| 1234567891011121314151617181920212223242526272829303132333435 |
- import asyncio
- import asyncio.threads
- import requests
- import numpy as np
- n = 8
- result = []
- async def requests_post_async(*args, **kwargs):
- return await asyncio.threads.to_thread(requests.post, *args, **kwargs)
- async def main():
- model_url = "http://127.0.0.1:6900"
- responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
- url= f"{model_url}/embedding",
- json= {"content": str(0)*1024}
- ) for i in range(n)])
- for response in responses:
- embedding = response.json()["embedding"]
- print(embedding[-8:])
- result.append(embedding)
- asyncio.run(main())
- # compute cosine similarity
- for i in range(n-1):
- for j in range(i+1, n):
- embedding1 = np.array(result[i])
- embedding2 = np.array(result[j])
- similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
- print(f"Similarity between {i} and {j}: {similarity:.2f}")
|