tensor_mapping.py 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. "model.norm", # cogvlm
  100. ),
  101. # Rope frequencies
  102. MODEL_TENSOR.ROPE_FREQS: (
  103. "rope.freqs", # llama-pth
  104. "rotary_pos_emb.inv_freq", # chatglm
  105. ),
  106. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  107. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  108. MODEL_TENSOR.CONV1D: (
  109. "backbone.embed", # roberta
  110. ),
  111. }
  112. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  113. # Attention norm
  114. MODEL_TENSOR.ATTN_NORM: (
  115. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  116. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  117. "transformer.blocks.{bid}.norm_1", # mpt
  118. "transformer.h.{bid}.input_layernorm", # falcon7b
  119. "h.{bid}.input_layernorm", # bloom
  120. "transformer.h.{bid}.ln_mlp", # falcon40b
  121. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  122. "layers.{bid}.attention_norm", # llama-pth
  123. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  124. "model.layers.{bid}.ln1", # yi
  125. "h.{bid}.ln_1", # gpt2
  126. "transformer.h.{bid}.ln", # phi2
  127. "model.layers.layers.{bid}.norm", # plamo
  128. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  129. "model.layers.{bid}.attention_norm", # internlm2
  130. "model.layers.{bid}.norm", # mamba-qbert
  131. "backbone.layers.{bid}.norm", # mamba
  132. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  133. "model.layers.{bid}.pre_attn_norm", # grok-2
  134. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  135. "encoder.layers.{bid}.input_layernorm", # chatglm
  136. "transformer.layers.{bid}.attn_norm", # openelm
  137. "rwkv.blocks.{bid}.ln1", # rwkv6
  138. "model.layers.{bid}.ln1", # rwkv7
  139. "model.layers.{bid}.input_layernorm", # llama4
  140. "layers.{bid}.input_layernorm", # embeddinggemma
  141. "transformer_encoder.{bid}.attention_norm", # neobert
  142. "model.layers.{bid}.operator_norm", # lfm2
  143. "model.transformer.blocks.{bid}.attn_norm", # llada
  144. "layers.{bid}.input_layernorm", # qwen3-embedding
  145. "model.layers.{bid}.attention_layernorm" # apertus
  146. ),
  147. # Attention norm 2
  148. MODEL_TENSOR.ATTN_NORM_2: (
  149. "transformer.h.{bid}.ln_attn", # falcon40b
  150. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  151. "rwkv.blocks.{bid}.ln2", # rwkv6
  152. "model.layers.{bid}.ln2", # rwkv7
  153. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  154. ),
  155. # Attention query-key-value
  156. MODEL_TENSOR.ATTN_QKV: (
  157. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  158. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  159. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  160. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  161. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  162. "h.{bid}.self_attention.query_key_value", # bloom
  163. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  164. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  165. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  166. "h.{bid}.attn.c_attn", # gpt2
  167. "transformer.h.{bid}.mixer.Wqkv", # phi2
  168. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  169. "encoder.layers.{bid}.mixer.Wqkv", # jina
  170. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  171. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  172. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  173. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  174. "transformer_encoder.{bid}.qkv", # neobert
  175. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  176. ),
  177. # Attention query
  178. MODEL_TENSOR.ATTN_Q: (
  179. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  180. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  181. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  182. "layers.{bid}.attention.wq", # llama-pth
  183. "encoder.layer.{bid}.attention.self.query", # bert
  184. "transformer.layer.{bid}.attention.q_lin", # distillbert
  185. "transformer.h.{bid}.attn.q_proj", # gpt-j
  186. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  187. "model.layers.{bid}.attention.wq", # internlm2
  188. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  189. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  190. "model.layers.{bid}.self_attn.q_proj", # llama4
  191. "model.transformer.blocks.{bid}.q_proj", # llada
  192. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  193. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  194. ),
  195. # Attention key
  196. MODEL_TENSOR.ATTN_K: (
  197. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  198. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  199. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  200. "layers.{bid}.attention.wk", # llama-pth
  201. "encoder.layer.{bid}.attention.self.key", # bert
  202. "transformer.layer.{bid}.attention.k_lin", # distillbert
  203. "transformer.h.{bid}.attn.k_proj", # gpt-j
  204. "transformer.h.{bid}.attn.k", # refact
  205. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  206. "model.layers.{bid}.attention.wk", # internlm2
  207. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  208. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  209. "model.layers.{bid}.self_attn.k_proj", # llama4
  210. "model.transformer.blocks.{bid}.k_proj", # llada
  211. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  212. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  213. ),
  214. # Attention value
  215. MODEL_TENSOR.ATTN_V: (
  216. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  217. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  218. "layers.{bid}.attention.wv", # llama-pth
  219. "encoder.layer.{bid}.attention.self.value", # bert
  220. "transformer.layer.{bid}.attention.v_lin", # distillbert
  221. "transformer.h.{bid}.attn.v_proj", # gpt-j
  222. "transformer.h.{bid}.attn.v", # refact
  223. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  224. "model.layers.{bid}.attention.wv", # internlm2
  225. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  226. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  227. "model.layers.{bid}.self_attn.v_proj", # llama4
  228. "model.transformer.blocks.{bid}.v_proj", # llada
  229. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  230. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  231. ),
  232. # Attention output
  233. MODEL_TENSOR.ATTN_OUT: (
  234. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  235. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  236. "transformer.blocks.{bid}.attn.out_proj", # mpt
  237. "transformer.h.{bid}.self_attention.dense", # falcon
  238. "h.{bid}.self_attention.dense", # bloom
  239. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  240. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  241. "model.layers.{bid}.self_attn.out_proj", # lfm2
  242. "model.layers.{bid}.self_attn.linear_attn", # deci
  243. "layers.{bid}.attention.wo", # llama-pth
  244. "encoder.layer.{bid}.attention.output.dense", # bert
  245. "transformer.layer.{bid}.attention.out_lin", # distillbert
  246. "transformer.h.{bid}.attn.out_proj", # gpt-j
  247. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  248. "model.layers.{bid}.self_attn.dense", # persimmon
  249. "model.layers.{bid}.attention.dense", # bailingmoe2
  250. "h.{bid}.attn.c_proj", # gpt2
  251. "transformer.h.{bid}.mixer.out_proj", # phi2
  252. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  253. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  254. "model.layers.{bid}.attention.wo", # internlm2
  255. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  256. "encoder.layers.{bid}.mixer.out_proj", # jina
  257. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  258. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  259. "encoder.layers.{bid}.self_attention.dense", # chatglm
  260. "transformer.layers.{bid}.attn.out_proj", # openelm
  261. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  262. "model.layers.{bid}.self_attn.o_proj", # llama4
  263. "transformer_encoder.{bid}.wo", # neobert
  264. "model.transformer.blocks.{bid}.attn_out", # llada
  265. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  266. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  267. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  268. ),
  269. # Attention output norm
  270. MODEL_TENSOR.ATTN_OUT_NORM: (
  271. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  272. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  273. "encoder.layers.{bid}.norm1", # nomic-bert
  274. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  275. "model.layers.{bid}.post_attn_norm", # grok-2
  276. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  277. ),
  278. MODEL_TENSOR.ATTN_POST_NORM: (
  279. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  280. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  281. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  282. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  283. ),
  284. # Rotary embeddings
  285. MODEL_TENSOR.ATTN_ROT_EMBD: (
  286. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  287. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  288. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  289. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  290. ),
  291. MODEL_TENSOR.ATTN_SINKS: (
  292. "model.layers.{bid}.self_attn.sinks", # openai-moe
  293. ),
  294. MODEL_TENSOR.ATTN_GATE: (
  295. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  296. ),
  297. # Feed-forward norm
  298. MODEL_TENSOR.FFN_NORM: (
  299. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  300. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  301. "h.{bid}.post_attention_layernorm", # bloom
  302. "transformer.blocks.{bid}.norm_2", # mpt
  303. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  304. "layers.{bid}.ffn_norm", # llama-pth
  305. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  306. "model.layers.{bid}.ln2", # yi
  307. "h.{bid}.ln_2", # gpt2
  308. "model.layers.{bid}.ffn_norm", # internlm2
  309. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  310. "model.layers.{bid}.pre_moe_norm", # grok-2
  311. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  312. "transformer.layers.{bid}.ffn_norm", # openelm
  313. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  314. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  315. "model.layers.{bid}.post_attention_layernorm", # llama4
  316. "transformer_encoder.{bid}.ffn_norm", # neobert
  317. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  318. "model.transformer.blocks.{bid}.ff_norm", # llada
  319. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  320. "model.layers.{bid}.feedforward_layernorm", # apertus
  321. ),
  322. # Pre feed-forward norm
  323. MODEL_TENSOR.FFN_PRE_NORM: (
  324. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  325. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  326. "model.layers.{bid}.pre_ff_layernorm.weight",
  327. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  328. ),
  329. # Post feed-forward norm
  330. MODEL_TENSOR.FFN_POST_NORM: (
  331. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  332. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  333. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  334. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  335. "model.layers.{bid}.feed_forward.up_proj",
  336. "model.layers.{bid}.post_moe_norm", # grok-2
  337. ),
  338. MODEL_TENSOR.FFN_GATE_INP: (
  339. "layers.{bid}.feed_forward.gate", # mixtral
  340. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  341. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  342. "transformer.decoder_layer.{bid}.router", # Grok
  343. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  344. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  345. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  346. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  347. "model.layers.{bid}.mlp.router", # openai-moe
  348. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  349. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  350. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  351. "model.layers.{bid}.mlp.router.gate", # afmoe
  352. ),
  353. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  354. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  355. ),
  356. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  357. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  358. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  359. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  360. "model.layers.{bid}.mlp.expert_bias", # afmoe
  361. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  362. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  363. ),
  364. # Feed-forward up
  365. MODEL_TENSOR.FFN_UP: (
  366. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  367. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  368. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  369. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  370. "h.{bid}.mlp.dense_h_to_4h", # bloom
  371. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  372. "layers.{bid}.mlp.up_proj", # embeddinggemma
  373. "layers.{bid}.feed_forward.w3", # llama-pth
  374. "encoder.layer.{bid}.intermediate.dense", # bert
  375. "transformer.layer.{bid}.ffn.lin1", # distillbert
  376. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  377. "transformer.h.{bid}.mlp.linear_3", # refact
  378. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  379. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  380. "transformer.h.{bid}.mlp.w1", # qwen
  381. "h.{bid}.mlp.c_fc", # gpt2
  382. "transformer.h.{bid}.mlp.fc1", # phi2
  383. "model.layers.{bid}.mlp.fc1", # phi2
  384. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  385. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  386. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  387. "model.layers.{bid}.feed_forward.w3", # internlm2
  388. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  389. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  390. "model.layers.{bid}.mlp.c_fc", # starcoder2
  391. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  392. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  393. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  394. "model.layers.{bid}.residual_mlp.w3", # arctic
  395. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  396. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  397. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  398. "transformer_encoder.{bid}.ffn.w12", # neobert
  399. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  400. "model.transformer.blocks.{bid}.up_proj", # llada
  401. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  402. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  403. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  404. ),
  405. MODEL_TENSOR.FFN_UP_EXP: (
  406. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  407. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  408. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  409. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  410. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  411. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  412. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  413. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  414. ),
  415. MODEL_TENSOR.FFN_UP_SHEXP: (
  416. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  417. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  418. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  419. "model.layers.{bid}.feed_forward.down_proj",
  420. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  421. ),
  422. MODEL_TENSOR.FFN_UP_CHEXP: (
  423. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  424. ),
  425. # AWQ-activation gate
  426. MODEL_TENSOR.FFN_ACT: (
  427. "transformer.blocks.{bid}.ffn.act", # mpt
  428. ),
  429. # Feed-forward gate
  430. MODEL_TENSOR.FFN_GATE: (
  431. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  432. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  433. "layers.{bid}.feed_forward.w1", # llama-pth
  434. "transformer.h.{bid}.mlp.w2", # qwen
  435. "transformer.h.{bid}.mlp.c_fc2", # jais
  436. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  437. "model.layers.{bid}.feed_forward.w1", # internlm2
  438. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  439. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  440. "transformer.h.{bid}.mlp.linear_1", # refact
  441. "model.layers.{bid}.residual_mlp.w1", # arctic
  442. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  443. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  444. "model.transformer.blocks.{bid}.ff_proj", # llada
  445. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  446. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  447. ),
  448. MODEL_TENSOR.FFN_GATE_EXP: (
  449. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  450. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  451. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  452. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  453. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  454. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  455. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  456. ),
  457. MODEL_TENSOR.FFN_GATE_SHEXP: (
  458. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  459. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  460. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  461. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  462. ),
  463. MODEL_TENSOR.FFN_GATE_CHEXP: (
  464. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  465. ),
  466. # Feed-forward down
  467. MODEL_TENSOR.FFN_DOWN: (
  468. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  469. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  470. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  471. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  472. "h.{bid}.mlp.dense_4h_to_h", # bloom
  473. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  474. "layers.{bid}.mlp.down_proj", # embeddinggemma
  475. "layers.{bid}.feed_forward.w2", # llama-pth
  476. "encoder.layer.{bid}.output.dense", # bert
  477. "transformer.layer.{bid}.ffn.lin2", # distillbert
  478. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  479. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  480. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  481. "h.{bid}.mlp.c_proj", # gpt2
  482. "transformer.h.{bid}.mlp.fc2", # phi2
  483. "model.layers.{bid}.mlp.fc2", # phi2
  484. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  485. "model.layers.{bid}.feed_forward.w2", # internlm2
  486. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  487. "model.layers.{bid}.mlp.c_proj", # starcoder2
  488. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  489. "transformer.layers.{bid}.ffn.proj_2", # openelm
  490. "model.layers.{bid}.residual_mlp.w2", # arctic
  491. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  492. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  493. "model.layers.h.{bid}.mlp.c_proj", # exaone
  494. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  495. "transformer_encoder.{bid}.ffn.w3", # neobert
  496. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  497. "model.transformer.blocks.{bid}.ff_out", # llada
  498. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  499. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  500. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  501. ),
  502. MODEL_TENSOR.FFN_DOWN_EXP: (
  503. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  504. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  505. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  506. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  507. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  508. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  509. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  510. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  511. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  512. ),
  513. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  514. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  515. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  516. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  517. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  518. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  519. ),
  520. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  521. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  522. ),
  523. MODEL_TENSOR.ATTN_Q_NORM: (
  524. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  525. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  526. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  527. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  528. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  529. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  530. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  531. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  532. "transformer.layers.{bid}.attn.q_norm", # openelm
  533. "model.layers.layers.{bid}.mixer.q", # plamo2
  534. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  535. "model.layers.{bid}.attention.query_layernorm", # apertus
  536. ),
  537. MODEL_TENSOR.ATTN_K_NORM: (
  538. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  539. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  540. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  541. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  542. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  543. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  544. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  545. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  546. "transformer.layers.{bid}.attn.k_norm", # openelm
  547. "model.layers.layers.{bid}.mixer.k", # plamo2
  548. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  549. "model.layers.{bid}.attention.key_layernorm", # apertus
  550. ),
  551. MODEL_TENSOR.ROPE_FREQS: (
  552. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  553. ),
  554. MODEL_TENSOR.LAYER_OUT_NORM: (
  555. "encoder.layer.{bid}.output.LayerNorm", # bert
  556. "transformer.layer.{bid}.output_layer_norm", # distillbert
  557. "encoder.layers.{bid}.norm2", # nomic-bert
  558. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  559. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  560. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  561. "model.layers.{bid}.final_layernorm", # bailingmoe2
  562. ),
  563. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  564. "model.embed_tokens_per_layer", # gemma3n
  565. ),
  566. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  567. "model.per_layer_model_projection", # gemma3n
  568. ),
  569. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  570. "model.per_layer_projection_norm", # gemma3n
  571. ),
  572. MODEL_TENSOR.ALTUP_PROJ: (
  573. "model.altup_projections", # gemma3n
  574. ),
  575. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  576. "model.altup_unembed_projections", # gemma3n
  577. ),
  578. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  579. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  580. ),
  581. MODEL_TENSOR.PER_LAYER_PROJ: (
  582. "model.layers.{bid}.per_layer_projection", # gemma3n
  583. ),
  584. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  585. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  586. ),
  587. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  588. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  589. ),
  590. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  591. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  592. ),
  593. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  594. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  595. ),
  596. MODEL_TENSOR.ALTUP_ROUTER: (
  597. "model.layers.{bid}.altup.modality_router", # gemma3n
  598. ),
  599. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  600. "model.layers.{bid}.altup.router_norm", # gemma3n
  601. ),
  602. MODEL_TENSOR.LAUREL_L: (
  603. "model.layers.{bid}.laurel.linear_left", # gemma3n
  604. ),
  605. MODEL_TENSOR.LAUREL_R: (
  606. "model.layers.{bid}.laurel.linear_right", # gemma3n
  607. ),
  608. MODEL_TENSOR.LAUREL_POST_NORM: (
  609. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  610. ),
  611. MODEL_TENSOR.SSM_IN: (
  612. "model.layers.{bid}.in_proj", # mamba-hf
  613. "backbone.layers.{bid}.mixer.in_proj", # mamba
  614. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  615. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  616. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  617. ),
  618. MODEL_TENSOR.SSM_CONV1D: (
  619. "model.layers.{bid}.conv1d", # mamba-hf
  620. "backbone.layers.{bid}.mixer.conv1d", # mamba
  621. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  622. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  623. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  624. ),
  625. MODEL_TENSOR.SSM_X: (
  626. "model.layers.{bid}.x_proj", # mamba-hf
  627. "backbone.layers.{bid}.mixer.x_proj", # mamba
  628. "model.layers.{bid}.mamba.x_proj", # jamba
  629. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  630. ),
  631. MODEL_TENSOR.SSM_DT: (
  632. "model.layers.{bid}.dt_proj", # mamba-hf
  633. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  634. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  635. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  636. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  637. ),
  638. MODEL_TENSOR.SSM_DT_NORM: (
  639. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  640. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  641. ),
  642. MODEL_TENSOR.SSM_A: (
  643. "model.layers.{bid}.A_log", # mamba-hf
  644. "backbone.layers.{bid}.mixer.A_log", # mamba
  645. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  646. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  647. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  648. ),
  649. MODEL_TENSOR.SSM_B_NORM: (
  650. "model.layers.{bid}.mamba.b_layernorm", # jamba
  651. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  652. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  653. ),
  654. MODEL_TENSOR.SSM_C_NORM: (
  655. "model.layers.{bid}.mamba.c_layernorm", # jamba
  656. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  657. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  658. ),
  659. MODEL_TENSOR.SSM_D: (
  660. "model.layers.{bid}.D", # mamba-hf
  661. "backbone.layers.{bid}.mixer.D", # mamba
  662. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  663. "model.layers.layers.{bid}.mixer.D", # plamo2
  664. ),
  665. MODEL_TENSOR.SSM_NORM: (
  666. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  667. "model.layers.{bid}.linear_attn.norm", # qwen3next
  668. "backbone.layers.{bid}.mixer.norm", # mamba2
  669. ),
  670. MODEL_TENSOR.SSM_OUT: (
  671. "model.layers.{bid}.out_proj", # mamba-hf
  672. "backbone.layers.{bid}.mixer.out_proj", # mamba
  673. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  674. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  675. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  676. ),
  677. MODEL_TENSOR.SSM_BETA_ALPHA: (
  678. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  679. ),
  680. MODEL_TENSOR.TIME_MIX_W0: (
  681. "model.layers.{bid}.attention.w0", # rwkv7
  682. ),
  683. MODEL_TENSOR.TIME_MIX_W1: (
  684. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  685. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  686. "model.layers.{bid}.attention.w1", # rwkv7
  687. ),
  688. MODEL_TENSOR.TIME_MIX_W2: (
  689. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  690. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  691. "model.layers.{bid}.attention.w2", # rwkv7
  692. ),
  693. MODEL_TENSOR.TIME_MIX_A0: (
  694. "model.layers.{bid}.attention.a0", # rwkv7
  695. ),
  696. MODEL_TENSOR.TIME_MIX_A1: (
  697. "model.layers.{bid}.attention.a1", # rwkv7
  698. ),
  699. MODEL_TENSOR.TIME_MIX_A2: (
  700. "model.layers.{bid}.attention.a2", # rwkv7
  701. ),
  702. MODEL_TENSOR.TIME_MIX_V0: (
  703. "model.layers.{bid}.attention.v0", # rwkv7
  704. ),
  705. MODEL_TENSOR.TIME_MIX_V1: (
  706. "model.layers.{bid}.attention.v1", # rwkv7
  707. ),
  708. MODEL_TENSOR.TIME_MIX_V2: (
  709. "model.layers.{bid}.attention.v2", # rwkv7
  710. ),
  711. MODEL_TENSOR.TIME_MIX_G1: (
  712. "model.layers.{bid}.attention.g1", # rwkv7
  713. ),
  714. MODEL_TENSOR.TIME_MIX_G2: (
  715. "model.layers.{bid}.attention.g2", # rwkv7
  716. ),
  717. MODEL_TENSOR.TIME_MIX_K_K: (
  718. "model.layers.{bid}.attention.k_k", # rwkv7
  719. ),
  720. MODEL_TENSOR.TIME_MIX_K_A: (
  721. "model.layers.{bid}.attention.k_a", # rwkv7
  722. ),
  723. MODEL_TENSOR.TIME_MIX_R_K: (
  724. "model.layers.{bid}.attention.r_k", # rwkv7
  725. ),
  726. MODEL_TENSOR.TIME_MIX_LERP_X: (
  727. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  728. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  729. ),
  730. MODEL_TENSOR.TIME_MIX_LERP_K: (
  731. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  732. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  733. ),
  734. MODEL_TENSOR.TIME_MIX_LERP_V: (
  735. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  736. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  737. ),
  738. MODEL_TENSOR.TIME_MIX_LERP_R: (
  739. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  740. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  741. ),
  742. MODEL_TENSOR.TIME_MIX_LERP_G: (
  743. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  744. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  745. ),
  746. MODEL_TENSOR.TIME_MIX_LERP_W: (
  747. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  748. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  749. ),
  750. MODEL_TENSOR.TIME_MIX_FIRST: (
  751. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  752. ),
  753. MODEL_TENSOR.TIME_MIX_DECAY: (
  754. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  755. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  756. ),
  757. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  758. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  759. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  760. ),
  761. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  762. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  763. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  764. ),
  765. MODEL_TENSOR.TIME_MIX_KEY: (
  766. "rwkv.blocks.{bid}.attention.key", # rwkv6
  767. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  768. "model.layers.{bid}.attention.key", # rwkv7
  769. "model.layers.{bid}.attention.k_proj", # rwkv7
  770. ),
  771. MODEL_TENSOR.TIME_MIX_VALUE: (
  772. "rwkv.blocks.{bid}.attention.value", # rwkv6
  773. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  774. "model.layers.{bid}.attention.value", # rwkv7
  775. "model.layers.{bid}.attention.v_proj", # rwkv7
  776. ),
  777. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  778. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  779. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  780. "model.layers.{bid}.attention.receptance", # rwkv7
  781. "model.layers.{bid}.attention.r_proj", # rwkv7
  782. ),
  783. MODEL_TENSOR.TIME_MIX_GATE: (
  784. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  785. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  786. ),
  787. MODEL_TENSOR.TIME_MIX_LN: (
  788. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  789. "model.layers.{bid}.attention.ln_x" # rwkv7
  790. ),
  791. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  792. "rwkv.blocks.{bid}.attention.output", # rwkv6
  793. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  794. "model.layers.{bid}.attention.output", # rwkv7
  795. "model.layers.{bid}.attention.o_proj", # rwkv7
  796. ),
  797. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  798. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  799. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  800. ),
  801. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  802. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  803. ),
  804. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  805. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  806. "model.layers.{bid}.feed_forward.key", # rwkv7
  807. ),
  808. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  809. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  810. ),
  811. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  812. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  813. "model.layers.{bid}.feed_forward.value", # rwkv7
  814. ),
  815. MODEL_TENSOR.ATTN_Q_A: (
  816. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  817. ),
  818. MODEL_TENSOR.ATTN_Q_B: (
  819. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  820. ),
  821. MODEL_TENSOR.ATTN_KV_A_MQA: (
  822. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  823. ),
  824. MODEL_TENSOR.ATTN_KV_B: (
  825. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  826. ),
  827. MODEL_TENSOR.ATTN_K_B: (
  828. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  829. ),
  830. MODEL_TENSOR.ATTN_V_B: (
  831. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  832. ),
  833. MODEL_TENSOR.ATTN_Q_A_NORM: (
  834. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  835. ),
  836. MODEL_TENSOR.ATTN_KV_A_NORM: (
  837. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  838. ),
  839. MODEL_TENSOR.ATTN_SUB_NORM: (
  840. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  841. ),
  842. MODEL_TENSOR.FFN_SUB_NORM: (
  843. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  844. ),
  845. MODEL_TENSOR.DEC_ATTN_NORM: (
  846. "decoder.block.{bid}.layer.0.layer_norm", # t5
  847. ),
  848. MODEL_TENSOR.DEC_ATTN_Q: (
  849. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  850. ),
  851. MODEL_TENSOR.DEC_ATTN_K: (
  852. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  853. ),
  854. MODEL_TENSOR.DEC_ATTN_V: (
  855. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  856. ),
  857. MODEL_TENSOR.DEC_ATTN_OUT: (
  858. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  859. ),
  860. MODEL_TENSOR.DEC_ATTN_REL_B: (
  861. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  862. ),
  863. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  864. "decoder.block.{bid}.layer.1.layer_norm", # t5
  865. ),
  866. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  867. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  868. ),
  869. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  870. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  871. ),
  872. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  873. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  874. ),
  875. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  876. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  877. ),
  878. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  879. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  880. ),
  881. MODEL_TENSOR.DEC_FFN_NORM: (
  882. "decoder.block.{bid}.layer.2.layer_norm", # t5
  883. ),
  884. MODEL_TENSOR.DEC_FFN_GATE: (
  885. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  886. ),
  887. MODEL_TENSOR.DEC_FFN_UP: (
  888. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  889. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  890. ),
  891. MODEL_TENSOR.DEC_FFN_DOWN: (
  892. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  893. ),
  894. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  895. "decoder.final_layer_norm", # t5
  896. ),
  897. MODEL_TENSOR.ENC_ATTN_NORM: (
  898. "encoder.block.{bid}.layer.0.layer_norm", # t5
  899. ),
  900. MODEL_TENSOR.ENC_ATTN_Q: (
  901. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  902. ),
  903. MODEL_TENSOR.ENC_ATTN_K: (
  904. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  905. ),
  906. MODEL_TENSOR.ENC_ATTN_V: (
  907. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  908. ),
  909. MODEL_TENSOR.ENC_ATTN_OUT: (
  910. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  911. ),
  912. MODEL_TENSOR.ENC_ATTN_REL_B: (
  913. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  914. ),
  915. MODEL_TENSOR.ENC_FFN_NORM: (
  916. "encoder.block.{bid}.layer.1.layer_norm", # t5
  917. ),
  918. MODEL_TENSOR.ENC_FFN_GATE: (
  919. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  920. ),
  921. MODEL_TENSOR.ENC_FFN_UP: (
  922. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  923. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  924. ),
  925. MODEL_TENSOR.ENC_FFN_DOWN: (
  926. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  927. ),
  928. MODEL_TENSOR.VISEXP_UP: (
  929. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  930. ),
  931. MODEL_TENSOR.VISEXP_GATE: (
  932. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  933. ),
  934. MODEL_TENSOR.VISEXP_DOWN: (
  935. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  936. ),
  937. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  938. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  939. ),
  940. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  941. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  942. ),
  943. ############################################################################
  944. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  945. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  946. "encoder.final_layer_norm", # t5
  947. "layer_norm", # neobert
  948. ),
  949. MODEL_TENSOR.CLS: (
  950. "classifier", # jina
  951. "classifier.dense", # roberta
  952. "pre_classifier", # distillbert
  953. "dense", # neobert
  954. ),
  955. MODEL_TENSOR.CLS_OUT: (
  956. "classifier.out_proj", # roberta
  957. ),
  958. #############################################################################
  959. MODEL_TENSOR.CONVNEXT_DW: (
  960. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  961. ),
  962. MODEL_TENSOR.CONVNEXT_NORM: (
  963. "backbone.convnext.{bid}.norm", # wavtokenizer
  964. ),
  965. MODEL_TENSOR.CONVNEXT_PW1: (
  966. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  967. ),
  968. MODEL_TENSOR.CONVNEXT_PW2: (
  969. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  970. ),
  971. MODEL_TENSOR.CONVNEXT_GAMMA: (
  972. "backbone.convnext.{bid}.gamma", # wavtokenizer
  973. ),
  974. MODEL_TENSOR.POSNET_CONV1: (
  975. "backbone.posnet.{bid}.conv1", # wavtokenizer
  976. ),
  977. MODEL_TENSOR.POSNET_CONV2: (
  978. "backbone.posnet.{bid}.conv2", # wavtokenizer
  979. ),
  980. MODEL_TENSOR.POSNET_NORM: (
  981. "backbone.posnet.{bid}.norm", # wavtokenizer
  982. ),
  983. MODEL_TENSOR.POSNET_NORM1: (
  984. "backbone.posnet.{bid}.norm1", # wavtokenizer
  985. ),
  986. MODEL_TENSOR.POSNET_NORM2: (
  987. "backbone.posnet.{bid}.norm2", # wavtokenizer
  988. ),
  989. MODEL_TENSOR.POSNET_ATTN_NORM: (
  990. "backbone.posnet.{bid}.norm", # wavtokenizer
  991. ),
  992. MODEL_TENSOR.POSNET_ATTN_Q: (
  993. "backbone.posnet.{bid}.q", # wavtokenizer
  994. ),
  995. MODEL_TENSOR.POSNET_ATTN_K: (
  996. "backbone.posnet.{bid}.k", # wavtokenizer
  997. ),
  998. MODEL_TENSOR.POSNET_ATTN_V: (
  999. "backbone.posnet.{bid}.v", # wavtokenizer
  1000. ),
  1001. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1002. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1003. ),
  1004. MODEL_TENSOR.SHORTCONV_CONV: (
  1005. "model.layers.{bid}.conv.conv",
  1006. ),
  1007. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1008. "model.layers.{bid}.conv.in_proj",
  1009. ),
  1010. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1011. "model.layers.{bid}.conv.out_proj",
  1012. ),
  1013. #############################################################################
  1014. ## Vision encoder
  1015. MODEL_TENSOR.V_MMPROJ: (
  1016. "multi_modal_projector.linear_{bid}",
  1017. "visual.merger.mlp.{bid}", # qwen2vl
  1018. ),
  1019. MODEL_TENSOR.V_MMPROJ_FC: (
  1020. "model.connector.modality_projection.proj", # SmolVLM
  1021. "model.vision.linear_proj.linear_proj", # cogvlm
  1022. ),
  1023. MODEL_TENSOR.V_MMPROJ_MLP: (
  1024. "model.mm_projector.mlp.mlp.{bid}",
  1025. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1026. "mlp1.{bid}", # InternVL
  1027. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1028. ),
  1029. MODEL_TENSOR.V_MMPROJ_PEG: (
  1030. "model.mm_projector.peg.peg.{bid}",
  1031. ),
  1032. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1033. "vision_tower.vision_model.embeddings.class_embedding",
  1034. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1035. "vision_model.class_embedding", # llama 4
  1036. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1037. ),
  1038. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1039. "vision_tower.vision_model.embeddings.patch_embedding",
  1040. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1041. "vpm.embeddings.patch_embedding",
  1042. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1043. "vision_tower.patch_conv", # pixtral-hf
  1044. "vision_encoder.patch_conv", # pixtral
  1045. "vision_model.patch_embedding.linear", # llama 4
  1046. "visual.patch_embed.proj", # qwen2vl
  1047. "vision_tower.patch_embed.proj", # kimi-vl
  1048. "model.vision.patch_embedding.proj", # cogvlm
  1049. ),
  1050. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1051. "vision_tower.vision_model.embeddings.position_embedding",
  1052. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1053. "vpm.embeddings.position_embedding",
  1054. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1055. "vision_model.positional_embedding_vlm", # llama 4
  1056. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1057. "visual.pos_embed", # qwen3vl
  1058. "model.vision.patch_embedding.position_embedding", # cogvlm
  1059. ),
  1060. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1061. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1062. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1063. ),
  1064. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1065. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1066. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1067. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1068. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1069. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1070. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1071. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1072. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1073. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1074. ),
  1075. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1076. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1077. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1078. ),
  1079. MODEL_TENSOR.V_ENC_ATTN_K: (
  1080. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1081. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1082. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1083. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1084. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1085. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1086. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1087. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1088. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1089. ),
  1090. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1091. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1092. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1093. ),
  1094. MODEL_TENSOR.V_ENC_ATTN_V: (
  1095. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1096. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1097. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1098. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1099. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1100. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1101. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1102. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1103. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1104. ),
  1105. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1106. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1107. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1108. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1109. "vpm.encoder.layers.{bid}.layer_norm1",
  1110. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1111. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1112. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1113. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1114. "visual.blocks.{bid}.norm1", # qwen2vl
  1115. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1116. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1117. ),
  1118. MODEL_TENSOR.V_ENC_ATTN_O: (
  1119. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1120. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1121. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1122. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1123. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1124. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1125. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1126. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1127. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1128. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1129. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1130. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1131. ),
  1132. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1133. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1134. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1135. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1136. "vpm.encoder.layers.{bid}.layer_norm2",
  1137. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1138. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1139. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1140. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1141. "visual.blocks.{bid}.norm2", # qwen2vl
  1142. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1143. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1144. ),
  1145. MODEL_TENSOR.V_ENC_FFN_UP: (
  1146. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1147. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1148. "vpm.encoder.layers.{bid}.mlp.fc1",
  1149. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1150. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1151. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1152. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1153. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1154. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1155. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1156. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1157. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1158. ),
  1159. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1160. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1161. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1162. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1163. ),
  1164. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1165. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1166. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1167. "vpm.encoder.layers.{bid}.mlp.fc2",
  1168. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1169. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1170. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1171. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1172. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1173. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1174. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1175. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1176. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1177. ),
  1178. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1179. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1180. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1181. ),
  1182. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1183. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1184. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1185. ),
  1186. MODEL_TENSOR.V_PRE_NORM: (
  1187. "vision_tower.vision_model.pre_layrnorm",
  1188. "vision_tower.ln_pre", # pixtral-hf
  1189. "vision_encoder.ln_pre", # pixtral
  1190. "vision_model.layernorm_pre", # llama4
  1191. ),
  1192. MODEL_TENSOR.V_POST_NORM: (
  1193. "vision_tower.vision_model.post_layernorm",
  1194. "model.vision_model.post_layernorm", # SmolVLM
  1195. "vision_model.layernorm_post", # llama4
  1196. "visual.merger.ln_q", # qwen2vl
  1197. "vision_tower.encoder.final_layernorm", # kimi-vl
  1198. ),
  1199. MODEL_TENSOR.V_MM_INP_PROJ: (
  1200. "multi_modal_projector.mm_input_projection",
  1201. ),
  1202. MODEL_TENSOR.V_MM_INP_NORM: (
  1203. "multi_modal_projector.norm",
  1204. "multi_modal_projector.layer_norm",
  1205. "multi_modal_projector.pre_norm",
  1206. "pre_mm_projector_norm",
  1207. "model.vision.linear_proj.norm1", # cogvlm
  1208. ),
  1209. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1210. "multi_modal_projector.mm_soft_emb_norm",
  1211. ),
  1212. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1213. "resampler.pos_embed_k",
  1214. ),
  1215. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1216. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1217. ),
  1218. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1219. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1220. ),
  1221. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1222. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1223. ),
  1224. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1225. "resampler.attn.out_proj",
  1226. ),
  1227. MODEL_TENSOR.V_RESMPL_KV: (
  1228. "resampler.kv_proj",
  1229. ),
  1230. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1231. "resampler.ln_post",
  1232. ),
  1233. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1234. "resampler.ln_kv",
  1235. ),
  1236. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1237. "resampler.ln_q",
  1238. ),
  1239. MODEL_TENSOR.V_RESMPL_PROJ: (
  1240. "resampler.proj",
  1241. ),
  1242. MODEL_TENSOR.V_RESMPL_QUERY: (
  1243. "resampler.query",
  1244. ),
  1245. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1246. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1247. ),
  1248. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1249. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1250. "patch_merger.merging_layer", # mistral
  1251. ),
  1252. MODEL_TENSOR.V_DS_NORM: (
  1253. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1254. ),
  1255. MODEL_TENSOR.V_DS_FC1: (
  1256. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1257. ),
  1258. MODEL_TENSOR.V_DS_FC2: (
  1259. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1260. ),
  1261. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1262. "model.vision.linear_proj.norm1", # cogvlm
  1263. ),
  1264. MODEL_TENSOR.V_MM_UP: (
  1265. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1266. ),
  1267. MODEL_TENSOR.V_MM_DOWN: (
  1268. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1269. ),
  1270. MODEL_TENSOR.V_MM_GATE: (
  1271. "model.vision.linear_proj.gate_proj", # cogvlm
  1272. ),
  1273. MODEL_TENSOR.V_TOK_BOI: (
  1274. "model.vision.boi", # cogvlm
  1275. ),
  1276. MODEL_TENSOR.V_TOK_EOI: (
  1277. "model.vision.eoi", # cogvlm
  1278. ),
  1279. # audio (mtmd)
  1280. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1281. "audio_tower.embed_positions", # ultravox
  1282. ),
  1283. MODEL_TENSOR.A_ENC_CONV1D: (
  1284. "audio_tower.conv{bid}", # ultravox
  1285. ),
  1286. MODEL_TENSOR.A_PRE_NORM: (),
  1287. MODEL_TENSOR.A_POST_NORM: (
  1288. "audio_tower.layer_norm", # ultravox
  1289. "audio_tower.ln_post", # qwen2omni
  1290. ),
  1291. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1292. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1293. ),
  1294. MODEL_TENSOR.A_ENC_ATTN_K: (
  1295. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1296. ),
  1297. MODEL_TENSOR.A_ENC_ATTN_V: (
  1298. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1299. ),
  1300. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1301. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1302. ),
  1303. MODEL_TENSOR.A_ENC_OUTPUT: (
  1304. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1305. ),
  1306. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1307. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1308. ),
  1309. MODEL_TENSOR.A_ENC_FFN_UP: (
  1310. "audio_tower.layers.{bid}.fc1", # ultravox
  1311. ),
  1312. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1313. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1314. "audio_tower.layers.{bid}.fc2", # ultravox
  1315. ),
  1316. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1317. # this prefix is added in the conversion code in modify_tensors()
  1318. MODEL_TENSOR.A_MMPROJ: (
  1319. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1320. ),
  1321. MODEL_TENSOR.A_MMPROJ_FC: (
  1322. "audio.multi_modal_projector.linear", # qwen2audio
  1323. "audio_tower.proj", # qwen2omni
  1324. ),
  1325. MODEL_TENSOR.A_MM_NORM_PRE: (
  1326. "audio.multi_modal_projector.ln_pre", # ultravox
  1327. ),
  1328. MODEL_TENSOR.A_MM_NORM_MID: (
  1329. "audio.multi_modal_projector.ln_mid", # ultravox
  1330. ),
  1331. # NextN/MTP tensors for GLM4_MOE
  1332. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1333. "model.layers.{bid}.eh_proj",
  1334. ),
  1335. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1336. "model.layers.{bid}.embed_tokens",
  1337. ),
  1338. MODEL_TENSOR.NEXTN_ENORM: (
  1339. "model.layers.{bid}.enorm",
  1340. ),
  1341. MODEL_TENSOR.NEXTN_HNORM: (
  1342. "model.layers.{bid}.hnorm",
  1343. ),
  1344. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1345. "model.layers.{bid}.shared_head.head",
  1346. ),
  1347. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1348. "model.layers.{bid}.shared_head.norm",
  1349. ),
  1350. }
  1351. # architecture-specific block mappings
  1352. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1353. MODEL_ARCH.ARCTIC: {
  1354. MODEL_TENSOR.FFN_NORM: (
  1355. "model.layers.{bid}.residual_layernorm",
  1356. ),
  1357. MODEL_TENSOR.FFN_NORM_EXP: (
  1358. "model.layers.{bid}.post_attention_layernorm",
  1359. ),
  1360. },
  1361. }
  1362. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1363. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1364. self.mapping = {}
  1365. for tensor, keys in self.mappings_cfg.items():
  1366. if tensor not in MODEL_TENSORS[arch]:
  1367. continue
  1368. tensor_name = TENSOR_NAMES[tensor]
  1369. self.mapping[tensor_name] = (tensor, tensor_name)
  1370. for key in keys:
  1371. self.mapping[key] = (tensor, tensor_name)
  1372. if arch in self.arch_block_mappings_cfg:
  1373. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1374. for bid in range(n_blocks):
  1375. for tensor, keys in self.block_mappings_cfg.items():
  1376. if tensor not in MODEL_TENSORS[arch]:
  1377. continue
  1378. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1379. self.mapping[tensor_name] = (tensor, tensor_name)
  1380. for key in keys:
  1381. key = key.format(bid = bid)
  1382. self.mapping[key] = (tensor, tensor_name)
  1383. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1384. result = self.mapping.get(key)
  1385. if result is not None:
  1386. return result
  1387. for suffix in try_suffixes:
  1388. if key.endswith(suffix):
  1389. result = self.mapping.get(key[:-len(suffix)])
  1390. if result is not None:
  1391. return result[0], result[1] + suffix
  1392. return None
  1393. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1394. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1395. if result is None:
  1396. return None
  1397. return result[1]
  1398. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1399. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1400. if result is None:
  1401. return None
  1402. return result[0]
  1403. def __getitem__(self, key: str) -> str:
  1404. try:
  1405. return self.mapping[key][1]
  1406. except KeyError:
  1407. raise KeyError(key)
  1408. def __contains__(self, key: str) -> bool:
  1409. return key in self.mapping
  1410. def __repr__(self) -> str:
  1411. return repr(self.mapping)
  1412. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1413. return TensorNameMap(arch, n_blocks)