common.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <sstream>
  7. #ifdef _WIN32
  8. #define DIRECTORY_SEPARATOR '\\'
  9. #else
  10. #define DIRECTORY_SEPARATOR '/'
  11. #endif // _WIN32
  12. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  13. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  14. #define print_build_info() do { \
  15. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  16. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  17. } while(0)
  18. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  19. struct common_lora_adapter_info {
  20. std::string path;
  21. float scale;
  22. };
  23. struct common_lora_adapter_container : common_lora_adapter_info {
  24. struct llama_lora_adapter * adapter;
  25. };
  26. // build info
  27. extern int LLAMA_BUILD_NUMBER;
  28. extern char const * LLAMA_COMMIT;
  29. extern char const * LLAMA_COMPILER;
  30. extern char const * LLAMA_BUILD_TARGET;
  31. struct common_control_vector_load_info;
  32. //
  33. // CPU utils
  34. //
  35. struct cpu_params {
  36. int n_threads = -1;
  37. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  38. bool mask_valid = false; // Default: any CPU
  39. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  40. bool strict_cpu = false; // Use strict CPU placement
  41. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  42. };
  43. int32_t cpu_get_num_physical_cores();
  44. int32_t cpu_get_num_math();
  45. //
  46. // Common params
  47. //
  48. enum llama_example {
  49. LLAMA_EXAMPLE_COMMON,
  50. LLAMA_EXAMPLE_SPECULATIVE,
  51. LLAMA_EXAMPLE_MAIN,
  52. LLAMA_EXAMPLE_INFILL,
  53. LLAMA_EXAMPLE_EMBEDDING,
  54. LLAMA_EXAMPLE_PERPLEXITY,
  55. LLAMA_EXAMPLE_RETRIEVAL,
  56. LLAMA_EXAMPLE_PASSKEY,
  57. LLAMA_EXAMPLE_IMATRIX,
  58. LLAMA_EXAMPLE_BENCH,
  59. LLAMA_EXAMPLE_SERVER,
  60. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  61. LLAMA_EXAMPLE_EXPORT_LORA,
  62. LLAMA_EXAMPLE_LLAVA,
  63. LLAMA_EXAMPLE_LOOKUP,
  64. LLAMA_EXAMPLE_PARALLEL,
  65. LLAMA_EXAMPLE_COUNT,
  66. };
  67. enum common_sampler_type {
  68. COMMON_SAMPLER_TYPE_NONE = 0,
  69. COMMON_SAMPLER_TYPE_DRY = 1,
  70. COMMON_SAMPLER_TYPE_TOP_K = 2,
  71. COMMON_SAMPLER_TYPE_TOP_P = 3,
  72. COMMON_SAMPLER_TYPE_MIN_P = 4,
  73. COMMON_SAMPLER_TYPE_TFS_Z = 5,
  74. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  75. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  76. COMMON_SAMPLER_TYPE_XTC = 8,
  77. COMMON_SAMPLER_TYPE_INFILL = 9,
  78. };
  79. // dimensionality reduction methods, used by cvector-generator
  80. enum dimre_method {
  81. DIMRE_METHOD_PCA,
  82. DIMRE_METHOD_MEAN,
  83. };
  84. // sampler parameters
  85. struct common_sampler_params {
  86. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  87. int32_t n_prev = 64; // number of previous tokens to remember
  88. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  89. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  90. int32_t top_k = 40; // <= 0 to use vocab size
  91. float top_p = 0.95f; // 1.0 = disabled
  92. float min_p = 0.05f; // 0.0 = disabled
  93. float xtc_probability = 0.00f; // 0.0 = disabled
  94. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  95. float tfs_z = 1.00f; // 1.0 = disabled
  96. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  97. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  98. float dynatemp_range = 0.00f; // 0.0 = disabled
  99. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  100. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  101. float penalty_repeat = 1.00f; // 1.0 = disabled
  102. float penalty_freq = 0.00f; // 0.0 = disabled
  103. float penalty_present = 0.00f; // 0.0 = disabled
  104. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  105. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  106. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  107. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  108. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  109. float mirostat_tau = 5.00f; // target entropy
  110. float mirostat_eta = 0.10f; // learning rate
  111. bool penalize_nl = false; // consider newlines as a repeatable token
  112. bool ignore_eos = false;
  113. bool no_perf = false; // disable performance metrics
  114. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  115. std::vector<enum common_sampler_type> samplers = {
  116. COMMON_SAMPLER_TYPE_DRY,
  117. COMMON_SAMPLER_TYPE_TOP_K,
  118. COMMON_SAMPLER_TYPE_TFS_Z,
  119. COMMON_SAMPLER_TYPE_TYPICAL_P,
  120. COMMON_SAMPLER_TYPE_TOP_P,
  121. COMMON_SAMPLER_TYPE_MIN_P,
  122. COMMON_SAMPLER_TYPE_XTC,
  123. COMMON_SAMPLER_TYPE_TEMPERATURE,
  124. };
  125. std::string grammar; // optional BNF-like grammar to constrain sampling
  126. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  127. // print the parameters into a string
  128. std::string print() const;
  129. };
  130. struct common_params {
  131. int32_t n_predict = -1; // new tokens to predict
  132. int32_t n_ctx = 0; // context size
  133. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  134. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  135. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  136. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  137. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  138. int32_t n_parallel = 1; // number of parallel sequences to decode
  139. int32_t n_sequences = 1; // number of sequences to decode
  140. float p_split = 0.1f; // speculative decoding split probability
  141. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  142. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  143. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  144. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  145. int32_t grp_attn_n = 1; // group-attention factor
  146. int32_t grp_attn_w = 512; // group-attention width
  147. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  148. float rope_freq_base = 0.0f; // RoPE base frequency
  149. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  150. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  151. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  152. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  153. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  154. int32_t yarn_orig_ctx = 0; // YaRN original context length
  155. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  156. struct cpu_params cpuparams;
  157. struct cpu_params cpuparams_batch;
  158. struct cpu_params draft_cpuparams;
  159. struct cpu_params draft_cpuparams_batch;
  160. ggml_backend_sched_eval_callback cb_eval = nullptr;
  161. void * cb_eval_user_data = nullptr;
  162. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  163. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  164. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  165. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  166. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  167. struct common_sampler_params sparams;
  168. std::string model = ""; // model path // NOLINT
  169. std::string model_draft = ""; // draft model for speculative decoding // NOLINT
  170. std::string model_alias = "unknown"; // model alias // NOLINT
  171. std::string model_url = ""; // model url to download // NOLINT
  172. std::string hf_token = ""; // HF token // NOLINT
  173. std::string hf_repo = ""; // HF repo // NOLINT
  174. std::string hf_file = ""; // HF file // NOLINT
  175. std::string prompt = ""; // NOLINT
  176. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  177. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  178. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  179. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  180. std::string logdir = ""; // directory in which to save YAML log files // NOLINT
  181. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  182. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  183. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  184. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  185. std::vector<std::string> in_files; // all input files
  186. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  187. std::vector<llama_model_kv_override> kv_overrides;
  188. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  189. std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  190. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  191. int32_t verbosity = 0;
  192. int32_t control_vector_layer_start = -1; // layer range for control vector
  193. int32_t control_vector_layer_end = -1; // layer range for control vector
  194. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  195. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  196. // (which is more convenient to use for plotting)
  197. //
  198. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  199. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  200. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  201. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  202. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  203. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  204. bool kl_divergence = false; // compute KL divergence
  205. bool usage = false; // print usage
  206. bool use_color = false; // use color to distinguish generations and inputs
  207. bool special = false; // enable special token output
  208. bool interactive = false; // interactive mode
  209. bool interactive_first = false; // wait for user input immediately
  210. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  211. bool prompt_cache_all = false; // save user input and generations to prompt cache
  212. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  213. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  214. bool multiline_input = false; // reverse the usage of `\`
  215. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  216. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  217. bool flash_attn = false; // flash attention
  218. bool no_perf = false; // disable performance metrics
  219. bool ctx_shift = true; // context shift on inifinite text generation
  220. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  221. bool logits_all = false; // return logits for all tokens in the batch
  222. bool use_mmap = true; // use mmap for faster loads
  223. bool use_mlock = false; // use mlock to keep model in memory
  224. bool verbose_prompt = false; // print prompt tokens before generation
  225. bool display_prompt = true; // print prompt before generation
  226. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  227. bool no_kv_offload = false; // disable KV offloading
  228. bool warmup = true; // warmup run
  229. bool check_tensors = false; // validate tensor data
  230. std::string cache_type_k = "f16"; // KV cache data type for the K
  231. std::string cache_type_v = "f16"; // KV cache data type for the V
  232. // multimodal models (see examples/llava)
  233. std::string mmproj = ""; // path to multimodal projector // NOLINT
  234. std::vector<std::string> image; // path to image file(s)
  235. // embedding
  236. bool embedding = false; // get only sentence embedding
  237. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  238. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  239. std::string embd_sep = "\n"; // separator of embeddings
  240. bool reranking = false; // enable reranking support on server
  241. // server params
  242. int32_t port = 8080; // server listens on this network port
  243. int32_t timeout_read = 600; // http read timeout in seconds
  244. int32_t timeout_write = timeout_read; // http write timeout in seconds
  245. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  246. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  247. std::string hostname = "127.0.0.1";
  248. std::string public_path = ""; // NOLINT
  249. std::string chat_template = ""; // NOLINT
  250. bool enable_chat_template = true;
  251. std::vector<std::string> api_keys;
  252. std::string ssl_file_key = ""; // NOLINT
  253. std::string ssl_file_cert = ""; // NOLINT
  254. // "advanced" endpoints are disabled by default for better security
  255. bool webui = true;
  256. bool endpoint_slots = false;
  257. bool endpoint_props = false; // only control POST requests, not GET
  258. bool endpoint_metrics = false;
  259. bool log_json = false;
  260. std::string slot_save_path;
  261. float slot_prompt_similarity = 0.5f;
  262. // batched-bench params
  263. bool is_pp_shared = false;
  264. std::vector<int32_t> n_pp;
  265. std::vector<int32_t> n_tg;
  266. std::vector<int32_t> n_pl;
  267. // retrieval params
  268. std::vector<std::string> context_files; // context files to embed
  269. int32_t chunk_size = 64; // chunk size for context embedding
  270. std::string chunk_separator = "\n"; // chunk separator for context embedding
  271. // passkey params
  272. int32_t n_junk = 250; // number of times to repeat the junk text
  273. int32_t i_pos = -1; // position of the passkey in the junk text
  274. // imatrix params
  275. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  276. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  277. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  278. int32_t i_chunk = 0; // start processing from this chunk
  279. bool process_output = false; // collect data for the output tensor
  280. bool compute_ppl = true; // whether to compute perplexity
  281. // cvector-generator params
  282. int n_pca_batch = 100;
  283. int n_pca_iterations = 1000;
  284. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  285. std::string cvector_outfile = "control_vector.gguf";
  286. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  287. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  288. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  289. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  290. // batched-bench params
  291. bool batched_bench_output_jsonl = false;
  292. };
  293. // call once at the start of a program if it uses libcommon
  294. // initializes the logging system and prints info about the build
  295. void common_init();
  296. std::string common_params_get_system_info(const common_params & params);
  297. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  298. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  299. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  300. bool set_process_priority(enum ggml_sched_priority prio);
  301. //
  302. // String utils
  303. //
  304. #ifdef __GNUC__
  305. #ifdef __MINGW32__
  306. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  307. #else
  308. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  309. #endif
  310. #else
  311. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  312. #endif
  313. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  314. std::string string_format(const char * fmt, ...);
  315. std::string string_strip(const std::string & str);
  316. std::string string_get_sortable_timestamp();
  317. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  318. template<class T>
  319. static std::vector<T> string_split(const std::string & str, char delim) {
  320. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  321. std::vector<T> values;
  322. std::istringstream str_stream(str);
  323. std::string token;
  324. while (std::getline(str_stream, token, delim)) {
  325. T value;
  326. std::istringstream token_stream(token);
  327. token_stream >> value;
  328. values.push_back(value);
  329. }
  330. return values;
  331. }
  332. template<>
  333. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  334. {
  335. std::vector<std::string> parts;
  336. size_t begin_pos = 0;
  337. size_t separator_pos = input.find(separator);
  338. while (separator_pos != std::string::npos) {
  339. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  340. parts.emplace_back(part);
  341. begin_pos = separator_pos + 1;
  342. separator_pos = input.find(separator, begin_pos);
  343. }
  344. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  345. return parts;
  346. }
  347. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  348. void string_process_escapes(std::string & input);
  349. std::string string_from(bool value);
  350. std::string string_from(const std::vector<int> & values);
  351. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  352. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  353. //
  354. // Filesystem utils
  355. //
  356. bool fs_validate_filename(const std::string & filename);
  357. bool fs_create_directory_with_parents(const std::string & path);
  358. std::string fs_get_cache_directory();
  359. std::string fs_get_cache_file(const std::string & filename);
  360. //
  361. // Model utils
  362. //
  363. struct common_init_result {
  364. struct llama_model * model = nullptr;
  365. struct llama_context * context = nullptr;
  366. std::vector<common_lora_adapter_container> lora_adapters;
  367. };
  368. struct common_init_result common_init_from_params(common_params & params);
  369. struct llama_model_params common_model_params_to_llama (const common_params & params);
  370. struct llama_context_params common_context_params_to_llama(const common_params & params);
  371. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  372. struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  373. struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  374. // clear LoRA adapters from context, then apply new list of adapters
  375. void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
  376. // Batch utils
  377. void common_batch_clear(struct llama_batch & batch);
  378. void common_batch_add(
  379. struct llama_batch & batch,
  380. llama_token id,
  381. llama_pos pos,
  382. const std::vector<llama_seq_id> & seq_ids,
  383. bool logits);
  384. //
  385. // Vocab utils
  386. //
  387. // tokenizes a string into a vector of tokens
  388. // should work similar to Python's `tokenizer.encode`
  389. std::vector<llama_token> common_tokenize(
  390. const struct llama_context * ctx,
  391. const std::string & text,
  392. bool add_special,
  393. bool parse_special = false);
  394. std::vector<llama_token> common_tokenize(
  395. const struct llama_model * model,
  396. const std::string & text,
  397. bool add_special,
  398. bool parse_special = false);
  399. // tokenizes a token into a piece, optionally renders special/control tokens
  400. // should work similar to Python's `tokenizer.id_to_piece`
  401. std::string common_token_to_piece(
  402. const struct llama_context * ctx,
  403. llama_token token,
  404. bool special = true);
  405. // detokenizes a vector of tokens into a string
  406. // should work similar to Python's `tokenizer.decode`
  407. // optionally renders special/control tokens
  408. std::string common_detokenize(
  409. llama_context * ctx,
  410. const std::vector<llama_token> & tokens,
  411. bool special = true);
  412. //
  413. // Chat template utils
  414. //
  415. // same with llama_chat_message, but uses std::string
  416. struct common_chat_msg {
  417. std::string role;
  418. std::string content;
  419. };
  420. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  421. bool common_chat_verify_template(const std::string & tmpl);
  422. // CPP wrapper for llama_chat_apply_template
  423. // If the built-in template is not supported, we default to chatml
  424. // If the custom "tmpl" is not supported, we throw an error
  425. std::string common_chat_apply_template(const struct llama_model * model,
  426. const std::string & tmpl,
  427. const std::vector<common_chat_msg> & chat,
  428. bool add_ass);
  429. // Format single message, while taking into account the position of that message in chat history
  430. std::string common_chat_format_single(const struct llama_model * model,
  431. const std::string & tmpl,
  432. const std::vector<common_chat_msg> & past_msg,
  433. const common_chat_msg & new_msg,
  434. bool add_ass);
  435. // Returns an example of formatted chat
  436. std::string common_chat_format_example(const struct llama_model * model,
  437. const std::string & tmpl);
  438. //
  439. // KV cache utils
  440. //
  441. // Dump the KV cache view with the number of sequences per cell.
  442. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  443. // Dump the KV cache view showing individual sequences in each cell (long output).
  444. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  445. //
  446. // Embedding utils
  447. //
  448. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  449. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  450. //
  451. // Control vector utils
  452. //
  453. struct common_control_vector_data {
  454. int n_embd;
  455. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  456. std::vector<float> data;
  457. };
  458. struct common_control_vector_load_info {
  459. float strength;
  460. std::string fname;
  461. };
  462. // Load control vectors, scale each by strength, and add them together.
  463. // On error, returns {-1, empty}
  464. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  465. //
  466. // Split utils
  467. //
  468. static const char * const LLM_KV_SPLIT_NO = "split.no";
  469. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  470. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  471. //
  472. // YAML utils
  473. //
  474. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  475. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  476. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  477. void yaml_dump_non_result_info(
  478. FILE * stream, const common_params & params, const llama_context * lctx,
  479. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);