. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3978. del types # unused
  3979. if kwargs is None:
  3980. kwargs = {}
  3981. if func is torch.Tensor.numpy:
  3982. return args[0].numpy()
  3983. return cls._wrap_fn(func)(*args, **kwargs)
  3984. def parse_args() -> argparse.Namespace:
  3985. parser = argparse.ArgumentParser(
  3986. description="Convert a huggingface model to a GGML compatible file")
  3987. parser.add_argument(
  3988. "--vocab-only", action="store_true",
  3989. help="extract only the vocab",
  3990. )
  3991. parser.add_argument(
  3992. "--outfile", type=Path,
  3993. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3994. )
  3995. parser.add_argument(
  3996. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3997. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3998. )
  3999. parser.add_argument(
  4000. "--bigendian", action="store_true",
  4001. help="model is executed on big endian machine",
  4002. )
  4003. parser.add_argument(
  4004. "model", type=Path,
  4005. help="directory containing model file",
  4006. nargs="?",
  4007. )
  4008. parser.add_argument(
  4009. "--use-temp-file", action="store_true",
  4010. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4011. )
  4012. parser.add_argument(
  4013. "--no-lazy", action="store_true",
  4014. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4015. )
  4016. parser.add_argument(
  4017. "--model-name", type=str, default=None,
  4018. help="name of the model",
  4019. )
  4020. parser.add_argument(
  4021. "--verbose", action="store_true",
  4022. help="increase output verbosity",
  4023. )
  4024. parser.add_argument(
  4025. "--split-max-tensors", type=int, default=0,
  4026. help="max tensors in each split",
  4027. )
  4028. parser.add_argument(
  4029. "--split-max-size", type=str, default="0",
  4030. help="max size per split N(M|G)",
  4031. )
  4032. parser.add_argument(
  4033. "--dry-run", action="store_true",
  4034. help="only print out a split plan and exit, without writing any new files",
  4035. )
  4036. parser.add_argument(
  4037. "--no-tensor-first-split", action="store_true",
  4038. help="do not add tensors to the first split (disabled by default)"
  4039. )
  4040. parser.add_argument(
  4041. "--metadata", type=Path,
  4042. help="Specify the path for an authorship metadata override file"
  4043. )
  4044. parser.add_argument(
  4045. "--print-supported-models", action="store_true",
  4046. help="Print the supported models"
  4047. )
  4048. args = parser.parse_args()
  4049. if not args.print_supported_models and args.model is None:
  4050. parser.error("the following arguments are required: model")
  4051. return args
  4052. def split_str_to_n_bytes(split_str: str) -> int:
  4053. if split_str.endswith("K"):
  4054. n = int(split_str[:-1]) * 1000
  4055. elif split_str.endswith("M"):
  4056. n = int(split_str[:-1]) * 1000 * 1000
  4057. elif split_str.endswith("G"):
  4058. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4059. elif split_str.isnumeric():
  4060. n = int(split_str)
  4061. else:
  4062. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4063. if n < 0:
  4064. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4065. return n
  4066. def main() -> None:
  4067. args = parse_args()
  4068. if args.print_supported_models:
  4069. logger.error("Supported models:")
  4070. Model.print_registered_models()
  4071. sys.exit(0)
  4072. if args.verbose:
  4073. logging.basicConfig(level=logging.DEBUG)
  4074. else:
  4075. logging.basicConfig(level=logging.INFO)
  4076. dir_model = args.model
  4077. if not dir_model.is_dir():
  4078. logger.error(f'Error: {args.model} is not a directory')
  4079. sys.exit(1)
  4080. ftype_map: dict[str, gguf.LlamaFileType] = {
  4081. "f32": gguf.LlamaFileType.ALL_F32,
  4082. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4083. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4084. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4085. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4086. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4087. "auto": gguf.LlamaFileType.GUESSED,
  4088. }
  4089. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4090. if args.use_temp_file and is_split:
  4091. logger.error("Error: Cannot use temp file when splitting")
  4092. sys.exit(1)
  4093. if args.outfile is not None:
  4094. fname_out = args.outfile
  4095. else:
  4096. fname_out = dir_model
  4097. logger.info(f"Loading model: {dir_model.name}")
  4098. hparams = Model.load_hparams(dir_model)
  4099. with torch.inference_mode():
  4100. output_type = ftype_map[args.outtype]
  4101. model_architecture = hparams["architectures"][0]
  4102. try:
  4103. model_class = Model.from_model_architecture(model_architecture)
  4104. except NotImplementedError:
  4105. logger.error(f"Model {model_architecture} is not supported")
  4106. sys.exit(1)
  4107. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4108. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4109. eager=args.no_lazy,
  4110. metadata_override=args.metadata, model_name=args.model_name,
  4111. split_max_tensors=args.split_max_tensors,
  4112. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4113. small_first_shard=args.no_tensor_first_split)
  4114. if args.vocab_only:
  4115. logger.info("Exporting model vocab...")
  4116. model_instance.write_vocab()
  4117. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4118. else:
  4119. logger.info("Exporting model...")
  4120. model_instance.write()
  4121. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4122. logger.info(f"Model successfully exported to {out_path}")
  4123. if __name__ == '__main__':
  4124. main()