common.h 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama-cpp.h"
  4. #include <string>
  5. #include <vector>
  6. #include <sstream>
  7. #ifdef _WIN32
  8. #define DIRECTORY_SEPARATOR '\\'
  9. #else
  10. #define DIRECTORY_SEPARATOR '/'
  11. #endif // _WIN32
  12. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  13. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  14. #define print_build_info() do { \
  15. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  16. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  17. } while(0)
  18. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  19. struct common_adapter_lora_info {
  20. std::string path;
  21. float scale;
  22. struct llama_adapter_lora * ptr;
  23. };
  24. using llama_tokens = std::vector<llama_token>;
  25. // build info
  26. extern int LLAMA_BUILD_NUMBER;
  27. extern const char * LLAMA_COMMIT;
  28. extern const char * LLAMA_COMPILER;
  29. extern const char * LLAMA_BUILD_TARGET;
  30. struct common_control_vector_load_info;
  31. //
  32. // CPU utils
  33. //
  34. struct cpu_params {
  35. int n_threads = -1;
  36. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  37. bool mask_valid = false; // Default: any CPU
  38. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  39. bool strict_cpu = false; // Use strict CPU placement
  40. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  41. };
  42. int32_t cpu_get_num_physical_cores();
  43. int32_t cpu_get_num_math();
  44. //
  45. // Common params
  46. //
  47. enum llama_example {
  48. LLAMA_EXAMPLE_COMMON,
  49. LLAMA_EXAMPLE_SPECULATIVE,
  50. LLAMA_EXAMPLE_MAIN,
  51. LLAMA_EXAMPLE_INFILL,
  52. LLAMA_EXAMPLE_EMBEDDING,
  53. LLAMA_EXAMPLE_PERPLEXITY,
  54. LLAMA_EXAMPLE_RETRIEVAL,
  55. LLAMA_EXAMPLE_PASSKEY,
  56. LLAMA_EXAMPLE_IMATRIX,
  57. LLAMA_EXAMPLE_BENCH,
  58. LLAMA_EXAMPLE_SERVER,
  59. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  60. LLAMA_EXAMPLE_EXPORT_LORA,
  61. LLAMA_EXAMPLE_LLAVA,
  62. LLAMA_EXAMPLE_LOOKUP,
  63. LLAMA_EXAMPLE_PARALLEL,
  64. LLAMA_EXAMPLE_TTS,
  65. LLAMA_EXAMPLE_COUNT,
  66. };
  67. enum common_sampler_type {
  68. COMMON_SAMPLER_TYPE_NONE = 0,
  69. COMMON_SAMPLER_TYPE_DRY = 1,
  70. COMMON_SAMPLER_TYPE_TOP_K = 2,
  71. COMMON_SAMPLER_TYPE_TOP_P = 3,
  72. COMMON_SAMPLER_TYPE_MIN_P = 4,
  73. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  74. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  75. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  76. COMMON_SAMPLER_TYPE_XTC = 8,
  77. COMMON_SAMPLER_TYPE_INFILL = 9,
  78. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  79. };
  80. // dimensionality reduction methods, used by cvector-generator
  81. enum dimre_method {
  82. DIMRE_METHOD_PCA,
  83. DIMRE_METHOD_MEAN,
  84. };
  85. enum common_conversation_mode {
  86. COMMON_CONVERSATION_MODE_DISABLED = 0,
  87. COMMON_CONVERSATION_MODE_ENABLED = 1,
  88. COMMON_CONVERSATION_MODE_AUTO = 2,
  89. };
  90. struct common_grammar_trigger {
  91. std::string word;
  92. bool at_start;
  93. };
  94. // sampling parameters
  95. struct common_params_sampling {
  96. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  97. int32_t n_prev = 64; // number of previous tokens to remember
  98. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  99. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  100. int32_t top_k = 40; // <= 0 to use vocab size
  101. float top_p = 0.95f; // 1.0 = disabled
  102. float min_p = 0.05f; // 0.0 = disabled
  103. float xtc_probability = 0.00f; // 0.0 = disabled
  104. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  105. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  106. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  107. float dynatemp_range = 0.00f; // 0.0 = disabled
  108. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  109. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  110. float penalty_repeat = 1.00f; // 1.0 = disabled
  111. float penalty_freq = 0.00f; // 0.0 = disabled
  112. float penalty_present = 0.00f; // 0.0 = disabled
  113. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  114. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  115. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  116. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  117. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  118. float mirostat_tau = 5.00f; // target entropy
  119. float mirostat_eta = 0.10f; // learning rate
  120. bool ignore_eos = false;
  121. bool no_perf = false; // disable performance metrics
  122. bool timing_per_token = false;
  123. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  124. std::vector<enum common_sampler_type> samplers = {
  125. COMMON_SAMPLER_TYPE_PENALTIES,
  126. COMMON_SAMPLER_TYPE_DRY,
  127. COMMON_SAMPLER_TYPE_TOP_K,
  128. COMMON_SAMPLER_TYPE_TYPICAL_P,
  129. COMMON_SAMPLER_TYPE_TOP_P,
  130. COMMON_SAMPLER_TYPE_MIN_P,
  131. COMMON_SAMPLER_TYPE_XTC,
  132. COMMON_SAMPLER_TYPE_TEMPERATURE,
  133. };
  134. std::string grammar; // optional BNF-like grammar to constrain sampling
  135. bool grammar_lazy = false;
  136. std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
  137. std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
  138. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  139. // print the parameters into a string
  140. std::string print() const;
  141. };
  142. struct common_params_speculative {
  143. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  144. int32_t n_ctx = 0; // draft context size
  145. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  146. int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
  147. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  148. float p_split = 0.1f; // speculative decoding split probability
  149. float p_min = 0.9f; // minimum speculative decoding probability (greedy)
  150. struct cpu_params cpuparams;
  151. struct cpu_params cpuparams_batch;
  152. std::string hf_repo = ""; // HF repo // NOLINT
  153. std::string hf_file = ""; // HF file // NOLINT
  154. std::string model = ""; // draft model for speculative decoding // NOLINT
  155. std::string model_url = ""; // model url to download // NOLINT
  156. };
  157. struct common_params_vocoder {
  158. std::string hf_repo = ""; // HF repo // NOLINT
  159. std::string hf_file = ""; // HF file // NOLINT
  160. std::string model = ""; // model path // NOLINT
  161. std::string model_url = ""; // model url to download // NOLINT
  162. bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
  163. };
  164. struct common_params {
  165. int32_t n_predict = -1; // new tokens to predict
  166. int32_t n_ctx = 4096; // context size
  167. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  168. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  169. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  170. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  171. int32_t n_parallel = 1; // number of parallel sequences to decode
  172. int32_t n_sequences = 1; // number of sequences to decode
  173. int32_t grp_attn_n = 1; // group-attention factor
  174. int32_t grp_attn_w = 512; // group-attention width
  175. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  176. float rope_freq_base = 0.0f; // RoPE base frequency
  177. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  178. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  179. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  180. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  181. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  182. int32_t yarn_orig_ctx = 0; // YaRN original context length
  183. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  184. // offload params
  185. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  186. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  187. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  188. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  189. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  190. struct cpu_params cpuparams;
  191. struct cpu_params cpuparams_batch;
  192. ggml_backend_sched_eval_callback cb_eval = nullptr;
  193. void * cb_eval_user_data = nullptr;
  194. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  195. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  196. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  197. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  198. struct common_params_sampling sampling;
  199. struct common_params_speculative speculative;
  200. struct common_params_vocoder vocoder;
  201. std::string model = ""; // model path // NOLINT
  202. std::string model_alias = ""; // model alias // NOLINT
  203. std::string model_url = ""; // model url to download // NOLINT
  204. std::string hf_token = ""; // HF token // NOLINT
  205. std::string hf_repo = ""; // HF repo // NOLINT
  206. std::string hf_file = ""; // HF file // NOLINT
  207. std::string prompt = ""; // NOLINT
  208. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  209. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  210. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  211. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  212. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  213. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  214. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  215. std::vector<std::string> in_files; // all input files
  216. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  217. std::vector<llama_model_kv_override> kv_overrides;
  218. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
  219. std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
  220. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  221. int32_t verbosity = 0;
  222. int32_t control_vector_layer_start = -1; // layer range for control vector
  223. int32_t control_vector_layer_end = -1; // layer range for control vector
  224. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  225. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  226. // (which is more convenient to use for plotting)
  227. //
  228. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  229. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  230. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  231. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  232. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  233. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  234. bool kl_divergence = false; // compute KL divergence
  235. bool usage = false; // print usage
  236. bool use_color = false; // use color to distinguish generations and inputs
  237. bool special = false; // enable special token output
  238. bool interactive = false; // interactive mode
  239. bool interactive_first = false; // wait for user input immediately
  240. bool prompt_cache_all = false; // save user input and generations to prompt cache
  241. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  242. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  243. bool multiline_input = false; // reverse the usage of `\`
  244. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  245. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  246. bool flash_attn = false; // flash attention
  247. bool no_perf = false; // disable performance metrics
  248. bool ctx_shift = true; // context shift on inifinite text generation
  249. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  250. bool logits_all = false; // return logits for all tokens in the batch
  251. bool use_mmap = true; // use mmap for faster loads
  252. bool use_mlock = false; // use mlock to keep model in memory
  253. bool verbose_prompt = false; // print prompt tokens before generation
  254. bool display_prompt = true; // print prompt before generation
  255. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  256. bool no_kv_offload = false; // disable KV offloading
  257. bool warmup = true; // warmup run
  258. bool check_tensors = false; // validate tensor data
  259. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  260. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  261. common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
  262. // multimodal models (see examples/llava)
  263. std::string mmproj = ""; // path to multimodal projector // NOLINT
  264. std::vector<std::string> image; // path to image file(s)
  265. // embedding
  266. bool embedding = false; // get only sentence embedding
  267. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  268. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  269. std::string embd_sep = "\n"; // separator of embeddings
  270. bool reranking = false; // enable reranking support on server
  271. // server params
  272. int32_t port = 8080; // server listens on this network port
  273. int32_t timeout_read = 600; // http read timeout in seconds
  274. int32_t timeout_write = timeout_read; // http write timeout in seconds
  275. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  276. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  277. std::string hostname = "127.0.0.1";
  278. std::string public_path = ""; // NOLINT
  279. std::string chat_template = ""; // NOLINT
  280. bool use_jinja = false; // NOLINT
  281. bool enable_chat_template = true;
  282. std::vector<std::string> api_keys;
  283. std::string ssl_file_key = ""; // NOLINT
  284. std::string ssl_file_cert = ""; // NOLINT
  285. // "advanced" endpoints are disabled by default for better security
  286. bool webui = true;
  287. bool endpoint_slots = false;
  288. bool endpoint_props = false; // only control POST requests, not GET
  289. bool endpoint_metrics = false;
  290. bool log_json = false;
  291. std::string slot_save_path;
  292. float slot_prompt_similarity = 0.5f;
  293. // batched-bench params
  294. bool is_pp_shared = false;
  295. std::vector<int32_t> n_pp;
  296. std::vector<int32_t> n_tg;
  297. std::vector<int32_t> n_pl;
  298. // retrieval params
  299. std::vector<std::string> context_files; // context files to embed
  300. int32_t chunk_size = 64; // chunk size for context embedding
  301. std::string chunk_separator = "\n"; // chunk separator for context embedding
  302. // passkey params
  303. int32_t n_junk = 250; // number of times to repeat the junk text
  304. int32_t i_pos = -1; // position of the passkey in the junk text
  305. // imatrix params
  306. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  307. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  308. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  309. int32_t i_chunk = 0; // start processing from this chunk
  310. bool process_output = false; // collect data for the output tensor
  311. bool compute_ppl = true; // whether to compute perplexity
  312. // cvector-generator params
  313. int n_pca_batch = 100;
  314. int n_pca_iterations = 1000;
  315. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  316. std::string cvector_outfile = "control_vector.gguf";
  317. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  318. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  319. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  320. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  321. // batched-bench params
  322. bool batched_bench_output_jsonl = false;
  323. };
  324. // call once at the start of a program if it uses libcommon
  325. // initializes the logging system and prints info about the build
  326. void common_init();
  327. std::string common_params_get_system_info(const common_params & params);
  328. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  329. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  330. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  331. bool set_process_priority(enum ggml_sched_priority prio);
  332. //
  333. // String utils
  334. //
  335. #ifdef __GNUC__
  336. #ifdef __MINGW32__
  337. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  338. #else
  339. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  340. #endif
  341. #else
  342. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  343. #endif
  344. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  345. std::string string_format(const char * fmt, ...);
  346. std::string string_strip(const std::string & str);
  347. std::string string_get_sortable_timestamp();
  348. std::string string_join(const std::vector<std::string> & values, const std::string & separator);
  349. std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
  350. std::string string_repeat(const std::string & str, size_t n);
  351. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  352. template<class T>
  353. static std::vector<T> string_split(const std::string & str, char delim) {
  354. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  355. std::vector<T> values;
  356. std::istringstream str_stream(str);
  357. std::string token;
  358. while (std::getline(str_stream, token, delim)) {
  359. T value;
  360. std::istringstream token_stream(token);
  361. token_stream >> value;
  362. values.push_back(value);
  363. }
  364. return values;
  365. }
  366. template<>
  367. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  368. {
  369. std::vector<std::string> parts;
  370. size_t begin_pos = 0;
  371. size_t separator_pos = input.find(separator);
  372. while (separator_pos != std::string::npos) {
  373. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  374. parts.emplace_back(part);
  375. begin_pos = separator_pos + 1;
  376. separator_pos = input.find(separator, begin_pos);
  377. }
  378. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  379. return parts;
  380. }
  381. static bool string_starts_with(const std::string & str,
  382. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  383. return str.rfind(prefix, 0) == 0;
  384. }
  385. static bool string_ends_with(const std::string & str,
  386. const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
  387. return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
  388. }
  389. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  390. void string_process_escapes(std::string & input);
  391. std::string string_from(bool value);
  392. std::string string_from(const std::vector<int> & values);
  393. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  394. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  395. //
  396. // Filesystem utils
  397. //
  398. bool fs_validate_filename(const std::string & filename);
  399. bool fs_create_directory_with_parents(const std::string & path);
  400. std::string fs_get_cache_directory();
  401. std::string fs_get_cache_file(const std::string & filename);
  402. //
  403. // Model utils
  404. //
  405. // note: defines object's lifetime
  406. struct common_init_result {
  407. llama_model_ptr model;
  408. llama_context_ptr context;
  409. std::vector<llama_adapter_lora_ptr> lora;
  410. };
  411. struct common_init_result common_init_from_params(common_params & params);
  412. struct llama_model_params common_model_params_to_llama ( common_params & params);
  413. struct llama_context_params common_context_params_to_llama(const common_params & params);
  414. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  415. struct llama_model * common_load_model_from_url(
  416. const std::string & model_url,
  417. const std::string & local_path,
  418. const std::string & hf_token,
  419. const struct llama_model_params & params);
  420. struct llama_model * common_load_model_from_hf(
  421. const std::string & repo,
  422. const std::string & remote_path,
  423. const std::string & local_path,
  424. const std::string & hf_token,
  425. const struct llama_model_params & params);
  426. std::pair<std::string, std::string> common_get_hf_file(
  427. const std::string & hf_repo_with_tag,
  428. const std::string & hf_token);
  429. // clear LoRA adapters from context, then apply new list of adapters
  430. void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
  431. //
  432. // Batch utils
  433. //
  434. void common_batch_clear(struct llama_batch & batch);
  435. void common_batch_add(
  436. struct llama_batch & batch,
  437. llama_token id,
  438. llama_pos pos,
  439. const std::vector<llama_seq_id> & seq_ids,
  440. bool logits);
  441. //
  442. // Token utils
  443. //
  444. // longest common prefix
  445. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  446. // longet common subsequence
  447. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  448. //
  449. // Vocab utils
  450. //
  451. // tokenizes a string into a vector of tokens
  452. // should work similar to Python's `tokenizer.encode`
  453. std::vector<llama_token> common_tokenize(
  454. const struct llama_context * ctx,
  455. const std::string & text,
  456. bool add_special,
  457. bool parse_special = false);
  458. std::vector<llama_token> common_tokenize(
  459. const struct llama_vocab * vocab,
  460. const std::string & text,
  461. bool add_special,
  462. bool parse_special = false);
  463. // tokenizes a token into a piece, optionally renders special/control tokens
  464. // should work similar to Python's `tokenizer.id_to_piece`
  465. std::string common_token_to_piece(
  466. const struct llama_context * ctx,
  467. llama_token token,
  468. bool special = true);
  469. std::string common_token_to_piece(
  470. const struct llama_vocab * vocab,
  471. llama_token token,
  472. bool special = true);
  473. // detokenizes a vector of tokens into a string
  474. // should work similar to Python's `tokenizer.decode`
  475. // optionally renders special/control tokens
  476. std::string common_detokenize(
  477. const struct llama_context * ctx,
  478. const std::vector<llama_token> & tokens,
  479. bool special = true);
  480. std::string common_detokenize(
  481. const struct llama_vocab * vocab,
  482. const std::vector<llama_token> & tokens,
  483. bool special = true);
  484. //
  485. // Chat template utils
  486. //
  487. struct common_tool_call {
  488. std::string name;
  489. std::string arguments;
  490. std::string id;
  491. };
  492. // same with llama_chat_message, but uses std::string
  493. struct common_chat_msg {
  494. std::string role;
  495. std::string content;
  496. std::vector<common_tool_call> tool_calls;
  497. };
  498. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  499. bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
  500. namespace minja {
  501. class chat_template;
  502. }
  503. typedef minja::chat_template common_chat_template;
  504. struct common_chat_templates {
  505. bool has_explicit_template; // Model had builtin template or template overridde was specified.
  506. std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
  507. std::unique_ptr<common_chat_template> template_tool_use;
  508. };
  509. // CPP wrapper for llama_chat_apply_template
  510. // If the built-in template is not supported, we default to chatml
  511. // If the custom "tmpl" is not supported, we throw an error
  512. std::string common_chat_apply_template(
  513. const common_chat_template & tmpl,
  514. const std::vector<common_chat_msg> & chat,
  515. bool add_ass,
  516. bool use_jinja);
  517. // Format single message, while taking into account the position of that message in chat history
  518. std::string common_chat_format_single(
  519. const common_chat_template & tmpl,
  520. const std::vector<common_chat_msg> & past_msg,
  521. const common_chat_msg & new_msg,
  522. bool add_ass,
  523. bool use_jinja);
  524. // Returns an example of formatted chat
  525. std::string common_chat_format_example(
  526. const common_chat_template & tmpl, bool use_jinja);
  527. common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
  528. //
  529. // KV cache utils
  530. //
  531. // Dump the KV cache view with the number of sequences per cell.
  532. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  533. // Dump the KV cache view showing individual sequences in each cell (long output).
  534. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  535. //
  536. // Embedding utils
  537. //
  538. // TODO: repace embd_norm with an enum
  539. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  540. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  541. //
  542. // Control vector utils
  543. //
  544. struct common_control_vector_data {
  545. int n_embd;
  546. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  547. std::vector<float> data;
  548. };
  549. struct common_control_vector_load_info {
  550. float strength;
  551. std::string fname;
  552. };
  553. // Load control vectors, scale each by strength, and add them together.
  554. // On error, returns {-1, empty}
  555. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  556. //
  557. // Split utils
  558. //
  559. namespace {
  560. const char * const LLM_KV_SPLIT_NO = "split.no";
  561. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  562. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  563. }