llama-bench.cpp 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "build-info.h"
  22. #include "ggml-cuda.h"
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T>
  53. static T avg(const std::vector<T> & v) {
  54. if (v.empty()) {
  55. return 0;
  56. }
  57. T sum = std::accumulate(v.begin(), v.end(), T(0));
  58. return sum / (T)v.size();
  59. }
  60. template<typename T>
  61. static T stdev(const std::vector<T> & v) {
  62. if (v.size() <= 1) {
  63. return 0;
  64. }
  65. T mean = avg(v);
  66. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  67. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  68. return stdev;
  69. }
  70. static std::string get_cpu_info() {
  71. std::string id;
  72. #ifdef __linux__
  73. FILE * f = fopen("/proc/cpuinfo", "r");
  74. if (f) {
  75. char buf[1024];
  76. while (fgets(buf, sizeof(buf), f)) {
  77. if (strncmp(buf, "model name", 10) == 0) {
  78. char * p = strchr(buf, ':');
  79. if (p) {
  80. p++;
  81. while (std::isspace(*p)) {
  82. p++;
  83. }
  84. while (std::isspace(p[strlen(p) - 1])) {
  85. p[strlen(p) - 1] = '\0';
  86. }
  87. id = p;
  88. break;
  89. }
  90. }
  91. }
  92. }
  93. #endif
  94. // TODO: other platforms
  95. return id;
  96. }
  97. static std::string get_gpu_info() {
  98. std::string id;
  99. #ifdef GGML_USE_CUBLAS
  100. int count = ggml_cuda_get_device_count();
  101. for (int i = 0; i < count; i++) {
  102. char buf[128];
  103. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  104. id += buf;
  105. if (i < count - 1) {
  106. id += "/";
  107. }
  108. }
  109. #endif
  110. // TODO: other backends
  111. return id;
  112. }
  113. // command line params
  114. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  115. struct cmd_params {
  116. std::vector<std::string> model;
  117. std::vector<int> n_prompt;
  118. std::vector<int> n_gen;
  119. std::vector<int> n_batch;
  120. std::vector<bool> f32_kv;
  121. std::vector<int> n_threads;
  122. std::vector<int> n_gpu_layers;
  123. std::vector<int> main_gpu;
  124. std::vector<bool> mul_mat_q;
  125. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  126. int reps;
  127. bool verbose;
  128. output_formats output_format;
  129. };
  130. static const cmd_params cmd_params_defaults = {
  131. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  132. /* n_prompt */ {512},
  133. /* n_gen */ {128},
  134. /* n_batch */ {512},
  135. /* f32_kv */ {false},
  136. /* n_threads */ {get_num_physical_cores()},
  137. /* n_gpu_layers */ {99},
  138. /* main_gpu */ {0},
  139. /* mul_mat_q */ {true},
  140. /* tensor_split */ {{}},
  141. /* reps */ 5,
  142. /* verbose */ false,
  143. /* output_format */ MARKDOWN
  144. };
  145. static void print_usage(int /* argc */, char ** argv) {
  146. printf("usage: %s [options]\n", argv[0]);
  147. printf("\n");
  148. printf("options:\n");
  149. printf(" -h, --help\n");
  150. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  151. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  152. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  153. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  154. printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
  155. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  156. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  157. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  158. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  159. printf(" -ts, --tensor_split <ts0/ts1/..> \n");
  160. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  161. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  162. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  163. printf("\n");
  164. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  165. }
  166. static cmd_params parse_cmd_params(int argc, char ** argv) {
  167. cmd_params params;
  168. std::string arg;
  169. bool invalid_param = false;
  170. const std::string arg_prefix = "--";
  171. const char split_delim = ',';
  172. params.verbose = cmd_params_defaults.verbose;
  173. params.output_format = cmd_params_defaults.output_format;
  174. params.reps = cmd_params_defaults.reps;
  175. for (int i = 1; i < argc; i++) {
  176. arg = argv[i];
  177. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  178. std::replace(arg.begin(), arg.end(), '_', '-');
  179. }
  180. if (arg == "-h" || arg == "--help") {
  181. print_usage(argc, argv);
  182. exit(0);
  183. } else if (arg == "-m" || arg == "--model") {
  184. if (++i >= argc) {
  185. invalid_param = true;
  186. break;
  187. }
  188. auto p = split<std::string>(argv[i], split_delim);
  189. params.model.insert(params.model.end(), p.begin(), p.end());
  190. } else if (arg == "-p" || arg == "--n-prompt") {
  191. if (++i >= argc) {
  192. invalid_param = true;
  193. break;
  194. }
  195. auto p = split<int>(argv[i], split_delim);
  196. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  197. } else if (arg == "-n" || arg == "--n-gen") {
  198. if (++i >= argc) {
  199. invalid_param = true;
  200. break;
  201. }
  202. auto p = split<int>(argv[i], split_delim);
  203. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  204. } else if (arg == "-b" || arg == "--batch-size") {
  205. if (++i >= argc) {
  206. invalid_param = true;
  207. break;
  208. }
  209. auto p = split<int>(argv[i], split_delim);
  210. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  211. } else if (arg == "--memory-f32") {
  212. if (++i >= argc) {
  213. invalid_param = true;
  214. break;
  215. }
  216. auto p = split<int>(argv[i], split_delim);
  217. params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
  218. } else if (arg == "-t" || arg == "--threads") {
  219. if (++i >= argc) {
  220. invalid_param = true;
  221. break;
  222. }
  223. auto p = split<int>(argv[i], split_delim);
  224. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  225. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  226. if (++i >= argc) {
  227. invalid_param = true;
  228. break;
  229. }
  230. auto p = split<int>(argv[i], split_delim);
  231. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  232. } else if (arg == "-mg" || arg == "--main-gpu") {
  233. if (++i >= argc) {
  234. invalid_param = true;
  235. break;
  236. }
  237. params.main_gpu = split<int>(argv[i], split_delim);
  238. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  239. if (++i >= argc) {
  240. invalid_param = true;
  241. break;
  242. }
  243. auto p = split<bool>(argv[i], split_delim);
  244. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  245. } else if (arg == "-ts" || arg == "--tensor-split") {
  246. if (++i >= argc) {
  247. invalid_param = true;
  248. break;
  249. }
  250. for (auto ts : split<std::string>(argv[i], split_delim)) {
  251. // split string by ; and /
  252. const std::regex regex{R"([;/]+)"};
  253. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  254. std::vector<std::string> split_arg{it, {}};
  255. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  256. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  257. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  258. if (i < split_arg.size()) {
  259. tensor_split[i] = std::stof(split_arg[i]);
  260. } else {
  261. tensor_split[i] = 0.0f;
  262. }
  263. }
  264. params.tensor_split.push_back(tensor_split);
  265. }
  266. } else if (arg == "-r" || arg == "--repetitions") {
  267. if (++i >= argc) {
  268. invalid_param = true;
  269. break;
  270. }
  271. params.reps = std::stoi(argv[i]);
  272. } else if (arg == "-o" || arg == "--output") {
  273. if (++i >= argc) {
  274. invalid_param = true;
  275. break;
  276. }
  277. if (argv[i] == std::string("csv")) {
  278. params.output_format = CSV;
  279. } else if (argv[i] == std::string("json")) {
  280. params.output_format = JSON;
  281. } else if (argv[i] == std::string("md")) {
  282. params.output_format = MARKDOWN;
  283. } else if (argv[i] == std::string("sql")) {
  284. params.output_format = SQL;
  285. } else {
  286. invalid_param = true;
  287. break;
  288. }
  289. } else if (arg == "-v" || arg == "--verbose") {
  290. params.verbose = true;
  291. } else {
  292. invalid_param = true;
  293. break;
  294. }
  295. }
  296. if (invalid_param) {
  297. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  298. print_usage(argc, argv);
  299. exit(1);
  300. }
  301. // set defaults
  302. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  303. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  304. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  305. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  306. if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
  307. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  308. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  309. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  310. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  311. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  312. return params;
  313. }
  314. struct cmd_params_instance {
  315. std::string model;
  316. int n_prompt;
  317. int n_gen;
  318. int n_batch;
  319. bool f32_kv;
  320. int n_threads;
  321. int n_gpu_layers;
  322. int main_gpu;
  323. bool mul_mat_q;
  324. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  325. llama_model_params to_llama_mparams() const {
  326. llama_model_params mparams = llama_model_default_params();
  327. mparams.n_gpu_layers = n_gpu_layers;
  328. mparams.main_gpu = main_gpu;
  329. mparams.tensor_split = tensor_split.data();
  330. return mparams;
  331. }
  332. bool equal_mparams(const cmd_params_instance & other) const {
  333. return model == other.model &&
  334. n_gpu_layers == other.n_gpu_layers &&
  335. main_gpu == other.main_gpu &&
  336. tensor_split == other.tensor_split;
  337. }
  338. llama_context_params to_llama_cparams() const {
  339. llama_context_params cparams = llama_context_default_params();
  340. cparams.n_ctx = n_prompt + n_gen;
  341. cparams.n_batch = n_batch;
  342. cparams.f16_kv = !f32_kv;
  343. cparams.mul_mat_q = mul_mat_q;
  344. return cparams;
  345. }
  346. };
  347. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  348. std::vector<cmd_params_instance> instances;
  349. for (const auto & m : params.model)
  350. for (const auto & nl : params.n_gpu_layers)
  351. for (const auto & mg : params.main_gpu)
  352. for (const auto & ts : params.tensor_split)
  353. for (const auto & nb : params.n_batch)
  354. for (const auto & fk : params.f32_kv)
  355. for (const auto & mmq : params.mul_mat_q)
  356. for (const auto & nt : params.n_threads) {
  357. cmd_params_instance instance = {
  358. /* .model = */ m,
  359. /* .n_prompt = */ n_prompt,
  360. /* .n_gen = */ n_gen,
  361. /* .n_batch = */ nb,
  362. /* .f32_kv = */ fk,
  363. /* .n_threads = */ nt,
  364. /* .n_gpu_layers = */ nl,
  365. /* .main_gpu = */ mg,
  366. /* .mul_mat_q = */ mmq,
  367. /* .tensor_split = */ ts,
  368. };
  369. instances.push_back(instance);
  370. }
  371. return instances;
  372. }
  373. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  374. std::vector<cmd_params_instance> instances;
  375. #if 1
  376. // this ordering minimizes the number of times that each model needs to be reloaded
  377. for (const auto & m : params.model)
  378. for (const auto & nl : params.n_gpu_layers)
  379. for (const auto & mg : params.main_gpu)
  380. for (const auto & ts : params.tensor_split)
  381. for (const auto & nb : params.n_batch)
  382. for (const auto & fk : params.f32_kv)
  383. for (const auto & mmq : params.mul_mat_q)
  384. for (const auto & nt : params.n_threads) {
  385. for (const auto & n_prompt : params.n_prompt) {
  386. if (n_prompt == 0) {
  387. continue;
  388. }
  389. cmd_params_instance instance = {
  390. /* .model = */ m,
  391. /* .n_prompt = */ n_prompt,
  392. /* .n_gen = */ 0,
  393. /* .n_batch = */ nb,
  394. /* .f32_kv = */ fk,
  395. /* .n_threads = */ nt,
  396. /* .n_gpu_layers = */ nl,
  397. /* .main_gpu = */ mg,
  398. /* .mul_mat_q = */ mmq,
  399. /* .tensor_split = */ ts,
  400. };
  401. instances.push_back(instance);
  402. }
  403. for (const auto & n_gen : params.n_gen) {
  404. if (n_gen == 0) {
  405. continue;
  406. }
  407. cmd_params_instance instance = {
  408. /* .model = */ m,
  409. /* .n_prompt = */ 0,
  410. /* .n_gen = */ n_gen,
  411. /* .n_batch = */ nb,
  412. /* .f32_kv = */ fk,
  413. /* .n_threads = */ nt,
  414. /* .n_gpu_layers = */ nl,
  415. /* .main_gpu = */ mg,
  416. /* .mul_mat_q = */ mmq,
  417. /* .tensor_split = */ ts,
  418. };
  419. instances.push_back(instance);
  420. }
  421. }
  422. #else
  423. // this ordering separates the prompt and generation tests
  424. for (const auto & n_prompt : params.n_prompt) {
  425. if (n_prompt == 0) {
  426. continue;
  427. }
  428. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  429. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  430. }
  431. for (const auto & n_gen : params.n_gen) {
  432. if (n_gen == 0) {
  433. continue;
  434. }
  435. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  436. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  437. }
  438. #endif
  439. return instances;
  440. }
  441. struct test {
  442. static const std::string build_commit;
  443. static const int build_number;
  444. static const bool cuda;
  445. static const bool opencl;
  446. static const bool metal;
  447. static const bool gpu_blas;
  448. static const bool blas;
  449. static const std::string cpu_info;
  450. static const std::string gpu_info;
  451. std::string model_filename;
  452. std::string model_type;
  453. uint64_t model_size;
  454. uint64_t model_n_params;
  455. int n_batch;
  456. int n_threads;
  457. bool f32_kv;
  458. int n_gpu_layers;
  459. int main_gpu;
  460. bool mul_mat_q;
  461. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  462. int n_prompt;
  463. int n_gen;
  464. std::string test_time;
  465. std::vector<uint64_t> samples_ns;
  466. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  467. model_filename = inst.model;
  468. char buf[128];
  469. llama_model_desc(lmodel, buf, sizeof(buf));
  470. model_type = buf;
  471. model_size = llama_model_size(lmodel);
  472. model_n_params = llama_model_n_params(lmodel);
  473. n_batch = inst.n_batch;
  474. n_threads = inst.n_threads;
  475. f32_kv = inst.f32_kv;
  476. n_gpu_layers = inst.n_gpu_layers;
  477. main_gpu = inst.main_gpu;
  478. mul_mat_q = inst.mul_mat_q;
  479. tensor_split = inst.tensor_split;
  480. n_prompt = inst.n_prompt;
  481. n_gen = inst.n_gen;
  482. // RFC 3339 date-time format
  483. time_t t = time(NULL);
  484. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  485. test_time = buf;
  486. (void) ctx;
  487. }
  488. uint64_t avg_ns() const {
  489. return ::avg(samples_ns);
  490. }
  491. uint64_t stdev_ns() const {
  492. return ::stdev(samples_ns);
  493. }
  494. std::vector<double> get_ts() const {
  495. int n_tokens = n_prompt + n_gen;
  496. std::vector<double> ts;
  497. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  498. return ts;
  499. }
  500. double avg_ts() const {
  501. return ::avg(get_ts());
  502. }
  503. double stdev_ts() const {
  504. return ::stdev(get_ts());
  505. }
  506. static std::string get_backend() {
  507. if (cuda) {
  508. return GGML_CUDA_NAME;
  509. }
  510. if (opencl) {
  511. return "OpenCL";
  512. }
  513. if (metal) {
  514. return "Metal";
  515. }
  516. if (gpu_blas) {
  517. return "GPU BLAS";
  518. }
  519. if (blas) {
  520. return "BLAS";
  521. }
  522. return "CPU";
  523. }
  524. static const std::vector<std::string> & get_fields() {
  525. static const std::vector<std::string> fields = {
  526. "build_commit", "build_number",
  527. "cuda", "opencl", "metal", "gpu_blas", "blas",
  528. "cpu_info", "gpu_info",
  529. "model_filename", "model_type", "model_size", "model_n_params",
  530. "n_batch", "n_threads", "f16_kv",
  531. "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
  532. "n_prompt", "n_gen", "test_time",
  533. "avg_ns", "stddev_ns",
  534. "avg_ts", "stddev_ts"
  535. };
  536. return fields;
  537. }
  538. enum field_type {STRING, BOOL, INT, FLOAT};
  539. static field_type get_field_type(const std::string & field) {
  540. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  541. field == "model_size" || field == "model_n_params" ||
  542. field == "n_gpu_layers" || field == "main_gpu" ||
  543. field == "n_prompt" || field == "n_gen" ||
  544. field == "avg_ns" || field == "stddev_ns") {
  545. return INT;
  546. }
  547. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  548. field == "f16_kv" || field == "mul_mat_q") {
  549. return BOOL;
  550. }
  551. if (field == "avg_ts" || field == "stddev_ts") {
  552. return FLOAT;
  553. }
  554. return STRING;
  555. }
  556. std::vector<std::string> get_values() const {
  557. std::string tensor_split_str;
  558. int max_nonzero = 0;
  559. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  560. if (tensor_split[i] > 0) {
  561. max_nonzero = i;
  562. }
  563. }
  564. for (int i = 0; i <= max_nonzero; i++) {
  565. char buf[32];
  566. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  567. tensor_split_str += buf;
  568. if (i < max_nonzero) {
  569. tensor_split_str += "/";
  570. }
  571. }
  572. std::vector<std::string> values = {
  573. build_commit, std::to_string(build_number),
  574. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  575. cpu_info, gpu_info,
  576. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  577. std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
  578. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
  579. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  580. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  581. std::to_string(avg_ts()), std::to_string(stdev_ts())
  582. };
  583. return values;
  584. }
  585. std::map<std::string, std::string> get_map() const {
  586. std::map<std::string, std::string> map;
  587. auto fields = get_fields();
  588. auto values = get_values();
  589. std::transform(fields.begin(), fields.end(), values.begin(),
  590. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  591. return map;
  592. }
  593. };
  594. const std::string test::build_commit = BUILD_COMMIT;
  595. const int test::build_number = BUILD_NUMBER;
  596. const bool test::cuda = !!ggml_cpu_has_cublas();
  597. const bool test::opencl = !!ggml_cpu_has_clblast();
  598. const bool test::metal = !!ggml_cpu_has_metal();
  599. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  600. const bool test::blas = !!ggml_cpu_has_blas();
  601. const std::string test::cpu_info = get_cpu_info();
  602. const std::string test::gpu_info = get_gpu_info();
  603. struct printer {
  604. virtual ~printer() {}
  605. FILE * fout;
  606. virtual void print_header(const cmd_params & params) { (void) params; }
  607. virtual void print_test(const test & t) = 0;
  608. virtual void print_footer() { }
  609. };
  610. struct csv_printer : public printer {
  611. static std::string escape_csv(const std::string & field) {
  612. std::string escaped = "\"";
  613. for (auto c : field) {
  614. if (c == '"') {
  615. escaped += "\"";
  616. }
  617. escaped += c;
  618. }
  619. escaped += "\"";
  620. return escaped;
  621. }
  622. void print_header(const cmd_params & params) override {
  623. std::vector<std::string> fields = test::get_fields();
  624. fprintf(fout, "%s\n", join(fields, ",").c_str());
  625. (void) params;
  626. }
  627. void print_test(const test & t) override {
  628. std::vector<std::string> values = t.get_values();
  629. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  630. fprintf(fout, "%s\n", join(values, ",").c_str());
  631. }
  632. };
  633. struct json_printer : public printer {
  634. bool first = true;
  635. static std::string escape_json(const std::string & value) {
  636. std::string escaped;
  637. for (auto c : value) {
  638. if (c == '"') {
  639. escaped += "\\\"";
  640. } else if (c == '\\') {
  641. escaped += "\\\\";
  642. } else if (c <= 0x1f) {
  643. char buf[8];
  644. snprintf(buf, sizeof(buf), "\\u%04x", c);
  645. escaped += buf;
  646. } else {
  647. escaped += c;
  648. }
  649. }
  650. return escaped;
  651. }
  652. static std::string format_value(const std::string & field, const std::string & value) {
  653. switch (test::get_field_type(field)) {
  654. case test::STRING:
  655. return "\"" + escape_json(value) + "\"";
  656. case test::BOOL:
  657. return value == "0" ? "false" : "true";
  658. default:
  659. return value;
  660. }
  661. }
  662. void print_header(const cmd_params & params) override {
  663. fprintf(fout, "[\n");
  664. (void) params;
  665. }
  666. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  667. assert(fields.size() == values.size());
  668. for (size_t i = 0; i < fields.size(); i++) {
  669. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  670. }
  671. }
  672. void print_test(const test & t) override {
  673. if (first) {
  674. first = false;
  675. } else {
  676. fprintf(fout, ",\n");
  677. }
  678. fprintf(fout, " {\n");
  679. print_fields(test::get_fields(), t.get_values());
  680. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  681. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  682. fprintf(fout, " }");
  683. fflush(fout);
  684. }
  685. void print_footer() override {
  686. fprintf(fout, "\n]\n");
  687. }
  688. };
  689. struct markdown_printer : public printer {
  690. std::vector<std::string> fields;
  691. static int get_field_width(const std::string & field) {
  692. if (field == "model") {
  693. return -30;
  694. }
  695. if (field == "t/s") {
  696. return 16;
  697. }
  698. if (field == "size" || field == "params") {
  699. return 10;
  700. }
  701. if (field == "n_gpu_layers") {
  702. return 3;
  703. }
  704. int width = std::max((int)field.length(), 10);
  705. if (test::get_field_type(field) == test::STRING) {
  706. return -width;
  707. }
  708. return width;
  709. }
  710. static std::string get_field_display_name(const std::string & field) {
  711. if (field == "n_gpu_layers") {
  712. return "ngl";
  713. }
  714. if (field == "n_threads") {
  715. return "threads";
  716. }
  717. if (field == "mul_mat_q") {
  718. return "mmq";
  719. }
  720. if (field == "tensor_split") {
  721. return "ts";
  722. }
  723. return field;
  724. }
  725. void print_header(const cmd_params & params) override {
  726. // select fields to print
  727. fields.push_back("model");
  728. fields.push_back("size");
  729. fields.push_back("params");
  730. fields.push_back("backend");
  731. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  732. if (!is_cpu_backend) {
  733. fields.push_back("n_gpu_layers");
  734. }
  735. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  736. fields.push_back("n_threads");
  737. }
  738. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  739. fields.push_back("n_batch");
  740. }
  741. if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
  742. fields.push_back("f16_kv");
  743. }
  744. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  745. fields.push_back("main_gpu");
  746. }
  747. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  748. fields.push_back("mul_mat_q");
  749. }
  750. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  751. fields.push_back("tensor_split");
  752. }
  753. fields.push_back("test");
  754. fields.push_back("t/s");
  755. fprintf(fout, "|");
  756. for (const auto & field : fields) {
  757. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  758. }
  759. fprintf(fout, "\n");
  760. fprintf(fout, "|");
  761. for (const auto & field : fields) {
  762. int width = get_field_width(field);
  763. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  764. }
  765. fprintf(fout, "\n");
  766. }
  767. void print_test(const test & t) override {
  768. std::map<std::string, std::string> vmap = t.get_map();
  769. fprintf(fout, "|");
  770. for (const auto & field : fields) {
  771. std::string value;
  772. char buf[128];
  773. if (field == "model") {
  774. value = t.model_type;
  775. } else if (field == "size") {
  776. if (t.model_size < 1024*1024*1024) {
  777. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  778. } else {
  779. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  780. }
  781. value = buf;
  782. } else if (field == "params") {
  783. if (t.model_n_params < 1000*1000*1000) {
  784. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  785. } else {
  786. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  787. }
  788. value = buf;
  789. } else if (field == "backend") {
  790. value = test::get_backend();
  791. } else if (field == "test") {
  792. if (t.n_prompt > 0 && t.n_gen == 0) {
  793. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  794. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  795. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  796. } else {
  797. assert(false);
  798. exit(1);
  799. }
  800. value = buf;
  801. } else if (field == "t/s") {
  802. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  803. value = buf;
  804. } else if (vmap.find(field) != vmap.end()) {
  805. value = vmap.at(field);
  806. } else {
  807. assert(false);
  808. exit(1);
  809. }
  810. int width = get_field_width(field);
  811. if (field == "t/s") {
  812. // HACK: the utf-8 character is 2 bytes
  813. width += 1;
  814. }
  815. fprintf(fout, " %*s |", width, value.c_str());
  816. }
  817. fprintf(fout, "\n");
  818. }
  819. void print_footer() override {
  820. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  821. }
  822. };
  823. struct sql_printer : public printer {
  824. static std::string get_sql_field_type(const std::string & field) {
  825. switch (test::get_field_type(field)) {
  826. case test::STRING:
  827. return "TEXT";
  828. case test::BOOL:
  829. case test::INT:
  830. return "INTEGER";
  831. case test::FLOAT:
  832. return "REAL";
  833. default:
  834. assert(false);
  835. exit(1);
  836. }
  837. }
  838. void print_header(const cmd_params & params) override {
  839. std::vector<std::string> fields = test::get_fields();
  840. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  841. for (size_t i = 0; i < fields.size(); i++) {
  842. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  843. }
  844. fprintf(fout, ");\n");
  845. fprintf(fout, "\n");
  846. (void) params;
  847. }
  848. void print_test(const test & t) override {
  849. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  850. fprintf(fout, "VALUES (");
  851. std::vector<std::string> values = t.get_values();
  852. for (size_t i = 0; i < values.size(); i++) {
  853. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  854. }
  855. fprintf(fout, ");\n");
  856. }
  857. };
  858. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  859. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  860. int n_processed = 0;
  861. llama_set_n_threads(ctx, n_threads, n_threads);
  862. while (n_processed < n_prompt) {
  863. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  864. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  865. n_processed += n_tokens;
  866. }
  867. }
  868. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  869. llama_token token = llama_token_bos(llama_get_model(ctx));
  870. llama_set_n_threads(ctx, n_threads, n_threads);
  871. for (int i = 0; i < n_gen; i++) {
  872. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  873. }
  874. }
  875. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  876. (void) level;
  877. (void) text;
  878. (void) user_data;
  879. }
  880. int main(int argc, char ** argv) {
  881. // try to set locale for unicode characters in markdown
  882. setlocale(LC_CTYPE, ".UTF-8");
  883. #if !defined(NDEBUG)
  884. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  885. #endif
  886. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  887. fprintf(stderr, "warning: debug build, performance may be affected\n");
  888. #endif
  889. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  890. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  891. #endif
  892. cmd_params params = parse_cmd_params(argc, argv);
  893. // initialize llama.cpp
  894. if (!params.verbose) {
  895. llama_log_set(llama_null_log_callback, NULL);
  896. }
  897. bool numa = false;
  898. llama_backend_init(numa);
  899. // initialize printer
  900. std::unique_ptr<printer> p;
  901. switch (params.output_format) {
  902. case CSV:
  903. p.reset(new csv_printer());
  904. break;
  905. case JSON:
  906. p.reset(new json_printer());
  907. break;
  908. case MARKDOWN:
  909. p.reset(new markdown_printer());
  910. break;
  911. case SQL:
  912. p.reset(new sql_printer());
  913. break;
  914. default:
  915. assert(false);
  916. exit(1);
  917. }
  918. p->fout = stdout;
  919. p->print_header(params);
  920. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  921. llama_model * lmodel = nullptr;
  922. const cmd_params_instance * prev_inst = nullptr;
  923. for (const auto & inst : params_instances) {
  924. // keep the same model between tests when possible
  925. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  926. if (lmodel) {
  927. llama_free_model(lmodel);
  928. }
  929. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  930. if (lmodel == NULL) {
  931. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  932. return 1;
  933. }
  934. prev_inst = &inst;
  935. }
  936. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  937. if (ctx == NULL) {
  938. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  939. llama_free_model(lmodel);
  940. return 1;
  941. }
  942. test t(inst, lmodel, ctx);
  943. llama_kv_cache_tokens_rm(ctx, -1, -1);
  944. // warmup run
  945. if (t.n_prompt > 0) {
  946. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  947. }
  948. if (t.n_gen > 0) {
  949. test_gen(ctx, 1, 0, t.n_threads);
  950. }
  951. for (int i = 0; i < params.reps; i++) {
  952. llama_kv_cache_tokens_rm(ctx, -1, -1);
  953. uint64_t t_start = get_time_ns();
  954. if (t.n_prompt > 0) {
  955. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  956. }
  957. if (t.n_gen > 0) {
  958. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  959. }
  960. uint64_t t_ns = get_time_ns() - t_start;
  961. t.samples_ns.push_back(t_ns);
  962. }
  963. p->print_test(t);
  964. llama_print_timings(ctx);
  965. llama_free(ctx);
  966. }
  967. llama_free_model(lmodel);
  968. p->print_footer();
  969. llama_backend_free();
  970. return 0;
  971. }